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Preface

The observation, in 1919 by A.S. Eddington and collaborators, of the gravi-
tational deflection of light by the Sun proved one of the many predictions of
Einstein’s Theory of General Relativity: The Sun was the first example of a
gravitational lens.

In 1936, Albert Einstein published an article in which he suggested us-
ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that
galaxies would act as lenses much more likely than stars, and also gave a list
of possible applications, as a means to determine the dark matter content of
galaxies and clusters of galaxies.

It was only in 1979 that the first example of an extragalactic gravitational
lens was provided by the observation of the distant quasar QSO 0957+0561,
by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the first
lens showing images in the form of arcs was detected.

The theory, observations, and applications of gravitational lensing consti-
tute one of the most rapidly growing branches of astrophysics. The gravita-
tional deflection of light generated by mass concentrations along a light path
produces magnification, multiplicity, and distortion of images, and delays pho-
ton propagation from one line of sight relative to another. The huge amount
of scientific work produced over the last decade on gravitational lensing has
clearly revealed its already substantial and wide impact, and its potential for
future astrophysical applications.

The 33rd Saas-Fee Advanced Courses of the Swiss Society for Astronomy
and Astrophysics, entitled Gravitational Lensing: Strong, Weak, and Micro,
took place from 8–12 April, 2003, in Les Diablerets, a pleasant mountain resort
of the Swiss Alps. The three lecturers were Peter Schneider, Christopher S.
Kochanek, and Joachim Wambsganss.

These proceedings are provided in four complementary parts of a book on
gravitational lensing. P. Schneider wrote Part 1, Introduction to Gravitational
Lensing and Cosmology, the first draft of which was made available to all
registered participants a week before the course. C.S. Kochanek wrote Part 2
about Strong Gravitational Lensing, while P. Schneider in Part 3 dealt with
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Weak Gravitational Lensing, and J. Wambsganss in Part 4 about Gravitational
Microlensing.

We are thankful to Nicole Tharin, the secretary of the Laboratoire
d’Astrophysique de l’Ecole Polytechnique Fédérale de Lausanne (EPFL), for
her continuous presence and efficient help, and to Yves Debernardi for his
efficient logistic support during the course. We are equally thankful to Frédéric
Courbin, Dominique Sluse, Christel Vuissoz, and Alexander Eigenbrod for help
in the editorial process of this book.

The meeting was also sponsored by the Université de Lausanne, the Ecole
Polytechnique Fédérale de Lausanne (EPFL), the Swiss Society for Astron-
omy and Astrophysics, the Académie Suisse des Sciences Naturelles, the Fonds
National Suisse de la Recherche Scientifique, the Space Telescope Science
Institute, the Universität Zürich, and the Observatoire de Genève.

Lausanne, Georges Meylan
July 2005 Philippe Jetzer

Pierre North
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G. Contopoulos, M. Hénon, D. Lynden-Bell

* 1972 Interstellar Matter
N.C. Wickramasinghe, F.D. Kahn, P.G. Metzger

* 1971 Theory of the Stellar Atmospheres
D. Mihalas, B. Pagel, P. Souffrin

* Out of print
! May be ordered from Geneva Observatory

Saas-Fee Courses
Geneva Observatory
CH-1290 Sauverny
Switzerland

!! May be ordered from Springer-Verlag



Part 1: Introduction to Gravitational
Lensing and Cosmology

P. Schneider

1 Introduction

Light rays are deflected when they propagate through a gravitational field.
Long suspected before General Relativity – the theory which we believe pro-
vides the correct description of gravity – it was only after Einstein’s final
formulation of this theory that the effect was described quantitatively. The
rich phenomena which are caused by this gravitational light deflection has led
to the development of the rather recent active research field of gravitational
lensing, and the fact that the 2003 Saas-Fee course is entirely devoted to this
subject is just but one of the indications of the prominence this topic has
achieved. In fact, the activities in this area have become quite diverse and
are reflected by the three main lectures of this course. The phenomena of
light propagation in strong gravitational fields, as it occurs near the surface
of neutron stars or black holes, are usually not incorporated into gravita-
tional lensing – although the physics is the same, these strong-field effects
require a rather different mathematical description than the weak deflection
phenomena.

In this introductory first part (PART 1) we shall provide an outline of
the basics of gravitational lensing, covering aspects that are at the base of
it and which will be used extensively in the three main lectures. We start in
Sect. 1.1 with a brief historical account; the study of the influence of a gravita-
tional field on the propagation of light started long before the proper theory of
gravity – Einstein’s General Relativity – was formulated. Illustrations of the
most common phenomena of gravitational lensing will be given next, before
we will introduce in Sect. 2 the basic equations of gravitational lensing theory.
A few simple lens models will be considered in Sect. 3, in particular the point-
mass lens and the singular isothermal sphere model. Since the sources and
deflectors in gravitational lensing are often located at distances comparable
to the radius of the observable Universe, the large-scale geometry of space-
time needs to be accounted for. Thus, in Sect. 4 we give a brief introduction to
the standard model of cosmology. We then proceed in Sect. 5 with some basic
Schneider P (2006), Introduction to gravitational lensing and cosmology. In: Meylan G,
Jetzer Ph and North P (eds) Gravitational lensing: Strong, weak, and micro. Saas-Fee Adv
Courses vol 33, pp 1–89
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2 P. Schneider

considerations about lensing statistics, i.e., the question of how probable it is
that observations of a source at large distance are significantly affected by a
lensing effect, and conclude with a description of the large-scale matter distri-
bution in the Universe. The material covered in this introductory part will be
used extensively in the later parts of this book; those will be abbreviated as SL
(Strong Lensing, Kochanek, 2005, Part 2 of this book), WL (Weak Lensing,
Schneider, 2005, Part 3 of this book), and ML (MicroLensing, Wambsganss,
2005 Part 4 of this book).

Gravitational lensing as a whole, and several particular aspects of it, has
been reviewed previously. Two extensive monographs (Schneider et al. 1992,
hereafter SEF; Petters, Levine and Wambsganss 2001, hereafter PLW) de-
scribe lensing in great detail, in particular providing a derivation of the gravi-
tational lensing equations from General Relativity (see also Seitz et al. 1994).
Blandford and Narayan (1992) review the cosmological applications of gravi-
tational lensing, Refsdall and Surdej (1994) and Courbin et al. (2002) discuss
quasar lensing by galaxies and provide an intuitive geometrical optics ap-
proach to lensing, Fort and Mellier (1994) describe the giant luminous arcs
and arclets in clusters of galaxies, Paczyński (1996) reviews the effects of grav-
itational microlensing in the local group, the review by Narayan and Bartel-
mann (1999) provides a concise account of gravitational lensing theory and
observations, and Mellier (1999), Bartelmann and Schneider (2001), Wittman
(2002) and van Waerbeke and Mellier (2003) review the relatively young field
of weak gravitational lensing.

1.1 History of Gravitational Light Deflection

We start with a (very) brief account on the history of gravitational lensing;
the reader is referred to SEF and PLW for a more detailed presentation.

The Early Years, Before General Relativity

The Newtonian theory of gravitation predicts that the gravitational force F on
a particle of mass m is proportional to m, so that the gravitational acceleration
a = F/m is independent of m. Therefore, the trajectory of a test particle in
a gravitational field is independent of its mass but depends, for a given initial
position and direction, only on the velocity of the test particle. About 200
years ago, several physicists and astronomers speculated that, if light could
be treated like a particle, light rays may be influenced in a gravitational field
as well. John Mitchell in 1784, in a letter to Henry Cavendish, and later
Johann von Soldner in 1804, mentioned the possibility that light propagating
in the field of a spherical mass M (like a star) would be deflected by an angle
α̂N = 2GM/(c2ξ), where G and c are Newton constant of gravity and the
velocity of light, respectively, and ξ is the impact parameter of the incoming
light ray. At roughly the same time, Pierre-Simon Laplace in 1795 noted “that
the gravitational force of a heavenly body could be so large, that light could
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not flow out of it” (Laplace 1975), i.e., that the escape velocity ve =
√

2GM/R
from the surface of a spherical mass M of radius R becomes the velocity of
light, which happens if R = Rs ≡ 2GM/c2, nowadays called the Schwarzschild
radius of a mass M .

Gravitational Light Deflection in GR

All these results were derived under the assumption that light somehow can
be considered like a massive test particle; this was of course well before the
concept of photons was introduced. Only after the formulation of General
Relativity by Albert Einstein in 1915 could the behavior of light in a gravita-
tional field be studied on a firm physical ground. Before the final formulation
of GR, Einstein published a paper in 1911 where he recalculated the results
of Mitchell and Soldner (of whose work he was unaware) for the deflection
angle. Only after the completion of GR did it become clear that the ‘New-
tonian’ value of the deflection angle was too small by a factor of 2. In the
general theory of relativity, the deflection is

α̂ =
4GM

c2ξ
= 1.′′75

(
M

M�

)(
ξ

R�

)−1

. (1)

The deflection of light by the Sun can be measured during a total solar eclipse
when it is possible to observe stars projected near the Solar surface; light de-
flection then slightly changes their positions. A measurement of the deflection
in 1919, with a sufficient accuracy to distinguish between the ‘Newtonian’
and the GR value, provided a tremendous success for Einstein’s new theory
of gravity.

Soon thereafter, Lodge (1919) used the term ‘lens’ in the context of grav-
itational light deflection, but noted that ‘it has no focal length’. Chwolson
(1924) considered a source perfectly coaligned with a foreground mass, con-
cluding that the source should be imaged as a ring around the lens – in fact,
only fairly recently did it become known that Einstein made some unpublished
notes on this effect in 1912 (Renn et al. 1997) – hence, calling them ‘Einstein
rings’ is indeed appropriate. If the alignment is not perfect, two images of the
background source would be visible, one on either side of the foreground star.
Einstein, in 1936, after being approached by the Czech engineer Rudi Mandl,
wrote a paper where he considered this lensing effect by a star, including both
the image positions, their separation, and their magnifications. He concluded
that the angular separation between the two images would be far too small
(of order milli-arcseconds) to be resolvable, so that “there is no great chance
of observing this phenomenon” (Einstein 1936).

Zwicky’s Visions

This pessimistic view was not shared by Fritz Zwicky , who in 1937 published
two truly visionary papers. Instead of looking at lensing by stars in our Galaxy,
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he considered “extragalactic nebulae” (nowadays called galaxies) as lenses –
with his mass estimates of these nebulae, he estimated typical image separa-
tion of a background source to be of order 10′′ – about one order of magnitude
too high – and such pairs of images can be separated with telescopes. Observ-
ing such an effect, he noted, would furnish an additional test of GR, allow
one to see galaxies at larger distances (due to the magnification effect), and
would determine the masses of these nebulae acting as lenses (Zwicky 1937a).
He then went on to estimate the probability that a distant source would be
lensed to produce multiple images, concluded that about 1 out of 400 distant
sources should be affected by lensing (this is about the fractional area covered
by the bright parts of nebulae on photographic plates), and hence predicted
that “the probability that nebulae which act as gravitational lenses will be
found becomes practically a certainty” (Zwicky 1937b). As we shall see in due
course, basically all of Zwicky’s predictions became true.1

The Revival of Lensing

Until the beginning of the 1960’s the subject rested, but in 1963/4, three
authors independently reopened the field: Klimov (1963), Liebes (1964) and
Refsdal (1964a,b). Klimov considered lensing of galaxies by galaxies, whereas
Liebes and Refsdal mainly studied lensing by point-mass lenses. Their pa-
pers have been milestones in lensing research; for example, Liebes considered
the possibility that stars in the Milky Way can act as lenses for stars in
M31 – we shall see in ML, this is a truly modern idea. Refsdal calculated
the difference of the light travel times between the two images of a source –
since light propagates along different paths from the source to the observer,
there will in general be a time delay which can be observed provided the
source is variable, such like a supernova. Refsdal pointed out that the time
delay depends on the mass of the lens and the distances to the lens and
the source, and concluded that, if the image separation and the time delay
could be measured, the lens mass and the Hubble constant could be deter-
mined. We shall see in SL (Part 2) how these predictions have been realized in
the meantime.

In 1963, the first quasars were detected: luminous, compact (‘quasi-stellar’)
and very distant sources – hence, a source population had been discovered
which lies behind Zwicky’s nebulae, and finding lens systems amongst them
should be a certainty. Nevertheless, it took another 15 years until the first
lens system was observed and identified as such.

1 Zwicky thought he had found a gravitational lens system and said so at a con-
ference in the 1950s. Munch, one of his Caltech colleagues, said that if it were
a lens, he’d “eat his hat”. Sargent (from whom this story was communicated)
found the photographic plate after Zwicky’s death, hoping to improve Munch’s
diet, but concluded it was a plate defect.
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1.2 Discoveries

First Detections of Multiple Imaging (1979)

In their program to optically identify radio sources, Walsh et al. in 1979 dis-
covered a pair of quasars separated by about 6 arcseconds, having identical
colors, redshifts (zs = 1.41) and spectra (see Walsh 1989 for the history of this
discovery). The year 1979 also marked two important technical developments
in astronomy: the first CCD detectors replaced photographic plates, thus pro-
viding much higher sensitivity, dynamic range and linearity, and the very large
array (VLA), a radio interferometer providing radio images of subarcsecond
image quality, went into operation. With the VLA it was soon demonstrated
that both quasar images are compact radio sources, with similar radio spec-
tra. Soon thereafter, a galaxy situated between the two quasar images was
detected (Stockton 1980; Young et al. 1980). The galaxy has a redshift of
zd = 0.36 and it is the brightest galaxy in a small cluster. We now know
that the cluster contributes its share to the large image separation in this sys-
tem. Furthermore, the first very long baseline interferometry (VLBI) data of
this system, known as QSO 0957+561, showed that both components have a
core-jet structure with the symmetry expected for lensed images of a common
source (see Fig. 1). The great similarities of the two optical spectra (Fig. 2) is
another proof of the lensing nature of this system.

One year later, the so-called triple quasar PG 1115+080 was discovered
(Weymann et al. 1980). It apparently consisted of three images, one of which
was much brighter than the other two (see Fig. 3). Soon thereafter it was shown
that the bright image was in fact a blend of two images separated by ∼ 0.′′5,
and thus very difficult to resolve with optical telescopes from the ground. The
fact that the close pair is much brighter than the other two images is a generic
prediction of lens theory, as will be shown below.

Until 1990, a few more lens systems or lens candidate systems have been
discovered, some of them from a systematic search for lenses amongst radio
sources (e.g., Burke et al. 1992), but most of them serendipitously (such as
the one shown in Fig. 4). The 1990s then have witnessed several systematic
searches for lens systems, including programs carried out with the Hubble
Space Telescope (HST; Maoz et al. 1993), lens searches amongst 15,000 radio
sources (JVAS and CLASS; see King et al. 1999; Browne et al. 2003), and
those amongst very bright high-redshift quasars – these surveys will be de-
tailed in SL (Part 2). By now, more than 80 multiple-image lens systems with
a galaxy acting as the (main) lens are known.

Giant Luminous Arcs (1986)

In 1986, two groups (Lynds and Petrosian 1986; Soucail et al. 1987) indepen-
dently pointed out the existence of strongly elongated, curved features around
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Fig. 1. The two upper panels show a short (left) and longer (right) optical exposure
of the field of the double QSO 0957+561 (Young et al. 1981). In the short exposure,
the two QSO images are clearly visible as a pair of point sources, separated by ∼6′′.
The longer exposure reveals the presence of an extended source, the lens galaxy,
between the two point sources, as well as a small cluster of galaxies of which the
lens galaxy G1 is the brightest member. The lower left panel shows a 6 cm VLA
map of the system (Harvanek et al. 1997), where besides the two QSO sources A
and B, and the extended radio structure seen for image A, radio emission from
the lens galaxy G is also visible. The milli-arcsecond structure of the two compact
components A, B is shown in the lower right panel (Gorenstein et al. 1988a), where
it is clearly seen that one VLBI jet is a linearly transformed version of the other,
and they are mirror symmetric; this is predicted by any generic lens model which
assigns opposite parity to the two images

two clusters of galaxies (see Figs. 5 and 6). Their tangential extent relative
to the cluster center was at least ten times their radial extent, although the
exact value was difficult to determine as they were not well resolved in width
from the ground (HST has shown that this ratio is substantially larger than
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Fig. 2. Spectra of the two
images of the lens system
QSO 0957+561, obtained with
the Faint Object Spectrograph
on board HST (Michalitsianos et
al. 1997). The strong similarities
of the spectra, in particular the
same line ratios and the identical
redshift, verifies this system as a
definite gravitational lens system

10:1 in many cases). These giant luminous arcs were seen displaced from the
cluster center, and curving around it. Various hypotheses were put forward
as to their nature, and all proven wrong, except for one (Paczyński 1987),
when the redshift of the giant arc in A370 was measured (Soucail et al. 1988)
and shown to be much larger than the redshift of the cluster. The arc was
thus proven to be a highly distorted and magnified image of an otherwise nor-
mal, higher-redshift galaxy. By now, many clusters with giant arcs are known
and have been investigated in detail. As with most optical studies of lenses,
the high-resolution of the HST was essential to study the detailed brightness
distribution of arcs and to identify multiple images by their morphology and
colors. Less distorted images of background galaxies have been named arclets
(Fort et al. 1988); they can be identified in many clusters, and they are gen-
erally stretched tangentially with respect to the cluster center. In addition,
clusters can act as strong lenses also to produce multiple images of background
galaxies. Some of these aspects will be covered in Sect. 4 of WL (Part 3).

Rings, After All (1988)

Whereas Einstein ring images were predicted in the case of a perfectly
coaligned source with a spherically symmetric lens, the first multiple images
lens systems have taught us that lenses are far from spherical – thus, the dis-
covery of a radio ring in the source MG 1131+0456 (Hewitt et al. 1988) came
as a big surprise. Unfortunately, owing to its faint optical counterpart, the
lensing nature of this first system could not be proven easily, but the relative
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Fig. 3. In the left panel, a NIR image of the gravitational lens system PG 1115+080
is shown, taken with the NICMOS instrument on board HST. The QSO has a redshift
of zs = 1.72. The double nature of the brightest component is clearly recognized, as
well as the lens galaxy with redshift zd = 0.31, situated in the ‘middle’ of the four
QSO images. When the QSO images and the lens galaxy are subtracted from the
picture, the remaining image of the system (right panel) shows a nearly complete
ring, which is the lensed image of the host galaxy of the QSO, mapped onto a nearly
complete Einstein ring. In near-IR observations of lens systems, such rings occur
frequently (source: C. Impey and NASA, see Impey et al. 1998)

ease by which the radio source morphology, at several frequencies, could be
modeled by a simple gravitational lens (Kochanek et al. 1989) made a very
strong case for its lensing nature. The second radio ring discovered (Langston
et al. 1989) made a much cleaner case: of the two radio lobes of a redshift 1.72
quasar, one of them is imaged into a ring (see Fig. 7). At the center of this
ring lies a bright, redshift zd = 0.25 galaxy, responsible for the light deflection.
High-resolution imaging with HST in optical and near-infrared filters revealed
the presence of Einstein rings in many multiply imaged quasars (Fig. 8), where
the host galaxy of the active nucleus is the corresponding (extended) source.
We now know a lens needs not be exactly spherical; it is a combination of
the asymmetry (ellipticity) of the mass distribution and the source size that
determines whether we will see an Einstein ring (see SL Part 2, Sect. 10).
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Fig. 4. Around the center of this nearby spiral galaxy (zd = 0.04), four point-like
sources are seen is a fairly symmetric geometry (Yee 1988). Their spectra iden-
tify them as four images of a background QSO with zs = 1.7. This system, QSO
2237+0305, is the closest gravitational lens and one of the few systems where the
lens is a spiral; it has been found in a spectroscopic redshift survey of nearby galaxies

Fig. 5. The giant arc in the
cluster of galaxies Cl 2244−02,
taken with the ISAAC instru-
ment at the VLT (source: ESO
Press Photo 46d/98). The arc
has a redshift of zs = 2.24,
and was at the time of discov-
ery the highest redshift normal
galaxy. The high magnification
caused by the gravitational lens
renders this still (one of) the
brightest galaxies with z ≥ 2

Quasar Microlensing (1989)

The mass of galaxies is not distributed smoothly, since at least a fraction of it
is in stars. These stars will split the (macro)images of a quasar into many mi-
croimages whose typical separations of few micro-arcseconds are unresolvable.
However, these perturbations of the gravitational field change the magnifica-
tion of the macroimages, provided the source is sufficiently compact. Since
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Fig. 6. The cluster A2218 at z = 0.175 contains one of the most impressive systems
of arcs, as can be seen in the multi-color images taken with the WFPC2 instrument
on board HST (source: NASA/STScI). This cluster contains several multiple im-
age systems of background galaxies which, together with the morphology of arcs,
allows the construction of very detailed mass models for this cluster. Also remark-
able is the thinness of several of the arcs, so that they are not resolved in width
even with the HST; this implies very large length-to-width ratios of these arcs and,
correspondingly, very high magnifications

the source, the lens and the observer are not stationary, and the stars in the
galaxies move, this magnification will also change in time; the characteristic
time-scales are of order a decade or less, and in one case (QSO 2237+0305, see
Fig. 4) where the lens is very close to us (zd = 0.0395), even smaller. Hence,
as predicted by Chang and Refsdal (1979, 1984), Paczyński (1986a), Kayser
et al. (1986) and Schneider and Weiss (1987), this microlensing effect should
yield flux variations of the images which are uncorrelated between the different
images – an intrinsic variation of the source would affect the flux of all images
in the same way, though with a time delay. In 1989, this microlensing effect
was detected in the four image quasar lens QSO 2237+0305 as uncorrelated
brightness variations in the four images (Irwin et al. 1989).

Weak Lensing (1990)

As mentioned before, arclets are images of background galaxies stretched by
the lensing effect of a cluster. In order to identify an arclet as such, the im-
age distortion must be significant; otherwise, owing to the intrinsic ellipticity
distribution of galaxies, the stretching could not be distinguished from the
intrinsic shape. However, if the distortion field varies slowly with position,
then galaxy images lying close to each other should be distorted by a similar
degree. Since we live in a Universe where the sky is densely covered with faint
and small galaxies (e.g., Tyson 1988; Williams et al. 1996), an average over
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Fig. 7. The quasar MG 1654+13 at redshift zs = 1.72 is shown, both as an optical
image (gray scale) and in the radio (contours). The optical QSO is denoted as Q,
and is the central component (or core) of a triple radio source. The Northern radio
lobe is denoted by C, whereas the Southern radio lobe is mapped onto an Einstein
ring. At the center of this ring, one sees a bright galaxy with spectroscopic redshift
of zd = 0.25. This galaxy lenses the second radio lobe into a complete Einstein ring.
Within this ring, brightness peaks can be identified, and the components denoted A
and B are similar to, but not multiple images of, the brightness peak in the Northern
lobe C (source: G. Langston)

local ensembles of galaxies can be taken; the mean distortion of this ensemble
is then a measure for the lens stretching. This weak gravitational lensing effect
was first detected in two clusters in 1990 (Tyson et al. 1990). The advances
in optical imaging cameras, in particular the availability of large mosaic CCD
cameras which enable the mapping of nearly degree-sized fields in a single
pointing, and the development of specific image analysis tools, have permit-
ted the detection and quantitative analysis of weak lensing in many clusters.
Even weaker lensing effects, those by an ensemble of galaxies and of the large-
scale matter distribution in the Universe were discovered in 1996 (Brainerd
et al. 1996) and 2000 (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke
et al. 2000; Wittman et al. 2000); we shall report on this in WL (Part 3).
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Fig. 8. The gravitational lens system B 1938+666. The left panel shows a NIC-
MOS@HST image of the system, clearly showing a complete Einstein ring into
which the Active Galaxy is mapped, together with the lens galaxy situated near
the center of the ring. The right panel shows the NICMOS image as gray-scales,
with the radio observations superposed as contours. The radio source is indeed a
double, with one component being imaged twice (the two images just outside and
just inside the Einstein ring), whereas the other source component has four images
along the Einstein ring, with two of them close together (source: L.J. King, see King
et al. 1998)

Time Delays (≥ 1992)

Following Refsdal’s idea to determine the Hubble constant from lensing by
combining a good mass model for the lens with the time delay, the light
curves of the first double QSO 095+561 were monitored by several groups
in the optical and radio waveband (e.g., Vanderriest et al. 1989; Schild 1990;
Lehár et al. 1992). From these light curves, estimates of the time delay were
derived by a number of groups, and significantly different results were ob-
tained. Difficulties include seasonal gaps in the optical light curves and the
possibility of uncorrelated variability in the images due to microlensing by the
lensing galaxy. To account for these effects, different methods were developed,
yielding different results; broadly speaking, either delays of 410 days or 540
days were obtained. The issue was put to rest when a relatively sharp varia-
tion of the flux of the leading image was detected in December 1994 (Kundić
et al. 1995; Fig. 9). Each of the two estimates for the time delay predicted a
different epoch for the occurrence of the corresponding feature in the other
image. With the observation of the feature in the trailing image in February
1996 (Kundić et al. 1997), the controversy was resolved in favor of the short
delay, yielding 417 ± 3 days. Time delays have now been measured in 10 lens
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Fig. 9. Light curves of the two im-
ages of the QSO 0957+561A,B in two
different filters. The two light curves
have been shifted in time relative to
each other by the measured time de-
lay of 417 days, and in flux accord-
ing to the flux ratio. The sharp drop
measured in image A in Dec. 1994
and subsequently in image B in Feb.
1996 provides an accurate measure-
ment of the time delay (data from
Kundić et al. 1997)

systems, although the resulting estimates for the Hubble constant are still
problematic – see SL (Part 2).

Galactic Microlensing (1993)

Stars in our Galaxy can act as lenses for other stars or extragalactic sources;
however, the probability for this to occur is extremely small, as already noted
by Liebes (1964). However, if one considers a sufficient number of background
sources, even very small probabilities can be beaten. Such a lensing effect
would be noted as a magnification of the background star; owing to transverse
motion of source, lens and observer, the magnification changes in time and
leads to a characteristic light curve. Paczyński (1986b) proposed in 1986 to
monitor the brightness of stars in dense stellar fields of the Large Magellanic
Cloud to search for such characteristic variability. The main idea behind this
suggestion was to test whether the dark matter in the halo of our Galaxy,
necessary to explain the flat rotation curve of the Milky Way (and other
spiral galaxies) is made up of compact objects – brown dwarfs, neutron stars,
‘Jupiters’, black holes. The ‘only’ problem was that about 1 out of 107 stars
in the LMC is expected to be lensed at any given time – the number of
stars needed to be monitored is indeed large. Nevertheless, two groups started
this adventure in the early 1990s, and reported in 1993 the first microlensing
events toward the LMC (Alcock et al. 1993; Aubourg et al. 1993) (Fig. 10).
Shortly thereafter, a third group announced the discovery of microlensing
events toward the Galactic bulge (Udalski et al. 1993). Since then, this field has
flourished, and will be covered in depth in ML. In addition to the discovery of
a large number of microlensing events, these surveys provide unique data sets
which are also useful for other branches of astronomy, most notably studies
of stellar statistics and variability.
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Fig. 10. Blue and red light curve
of the first Galactic microlens-
ing event MACHO-LMC-1 (Al-
cock et al. 1993). Data points
with error bars show the mea-
sured brightness of a star in the
LMC as a function of time, and
the curve in both upper panels
show the best fitting ‘standard’
microlensing lightcurve. Overall,
the quality of the fit is impres-
sive, and the lack of chromatic ef-
fects, demonstrated by the con-
stancy of the flux ratio shown
in the lowest panel, strongly ar-
gues for this being a microlens-
ing event. However, some points
(in particular one close to the
maximum flux) deviate very sig-
nificantly from the simple model
lightcurve, indicating that this
may be a binary microlens

1.3 What is Lensing Good for?

Hopefully, by the end of these lectures we will have provided convincing an-
swers to this question, but for the impatient, we shall summarize some of the
highlights of lensing applications.

Measure Mass and Mass Distributions

Gravitational light deflection is determined by the gravitational field through
which light propagates. This in turn is related to the mass distribution via
the Poisson equation (or its GR generalization). It is essential to realize that
this simple fact implies that gravitational light deflection is independent of
the nature of the matter and of its state – lensing is equally sensitive to dark
and luminous matter, and to matter in equilibrium or far out of it. On the
negative side, this implies that lensing alone cannot distinguish between these
forms of matter, but on the positive side, it also cannot miss one of these
matter forms. Hence, lensing is an ideal tool for measuring the total mass of
astronomical bodies, dark and luminous.

From the Einstein deflection law (1), it is obvious that characteristic image
separations scale with the lens mass like M1/2; hence, the observation of
multiple images and rings immediately allows an estimate of the mass of
the lensing galaxy – or more precisely, the mass within a cylinder with a
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diameter of the image separation or the ring diameter, centered on the lens.2

More detailed modeling, and additional observables, such as flux ratios, can
yield very precise mass estimates. Indeed, as will be discussed in SL (Part
2), accurate mass estimates within galaxies, with an uncertainty of a few
percent, have been achieved – by far the most precise mass determinations
in (extragalactic) astronomy. Similarly, from the locations of giant arcs in
clusters, the masses of the central parts of clusters can be determined (Sect. 4
of WL Part 3). With the advent of HST imaging and the discovery of multiple
image systems in some strong lensing clusters, detailed mass models have been
obtained, which led to very precise mass estimates in those clusters (needless
to say, they confirm the dominance of dark matter in clusters).

Weak lensing studies of clusters estimate the mass distribution to much
larger radii than the strong lensing regime, and, like strong lensing effects,
probe for asymmetries and substructures in the cluster mass. For example,
already the strong lensing properties of the cluster A2218 (Fig. 6) reveals the
bimodal nature of the mass distribution. In fact, substructure in the mass
distribution of lens galaxies has been detected, thereby confirming one of the
robust predictions of the Cold Dark Matter model for our Universe (SL Part
2, Sect. 8). In addition, the mass distribution of galaxies at large radii, where
one runs out of local dynamical tracers, can be studied statistically using an
effect called galaxy–galaxy lensing (WL Part 3, Sect. 8).

Constraining the Number Density of Mass Concentrations

The probability for a lensing event to occur (e.g., the fraction of high-redshift
sources that are multiply imaged, or the fraction of stars undergoing mi-
crolensing) depends on the projected number density of potential lenses.
Hence, by investigating statistically well-defined samples of sources and their
lensed fraction, we can infer the number density of lenses. Examples of such
studies are estimates of the number density of compact objects in the dark
halo of our Galaxy, the redshift evolution of the number density of galaxies
acting as strong lenses, and the number density of clusters producing strong
and weak lensing signals. Upper limits on the number of lensing events can
also be translated into upper bounds on the number density of putative lenses:
e.g., the fact that nearly all multiply-imaged sources have a visible lens galaxy
puts strong upper bounds on the number density of dark lenses (they can at
most provide a few percent of the galaxy-mass objects), and the non-detection
of lens systems with image separations of tens of milli-arcseconds provides
bounds on the number density of compact galaxies with masses ∼ 109M�.
In fact, by now lensing has put stringent constraints on the population of
compact massive objects in the Universe over an extremely broad range of
mass scales, from ∼ 10−3M� (from upper limits on the variability of distant
2 Whereas this ‘cylinder’ contains all the mass inhomogeneities of the cosmic matter

distribution between the source and the observer, it is dominated by the mass of
the lensing galaxy.
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quasars) to ∼1016M� (from the absence of very wide pairs of quasars), with
only a few mass gaps within this range. Even lower-mass objects (∼10−6M�)
can be ruled out as significant contributors to the dark matter in our Milky
Way (see ML).

Providing Estimates of Cosmological Parameters

Following Refsdal’s idea, the Hubble constant can be obtained from the time
delay in multiple image systems. This method has the advantage of being inde-
pendent of the usual distance ladder used in determinations of H0, and it also
measures the Hubble constant on a truly cosmic scale, in contrast to the quite
local measurements based on Cepheid distances. Despite the determination
of time delays in a number of systems, values for H0 by lensing are burdened
with the uncertainties of the lens models; however, there is a trend toward
slightly lower values of the Hubble constant than obtained from Cepheids
(see SL Part 2, Sect. 5). Other cosmological parameters can also be obtained
from lensing. For example, the fraction of lensed high-redshift quasars when
combined with the distribution of image separations can be used to estimate
the cosmological model (SL Part 2, Sect. 6). Weak lensing by the large-scale
structure is sensitive to the matter density parameter and the normalization of
the density fluctuations, and significant constraints on these parameters have
been obtained (WL Part 3, Sect. 7). In particular in combination with results
from the anisotropy of the cosmic microwave background, future cosmic shear
studies will provide an invaluable probe of the equation of state of the dark
energy. Weak lensing has also successfully been used to determine the bias
parameter, which describes the relation between the statistical distribution of
galaxies and the underlying dark matter, and for which only few alternative
methods are available (WL Part 3, Sect. 8).

Lenses as Natural Telescopes

Since a lens can magnify background sources, these appear brighter than they
would without a lens. This makes it easier to investigate these sources in
detail, e.g. through spectroscopic observations. In some cases, this magnifica-
tion is even essential to detect the sources in the first place, provided their
lensed brightness just exceeds the detection threshold of a survey or of the
current instrumental sensitivity. This magnification effect has in fact yielded
spectacular results, such as very detailed spectra of very distant galaxies, the
detection of some of the highest redshift galaxies behind cluster lenses, and
the detection of very faint sub-millimeter sources in cluster fields.3 In fact,
3 A magnification by a factor of, say, 5 implies that a spectrum of the source can

be taken in 1/25-th of the time it would take to get the same signal-to-noise
spectrum of the unlensed source. Needless to say that such a factor can make the
difference between an observation being made and one that cannot be done.
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Fig. 11. Example for the use of a gravitational lens as a natural telescope. In a
search for very high redshift objects, deep multi-band HST images are taken near
the critical curves of clusters, where large magnifications are expected. Shown here
are images of a field in the cluster A2218 (see Fig. 6) in four filters, ranging from
0.6 μm to the near-IR at 1.6 μm. In the two larger wavelength images, a double source
is seen, which is absent at shorter wavelength. The two components are situated at
opposite sides of the critical curve, which is drawn for three source redshifts of zs = 6,
6.5 and 7; due to the large number of strong lensing constraints for this cluster, its
mass distribution in the central part is very well determined. The sticks indicate
the shear field of the cluster, and the elongation of the double images is parallel to
this shear, as expected if they were gravitationally lensed images. From the location
of the images with respect to the critical curve, and the drop-out of their flux at
wavelengths shorter than ∼ 0.8 μm, the redshift of the source is estimated to be
between zs = 6.5 to 7 (from Kneib et al. 2004)

the lens magnification can be very large in some rare cases, but these rare
cases truly stick out: some of the most extreme sources, with regards to their
apparent luminosity, are strongly magnified – such as the spectacular IRAS
galaxy F10214 (e.g., Broadhurst and Lehár 1995), the by-far brightest redshift
∼3 galaxy cB58 (Seitz et al. 1998), or the extremely luminous z = 3.87 quasar
QSO APM 08279+5255 (Irwin et al. 1998).4 A good fraction of known galax-
ies with redshift larger than ∼ 4 have been detected behind cluster lenses,
including the redshift record holder candidate (z = 10.0) at present (Pelló
et al. 2004); see Fig. 11 for an example. During high-magnification Galac-
tic microlensing events, detailed spectra of stars at large distances (e.g. the
Galactic bulge) have been taken. As the high magnification region crosses a
distant star, observations have mapped the surface brightness distribution of
the stars to test stellar atmosphere models.

With the lenses as magnifiers, larger effective angular resolution of the
sources is obtained. Galaxies acting as sources for giant arcs can therefore be
resolved in unprecedented detail, at least in one dimension. The host galaxy
of quasars, which is difficult to study in unlensed objects owing to the large
brightness contrast between the active nucleus and the surrounding host, can
4 Such extremely bright quasars are of great importance for the study of the inter-

galactic absorption, e.g., the Ly-α forest; no surprise then that such objects, like
the highly magnified z = 3.62 QSO1422+231, are preferred targets for investi-
gating absorption lines.
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be studied much more easily when lensing allows the spatial resolution of the
host – in many cases, the host galaxy is in fact mapped into an Einstein ring
(see Figs. 3 and 8).

Searches for Planets

The light curves of Galactic microlensing events are affected by companions of
the main lens. For example, light curves of binary stars are readily identified
as such, provided their separation falls into a favorable range determined by
the geometry of the lens system. Because of that, even planets will leave an
observable trace in the microlensing light curves if they are situated at the
right radius from the star and at the right orbital phase. Although these traces
can be quite subtle, and last for a short time only, current observing campaigns
aimed at the search for planets have the sensitivity for their detection, and
several candidate events for the detection of planetary signals in microlensing
light curves have been reported. Indeed, microlensing is considered to be the
simplest (and cheapest) possibility to detect the presence of low-mass planets
around distant stars (ML).

These few examples should suffice to illustrate the broad range of appli-
cations of gravitational lensing; the ever increased publication rate of articles
investigating and applying gravitational lensing underlines the timeliness of
the subject.

2 Gravitational Lens Theory

Assuming the validity of General Relativity, light propagates along the null
geodesics of the space–time metric. However, most astrophysically relevant
situations permit a much simpler approximate description of light rays, which
is called gravitational lens theory. In this section, we summarize the basic
equations for the description of light deflection in a gravitational field. The
reader is referred to SEF and PLW for a more detailed account and further
references.

2.1 The Deflection Angle

Consider first the deflection of a light ray by the exterior of a spherically
symmetric mass M . Provided that the ray impact parameter ξ is much larger
than the Schwarzschild radius of the mass, ξ � Rs ≡ 2GM c−2, then General
Relativity predicts that the deflection angle α̂ is

α̂ =
4GM

c2 ξ
. (2)

This is just twice the value obtained in Newtonian gravity (see Sect. 1.1).
According to the condition ξ � Rs, the deflection angle is small, α̂ � 1. This
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condition also implies that the Newtonian gravitational field strength is small,
φN/c

2 � 1.
The field equations of General Relativity can be linearized if the gravita-

tional field is weak. The deflection angle of an ensemble of mass points is then
the (vectorial) sum of the deflections due to the individual mass components.
A three-dimensional mass distribution with volume density ρ(r) can be di-
vided into cells of size dV and mass dm = ρ(r) dV . Let a light ray pass this
mass distribution, and describe its spatial trajectory by (ξ1(λ), ξ2(λ), r3(λ)),
where the coordinates are chosen such that the incoming light ray (i.e., far
from the deflecting mass distribution) propagates along r3. The actual light
ray is deflected, but if the deflection angle is small, the ray can be approxi-
mated as a straight line in the neighborhood of the deflecting mass (note that
this corresponds to the Born approximation in atomic and nuclear physics). A
mass distribution for which this condition is satisfied is called a geometrically-
thin lens. Then, ξ(λ) ≈ ξ, independent of the affine parameter λ. Note that
ξ = (ξ1, ξ2) is a two-dimensional vector. The impact vector of the light ray
relative to the mass element dm at r′ = (ξ′1, ξ

′
2, r

′
3) is then ξ−ξ′, independent

of r′3, and the total deflection angle is

α̂(ξ) =
4G
c2

∑
dm(ξ′1, ξ

′
2, r

′
3)

ξ − ξ′

|ξ − ξ′|2

=
4G
c2

∫
d2ξ′

∫
dr′3 ρ(ξ

′
1, ξ

′
2, r

′
3)

ξ − ξ′

|ξ − ξ′|2 , (3)

which is also a two-dimensional vector. Since the last factor in (3) is indepen-
dent of r′3, the r′3-integration can be carried out by defining the surface mass
density

Σ(ξ) ≡
∫

dr3 ρ(ξ1, ξ2, r3) , (4)

which is the mass density projected onto a plane perpendicular to the in-
coming light ray. Thus, the deflection angle produced by an arbitrary density
distribution is

α̂(ξ) =
4G
c2

∫
d2ξ′ Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2 , (5)

provided that the deviation of the actual light ray from a straight (undeflected)
line within the mass distribution is small compared to the scale on which the
mass distribution changes significantly. This condition is satisfied in virtually
all astrophysically relevant situations (i.e., lensing by galaxies and clusters of
galaxies), unless the deflecting mass extends all the way from the source to
the observer (a case which will be dealt with in WL Part 3). It should also be
noted that in a lensing situation such as that displayed in Fig. 12, the incoming
light rays are not mutually parallel, but fall within a beam with opening angle
approximately equal to the angle which the mass distribution subtends on the
sky. This angle, however, is typically very small (in the case of cluster lensing,
the relevant angular scales are of order 1 arc min ≈ 3 × 10−4 radians).
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Fig. 12. Sketch of a typical gravitational lens system

2.2 The Lens Equation

A typical situation considered in gravitational lensing is sketched in Fig. 12,
where a mass concentration at redshift zd (or distance Dd) deflects the light
rays from a source at redshift zs (or distance Ds). If there are no other deflec-
tors close to the line-of-sight, and if the extent of the deflecting mass along the
line-of-sight is very much smaller than both Dd and the distance Dds from the
deflector to the source,5 the actual light rays which are smoothly curved in
the neighborhood of the deflector can be replaced by two straight rays with a
kink near the deflector. The magnitude and direction of this kink is described
by the deflection angle α̂, which depends on the mass distribution of the de-
flector and the impact vector of the light ray. The lens equation relates the
true position of the source to its observed position on the sky. As sketched in
Fig. 12, the source and lens planes are defined as planes perpendicular to a
straight line (the optical axis) from the observer to the lens at the distance

5 This condition is very well satisfied in most astrophysical situations. A cluster of
galaxies, for instance, has a typical size of a few Mpc, whereas the distances Dd,
Ds, and Dds are fair fractions of the Hubble length cH−1

0 = 3 h−1 × 103 Mpc.
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of the source and of the lens, respectively. The exact definition of the opti-
cal axis does not matter because of the smallness of the angles involved in a
typical lens system. Let η denote the two-dimensional position of the source
on the source plane, measured with respect to the intersection point of the
optical axis with the source plane. From Fig. 12 we can read off the geometric
condition that (again making use of the smallness of angles occurring, so that
sin α̂ ≈ α̂ ≈ tan α̂)

η =
Ds

Dd
ξ −Ddsα̂(ξ) . (6)

Introducing angular coordinates by

η = Dsβ and ξ = Ddθ , (7)

we can transform (6) to

β = θ − Dds

Ds
α̂(Ddθ) ≡ θ − α(θ) , (8)

where we defined the scaled deflection angle α(θ) in the last step. The inter-
pretation of the lens equation (8) is that a source with true position β can
be seen by an observer to be located at angular positions θ satisfying (8).
If (8) has more than one solution for fixed β, a source at β has images at
several positions on the sky, i.e., the lens produces multiple images. For this
to happen, the lens must be ‘strong’. We can express the scaled deflection
angle in terms of the surface mass density as

α(θ) =
1
π

∫
IR2

d2θ′ κ(θ′)
θ − θ′

|θ − θ′|2 , (9)

where we have defined the dimensionless surface mass density or convergence

κ(θ) :=
Σ(Ddθ)

Σcr
with Σcr =

c2

4πG
Ds

Dd Dds
, (10)

where the critical surface mass density Σcr depends on the distances to the
source and the lens. As will be discussed later (Sect. 2.4), a mass distribution
which has κ ≥ 1 somewhere, i.e., Σ ≥ Σcr, produces multiple images for some
source positions. Hence, Σcr is a characteristic value for the surface mass
density which is the dividing line between ‘weak’ and ‘strong’ lenses.6

The lens equation (8) describes a mapping θ → β from the lens plane
to the source plane; for any mass distribution Σ(ξ), this mapping can (in
principle) be easily calculated. One problem of gravitational lens theory is
the inversion of (8), i.e., to find all the image positions θ for a given source
6 In order to derive the foregoing equations, we have used Euclidean geometry

to relate angles to length scales. We shall discuss in Sect. 4 that the equations
still hold in an expanding universe, provided the distances D’s are interpreted as
angular diameter distances – hence, in the notation of Sect. 4, D ≡ Dang.
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position β. Since the mapping θ → β is non-linear, the inversion of the lens
equation can be carried out analytically only for very simple mass models of
the lens. As the number of images θ for a given source β is not known a priori,
a numerical inversion is non-trivial in general; however, we shall see below that
there are methods to determine the image multiplicity as a function of the
source position.

The identity ∇ ln |θ| = θ/|θ|2, valid for any two-dimensional vector θ,
shows that the (scaled) deflection angle can be written as a gradient of the
deflection potential,

ψ(θ) =
1
π

∫
IR2

d2θ′ κ(θ′) ln |θ − θ′| (11)

as
α = ∇ψ , (12)

so that the mapping θ → β is a gradient mapping. Furthermore, using the
identity ∇2 ln |θ| = 2πδD(θ), where δD is the (two-dimensional) Dirac delta
‘function’, one obtains from (11) that

∇2ψ = 2κ , (13)

which is the Poisson equation in two dimensions. The similarity between these
lensing relations and standard three-dimensional gravity (ψ corresponds to
the gravitational potential φN, α corresponds to the acceleration vector, κ
corresponds to the volume mass density ρ) shall be noted.

For later purposes, we shall find it useful to define a further scalar function

τ(θ;β) =
1
2

(θ − β)2 − ψ(θ) , (14)

called the Fermat potential; this is a function of the lens plane coordinate θ,
with the source position β entering as a parameter. It should be noted that

∇τ(θ;β) = 0 (15)

is equivalent to the lens equation (8). As has been shown in Schneider (1985);
see also SEF), the function τ(θ;β) is, up to an affine transformation, the
light travel time along a ray starting at position β, traversing the lens plane
at position θ and arriving at the observer. Thus, (15) expresses the fact that
physical light rays are those for which the light travel time is stationary –
which thus expresses Fermat principle in the context of lensing by a geomet-
rically thin matter distribution. We shall see that the Fermat potential – or
time-delay function – is very useful for a classification of the multiple images
in a gravitational lens system. Displaying lens properties in terms of the Fer-
mat potential (Blandford and Narayan 1986) provides useful insight in the
behavior of the lens mapping.
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2.3 Magnification and Distortion

The solutions θ of the lens equation yield the angular positions of the images
of a source at β. The shapes of the images will differ from the shape of the
source because light bundles are deflected differentially, as we saw from the
images of giant arcs in Fig. 6. In general, the shape of the images must be de-
termined by solving the lens equation for all points within an extended source.
Liouville theorem and the absence of emission and absorption of photons in
gravitational light deflection imply that lensing conserves surface brightness
(or specific intensity). Hence, if I(s)(β) is the surface brightness distribution
in the source plane, the observed surface brightness distribution in the lens
plane is

I(θ) = I(s)[β(θ)] . (16)

If a source is much smaller than the angular scale on which the lens properties
change, the lens mapping can be linearized locally. The distortion of images
is then described by the Jacobian matrix

A(θ) =
∂β

∂θ
=
(
δij −

∂2ψ(θ)
∂θi∂θj

)
=
(

1 − κ− γ1 −γ2

−γ2 1 − κ + γ1

)
, (17)

where we have introduced the components of the shear γ ≡ γ1 +iγ2 = |γ|e2iϕ,

γ1 =
1
2
(ψ,11 − ψ,22) , γ2 = ψ,12 , (18)

and κ is related to ψ through Poisson equation (13). Hence, if θ0 is a point
within an image, corresponding to the point β0 = β(θ0) within the source,
we find from (16), using the locally linearized lens equation,

I(θ) = I(s) [β0 + A(θ0) · (θ − θ0)] . (19)

According to this equation, the images of a source with circular isophotes
are ellipses. The ratios of the semi-axes of such an ellipse to the radius of
the source are given by the inverse of the eigenvalues of A(θ0), which are
1 − κ ± |γ|, and the ratio of the solid angles subtended by an image and the
unlensed source is the inverse of the (absolute value of the) determinant of A.
The inverse of the Jacobian is called the magnification tensor,

M(θ) = A−1 , (20)

and yields the local mapping from the source to the image plane. The fluxes
observed from the image and from the unlensed source are given as integrals
over the brightness distributions I(θ) and I(s)(β), respectively, and their ratio
is the magnification |μ(θ0)|. From (19), we find for the magnification of a
‘small’ source

μ = detM =
1

detA =
1

(1 − κ)2 − |γ|2 . (21)
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The images are thus distorted in shape and size. The shape distortion is due to
the tidal gravitational field, described by the shear γ, whereas the magnifica-
tion is caused by both isotropic focusing due to the local matter density κ and
anisotropic focusing due to shear. The magnification as defined in (21) can
have either sign; the sign of μ is called the parity of an image. Negative-parity
images are mirror-symmetric images of the source. Of course, the observed
fluxes of images are determined by the absolute value of μ. Since the intrinsic
luminosity of sources is unknown, the magnification in a lens system is not an
observable. However, the flux ratio of different images provides a direct mea-
surement of the (absolute value of the) corresponding magnification ratio. In
general, if two extended images of a source are observed, then their shapes
depend on the shape of the source through A. As the shape of the source is
unknown, what can be determined from the shape of extended images is the
relative magnification matrix Aij = A(θi)A−1(θj), which provides the lin-
earized mapping of one image onto the other. Note that Aij is in general not
symmetric and thus has four independent components. For a pair of images
with opposite parity, detAij < 0, and so these two images are mirror sym-
metric; an example of this can be seen in the VLBI images of QSO 0957+561
(see Fig. 1).

To consider the distortion of the shape of images in somewhat more detail,
we shall rewrite the Jacobian in a slightly different form,

A(θ) = (1 − κ)
(

1 − g1 −g2

−g2 1 + g1

)
, (22)

where we have defined the reduced shear

g ≡ γ

1 − κ
=

|γ|
1 − κ

e2iϕ . (23)

As can be easily seen from (3), the factor (1 − κ) only yields an isotropic
stretching of the image, but does not affect its shape. The reduced shear
g – like γ – is considered to be a complex number, g = g1 + ig2 and its
components determine the change of shape between the source and the image.
In particular, a circular source of unit radius is mapped onto an ellipse with
axes |(1 − κ)(1 + |g|)|−1 and |(1 − κ)(1 − |g|)|−1, and the orientation of the
ellipse is determined by the phase ϕ of g. As will be seen in WL (Part 3), the
reduced shear is the central quantity in weak gravitational lensing.

The images of a small source (what that means depends on the context;
see below) are therefore magnified by |μ(θi)|, and the total magnification of
a small source at position β is given by the sum of the magnifications over all
its images,

μp(β) =
∑

i

|μ(θi)| , (24)

where the index ‘p’ indicates that this equation applies to the point-source
limit. The magnification of real sources with finite extent is given by the
weighted mean of μp over the source area,
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μ =
[∫

d2β I(s)(β)
]−1 ∫

d2β I(s)(β)μp(β) , (25)

where I(s)(β) is the surface brightness profile of the source. Whereas grav-
itational lensing is achromatic, because the deflection of photons does not
depend on their frequency, the finite resolution of observations can lead to
color terms in practice, since the surface brightness distribution I(s)(β) can
be different at different frequencies. Then, if the magnification μp(β) varies
on scales comparable to the source size, the magnification of an extended but
unresolved source can depend on the frequency.

Since the shear is defined by the trace-free part of the symmetric Jaco-
bian matrix A, it has two independent components. There exists a one-to-one
mapping from symmetric, trace-free 2 × 2 matrices onto complex numbers,
and we shall extensively use complex notation. Note that the shear (and the
reduced shear) transforms as e2iϕ under rotations of the coordinate frame,
and is therefore not a vector (but a polar, i.e., it has the same transformation
properties as the linear polarization of electromagnetic waves). Equations (11)
and (18) imply that the complex shear can be written as

γ(θ) =
1
π

∫
IR2

d2θ′ D(θ − θ′)κ(θ′) , with

D(θ) ≡ θ2
2 − θ2

1 − 2iθ1θ2

|θ|4 =
−1

(θ1 − iθ2)2
. (26)

2.4 Critical Curves and Caustics, and General Properties of Lenses

In any lens there can be closed, smooth curves, known as critical curves, on
which the Jacobian vanishes, detA(θ) = 0. The curves in the source plane
which are obtained by mapping the critical curves with the lens equation are
called caustics, which are not necessarily smooth, but can develop cusps. Criti-
cal curves and caustics are of great importance for a qualitative understanding
of the lens mapping, owing to their following properties:

1. The magnification μ = 1/detA formally diverges for an image on a critical
curve. Infinite magnifications are of course unphysical. All astronomical
sources have a finite size that keeps their observed magnification (25)
finite. For a hypothetical source of vanishing extent, the magnification
would be finite because the geometrical optics approximation then breaks
down and we must use wave optics. The resulting diffraction patterns pre-
dict finite, though potentially very high magnifications (see e.g. Ohanian
1983 or Chap. 7 of SEF). Nevertheless, a source located near a caustic can
produce very highly magnified images close to the corresponding critical
curve in the lens plane.

2. The number of images a source produces depends on its location relative
to the caustic curves. Assuming a mass profile of a lens for which the
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deflection angle tends to zero for large |θ| – as is true for all real lenses
– and an upper bound to the deflection angle (i.e., excluding point-mass
lenses for the moment), a source at large |β| will have only one image, at
θ ≈ β, whereas it can have multiple images for small impact vectors. The
lens mapping (8) is locally invertible at all locations for which detA 
= 0.
This immediately implies that a change of the source position does not
lead to the change of the number of images unless the source moves across
a caustic – since caustics are obtained by mapping the critical curves
(where the lens mapping in not invertible) onto the source plane. When a
source position crosses a caustic, a pair of images near the corresponding
critical curve is either created or destroyed, depending on the direction
of crossing. The side of the caustic where the number of images is larger
by two is often called the ‘inner side’. A source close to, and on the inner
side of a caustic possesses a pair of images with very high and nearly
equal magnification on either side of the critical curve, in addition to any
other images. The bright pair must have opposite parities because the
magnification changes sign at the critical curve.

Whereas the critical curves are smooth, this does not need to be the case
for caustics. To see that, let θ(λ) be a parameterization of a critical curve;
the caustic then is β(θ(λ)). The tangent vector to the critical curve is the
derivative θ̇(λ) ≡ dθ(λ)/dλ, and the tangent vector to the caustic is

dβ(θ(λ))
dλ

=
∂β

∂θ

dθ

dλ
= A(θ(λ)) θ̇(λ) .

This vector, however, can vanish if the tangent vector to the critical curve θ̇(λ)
is parallel to the eigenvector of A whose eigenvalue is 0 (remember that we
are analyzing a critical curve, along which one eigenvalue of A is always zero).
Hence, if the direction of the tangent vector to the critical curve is the singular
direction of A, the caustic curve need not be smooth; in fact, it has a cusp.
Apart from any cusps the caustic curves are smooth curves called fold caustics.
These names are taken from singularity theory, a mathematical discipline that
studies the critical points of general mappings. We shall see the occurrence
of cusps later in several specific examples of lens mappings. A source close to
and inside a cusp has three highly magnified images near the corresponding
point on the critical curve; one can show (see e.g. Schneider and Weiss 1992;
Mao 1992) that the sum of the absolute values of the magnification of the two
outer images equals the absolute value of the magnification of the central of
these three images. A source just outside the cusp has one highly magnified
image near the corresponding critical curve.

We thus obtain a qualitative understanding of the geometry of a lens
mapping from the critical curves and caustics. The critical curves divide the
lens plane into regions of positive (i.e., μ > 0) and negative (μ < 0) parity. The
corresponding caustics divide the source plane into regions of different image
multiplicity: whenever a source position changes across a caustic, the number
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of images changes by ±2. Since for mass distributions without singularities
(e.g., point masses) the number of images is 1 if the angular source position
is sufficiently distant from the mass concentration, the number of images can
be easily assigned to each of the regions in the source plane, once the caustics
are known.

If an extended source is located on the caustic, either fold or cusp, the
corresponding two or three images merge; only that part of the source which
lies inside the inner region of the caustic is (locally) multiply imaged. Since
detA = 0 implies that (at least) one of the two eigenvalues of A vanishes, the
image(s) are highly distorted in the direction of the corresponding eigenvector;
therefore, the image of a circular source can be very strongly elongated. This
is the origin of the giant luminous arcs in clusters. From what has been said
above, for a cusp the singular direction is tangent to the critical curve; hence,
if an arc is produced by a source on a cusp, the direction of elongation displays
approximately the local direction of the critical curve.

Types of Images

The Fermat potential τ(θ;β) introduced in Sect. 2.2 yields a convenient clas-
sification of images, according to whether an image θ is located at a minimum,
maximum, or saddle point of τ – remember that images of a source occur at
points θ for which τ is stationary. Since the Jacobian matrix is the Hessian of
τ , Aij = ∂2τ/(∂θi∂θj), these three types of images are distinguished by the
signs of the two eigenvalues ai of A: At a minimum of τ , both are positive,
implying that detA > 0, trA > 0, whereas at a maximum, both are nega-
tive so that detA > 0, trA < 0. At a saddle point, the signs of the ai are
different, so that detA < 0. Given that

trA = 2(1 − κ) , (27)

one sees that minima (maxima) occur at positions where κ < 1 (κ > 1),
whereas nothing can be said about κ at saddles.

Odd-Number and Magnification Theorems

In a remarkable, one-page paper, Burke (1981) proved a theorem on the num-
ber of images a gravitational lens can produce: For a gravitational lens with a
smooth surface mass density which decreases faster than |θ|−1 as |θ| → ∞, the
number of images corresponding to extrema of τ , and thus to positive parity
images, equals the number of saddle points plus 1, provided the source is not
located on a caustic. Hence, the total number of images is odd. In addition,
at least one of the images corresponds to a minimum of τ .

The proof of this theorem is obtained using the Poincaré–Hopf index the-
orem and can also be found in Sect. 5.4 of SEF. The fact that any source has
at least one image corresponding to a minimum of τ is easily seen: the Fer-
mat potential τ(θ;β) behaves like |θ|2/2 for |θ| → ∞, i.e., increases for large
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impact vectors, and since it is a smooth function, it must attain a minimum
somewhere. In particular this implies that smooth lenses cannot make sources
disappear. A simple way to see the validity of this theorem follows from what
has been said above about the regions of different image multiplicity: A very
misaligned source has one image, corresponding to a minimum of τ , and the
number of images changes by ±2 (one of either parity) whenever the source
crosses a caustic, and thus is always odd.

As shown by Schneider (1984), a minimum image is magnified, provided
κ ≥ 0. This follows directly from the properties of minima,

0 < detA = (1 − κ)2 − |γ|2 < 1 ,

where the final inequality follows from trA > 0. Since each source is mapped
onto at least one minimum image, the positive density constraint implies that
the total magnification of all sources is larger than unity; in other words, the
flux of a source behind a lens is larger than the unlensed source. What may
sound as a contradiction on first sight – ‘all sources are magnified’ (which has
triggered a rich and often confusing literature on the ‘flux conservation’ issue)
is due to the assumed positivity of the surface density κ which is certainly
the case near to strong lenses. However, most lines-of-sight in the inhomoge-
neous Universe pass through regions which are slightly underdense relative to
the homogeneous Universe, resulting in negative κ – since κ is defined as the
projected mass overdensity relative to the smooth Universe. The mean magni-
fication over the sphere of sources at given redshift indeed is unity (Weinberg
1976) if the magnification is defined relative to the flux the same source would
have in a homogeneous universe of the same mean density.

These two theorems can also be generalized to the case that the deflect-
ing matter distribution is not a geometrically-thin lens, both using heuristic
arguments (SEF) or a rigorous proof (Seitz and Schneider 1992).

Necessary and Sufficient Conditions for Multiple Imaging

A matter distribution described by its dimensionless surface mass density κ
may or may not be sufficiently strong to cause multiple images of sources.
Two general criteria for the occurrence of multiple images can be obtained:

1. An isolated transparent lens can produce multiple images if, and only if,
there is a point θ with detA(θ) < 0. This can be shown as follows: if
detA(θ) > 0 for all θ, then the lens equation is globally invertible, and
so no multiple images can occur. On the other hand, if detA(θ0) < 0 at
some point θ0, then a source at β0 ≡ β(θ0) has an image (at θ0) which
corresponds to a saddle point; according to the odd-number theorem, there
must be at least two additional images corresponding to extrema of τ .

2. A sufficient (but not necessary) condition for possible multiple images is
that there exists a point θ such that κ(θ) > 1. The argument is similar
to the one above: if κ(θ0) > 1, then the source at β0 ≡ β(θ0) has an
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image which cannot correspond to a minimum of τ , as for them κ < 1;
hence, the source must have at least one additional image corresponding
to a minimum.

The second criterion shows why lenses with κ > 1 are called ‘strong’:
whereas κ > 1 is not a necessary condition for the possible occurrence of
multiple images, the critical surface mass density Σcr is nevertheless the char-
acteristic scale for the occurrence of strong lensing features likes arcs and
multiple images. It should be noted that the critical surface mass density de-
pends on the redshift (or distance) of the source; for a given physical surface
mass density Σ, the lens strength increases with increasing source redshift
since Σcr decreases. This also implies that the critical curves are different for
sources at different redshifts; this effect is clearly seen in several clusters of
galaxies where strong lensing phenomena occur at different separations from
the cluster center for sources of different redshifts.

2.5 The Mass-Sheet Degeneracy

Suppose you observe a multiply-imaged source for which the image positions,
their fluxes and perhaps their shapes (in the case of resolved images) can
be measured. One then wants to find a mass model for the lens which can
reproduce the observational constraints in order to obtain information about
the mass distribution in the lens. Whereas this topic will be treated in SL
(Part 2), Sect. 5, and in a somewhat different context in WL (Part 3), we can
already here consider the question of how unique such models can be, even if
one assumes a great number of observational constraints. A partial answer to
the question is provided by the existence of the mass-sheet degeneracy (Falco
et al. 1985; Gorenstein et al. 1988b; for the weak lensing case, see Schneider
and Seitz 1995).

Let κ(θ) be a mass distribution which provides a good fit to the observables
(i.e., image positions, flux ratios, relative image shapes in the case of extended
images, etc.); then the whole family of lens models with mass distribution

κλ(θ) = (1 − λ) + λκ(θ), (28)

provides an equally good fit to the data. The first term corresponds to adding a
homogeneous surface mass density κc = 1−λ to the mass distribution, whereas
the second term describes a rescaling of the ‘original’ mass distribution κ(θ).
We shall now prove the statement made above.

The lens equation corresponding to κλ reads

β = θ − αλ(θ) with αλ(θ) = (1 − λ)θ + λα(θ) , (29)

where quantities without index ‘λ’ correspond to the unscaled mass distribu-
tion κ(θ). Indeed,

αλ(θ) = ∇ψλ(θ) where ψλ(θ) =
1 − λ

2
|θ|2 + λψ(θ) , (30)
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so that the Poisson equation (13) is satisfied, ∇2ψλ = 2κλ. By combining the
two equations (29), one finds

β

λ
= θ − α(θ) , (31)

so that the lens equation for the transformed mass distribution κλ has the
same form as for the untransformed mass distribution, except that the coor-
dinates in the source plane is multiplied by 1/λ. However, this rescaling is not
directly observable. As a consequence, the Jacobi matrix and the magnifica-
tion behave as

Aλ = λA ; μλ =
μ

λ2
; (32)

the first of these relations then implies with (17) that γλ(θ) = λγ(θ) and
(1 − κλ) = λ(1 − κ), in agreement with (28). However, the reduced shear g
(23) is unchanged under the transformation, which means that the axis ratios
of the elliptical images of a round source are unaffected by the transformation.
In general, if nothing sets an absolute scale for the source (size or luminosity)
or an absolute mass scale for the lens (e.g., from observations of its stellar
dynamics), then one cannot distinguish the model described by κ from one
described by κλ. In particular, the critical curves and the curves with κ = 1
are unaffected by the transformation (28). However, the Fermat potential
transforms as

τλ(θ;β) =
1
2
(θ − β)2 − ψλ(θ) = λτ(θ;β/λ) + const. , (33)

where the const. only depends on β. As noted before, the Fermat potential
is, up to an affine transformation, the light travel time from the source to
the observer when passing through the lens plane at θ. Therefore, since the
difference in the Fermat potential calculated at two image positions is pro-
portional to the differences in light travel time, the mass-sheet degeneracy
changes this observable time delay. If we know the value of H0 from other
cosmological observations, we can break the degeneracy and determine the
absolute surface mass density of a lens. The implications of the mass-sheet
degeneracy for lens determinations of the Hubble constant will be described
in SL (Part 2). Furthermore, since the transformation (28) leaves the image
shapes of extended sources unchanged, the weak lensing techniques to be de-
scribed in WL (Part 3) are unable to break the mass-sheet degeneracy, unless
magnification information can be used – see (32). In addition, the mass-sheet
degeneracy can be broken if sources with different distances Ds are lensed,
since for a given physical mass density Σ, the resulting convergence κ will be
different for different source distances, owing to the dependence of Σcr on the
source redshift.

Up to now we have not constrained the value of λ in (28); however, not
all values are physically meaningful. For example, for some values of λ the
resulting mass distribution κλ may attain negative values. Depending on κ,
the non-negativity of the surface mass density will restrict the possible value
of λ.
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3 Simple Lens Models

For a general mass distribution, the deflection angle has to be obtained
through numerical integration; however, for some relatively simple mass dis-
tributions, analytical expressions can be obtained. We shall introduce here a
few simple mass models for lenses which turn out to be useful for understand-
ing many of the lensing phenomena. The simplest lens models are obtained if
the mass distribution is assumed to be spherically symmetric or, of relevance
for lensing, if the projected mass distribution is axially symmetric, as then
the lens equation reduces essentially to a one-dimensional equation. We shall
consider the general properties of such lenses before specializing to two highly
relevant cases, the point-mass lens, or more generally, the light deflection ex-
terior to a spherically-symmetric mass distribution, and the isothermal sphere
lens. The former one is of utmost relevance for Galactic microlensing, as will
be demonstrated in ML, whereas the latter is often used as a simple prescrip-
tion for the (dark) matter distribution of galaxies and clusters. Clusters and
galaxies are not expected to have axisymmetric gravitational potentials; we
shall consider the next simple lens models – those which have two axes of
symmetry, like elliptical mass distributions – and their generic behavior next.

3.1 Axially Symmetric Lenses

An axisymmetric matter distribution is characterized by Σ(ξ) = Σ(|ξ|), if the
origin is chosen at the center of symmetry, implying κ(θ) = κ(|θ|). The scaled
deflection angle α(θ) is then collinear to θ, as follows from the symmetry of
the situation; indeed, from (9) one obtains that

α(θ) =
θ

|θ|2 2
∫ |θ|

0

dθ′ θ′ κ(θ′) or

α̂(ξ) =
ξ

|ξ|2
4G
c2

2π
∫ ξ

0

dξ′ ξ′ Σ(ξ′) ≡ 4GM(|ξ|)
c2 |ξ|2

ξ , (34)

where M(ξ) is the projected mass enclosed by the circle of radius ξ = |ξ|. The
deflection due to a geometrically-thin axisymmetric mass distribution at a
point ξ is thus the point-mass deflection angle (2) for the mass M(|ξ|) enclosed
by the circle with radius |ξ|. This fact is analogous to Birkhoff theorem in
three-dimensional gravity which states that the gravitational force caused by
a spherically-symmetric mass shell vanishes inside of it; here, the axisymmetric
mass in rings causes no deflection at points within them.

Since α is collinear with θ, so is β, as seen from (8). Hence, if the source
position is described by β = βe, where e is a unit vector, then θ = θe as well,
and the lens equation becomes one-dimensional,

β = θ − α(θ) , (35)

where the deflection angle has the properties
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α(θ) = −α(−θ) =
m(θ)
θ

= κ̄(θ)θ , (36)

where m(θ) is the dimensionless mass inside a circle of angular radius θ and
κ̄(θ) is the mean surface mass density inside of θ,

m(θ) = 2
∫ θ

0

dθ′ θ′ κ(θ′) , κ̄(θ) =
m(θ)
θ2

. (37)

For calculating the Jacobian matrix, it is useful to write the lens equation in
the form

β = [1 − κ̄(|θ|)] θ ; (38)

then, according to (17) one finds from differentiation that

A(θ) = [1 − κ̄(|θ|)] I − κ̄′

|θ|

(
θ2
1 θ1θ2

θ1θ2 θ2
2

)
, (39)

where I is the two-dimensional identity matrix, and κ̄′(θ) ≡ dκ̄/dθ = 2
[
κ(θ)−

κ̄(θ)
]
/θ. Comparing (39) with the final form of (17), one sees that indeed

trA = 2(1 − κ), and the shear is

γ(θ) =
[
κ(θ) − κ̄(θ)

]
e2iϕ , (40)

where we set θ = θ(cosϕ, sinϕ); hence, the phase of the shear is the same
as the polar angle of θ, as expected from symmetry. The determinant of the
Jacobian matrix can be calculated either from (21) as

detA = (1 − κ)2 − |γ|2 = (1 − κ)2 − (κ̄− κ)2 = (1 − κ̄) (1 + κ̄− 2κ) , (41)

or, using the original definition (17) of A as

detA =
β

θ

dβ
dθ

= (1 − κ̄) (1 − κ̄− θκ̄′) , (42)

which can be seen, by inserting the derivative of κ̄, to yield the same expres-
sion.

The fact that detA factorizes allows a very simple characterization of the
critical curves of these axisymmetric lenses: Critical curves, which of course are
circles in this case, occur either when 1−κ̄(θ) = 0, or when 1+κ̄(θ)−2κ(θ) = 0.
The former ones are called tangential critical curves, the latter ones radial crit-
ical curves. The reason for naming them this way is found by considering the
distortion of images close to these critical curves. Consider an image posi-
tion on the θ1-axis; according to (39), the Jacobian matrix is diagonal there,
A = diag(1+ κ̄−2κ, 1− κ̄). Near a tangential critical curve, the second eigen-
value becomes very small. If the image was a circle, the corresponding source
in the source plane would be a highly flattened ellipse, with the minor axis in
the β2-direction being much smaller than the major axis. This implies that if
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the source is a circle, then the corresponding image near the tangential critical
curve will be a highly elongated ellipse, with the highly stretched axis in the
θ2 direction, that is, tangent to the direction toward the center of the lens.
Analogous reasoning shows that the image of a circular source near a radial
critical curve will be strongly stretched in the radial direction. Recalling the
shape and orientation of giant luminous arcs, this consideration suggests that
arcs are images of (probably relatively round) sources occurring close to the
tangential critical curves of the cluster lenses.

Tangential critical curves are thus characterized by the condition κ̄ = 1.
The simplicity of this relation implies that from the location of the tangential
critical curve, one can immediately determine the mass inside of it, using (37),
namely πθ2

E D2
d Σcr, where θE is the angular radius of the critical curve. The

relation between θE and the mass enclosed within θE is

θE =
(

4GM

c2
Dds

DDDs

)1/2

≈ 0.′′9
(
M(≤ θE)
1012M�

)1/2(
Dds 1Gpc
DDDs

)1/2

, (43)

where we used the definition (10) of the critical surface mass density. Thus,
if giant arcs indeed trace the location of the tangential critical curve, their
observation can be used to obtain a (at least approximate) mass estimate for
the corresponding cluster mass inside of it (we shall come back to this issue
in much mode detail in Sect. 4 of WL Part 3). The caustic corresponding to
a tangential critical curve is a very special one: according to (38), the whole
circle θ = θE is mapped onto the origin β = 0 in the source plane: the
caustic degenerates into a point. This degeneracy occurs solely due to the
highly symmetric situation of the lens model; as we shall see later, any slight
perturbation of the mass distribution will ‘unfold’ this caustic point into a
curve of finite extent. This symmetric situation then leads to the following
result: if a source is placed onto the caustic point, it will be imaged by the
lens into a ring with radius θE, plus an additional image at the center of the
lens with θ = 0. Such rings were predicted by Chwolson (1924), but already
in 1911, Einstein has discussed their possible occurrence in his notebook, as
shown in Renn et al. (1997). Whereas real lenses are not expected to be
perfectly axisymmetric, and therefore one would also not expect to find such
Einstein rings, they have indeed been detected, as shown in Fig. 7; as will be
explained in Sect. 10 of SL (Part 2), the occurrence of rings depends on a
combination of the mass asymmetry in a lens and the extent of the source.
If the source in an axisymmetric lens is moved away from the caustic point,
the ring will break up into two images, located near the Einstein radius, on
opposite side of the lens center; their image separation will be Δθ ≈ 2θE.

Radial critical curves are circles where 1+κ̄(θ)−2κ(θ) = 0, or, equivalently,
dα/dθ = 1. Their corresponding caustics are circles in the source plane. In
clusters of galaxies, these radial critical curves give rise to radial arcs seen
close to the cluster center, whereas they are not seen in galaxy lenses.
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General Properties of Axisymmetric Lenses

One can derive several general properties of axisymmetric lenses; again we
shall assume that α(θ) → 0 as |θ| → ∞, that the deflection angle is bounded,
|α| ≤ αmax, and that α(θ) is a differentiable function. Then one can show that
a source with sufficiently large β has only a single image at θ ≈ β (the validity
of this property is intuitively clear, but can be proven rigorously; see SEF).

Further, a lens can produce multiple images if, and only if, there exists at
least one value of θ where dβ/dθ = 1 + κ̄(θ) − 2κ(θ) < 0. The necessity is
obvious, since if dβ/dθ ≥ 0 throughout, β(θ) is a monotonic function, which
can be globally inverted, and no multiple solutions can occur. Sufficiency is
seen as follows: if dβ/dθ < 0 at one point, then there must exist a pair
of points such that dβ/dθ = 0 (note that these points lie on radial critical
curves), since asymptotically for large |θ|, dβ/dθ → 1. Hence, β(θ) then has
a local maximum (say at θ1) and a local minimum (at θ2 > θ1), and between
these two values the function β(θ) decreases. A source located at β0 with
β(θ2) ≤ β0 ≤ β(θ1) then has at least three images, one with θ < θ1, one with
θ > θ2, and one with θ1 < θ < θ2. The points β(θ1) and β(θ2) lie on radial
caustics (see Sect. 3 of SL Part 2, for graphical illustrations of this point).

The conditions for the possible occurrence of multiple images can also be
phrased in terms of the surface mass density: A necessary condition for the
occurrence of multiple images is that κ > 1/2 at least at one point. This can
be seen by noting that dβ/dθ < 0 implies κ > (1 + κ̄)/2 > 1/2. A sufficient
condition for the possible occurrence of multiple images is κ > 1 at least at one
point; this property has been shown already for a general mass distribution,
and in this special situation can be seen as follows: if the maximum of κ
occurs at θm, then κ(θm) > 1 and κ(θm) ≥ κ̄(θm), which implies dβ/dθ < 0
at θm, which according to the property shown before is a sufficient condition
for possible multiple images.

The most useful statement on multiple imaging applies to centrally con-
densed lenses; those are mass distributions where κ(θ) does not increase with
θ, or κ′(θ) ≤ 0 for θ ≥ 0. These mass profiles are the only relevant ones
in astrophysics. Centrally condensed lenses are capable of producing multi-
ple images if, and only if, κ(0) > 1. Sufficiency was shown already. Necessity
follows from this: if κ(0) ≤ 1, then κ̄ ≤ 1 for all θ; then, one finds that
dβ/dθ = (1 − κ̄) − θκ̄′ > 0, since κ̄ is also a non-increasing function of θ.
Another way to phrase the multiple image condition for centrally condensed
lenses is dα/dθ > 1 at the origin.

3.2 The Point-Mass Lens

Consider a point mass M or, equivalently, the outside region of a spherical
mass distribution of total mass M ; let the mass be located at the origin of
the lens plane. Then the surface mass density is Σ(ξ) = MδD(ξ), and from
(5) one finds for the deflection angle
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α̂(ξ) =
4GM

c2
ξ

|ξ|2 , (44)

hence the amplitude of the deflection angle agrees with (2), and its direction
is the same as that of ξ, as expected from symmetry. Specializing (8) to the
current lens model yields

β = θ − 4GMDds

c2 DDDs

θ

|θ|2 = θ − θ2
E

θ

|θ|2 , (45)

where in the second step we have used the definition (43) of the Einstein angle
which depends on the lens mass M and the distances to lens and source. If we
choose without loss of generality the source position β to be on the positive
β1-axis, then θ will also be on the θ1 axis, and the lens equation becomes one-
dimensional. Scaling the angles in terms of the Einstein angle as y := β/θE,
x := θ/θE, (45) becomes y = x− 1/x, with the two solutions

x± =
1
2

(
y ±

√
y2 + 4

)
, (46)

i.e., one image on each side of the lens. Note that x+ ≥ |x−|, hence the
image on the same side of the lens as the source is further away from the lens
than the other image. In the language of the previous section, m(θ) = θ2

E,
κ̄(θ) = (θE/θ)2 = x−2, so that we find from (41) the image magnification to
be

μ =
1

detA =
1

1 − κ̄2
=
(

1 − 1
x4

)−1

. (47)

As seen from (46), x+ ≥ 1, and so μ(x+) ≡ μ+ ≥ 1. On the other hand, the
magnification of the second image can be rather small if x− becomes small.
The magnification of the two images and the total magnification of the source
is

μ± = ±1
4

[
y√

y2 + 4
+

√
y2 + 4
y

± 2

]
, μp = μ+ + |μ−| =

y2 + 2

y
√
y2 + 4

;

(48)
hence, unless y <∼ 1, the secondary image will be strongly demagnified. The
image separation

Δθ = 2θE

√
1 + y2/4 >∼ 2θE (49)

is therefore only slightly larger than 2θE in relevant cases, since for values of
y >∼ 1 the secondary image will be demagnified below the detection threshold.
The sum of the two magnifications is μp ≈ 1.34 for y = 1.

The magnification formally diverges for x = 1, or θ = θE, which justifies
using the same name as for the tangential critical curve in Sect. 3.1. But what
about the odd-number theorem (see Sect. 2.4)? Remember, for its validity the
smoothness of the mass distribution was assumed, but a point-mass lens is
not smooth; in particular, the deflection potential ψ has a logarithmic spike
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at the origin. In fact, one can easily picture where the third image has been
‘lost’: Assume one would smear out the mass M over a small but finite region
(say in the shape of a Gaussian), the central surface mass density κ0 would be
very high but finite; in that case, there would be a maximum of the Fermat
potential close to the center (the exact position depending on the location
of the source), hence the third image would appear there. Its magnification
μ3 ≈ (κ0 − 1)−2 � 1 would then be very small.

3.3 The Singular Isothermal Sphere

A simple lens model which applies, at least to first order, to the lensing proper-
ties of galaxies and clusters is the so-called singular isothermal sphere (SIS).
This spherical mass distribution yields flat rotation curves, such as are ob-
served for spiral galaxies. Their density distribution is described by

ρ(r) =
σ2

v

2πGr2
. (50)

Physically this model corresponds to a distribution of self-gravitating
particles where the velocity distribution at all radii is a Maxwellian with
one-dimensional velocity dispersion σv (hence, the term ‘isothermal’). The
three-dimensional velocity dispersion is

√
3σv, and the Keplerian rotation ve-

locity (i.e., the velocity of particles on a circular orbit) is vc =
√

2σv.
The mass distribution (50) has two pathological properties: the central

density diverges as ρ ∝ r−2 (hence the name ‘singular’), and the total mass
of this distribution diverges as r → ∞. The former feature can be cured by
introducing a finite core radius, whereas the distribution for large r does not
affect the lensing properties at smaller radii. In SL (Part 2) and WL (Part 3)
we shall discuss the constraints lensing provides on the core radius of galaxy
and cluster lenses.

The SIS Lens Model

For the reasons just mentioned, the singular isothermal sphere is often used
as a mass model for gravitational lenses; its surface mass density Σ(ξ) follows
from projection of (50) along the line-of-sight,

Σ(ξ) =
∫ ∞

−∞
dr3 ρ

(√
ξ2 + r2

3

)
=

σ2
v

2G
ξ−1 . (51)

As will be shown immediately, the Einstein radius of this lens model is

θE = 4π
(σv

c

)2 Dds

Ds
, (52)

in terms of which one obtains
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κ(θ) =
θE

2|θ| ; κ̄(θ) =
θE

|θ| ; |γ|(θ) =
θE

2|θ| ; α(θ) = θE
θ

|θ| ; (53)

note that the magnitude of α is constant. Here we use the same notation as
introduced before (34). The fact that κ̄(θE) = 1 shows that θE is the tangential
critical curve of the SIS. The lens equation then reads

β = θ − θE
θ

|θ| , or y = x− x

|x| , (54)

where the second form employs the scaled angles x = θ/θE, y = β/θE. As
before, we set y ≥ 0; then, for y < 1, there are two images, at x+ = y + 1 and
x− = y − 1, i.e., on opposite sides of the lens center, with image separation
Δθ = 2θE. For y > 1, only one image occurs, at x+ = y + 1. x+ corresponds
to a minimum of the Fermat potential, whereas x− to a saddle point, so that
the subscripts denote the parity of the two images. The magnification can be
calculated from (41), noting that κ̄ = 2κ, so that

μ =
1

detA =
1

1 − κ̄
=

|x|
|x| − 1

; (55)

hence, since x+ > 1, μ+ > 1, whereas the secondary image, with |x−| < 1,
can be strongly demagnified as x− → 0, or y → 1. From (40) we find that
|γ(x)| = κ(x) = 1/(2x); thus, images are stretched in the tangential direction
by a factor |μ|, whereas the distortion factor in the radial direction is unity.
The total magnification of a point source is μp = 2/y for y ≤ 1, and (1+ y)/y
for y ≥ 1.

Again, what about the odd-number theorem? As was true for the point-
mass lens, the mass distribution of the SIS is not smooth, so the theorem does
not apply. Another ‘strange’ property of the SIS is that the number of images
changes by ±1 when the source position crosses the circle y = 1 – this is in
apparent conflict to what we said in Sect. 2.4. Both of these effects are due
to the singular mass distribution as θ → 0, which causes |α| to be constant.
If we smoothed out the central mass singularity, by introducing a small but
finite core, then the deflection angle would be constant, except very close to
the center where it would make a smooth transition from −θE for θ < 0 to
+θE for θ > 0. In this transition region, there will be two points (at θ = ±θr)
where dα/dθ = 1, corresponding to a radial critical curve. The corresponding
caustic circle will have radius βr

<∼ θE. A source with |β| < βr will have three
images, one at x ≈ y+1, one with x ≈ y− 1 and one in the inner core region,
whereas a source with |β| > βr has just one. The lens equation maps the small
circle with radius θr onto the circle βr ≈ θE. When we now let the core radius
go to zero, βr → θE, the magnification of the central image μ3 → 0, and the
central region of the lens that is mapped onto βr ≈ θE decreases to zero area.
Hence, this limit process suggests that one can consider the third image to be
present, located at θ = 0, and having zero magnification.
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3.4 Non-Symmetric Lenses

To describe the mass profile of real lenses, more complicated (and realistic)
radial mass profiles can be used; even though the lens equation may no longer
be analytically solvable, the fact that it is one-dimensional renders numer-
ical investigations simple. The qualitative features of (centrally-condensed)
axisymmetric lenses do not depend strongly on the details of the radial pro-
file and can basically be read-off from the corresponding Young diagram (see
Sect. 3 of SL Part 2).

Breaking the symmetry leads to qualitatively new properties of the lens.
Most obvious of them, the central caustic point gets unfolded into a curve
of finite size; a source situated inside this curve can then have five images.
The fact that many of the observed lens systems have four images (i.e., five
minus the one being invisible probably due to very strong demagnification at
the center) shows that the axisymmetric models are definitely not sufficient
to explain them.

The next more complicated gravitational potential is then one with two
lines of symmetry, such as an ellipse has. Hence, one would be tempted to
consider mass distributions where κ is constant on (confocal) ellipses. In fact,
Bourassa et al. (1973), Bourassa and Kantowski (1975), and later Schramm
(1990) have considered the lensing properties of such elliptical lenses – they
turn out to be fairly complicated analytically in general; nevertheless, for some
of the most relevant radial density profiles, explicit expressions for the deflec-
tion angle can be derived (e.g., Kormann et al. 1994; Keeton and Kochanek
1998; see SL Part 2), and such elliptical mass models are generally used for
fitting observed lens systems. Here we consider a simpler class of lens mod-
els with similar symmetry, namely axisymmetric matter distributions with an
external perturbation, henceforth called ‘quadrupole lenses’.

Quadrupole Lenses

Even if the mass distribution of a lens is axisymmetric (like that of a star), the
corresponding gravitational potential is not expected to share this symmetry,
because lenses are typically not isolated: a galaxy is often situated inside
or near a group of galaxies, and the other member galaxies, and the dark-
matter halo of the group, will perturb the symmetry of the potential. In many
cases of astrophysical interest, like the one just mentioned, the perturbing
gravitational field changes very little over the relevant length scale of the
main lens. As an example, consider a lens galaxy in a cluster of galaxies. The
relevant length scale of the galaxy is about the region where the multiple
images occur, i.e., a region with radius of the Einstein radius, or typically 1′′.
In contrast, the relevant length scale of the cluster perturbation is either the
separation of the galaxy from the cluster center, or the Einstein radius of the
cluster, whatever is larger, and thus typically much larger than 1′′. It is thus
natural to expand the deflection potential of the perturber about the center
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of the main deflector; the lowest-order, non-trivial term in the expansion is
the quadratic term (tidal field). The analogous situation occurs for a star in
a distant galaxy, where the symmetry of the point-mass lens is broken by the
tidal field of its host galaxy; this is the situation considered by Chang and
Refsdal (1984); see ML).

Here we study the lens action of an axisymmetric matter distribution which
is perturbed by a larger-scale gravitational field, and we assume that the
latter is locally (that is, over the region where we want to study the lensing
properties of the main deflector) well described by its second-order Taylor
approximation. Choosing the origin to be the center of the main lens, and the
orientation of the coordinate system such that the Hessian of the deflection
potential of the perturber (or tidal matrix) is diagonal at the origin, then the
deflection caused by the perturber can be written as

αp(θ) = αp(0) +
(
κp + γp 0

0 κp − γp

)
θ , (56)

where the surface mass density and shear of the perturber are labeled with
subscript ‘p’. Note that the strength of the perturbation is not assumed to be
small. The lens equation then reads

β = [1 − κ̄(|θ|)] θ −
(
κp + γp 0

0 κp − γp

)
θ , (57)

where we have translated the origin in the source plane by the vector αp(0).
The perturber thus adds a uniform sheet of matter plus an external shear.
The uniform sheet can be transformed away, recalling our discussion of the
mass-sheet degeneracy in Sect. 2.5; indeed, (57) can be rewritten as

β̂ :=
β

1 − κp
=
(

1 − gp 0
0 1 + gp

)
θ − ˆ̄κ(|θ|)θ , (58)

where gp = γp/(1 − κp) is the reduced shear of the perturber, β̂ the rescaled
source coordinate, and ˆ̄κ(|θ|) = κ̄(|θ|)/(1 − κp) the rescaled surface mass
density. We shall in the following discard the hats on the variables in (58).

Although an axisymmetric lens with an external shear is too simple to
represent real lenses, the resulting lens equation is sufficiently simple to al-
low some analytical progress; for didactic purposes, we shall discuss this lens
model in somewhat more detail. The lens equation now is two-dimensional,
and therefore more complicated to invert (i.e., to find all image positions for
a given source position) than in the axisymmetric case. However, the lens
equation can be recast into a one-dimensional equation, by introducing polar
coordinates θ = θ(cosϕ, sinϕ) in the lens plane; then, (58) can be written as

cosϕ =
β1

θ [1 − κ̄(θ) − gp]
, sinϕ =

β2

θ [1 − κ̄(θ) + gp]
, (59)
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and by adding the squares of these two equations,

θ2
[
(1 − κ̄)2 − g2

p

]2
− β2

1 (1 − κ̄ + gp)2 − β2
2 (1 − κ̄− gp)2 = 0 , (60)

the polar angle ϕ has been eliminated: (60) is an equation for θ only and can be
solved numerically. For each solution θ, the polar angle can be calculated from
(59). Not all solutions will have | cosϕ| ≤ 1 and | sinϕ| ≤ 1; those solutions
θ have been generated by a number of algebraic manipulations needed to
arrive at (60) and thus shall be discarded then. We just saw a nice example
of reducing the effective dimension of a problem to make it more tractable.

The Jacobian for the quadrupole lens can be obtained from its definition
(17), and its determinant reads

detA = (1 − κ̄)2 − g2
p − θκ̄′ (1 − κ̄ + gp cos 2ϕ) , (61)

so that the critical curves can be easily calculated: for each value of θ,
the condition detA = 0 yields a value for cos 2ϕ; if this lies between ±1,
one has found a pair (θ, ϕ) of coordinates on the critical curve; in fact, one
has obtained four different critical points, one in each quadrant of the lens
plane, due to the symmetry of our lens model with respect to both reflections
(θ1, θ2) �→ ±(±θ1,±θ2). Hence, the structure of critical curves and caustics for
quadrupole lenses can be easily investigated, at least numerically.

The Non-Singular Isothermal Sphere with External Shear

We now consider a specific example of a quadrupole lens which has frequently
been used in lens modeling: the perturbed non-singular isothermal sphere, for
which

κ(θ) =
θe

θc

(
1 +

θ2

2θ2
c

)(
1 +

θ2

θ2
c

)−3/2

, κ̄(θ) =
θe√

θ2 + θ2
c

, (62)

so that κ(0) = θe/θc is finite. The complex form of κ(θ) is chosen so that the
deflection profile is simple. We note that for θ � θc, the mass distribution
approaches that of an SIS with Einstein angle θe, but for a finite θc, θe is not
the location of the critical curve, but in general, θE =

(
θ2
e − θ2

c

)1/2 for θc < θe;
otherwise, the lens is not critical. For this lens model, the one-dimensional
form (60) of the lens equation can be even further simplified, by noting that
(62) implies θ2 = θ2

e/κ̄
2 − θ2

c . Inserting this expression into (60), one obtains
after multiplying by κ̄2 an equation which is a sixth-order polynomial in κ̄.
Given that standard methods are known (e.g., Press et al. 1992) to find all
solutions of polynomials, this latter form is much more useful; the roots of this
polynomial are potential solution if they are real, and have 0 < κ̄ ≤ θe/θc;
those solutions can then be inserted into the original lens equation to check
whether they are actual solutions.
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The critical curves are found from (61), where now the relation θκ̄′ =
−θ2κ̄3/θ2

e can be used to replace κ̄′ there. The equation detA = 0 can then
be written in the form cos 2ϕ = f(κ̄), where f is a function of κ̄ only. Thus
for all radial coordinates θ > 0, or equivalently, for all 0 < κ̄ ≤ θe/θc one
can determine f(κ̄); a value with |f(κ̄)| ≤ 1 yields four critical points at the
radius corresponding to this mean surface mass density.

The critical curves of this special lens (“NIS plus external shear”) can be
studied analytically; because of its importance for understanding lens geom-
etry, we shall provide a detailed description of the essential features in the
following and illustrate the results in Fig. 13. First to note is that if the core
radius is too large, or the central surface mass density too low, there is no
critical curve. One finds that detA(0) = (1 − θe/θc)2 − g2

p at the center, and
can show that for xc ≡ θc/θe > (1 − gp)−1 no critical curves exist. In other
words, for κ0 = 1/xc < 1− gp the lens is not critical. Compare this condition
with the one for an unperturbed lens (gp = 0); there, in order for the lens
to become critical, κ0 must be larger than unity. If the core radius satisfies
(1 + gp)−1 < xc < (1− gp)−1, there is a single closed critical curve (see upper
left panel in Fig. 13), and the corresponding caustic has two cusps. Owing
to the shape of the caustic curve, one often calls it a lips caustic. A source
located inside the caustic has three images, whereas one outside has a single
image.

At xc = (1 + gp)−1, the Jacobian vanishes again at the origin, and for
smaller values of the core radius, xc < (1 + gp)−1, there are two critical
curves and caustics, as seen in the upper right panel of Fig. 13. A second lips
caustic is located inside the first one, oriented perpendicular to it. Sources
inside both caustics now have five images, and those inside the outer one
but outside the inner one have three. When the core radius is further de-
creased, the two critical curves approach each other at two points, and cor-
respondingly, the cusps of the inner lips caustic approach the outer caustic.
At xc = (1 − gp)1/2(1 + gp)−3/2, the critical curves and cusps merge, and
for smaller values of xc, there are again two separate critical curves and two
caustics, but now, as shown in the lower left panel of Fig. 13, one of the caus-
tics has four cusps, the other has none.7 Two of these cusps lie inside the
other caustic, the other two fall outside of it; these are called ‘naked cusps’.8

7 We have discussed folds and cusps before; one can show from singularity theory
that these are the only two ‘generic’ singularities that occur in a lens mapping.
However, if one considers a family of lens models, such as done here by varying
xc, higher-order singularities can occur. At the corresponding values of the lens
model parameter – here xc – the topology of critical curves can change. Examples
are the creation of lips singularities, or the ‘exchange of cusps’ just mentioned,
which technically speaking corresponds to a hyperbolic umbilic. Chapter of SEF
provides a general description of singularities and their metamorphoses in lens
mappings.

8 Lensing geometries where a source is located inside a naked cusp, producing
three bright images, are probably seen in clusters, indicating a relatively large
core radius for them.
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Fig. 13. Critical curves (dashed) and caustics (solid curves) for a non-singular
isothermal sphere model with external shear. Angles in the source and lens plane
have been scaled by θe, i.e., θ = θex, β = θey. In all panels, the reduced shear
is gp = 0.2. The four possible configurations are shown: for xc > (1 − gp)−1, no
critical curve exists; panel (a) shows a case with (1 + gp)−1 < xc < (1 − gp)−1, for
which a single critical curve exists, created from the previous case through a lips
catastrophe. In panel (b), the case (1−gp)1/2(1+gp)−3/2 < xc < (1+gp)−1 is shown,
for which two critical curves exist, the second one created from the previous case by
another lips catastrophe. The two corresponding caustics have two cusps each. In
panel (c), xc < (1 − gp)1/2(1 + gp)−3/2; there, one caustic with four cusps, and one
caustic without cusps occur. This case is obtained from the previous one through two
hyperbolic umbilics where the two cusps of the inner caustic in (b) were transferred
to the outer caustic; correspondingly, at that point the two critical curves intersect
on the x1-axis in this transition. Finally, panel (d) shows the same case as panel (c),
except that now the two ‘naked cusps’ – the cusps outside the other caustic – are
inside the other caustic. In addition, in all panels we have positioned three sources,
indicated by the filled triangle, the filled square and the filled hexagon, together with
their corresponding images, shown with the corresponding open symbols
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The caustic with the cusps, also called the astroid or tangential caustic, cor-
responds to the outer critical curve, the one without cusp to the inner or
radial critical curve. Decreasing xc further, the inner critical curve decreases
in size, whereas the corresponding caustic increases and finally completely
encompasses the astroid caustic (Fig. 13, lower right panel).

In the figure, we have also illustrated the image locations (open symbols)
for several source positions (filled symbols). As will be discussed in SL (Part 2),
many of these image configurations have actually been observed. For galaxy
lensing, configurations of the type shown in the lower right panel are most
relevant since galaxies seem to have a small core radius. In that case, one of
the images is located very close to the center of the lens where κ is much
larger than unity, and therefore the magnification is very small – which is the
canonical explanation for the absence of an observed odd image. Furthermore
we see that in this case, the characteristic maximum image separation is Δθ ∼
2θe, as expected. A source close to and inside a cusp produces three (highly
magnified) images lying close together near the corresponding critical curve;
in the case of a naked cusp, these are the only images of the source, whereas
if the cusp lies inside the other caustic, two additional images are formed (one
of which may be highly demagnified).

If the core radius is decreased to zero, the inner critical curve shrinks
to zero size, the corresponding caustic becomes a circle with radius θe, and
the number of images changes by ±1 when a source crosses this curve – the
behavior is identical to the one already encountered in the discussion of the
SIS model. The other critical curve attains a simple parametric form,

cos(2ϕ) =
1 −

(
1 − g2

p

)
x

gp
⇐⇒ x =

1 − gp cos(2ϕ)
1 − g2

p

, (63)

describing a single closed curve around the origin, which is in fact an ellipse.
By inserting this parameterized form into the lens equation and eliminating
the parameter ϕ results in the equation describing the astroid caustic,[

2y2
1

(
1 + gp

gp

)2
]1/3

+

[
2y2

2

(
1 − gp

gp

)2
]1/3

= 2 , (64)

from which the locations of the cusps can be read off. In particular, (64) shows
that the size of the astroid caustic increases with increasing gp and, to first
order, its linear size is ∝ gp.

In the limit gp → 0, the two critical curves become circles, with the outer
(inner) one being the tangential (radial) critical curves. Because of that, one
often uses the same names for the critical curves also in the perturbed case
gp 
= 0. The radial caustic then separates the three-image region from the
single-image region in the source plane, and the tangential caustic degenerates
into a single point. The fact that this point unfolds in the presence of a
perturbation is nicely illustrated by (64).
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General Discussion of ‘Elliptical’ Lenses

Mass distributions with elliptical isodensity contours are needed to realisti-
cally model gravitational lens systems. Although such models are considerably
more difficult to handle analytically, their qualitative properties are similar
to the NIS with external shear that was discussed above. In particular, the
evolution of the critical curves and the caustics as a function of ‘lens strength’
or ‘core size’ for these models is the same as that shown in Fig. 13; the same
is true for the properties regarding multiple imaging. Of course that does not
mean that the choice of the lens model is arbitrary: for systems with suffi-
ciently detailed observational constraints, a quantitative modeling technique
can distinguish between the various classes of models; as we shall see in SL
(Part 2), the NIS with external shear is often too simple; many lens systems
require an elliptical mass distribution plus some external shear in addition.

4 The Cosmological Standard Model I:
The Homogeneous Universe

We assume that the reader is familiar with the basic concepts of standard
cosmology, such as the hot Big Bang occurring some 13.7 billion years ago,
after which the Universes expanded and cooled down. During this expan-
sion, the simplest atomic nuclei, predominantly helium, were formed about
a minute after the Big Bang, and some 370,000 years later, the Universe
became neutral and released a thermal radiation that is still visible today,
the Cosmic Microwave Background radiation with a temperature of 2.73K.
In addition, it is assumed that you are aware of the existence of dark matter,
material that reveals itself only through gravity, like in governing the rotation
curves of the Milky Way and other spiral galaxies or in providing the deep
potential wells of clusters of galaxies which can keep very hot X-ray emit-
ting plasma and fastly moving galaxies gravitationally bound. Therefore, we
shall only briefly summarize those relations which will be used later in this
course. Excellent textbooks on cosmology are available, among them are Kolb
and Turner (1990), Peacock (1999), Padmanabhan (1993), Peebles (1993) and
Liddle and Lyth (2000).

4.1 The Cosmic Expansion

Metric and Coordinates

Observational evidence suggests that the Universe around us, when averaged
over large angles, is isotropic (the Cosmic Microwave Background, or CMB;
the faint galaxy distribution, etc.). Furthermore, if we assume that our
location in the Universe is not special, the same property also holds for other
observers: also for them the Universe should appear isotropic when averaged
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over large scales. Together, this implies that the Universe is spatially homo-
geneous and isotropic around every point. It has been shown by Robertson
and Walker that for such a spacetime, the metric can be written in the form

ds2 = c2 dt2 − a2(t)
[
dw2 + f2

K(w)
(
dθ2 + sin2 θ dϕ2

)]
, (65)

where t is the cosmic time [which agrees with the time measured by comoving
observers, i.e., those with constant (w, θ, ϕ)], a(t) the cosmic scale factor,
normalized so that today, a(t0) = 1, w the comoving radial coordinate, θ
and ϕ are the angular coordinates on a unit sphere, and fK(w) the comoving
angular diameter distance, which depends on the curvature parameter K in
the following way:

fK(w) = |K|−1/2 sinh
(
|K|1/2w

)
≡

⎧⎨⎩K−1/2 sin(K1/2w) (K > 0)
w (K = 0)
(−K)−1/2 sinh[(−K)1/2w] (K < 0)

. (66)

Hence, (w, θ, ϕ) are spherical coordinates in a three-dimensional space of con-
stant curvature K. Radiation from a comoving source emitted at time t2 and
received by a comoving observer at time t1 > t2 is redshifted by a factor
1 + z12 = a(t1)/a(t2).

Expansion Equation

Inserting the metric (65) into Einstein field equation of General Relativity
shows that the matter contents must be that of a (homogeneous) perfect fluid
with density ρ(t) and pressure p(t). The components of the field equation
reduce to two independent dynamical equations for the scale factor a(t),(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(67)

and
ä

a
= −4

3
πG

(
ρ +

3p
c2

)
+

Λ

3
. (68)

Equation (67) is called Friedmann equation (Friedmann 1922). The two equa-
tions (67) and (68) can be combined to yield the adiabatic equation

d
dt
[
a3(t)ρ(t)c2

]
+ p(t)

da3(t)
dt

= 0 , (69)

which has the following intuitive interpretation: the first term a3ρ is propor-
tional to the energy contained in a fixed comoving volume, and hence the
equation states that the change in ‘internal’ energy equals the pressure times
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the change in proper volume. Hence, (69) expresses the first law of thermo-
dynamics in the cosmological context. The parameter Λ in (67) and (68) is
the cosmological constant; Einstein introduced it into his field equation (in
1916) because without it, no static model of the Universe would be predicted
by General Relativity – the Hubble expansion of the Universe was discovered
only a decade later, after which Einstein dismissed this term. In recent years,
the cosmological constant has regained great popularity – because, as will be
discussed later, there is strong evidence in favor of Λ 
= 0. On the other hand,
the interpretation of Λ has also changed, as we shall see.

World models for which the metric is given by (65) and where the scale
factor a(t) obeys Friedmann equation (67) and the adiabatic equation (69)
are called Friedmann–Lemâıtre models. It should be noted that (68) can also
be derived from Newtonian gravity except for the pressure term and the cos-
mological constant. Unlike in Newtonian theory, pressure acts as a source of
gravity in General Relativity.

Matter Models

By themselves, these equations do not specify the expansion history a(t); for
this we have to add an equation of state (EOS). In general, matter components
cannot be described by a simple equation of the form p = p(ρ); however, for
some limiting cases an equation of this form does exist. Fortunately, the matter
contents in our Universe seems to be such that over most of its history it can
be described by a few components, each of which having such a simple EOS.

If the constituents of matter have random (thermal) velocities much
smaller than c, p � ρc2, then the pressure of this component can be ne-
glected in the expansion equation; this kind of matter is approximated by
p = 0 and called ‘dust’ (or simply ‘matter’). For p = 0, (69) yields that

ρm ∝ a−3 , (70)

a result that is intuitively clear: as the physical (or proper) volume of a fixed
comoving volume behaves like V ∝ a3, and the number of matter particles
is conserved, their number density, and thus mass density must decrease as
ρ ∝ V −1 ∝ a−3.

In the other limiting case, where the constituents of matter have a random
velocity close to c (or even c, as must be the case for massless particles, like
photons), one has p = ρc2/3. For obvious reasons, matter with this EOS is
called ‘radiation’. From (69) one then finds that the energy density of radiation
evolves as

ρr ∝ a−4 , (71)

a result that can also be easily understood. Whereas the number density
of photons (assuming that they constitute the ‘radiation’) decreases as a−3,
again due to number conservation, their individual energy decreases as a−1,
owing to the redshift of their energy (or adiabatic decompression).
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Finally, there may be a mass component which can be interpreted as the
energy density of the vacuum, assumed to be a constant in time. If the den-
sity is independent of a, then (69) predicts that pv = −ρvc

2 for this matter
component.

The matter density and pressure of the Universe is then given by the sum
of these three components,

ρ = ρm + ρr + ρv =
ρm0

a3
+

ρr0

a4
+ ρv , p =

ρrc
2

3
− ρvc

2 =
ρr0c

2

3a4
− ρvc

2 , (72)

where the additional index ‘0’ indicates that these are the values at present
time. Inserting these expressions into (67) and (68) (setting Λ = 0 in these
equations) shows that a term of the same form as the Λ-term appears; the
cosmological constant can therefore be interpreted as a vacuum energy density.

Cosmological Parameters

The ratio
H(t) = ȧ a−1 (73)

is the expansion rate of the Universe, and its current value H0 is called Hubble
constant. This is the ratio of recession velocity to the distance of objects in
the nearby Universe, and has the value

H0 ≈ 3.2 × 10−18 h s−1 ≈ 1.0 × 10−10 h yr−1 , (74)

where h parameterizes our lack of knowledge on the exact value of H0; the
currently best estimates yield h ≈ 0.72 (see Sect. 6.3). If Λ = 0 and the spatial
curvature vanishes, K = 0, then the current density of the Universe is directly
related to H0, as seen from (67); this density is called critical density,

ρcr :=
3H2

0

8πG
≈ 1.9 × 10−29 h2 g cm−3 . (75)

This characteristic density is used to scale the matter densities by defining
the density parameters

Ωm :=
ρm0

ρcr
; Ωr :=

ρr0

ρcr
; ΩΛ :=

ρv

ρcr
=

Λ

3H2
0

. (76)

The radiation density in the Universe is fairly well known: it is dominated
by the energy density of the cosmic microwave background (CMB) which has
a Planck spectrum with temperature of TCMB ≈ 2.73K and whose energy
density can be calculated from the Stefan–Boltzmann law to be

ρCMB =
1
c2

π2

15
(kTCMB)4

(h̄c)3
≈ 4.5 × 10−34 g cm−3 → ΩCMB = 2.4 × 10−5 h−2 .

(77)
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In addition, from the era just before the primordial nucleosynthesis took place,
there is a relic background of neutrinos, at a temperature corresponding to
Tν = (4/11)1/3TCMB ≈ 1.95K; their number density today is 113 cm−3 per
species. If neutrinos were massless, they would contribute to the radiation
density, and with three neutrino families one would have Ωr ≈ 1.68ΩCMB. If
neutrinos have a small, but finite rest mass above ∼ 10−4 eV they would be
non-relativistic today, and contribute to the matter density instead. However,
at earlier epochs the neutrinos were relativistic and therefore contributed to
the radiation energy density. In any case, for the present epoch we can com-
pletely neglect the influence of the radiation on the expansion rate. This, of
course, was not always the case; since the radiation density drops as a−4,
whereas the matter density only as a−3, there was an epoch (or a scale factor)
when both were equal, namely at

aeq =
Ωr

Ωm
= 3.2 × 10−5Ω−1

m h−2 , (78)

and we used Ωr ≈ 1.68ΩCMB here, since at aeq, the neutrinos were relativis-
tic. For scale factors a <∼ aeq, radiation was the dominant component in the
Universe.

Making use of (72) and the definitions (76) of the density parameters, the
expansion equation (67) becomes

H2 = H2
0

[
Ωr

a4
+

Ωm

a3
− Kc2

a2 H2
0

+ ΩΛ

]
. (79)

Specializing this to the current epoch, a = 1, yields an expression for the
curvature, K = (Ωm + ΩΛ − 1)H2

0/c
2 (where we used Ωr � Ωm), which can

be inserted into (80) to yield

H2 = H2
0

[
Ωra

−4 + Ωma−3 + (1 −Ω0)a−2 + ΩΛ

]
, (80)

where we defined
Ω0 = Ωm + ΩΛ + Ωr (81)

as the total density parameter of the present-day Universe. One sees that the
sign of Ω0−1 agrees with that of K, so that the total matter density determines
the spatial curvature of the Universe. Note that (80) is a first-order differential
equation for a(t), which can be integrated (numerically, if necessary) with
the boundary condition a(t0) = 1. The general discussion of the qualitative
behavior of a(t) (see, e.g., Peacock 1999, Sect. 3.2; also Fig. 19 below) yields the
following results: The scale factor a(t) is a monotonically increasing function
for a < 1; hence, a decreases monotonically as we go backwards in time.
Whereas in principle it is possible that a does not decrease below a finite
positive value (so-called bouncing Universes), we happen not to live in one
– such models predict a minimum a, and therefore a maximum redshift; the
fact that we have discovered sources at redshift z >∼ 6, coupled with a matter
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density that certainly exceeds Ωm > 0.05 excludes the possibility that our
Universe is of that kind. Hence, formally a → 0 as we go into the past, at a
finite instant. This instant is called the Big Bang, an event when the Universe
was extremely dense and hot. The behavior of a(t) in the future depends on
the values of the density parameters. If ΩΛ = 0, then a(t) will continue to
grow provided Ωm ≤ 1, otherwise it will reach a maximum value of a and
then recollapse. If ΩΛ > 0, the threshold value of Ωm for recollapse is slightly
changed. Flat models, i.e., those with Ωm + ΩΛ = 1 expand forever provided
Ωm ≤ 1. Defining t = 0 to be the instant of the Big Bang when a = 0, the
cosmic time as a function of scale factor can be calculated from (80), since
dt = da ȧ−1 = da(aH)−1; ignoring Ωr (which is important only over a very
brief period at the beginning of the expansion), one has

t(a) =
1
H0

∫ a

0

da′
[
a′−1Ωm + (1 −Ωm −ΩΛ) + a′2ΩΛ

]−1/2
; (82)

in particular, t0 is obtained by setting a = 1. Apart from a numerical factor
which depends on the density parameters, this yields t0 ∼ H−1

0 . Equation
(82) can be inverted to yield a(t).

Light propagates along null geodesics; in the coordinate system used to
define the metric (65), it is easy to show from symmetry arguments that
radial null curves (i.e., those with θ = const., ϕ = const.) are geodesics; for
them cdt = −adw, if we choose our location at w = 0. The minus sign
occurs since photons propagating to us have dt > 0 but dw < 0. Light from a
source that we observe today was emitted at a time obtained from integrating
cdt = −adw; every observation of the distant Universe is inevitably a look
into the past.

We therefore have a number of variables which can be used to describe the
location of a source: its comoving distance w, the time t at which the light
was emitted which we observe today from that source, the scale factor a at
this time or, equivalently, the redshift z = a−1−1, and the temperature of the
Universe (which is defined as the temperature of the microwave background
radiation – note that cosmic expansion evolves a blackbody into a blackbody,
with temperature T ∝ a−1). These variables are related to each other by

dt =
da
ȧ

=
da
aH

; −dw =
cdt
a

=
cda
a ȧ

=
cda
a2H

. (83)

4.2 Distances and Volumes

The Meaning of Distance

Which of these descriptions of the location of a source is the ‘correct distance’?
Well, wrong question. This question is based on the Euclidean preconception
that there is a uniquely defined correct distance, and that this is the outcome
of all (correct) methods to measure the distance. However, in a general space-
time, two complications occur. The harmless one is that space may be curved.
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The more important one is that any observation measures distances not at a
given instant of time, but along the backward light cone, and distances change
in time as the Universe expands. There is not a unique meaning of distance.
Nevertheless, one can construct methods on how to measure distance, and
define distances according to these measurement procedures. The two most
important definitions of distance are described next.

Distance Measures

Suppose one knows the physical diameter 2R of a source at redshift z (or scale
factor a) which is observed to have an angular diameter of δ. In Euclidean
space one would then measure the distance to this source to be D = 2R/δ;
accordingly, one defines the angular diameter distance as exactly this ratio,

Dang(z) = 2R/δ = a(z) fK(w) , (84)

where the final expression follows from the metric by setting δ = dθ and
ds = 2R. In the foregoing expression, w is to be understood as a function of
redshift; the corresponding relation can be obtained from (83) to be

w(z1, z2) =
c

H0

∫ a(z1)

a(z2)

[
aΩm + a2(1 −Ωm −ΩΛ) + a4ΩΛ

]−1/2
da

= w(z2) − w(z1) , (85)

which is the comoving distance between two sources that we see to have red-
shifts z1 < z2, and we set w(z) ≡ w(0, z). The comoving distance can be
interpreted as the spatial distance between the intersections of the world-
line of these two comoving sources with the spatial hypersurface t = t0 (cf.
the definition of comoving coordinates). Generalizing (84), we can define the
angular-diameter distance Dang(z1, z2) of a source at redshift z2 seen by an
observer at redshift z1 < z2 as

Dang(z1, z2) = a(z2) fK [w(z1, z2)] . (86)

Note that in general, Dang(z1, z2) 
= Dang(z2) −Dang(z1); on the other hand,
such an additive relation is valid for the comoving angular diameter distances
for a Universe with vanishing curvature K = 0, as seen from (85) and (66).
Thus, it is often useful to employ the comoving angular diameter distance,
i.e., the ratio between the comoving diameter of an object and its angular
diameter.

Another method to measure distances is to relate the observed flux S of
a source to its luminosity L; if we know the luminosity, then the distance to
the source can be determined by

Dlum(z) ≡
√

L

4πS
, (87)
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which is called the luminosity distance. In Euclidean space, this measurement
would yield the same result as that from comparing diameters and angu-
lar sizes; in curved spacetimes, this is no longer true. In fact, one can show
(Etherington 1933) that in general,

Dlum(z) = (1 + z)2 Dang(z) = (1 + z) fK(w) . (88)

In this equation, flux and luminosity have to be interpreted as bolometric
quantities, i.e., integrated over all frequencies. The flux at a given frequency ν
is related to the specific luminosity of the source at a different frequency νe =
(1 + z)ν, owing to redshift. This frequency shift is taken into account by the
so-called K-correction in the relation between specific flux and luminosity.

We still need another distance concept, the proper distance. Suppose we
measure the redshifts z and z + Δz of two comoving sources, being very
similar, and which also have small angular separation Δθ on the sky. What is
the separation between these two sources that an observer would measure who
lives somewhere near them? This separation can be measured by this fiducial
observer in the same way as we can measure the distance to Virgo-cluster
galaxies, without caring about the values of the cosmological parameters –
locally space can be approximated as being Euclidean where distances have
a unique meaning. The proper separation transverse to the line-of-sight is
Dang(z)Δθ, and that along the line-of-sight is

Δrprop = a(z)Δw = a(z)
dw
da

da
dz

Δz =
c a(z)
H(z)

Δz

=
c

H0

Δz√
Ωma−1 + (1 −Ωm −ΩΛ) + ΩΛa2

. (89)

Volume Elements

We can now also calculate volume elements: suppose in a solid angle ω one
measures dN sources with redshift between z and z + dz, the proper number
density of these sources is n = dN/dV , where the volume is given by the
physical thickness of the redshift slice times the area transverse to the line-
of-sight, which is D2

ang(z)ω, so

dVprop = D2
ang(z)ω

drprop

dz
dz , (90)

where we indicated that this is the proper volume element. The corresponding
comoving volume element is then

dVcom = a−3 dVprop = f2
K [w(z)]ω

dw
dz

dz . (91)

Finite volumes can be obtained from the foregoing equations by integration.
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Special Cases

Whereas the foregoing expansion equations are easily evaluated through nu-
merical integration, there are some cases where explicit expressions can be
obtained. The simplest model is the Einstein–de Sitter (EdS) Universe, char-
acterized by Ωm = 1, ΩΛ = 0; this model has zero curvature. The ex-
pansion equation (neglecting radiation) reduces to H = H0a

−3/2, yielding
t = 2/(3H0)a3/2; in particular, the current age of the Universe in this model
is t0 = 2/(3H0) ∼ 6.7 × 109 h−1 years. The comoving and angular diameter
distance for an EdS model are easily obtained as

Dang(z1, z2) =
2c
H0

1
1 + z2

[
(1 + z1)−1/2 − (1 + z2)−1/2

]
,

Dcom(z1, z2) =
2c
H0

[
(1 + z1)−1/2 − (1 + z2)−1/2

]
. (92)

In particular, as for all flat models, the comoving angular diameter distance
is the same as the comoving distance. Unfortunately, we seem to not be living
in an EdS Universe (see Sect. 6.3).

For models without a cosmological constant, the angular-diameter distance
can be written in closed from, using the famous Mattig (1958) relation,

Dang(z1, z2) =
2

Ω2
m(1 + z1)(1 + z2)2

×
[
(Ωmz2 −Ωm + 2)

√
1 + Ωmz1 − (Ωmz1 −Ωm + 2)

√
1 + Ωmz2

]
.(93)

Next we consider the expansion equation (80) qualitatively. The different
dependencies of the four terms in (80) on the scale factor shows that for
very small a, the expansion was dominated by radiation, for a >∼ aeq it was
dominated by matter; the effects of curvature (if different from zero) and the
cosmological constant play a role only at later stages of the cosmic expansion.
For small a � 1, (80) can be approximated as H = H0Ω

1/2
m a−3/2

√
1 + aeq/a

which can be integrated to yield

t(a) =
2

3H0
Ω−1/2

m

[
a3/2

(
1 − 2

aeq

a

) (
1 +

aeq

a

)1/2

+ 2 a3/2
eq

]
, (94)

and so t = a2
(
2H0

√
Ωmaeq

)−1
for a � aeq, and t = 2a3/2

(
3H0

√
Ωm

)−1 for
aeq � a � 1. For EdS, (94) describes the expansion for all a through the
radiation and matter dominated phases.

4.3 Gravitational Lensing in Cosmology

The Meaning of Distance in Lensing

When we used distances to write the gravitational lens equations in Sect. 2
we have not discussed what ‘distance’ means there. Now we learned that the
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concept of distance in curved spacetimes, even if they are as simple as the
Friedmann–Lemâıtre spacetimes, are more complicated than in the Euclidean
case. Therefore, which of the many distances defined above is the one to be
used in the gravitational lens equations?

The answer is quite obvious: recall that the basic lens equation (6) relates
images and source positions by a geometrical consideration; for that one needs
to relate angles with transverse distances. This is exactly the way the angular-
diameter distance was defined; hence, all equations in Sect. 2 are also valid
in a Friedmann–Lemâıtre spacetime if the distances D are taken to be the
angular-diameter distances Dang.

In many cases, the equations of gravitational lensing become simpler if
the comoving angular diameter distances fK(w) are used; one example is the
expression (96) for the time delay. In particular this is true for flat cosmological
models, for which fK(w) = w. Furthermore, most equations of gravitational
lensing contain distances only in form of the ratio Dds/Ds, for which it is
irrelevant whether D = Dang or D = fK is used. In order not to confuse the
reader, we shall consistently use the following convention throughout the rest
of this book (recalling that in all equations in Sects. 2 and 3, D ≡ Dang is
implied): the angular diameter distance is denoted by Dang, and the comoving
distance is denoted by D or fK . For example, in this notation the critical
surface mass density and the Einstein radius of a point mass read

Σcr =
c2

4πG
Dang

s

Dang
d Dang

ds

=
c2(1 + zd)

4πG
Ds

DD Dds

θE =
(

4GM(1 + zd)
c2

Dds

DDDs

)1/2

. (95)

The Time Delay

We mentioned in Sect. 2.2 that the light travel times along the light rays that
form the multiple images in a lens system are not the same, but have not
given an expression for it. Now that we are armed with the necessary cos-
mological relations we can do so. There are two ways to derive an expression
for the time delay, both of which shall briefly be described here. Cooke and
Kantowski (1975) argued that the time delay must have two different compo-
nents: first, a light ray that is bent is longer, and thus light needs more time to
propagate along it, than for a straight ray. Since the individual light rays are
bent by different angles, their geometrical lengths are different, giving rise to a
‘geometrical time delay’ between them. Second, light rays propagate through
a gravitational potential which retards them; this is the well-known ‘Shapiro
effect’, which has been amply tested by radar echo delay experiments towards
the inner satellites in the Solar System. This is the ‘gravitational time delay’.
The total time delay is then simply the sum of the two. For this derivation, it
is important to note that the gravitational time delay ‘occurs’ at the redshift
of the lens, and hence gets redshifted by a factor 1 + zd owing to the cosmic
expansion.
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An alternative derivation of the time delay was given by Refsdal and his
collaborators (see e.g. Kayser and Refsdal 1983 and references therein); they
considered the wavefronts emitted from a source. Wavefronts are surfaces of
equal light travel time (image for example a set of photons all emitted in
a single flash from a bursting source; their location at fixed instant form
a wavefront), and Fermat principle states that light rays are perpendicular
to the wavefronts. Close to the source, the wavefronts are spheres; owing to
perturbations in the gravitational potential, they get distorted. If propagating
near a mass concentration, the wavefronts can become strongly distorted, and
after passing it, they can actually intersect themselves. An observer located
in that region would then be passed by the same folded wavefront more than
once; since the different sheets of the wavefronts have different orientations,
the observer will then see multiple images of the corresponding source, in the
direction perpendicular to the individual wavefront sheets. The time delay
between two images is then obtained as the time between the passing of the
two corresponding wavefront sheets. From a purely geometrical consideration,
the time delay can then be derived, yielding the same expression as adding
together the geometrical and potential time delays of the first method.9 The
time delay can be written most conveniently in terms of the Fermat potential
as (Schneider 1985)

Δt =
Dang

D Dang
s

cDang
ds

(1 + zd)
[
τ(θ(1);β) − τ(θ(2);β)

]
=

DDDs

cDds

[
τ(θ(1);β) − τ(θ(2);β)

]
, (96)

where in the second expression the comoving angular diameter distances were
used, and τ(θ;β) is the Fermat potential defined in (14). This result then
confirms the statement made in Sect. 2.2: τ(θ;β) is, up to an affine trans-
formation, the light travel time along a ray originating at β in the source
plane, traversing the lens plane at θ and then propagating to the observer.
The additive constant of this affine transformation is irrelevant, as only differ-
ences are observable; the factor in the linear term is given in (96). The poten-
tial time delay is described by the deflection potential ψ(θ) in τ , the geometric
time delay by the |β − θ|2/2 = |α|2/2-term.

5 Basics of Lensing Statistics

One is frequently interested in the probability that a specific gravitational
lensing event occurs. For example, Zwicky (1937b) estimated the probability
that a distant source is multiply imaged by “extragalactic nebulae” using the
9 As Sjur Refsdal reports, the first referee of his paper on the wavefront method

rejected it wholeheartedly, claiming that the resulting expression can contain
only the geometrical contribution to the time delay. It remains unknown how this
referee imagined the geometry of distorted and overlapping wavefronts without
the effect of retardation provided by the gravitational field of the deflector.
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surface density of these objects on the sky. This basic problem of statistical
gravitational lensing has since been studied in considerable detail, as will be
discussed in SL (Part 2). The results of such an investigation depend on the
assumed distribution of lens masses and their individual density profiles. A
comparison of these results with a statistically well defined sample of observed
lens cases can in principle allow one to constrain the lens contents and/or the
geometry of the Universe. The probability for microlensing events to occur
depends on the density of compact objects along the sightline to the popula-
tion of sources which are monitored, as will be detailed in ML.

Another typical problem of statistical lensing is the so-called magnification
bias. Let us consider a sample which should include all sources of a certain
kind in a region of the sky brighter than a given threshold (i.e., a flux-limited
sample). From the observed fluxes of the sources and their distances (e.g.,
determined from their redshifts) we can derive the intrinsic luminosities of the
sources. If a source is magnified by a gravitational lens, its derived luminosity
will not be the true one, but will be higher in general. Moreover, there may
be sources in the sample which do not belong there because they are intrin-
sically too faint to be included, but have been magnified above the threshold
of the sample. Since flux-limited samples of extragalactic sources are used to
derive information about the evolution of the sources and about the structure
of the universe, the magnification can mislead astronomers. Statistical lens-
ing investigations are used to estimate the importance of this effect and its
consequences. In this section we shall provide the basics of lensing probability
investigations, with details left to later sections when specific applications are
discussed.

5.1 Cross-Sections

The lensing probabilities depend on the number density of lenses, as well as
on their mass profile. The latter is used to define lensing cross-sections. We
shall start with two specific examples which should motivate this concept.

Cross-Sections for a Point-Mass Lens

First, consider a (point) source at distance Ds, and a point mass at distance
DD from Earth. The separation of the two images and their magnifications
depend on the relative alignment of source, observer, and lens. There is a one-
to-one relationship between the source position β = yθE and the corresponding
total magnification μp, see (48), where total magnification means the summed
magnifications of the individual images. Thus, for any μp > 1 there is a value
of y such that, if the distance β of the source is less than yθE from the optical
axis, the latter is magnified by more than μp:

y2 = 2

⎛⎝ μp√
μ2

p − 1
− 1

⎞⎠ . (97)
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Hence, we can define the cross-section

σ(μp) = πθ2
E y2(μp) (98)

for a point source magnification larger than μp. In other words, centered on
the caustic point there is a solid angle σ(μp) within which the source must
lie in order to be magnified by more than μp. One could also consider σ to
be the solid angle in which a lens must be located such that a fixed source is
magnified by more than μp; these two points of view are basically equivalent,
though there are some subtleties involved (Ehlers and Schneider 1986) which
shall not be discussed here.

As a second example, we consider the ratio r = μ+/|μ−| of the absolute
values of the magnifications (brightness ratio) for the two images produced
by a Schwarzschild lens – see (48). In order for this ratio to be less than r, the
impact parameter y needs to be less than r1/4−r−1/4, and so the cross-section
for magnification ratio less than r > 1 is

σ(r) = πθ2
E

(
r1/2 + r−1/2 − 2

)
. (99)

General Definition of a Lensing Cross-Section

After these two examples we now discuss the general definition of a cross-
section. Consider a source and a lens, both at fixed distances from Earth. The
lens may be described by a set of parameters, and the source is characterized,
say, by its size and its brightness profile (if the source extent is relevant). If
one is interested in a certain property Q of this gravitational lens system,
one can ask where the source must be located such that the images have the
property Q. Two examples for Q were given above, namely, that the total
magnification is larger than μ and that the brightness ratio of the images
is smaller than r. More complicated examples of Q will be considered in due
course. The question can be answered through an analysis of the gravitational
lens model, as demonstrated above for the point mass lens. One usually finds
that the source must be in a certain region of the source plane. The solid angle
of that region is then the Q-cross-section σQ for this lens–source system.

Lensing Cross-Section for a Singular Isothermal Sphere

To illustrate the concept further, we shall consider the lensing cross-sections of
an SIS. From Sect. 3.3 we know that this lens produces two images if β < θE,
and that the image separation is 2θE. Hence, the cross-section of an SIS to
produce two images with separation larger than Δθ is

σ(Δθ) = πθ2
EH(2θE −Δθ) , (100)

where H(x) is the Heaviside step function. Next the (total) magnification and
the flux ratio r can be included; both are functions of y = β/θE, μ = 2/y and
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r = (1 + y)/(1 − y). Therefore, the cross-section for an SIS to produce two
images with separation larger than Δθ, total magnification larger than μ and
flux ratio of the images smaller than r is

σ(Δθ, r, μ) = πθ2
E

[
min

(
r − 1
r + 1

,
2
μ

)]2
H(2θE −Δθ)H(μ− 2) . (101)

The Mass-Sheet Degeneracy and Scaling of Cross-Sections

In Sect. 2.5 we have seen that the imaging properties, such as angular sepa-
ration and magnification ratios – and thus flux ratios, are unchanged if the
surface mass density is transformed according to (28). As can be seen from
(31), this transformation merely leads to a scaling of the lens plane, thereby
affecting the magnifications. The scaling of the lens plane implies that the
cross-section for an extended source of size ρ will, after the mass-sheet trans-
formation, be related to the cross-section for a source of size λρ. Hence, the
cross-section for flux ratio smaller than r, image separation larger than Δθ,
magnification larger than μ for a source of size ρ transforms like

σλ(r,Δθ, μ, ρ) = λ2σ
(
r,Δθ, λ2μ,

ρ

λ

)
. (102)

5.2 Lensing Probabilities; Optical Depth

The probability that a lensing event with specified properties Q occurs is
given by the product of the number density of lenses and their cross-sections.
Consider a solid angle ω toward sources at distance Ds. To the distance interval
dx around x (note that we use a different notation for distance along the
line-of-sight here, for reasons which soon will become clear) corresponds a
proper volume element dV = D2

ang(x) (drprop/dx) ω within this solid angle.
We consider lenses which are described by a set of parameters, summarized as
χ; such parameters could be lens mass, core radius, ellipticity, etc. If n(x, χ) dχ
is the (proper) number density of lenses at distance x with properties within
dχ of χ, the total cross-section of all lenses within the tube of solid angle ω
is then

σtot(Q) =
∫ xs

0

dx ωD2
ang(x)

drprop

dx

∫
dχ n(x, χ)σ(Q;x, xs, χ) , (103)

where the Q-cross-section of a lens depends on the lens parameters χ, the
distance parameter x along the line-of-sight, and the source distance xs. The
picture underlying this equation is that the cross-sections of the individual
lenses simply add up linearly. This picture is justified as long as the pro-
jected separation between lenses is much larger than the linear size of the
cross-sections, or in other words, the cross-sections of individual lenses do not
overlap. The probability for a lensing event with property Q – also frequently
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called optical depth for lensing – is then given by the ratio of the cross-section
σtot(Q) and the solid angle ω, i.e., the fraction of solid angle covered by the
cross-sections,

P (Q) =
∫ xs

0

dx D2
ang(x)

drprop

dx

∫
dχ n(x, χ)σ(Q;x, xs, χ) . (104)

We shall now consider the case where the distance to the source is small, so
that cosmological distances play no role. In this case, we can take x = DD,
and (104) becomes

P (Q) =
∫ Ds

0

dDD D2
D

∫
dχ n(DD, χ)σ(Q;DD, Ds, χ) . (105)

In the other case, where the sources of interest are at cosmological distances,
redshift is a convenient distance variable, and (104) reads

P (Q) =
∫ zs

0

dzd D2
ang(zd)

drprop

dz

∫
dχ n(zd, χ)σ(Q; zd, zs, χ) , (106)

where the proper distance interval along the line-of-sight is given in (89). In
this cosmological context, it is often useful to specify the comoving number
density ncom of lenses, instead of the proper density n; both are related by
n(z) = (1 + z)3 ncom; furthermore, we can use the comoving distance w as
integration variable, and work in terms of the comoving angular diameter
distance fK(w); then, (106) becomes

P (Q) =
∫ ws

0

dw f2
K(w)

∫
dχ ncom(w,χ)σ(Q;w,ws, χ) , (107)

which is particularly convenient in the case of flat models (fK(w) = w).

5.3 Magnification Bias

Besides the optical depth for a source to be multiply imaged (with image
separation larger than an angular resolution limit of a survey), the magnifi-
cation probability distribution has received great attention in the literature.
Questions that have been studied include:

• Can all bright quasars be merely highly magnified images of much less
luminous Seyfert galaxies (Barnothy 1965)? No, the lensing probabilities
are far too small (e.g., Tyson 1981; Peacock 1982), even if the dark matter
in the Universe consists of compact objects (Canizares 1982; Schneider
1987).

• Can magnification by (compact objects in the) halos of galaxies explain
the apparent angular correlation (e.g., Arp 1987, and references therein)
between nearby bright galaxies and high-redshift quasars? Again no, mag-
nification probabilities are far too small (e.g., Canizares 1981; Vietri and
Ostriker 1983; Schneider 1992).
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• Does magnification affect the expected number of multiply-imaged QSOs
in a gravitational lens survey? Yes (e.g., Wallington and Narayan 1993):
for a lens survey with a bright flux threshold, magnification boosts the
fraction of lensed sources by a large factor (see SL Part 2).

Magnification can cause sources to be included in a flux-limited sample which
without lensing would be too faint to be included. Furthermore, sources with
a very large magnification factor can attain apparent luminosities which ex-
ceed the maximum luminosities of the corresponding class of sources. In fact,
several of the most luminosity-extreme sources are strongly magnified: The
apparently most luminous IRAS galaxy F10214+4724 is magnified by a galaxy
by about a factor of μ ∼ 50 (Broadhurst and Lehár 1995), the most luminous
‘normal’ Lyman-break galaxy cB58 (Yee et al. 1996) at redshift z = 2.72 is
magnified by the cluster MS1512+36 with redshift z ∼ 0.3 by a factor μ ∼ 30
(Seitz et al. 1998), the very bright z = 3.87 QSO APM 08279+5255 (Irwin
et al. 1998) is gravitationally lensed and highly magnified by a foreground
galaxy (Ibata et al. 1999), and several of the highest redshift galaxies have
been found behind lensing clusters (e.g., Hu et al. 2002; Kneib et al. 2004;
Pelló et al. 2004).

Consider a class of sources in a narrow redshift interval, and denote by
p(μ) dμ the probability that one of these sources is magnified by a factor within
dμ of μ. Let N0(> S) be the number of these sources per unit solid angle that
without lensing would be observed to have flux greater than S. If these sources
get magnified by a factor μ, two things happen: first, a source with unlensed
flux S will attain an observed flux μS. Second, since magnification enlarges the
solid angle, sources that without lensing would be contained in a solid angle
ω on the sky, will now be spread over the solid angle μω, i.e., the number
density of sources decreases by a factor 1/μ. Together, if the magnification
would be (locally) a constant μ, the observed source counts are

N(> S) =
1
μ
N0

(
>

S

μ

)
. (108)

Considering a probability distribution p(μ) in magnifications, this result gen-
eralizes to

N(> S) =
1
〈μ〉

∫
dμ p(μ)N0

(
>

S

μ

)
, (109)

where 〈μ〉 is the mean magnification within the region of the sky considered.
If source counts are taken over random regions on the sky, then 〈μ〉 = 1, but if
the magnification bias is considered around foreground galaxies, then in these
regions, 〈μ〉 > 1. The probability p(μ) satisfies∫

dμ p(μ) = 1 ;
∫

dμ μ p(μ) = 〈μ〉 ; (110)

the first relation expressing normalization, the second the definition of the
mean magnification. Of course, p(μ) depends on the source redshift and the
density of lenses, as mentioned in the previous section.
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At this point, we need to enter briefly in the discussion on ‘flux conserva-
tion’. As you recall, we have shown that any lens produces at least one image
which is not demagnified, μ ≥ 1, provided κ(θ) is non-negative. If we consider
source counts averaged over the whole sky, then of course 〈μ〉 = 1, and then
(110) implies that if there are lines-of-sight where μ > 1, then there must also
exist those with μ < 1. Hence, we get an apparent contradiction, which has
led to much confusion in the literature. The resolution of this contradiction is
seen when we consider the full matter distribution between us and the sphere
of sources at a given redshift. The unmagnified flux of a source is defined
as that flux which would be observed in a homogeneous Universe, since it
is this model which underlies the definition of the luminosity distance. Now,
the true mass distribution is inhomogeneous, consisting of large overdensities
like galaxies and clusters, and underdensities like voids. A light bundle prop-
agating through an underdense region of the Universe is less focused than
one propagating through the mean density of the Universe, so that the effec-
tive κ < 0 for the former, and μ < 1. Conversely, light bundles propagating
through overdense regions get more focused, resulting in μ > 1. We shall
discuss these relations in more detail in WL (Part 3).

Note that there is a minimum magnification for each source redshift. Since
the cosmic density ρ ≥ 0, a light bundle cannot be more defocused than
propagating through empty space; hence, μ is bound from below, and this
bound depends on the source redshift and the density parameters Ωm and
ΩΛ.

We shall now consider the simple example of source counts which behave
like a power law, N0(> S) = AS−β . Inserting this into (109) yields

N(> S) =
1
〈μ〉

∫
dμ p(μ)A

(μ
S

)β

= N0(> S)
1
〈μ〉

∫
dμ p(μ)μβ . (111)

Thus, if the unlensed source counts behave like a power law, so do the lensed
ones, with the same slope. The ratio between lensed and unlensed counts
depends on the magnification probability distribution p(μ), as well as on the
slope β of the counts. The first remarkable result is that, if β = 1, then (111)
together with the second of (110) imply that N(> S) = N0(> S), i.e., the
counts are unchanged in this case, independent of p(μ). Hence, in this case
the enlargement of the solid angle over which sources are distributed just
compensates the brightening of the sources. For β < 1, the number counts
are depleted, whereas they are increased for β > 1. The larger the slope β,
the larger is the ratio N(> S)/N0(> S), i.e., the stronger is the magnification
bias.

If one considers point sources, or more generally, sources whose angular
sizes are much smaller than the characteristic angular scale of the lenses, then
one can show (Blandford and Narayan 1986) that for very high magnification,
p(μ) ∝ μ−3, up to an upper limit for μ at which the finite size of the source
limits the magnification. This functional dependence is due to the universal
behavior of the lens equation near fold caustics, as was discussed in Sect. 2.4.
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This functional behavior implies that the integral in (111) formally diverges as
the slope β approaches 2. Hence, for a population of sources with steep num-
ber counts, the magnification bias can become very large. In fact, the formal
divergence is due only to the assumption of a pure power law for N0(> S);
whereas such a functional form is a good description, e.g., for the QSO counts
over a limited range of fluxes (or luminosities), it cannot continue with a steep
slope for arbitrarily faint sources, in order for the source population not to
produce infinite total flux. Nevertheless, if the counts are steep, and one con-
siders a value of S much larger than a break flux (where the steep counts
turn into flatter ones towards lower fluxes), the ratio N(> S)/N0(> S) can
be very high indeed. This is the reason why we see extreme QSOs like the
one mentioned above, APM 08279+5255. Furthermore, if the source popula-
tion is better described by a Schechter luminosity function, which implies an
exponential decrease in the counts for high luminosities, the bias can be even
larger: the probability with a Schechter function to find a single source far out
in the exponential tail is very small, and if such an apparently luminous source
is observed, it is most likely a lensed one, as is the case for F10214+4724 and
cB58.

6 The Cosmological Standard Model II:
The Inhomogeneous Universe

Whereas the Universe appears to be nearly homogeneous on large scales, it
certainly is strongly inhomogeneous on smaller scales. Small fluctuations are
imprinted onto the CMB, leading to tiny but measurable anisotropies in its
temperature; in fact, these anisotropy measurements provide the strongest
constraints on cosmological parameters currently available. Furthermore, the
distribution of brighter (thus nearer) galaxies in the sky is highly anisotropic;
galaxies tend to be strongly correlated, they tend to appear in groups or
clusters of galaxies. Thus, on small scales the approximation of a homogeneous
Universe must break down.

6.1 Structure Formation

Whereas the CMB fluctuations indicate very small inhomogeneities at the
time of recombination (corresponding to a redshift z ∼ 1, 100) the inho-
mogeneities observed today in our neighborhood are much larger. A clus-
ter of galaxies, for example, is a massive perturbation with a mean density
more than hundred times larger than the mean density in the Universe. It is
believed that the density inhomogeneities that we see today have evolved from
much smaller fluctuations in the very early Universe. This evolution happens
naturally through gravitational instability. A slightly overdense region has a
somewhat higher self-gravity than the average region of the Universe, so its
expansion rate will be slightly smaller than that of the Universe as a whole.
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As a result of slower expansion, the density contrast of this region increases
further, retarding expansion more, and so on. If the initial density contrast
is sufficiently large, this instability can actually bring the expansion to a halt
locally, after which the region recollapses under its own gravity to form galax-
ies and clusters.

In this picture of gravitational instability, one can study the evolution of
structure in great detail. Since the major mass component in the Universe
is dark matter, which by definition only interacts gravitationally, the dom-
inant process is gravity. However, the laws of gravity are well understood.
Furthermore, additional simplifications arise in certain regimes; e.g., at early
stages in the evolution, density fluctuations are very small. One can there-
fore linearize the equations of gravity around the homogeneous Universe. If
the length scale of the perturbations are much smaller than the characteristic
scale of the Universe [a size given by c/H(a)], gravity can be approximated by
the Newtonian equations. In addition, numerical simulations can follow the
evolution of the density field under the influence of gravity, and great progress
has been made in the level of detail these studies have achieved (e.g., Frenk
et al. 1999; Springel et al. 2001).

We shall outline here a number of results which will be used in later sec-
tions; again, the reader is referred to the excellent textbooks mentioned at the
beginning of this section for a much more detailed treatment.

Horizons

No signal propagates at speeds larger than c; at a given cosmic time t, this
implies that the region within which matter has been in causal contact is
finite, essentially given by ct ∼ c/H(t), where we used that tH(t) ∼ 1. The
size of this region is called the horizon size at time t. The comoving horizon
size is

dH =
c

aH(a)
=

c

H0
Ω−1/2

m a1/2
(
1 +

aeq

a

)−1/2

, (112)

where in the second step we used the approximation for a � 1 when curvature
and vacuum energy play hardly any role; cf. (94). As we shall see, the comoving
horizon size at the epoch of matter and radiation equality is of particular
importance and is

dH(aeq) = 2−1/2cH−1
0 Ω−1/2

m a1/2
eq ≈ 12(Ωmh2)−1 Mpc . (113)

Linear Density Evolution

If the density fluctuations are small, linear perturbation theory can be used
to describe them. Specifically, one defines the density contrast

δ(x, t) :=
ρ(x, t) − ρ̄(t)

ρ̄(t)
, (114)
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where ρ̄(t) is the mean cosmic matter density at time t, and x is the comov-
ing spatial coordinate. The matter equations are linearized about the homo-
geneous model, and only terms of order δ are considered. If several matter
components are relevant (e.g., non-relativistic matter and radiation, in early
phases of the evolution), one defines a density contrast for each of them, and
considers the (coupled) set of linear evolution equations. As soon as |δ| ∼ 1,
this perturbation theory breaks down, and the full set of non-linear evolution
equations needs to be treated (numerically).

If one considers fluctuations on a scale much smaller than the horizon
scale, one can use Newtonian gravity. The relevant equations in this case are
the Vlasov (or collisionless Boltzmann) equation and the Poisson equation;
the former is usually approximated by the fluid equations, e.g. the continuity
equation and the Euler equation. A homogeneous, expanding Universe is a
solution to these equations, and the expansion factor follows the Friedmann
equation (67). Setting ρ(x, t) = ρ̄(t)[1 + δ(x, t)], these equations are then
transformed into comoving coordinates, e.g. for the Poisson equation one finds

∇2
xΦ = 4πGa2ρ̄δ =

3H2
0

2a
Ωmδ . (115)

Then, writing the velocity field as a sum of the Hubble expansion plus a small
perturbation to it, one finds that the terms linear in δ lead to a single linear
second-order differential equation in time whose coefficients do not depend on
the spatial coordinates. Hence, there are two linearly independent solutions
of the form δ(x, t) = D±(t)Δ±(x). One of the two functions, D−(t) say,
decreases quickly with time and is therefore unimportant for structure growth;
the other one grows with time, so that

δ(x, t) = D+(t) δ0(x) (116)

is the relevant mode for structure growth. The function D+(t) is called the
linear growth factor, which can be obtained from solving the aforementioned
differential equation,

D+ ∝ H(a)
∫ a

0

da′

[a′ H(a′)]3
, (117)

with the constant of proportionality chosen such that D+(t0) = 1. Because
of this choice, one has δ(x, t0) = δ0(x); hence, δ0(x) is the current density
contrast provided the evolution of δ follows linear perturbation theory. Even
if it does not, defining the field δ0 is meaningful, since (116) still describes
the evolution of the density contrast for epochs where δ was much smaller
than unity. For obvious reasons, δ0 is called the linearly-extrapolated density
contrast. For an EdS Universe, the growth factor is D+(t) = a(t), for lower-
density models, D+(t) ≥ a(t) (see Fig. 14); Carroll et al. (1992) provide a
fitting formula for D+ for general cosmologies. Note that (116) predicts that
the shape of fluctuations are time-independent in comoving coordinates, with
only their amplitude being a function of time.
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Fig. 14. The growth factor D+ as a function of the scale factor a (left) and as a
function of redshift (right), for three cosmological model: an EdS model (Ωm = 1,
ΩΛ = 0), a low density open model (Ωm = 0.3, ΩΛ = 0), and a low-density flat
Universe (Ωm = 0.3, ΩΛ = 0.7). Notation: in this figure, Ωm = ΩD, ΩΛ = Ωv

Random Fields, Correlation Functions and Power Spectra

Cosmology will never be able to describe the specific density field of our Uni-
verse, since in order to do so, we would need to know the density fluctuation
field δ(x, ti) at some initial time ti. Instead, what a theory of structure for-
mation should explain are the statistical properties of the density field as a
function of time: how many clusters of galaxies per unit volume form as a
function of redshift, how does matter cluster together, etc. This is analogous
to statistical physics, where the behavior of a physical system is described by
its macroscopic statistical properties, not by the trajectories of all molecules.

The density fluctuations δ(x) at some fixed time are considered to be a
random field. A random field is characterized by the probability that a specific
realization δ(x) of the density fluctuations occurs. This probability therefore
is a mapping from the set of functions δ : IR3 → IR to IR+

0 . A conceptually
simpler way to look at this is to assume that all probable realizations of
the density field are ‘smooth’, so that δ(x) can be described, with sufficient
accuracy, by its values on a regular grid in x. Let xi be a set of appropriately
numbered gridpoints, and let δi = δ(xi) be the density contrast at xi. The
realization of the random field is then described by the (possibly infinite)
set of the δi, and the random field is characterized by the joint probability
distribution p(δ1, δ2, . . .)dδ1 dδ2 . . . that δ(xi) lies within dδi of δi. Hence,
we have reduced the description of the random field to a joint probability
distribution of (possibly infinite) discrete random variables. Since the Universe
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is assumed to be statistically homogeneous and isotropic, the density field
should share these properties; this is formulated by the requirement that if all
grid points are translated and rotated the same way, xi → R(xi + y), where
R is a rotation matrix and y a translation vector, the probability density p
must remain unchanged.

More generally, let g(x) be a real or complex homogeneous and isotropic
random field in n dimensions. It is characterized by the probability distri-
bution that a particular realization g(x) can occur – note that we do not
distinguish notationally between the random field and a particular realiza-
tion, though these are two very different concepts. Hence, let p(g(x)) dg be
the probability for the occurrence of the realization g within dg, where dg is
the volume element in function space. Let 〈X〉 denote the ensemble average
of a quantity X, that is, we imagine to have many realizations of this random
field with the same statistical properties, and we average X over all these
realizations. Formally,

〈X〉 =
∫

dg p(g(x))X . (118)

We shall assume that
〈g(x)〉 = 0 , (119)

so that the expectation value of g at every position x vanishes. Consider the
(two-point) correlation function

〈g(x)g∗(y)〉 = Cgg(|x − y|) . (120)

The correlation function can only depend on the separation x − y of the two
points because the homogeneity of the field g means that the correlator cannot
depend on x and y individually. Furthermore, it depends only on |x − y|
because g is an isotropic random field. Note that Cgg is a real function, even
if g is complex, as can be seen by taking the complex conjugate of (120),
which is equivalent to interchanging x and y, thus leaving the right-hand side
unaffected. We define the Fourier transform of g(x) as

ĝ(k) =
∫

IRn

dnx g(x) eix·k ; g(x) =
∫

IRn

dnk

(2π)n
ĝ(k) e−ix·k . (121)

We shall now calculate the ensemble average of 〈ĝ(k) ĝ∗(k′)〉, by inserting the
Fourier representation,

〈ĝ(k) ĝ∗(k′)〉 =
∫

IRn

dnx eix·k
∫

IRn

dnx′ e−ix′·k′ 〈g(x)g∗(x′)〉 . (122)

Using (120) and substituting x′ = x + y, this becomes

〈ĝ(k) ĝ∗(k′)〉 =
∫

IRn

dnx eix·k
∫

IRn

dny e−i(x+y)·k′
Cgg(|y|)

= (2π)nδD(k − k′)
∫

IRn

dny eiy·k Cgg(|y|) (123)

=: (2π)nδD(k − k′)Pg(|k|) ,
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where in the second step the x-integration was performed, and the final equal-
ity defines the power spectrum of the quantity g which obviously depends only
on the modulus of k. Hence, the power spectrum and the correlation function
are Fourier transform pairs,

Pg(|k|) =
∫

IRn

dny eiy·k Cgg(|y|) . (124)

Since the Fourier transform ĝ(k) describes the same random field as g(x),
one can characterize the properties of the random field by the probability
for the occurrence of a realization with Fourier transform ĝ(k). As was done
above for the real-space distribution, one can also discretize ĝ on a grid in
k-space, denoted by gk.

A Gaussian random field is characterized by the properties that (1) the
Fourier components gk are mutually statistically independent, and that (2)
the probability density for gk is described by a Gaussian. The second property
follows in many cases from the first, due to the central limit theorem. The
first property implies that the phases of different Fourier components are
mutually independent. A Gaussian random field is fully described by its power
spectrum; a particular realization of such a random field can be obtained
by drawing Gaussian deviates with dispersion σ(k) =

√
P (|k|) and Fourier

transforming the resulting ĝ(k).
Gaussian random fields are almost universally used to describe the prop-

erties of the density perturbations in the early Universe. This is partly due
to the argument given above, that the central limit theorem suggests that
if the primordial perturbations were generated in a stochastic way (such as
predicted from the inflationary theories), the resulting density field should be
Gaussian. Another reason is that Gaussian random fields have very simple
and convenient properties, which can be derived from the preceding results:
The probability distribution of any linear combination of the random variable
g(xi) is a Gaussian, and more general, the joint probability distribution of
a number M of linear combinations of the random variables g(xi) is a mul-
tivariate Gaussian. In fact, this property can be used to define a Gaussian
random field.

The Power Spectrum

Defining δ̂(k, t) to be the Fourier transform of the density fluctuation field,
then (116) immediately yields that δ̂(k, t) = D+(t)δ̂(k, t0), which implies for
the corresponding power spectrum

Pδ(k, t) = D2
+(t)P0(k) , (125)

where P0(k) is the linearly extrapolated power spectrum which would be the
true present-day power spectrum if the fluctuations follows the linear evolution
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characterized by (116). Furthermore, the factorization of δ̂(k, t) implies that
each Fourier mode evolves independently in time.

There are several situations where (116) is invalid. The obvious one is when
the density contrast approaches unity, where the linearization of the evolution
equations breaks down. We shall discuss this case further below. Second, since
the comoving horizon scale grows in time, the characteristic comoving length
scale λ = 2π/k of each Fourier mode was larger than the horizon size some
time in the past. For such superhorizon fluctuations, Newtonian theory of
gravity necessarily breaks down, and one needs to use linear perturbation
theory of the Einstein equations. Third, for a <∼ aeq radiation dominated the
matter contents of the Universe, which affect the growth of structure. Fourth,
particle populations with an appreciable intrinsic velocity dispersion will not
simply fall into the potential wells, but can stream away from them; this
certainly applies to all relativistic species. One distinguishes between cold
dark matter (CDM), where the characteristic particle velocities are highly
non-relativistic, σv � c, at the time when a = aeq, and hot dark matter
(HDM), when the matter particles are relativistic at this epoch. If the Universe
is dominated by HDM, small-scale fluctuations would be smeared out due to
free-streaming, and the first objects to form would be clusters or superclusters
of galaxies. Since the large-scale matter distribution obtained for such models
are very different in several respects from the observed one, it is concluded that
HDM (such as massive neutrinos) can only contribute a very small fraction
to Ωm. The favored model is one which is dominated by CDM.

The effects of radiation domination in the early Universe and the initial
superhorizon scale of density modes can be summarized as follows: Suppose
at some very early time ti when all Fourier modes of interest had scales much
larger than the horizon scale then, the power spectrum of the density fluctu-
ations was Pi(k). The power spectrum at some later time when all scales of
interest are much smaller than the horizon is then

Pδ(k, t) = T 2(k)
D2

+(t)
D2

+(ti)
Pi(k) , (126)

where the transfer function T (k) accounts for the aforementioned effects.
It can be calculated, and accurate approximation formulae for it are avail-
able (e.g., Bardeen et al. 1986; Eisenstein and Hu 1998). For large scales,
i.e., small k, T ≈ 1. For large k, T (k) ∝ k−2 in a CDM Universe [T (k)
decreases exponentially with k for a HDM model]. The transition between
the two regimes depends on the scale of the comoving horizon at the time
of matter-radiation equality, i.e., on dH(aeq). As cosmological length scales
are measured in h−1 Mpc, this length is ∝ (Ωmh)−1. Thus, the shape of the
transfer function is determined by the shape parameter

Γspect = hΩm exp
[
−Ωb

(
1 +

√
2hΩ−1

m

)]
, (127)

and the final factor yields a small correction which accounts for the baryonic
contribution (with density parameter Ωb) to the density of the Universe. As
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the shape of the power spectrum, which is measurable, has imprinted on it
the comoving horizon scale dH(aeq), this scale is actually observable.

Knowing the transfer function, one needs a prescription for the power
spectrum Pi(k) at some very early times to predict Pδ for later stages of the
evolution. Since at ti all modes of relevance are much larger than the horizon
scale, there is no characteristic length scale available; therefore, one assumes
that the primordial power spectrum was a power law, Pi(k) ∝ kn. Further-
more, if it is assumed that the total power of the fluctuations at the time
when their scale equals the horizon size is independent of k, and for that
matter, independent of time, then n = 1. Such a primordial power spectrum
is called Harrison–Zeldovich power spectrum, and is also the favored value in
theories which explain the origin of primordial fluctuations as initial quan-
tum fluctuations blown up in a period of exponential expansion, the inflation
period.

The linear power spectrum is thus determined in terms of n and the shape
parameter, except for the overall normalization. Several methods exist to fix
this normalization, three of which are mentioned here.

1. Normalization by density fluctuations in a sphere. The relative fluctua-
tions of the galaxy number density in the local Universe, δn/n, is of order
unity if one considers spheres of radius R = 8h−1 Mpc. If one assumes
that the galaxies accurately trace the underlying dark matter field, this
observation would imply that the fluctuation field δ(x, t0), averaged over
a scale of R = 8h−1 Mpc, has a dispersion of 1. However, there is no
guarantee that the galaxy number density field closely follows the dark
matter distribution (see Fig. 15). Nevertheless, one might suspect that the

d=ns

d

x

Fig. 15. This figure depicts a one-dimensional cut through a density field which
contains power on small and large scales, the latter being shown by the dashed curve.
If it is assumed that galaxies form only at locations where the density exceeds a
critical threshold, here indicated by the horizontal line, then it is easily seen that they
are more strongly clustered than the matter field itself, as this threshold is exceeded
predominantly at the peaks of the long wavelength perturbations; therefore, this
would lead to a bias of the galaxy distribution relative to that of the underlying
matter (from Peacock 2003)
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galaxy density is large at those locations where the dark matter density
is also large. In particular, galaxies might find it easier to form in peaks
of the dark matter distribution, and therefore galaxies can be clustered
more than the dark matter. One often summarizes our ignorance about
the relative distribution of galaxies and dark matter into a linear bias
factor b, defined such that the fluctuations of the galaxy number density
are a factor b larger than the fluctuations of the underlying dark matter
distribution (for a detailed discussion on biasing, see, e.g., Bardeen et al.
1986; Kauffmann, Nusser and Steinmetz 1997). We define the density field
smoothed on a scale R by

δR(x) =
∫

IR3
d3y δ0(y)WR(|x − y|) , (128)

where WR(x) is a filter function, normalized such that
∫

d3xWR(x) = 1.
From the convolution theorem for Fourier transforms, one finds δ̂R(k) =
δ̂0(k) ŴR(k), and the power spectrum of the smoothed field is PR(k) =
|ŴR(k)|2 P0(k). The dispersion of the smoothed density field is then

σ2(R) =
〈
δ2
R(x)

〉
=
∫

d3k

(2π)3
PR(k) =

∫
d3k

(2π)3

∣∣∣ŴR(k)
∣∣∣2 P0(k) , (129)

where we made use of (124). Note that σ(R) describes the dispersion of
the smoothed version of the linearly extrapolated density field today. If
we take a so-called top-hat filter, which is constant for x ≤ R and zero
otherwise, one has

WR(x) =
3

4πR3
H(R−x) −→ ŴR(k) = 3

sin kR− kR cos kR
(kR)3

. (130)

Coming back to the normalization, the dispersion in the galaxy number
counts then implies that

σ(8h−1Mpc) ≡ σ8 ≈ 1
b
. (131)

2. Normalization through the CMB. The DMR experiment on the COBE
satellite mission (see, e.g., Bond 1996; Smoot 1997 for reviews) has
detected the anisotropy of the microwave background on scales above
∼5 degrees. The degree of anisotropy is proportional to the fluctuation
spectrum, and thus can be used directly to normalize the spectrum. The
normalization of the power spectrum is hampered by the uncertainty
whether the CMB anisotropy on large angular scales is caused solely
by scalar perturbations (i.e., density and associated adiabatic tempera-
ture fluctuations), or whether tensor perturbations (gravitational waves)
have been present at the recombination epoch. On smaller scales, the
expected contribution from tensor modes becomes very small. The first
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year data of the WMAP satellite (Bennett et al. 2003) have provided a
much more accurate determination of the power spectrum normalization,
yielding σ8 = 0.9 ± 0.1 (Spergel et al. 2003). Since the CMB anisotropies
measured by WMAP probe inhomogeneities on considerably larger scales
than 8h−1 Mpc, translating their amplitudes into a value of σ8 depends
on the shape of the power spectrum. In Sect. 6.3, we shall give the best
current estimates of the whole set of cosmological parameters.

3. Normalization by the local abundance of clusters. The number density of
clusters as a function of their mass can be estimated analytically in terms
of the power spectrum Pδ(k), as will be shown later. By comparing the
observed number density of clusters with these prediction, the normal-
ization of the power spectrum is determined (e.g., Eke et al. 1996). This
comparison yields normalizations which, when expressed in terms of σ8,
are of the form

σ8 ≈ 0.52Ω−0.52+0.13Ωm
m for Ωm + ΩΛ = 1 . (132)

These estimates are relatively insensitive to the shape of the power spec-
trum (i.e., of Γspect), because the mass contained in a massive cluster is
about the mass contained in a comoving sphere of radius 8h−1 Mpc, so
that the cluster abundance directly measures σ8. However, there has been
some recent claims that (132) may overestimate σ8 (e.g., Viana et al. 2002,
and references therein). The main problem of the cluster normalization is
to obtain a well-selected sample of clusters (e.g., from X-ray surveys) and
to determine their masses reliably.

As we shall discuss in WL (Part 3), lensing by the large-scale structure
(LSS) provides a powerful tool to determine the normalization of the power
spectrum. As for clusters, this method yields, to lowest order, a degeneracy
between σ8 and the density parameter Ωm.

To summarize, a CDM-dominated Universe has a (linear) power spectrum
given by (126), which is determined by a few parameters. Together with the
assumption that the primordial density field was Gaussian, then the evolved
field will also be Gaussian as long as it stays in the linear regime. Thus, in a
statistical sense, the density field is fully specified, so that this cosmological
model is predictive.

Non-Linear Evolution

When |δ| is no longer much smaller than unity, the linear perturbation theory
breaks down. The first idea, to consider higher-order perturbations, does not
really solve the problem: the perturbation series is not converging, and only
slightly larger perturbations of δ can be described satisfactorily. In addition,
the fluid equations cease to be valid, since due to the converging velocity field,
streams of matter start to intersect, and thus the Vlasov equation needs to be
employed. A different approach, Lagrangian perturbation theory (Zeldovich
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1970; Buchert and Ehlers 1993) is substantially more successful. However,
with the advent of high-speed computers with large memory, the need for
(semi)analytic approximations decreases, as the evolution of the density field
can be obtained from N-body simulations tracing the dark matter particles
(e.g. White et al. 1987; Pearce et al. 2001; Navarro et al. 2004). Each such
simulation yields an evolved realization from an initially Gaussian density
field with power spectrum according to (126), starting at a high redshift. Such
simulations can be either used directly to study the properties of the matter
distribution, or can be used to derive fit formulae for various quantities of
interest, some of which will be discussed below.

Using a scaling argument, Hamilton et al. (1991) derived an approximate
equation relating the linearly evolved power spectrum to the fully non-linear
power spectrum Pδ; this equation contains a single function, whose parameters
can be fitted to the results of N-body simulations. This approximation, later
generalized and refined by Jain, Mo and White (1995) and Peacock and Dodds
(1996), is truly remarkable as it yields an accurate description of the fully non-
linear power spectrum for all values of k and t; example power spectra are
displayed in Fig. 16. More recently, an even more accurate expression has been
obtained by Smith et al. (2003).

6.2 Halo Abundance and Profile

Gravitationally bound objects like galaxies and clusters are of course highly
non-linear structures in the Universe – their average density contrast is much
larger that unity. Nevertheless, there are analytical approaches to determine
their number density as a function of mass and redshift. The best known of
these is the Press–Schechter approach, and more refined ones are deviates of it.

The Mass Function of Halos

The Press and Schechter (1974) approach is based on two considerations: the
time evolution of a spherical overdensity and its collapse, and the statistical
(Gaussian) property of the initial density field.

The spherical collapse model considers an overdensity with spherically
symmetric density distribution. According to Birkhoff theorem, the evolu-
tion of a mass shell M is independent of the radial density profile at larger
radii, as long as shells of matter do not cross each other. The radius of the
mass shell as a function of time then follows an equation of motion. At early
time, when the average density contrast δ inside the mass shell is small, the
expansion closely follows the Hubble expansion, but being slightly slower, the
density contrast grows. This leads to an increased deviation from the Hubble
expansion, and thus further increased density contrast. Provided the latter is
large enough, the expansion of the mass shell can come to a hold (at time
tmax, say), and the radius will decrease from there on: the shell is collapsing.
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Fig. 16. The power spectrum of the cosmic density fluctuations at current epoch,
for various cosmological models. (c/H0)

3P (k) is plotted as a function of (c/H0)k.
The cosmological models are distinguished by line types [with values in parenthe-
sis denoting (σ8, Γspect)], with thin lines displaying the linearly extrapolated power
spectrum, and thick lines the fully non-linear power spectrum following the pre-
scription of Peacock and Dodds (1996). The solid lines correspond to an Einstein-de
Sitter Universe, the dotted lines to an open Universe with Ωm = 0.3, ΩΛ = 0, the
short-dashed lines to a flat low-density Universe with Ωm = 0.3, ΩΛ = 0.7; those
three models are approximately normalized by the present-day cluster abundance,
as discussed at the end of Sect. 6.1, and have the shape parameter Γspect = 0.25.
The remaining two models are EdS cosmologies, with different shape parameter or
different normalization. The linear power spectrum depends only on σ8 and Γspect

(once the primordial slope n = 1 is fixed), so that those three models are degenerate.
This degeneracy is broken in the non-linear spectrum. The non-linear spectrum de-
viates from the linear prediction at (c/H0)k ≥ 1, 000, corresponding to length scales
of L = 2π/k ≤ 20h−1 Mpc

The symmetry of the equation of motion with respect to t → −t then pre-
dicts that the collapse of the mass shell to very small radii takes the same
time as the expansion, so that the shell collapses at time tcoll = 2tmax. If the
mass distribution was exactly symmetric, the collapse would indeed proceed
to basically a single point; however, small-scale inhomogeneities of the matter
distribution will deflect the matter particles from their radial orbit, thereby
enhancing the density fluctuations, and very quickly the orbits of particles
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become randomized. During this process the mass overdensity will virialize,
and this process takes place with a time scale comparable to tcoll (violent
relaxation; Lynden-Bell 1967; Binney and Tremaine 1987). The final state is
then a spherical halo of (dark) matter in nearly virial equilibrium.

In an EdS model, the various parameters of this model can be calculated
analytically: in order for the collapse to occur before the present time, tcoll ≤
t0, the linearly extrapolated mean density contrast δ0 of the mass shell must
satisfy δ0 ≥ δc = 3(12π)2/3/20 � 1.69, and the condition that the collapse
happened before redshift z is that δ0 ≥ δc(1 + z). The mean density of the
virialized halo is 〈ρ〉 = 18π2ρcr(1 + zcoll)3 � 178(1 + zcoll)3ρcr. Note that
(1 + zcoll)3ρcr is the critical density of the EdS Universe at redshift zcoll.
Hence, the mean overdensity of a virialized halo is of order 200 times the
critical density of the Universe at the time of formation. For other cosmological
parameters, these numbers change, but have been calculated (e.g., Eke et al.
1996). Given the idealization of the spherical model, one often defines the
virial radius rvir of a dark matter halo to be the radius within which the
mean density is 200 times the critical density of the Universe.

Next, consider the linear density field at some early time being smoothed
with a top-hat filter of comoving radius R [see (128)]; this corresponds to a
mass inside the filter scale of M = 4πR3ρm0/3. A peak with density contrast
δR ≥ δc(1+ z) in this smoothed density field will then collapse before redshift
z to a virialized halo of mass M . Given that the linear density fluctuations are
assumed to be Gaussian, one can calculate the abundance of peaks exceeding
a certain threshold, and therefore the abundance of halos of a given mass
(determined by the filter scale R) that form before redshift z. This then yields
the Press–Schechter mass formula for the comoving density n(M, z) dM of
halos of mass within dM of M at redshift z,

n(M, z) = −2Ωmρcr√
2πM

δc(z)
σ2(R)

dσ(R)
dM

exp
(
− δc(z)

2σ2(R)

)
, (133)

where the radius R is related to the mass by the equation given above, σ(R) is
given by (129), and δc(z) is the linearly extrapolated density contrast needed
for a mass shell to collapse before redshift z. The mass spectrum of halos
behaves approximately as a power law for masses M <∼ M∗(z), where M∗(z)
is the mass scale at redshift z at which the density field becomes non-linear; it
is defined implicitly through σ2(R∗)D2

+(z) = 1 [cf. (129), with the linear power
spectrum at redshift z being D2

+(z) times the one today]. For masses above
M∗(z), the mass function decreases exponentially. The redshift evolution of
the mass function depends on the cosmological parameters: in low-density
Universes, the evolution with redshift is slower than in an EdS Universe.
Thus, for a given abundance of cluster-mass halos today, the expected num-
ber of massive clusters at high redshift is much smaller for an EdS model
than for a low-density Universe (see Fig. 14). The normalization of the matter
power spectrum through the local cluster abundance, as discussed in Sect. 6.1,
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is based on the prediction of the Press–Schechter function (133) or variants
thereof. Comparison of the mass function with those obtained from N-body
simulations (see Fig. 17), in which halos can be identified using a variety of
techniques, leads to the conclusion that, although the Press–Schechter formula
provides a very useful approximation of the halo abundance, it slightly over-
predicts the number of halos with mass <∼ M∗(z) and underpredicts those with
M >∼ M∗(z). Various refinements to the original Press–Schechter approach
have been conducted, including the collapse of ellipsoidal mass overdensities
(Sheth and Tormen 1999). Jenkins et al. (2001) provided an accurate fit to
the halo abundance obtained from their numerical models; it is very similar
to the one obtained by Sheth and Tormen, and shares the simplicity of the
Press–Schechter formula.

Fig. 17. One of the clusters obtained from N-body simulations. Shown is the dark

matter distribution at redshift z = 0 in a region of 21 × 21 × 8
(
h−1Mpc

)3
. The

strongly structured mass in and around the cluster is clearly visible; it has been
formed through successive mergers of subclusters and groups (taken from the GIF
collaboration; Kauffmann et al. 1999a,b)
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The Press and Schechter approach can also be generalized to include statis-
tical information about the merger history of dark matter halos (e.g., Bond et
al. 1991; Lacey & Coles 1993). These merger histories form the starting point
for semi-analytic models of galaxy formation and evolution (e.g., Kauffmann
et al. 1993, 1994); see Figs. 17 and 18.

z=3 z=2

z=0z=1

Fig. 18. The redshift evolution of the galaxy distribution, obtained by semi-analytic
modeling based on the dark matter distribution as obtained from N-body simulation.
The matter distribution is shown as gray scales and for z = 0 is the same as that
shown in Fig. 17. Colors indicate the mean age of the stellar population in these
galaxies, with blue (red) indicating a young (old) population; red galaxies are seen
to be preferentially found in clusters. At high redshifts, there are of course no old
stellar populations (taken from the GIF collaboration; Kauffmann et al. 1999a,b)



76 P. Schneider

The ‘Universal’ Density Profile

From the numerical simulations, one can investigate the density profile of
typical dark matter halos. Navarro, Frenk and White (1997; hereafter NFW)
found that the density, averaged over spheres, of dark matter halos is described
by a ‘universal’ profile given by

ρ(r) =
δcρcr(z)

(r/rs)(1 + r/rs)2
, (134)

which is shallower than isothermal (r−2) near the halo center and steeper
than isothermal for r >∼ rs. The virial radius is denoted by r200 and is the
radius inside which the mean mass density of the halo equals 200ρcr(z), where
ρcr(z) = 3H2(z)

8πG is the critical density of the Universe at the redshift of the halo.
Hence, r200 immediately yields the mass of the halos, M = 200ρcr(z) 4πr3

200/3.
The ratio of the virial radius r200 and the scale radius rs is called the concen-
tration parameter c = r200/rs. From the definition of r200, the parameter δc
can be related to the concentration parameter through

δc =
200
3

c3

ln(1 + c) − c/(1 + c)
. (135)

NFW found that the concentration parameter depends on the mass of the
halo; it is smaller for higher-mass halos. Takada and Jain (2002) found for the
concentration parameter the dependence c = c0(1 + z)−1[M/M∗(z = 0)]−β ,
with c0 ∼ 10 and β ∼ 0.2.

There is no general agreement on the true ‘universality’ of the NFW profile;
different groups obtain slightly different profile slopes for r → 0, whereas the
behavior ρ ∝ r−3 for large r is reproduced by other teams as well.

The NFW Gravitational Lens

The gravitational lensing properties of the NFW profile has been discussed by
Bartelmann (1996), Golse and Kneib (2002) and others. By projecting (134)
along the line-of-sight, the surface mass density can be written as

κ(θ) = κkf(θ/θs) , (136)

where θs = rs/D
ang
D is the angular scale radius,

κk =
2rsδcρcr(z)

Σcr
(137)

the characteristic surface mass density, and

f(x) =
1

x2 − 1
[1 −F(x)] , (138)
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where

F(x) =
acosh(1/x)√

1 − x2
; F(x) =

acos(1/x)√
x2 − 1

(139)

for x < 1 and x > 1, respectively; taking the limit x → 1 in both cases yields
f(1) = 1/3. Similarly, the mean surface mass density κ̄(θ) inside θ is given by
κ̄(θ) = κkh(θ/θs), with

h(x) =
2
x2

[
F(x) + ln

(x
2

)]
, (140)

with h(1) = 2[1 − ln(2)]. The absolute value of the shear is then, as usual,
γ = κ̄ − κ. The surface mass density diverges logarithmically as θ → 0;
therefore, the NWF lens is critical and thus has a tangential and radial critical
curve. Since the deflection angle α = θκ̄ is a smooth function also at θ = 0,
the NFW lens produces either one or three images, i.e., the peculiarities of
the SIS model do not occur here.

6.3 The Concordance Model

The past few years have seen great advances in the determination of the cos-
mological parameters, and the progress is continuing. At present, a set of
cosmological parameters can be defined which seems to be in accord with all
cosmological observations. Particularly notable is the fact that for each of the
parameters there are at least two very different methods for its determination.
Here we briefly mention the major results which led to the current concor-
dance model, excluding the results from gravitational lensing, that will be
described in the later sections.

The main observational results which led to the current set of cosmological
parameters came from the following sources:

• Anisotropies in the CMB. The CMB is nearly isotropic, but there are tem-
perature fluctuations of order ΔT/T ∼ 10−5 superimposed on the isotropic
field (plus, there is the dipole anisotropy reflecting our peculiar motion).
The primary anisotropies are due to density, temperature, and potential
inhomogeneities at the time of recombination, together with corresponding
peculiar velocities of the matter at this epoch (see Hu and Dodelson 2002
for a recent review on the physics of the CMB anisotropies). Furthermore,
anisotropies can be generated and modified during the propagation of the
light from z ∼ 1, 100 to today, causing secondary anisotropies. The angular
power spectrum of these anisotropies depends on basically all cosmological
parameters; therefore, their measurements in recent years have yielded a
wealth of cosmological constraints. Measurements before the release of the
first WMAP data were summarized and analyzed by Wang et al. (2003).
The breathtaking results obtained by WMAP (Bennett et al. 2003; Spergel
et al. 2003) have confirmed earlier measurements, but with substantially
smaller uncertainties.
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• Light element abundances. During the first three minutes after the Big
Bang, the Universe was hot and dense enough to form the lightest chemi-
cal elements. Their primordial abundances depend on the baryon density
Ωb of the Universe, as well as on the number of neutrino species which
determine the expansion rate in the radiation-dominated phase. Whereas
the primordial abundance of helium-4 (about 25% by mass) is fairly insen-
sitive to Ωb, the deuterium abundance is a very strong function of Ωb. In
the past few years, observations of intergalactic clouds in the form of the
Lyman-α absorption lines in high-redshift quasars have yielded determi-
nations of the deuterium-to-hydrogen abundance (e.g., Tytler et al. 2000).
These measurements are extremely valuable, since this intergalactic ma-
terial is thought to be fairly unprocessed chemically, and thus still reflects
the primordial abundance ratios.

• Type Ia supernovae. This type of supernova explosions is believed to origin
from the white dwarfs which just exceed their maximum possible (Chan-
dasekhar) mass; hence, they all would have essentially the same explosion
energy, which makes them excellent candidates for standard candles. In
fact, although their maximum luminosity shows an intrinsic spread, this
variation is correlated with the characteristic width of the light curve,
which has been used for an empirical correction of the maximum luminos-
ity; after this correction, the remaining spread in their peak luminosities
is very small. No redshift evolution in their intrinsic properties (such as
rest-frame colors or spectra) has been found. Hence, by measuring the flux
at maximum light of SN Ia at different redshifts, one can measure the
luminosity distance as a function of z; on the other hand, the luminosity
distance depends on the cosmological parameters Ωm and ΩΛ. Two teams
have systematically searched for high-redshift supernovae (Schmidt et al.
1998; Perlmutter et al. 1999), and constructed the redshift–distance rela-
tion from their events, extending up to z ∼ 1. By now, many SN Ia have
been found even with redshifts >∼ 1 (e.g. Riess et al. 2004); the analysis of
their brightness shows the expected behavior for a Universe which is cur-
rently accelerating, but has been decelerating before z ∼ 0.7, as expected
in a model with ΩΛ ∼ 0.7, Ωm ∼ 0.3, where the transition to vacuum
domination has occurred rather recently.

• Large scale structure. The relation between the distribution of galaxies
and the underlying dark matter distribution is not known; on the other
hand, it is at least plausible that they follow each other closely. In par-
ticular on large spatial scales, say where the density field is still in the
linear regime (L >∼ 10h−1 Mpc), one assumes that the number density
fluctuations of galaxies is proportional to that of the dark matter, with
the proportionality factor being called bias factor b. Then, the power
spectrum of the galaxy distribution is b2 times the matter power spec-
trum. Large two-dimensional and three-dimensional (i.e., redshift) galaxy
surveys have recently been performed (in particular, the 2dF galaxy red-
shift survey; see e.g. Hawkins et al. 2003; the Sloan Digital Sky Survey,
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e.g, Tegmark et al. 2004) to construct the galaxy power spectrum. From
that, the shape of the matter power spectrum, i.e., the shape parameter
Γspect, can be determined, among other parameters (e.g., Peacock 2003).

• Statistics of the Ly-α forest. The spectra of all QSOs show a dense
ensemble of absorption lines shortward of the Ly-α emission line. These
absorption lines are due to the inhomogeneous distribution of intergalac-
tic hydrogen. At high redshift (z ∼ 3) when these lines are observable
in the optical spectrum of QSOs, the corresponding density field of the
gas is still in the linear regime. One therefore expects that the gas follows
the underlying dark matter closely. The gas is in photoionization equilib-
rium with the UV radiation field, and obeys a simple temperature-density
relation. Most of the unknown physical parameters can be put into a mean
absorption which can be measured from the flux decrement across the
Ly-α emission line. The statistics of the Ly-α absorbers therefore probes
the corresponding matter density fluctuation spectrum. Recently, large
samples of QSO spectra became available for this kind of analysis; see
Kim et al. (2004) and Seljak et al. (2005) for recent results.

• Cosmology from galaxy clusters. Clusters provide a wealth of cosmological
information: their abundance depends strongly on the normalization σ8 of
the power spectrum, as mentioned in Sect. 6.1, the evolution of their abun-
dance with redshift probes the rate of growth of structure, which in turn
depends on the density parameters, and their correlation function probes
the shape of the power spectrum on large scales. In addition, clusters are
so large that one can assume their baryon-to-mass ratio fb being very sim-
ilar to the cosmological mean of this ratio. Since the baryon contents of
clusters can be measured from their X-rays, and their mass can be deter-
mined by X-rays, dynamics of their member galaxies and by gravitational
lensing, this baryon fraction can be determined and yields fb ≈ 0.17, with
rather little scatter between clusters.

From these and several other methods, the set of cosmological parame-
ters can be determined. It must be realized that the various parameters are
correlated in a given data set, and sometime rather degenerate [such as seen
in (132)]. Estimates of one parameter need to be obtained by marginalizing
over the remaining ones, and the estimated error bars will depend on how
many parameters were considered in the analysis. This is not the place to
discuss these issues; we therefore present the currently ‘best’ estimates and
approximate 1-σ error bars of the relevant parameters. In Fig. 19, some of the
constraints on the density parameters are summarized, and Fig. 20 illustrates
the concordance in the determination of the power spectrum from a large
variety of different methods.

• The Hubble constant, as determined from the Cepheid distances within
the Hubble Key Project (Freedman et al. 2001) and from combining CMB
data with galaxy redshift surveys, is

H0 ≈ 71 km s−1 Mpc−1 , or h ≈ 0.71 ± 0.04, (141)
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where the error from the CMB plus LSS is formally smaller than from the
Hubble Key Project, by about a factor of two.

• From the deuterium abundance in QSO absorption lines, as well as from
WMAP combined with LSS and Ly-α statistics, the baryonic density pa-
rameter is estimated to be

h2Ωb ≈ 0.023 ± 0.002 , (142)

where we give a slightly larger error than quoted in some recent papers.
Again, consistent results are obtained from totally different methods.

• The CMB anisotropies constrain the total density of the Universe to be
very close to unity,

Ωm + ΩΛ ≈ 1.02 ± 0.02 ; (143)

combining the results from SN Ia studies with the evolution of the cluster
abundance, a similar conclusion is obtained, though with a larger error
estimate.

• The supernovae projects yield a joint constraint on the density parame-
ters as is shown in Fig. 19, and hence by themselves require, a non-zero
cosmological constant.

Fig. 19. This figure sum-
marizes several constraints
in the Ωm–ΩΛ-plane, from
the WMAP measurement
of the CMB, the abun-
dance of clusters, and
the high-redshift SN Ia.
Each of these cosmological
test probe very different
physics; nevertheless, they
yield consistent results –
this form the basis of the
concordance model (taken
from Knop et al. 2003)
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• The 2dF and SDSS galaxy redshift surveys determine the shape parameter;
in particular, from the 2dFGRS one finds

Γspect ≈ Ωmh ≈ 0.18 ± 0.02 , (144)

while the SDSS yield a slightly larger value.
• CMB anisotropies, together with the LSS, yield a value for the matter

density parameter of
Ωm = 0.29 ± 0.04 , (145)

a value that is in excellent agreement from cluster abundance evolution,
the determination of the shape parameter Γspect from the LSS, and the
baryon fraction fb in clusters, when combined with the baryon density Ωb

and the value for the Hubble constant.
• The CMB anisotropy also determines the slope of the primordial den-

sity fluctuation spectrum, which turns out to be close to the Harrison–
Zeldovich value, n ≈ 0.98 ± 0.02.

• Perhaps the parameter with the largest discrepancies between different
methods is the normalization of the power spectrum; we quote here the
value from Seljak et al. (2005), obtained by combining WMAP with the
SDSS galaxy redshift survey and the Ly-α forest analysis,

σ8 = 0.89 ± 0.04 . (146)

• The shape of the power spectrum, as shown in Fig. 20, is sufficiently well
determined to rule out any significant contribution of Hot Dark Matter to
the energy budget of the Universe. Translated into an upper bound on the
sum of neutrino masses, this constraint reads∑

mν
<∼ 0.5 eV , (147)

an upper limit that is better by a factor of about 10 for the electron
neutrino, and tremendously much better for the other two neutrino species,
than those obtained from laboratory measurements.

6.4 Challenges

One cannot finish a section on cosmology without pointing out the impressive
developments that we are currently witnessing, and some of their implications.
The concordance model that we have described in the previous section is in-
deed a remarkable achievement, if one considers the huge variety of methods
and processes that have entered the determination of its parameters. There
was no a priori guarantee that all of this would fit together. Constraints
obtained from nuclear physics about one minute after the Big Bang are in
agreement with those from the distribution of galaxies in the local Universe!

This concordance model has a large impact on other branches of physics,
most noticeably particle physics. The tight constraints on neutrino masses
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Fig. 20. The power spectrum of density fluctuations, as obtained from a variety
of measurement methods. The CMB anisotropies measure the fluctuations on the
largest spatial scale. Next come measurements from the clustering properties of
galaxies, as obtained in galaxy redshift surveys. The cluster abundance provides
a measurement of the fluctuation power near ∼ 10h−1 Mpc, i.e., close to the scale
where σ8 is defined. Cosmic shear and the statistical properties of the Ly-α forest
provide reliable measurements on small spatial scales (taken from M. Tegmark’s
homepage, based on Tegmark et al. 2004)

obtained from cosmology is the most obvious example of a strong connection
between these two branches of fundamental science. Even more important are
the clear astronomical and cosmological evidences on the existence of non-
baryonic dark matter which most likely is in the form of some as yet unknown
species of elementary particles. This challenge has triggered a large number of
underground experiments for a direct search for these dark matter particles.
On the other hand, the next generation of particle accelerators may cross the
energy threshold where new physics will be discovered. Many elementary par-
ticle physicist would put their eggs into the basket labeled Super-Symmetry,
a theory which would provide a ‘natural’ candidate for the Cold Dark Matter
particle, the neutralino.

Whereas one sees a possible solution to the Dark Matter problem, the sit-
uation is quite different with respect to vacuum energy, or the cosmological
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constant, or dark energy – this variety of names already tells a lot about how
well this dominant component of the Universe is understood. Simple estimates
of the density of vacuum energy from quantum field theory are barely 120
orders of magnitudes off, and we do not know why. It is not understood why
the vacuum energy density is essentially zero (compared to the simple esti-
mates), but in addition, why it is then not exactly zero. A constant vacuum
energy density is not the only ‘model’ discussed for the dark energy; different
equations of state p = w ρ c2 cannot be ruled out by the current data, except
that w <∼ −0.7 at the present epoch. Obtaining tighter constraints on the
equation of state of the dark energy from astronomical observations is proba-
bly the only way to investigate it empirically. The existence of this component
to the cosmic energy budget arguably provides the largest challenge to fun-
damental physics, and its solution will almost certainly involve a unification
of the laws of gravity and quantum mechanics – the long-sought theory of
quantum gravity.

The concordance model also has made inflation a part of the standard
model. Invented some 20 years ago, inflation provides a solution to the flat-
ness problem (why the Universe has a total density parameter that is within
an order of magnitude around unity), the horizon problem (why the CMB
temperature on two opposite sides of the sky is the same within ∼10−5), and
the apparent absence of magnetic monopoles and other topological defects.
The model implies that the Universe underwent an early phase of exponen-
tial expansion, some 10−32 s after the Big Bang, before a phase transition
(‘reheating’) brought it back on track for normal Friedmann expansion. In
this model, the initial density fluctuations in the Universe are quantum fluc-
tuations, inflated to macroscopic scales in the exponential expansion phase.
The predictions of inflation, including that the Universe is nearly perfectly
flat (| − Ωm + ΩΛ − 1| � 1) and that the primordial fluctuation spectrum
is very close to the Harrison–Zeldovich form, 1 − n � 1, have been impres-
sively verified with the recent cosmological observations. Probing the physics
of inflation, e.g. through the presence of primordial gravitational waves which
would leave an observable imprint on the polarization of the CMB, is one of
the challenges of future cosmological studies.

7 Final Remarks

These notes are an extended version of two introductory lectures given at the
beginning of the Saas-Fee course; they were intended to bring the participants
up to speed on topics on which much of the rest of the course rested. Over-
lap with some of the later material was unavoidable, but given the different
character and temperament of the three lecturers, maybe even not undesired.
Some of this overlap will surely be present in these write-ups; hopefully, our
readers do not mind.
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Pelló, R., Schaerer, D., Richard, J., Le Borgne, J.-F. & Kneib, J.-P. 2004,

A&A 416, L35
Perlmutter, S., Aldering, G., Goldhaber, G. et al. 1999, ApJ 517, 565.
Petters, A.O., Levine, H. & Wambsganss, J. 2001, Singularity Theory and

Gravitational Lensing (Birkhäuser: Boston) (PLW)
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Part 2: Strong Gravitational Lensing

C. S. Kochanek

1 Introduction

The objective of this lecture is to provide a practical introduction to strong
gravitational lensing including the data, the theory, and the application of
strong lensing to other areas of astrophysics. This is Part 2 of the complete
Saas Fee lectures on gravitational lensing. Part 1 (Schneider, this book) pro-
vides a basic introduction, Part 2 (Kochanek, this book) examines strong
gravitational lenses, Part 3 (Schneider, this book) explores cluster lensing and
weak lensing, and Part 4 (Wambsganss, this book) examines microlensing. It
is not my objective in this lecture to provide a historical review, carefully
outlining the genealogy of every development in gravitational lensing, but to
focus on current research topics. Part 1 of these lectures summarizes the his-
tory of lensing and introduces most of the basic equations of lensing. The
discussion is divided into 9 sections. We start in Sect. 2 with an introduction
to the observational data. In Sect. 3 we outline the basic principles of strong
lenses, building on the general theory of lensing from Part 1. In Sect. 4 we
discuss modeling gravitational lenses and the determination of the mass dis-
tribution of lens galaxies. In Sect. 5 we discuss time delays and the Hubble
constant. In Sect. 6 we discuss gravitational lens statistics and the cosmolog-
ical model. In Sect. 7 we discuss the differences between galaxies and clusters
as lenses. In Sect. 8 we discuss the effects of substructure or satellites on grav-
itational lenses. In Sect. 9 we discuss the optical properties of lens galaxies
and in Sect. 10 we discuss extended sources and quasar host galaxies. Finally
in Sect. 11 we discuss the future of strong gravitational lensing.

It will also be clear to the reader that these are my lectures on strong lens-
ing rather than an attempt to achieve some quasi-mythical consensus view. I
have tried to make clear what matters (and what does not), what lensing can
do (and cannot do) for astrophysics, where the field is serving the community
well (and poorly), and where non-experts have understood the consequences
(or have failed to do so). Doing so requires having definite opinions with which
other researchers may well disagree. We will operate on the assumption that
Kochanek CS (2006), Strong gravitational lensing. In: Meylan G, Jetzer Ph and North P
(eds) Gravitational lensing: Strong, weak, and micro. Saas-Fee Adv Courses vol 33,
pp 91–268

DOI 10.1007/3-540-30309-X 2 c© Springer-Verlag Berlin Heidelberg 2006
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anyone who disagrees sufficiently violently will have an opportunity to wreak
a horrible revenge at a later date by spending six months doing their own set
of lectures. I have tried to make the references to recent work complete – no
doubt I will have failed in this endeavor. There are many earlier reviews of
lensing (e.g. Blandford and Kochanek 1987a; Blandford and Narayan 1992;
Refsdall and Surdej 1994; Wambsganss 1998; Narayan and Bartelmann 1999;
Courbin, Saha and Schechter 2002b; Claeskens and Surdej 2002) as well as
the book by Schneider, Ehlers and Falco 1992.

2 An Introduction to the Data

There are now 82 candidates for multiple image lenses besides those found
in rich clusters. Of these candidates, there is little doubt about 74 of them,
with the ambiguities resting in candidates consisting of faint galaxies with
nearby arcs and no spectroscopic data. Indeed, the absence of complete spec-
troscopic information is the bane of most astrophysical applications of lenses.
Less than half (38) of the good candidates have both source and lens red-
shifts – 43 have lens redshifts, 64 have source redshifts, and 5 have neither
redshift. Much of this problem could be eliminated in about 5 clear nights
of 8m time, but no TAC seems willing to devote the effort even though lens
redshifts probably provide more cosmological information per redshift than
any other sparsely distributed source. Of these 74 lenses, 11 have had their
central velocity dispersions measured and 10 have measured time delays. A
reasonably complete summary of the lens data is available at the CASTLES
WWW site http://cfa-www.harvard.edu/castles/, although lack of manpower
means that it is updated only episodically.

Figure 1 shows the distribution of the lenses in image separation and source
redshift. The separations of the images range from 0.′′35 to 15.′′9 (using ei-
ther half the image separations or the mean distance of the images from the
lens). The observed distribution combines both the true separation distrib-
ution and selection effects. For example, in simple statistical models using
standard models for galaxy properties (see Sect. 6) we would expect to find
that the logarithmic separation distribution dN/d lnΔθ is nearly constant at
small separations (i.e. dN/dΔθ ∝ Δθ), while the raw, observed distribution
shows a cutoff due to the finite resolution of lens surveys (typically 0.′′25 to
1.′′0 depending on the survey). The cutoff at larger separations is real, and it
is a consequence of the vastly higher lensing efficiency of galaxies relative to
clusters created by the cooling of the baryons in galaxies (see Sect. 7).

Figure 2 shows the distribution in image separation and lens galaxy red-
shift. There is no obvious trend in the typical separation with redshift, as
might be expected if there were rapid evolution in the typical masses of galax-
ies. Unfortunately, there is also an observational bias to measure the redshifts
of large separation lenses, where the lens galaxies tend to be brighter and
less confused with the images, which makes quantitative interpretation of
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Fig. 1. The distribution of lens galaxies in separation Δθ and source redshift zs.
The solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured source redshifts
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Fig. 2. The distribution of lens galaxies in separation Δθ and lens redshift zl. The
solid histogram shows the distribution in separation for all the lenses while the
dashed histogram shows the distribution of those with unmeasured lens redshifts.
There are no obvious correlations between lens redshift zl and separation Δθ, but
the strong selection bias that small separation lenses are less likely to have measured
redshifts makes this difficult to interpret. There may also be a deficit of low redshift,
large separation lenses, which may be a selection bias created by the difficulty of
finding quasar lenses embedded in bright galaxies
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any trends in separation with redshift difficult. There is probably also a bias
against finding large, low lens redshift systems because the flux from the lens
galaxy will more easily mask the flux from the source. We examine the corre-
lations between image separations and lens magnitudes in Sect. 9.

In almost all cases the lenses have geometries that are “standard” for mod-
els in which the angular structure of the gravitational potential is dominated
by the quadrupole moments of the density distribution, either because the lens
is ellipsoidal or because the lens sits in a strong external (tidal) shear field.
Of the 60 lenses where a compact component (quasar or radio core) is clearly
identifiable, 36 are doubles, 2 are triples, 20 are quads, 1 has five images and 1
has six images. The doubles and quads are the standard geometries produced
by standard lenses with nearly singular central surface densities. Examples of
these basic patterns are shown in Figs. 3 and 4.

In a two-image lens like HE1104–1805 (Wisotzki et al. 1993), the images
usually lie at markedly different distances from the lens galaxy because the
source must be offset from the lens center to avoid producing four images. The
quads show three generic patterns depending on the location of the source
relative to the lens center and the caustics. There are cruciform quads like
HE0435–1223 (Wisotzki et al. 2002), where the images form a cross pattern
bracketing the lens. These are created when the source lies almost directly
behind the lens. There are fold-dominated quads like PG1115+080 (Weymann
et al. 1980), where the source is close to a fold caustic and we observe a close
pair of highly magnified images. Finally, there are cusp-dominated quads like
RXJ1131–1231 (Sluse et al. 2003), where the source is close to a cusp caustic
and we observe a close triple of highly magnified images. These are all generic
patterns expected from caustic theory, as we discuss in Part 1 and Sect. 3.
We will discuss the relative numbers of doubles and quads in Sect. 6.

The lenses with non-standard geometries all have differing origins. One
triple, APM08279+5255 (Irwin et al. 1998; Ibata et al. 1999; Muñoz, Kochanek
and Keeton 2001), is probably an example of a disk or exposed cusp lens
(see Sect. 3), while the other, PMNJ1632–0033 (Winn et al. 2002a,b,c; Winn,
Rusin and Kochanek 2004), appears to be a classical three image lens with
the third image in the core of the lens (Fig. 5). The system with five images,
PMNJ0134–0931 (Winn et al. 2002a,b,c; Keeton and Winn 2003; Winn et al.
2003a,b,c), is due to having two lens galaxies, while the system with six
images, B1359+154 (Myers et al. 1999; Rusin et al. 2001), is a consequence of
having three lens galaxies inside the Einstein ring. Many lenses have luminous
satellites that are required in any successful lens model, such as the satellites
known as “Object X” in MG0414+0534 (Hewitt et al. 1992; Schechter and
Moore 1993) and object D in MG2016+112 (Lawrence et al. 1984) shown in
Fig. 7. These satellite galaxies can be crucial parts of lens models, although
there has been no systematic study of their properties in the lens sample.

If the structure of the source is more complicated, then the resulting image
geometries become more complicated. For example, the source of the radio lens
B1933+503 (Sykes et al. 1998) consists of a radio core and two radio lobes,
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Fig. 3. Standard image geometries. (Top) The two-image lens HE1104–1805. G is
the lens galaxy and A and B are the quasar images. We also see arc images of the
quasar host galaxy underneath the quasar images. (Bottom) The four-image lens
PG1115+080 showing the bright A1 and A2 images created by a fold caustic
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Fig. 4. Standard image geometries (continued). (Top) The four-image lens
RXJ1131–1231 showing the bright A, B and C images created by a cusp caustic.
(Bottom) The four-image lens HE0435–1223, showing the cruciform geometry cre-
ated by a source near the center of the lens. For each lens in Figs. 3 and 4, we took
the CASTLES H-band image, subtracted the bright quasars and then added them
back as Gaussians with roughly the same FWHM as the real PSF. This removes the
complex diffraction pattern of the HST PSF and makes it easier to see low surface
brightness features
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Fig. 5. PMN1632–0033 is the only known lens with a “classical” third image in the
core of the lens galaxy. The center of the lens galaxy is close to the faint C image.
Images A, B and C have identical radio spectra except for the longest wavelength
flux of C, which can be explained by absorption in the core of the lens galaxy. Time
delay measurements would be required to make the case absolutely secure. A central
black hole in the lens galaxy might produce an additional image with a flux about
10% that of image C. (Winn et al. 2004)

leading to 10 observable images because the core and one lobe are quadruply
imaged and the other lobe is doubly imaged (Fig. 6). If instead of discrete
emission peaks there is a continuous surface brightness distribution, then we
observe arcs or rings surrounding the lens galaxy usually of the host galaxy
of the quasar or radio source. Figure 8 shows examples of Einstein rings for
the case of MG1131+0456 in both the radio (Chen and Hewitt 1993) and
the infrared (Kochanek et al. 2000a,b). The radio ring is formed from an
extended radio jet, while the infrared ring is formed from the host galaxy
of the radio source. We also chose most of the examples in Figs. 3 and 4 to
show prominent arcs and rings formed by lensing the host galaxy of the source
quasar. We discuss arcs and rings in Sect. 10.

3 Basic Principles

Most gravitational lenses have the standard configurations we illustrated in
Sect. 2. These configurations are easily understood in terms of the caustic
structures generic to simple lens models. In this section we illustrate the origin
of these basic geometries using simple mathematical examples. We build on
the general outline of lensing theory from Part 1.
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Fig. 6. A Merlin map of B1933+503 showing the 10 observed images of the three
component source (Marlow et al. 1999). The flat radio spectrum core is lensed into
images 1, 3, 4 and 6. One radio lobe is lensed into images 1a and 8, while the other
is lensed into images 2, 7 and 5. Image 2 is really two images merging on a fold

3.1 Some Nomenclature

Throughout this lecture we use comoving angular diameter distances (also
known as proper motion distances) rather than the more familiar angular
diameter distances because almost every equation in gravitational lensing be-
comes simpler. The distance between two redshifts i and j is

Dij =
rH

|Ωk|1/2
sinn

[∫ j

i

|Ωk|1/2dz

((1 + z)2(1 + ΩMz) − z(2 + z)ΩΛ)1/2

]
, (1)

where ΩM , ΩΛ and Ωk = 1 − ΩM − ΩΛ are the present day matter density,
cosmological constant and “curvature” density respectively, rH = c/H0 is the
Hubble radius, and the function sinn(x) becomes sinh(x), x or sin(x) for open
(Ωk > 0), flat (Ωk = 0) and closed (Ωk < 0) models (Carroll, Press and
Turner 1992). We use Dd, Ds and Dds for the distances from the observer
to the lens, from the observer to the source and from the lens to the source.
These distances are trivially related to the angular diameter distances, Dang

ij =
Dij/(1+zj), and luminosity distances, Dlum

ij = Dij(1+zj). In a flat universe,
one can simply add comoving angular diameter distances (Ds = Dd + Dds),
which is not true of angular diameter distances. The comoving volume element
also simplifies to

dV =
D2

ddDddω(
1 + Ωkr

−2
H D2

d

)1/2
→ D2

dDddω (2)
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Fig. 7. H-band images of two lenses with small companions that are crucial for
successful models. The upper image shows “Object X” in MG0414+0534, and the
lower image shows component D of MG2016+112. MG2016+112 has the additional
confusion that only A and B are images of the quasar (Koopmans et al. 2002).
Image C is some combination of emission from the quasar jet (it is an extended
X-ray source, Chartas et al. 2001) and the quasar host galaxy. Object D is known
to be at the same redshift as the primary lens galaxy G (Koopmans and Treu 2002)
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Fig. 8. The radio (top) and H-band (bottom) rings in MG1131+0456. The radio
map was made at 8 GHz by Chen and Hewitt (1993), while the H-band image is
from Kochanek et al. (2000a,b). The radio source D is probably another example
of a central odd image, but the evidence is not as firm as that for PMN1632–0033.
Note the perturbing satellite galaxies (G9 and G15) in the H-band image
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for flat universes. We denote angles on the lens plane by θ = θ(cosχ, sinχ)
and angles on the source plane by β. Physical lengths on the lens plane are
ξ = Dang

d θ. The lensing potential, denoted by Ψ(θ), satisfies the Poisson
equation ∇2Ψ = 2κ where κ = Σ/Σc is the surface density Σ in units of the
critical surface density Σc = c2Dang

s /(4πGDang
d Dang

ds ). For a more detailed
review of the basic physics, see Part 1.

3.2 Circular Lenses

While one of the most important lessons about modeling gravitational lenses
in the real world is that you can never (EVER !)1 safely neglect the angular
structure of the gravitational potential, it is still worth starting with circular
lens models. They provide a basic introduction to all the elements which are
essential to realistic models without the need for numerical calculation. In a
circular lens, the effective lens potential is a function only of the distance from
the lens center θ = |θ|. Rays are radially deflected by the angle

α(θ) =
2
θ

∫ θ

0

θdθκ(θ) =
4GM(< ξ)

c2ξ

Dds

Ds
, (3)

where we recall from Part 1 that κ(θ) = Σ(θ)/Σc is the surface density
in units of the critical surface density, Dds and Ds are the lens-source and
observer-source comoving distances and ξ = Dang

d θ is the proper distance
from the lens. The bend angle is simply twice the Schwarzschild radius of the
enclosed mass, 4GM(< ξ)/c2, divided by the impact parameter ξ and scaled
by the distance ratio Dds/Ds.

The lens equation (see Part 1) becomes

β = θ [1 − α(θ)/θ] = θ [1 − 〈κ(θ)〉] , (4)

where

〈κ(θ)〉 =
2
θ2

∫ θ

0

θdθκ(θ) = α(θ)/θ (5)

is the average surface density interior to θ in units of the critical density. Note
that there must be a region with 〈κ〉 > 1 to have solutions on both sides of
the lens center. Because of the circular symmetry, all images will lie on a line
passing through the source and the lens center.

The inverse magnification tensor (or Hessian, see Part 1) also has a simple
form, with

M−1 =
dβ

dθ
= (1 − κ)

(
1 0
0 1

)
+ γ

(
cos 2χ sin 2χ
sin 2χ − cos 2χ

)
, (6)

1 AND I MEAN EVER ! DON’T EVEN THINK OF IT !
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where θ = θ(cosχ, sinχ). The convergence (surface density) is

κ =
1
2

(
α

θ
+

dα

dθ

)
, (7)

and the shear is

γ =
1
2

(
α

θ
− dα

dθ

)
= 〈κ〉 − κ. (8)

The eigenvectors of M−1 point in the radial and tangential directions, with a
radial eigenvalue of λ+ = 1−κ+γ = 1−dα/dθ and a tangential eigenvalue of
λ− = 1− κ− γ = 1−α/θ = 1− 〈κ〉. If either one of these eigenvalues is zero,
the magnification diverges and we are on either the radial or tangential critical
curve. If we can resolve the images, we will see the images radially magnified
near the radial critical curve and tangentially magnified near the tangential
critical curve. For example, all the quasar host galaxies seen in Figs. 3 and
4 lie close to the tangential critical line and are stretched tangentially to
form partial or complete Einstein rings. The signs of the eigenvalues λ± give
the parities of the images and the type of time delay extremum associated
with the images. If both eigenvalues are positive, the image is a minimum. If
both are negative, the image is a maximum. If one is positive and the other
negative, the image is a saddle point. The inverse of the total magnification
μ−1 = |M−1| is the product of the eigenvectors, so it is positive for minima
and maxima and negative for saddle points. The signs of the eigenvalues are
referred to as the partial parities of the images, while the sign of the total
magnification is referred to as the total parity.

It is useful to use simple examples to illustrate the behavior of circu-
lar lenses for different density profiles. In most previous lensing reviews, the
examples are based on lenses with finite core radii. However, most currently
popular models of galaxies and clusters have central density cusps rather than
core radii, so we will depart from historical practice and focus on the power-law
lens (e.g. Evans and Wilkinson 1998). Suppose, in three dimensions, that the
lens has a density distribution ρ ∝ r−n. Such a lens will produce deflections of

α(θ) = b

(
θ

b

)2−n

(9)

as shown in Fig. 9, with convergence and shear profiles

κ(θ) =
3 − n

2

(
θ

b

)1−n

and γ(θ) =
n− 1

2

(
θ

b

)1−n

. (10)

The power law lenses cover most of the simple, physically interesting models.
The point-mass lens is the limit n → 3, with deflection α = b2/θ, convergence
κ = 0 (with a central singularity) and shear γ = b2/θ2. The singular isother-
mal sphere (SIS) is the case with n = 2. It has a constant deflection α = b,
and equal convergence and shear κ = γ = b/2θ. A uniform critical sheet is the
limit n → 1 with α = θ, κ = 1 and γ = 0. Models with n → 3/2 have the cusp
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Fig. 9. The bending angles of the power law lens models. Profiles more centrally
concentrated (n > 2) than the SIS (n = 2), have divergent central deflections, while
profiles more extended (n < 2) than SIS have deflection profiles that become zero
at the center of the lens. The n = 1 model is not quite an NFW model because the
surface density is constant rather than logarithmic

exponent of the Moore, Quinn et al. (1999) halo model. The popular ρ ∝ 1/r
NFW (Navarro, Frenk and White 1996, see Sect. 4.1) density cusps are not
quite the same as the n → 1 case because the projected surface density of a
ρ ∝ 1/r cusp has κ ∝ ln θ rather than a constant. Nonetheless, the behavior
of the power law models as n → 1 will be very similar to the NFW model
if the lens is dominated by the central cusp. The central regions of galaxies
probably act like cusps with 1 <∼ n <∼ 2.

The tangential magnification eigenvalue of these models is

1 − κ− γ = 1 − α

θ
= 1 − 〈κ〉 = 1 − (θ/b)1−n, (11)

which is always equal to zero at θ = b ≡ θE . This circle defines the tangential
critical curve or Einstein (ring) radius of the lens. We normalized the models
in this fashion because the Einstein radius is usually the best-determined para-
meter of any lens model, in the sense that all successful models will find nearly
the same Einstein radius (e.g. Kochanek 1991a; Wambsganss and Paczyński
1994). The source position corresponding to the tangential critical curve is
the origin (β = 0), and the reason the magnification diverges is that a point
source at the origin is converted into a ring on the tangential critical curve
leading to a divergent ratio between the “areas” of the source and the image.
The other important point to notice is that the mean surface density inside
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the tangential critical radius is 〈κ〉 ≡ 1 independent of the model. This is true
of any circular lens. With the addition of angular structure it is not strictly
true, but it is a very good approximation unless the mass distribution is very
flattened. The definition of b in terms of the properties of the lens galaxy will
depend on the particular profile. For example, in a point mass lens (n → 3),
b2 = (4GM/c2Dang

d )(Dds/Ds) where M is the mass, while in an SIS lens
(n = 2), b = 4π(σv/c)2Dds/Ds where σv is the (1D) velocity dispersion of
the lens. For the other profiles, b can be defined in terms of some velocity
dispersion or mass estimate for the lens, as we will discuss later in Sect. 4.9
and Sect. 6. The radial magnification eigenvalue of these models is

1 − κ + γ = 1 − dα

dθ
= 1 − (2 − n)(θ/b)1−n, (12)

which can be zero only if n < 2. If n < 2 the deflection goes to zero at the
origin and the lens has a radial critical curve at θ = b(2−n)1/(n−1) < b interior
to the tangential critical curve. Models with n ≥ 2 have constant (n = 2) or
rising deflection profiles as we approach the lens center and have negative
derivatives dα/dθ at all radii.

A nice property of circular lenses is that they allow simple graphical solu-
tions of the lens equation for arbitrary deflection profiles. There are two parts
to the graphical solution – the first is to determine the radial positions θi of
the images given a source position β, and the second is to determine the mag-
nification by comparing the area of the images to the area of the source. Recall
first, that by symmetry, all the images must lie on a line passing through the
source and the lens. Let θ now be a signed radius that is positive along this
line on one side of the lens and negative on the other. The lens (4) along the
line is simply

θ

|θ|α(|θ|) = θ − β , (13)

where we have rearranged the terms to put the deflection on one side and the
image and source positions on the other. One side of the equation is the bend
angle (Fig. 9), while the other side of the equation, θ − β, is simply a line of
unit slope passing through the source position β. The solutions to the lens
equation for any source position β are the radii θi where the line crosses the
curve.

For understanding any observed lens, it is always useful to first sketch
where the critical lines must lie. Recall from the discussion of caustics in
Part 1, that images are always created and destroyed on critical lines as the
source crosses a caustic, so the critical lines and caustics define the general
structure of the lens. All our power-law models have a tangential critical
line at θ = b, which is the solution α(b) = b and corresponds to the source
position β = 0. The origin, as the projection of the critical curve onto the
source plane, is the tangential caustic (strictly speaking a degenerate pseudo-
caustic) corresponding to the critical line. A point source at the origin is
transformed into an Einstein ring of radius θE = b.
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The second step of the graphical construction is to determine the angular
structure of the image. For simplicity, suppose the source is an arc with radial
width Δβ and angular width Δχ. By symmetry, the angle subtended by an
image relative to the lens center must be the same as that subtended by the
source. For an image at θi and a source at β, the tangential extent of the
image is |θi|Δχ while that of the source is βΔχ. The tangential magnification
of the image is simply |θi|/β = (1− |α(θi)/θi|)−1 after making use of the lens
equation (13), and this is identical to the tangential magnification eigenvalue
(11). The thickness of the arc requires finding the image radii for the inner
and outer edges of the source, θi(β) and θi(β+Δβ). The ratio of the thickness
of the two arcs is the radial magnification,

θi(β + Δβ) − θi(β)
Δβ

� dθ

dβ
=
(

1 − dα

dθ

)−1

, (14)

and this is simply the inverse of the radial eigenvalue of the magnification
matrix (12) where we have taken the derivative of the lens equation (13) with
respect to the source position to obtain the final result. Thus, the tangential
magnification simply reflects the fact that the angle subtended by the source is
the angle subtended by the image, while the radial magnification depends on
the slope of the deflection profile with declining deflection profiles (dα/dθ < 0)
demagnifying the source and rising profiles magnifying the source.

In Fig. 10 we illustrate this for the point mass lens (n → 3). From the
shape of the deflection profile, it is immediately obvious that there will be
only two images, one on each side of the lens. If we assume β > 0, the first
image is a minimum located at

θ1 =
1
2

(
β +

√
β2 + 4b2

)
(15)

with θ1 > θE and positive magnification

μ1 =
1
4

(
β√

β2 + 4b2
+

√
β2 + 4b2

β
+ 2

)
> 0, (16)

while the second image is a saddle point located at

θ2 =
1
2

(
β −

√
β2 + 4b2

)
(17)

with −θE < θ2 < 0 and negative magnification

μ2 = −1
4

(
β√

β2 + 4b2
+

√
β2 + 4b2

β
− 2

)
< 0. (18)

As the source approaches the tangential caustic (β → 0) the magnifications of
both images diverge as β−1 and the image radii converge to θE . As the source
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Fig. 10. Graphical solutions for the point mass (n = 3) lens. The top panel shows
the graphical solution for the radial positions of the images, and the bottom panel
shows the graphical solution for the image structure

moves to infinity, the magnification of the first image approaches unity and its
position approaches that of the source, while the second image is demagnified
by the factor (1/2)(b/β) and converges to the position of the lens. The image
separation

|θ1 − θ2| = 2b
√

1 + β2/4b2 ≥ 2b (19)
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is always larger than the diameter of the Einstein ring and the total magnifi-
cation

|μ1| + |μ2| =
2b2 + β2

β
√

β2 + 4b2
≥ 1 (20)

is the characteristic light curve expected for isolated Galactic microlensing
events (see Part 4). The point mass lens has one peculiarity that makes it
different from extended density distributions like galaxies in that it has two
images independent of the impact parameter of the source and no radial caus-
tic. This is a characteristic of any density distribution with a divergent central
deflection (n > 2).

The SIS (n = 2) model is the “standard” lens model for galaxies. Figures 11
and 12 show the geometric constructions for the images of an SIS lens. If
0 < β < b, then the SIS lens also produces two images (Fig. 11). The first
image is a minimum located at

θ1 = β + b with θ1 > b and positive magnification μ1 = 1 + b/β (21)

and the second image is a saddle point located at

θ2 = β − b with −b < θ2 < 0 and negative magnification μ2 = 1 − b/β.
(22)

The image separation |θ1 − θ2| = 2b is constant, and the total magnification
|μ1| + |μ2| = 2b/β is a simple power law. The magnification produced by
an SIS lens is purely tangential since the radial magnification is unity. If,
however, β > b, then there is only one image, corresponding to the minimum
located on the same side of the lens as the source (see Fig. 12). This boundary
on the source plane at β = b between having two images at smaller radii
and only one image at larger radii is a radial (pseudo)-caustic that can be
thought of as being associated with a radial critical curve at the origin. It is a
pseudo-caustic because there are neither images nor a divergent magnification
associated with it.

Historically the next step is to introduce a core radius to have a model with
a true radial critical line and caustic (see Part 1, Blandford and Kochanek
1987a,b; Kochanek and Blandford 1987; Kovner 1987a; Hinshaw and Krauss
1987; Krauss and White 1992; Wallington and Narayan 1993; Kochanek
1996a,b). Instead we will consider the still softer power law model with
n = 3/2, which would correspond to the central exponent of the “Moore”
profile proposed for CDM halos (Moore et al. 1998). As Fig. 13 shows, there
is only one solution for |β| > b/4, a minimum located at

θ1 =
1
2

(
b + 2β +

√
b + 4β

)
, (23)

and with θ1 > b assuming β is positive. The magnification expressions are too
complex to be of much use, but the magnification μ1 diverges at θ = b when
the source is on the tangential pseudo-caustic at β = 0. As Fig. 14 shows,
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Fig. 11. Graphical solutions for the SIS (n = 2) lens when β < b and there are two
images

we find two additional images once |β| < b/4. The first additional image is a
saddle point located at

θ2 =
1
2

(
−b + 2β −

√
b + 4β

)
(24)

with −b < θ2 < −b/4, which has a negative magnification that diverges at
both θ2 = −b (the tangential critical curve) and θ2 = −b/4. This latter radius
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Fig. 12. Graphical solutions for the SIS (n = 2) lens when β > b and there is only
one image

defines the radial critical curve where the magnification diverges because the
radial magnification eigenvalue 1 − κ + γ = 1 − dα/dθ = 0 at radius θ = b/4.
The third image is a maximum located at

θ3 =
1
2

(
−b + 2β +

√
b + 4β

)
(25)



110 C.S. Kochanek

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 13. Graphical solutions for the Moore profile cusp (n = 3/2) lens when β > b/4
and there is only one image

with −b/4 < θ2 < 0 and a positive magnification that diverges on the radial
critical curve. As we move the source outward from the center we would see
images 2 and 3 approach each other, merging on the radial critical line where
they would have divergent magnifications, and then vanishing to leave only
image 1. We would see the same pattern if instead of softening the exponent
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Fig. 14. Graphical solutions for the Moore profile cusp (n = 3/2) lens when β < b/4
and there are three images. At the top of the figure we illustrate the geometric
meaning of the image partial parities defined by the signs of the magnification tensor
eigenvalues (see text)

we had followed the traditional path and added a core radius to the SIS model.
With a finite core radius the central deflection profile would pass through zero,
and this would introduce a radial critical curve and a third image which would
be a maximum of the time delay surface.
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In Fig. 14 we also illustrate the geometric meaning of the partial parities
(the signs of the magnification eigenvalues). A source structure (the L above
the source) defines the reference shape. Image 1 is a minimum with positive
partial parities (++) defined by the signs of the tangential and radial eigen-
values. The basic orientation of image 1 is the same as the source. Image 2 is
a saddle point with mixed partial parities (−+) because the tangential eigen-
value is negative while the radial eigenvalue is positive. This means that the
image is inverted in the tangential direction relative to the source. Image 3
is a maximum with negative partial parties (−−), so the image is inverted
in both the radial and tangential directions relative to the source. The total
parity, the product of the partial parities, is positive for maxima and minima
so the orientation of the image can be produced by rotating the source. The
total parity of the saddle point image is negative, so its orientation cannot be
produced by a rotation of the source.

3.3 Non-Circular Lenses

The tangential pseudo-caustic at the origin producing Einstein ring images is
unstable to the introduction of any angular structure into the gravitational po-
tential of the lens. There are two generic sources of angular perturbations. The
first source of angular perturbations is the ellipticity of the lens galaxy. What
counts here is the ellipticity of the gravitational potential rather than of the
surface density. For a lens with axis ratio q, ellipticity ε = 1−q, or eccentricity
e = (1− q2)1/2, the ellipticity of the potential is usually εΨ ∼ ε/3 – potentials
are always rounder than densities. The second source of angular perturbations
is tidal perturbations from any nearby objects. This is frequently called the
“external shear” or the “tidal shear” because it can be modeled as a linear
shearing of the deflections. In all known lenses, quadrupole perturbations (i.e.
Ψ ∝ cos(2χ) where χ is the azimuthal angle) dominate – higher order mul-
tipoles are certainly present and they can be quantitatively important, but
they are smaller. For example, in an ellipsoid the amplitude of the cos 2mχ
multipole scales as εmΨ (see Sect. 4.4 and Sect. 8).

Unfortunately, there is no example of a non-circular lens that can be solved
in full generality unless you view the nominally analytic solutions to quartic
equations as helpful. We can make the greatest progress for the case of an
SIS in an external (tidal) shear field. Tidal shear is due to perturbations from
nearby objects and its amplitude can be determined by Taylor expanding its
potential near the lens (see Part 1 and Sect. 4). Consider a lens with Einstein
radius θE perturbed by an object with effective lens potential Ψ a distance θp

away. For θE � θp we can Taylor expand the potential of the nearby object
about the center of the primary lens, dropping the leading two terms.2 This
2 The first term, a constant, gives an equal contribution to the time delays of all

the images, so it is unobservable when all we can measure is relative delays.
The second term is a constant deflection, which is unobservable when all we can
measure is relative deflections.
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leaves, as the first term with observable consequences,

Ψ(θ) � 1
2
θ · ∇∇Ψ · θ =

1
2
κpθ

2 − 1
2
γpθ

2 cos 2(χ− χp), (26)

where κp is the surface density of the perturber at the center of the lens
galaxy and γp > 0 is the tidal shear from the perturber. If the perturber is
an SIS with critical radius bp and distance θp from the primary lens, then
κp = γp = bp/2θp. With this normalization, the angle χp points toward the
perturber. For a circular lens, the shear γp = 〈κ〉 − κ can be expressed in
terms of the surface density of the perturber, and it is larger (smaller) than
the convergence if the density profile is steeper (shallower) than isothermal.

The effects of κp are observable only if we measure a time delay or have an
independent estimate of the mass of the lens galaxy, while the effects of the
shear are easily detected from the relative positions of the lensed images (see
Part 1). Consider, for example, one component of the lens equation including
an extra convergence,

β1 = θ1(1 − κp) − dΨ/dθ1, (27)

and then simply divide by 1 − κp to get

β1/(1 − κp) = θ1 − (dΨ/dθ1)/(1 − κp). (28)

The rescaling of the source position β1/(1−κp) has no consequences since the
source position is not an observable quantity, while the rescaling of the deflec-
tion is simply a change in the mass of the lens. This is known as the “mass
sheet degeneracy” because it corresponds to adding a constant surface den-
sity sheet to the lens model (Falco, Gorenstein and Shapiro 1985), and it is an
important systematic problem for both strong lenses and cluster lenses (see
Part 3).

Thus, while the extra convergence can be important for the quantitative
understanding of time delays or lens galaxy masses, it is only the shear that
introduces qualitatively new behavior to the lens equations. The effective po-
tential of an SIS lens in an external shear is Ψ = bθ + (γ/2)θ2 cos 2χ leading
to the lens equations

β1 = θ1(1 − γ) − bθ1/|θ|
β2 = θ2(1 + γ) − bθ2/|θ| , (29)

where for γ > 0 the perturber is due North (or South) of the lens. The inverse
magnification is

μ−1 = 1 − γ2 − b

θ
(1 − γ cos 2χ) , (30)

where θ = (θ1, θ2) = θ(cosχ, sinχ).
The first step in any general analysis of a new lens potential is to locate

the critical lines and caustics. In this case we can easily solve μ−1 = 0 to find
that the tangential critical line

θ = b
1 − γ cos 2χ

1 − γ2
(31)
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is an ellipse whose axis ratio is determined by the amplitude of the shear γ
and whose major axis points toward the perturber. We call it the tangential
critical line because the associated magnifications are nearly tangential to the
direction to the lens galaxy and because it is a perturbation to the Einstein
ring of a circular lens. The tangential caustic, the image of the critical line on
the source plane, is a curve called an astroid (Fig. 15, it is not a “diamond”
despite repeated use of the term in the literature). The parametric expression
for the astroid curve is

β1 = − 2bγ
1 + γ

cos3 χ = −β+ cos3 χ β2 = +
2bγ

1 − γ
sin3 χ = β− sin3 χ, (32)

where the parameter χ is the same as the angle appearing in the critical curve
(31) and we have defined β± = 2bγ/(1 ± γ) for the locations of the cusp tips
on the axes. The astroid consists of 4 cusp caustics on the symmetry axes
of the lens connected by fold caustics with a major axis pointing toward the
perturber. Like the SIS model without any shear, the origin plays the role of
the radial critical line and there is a circular radial pseudo-caustic at β = b.

As mentioned earlier, there is no useful general solution for the image
positions and magnifications. We can, however, solve the equations for a source
on one of the symmetry axes of the lens. For example, consider a solution on
the minor axis of the lens (β2 = 0 for γ > 0). There are two ways of solving the
lens equation to satisfy the criterion. One is to put the images on the same axis
(θ2 = 0) and the other is to place them on the arc defined by 0 = 1 + γ− b/θ.
The images with θ2 = 0 are simply the SIS solutions corrected for the effects
of the shear. Image 1 is defined by

θ1 =
β1 + b

1 − γ
with μ−1 =

(
1 − γ2

) β+ + β1

b + β1
, (33)

and image 2 is defined by

θ1 =
β1 − b

1 − γ
with μ−1 =

(
1 − γ2

) β+ − β1

b− β1
. (34)

Image 1 exists if β1 > −b, it is a saddle point for −b < β1 < −β+ and it
is a minimum for β1 > −β+. Image 2 has the reverse ordering. It exists for
β1 < b, it is a saddle point for β+ < β1 < b and it is a minimum for β1 < β+.
The magnifications of both images diverge when they are on the tangential
critical line (β1 = −β+ for image 1 and β1 = +β+ for image 2) and approach
zero as they move into the core of the lens (β1 → −b for image 1 and β1 → +b
for image 2). These two images shift roles as the source moves through the
origin. The other two solutions are both saddle points, and they exist only if
the source lies inside the astroid (|β1| < β+ along the axis). The positions of
images 3 (+) and 4 (−) are

θ1 = −β1

2γ
θ2 = ± b

1 + γ

[
1 −

(
β1

β+

)2
]1/2

, (35)
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Fig. 15. Example of a minor axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave
only one image once the source crosses the cusp and lies between the two caustics
(open squares). In a minor axis cusp, the image surviving the cusp merger is a saddle
point interior to the critical line. As the source approaches the radial caustic, one
image approaches the center of the lens and then vanishes as it crosses the caustic
to leave only one image (pentagons)
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and they have equal magnifications

μ−1 = −2γ(1 + γ)

[
1 −

(
β1

β+

)2
]
. (36)

The magnifications of the images diverge when the source reaches the cusp
tip (|β1| = β+) and the image lies on the tangential critical curve.

Thus, if we start with a source at the origin we can follow the changes
in the image structure (see Figs. 15 and 16). With the source at the origin
we see 4 images on the symmetry axes with reasonably high magnifications,∑ |μi| = (2/γ)/(1 − γ2) ∼ 10. It is a generic result that the least magnified
four-image system is found for an on-axis source, and this configuration has
a total magnification of order the inverse of the ellipticity of the gravitational
potential. As we move the source toward the tip of the cusp (β → β+, Fig. 15),
image 1 simply moves out along the symmetry axis with slowly dropping mag-
nification, while images 2, 3 and 4 move toward a merger on the tangential
critical curve at θ = (−β+, 0). Their magnifications steadily rise and then
diverge when the source reaches the cusp. If we move the source further out-
ward we find only images 1 and 2 with 1 moving outward and 2 moving
inward toward the origin. As it approaches the origin, image 2 becomes de-
magnified and vanishes when β → b. Had we done the same calculation on
the major axis (Fig. 16), there is a qualitative difference. As we moved im-
age 1 outward along the β2 axis, image 3 and 4 would merge with image 1
when the source reaches the tip of the cusp at β2 = β− rather than with
image 2.

Unfortunately once we move the source off a symmetry axis, there is no
simple solution. It is possible to find the locations of the remaining images
given that two images have merged on the critical line, and this is useful for
determining the mean magnifications of the lensed images, a point we will
return to when we discuss lens statistics in Sect. 6. Here we simply illustrate
(Fig. 17) the behavior of the images when we move the source radially outward
from the origin away from the symmetry axes. Rather than three images
merging on the tangential critical line as the source approaches the tip of a
cusp, we see two images merging as the source approaches the fold caustic of
the astroid. This difference, two images merging versus three images merging,
is a generic difference between folds and cusps as discussed in Part 1. All
images in these four-image configurations are restricted to an annulus of width
∼ γb around the critical line, so the mean magnification of all four image
configurations is also of order γ−1 (see Finch et al. 2002).

There is one more possibility for the caustic structure of the lens if the
external shear is large enough. For 1/3 < |γ| < 1, the tip of the astroid
caustic extends outside the radial caustic, as shown if Fig. 18. This allows
a new image geometry, known as the cusp or disk geometry, where we see
three images straddling the major axis of a very flattened potential. It is
associated with the caustic region inside the astroid caustic associated with
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Fig. 16. Example of a major axis cusp on the source (top) and image (bottom)
planes. When the source is inside both the radial and tangential caustics (triangles)
there are four images. As the source moves toward the cusp, three of the images
head towards a merger on the critical line and become highly magnified to leave
only one image once the source crosses the cusp and lies between the two caustics
(open squares). In a major axis cusp, the image surviving the cusp merger is the
minimum corresponding to the image we would see in the absence of a lens. As the
source approaches the radial caustic, one image approaches the center of the lens and
then vanishes as the source crosses the caustic to leave only one image (pentagons)
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Fig. 17. Example of a fold merger on the source (top) and image (bottom) planes.
When the source is inside both the radial and tangential caustics (filled squares)
there are four images. As the source crosses the tangential caustic, two images merge,
become highly magnified and then vanish, leaving only two images (triangles) when
the source is outside the tangential caustic but inside the radial caustic. As the
source approaches the radial caustic, one image moves into the center of the lens
and then vanishes when the source crosses the radial caustic to leave only one image
when the source is outside both caustics (open squares)

the tangential critical line but outside the radial caustic. This configuration
appears to be rare for lenses produced by galaxies, with APM08279+5255
as the only likely candidate, but relatively more common in clusters. The
difference is that clusters tend to have shallower density profiles than galaxies,
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Fig. 18. Example of a cusp or disk image geometry on the source (top) and image
(bottom) planes. The shear is high enough to make the tangential caustic extend out-
side the radial caustic. For a source inside both caustics (triangles) we see a standard
four-image geometry as in Fig. 16. However, for a source outside the radial caustic
but inside the tangential caustic (squares) we have three images all on one side of the
lens. This is known as the cusp geometry because it is always associated with cusps,
and the disk geometry because flattened disks are the only natural way to produce
them. Once the source is outside the cusp tip (pentagon), a single image remains

which shrinks the radial caustics relative to the tangential caustics to allow
more cross section for this image configuration and lower ellipticity thresholds
before it becomes possible (Oguri and Keeton 2004 most recently, but also see
Kochanek and Blandford 1987; Kovner 1987a; Wallington and Narayan 1993).
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In general, it is far more difficult to analyze ellipsoidal lenses, in part be-
cause few ellipsoidal lenses have analytic expressions for their deflections. The
exception is the isothermal ellipsoid (Kassiola and Kovner 1993; Kormann,
Schneider and Bartelmann 1994; Keeton and Kochanek 1998), including a
core radius s, which is both analytically tractable and generally viewed as
the most likely average mass distribution for gravitational lenses. The surface
density of the isothermal ellipsoid

κ =
1
2
b

ω
where ω2 = q2(θ2

1 + s2) + θ2
2 (37)

depends on the axis ratio q and the core radius s. For q = 1 − ε < 1 the
major axis is the θ1 axis and s is the major axis core radius. The deflections
produced by this lens are remarkably simple,

α1 =
b√

1 − q2
tan−1

[
θ1

√
1 − q2

ω + s

]
, α2 =

b√
1 − q2

tanh−1

[
θ2

√
1 − q2

ω + q2s

]
.

(38)
The effective lens potential is cumbersome but analytic,

Ψ = θ · α − bs ln
[
(ω + s)2 + (1 − q2)θ2

1

]
, (39)

the magnification is simple

μ−1 = 1 − b

ω
− b2s

ω [(ω + s)2 + (1 − q2)θ2
1]

(40)

and becomes even simpler in the limit of a singular isothermal ellipsoid (SIE)
with s = 0 where μ−1 → 1 − b/ω. In this case, contours of surface density κ
are also contours of the magnification, and the tangential critical line is the
κ = 1/2 isodensity contour just as for the SIS model. The critical radius scale
b can be related to the circular velocity in the plane of the galaxy relatively
easily. For an isothermal sphere we have that bSIS = 4π(σv/c)2Dds/Ds where
the circular velocity is vc =

√
2σv. For the projection of a three-dimensional

(3D) oblate ellipsoid of axis ratio q3 and inclination i, so that q2 = q2
3 cos2 i+

sin2 i, the deflection scale is b = bSIS(e3/ sin−1 e3) where e3 =
√

1 − q2
3 is

the eccentricity of 3D mass distribution. In the limit that q3 → 0 the model
becomes a Mestel (1963) disk, the infinitely thin disk producing a flat rotation
curve, and b = 2bSIS/π (see Sect. 4.9 and Keeton, Kochanek and Seljak 1997;
Keeton and Kochanek 1998; Chae 2003). At least for the case of a face-on
disk, at fixed circular velocity you get a smaller Einstein radius as you make
the 3D distribution flatter because a thin disk requires less mass to produce
the same circular velocity.

We can generate several other useful models from the isothermal ellipsoids.
For example, steeper ellipsoidal density distributions can be derived by dif-
ferentiating with respect to s2. The most useful of these is the first derivative
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with κ ∝ ω−3/2 which is related to the Kuzmin (1956) disk (see Kassiola and
Kovner 1993; Keeton and Kochanek 1998). It is also easy to generate models
with flat inner rotation curves and truncated halos by taking the difference of
two isothermal ellipsoids. In particular if κ(s) is an isothermal ellipsoid with
core radius s, the model

κ = κ(s) − κ(a) (41)
with a > s has a central core region with a rising rotation curve for θ <∼ s,
a flat rotation curve for s <∼ θ <∼ a and a dropping rotation curve for θ >∼ a.
In the singular limit, it becomes the “pseudo-Jaffe model” corresponding to a
3D density distribution ρ ∝ (r2 + s2)−1(r2 + a2)−1 whose name derives from
the fact that it is very similar the Jaffe model with ρ ∝ r−2(r + a)−2 (Kneib
et al. 1996; Keeton and Kochanek 1998). We will discuss other common lens
models in Sect. 4.1.

The last simple analytic models we mention are the generalized singular
isothermal potentials of the form Ψ = θF (χ) with surface density κ(θ, χ) =
(1/2)(F (χ) + F ′′(χ))/θ. Both the SIS and SIE are examples of this model.
The generalized isothermal sphere has a number of useful analytic properties.
For example, the magnification contours are isodensity contours

μ−1 = 1 − 1
θ

[F (χ) + F ′′(χ)] = 1 − 2κ(θ, χ) (42)

with the tangential critical line being the contour with κ = 1/2, and the time
delays between images depend only on the distances from the images to the
lens center (see Witt, Mao and Keeton 2000; Kochanek, Keeton and McLeod
2001a; Wucknitz 2002; Evans and Witt 2003).

4 The Mass Distributions of Galaxies

Contrary to popular belief, the modeling of gravitational lenses to determine
the mass distribution of a lens is not a “black art.” It is, however, an area in
which the lensing community has communicated results badly. There are two
main problems. First, many modeling results seem almost deliberately obfus-
catory as to what models were actually used, what data were fit and what was
actually constrained. Not only do many lens papers insist on taking well known
density distributions from the dynamical literature and assigning them new
names simply because they have been projected into two dimensions, but they
then assign them a plethora of bizarre acronyms. Sometimes the model used
is not actually the one named, for example using tidally truncated halos but
calling them isothermal models. Second, there is a steady confusion between
the parameters of models and the aspects of the mass distribution that have
actually been constrained. Models with apparently very different parameters
may be in perfect accord as to the properties of the mass distribution that
are actually relevant to what is observed. Discussions of non-parametric mass
models then confuse the issue further by conflating differences in parameters
with differences in what is actually constrained to argue for non-parametric
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models when in fact they also are simply matching the same basic properties
with lots of extra noise from the additional and uninteresting degrees of free-
dom. In short, the problem with lens modeling is not that it is a “black art”
but that the practitioners try to make it seem to be a “black art” presum-
ably so that people will believe they need wizards. The most important point
to take from this section is that any idiot can model a lens and interpret it
properly with a little thinking about what it is that lenses constrain.

There are two issues to think about in estimating the mass distributions of
gravitational lenses. The first issue is how to model the mass distribution with
a basic choice between parametric and non-parametric models. In Sect. 4.1
we summarize the most commonly used radial mass distributions for lens
models. Ellipsoidal versions of these profiles combined with an external (tidal)
shear are usually used to describe the angular structure, but there has been
recent interest in deviations from ellipsoidal distributions which we discuss in
Sect. 4.4 and Sect. 8. In Sect. 4.7 we summarize the most common approaches
for non-parametric models of the mass distribution. Since this is my review,
I will argue that the parametric models are all that is needed to model lenses
and that they provide a better basis for understanding the results than non-
parametric models (but the reader should be warned that if Prasenjit Saha
was writing this you would probably get a different opinion).

The second issue is to determine the aspects of the lens data that actually
constrain the mass distribution. Among the things that can be measured for a
lens are the relative positions of the components (the astrometric constraints),
the relative fluxes of the images, the time delays between the images, the dy-
namical properties of the lens galaxy, and the microlensing of the images. Of
these, the most important constraints are the positions. We can usually mea-
sure the relative positions of the lensed components very accurately (5 mas
or better) compared to the arc second scales of the component separations.
Obviously the accuracy diminishes when components are faint, and the usual
worst case is having very bright lensed quasars that make it difficult to de-
tect the lens galaxy. As we discuss in Sect. 8, substructure and/or satellites of
the lens galaxy set a lower limit of order 1–5 mas with which it is safe to im-
pose astrometric constraints independent of the measurement accuracy. When
the source is extended, the resulting arcs and rings discussed in Sect. 10 pro-
vide additional constraints. These are essentially astrometric in nature, but
are considerably more difficult to use than multiply imaged point sources.
Our general discussion of how lenses constrain the radial (Sect. 4.3) and an-
gular structure (Sect. 4.4) focus on the use of astrometric constraints, and in
Sect. 4.6 we discuss the practical details of fitting image positions in some
detail.

The flux ratios of the images are one of the most easily measured con-
straints, but are presently unusable. Flux ratios measured at a single epoch
are affected by time variability in the source (Sect. 5), microlensing by the
stars in the lens galaxy in the optical continuum (see Part 4), magnification
perturbations from substructure at all wavelengths (see Sect. 8), absorption
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by the interstellar medium (ISM) of the lens (dust in the optical, free-free
in the radio) and scatter broadening in the radio (see Sect. 8 and Sect. 9).
Most applications of flux ratios have focused on using them to probe these
perturbing effects rather than for studying the mean mass distribution of the
lens. Where radio sources have small scale VLBI structures, the changes in
the relative astrometry of the components can constrain the components of
the relative magnification tensors without needing to use any flux information
(e.g. Garrett et al. 1994; Rusin et al. 2002).

Two types of measurements, time delays (Sect. 5) and microlensing by the
stars or other compact objects in the lens galaxy (Part 4) constrain the surface
density near the lensed images. Microlensing also constrains the fraction of
that surface density that can be in the form of stars. To date, time delays have
primarily been used to estimate the Hubble constant rather than the surface
density, but if we view the Hubble constant as a known quantity, consider
only time delay ratios, or simply want to compare surface densities between
lenses, then time delays can be used to constrain the mass distribution. We
discuss time delays separately because of their close association with attempts
to measure the Hubble constant. Using microlensing variability to constrain
the mass distribution is presently more theory than practice due to a lack of
microlensing light curves for almost all lenses. However, the light curves of
the one well monitored lens, Q2237+0305, appear to require a surface density
composed mainly of stars as we would expect for a lens where we see the
images deep in the bulge of a nearby spiral galaxy (Kochanek 2004). We will
not discuss this approach further in Part 2.

Any independent measurement of the mass of a component will also help to
constrain the structure of the lenses. At present this primarily means making
stellar dynamical measurements of the lens galaxy and comparing the dynam-
ical mass estimates to those from the lens geometry. We discuss this in detail
in Sect. 4.9. For lenses associated with clusters, X-ray, weak lensing or cluster
velocity dispersion measurements can provide estimates of the cluster mass.
While this has been done in a few systems (e.g. X-rays, Morgan et al. 2001;
Chartas et al. 2002; weak lensing, Fischer et al. 1997; velocity dispersions,
Angonin-Willaime, Soucail and Vanderriest 1994), the precision of these mass
estimates is not high enough to give strong constraints on lens models. X-ray
observations are probably more important for locating the positions of groups
and clusters relative to the lens than for estimating their masses.

The most useful way of thinking about lensing constraints on mass dis-
tributions is in terms of multipole expansions (e.g. Kochanek 1991a; Trot-
ter, Winn and Hewitt 2000; Evans and Witt 2003; Kochanek and Dalal
2004). An arbitrary surface density κ(θ) can be decomposed into multipole
components,

κ(θ) = κ0(θ) +
∞∑

m=1

[κcm(θ) cos(mχ) + κsm(θ) sin(mχ)] , (43)
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where the individual components are angular averages over the surface density

κ0(θ) =
1
2π

∫ 2π

0

dχκ(θ), and
(
κcm(θ)
κsm(θ)

)
=

1
π

∫ 2π

0

dχ

(
κ(θ)cos(mχ)
κ(θ) sin(mχ)

)
.

(44)
The first three terms are the monopole (κ0), the dipole (m = 1) and the
quadrupole (m = 2) of the lens. The Poisson equation ∇2Ψ = 2κ is separable
in polar coordinates, so a multipole decomposition of the effective potential

Ψ(θ) = Ψ0(θ) +
∞∑

m=1

[Ψcm(θ) cos(mχ) + Ψsm(θ) sin(mχ)] (45)

will have terms that depend only on the corresponding multipole of the surface
density, ∇2Ψcm(θ) cos(mχ) = 2κcm(θ) cos(mχ). The monopole of the potential
is simply

Ψ0(θ) = 2 log(θ)
∫ θ

0

uduκ0(u) + 2
∫ ∞

θ

udu log(u)κ(u) (46)

and its derivative is the bend angle for a circular lens,

α0(θ) =
dΨ0

dθ
=

2
θ

∫ θ

0

uduκ0(u), (47)

just as we derived earlier (3). The higher order multipoles are no more com-
plicated, with(

Ψcm(θ)
Ψsm(θ)

)
= − 1

mθm

∫ θ

0

u1+mdu

(
κcm(u)
κsm(u)

)
− θm

m

∫ ∞

θ

u1−mdu

(
κcm(u)
κsm(u)

)
.

(48)
The angular multipoles are always composed of two parts. There is an interior
pole Ψcm,int(θ) due to the multipole surface density interior to θ (the integral
from 0 < u < θ) and an exterior pole Ψcm,ext(θ) due to the multipole sur-
face density exterior to θ (the integral from θ < u < ∞). The higher order
multipoles produce deflections in both the radial

αcm,rad =
d

dθ
[Ψcm cos(mχ)] =

dΨcm

dθ
cos(mχ), (49)

and tangential

αcm,tan =
1
θ

d

dχ
[Ψcm cos(mχ)] = −m

θ
Ψcm sin(mχ) (50)

directions, where the radial deflection depends on the derivative of Ψcm and the
tangential deflection depends only on Ψcm. This may seem rather formal, but
the multipole expansion provides the basis for understanding which aspects of
mass distributions will matter for lens models. Obviously it is the lowest order
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angular multipoles which are most important. The most common angular term
added to lens models is the external shear

Ψ2,ext =
1
2
γcθ

2 cos 2(χ− χγ) +
1
2
γsθ

2 sin 2(χ− χγ) (51)

with dimensionless amplitudes γc and γs and axis χγ . The external (tidal)
shear and any accompanying mean convergence are the lowest order pertur-
bations from any object near the lens that have measurable effects on a grav-
itational lens (see (26)). While models usually consider only external (tidal)
shears where these coefficients are constants, in reality γc, γs and χγ are func-
tions of radius (i.e. (48)). Along with the external shear, there is an internal
shear

Ψ2,int =
1
2
Γ1

〈θ〉4
θ2

cos 2(χ− χΓ ) +
1
2
Γ2

〈θ〉4
θ2

sin 2(χ− χΓ ). (52)

due to the quadrupole moment of the mass interior to a given radius. We
introduce the mean radius of the lensed images 〈θ〉 to make Γ1 and Γ2 dimen-
sionless with magnitudes that can be easily compared to the external shear
amplitudes γ1 and γ2. Arguably the critical radius of the lens is a better phys-
ical choice, but the mean image radius will be close to the critical radius and
using it avoids any trivial covariances between the internal shear strength and
the monopole mass. Usually the internal quadrupole is added as part of an
ellipsoidal model for the central lens galaxy, but it is useful in analytic studies
to consider it separately.

4.1 Common Models for the Monopole

Most attention in modeling lenses focuses on the monopole or radial mass
distribution of the lenses. Unfortunately, much of the lensing literature uses an
almost impenetrable array of ghastly non-standard acronyms to describe the
mass models even though many of them are identical to well-known families of
density distributions used in stellar dynamics. Here we summarize the radial
mass distributions which are most commonly used and will keep reappearing
in the remainder of Part 2.

The simplest possible choice for the mass distribution is to simply trace
the light. The standard model for early-type galaxies or the bulges of spiral
galaxies is the de Vaucouleurs (1948) profile with surface density

Σ(R) = Ie exp
[
−7.67

[
(R/Re)

1/4 − 1
]]

, (53)

where the effective radius Re encompasses half the total mass (or light) of
the profile. Although the central density of a de Vaucouleurs model is finite,
it actually acts like a rather cuspy density distribution and will generally fit
the early-type lens data with no risk of producing a detectable central image
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(e.g. Lehár et al. 2000; Keeton 2003a). The simplest model for a disk galaxy
is an exponential disk,

Σ(R) = I0 exp [−R/Rd] , (54)

where Rd is the disk scale length. An exponential disk by itself is rarely a
viable lens model because it has so little density contrast between the cen-
ter and the typical radii of images that detectable central images are almost
always predicted but not observed. Some additional component, either a de
Vaucouleurs bulge or a cuspy dark matter halo, is always required. This makes
spiral galaxy lens models difficult because they generically require two stellar
components (a bulge and a disk) and a dark matter halo, while the photomet-
ric data are rarely good enough to constrain the two stellar components (e.g.
Maller, Flores and Primack 1997; Koopmans et al. 1998; Maller et al. 2000;
Trott and Webster 2002; Winn, Hall and Schechter 2003c). Since spiral lenses
are already relatively rare, and spiral lens galaxies with good photometry are
rarer still, less attention has been given to these systems. The de Vaucouleurs
and exponential disk models are examples of Sersic (1968) profiles

Σ(R) = I0 exp
[
−bn

[
(R/Re(n))1/n

]]
, (55)

where the effective radius Re(n) is defined to encompass half the light and
n = 4 is a de Vaucouleurs model and n = 1 is an exponential disk. These
profiles have not been used as yet for the study of lenses except for some quasar
host galaxy models (Sect. 10). The de Vaucouleurs model can be approximated
(or the reverse) by the Hernquist (1990)model with the 3D density distribution

ρ(r) =
M

πr

a

(a + r)3
(56)

and a � 0.55Re if matched to a de Vaucouleurs model. For lensing purposes,
the Hernquist model has one major problem. Its ρ ∝ 1/r central density cusp
is shallower than the effective cusp of a de Vaucouleurs model, so Hernquist
models tend to predict detectable central images even when the matching de
Vaucouleurs model would not. As a result, the Hernquist model is more often
used as a surrogate for dynamical normalization of the de Vaucouleurs model
than as an actual lens model (see below).

Theoretical models for lenses started with simple, softened power laws of
the form

κ(R) ∝
(
R2 + s2

)−(n−1)/2 → R1−n (57)

in the limit where there is no core radius. We are using these simple power
law lenses in all our examples (see Sect. 3). These models include many well
known stellar dynamical models such as the singular isothermal sphere (SIS,
n = 2, s = 0), the modified Hubble profile (n = 3) and the Plummer model
(n = 5). Since we only see the projected mass, these power laws are also related
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to common models for infinitely thin disks. The Mestel (1963) disk (n = 2,
s = 0) is the disk that produces a flat rotation curve, and the Kuzmin (1956)
disk (n = 3) can be used to mimic the rising and then falling rotation curve
of an exponential disk. The softened power-law models have generally fallen
out of favor other than as simple models for some of the visible components
of lenses because the strong evidence for stellar and dark matter cusps makes
models with core radii physically unrealistic. While ellipsoidal versions of these
models are not available in useful form, there are fast series expansion methods
for numerical models (Chae, Khersonsky and Turnshek 1998b; Barkana 1998).

Most “modern” discussions of galaxy density distributions are based on
sub-cases of the density distribution

ρ(r) ∝ 1
rn

1

(aα + rα)(m−n)/α
, (58)

which has a central density cusp with ρ ∝ r−n, asymptotically declines as
ρ ∝ r−m and has a break in the profile near r � a whose shape depends on
α (e.g. Zhao 1997). The most common cases are the Hernquist model (n = 1,
m = 4, α = 1) mentioned above, the Jaffe (1983) model (n = 2, m = 4,
α = 1), the NFW (Navarro, Frenk and White 1996) model (n = 1, m = 3,
α = 1) and the Moore et al. (1998) model (n = 3/2, m = 3, α = 1). We can
view the power-law models either as the limit n → 0 and α = 2, or we could
generalize the r−n term to (r2 + s2)−n/2 and consider only regions with r and
s � a. Projections of these models are similar to surface density distributions
of the form

κ(R) ∝ 1
Rn−1

1

(aα + Rα)(m−n)/α
(59)

(although the definition of the break radius a may change) with the exception
of the limit n → 1 where the projection of a 3D density cusp ρ ∝ 1/r produces
surface density terms κ ∝ lnR that cannot be reproduced by the broken
surface density power law. This surface density model is sometimes called the
Nuker law (e.g. Byun et al. 1996). A particularly useful case for lensing is
the pseudo-Jaffe model with n = 2, m = 4 and α = 2 (where the normal Jaffe
model has α = 1) as the only example of a broken power law with simple
analytic deflections even when ellipsoidal because the density distribution is
the difference between two isothermal ellipsoids (see (41)). These cuspy models
also allow fast approximate solutions for their ellipsoidal counterparts (see
Chae 2002).

The most theoretically important of these cusped profiles is probably the
NFW profile (Navarro et al. 1996) because it is the standard model for dark
matter halos. Since it is such a common model, it is worth discussing it in a
little more detail, particularly its peculiar normalization. The NFW profile is
normalized by the mass Mvir inside the virial radius rvir, with

ρNFW (r) =
Mvir

4πf(c)
1

r(r + a)2
and MNFW (< r) =

f(r/rvir)
f(c)

, (60)
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where f(c) = ln(1 + c) − c/(1 + c) and the concentration c = rvir/a ∼ 5 for
clusters and c ∼ 10 for galaxies. The concentration is a function of mass whose
scaling is determined from N-body simulations. A typical scaling for a halo at
redshift z in an ΩM = 0.3 flat cosmological models is (Bullock et al. 2001a,b)

c(M) =
9

1 + z

(
Mvir

8 × 1012hM�

)−0.14

(61)

with a dispersion in log c of σlog(c) � 0.18 dex. Because gravitational lensing
is very sensitive to the central density of the lens, including the scatter in the
concentration is quantitatively important for lensing by NFW halos (Keeton
2001a,b). The virial mass and radius are related and determined by the over-
density Δvir(z) required for a halo to collapse given the cosmological model
and the redshift. This can be approximated by

Mvir =
4π
3
Δvir(z)ρu(z)r3

vir � 0.23 × 1012h

(
(1 + z)rvir

100h−1kpc

)3(
ΩMΔvir

200

)
M�,

(62)
where ρu(z) = 3H2

0ΩM (1+z)3/8πG is the mean matter density when the halo
forms and Δvir � (18π2 +82x−39x2)/Ω(z) with x = Ω−1 is the overdensity
needed for a halo to collapse. There are differences in normalizations between
authors and with changes in the central cusp exponent γ, but models of this
type are what we presently expect for the structure of dark matter halos
around galaxies.

For most lenses, HST imaging allows us to measure the spatial distribution
of the stars, thereby providing us with a model for the distribution of stellar
mass with only the stellar mass-to-light ratio as a parameter. For present pur-
poses, gradients in the stellar mass-to-light ratio are unimportant compared
to the uncertainties arising from the dark matter. Unless we are prepared to
abandon the entire paradigm for modern cosmology, the luminous galaxy is
embedded in a dark matter halo and we must decide how to model the overall
mass distribution. The most common approach, as suggested by the rich vari-
ety of mass profiles we introduced in Sect. 4.1, is to assume a parametric form
for the total mass distribution rather than attempting to decompose it into
luminous and dark components. The alternative is to try to embed the stellar
component in a dark matter halo. Operationally, doing so is trivial – the lens
is simply modeled as the sum of two mass components. However, there are
theoretical models for how CDM halos should be combined with the stellar
component.

Most non-gravitational lensing applications focus on embedding disk galax-
ies in halos because angular momentum conservation provides a means of es-
timating a baryonic scale length (e.g. Mo, Mao and White 1998). The spin
parameter of the halo sets the angular momentum of the baryons, and the
final disk galaxy is defined by the exponential disk with the same angular mo-
mentum. As the baryons become more centrally concentrated, they pull the
dark matter inwards as well through a process known as adiabatic contraction
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(Blumenthal et al. 1986). The advantage of this approach, which in lensing
has been used only by Kochanek and White (2001), is that it allows a full ab
initio calculation of lens statistical properties when combined with a model
for the cooling of the baryons (see Sect. 7). It has the major disadvantage that
most lens galaxies are early-type galaxies rather than spirals, and that there
is no analog of the spin parameter and angular momentum conservation to set
the scale length of the stellar component in a model for an early-type galaxy.

Models of early-type galaxies embedded in CDM halos have to start with
an empirical estimate of the stellar effective radius. In models of individual
lenses this is a measured property of the lens galaxy (e.g. Rusin et al. 2003a,b;
Rusin and Kochanek 2005 or Koopmans and Treu 2002; Kochanek 2003a,b,c).
Statistical models must use a model for the scaling of the effective radius with
luminosity or other observable parameters of early-type galaxies (e.g. Keeton
2001a,b). From the luminosity, a mass-to-light ratio is used to estimate the
stellar mass. If all baryons have cooled and been turned into stars, then the
stellar mass provides the total baryonic mass of the halo, otherwise the stellar
mass sets a lower bound on the baryonic mass. Combining the baryonic mass
with an estimate of the baryonic mass fraction yields the total halo mass to
be fed into the model for the CDM halo.

In general, there is no convincing evidence favoring either approach – for
the regions over which the mass distributions are constrained by the data,
both approaches will agree on the overall mass distribution. However, there
can be broad degeneracies in how the total mass distribution is decomposed
into luminous and dark components (see Sect. 4.6).

4.2 The Effective Single Screen Lens

Throughout these notes we will treat lenses as if all the lens components lay
at a single redshift (“the single screen approximation”). The lens equations
for handling multiple deflection screens (e.g. Blandford and Narayan 1986;
Kovner 1987b; Barkana 1996) are known but little used except for numerical
studies (e.g. Kochanek and Apostolakis 1988; Möller and Blain 2001) in large
part because few lenses require multiple lens galaxies at different redshifts
with the exception of B2114+022 (Chae, Mao and Augusto 2001). In fact, we
are not being as cavalier in making this approximation as it may seem.

The vast majority of strong lenses consist of a single lens galaxy perturbed
by other objects. We can divide these objects into nearby objects, where a
single screen is clearly appropriate, and objects distributed along the line of
site for which a single screen may be inappropriate. Because the correlation
function is so strong on small scales, the perturbations are dominated by
objects within a correlation length of the lens galaxy (e.g. Keeton, Kochanek
and Seljak 1997; Holder and Schechter 2003). The key to the relative safety of
the single screen model is that weak perturbations from objects along the line
of site, in the sense that in a multi-screen lens model they could be treated as
a convergence and a shear, can be reduced to a single “effective” lens plane



130 C.S. Kochanek

in which the true amplitudes of the convergence and shear are rescaled by
distance ratios to convert them from their true redshifts to the redshift of
the single screen (Kovner 1987b; Barkana 1996). The lens equation on the
effective single screen takes the form

β = (I + FOS) θ − (I + FLS) α [(I + FOL) θ] , (63)

where FOS , FLS and FOL describe the shear and convergence due to pertur-
bations between the observer and the source, the lens and the source and the
observer and the lens respectively. For statistical calculations this can be sim-
plified still further by making the coordinate transformation θ′ = (I +FOL)θ
and β′ = (I + FLS)β to leave a lens equation identical to a single screen lens

β′ = (I + Fe)θ′ − α [θ′] (64)

in an effective convergence and shear of Fe = FOL +FLS −FOS (to linear or-
der). In practice it will usually be safe to neglect the differences between (63)
and (64) because the shearing terms affecting the deflections in (63) are easily
mimicked by modest changes in the ellipticity and orientation of the primary
lens. The rms amplitudes of these perturbations depend on the cosmological
model and the amplitude of the non-linear power spectrum, but the general
scaling is that the perturbations grow as D

3/2
s with source redshift, and in-

crease for larger σ8 and ΩM as shown in Fig. 19 from Keeton et al. (1997).
The importance of these effects is very similar to concerns about the effects
of lenses along the line-of-sight on the brightness of high redshift supernova
being used to estimate the cosmological model (e.g. Dalal et al. 2003).

4.3 Constraining the Monopole

The most frustrating aspect of lens modeling is that it is very difficult to
constrain the monopole. If we take a simple lens and fit it with any of the
parametric models from the previous sub-section it will be possible to obtain
a good fit provided the central surface density of the model is high enough
to avoid the formation of a central image. As usual, it is simplest to begin
understanding the problem with a circular, two-image lens whose images lie at
radii θA and θB from the lens center (Fig. 20). The lens equation (4) constrains
the deflections so that the two images correspond to the same source position,

β = θA − α(θA) = −θB + α(θB), (65)

where the sign changes appear because the images are on opposite sides of
the lens. Recall that for the power-law lens model, α(θ) = bn−1θ2−n (9), so
we can easily solve the constraint equation to determine the Einstein radius
of the lens,

b =
[

θA + θB

θ2−n
A + θ2−n

B

]1/(n−1)

(66)
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Fig. 19. Dependence of the shear generated by other objects along the line-of-sight
for both linear (light lines) and non-linear (heavy lines) power spectra. (a) Shows
the logarithmic contribution to the rms effective shear for a source at redshift zs = 3
as a function of wave vector k. (b) Shows the dependence on σ8 for a fixed power
spectrum shape ΩMh = 0.25. (c) Shows the dependence on the shape ΩMh with
σ8 = 0.6 for ΩM = 1 and σ8 = 1.0 for ΩM < 1. (d) Shows the variation in the shear
with source redshift for the models in (c) with ΩMh = 0.25

in terms of the image positions. In the limit of an SIS (n = 2) the Einstein ra-
dius is the arithmetic mean, b = (θA+θB)/2, and in the limit of a point source
(n → 3), it is the geometric mean, b = (θAθB)1/2, of the image radii. More
generally, for any deflection profile bf(θ), the two images simply determine
the mass scale b = (θA + θB)/(f(θA) + f(θB)).

There are two important lessons here. First, the location of the tangential
critical line is determined fairly accurately independent of the mass profile.
We may only be able to determine the mass scale, but it is the most accurate
measurement of galaxy masses available to astronomy. Second, it is going to
be very difficult to determine radial mass distributions. In this example there
is a perfect degeneracy between the exact location of the tangential critical
line b and the exponent n. In theory, this is broken by the flux ratio of the
images. However, a simple two-image lens has too few constraints even with
perfectly measured flux ratios because a realistic lens model must also include
some freedom in the angular structure of the lens. For a simple four-image
lens, there begin to be enough constraints but the images all have similar
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Fig. 20. A schematic diagram of a two-image lens. The lens galaxy lies at the origin
with two images A and B at radii θA and θB from the lens center. The images define
an annulus of average radius 〈θ〉 = (θA + θB)/2 and width δθ = θA − θB , and they
subtend an angle ΔχAB relative to the lens center. For a circular lens ΔχAB = 180◦

by symmetry

radii, making the flux ratios relatively insensitive to changes in the monopole.
Combined with the systematic uncertainties in flux ratios, they are not useful
for this purpose.

This example also leads to the major misapprehension about lens models
and radial mass distributions, in that the constraints appear to lead to a
degeneracy related to the global structure of the potential (i.e. the exponent
n). This is not correct. The degeneracy is a purely local one that depends only
on the structure of the lens in the annulus defined by the images, θB < θ < θA,
as shown in Fig. 20. To see this we will rewrite the expression for the bend
angle (3) as

α(θ) =
2
θ

[∫ θB

0

uduκ(u) +
∫ θ

θB

uduκ(u)

]
=

1
θ

[
b2B + (θ2 − θ2

B)〈κ〉(θ, θB)
]
,

(67)
where b2B = 2

∫ θB

0
uduκ(u) is the Einstein radius of the total mass interior to

image B, and

〈κ〉(θ, θB) =
2

θ2 − θ2
B

∫ θ

θB

uduκ(u) (68)

is the mean surface density in the annulus θB < u < θ. If we now solve the
constraint (65) again, we find that
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b2B = θAθB − 〈κ〉ABθB(θA − θB), (69)

where 〈κ〉AB = 〈κ〉(θA, θB) is the mean density in the annulus θB < θ <
θA between the images. Thus, there is a degeneracy between the total mass
interior to image B and the mean surface density (mass) between the two
images. There is no dependence on the distribution of the mass interior to θB,
the distribution of mass between the two images, or on either the amount or
distribution of mass exterior to θA. This is Gauss’ law for gravitational lens
models.

If we normalize the mass scale at any point in the interior of the annulus
then the result will depend on the distribution of the mass simply because the
mass must be artificially divided. For example, suppose we model the surface
density locally as a power law κ ∝ θ1−n with a mean surface density 〈κ〉 in
the annulus θB < θ < θA between the images. The mass inside the mean
image radius 〈θ〉 is

b2〈θ〉 = θAθB (1 − κ0)

+ δθ2〈κ〉
[
n

4
+
(

δθ

〈θ〉

)2 (4 − n)(2 − n)(1 − n)
192

+ O

((
δθ

〈θ〉

)4
)]

,

(70)

where we have expanded the result in the ratio δθ/〈θ〉 (in fact, the result as
shown is exact for n = 2/3, 1, 2, 4 and 5). We included in this result an
additional, global convergence κ0 so that we can contrast the local degen-
eracies due to the distribution of matter between the images with the global
degeneracies produced by a infinite mass sheet. The leading term θAθB is the
Einstein radius expected for a point mass lens (65). While the total enclosed
mass (θAθB) is fixed, the mass associated with the lens galaxy b2〈θ〉 must be
modified in the presence of a global convergence by the usual 1 − κ0 factor
created by the mass sheet degeneracy (Falco, Gorenstein and Shapiro 1985).
The structure of the lens in the annulus leads to fractional corrections to the
mass of order (δθ/〈θ〉)2 that are proportional to n〈κ〉 to lowest order.

Only if you have additional images inside the annulus can you begin to
constrain the structure of the density in the annulus. The constraint is not,
unfortunately, a simple constraint on the density. Suppose that we see an
additional (pair) of images on the Einstein ring at θ0, with θB < θ0 < θA.
This case is simpler than the general case because it divides our annulus into
two sub-annuli (from θB to θ0 and from θ0 to θA) rather than three. Since
we put the extra image on the Einstein ring, we know that the mean surface
density interior to θ0 is unity (11). The A and B images then constrain a ratio

1 − 〈κ〉B0

1 − 〈κ〉A0
=

θB

θA

θ2
A − θ2

0

θ2
0 − θ2

B

� θA − θ0

θ0 − θB

[
1 − θA − θB

2θ0
· · ·
]

(71)

of the average surface densities between the Einstein ring and image B (〈κ〉B0)
and the Einstein ring and image A (〈κ〉A0). Since a physical distribution must
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have 0 < 〈κ〉A0 < 〈κ〉B0, the surface density in the inner sub-annulus must
satisfy

θA + θB

θA

θ2
0 − θAθB

θ2
0 − θ2

B

< 〈κ〉B0 < 1, (72)

where the lower (upper) bound is found when the density in the outer sub-
annulus is zero (when 〈κ〉B0 = 〈κ〉A0). The term θ2

0 − θAθB is the difference
between the measured critical radius θ0 and the critical radius implied by
the other two images for a lens with no density in the annulus (e.g. a point
mass), (θAθB)1/2. Suppose we actually have images formed by an SIS, so
θA = θ0(1 + x) and θB = θ0(1 − x) with 0 < x = β/θ0 < 1, then the lower
bound on the density in the inner sub-annulus is

〈κ〉B0 >
2x

(2 − x)(1 + x)
(73)

and the fractional uncertainly in the surface density is unity for images near
the Einstein ring (x → 0) and then steadily diminishes as the A and B images
are more asymmetric. If you want to constrain the monopole, the more asym-
metric the configuration the better. This rule becomes still more important
with the introduction of angular structure.

Figure 21 illustrates these issues. We arbitrarily picked a model consisting
of an SIS lens with two sources. One source is close to the origin and produces
images at θA = 1.′′1 and θB = 0.′′9. The other source is farther from the
origin with images at θA = 1.′′5 and θB = 0.′′5. We then modeled the lens
with either a softened power law (57) or a three-dimensional cusp (58). We
did not worry about the formation of additional images when the core radius
becomes too large or the central cusp is too shallow – this would rule out
models with very large core radii or shallow central cusps. If there were only
a single source, either of these models can fit the data for any values of the
parameters. Once, however, there are two sources, most of parameter space
is ruled out except for degenerate tracks that look very different for the two
mass models. Along these tracks, the models satisfy the additional constraint
on the surface density given by (71). The first point to make about Fig. 21
is the importance of carefully defining parameters. The input SIS model has
very different parameters for the two mass models – while the exponent n = 2
is the same in both cases, the SIS model is the limit s → 0 for the core radius
in the softened power law, but it is the limit a → ∞ for the break radius
in the cusp model. Similarly, models with an inner cusp n = 0 will closely
resemble power law models whose exponent n matches the outer exponent m
of the cuspy models. Our failure to explain these similarities is one reason why
lens modeling seems so confusing. The second point to make about Fig. 21 is
that the deflection profiles implied by these models are fairly similar over the
annulus bounded by the images. Outside the annulus, particularly at smaller
radii, they start to show very large fractional differences. Only if we were to
add a third set of multiple images or measure a time delay with a known value
of H0 would the parameter degeneracy begin to be broken.
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Fig. 21. Softened power law and cusped model fits to the images produced by
an SIS lens with Einstein radius b = 1.′′0 and two source components located 0.′′1
and 0.′′5 from the lens center. In the top panel, the contours show the regions with
astrometric fit residuals per image of 0.′′003 and 0.′′010. Models with m = 3 cusps
so closely overly the m = 4 models that their error contours were not plotted.
The bottom panel shows the deflection profiles of the best models at half-integer
increments in the exponent n. The SIS model has a constant deflection, and the
power-law and cusp models approach it in a sequence of slowly falling deflection
profiles. All models agree with the SIS Einstein radius at r = 1.′′0. The positions of
the images are indicated by the vertical bars
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These general results suggest that studies of how lenses constrain the
monopole need the ability to simultaneously vary the mass scale, the sur-
face density of the annulus and possibly the slope of the density profile in
the annulus to have the full range of freedom permitted by the data. Most
parametric studies constraining the monopole have had two parameters, ad-
justing the mass scale and a correlated combination of the surface density
and slope (e.g. Kochanek 1995a,b; Impey et al. 1998; Chae, Turnshek and
Khersonsky 1998a, Barkana et al. 1999; Chae 1999; Cohn et al. 2001; Muñoz
et al. 2001; Wucknitz et al. 2004), although there are exceptions using models
with additional degrees of freedom (e.g. Bernstein and Fischer 1999; Keeton
et al. 2000b; Trott and Webster 2002; Winn, Rusin and Kochanek 2003a).
This limitation is probably not a major handicap, because realistic density
profiles show a rather limited range of local logarithmic slopes.

4.4 The Angular Structure of Lenses

Assuming you have identified all the halos needed to model a particular lens,
there are three sources of angular structure in the potential. The first source
is the shape of the luminous lens galaxy, the second source is the dark matter
in the halo of the lens, and the third source is perturbations from nearby
objects or objects along the line-of-sight. Of these, the only one which is
easily normalized is the contribution from the stars in the lens galaxy, since
it must be tightly connected to the monopole deflection of the stars. The
observed axis ratios of early-type galaxies show a deficit of round galaxies,
a plateau for axis ratios from q ∼ 0.9 to q ∼ 0.5 and then a sharp decline
beyond q ∼ 0.5 (e.g. Khairul and Ryden 2002). Not surprisingly, the true
elliptical galaxies are rounder than the lenticular (S0) galaxies even if both
are grouped together as early-type galaxies. In three dimensions, the stellar
distributions are probably close to oblate with very modest triaxialities (e.g.
Franx et al. 1991). Theoretical models of galaxy formation predict ellipticities
and triaxialities larger than observed for luminous galaxies (Dubinski 1992,
1994; Warren et al. 1992; Kazantzidis et al. 2004). Local estimates of the shape
of dark matter halos are very limited (e.g. Olling and Merrifield 2001; Buote
et al. 2002). Stellar isophotes also show deviations from perfect ellipses (e.g.
Bender et al. 1989; Rest et al. 2001) and the deviations of simulated halos from
ellipses have a similar amplitude (Heyl et al. 1994; Burkert and Naab 2003).

It is worth considering two examples to understand the relative importance
of the higher order multipoles of a lens. The first is the singular isothermal
ellipsoid (SIE) introduced in Sect. 3 (38-40). Let the major axis of the model
lie on the θ1 axis, in which case only the cos(mχ) multipoles with m = 2, 4, ...
are non-zero. All non-zero poles also have the same radial dependence, with
κcm = Am/θ and Ψcm = −2Amθ/(m2−1). The ratio of the internal to the ex-
ternal multipole depends only on the index of the multipole, Ψcm,int/Ψcm,ext =
(m− 1)/(m + 1). Note, in particular, that the quadrupole moment of an SIE
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is dominated by the matter outside any given radius, with an internal quadru-
pole fraction of

fint =
Ψc2,int

Ψc2
=

1
4
. (74)

For lenses dominated by dark matter halos that have roughly flat global rotation
curves, most of the quadrupole moment is generated outside the Einstein ring
of the lens (i.e. by the halo !). This will hold provided any halo truncation
radius is large compared to the Einstein ring radius. The tangential deflection
is larger than the radial deflection, with |αcm,rad/αcm,tan| = 1/m. The final
question is the relative amplitudes between the poles. The ratio of the angular
deflection from the m = 2 quadrupole to the radial deflection of the monopole
is

αc2,tan

α0,rad
� ε

3

[
1 +

1
2
ε +

9
32

ε2 · · ·
]
, (75)

while the ratio for the m = 4 quadrupole is

αc4,tan

α0,rad
� ε2

20

[
1 + ε +

19
24

ε2 · · ·
]
, (76)

where the axis ratio of the ellipsoid is q = 1 − ε. Each higher order multipole
has an amplitude Ψm ∝ εm/2 to leading order.

The relative importance of the higher order poles can be assessed by com-
puting the deflections for a typical lens with the monopole deflection (essen-
tially the Einstein radius) fixed to be one arc second. Using the leading order
scaling of the power-series, but setting the numerical value to be exact for an
axis ratio q = 1/2, the angular deflection from the quadrupole is 0.′′46ε and
that from the m = 4 pole is 0.′′09ε2, while the radial deflections will be smaller
by a factors of 2 and 4 respectively. Since typical astrometric errors are of
order 0.′′005, the quadrupole is quantitatively important for essentially any
ellipticity while the m = 4 pole becomes quantitatively important only for
q <∼ 0.75 (and the m = 6 pole becomes quantitatively important for q <∼ 0.50).

In Fig. 22 we compare the SIE to ellipsoidal de Vaucouleurs and NFW
models. Unlike the SIE, these models are not scale free, so the multipoles
depend on the distance from the lens center in units of the major axis scale
length of the lens, Rmajor. The behavior of the de Vaucouleurs model will
be typical of any ellipsoidal mass distribution that is more centrally concen-
trated than an SIE. Although the de Vaucouleurs model produces angular
deflections similar to those of an SIE on small scales (for the same axis ratio),
these are beginning to decay rapidly at the radii where we see lensed images
(1–2Rmajor) because most of the mass is interior to the image positions and
the amplitudes of the higher order multipoles decay faster with radius than the
monopole (see (48)). Similarly, as more of the mass lies at smaller radii,
the quadrupole becomes dominated by the internal quadrupole. The NFW
model has a somewhat different behavior because on small scales it is less cen-
trally concentrated than an SIE (a ρ ∝ 1/r central density cusp rather than
∝ 1/r2). It produces a somewhat bigger quadrupole for a given axis ratio,
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Fig. 22. Behavior of the angular multipoles for the de Vaucouleurs (solid), SIE
(dashed) and NFW (dotted) models with axis ratios of either q = 0.75 (top) or
q = 0.5 (bottom) as a function of radius from the lens center in units of the lens
major axis scale Rmajor. For each axis ratio, the lower panel shows the ratio of the
maximum angular deflections produced by the quadrupole (m = 2) and the m = 4
pole relative to the deflection produced by the monopole (m = 0). The upper panel
shows the fraction of the quadrupole generated by the mass interior to each radius
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and an even larger fraction of that quadrupole is generated on large scales.
In a “standard” dark matter halo model, the region with θ < Rmajor is also
where we see the lensed images. On larger scales, the NFW profile is more
centrally concentrated than the SIE, so the quadrupole begins to decay and
becomes dominated by the internal component.

It is unlikely that mass distributions are true ellipsoids producing only even
poles (m = 2, 4, . . .) with no twisting of the axes with radius. For model fits
we need to consider the likely amplitude of these deviations and the ability of
standard terms to absorb and mask their presence. It is clear from Fig. 22 that
the amplitude of any additional terms must be of order the m = 4 deflections
expected for an ellipsoid for them to be important. Here we illustrate the
issues with the first few possible terms.

A dipole moment (m = 1) corresponds to making the galaxy lopsided with
more mass on one side of the lens center than the other. Lopsidedness is not
rare in disk galaxies (∼30% at large radii, Zaritsky and Rix 1997), but is little
discussed (and hence presumably small) for early-type galaxies. Certainly in
the CASTLES photometry of lens galaxies we never see significant dipole
residuals. It is difficult (impossible) to have an equilibrium system supported
by random stellar motions with a dipole moment because the resulting forces
will tend to eliminate the dipole. Similar considerations make it difficult to
have a dark matter halo offset from the luminous galaxy. Only disks, which are
supported by ordered rather than random motion, permit relatively long-lived
lopsided structures. Where a small dipole exists, it will have little effect on
the lens models unless the position of the lens galaxy is imposed as a stringent
constraint. The reason is that a dipole adds terms to the effective potential
of the form θ1G(θ) whose leading terms are degenerate with a change in the
unknown source position.

Perturbations to the quadrupole (relative to an ellipsoid) arise from vari-
ations in the ellipticity or axis ratio with radius. Since realistic lens models
require an independent external shear simply to model the local environment,
it will generally be very difficult to detect these types of perturbations or
for these types of perturbations to significantly modify any conclusions. In
essence, the amplitude and orientation of the external shear can capture most
of their effects. Their actual amplitude is easily derived from perturbations.
For example, if there is an isophote twist of Δχ between the region inside
the Einstein ring and outside the Einstein ring, the fractional perturbations
to the quadrupole will be of order Δχ, or approximately εΔχ/3 of the mono-
pole – independent of the ability of the external shear to mimic the twist,
the actual amplitude of the perturbation is approaching the typical measure-
ment precision unless the twist is very large. Only in Q0957+561 have models
found reasonably clear evidence for an effect arising from isophotal twists
and ellipticity gradients, but both distortions are unusually large in this sys-
tem (Keeton et al. 2000a). In general, in the CASTLES photometry of lens
galaxies, deviations from simple ellipsoidal models are rare.
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Locally we observe that the isophotes of elliptical galaxies are not perfect
ellipses (e.g. Bender et al. 1989; Rest et al. 2001) and simulated halos show
deviations of similar amplitude (Heyl et al. 1994; Burkert and Naab 2003).
For lensing calculations it is useful to characterize these perturbations by a
contribution to the lens potential and surface density of

Ψ =
εm
m

θ cosm(χ− χm) and κm =
εm
θ

1 −m2

m
cosm(χ− χm), (77)

respectively where the amplitude of the term is related to the usual isophote
parameter am = εm|1 − m2|/mb for a lens with Einstein radius b. A typical
early-type galaxy might have |a4| ∼ 0.01, so their fractional effect on the
deflections, |ε4|/b ∼ |a4|/4 ∼ 0.003, will be comparable to the astrometric
measurement accuracy.

4.5 Constraining Angular Structure

The angular structure of lenses is usually simply viewed as an obstacle to
understanding the monopole. This is a serious mistake. The reason angular
structure is generally ignored is that the ability to accurately constrain the
angular structure of the gravitational field is nearly unique to gravitational
lensing. Since we have not emphasized the ability of lenses to measure angular
structure and other methods cannot do so very accurately, there has been little
theoretical work on the angular structure of galaxies with dark matter. Both
theoretical studies of halos and modelers of gravitational lenses need to pay
more attention to the angular structure of the gravitational potential.

We start by analyzing a simple two-image lens using our non-parametric
model of the monopole (67) in an external shear (51). The two images are
located at θA = θA(cosχA, sinχA), and θB = θB(cosχB , sinχB) as illustrated
in Fig. 20. To illustrate the similarities and differences between shear and
convergence, we will also include a global convergence κ0 in the model. This
corresponds to adding a term to the lens potential of the form (1/2)κ0θ

2.
The model now has five parameters – two shear components, the mass and
surface density of the monopole model and the additional global convergence.
We have only two astrometric constraints, and so can solve for only two of the
five parameters. Since the enclosed mass is always an interesting parameter,
we can only solve for one of the two shear components. In general, we will find
that the amplitude of γc depends on the amplitude of γs. There is, however, a
special choice of the shear axis, χγ = (χA +χB)/2 + π/4, such that the shear
parameters become independent of each other. This allows us to determine
the “invariant” shear associated with the images,

γ1 =
(1 − κ0 − 〈κ〉AB) (θ2

A − θ2
B) sin(χA − χB)

Δθ2
, (78)

where Δθ = |θA − θB | is the image separation. The monopole mass and the
other shear component are degenerate,
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b2
B + γ2θAθB

=
(1 − κ0)

[
Δθ2(θ2

A + θ2
B) − (θ2

A − θ2
B)2
]
− 〈κ〉AB

(
θ2

A − θ2
B

) (
Δθ2 − θ2

A + θ2
B

)
2Δθ2

.

(79)

Several points are worth noting. First, the amplitude of the invariant shear γ1

has the same degeneracy with the (local) surface density between the images
〈κ〉AB as it does with a global convergence κ0. More centrally concentrated
mass distributions with lower 〈κ〉AB require higher external shears to fit the
same data. Second, the other component γ2 introduces an uncertainty into
the enclosed mass, with a series of somewhat messy trade offs between b2B , γ1,
〈κ〉AB and κ0. As a practical matter, the shear does not lead to an astronom-
ically significant uncertainty in the mass, since γ2 <∼ 0.1 in all but the most
extreme situations.

The external shear is only one component of the quadrupole. There is also
an internal shear due to the mass interior to the images (52). The internal
and external shears differ in their “handedness”. For the same angular deflec-
tion (dΨ/dχ) they have opposite signs for the radial deflection (dΨ/dθ). The
solution for two images is much the same as for an external shear. There is
an invariant shear component, whose amplitude scales with 1 − κ0 − 〈κ〉AB

but whose orientation differs from that of the external shear solution. The
monopole mass b2B is degenerate with the γ2 shear component and the κ0

and 〈κ〉AB surface densities. The actual expressions are far too complex to be
illuminating. Figure 23 illustrates how the invariant shears combine to deter-
mine the overall structure of the quadrupole for the lens PG1115+080. For
each image pair there is a line of permitted shears because of the degeneracy
between the enclosed mass and the second shear component. The invariant
shear component is the shear at the point where the line passes closest to the
origin. If the quadrupole model is correct, the lines for all the image pairs will
cross at a point, while if it is incorrect they will not. PG1115+080 is clearly
going to be well modeled if the quadrupole is dominated by an external shear
and poorly modeled if it is dominated by an internal shear. This provides a
simple geometric argument for why full models of PG1115+080 are always
dominated by an external shear (e.g. Impey et al. 1998). A failure of the
curves to cross in both cases is primarily evidence for a mixture of external
and internal quadrupoles or the presence of other multipoles rather than for
a problem in the monopole mass distribution. In Fig. 23 we used an SIS for
the monopole. For a point mass monopole, the figure looks almost the same
provided we expand the scale – the invariant shear scales as 1 − 〈κ〉AB so in
going from a SIS with 1 − 〈κ〉AB � 1/2 to a point mass with 1 − 〈κ〉AB = 1
the shear will double.

This scaling of the quadrupole with the surface density of the monopole
provides an as yet unused approach to studying the monopole. Since the
mass enclosed by the Einstein radius is nearly constant, the more centrally
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Fig. 23. The invariant shears for the lens PG1115+080 modeled using either an
external (top) or an internal (bottom) quadrupole and an SIS monopole. Each possi-
ble image pair among the A1, A2, B and C images, constrains the quadrupole to lie
on the labeled line. The amplitude and orientation of each invariant shear is given
by the point where the corresponding line passes closest to the origin. Models of
PG1115+080 show that the quadrupole is dominated by external (tidal) shear. Here
we see that for the external quadrupole (left), the lines nearly cross at a point, so
the data are consistent with an almost pure external shear. For an internal quadru-
pole (right), the A2B and A2C image pairs require shear parameters completely
inconsistent with the other images
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concentrated constant mass-to-light (M/L) ratio models must have lower sur-
face mass densities near the images than the SIE model. As a result, they
will require quadrupole amplitudes that are nearly twice those of models like
the SIS with nearly flat rotation curves. Since the typical SIE model of a lens
has an ellipticity that is comparable to the typical ellipticities of the visible
galaxies, the more centrally concentrated monopole of a constant M/L model
requires an ellipticity much larger than the observed ellipticity of the lens
galaxy. The need to include an external tidal shear to represent the environ-
ment allows these models to produce acceptable fits, but the amplitudes of the
required external shears are inconsistent with expectations from weak lensing
(Part 3).

4.6 Model Fitting and the Mass Distribution of Lenses

Having outlined (in perhaps excruciating detail) how lenses constrain the
mass distribution, we turn to the problem of actually fitting data. These days
the simplest approach for a casual user is simply to download a modeling
package, in particular the lensmodel package (Keeton 2001a,b) at http://cfa-
www.harvard.edu/castles/, read the manual, try some experiments, and then
apply it intelligently (i.e. read the previous sections about what you can
extract and what you cannot !). Please publish results with a complete descrip-
tion of the models and the constraints using standard astronomical nomen-
clature.

In most cases we are interested in the problem of fitting the positions
θi of i = 1, ..., n images where the image positions have been measured with
accuracy σi. We may also know the positions and properties of one or more lens
galaxies. Time delay ratios also constrain lens models but sufficiently accurate
ratios are presently available for only one lens (B1608+656, Fassnacht et al.
2002), fitting them is already included in most packages, and they add no
new conceptual difficulties. Flux ratios constrain the lens model, but we are
so uncertain of their systematic uncertainties due to extinction in the ISM
of the lens galaxy, microlensing (Part 4) and the effects of substructure (see
Sect. 8) that we can never impose them with the accuracy needed to add a
significant constraint on the model.

The basic issue with lens modeling is whether or not to invert the lens
equations (“source plane” or “image plane” modeling). The lens equation
supplies the source position

βi = θi − α(θi,p) (80)

predicted by the observed image positions θi and the current model parame-
ters p. Particularly for parametric models it is easy to project the images on
to the source plane and then minimize the difference between the projected
source positions. This can be done with a χ2 fit statistic of the form

χ2
src =

∑
i

(
β − βi

σi

)2

, (81)
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where we treat the source position β as a model parameter. The astrometric
uncertainties σi are typically a few milli-arcseconds. Moreover, where VLBI
observations give significantly smaller uncertainties, they should be increased
to approximately 0.′′001–0.′′005 because low mass substructures in the lens
galaxy can produce systematic errors on this order (see Sect. 8). You can im-
pose astrometric constraints to no greater accuracy than the largest deflection
scales produced by lens components you are not including in your models. The
advantage of χ2

src is that it is fast and has excellent convergence properties.
The disadvantages are that it is wrong, cannot be used to compute parameter
uncertainties, and may lead to a model producing additional images that are
not actually observed.

The reason it is wrong and cannot be used to compute parameter errors
is that the uncertainty σi in the image positions does not have any meaning
on the source plane. This is easily understood if we Taylor expand the lens
equation near the projected source point βi corresponding to an image

β − βi = M−1
i (θ − θi), (82)

where M−1 is the inverse magnification tensor at the observed location of the
image. In the frame where the tensor is diagonal, we have that Δβ± = λ±Δθ±
so a positional error Δβ± on the source plane corresponds to a positional error
λ−1
± Δβ± on the image plane. Since the observed lensed images are almost

always magnified (usually λ+ = 1+κ+γ ∼ 1 and 0.5 > |λ− = 1+κ−γ| < 0.05)
there is always one direction in which small errors on the source plane are
significantly magnified when projected back onto the image plane. Hence, if
you find solutions with χ2

src ∼ Ndof where Ndof is the number of degrees
of freedom, you will have source plane uncertainties Δβ <∼ σi. However, the
actual errors on the image plane are μ = |M | larger and the χ2 on the image
plane is ∼ μ2Ndof and you in fact have a terrible fit.

If you assume that in any interesting model you are close to having a
good solution, then this Taylor expansion provides a means of using the easily
computed source plane positions to still get a quantitatively accurate fitting
statistic,

χ2
int =

∑
i

(β − βi) ·M2 · (β − βi)
σ2

i

(83)

in which the magnification tensor M is used to correct the error in the source
position to an error in the image position. This procedure will be approx-
imately correct provided the observed and model image positions are close
enough for the Taylor expansion to be valid. Finally, there is the exact sta-
tistic where for the model source position β you numerically solve the lens
equation to find the exact image positions θi(β) and then compute the good-
ness of fit on the image plane

χ2
img =

∑
i

(
θi(β) − θi

σi

)2

. (84)
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This will be exact even if the Taylor expansion of χ2
int is breaking down, and

if you find all solutions to the lens equations you can verify that the model
predicts no additional visible images. Unfortunately, using the exact χ2

img is
also a much slower numerical procedure.

As we discussed earlier, even though lens models provide the most accurate
mass normalizations in astronomy, they can constrain the mass distribution
only if the source is more complex than a single compact component. Here we
only show examples where there are multiple point-like components, deferring
discussions of models with extended source structure to Sect. 10. The most
spectacular example of a multi-component source is B1933+503 (Sykes et al.
1998, see Fig. 6) where a source consisting of a radio core and two radio lobes
has 10 lensed images because the core and one lobe are quadruply imaged
and the other lobe is doubly imaged. Since we have many images spread over
roughly a factor of two in radius, this lens should constrain the radial mass
distribution just as in our discussion for Sect. 4.3. Muñoz et al. (2001, also
see Cohn et al. 2001 for softened power law models) fitted this system with
cuspy models (55 with α = 2 and m = 4), varying the inner density slope
n = γ (ρ ∝ r−n) and the break radius a. Figure 24 shows the resulting χ2 as a
function of the parameters and Fig. 24 illustrates the range of the acceptable
monopole mass distributions – both are very similar to Fig. 21. The best fit is
for γ = 1.85 with an allowed range of 1.6 < γ < 2.0 that completely excludes
the shallow γ = 1 cusps of the Hernquist and NFW profiles and is marginally
consistent with the γ = 2 cusp of the SIS model. A second example, which
illustrates how the distribution of mass well outside the region with images has
little effect on the models are the Winn et al. (2003a,b,c) models of the three-
image lens PMNJ1632–0033 shown in Fig. 25. In these models the outer slope
η, with ρ ∝ r−η asymptotically, of the density was also explored but has little
effect on the results. Unless the break radius of the profile is interior to the B
image, the mass profile is required to be close to isothermal 1.89 < β < 1.93.

Unfortunately, systems like B1933+503 and PMNJ1632–0033 are a small
minority of lens systems. For most lenses, obtaining information on the radial
density profile requires some other information such as a dynamical measure-
ment (Sect. 4.9), a time delay measurement (Sect. 5) or a lensed extended
component of the source (Sect. 10). Even for these systems, it is important
to remember that the actual constraints on the density structure really only
apply over the range of radii spanned by the lensed images – the mass inte-
rior to the images is constrained but its distribution is not, while the mass
exterior to the images is completely unconstrained. This is not strictly true
when we include the angular structure of the gravitational field and the mass
distribution is quasi-ellipsoidal.

It is also important to keep some problems with parametric models in
mind. First, models that lack the degrees of freedom needed to describe the
actual mass distribution can be seriously in error. Second, models with too
many degrees of freedom can be nonsense. We can illustrate these two limi-
ting problems with the sad history of Q0957+561 for the first problem and
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Fig. 24. (Top) Goodness of fit χ2 for cuspy models of B1933+503 as a function
of the inner density exponent γ (ρ ∝ r−γ) and the profile break radius a. Models
with cusps significantly shallower or steeper than isothermal are ruled out, and
acceptable models near isothermal must have break radii outside the region with
the lensed images. (Bottom) The monopole deflections of the B1933+503 models for
the range of permitted cusp exponents γ. The points show the radii of the lensed
images, and the models only constrain the shape of the monopole in this region. The
monopole deflection is closely related to the square of the rotation curve. Note the
similarity to Fig. 21
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Fig. 25. (Left) Allowed parameters for cuspy models of PMNJ1632–0033 assuming
that image C is a true third image. Each panel shows the constraints on the inner
density cusp β (ρ ∝ r−β) and the break radius rb for three different asymptotic
density slopes ρ ∝ r−η. A Hernquist model has β = 1 and η = 4, an NFW model
has β = 1 and η = 3, and a pseudo-Jaffe model has β = 2 and η = 4. Unless
the break radius is placed interior to the B image, it is restricted to be close to
isothermal (β = 2)

attempts to explain anomalous flux ratios (see Sect. 8) with complex angular
structures in the density distribution for the dark matter.

Q0957+561, the first lens discovered (Walsh et al. 1979) and the first
lens with a well measured time delay (see Sect. 5, Schild and Thomson 1995;
Kundić et al. 1997 and references therein), is an ideal lens for demonstrating
the trouble you can get into using parametric models without careful thought.
The lens consists of a cluster and its brightest cluster galaxy with two lensed
images of a radio source bracketing the galaxy. VLBI observations (e.g. Gar-
rett et al. 1994) resolve the two images into thin, multi-component jets with
very accurately measured positions (uncertainties as small as 0.1 mas, corre-
sponding to deflections produced by a mass scale ∼ 10−8 of the primary lens !).
Models developed along two lines. One line focused on models in which the
cluster was represented as an external shear (e.g. Grogin and Narayan 1996;
Chartas et al. 1998; Barkana et al. 1999; Chae 1999) while the other explored
more complex models for the cluster (see Kochanek 1991c; Bernstein, Tyson
and Kochanek 1993; Bernstein and Fischer 1999) and argued that external
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shear models had too few parameters to represent the mass distribution given
the accuracy of the constraints. The latter view was born out by the mor-
phology of the lensed host galaxy (Keeton et al. 2000a) and direct X-ray
observations of the cluster (Chartas et al. 2002) which showed that the lens
galaxy was within about one Einstein radius of the cluster center where a
tidal shear approximation fails catastrophically. The origin of the problem is
that as a two-image lens, Q0957+561 is critically short of constraints unless
the fine details of the VLBI jet structures are included in the models. Many
studies imposed these constraints to the limit of the measurements (tens of
micro-arcseconds) while not including all possible terms in the potential which
could produce a deflection on that scale (i.e. the precision should have been
restricted to milli-arcseconds rather than micro-arcseconds). Models would
adjust the positions and masses of the cluster and the lens galaxy in order
to reproduce the small scale astrometric details of the VLBI jets without in-
cluding less massive components of the mass distribution (e.g. the ellipticity
gradient and isophote twist of the lens galaxy, Keeton et al. 2000a) that also
affected the VLBI jet structure on these angular scales. Lens models must con-
tain all reasonable structures producing deflections comparable to the scale
of the measurement errors.

We are in the middle of an experiment exploring the second problem – if
you include small scale structures but lack the constraints needed to measure
them, their masses easily become unreasonable unless constrained by common
sense, physical priors or additional data. Lately this has become an issue in
studies (Evans and Witt 2003; Kochanek and Dalal 2004; Quadri, Möller and
Natarajan 2003; Kawano et al. 2004) of whether the flux ratio anomalies in
gravitational lenses could be due to complex angular structure in the lens
galaxy rather than CDM substructure or satellites in the lens galaxy (see
Sect. 8). The problem, as we discuss in the next section on non-parametric
models (Sect. 4.7), is that lens modeling with large numbers of parameters is
closely related to solving linear equations with more variables than constraints
– as the matrix inversion necessary to finding a solution becomes singular, the
parameters of the mass distribution show wild, large amplitude fluctuations
even as the fit to the constraints becomes perfect. Thus, a model including
enough unconstrained parameters is guaranteed to “solve” the anomalous flux
ratio problem even if it should not. For example, Evans and Witt (2003) could
match the flux ratios of Q2237+0305 even though for this lens we know from
the time variability of the flux ratios that the flux ratio anomalies are created
by microlensing rather than complex angular structures in the lens model (see
Part 4).

If only the four compact images are modeled, then the flux ratio anom-
alies can be greatly reduced or eliminated in almost all lenses at the price of
introducing deviations from an ellipsoidal density distribution far larger than
expected (see Sect. 4.4). In some cases, however, you can test these solutions
because the lens has extra constraints beyond the four compact images. We
illustrate this in Fig. 26 where, by adding large amplitude cos 3θ and cos 4θ
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Fig. 26. Surface density contours for models of B1933+503 including misaligned a3

and a4 multipoles (thin lines). The model in the top panel is constrained only by the
4 compact images (images 1, 3, 4 and 6, filled squares). The model in the bottom
panel is also constrained by the other images in the lens (the two-image system 1a/8,
open squares; the four-image system 2a/2b/5/7 filled triangles; and the two-image
system comprising parts of 5/7, open triangles). The tangential critical line of the
model (heavy dashed curve) must pass between the merging images 2a/2b, but fails
to do so in the first model (top panel)
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perturbations to the surface density model for B1933+503, Kochanek and
Dalal (2004) could reproduce the observed image flux ratios if they fit only
the four compact sources. However, after adding the constraints from the other
lensed components, the solution is driven back to being nearly ellipsoidal and
the flux ratios cannot be fit. In every case, Kochanek and Dalal (2004) found
that the extra constraints drove the solution back toward an ellipsoidal density
distribution. In short, a sufficiently complex model can fit underconstrained
data, but that does not mean it makes any sense to do so.

4.7 Non-Parametric Models

The basic idea behind non-parametric mass models is that the effective lens
potential and the deflection equations are linear “functions” of the surface
density. The surface density can be decomposed into multipoles (Kochanek
1991a; Trotter, Winn and Hewitt 2000; Evans and Witt 2003), pixels (see
Saha and Williams 1997, 2004; Williams and Saha 2000), or any other form
in which the surface density is represented as a linear combination of density
functionals multiplied by unknown coefficients κ. In any such model, the lens
equation for image i takes the form

β = θi −Aiκ, (85)

where Ai is the matrix that gives the deflection at the position of image i in
terms of the coefficients of the surface density decomposition κ. For a lens with
i = 1, ..., n images of the same source, such a system can be solved exactly if
there are enough degrees of freedom in the description of the surface density.
For simplicity, consider a two-image lens so that we can eliminate the source
position by hand, leaving the system of equations

θ1 − θ2 = (A1 −A2)κ, (86)

which is easily solved by simply taking the inverse of the matrix A1 − A2 to
find that

κ = (A1 −A2)−1 (θ1 − θ2) . (87)

Sadly, life is not that simple because as soon as the density decomposition has
more degrees of freedom than there are constraints, the inverse (A1 − A2)−1

of the deflection operators is singular.
The solution to this problem is to instead consider the problem as a more

general minimization problem with a χ2 statistic for the constraints and some
form of regularization to restrict the results to plausible surface densities. One
possibility is linear regularization, in which you minimize the function

F = χ2 + λκ ·H · κ, (88)

where the χ2 measures the goodness of fit to the lens constraints, H is a weight
matrix and λ is a Lagrange multiplier. The Lagrange multiplier controls the
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relative weight given to fitting the lens constraints (minimizing the χ2) versus
producing a smooth density distribution (minimizing κ ·H ·κ). The simplest
smoothing function is to minimize the variance of the surface density (H = I,
the identity matrix), or, equivalently, ignore H and use the singular value
decomposition for inverting a singular matrix. By using more complicated
matrices you can minimize derivatives of the density (gradients, curvature
etc.). Solutions are found by adjusting the multiplier λ until the goodness
of fit satisfies χ2 � Ndof where Ndof is the number of degrees of freedom.
Another solution is to use linear programming methods to impose constraints
such as positive surface densities, negative density gradients from the lens
center or density symmetries (Saha and Williams 1997, 2004; Williams and
Saha 2000). Time delays, which are also linear functions of the surface density,
are easily included. Flux ratios are more challenging because magnifications
are quadratic rather than linear functions of the surface density except for
the special case of the generalized singular isothermal models where Ψ =
bθF (χ) (42), Witt, Mao and Keeton 2000; Kochanek et al. 2001a; Evans and
Witt 2001). The best developed, publicly available non-parametric models
are those by Saha and Williams (2004). These are available at http://ankh-
morpork.maths.qmc.ac.uk/∼saha/astron/lens/.

Personally, I am not a fan of the non-parametric models, essentially be-
cause almost all the additional degrees of freedom they include are irrele-
vant to the problem. As I have tried to outline in the preceding sections,
there is no real ambiguity about the aspects of gravitational potentials ei-
ther constrained or unconstrained by lens models. Provided the parametric
models capture these degrees of freedom and you do not get carried away with
the precision of the fits, you can ignore deviations of the cos(16χ) term of the
surface density from that expected for an ellipsoidal model. Similarly for the
monopole profile, the distribution of mass interior and exterior to the images
is irrelevant and for the most part only the mean surface density between
the images has any physical effect. Nothing is gained by allowing arbitrary,
fine-grained distributions.

There are also specific physical and mathematical problems with non-
parametric models just as there are for parametric models. First, the trick of
linearization only works if the lens equations are solved on the source plane.
As we discussed when we introduced model fitting (Sect. 4.6), this makes it
impossible to properly compute error bars on any parameters. The equations
become non-linear if they include either the magnification tensor (83) or use
the true image plane fit statistic (84), and this greatly reduces the attrac-
tiveness of these methods. Second, in many cases the non-parametric models
are not constrained to avoid creating extra images not seen in the observa-
tions – the models reproduce the observed images exactly, but come with no
guarantee that they are not producing 3 other images somewhere else. Third,
it is very difficult to guarantee that the resulting models are physical. For
example, consider a simple spherical lens constrained to have positive surface
density. For the implied three-dimensional density to also be positive definite,
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the surface density must decline monotonically from the center of the lens.
This constraint is usually applied by the Saha and Williams (2004) method.
For the distribution function of the stars making up the galaxy to be positive
definite, the three dimensional density must also decline monotonically – this
implies a constraint on the second derivative of the surface density which is
not imposed by any of these methods. For the distribution to be dynamically
stable it must satisfy a criterion on the derivative of the distribution function
with respect to the orbital energy, and this implies a criterion on the third
derivative of the surface density which is also not imposed (see Binney and
Tremaine 1987). Worse yet, for a non-spherical system we cannot even write
down the constraints on the surface density required for the model to corre-
spond to a stable galaxy with a positive definite distribution function. In short,
most non-parametric models will be unphysical – they overestimate the de-
grees of freedom in the mass distribution. The critique being made, parametric
models have a role because they define the outer limits of what is possible by
avoiding the strong physical priors implicit in parametric models of galaxies.

4.8 Statistical Constraints on Mass Distributions

Where individual lenses may fail to constrain the mass distribution, ensembles
of lenses may succeed. There are two basic ideas behind statistical constraints
on mass distributions. The first idea is that models of individual lenses should
be weighted by the likelihood of the observed configuration given the model
parameters. The second idea is that the statistical properties of lens samples
should be homogeneous.

An example of weighting models by the likelihood is the limit on the
slopes of central density cusps from the observed absence of central images.
Rusin and Ma (2001) considered 6 CLASS (see Sect. 6) survey radio doubles
and computed the probability pi(n) that lens i would have a detectable third
image in the core of the lens assuming power law mass densities Σ ∝ R1−n

and including a model for the observational sensitivities and the magnification
bias (see Sect. 6.6) of the survey. They were only interested in the range n < 2,
because as discussed in Sect. 3, density cusps with n ≥ 2 never have central
images. For most of the lenses they considered, it was possible to find models of
the 6 lenses that lacked detectable central images over a broad range of density
exponents. However, the shallower the cusp, the smaller the probability pi(n)
of producing a lens without a visible central image. For any single lens, pi(n)
varies too little to set a useful bound on the exponent, but the joint probability
of the entire sample having no central images, P = Πi(1 − pi(n)), leads to
a strong (one-sided) limit that n > 1.78 at 95% confidence (see Fig. 27). In
practice, Keeton (2003b) demonstrated that the central stellar densities are
sufficiently high to avoid the formation of visible central images in almost
all lenses given the dynamic ranges of existing radio observations (i.e. stellar
density distributions are sufficiently cuspy), and central black holes can also
assist in suppressing the central image (Mao, Witt and Koopmans 2001).
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Fig. 27. Limits on the central density exponent for power-law density profiles ρ ∝
r−n = r−1−β from the absence of detectable central images in a sample of 6 CLASS
survey radio doubles (Rusin and Ma 2001). The lighter curves show the limits for
the individual lenses with the weakest constraint from B0739+366 and the strongest
from B0218+357, and the heavy solid curve shows the joint probability P

However, the basic idea behind the Rusin and Ma (2001) analysis is important
and underutilized.

An example of requiring the lenses to be homogeneous is the estimate of the
misalignment between the major axis of the luminous lens galaxy and the over-
all mass distribution by Kochanek (2002a,b). Figure 28 shows the misalign-
ment angle ΔχLM = |χL −χM | between the major axis χL of the lens galaxy
and the major axis χM of an ellipsoidal mass model for the lens. The par-
ticular mass model is unimportant because any single component model of a
four-image lens will give a nearly identical value for χM (e.g. Kochanek 1991b;
Wambsganss and Paczyński 1994). The distribution of the misalignment an-
gle ΔχLM is not consistent with the mass and the light being either perfectly
correlated or uncorrelated. This is not surprising, because a simple ellipsoidal
model determines the position angle of the mean quadrupole moment near the
Einstein ring, which is a combination of the quadrupole moment of the lens
galaxy, the halo of the lens galaxy, and the local tidal shear (see Sect. 4.4).
Even if the lens galaxy and the halo were perfectly aligned, we would still find
that the orientation of the mean quadrupole would differ from that of the light
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Fig. 28. (Top) The integral distribution of misalignment angles ΔχLM between
the major axes of the lens galaxy and an ellipsoidal lens model (solid curve with
points for each lens). If the two angles were completely uncorrelated, the distribution
would follow the dashed line. If the two angles were perfectly correlated they would
follow the solid curve because of the measurement uncertainties in the two angles.
(Bottom) Logarithmic contours of the probability for matching the distribution of
misalignment angles as a function of the rms misalignment σθ between the mass
and the light and the typical tidal shear γrms. Theoretically we expect tidal shears
γrms 	 0.06. The solid contours are spaced by 0.5 dex and the dashed contours
are spaced by 0.1 dex relative to the maximum likelihood contour. The differences
between dashed contours are not statistically significant, while those between solid
contours are statistically significant
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because of the effects of the tidal shears. We can model this by estimating the
probability of reproducing the observed misalignment distribution in terms of
the strength of the local tidal shear γrms and the dispersion σχ in the angle
between the major axis of the mass distribution and the light, as shown in
Fig. 28. The observed mismatch can either be produced by having a typical
tidal shear of γrms � 0.05 or by having a typical misalignment between mass
and light of σχ � 20◦. We know, however, that the typical tidal shear can-
not be zero because it can be estimated from the statistics of galaxies (e.g.
Keeton, Kochanek and Seljak 1997; Holder and Schechter 2003). Keeton et al.
(1997) obtained γrms � 0.05, in which case mass must align with light and
we obtain an upper limit of σχ <∼ 10◦. Holder and Schechter (2003) argue for
a much higher rms shear of γrms = 0.15 based on N-body simulations, which
is too high to be consistent with the observed alignment of mass models and
the luminous galaxy. One possible explanation (based on the results of White,
Hernquist and Springel 2001) is that Holder and Schechter (2003) included
parts of the lens galaxy’s own halo in their estimate of the external shear.
Alternatively, if lens galaxies are more compact than the SIE model used by
Kochanek (2002a,b), then the lower surface density 〈κ〉 raises the required
shear (since γ ∝ (1 − 〈κ〉), (78)). However, mass distributions similar to con-
stant mass-to-light ratio models of the lenses would be required, which would
be inconsistent with shear estimates from simulations in which galaxy masses
are dominated by extended dark matter halos.

The trade-off between central concentration and shear leads to the inter-
esting question of where the quadrupole structure of lenses originates. As we
discussed in Sect. 4.4, we can break up the quadrupole of the mass distribution
into the internal quadrupole due to the matter interior to the Einstein ring
(52) and the exterior quadrupole due to the matter outside the Einstein ring
(51). While the internal quadrupole is due only to the lens galaxy, the external
quadrupole is a mixture of the quadrupole from the parts of the galaxy outside
the Einstein ring (i.e. the dark matter halo) and the tidal shear from the en-
vironment. An important fact to remember is that for an isothermal ellipsoid,
only fint = 25% of the quadrupole is due to mass inside the Einstein ring (see
Fig. 22, Sect. 4.4) ! Turner, Keeton and Kochanek (2004) explored this by fit-
ting all the available four-image lenses with an SIS monopole combined with
an internal and an external quadrupole. They then computed the fraction of
the quadrupole fint associated with the mass interior to the Einstein ring to
find the distribution shown in Fig. 29. Most four-image lenses seem to be dom-
inated by the external quadrupole, with internal quadrupole fractions below
the fint = 0.25 fraction expected for an isothermal ellipsoid. Lenses clearly in
environments with very large tidal shears (e.g. RXJ0911+0551 which is near
a massive cluster, Bade et al. 1997; Kneib et al. 2000; Morgan et al. 2001 or
HE0435–1223 which is near a large galaxy, Wisotzki et al. 2002, see Fig. 4)
show much smaller internal shear fractions. B1608+656 (Myers et al. 1995;
Fassnacht et al. 1999), which has two lens galaxies inside the Einstein ring,
shows a significantly higher internal quadrupole fraction. Combined with the
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Fig. 29. The internal shear fraction fint for the four-image lenses. Each system
was fitted by an SIS combined with an internal shear and an external shear and
fint = |Γ |/(|Γ |+ |γ|) is the fraction of the quadrupole amplitude due to the internal
shear. An SIE has fint = 1/4 (see Fig. 22). Most of the quads have fint <∼ 1/4 as ex-
pected for an SIE in an additional external (tidal) shear field. Objects with very low
fint (e.g. HE0435–1223, RXJ0911+0551, B1422+231) have nearby galaxies or clus-
ters generating anomalously large external shears, while objects with anomalously
high fint (B1608+656, HE0230–2130, MG0414+0534) tend to have additional lens
components like the second lens galaxy of B1608+656. For some systems either the
imaging data (e.g. B0128+437) or the models (e.g. B2045+265) do not allow a clear
qualitative explanation

close correlation of mass model alignments with the luminous galaxies, this
seems to argue for significant dark matter halos aligned with the luminous
galaxy, but the final step of quantitatively assembling all the pieces has yet
to be done.

The existence of the fundamental plane (see Sect. 9) strongly suggests that
the structure of early-type galaxies is fairly homogeneous – in particular it is
consistent with galaxies having self-similar mass distributions in the sense that
the halo structure can be scaled from the structure of the visible galaxy. As
a particular example based on our theoretical expectations, Rusin, Kochanek
and Keeton (2003b) and Rusin and Kochanek (2005) modeled the visible
galaxy with a Hernquist.

Equation 56 model scaled to match the observed effective radius of the
lens galaxy, Re, and then added a cuspy dark matter halo (59 with a variable
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inner cusp η, α = 2 and m = 3) where the inner density cusp (ρ ∝ r−η), the
halo break radius rb and the dark matter fraction fCDM inside 2Re were kept
as variables. The assumption of self-similarity enters by keeping the ratio
rb/Re constant, the dark matter fraction fCDM constant, and then scaling
the mass-to-light ratio of the stars Υ ∝ Lx with the luminosity. 3 We recover
the fundamental plane in this model when x � 0.25. Putting all the pieces
together, the projected mass inside radius R is

M(< R) = Υ∗L∗

(
L(0)
L∗

)1+x [
g(R/Re) + g(2)

fCDM

1 − fCDM
mCDM (R/Re)

]
,

(89)
where Υ∗ is the mass-to-light ratio of the stars in an L∗ galaxy, logL(0) =
logL(z) − e(z) is the luminosity of the lens galaxy evolved to redshift zero
(where we discuss estimates of the evolution rate e(z) in Sect. 9), g(x) is
the fraction of the light inside dimensionless radius x = R/Re (g(1) = 1/2)
and mCDM (x) is the dimensionless dark matter mass inside radius x with
mCDM (2) = 1 so that the CDM mass fraction inside x = 2 is fCDM .

As we discussed earlier in Sect. 4.6, few lenses have sufficient constraints
to estimate all the parameters in such a complex model. However, the as-
sumption of self-similarity allows the average profile to be constrained sta-
tistically (Rusin et al. 2003a,b; Rusin and Kochanek 2005). Suppose we saw
lensed images generated by the same galaxy at a range of different source and
lens redshifts. Each observed lens only reliably measures an aperture mass
Map(R < REin) where REin is the Einstein radius. But the physical scale
REin varies with redshift, so the ensemble of the lenses traces out the overall
mass profile. Clearly we do not have ensembles of lenses generated by iden-
tical galaxies, but the assumption of self-similarity allows us to use the same
idea for lenses with a range of luminosities and scale lengths. For 22 lenses
with redshifts and accurate photometry we compared the measured aperture
masses to the predicted aperture masses (the procedure for two-image lenses
is a little more complicated, see Rusin et al. 2003a,b) to estimate all the model
parameters. Figure 30 shows the results for the parameters associated with the
dark matter halo. In the limit that fCDM → 1 we find that the mass distrib-
ution is consistent with a simple SIS model (the limit fCDM → 1 and n → 2)
almost independent of the break radius location. There is a slight trend with
break radius because as the break to the steep ρ ∝ r−3 outer profile gets closer
to the region with the lensed images the inner cusp can be shallower while
keeping the overall profile over the region with images close to isothermal.
As we reduce fCDM and add mass to the stars, the inner cusp becomes shal-
lower, such that for a NFW (n = 1) cusp the dark matter fraction inside 2Re

is ∼ 40%. It is interesting to note, however, that the total mass distribution
(light + dark) changes little over the full range of allowed parameters (bottom
panels of Fig. 30) – lensing constrains the global mass distribution not how
3 They could also have allowed the CDM fraction to vary as fCDM ∝ Ly, but these

led to degenerate models where only the combination x + y was constrained.
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Fig. 30. The structure of lens galaxies in self-similar models. The top row shows
the permitted region for the slope of the inner dark matter cusp (ρ ∝ r−n) and
the fraction of the mass fCDM inside 2Re composed of dark matter. The results are
shown for three ratios Rb/Re between the break radius Rb of the dark matter profile
and the effective radius Re of the luminous galaxy. The solid (dashed) contours show
the 68% and 95% confidence levels for two (one) parameter. Note that the estimates
of n and fCDM depend little on the location of the break radius relative to the
effective radius. The Bottom row shows all the mass profiles lying with the (two
parameter) 68% confidence region normalized to a fixed projected mass inside 2Re.
For comparison we show the mass enclosed by a de Vaucouleurs model (dotted line)
and an SIS (offset dashed line). While the allowed models exhibit a wide range of
dark matter abundances, slopes and break radii, they all have roughly isothermal
total mass profiles over the radial range spanned by the lensed images

it is divided into luminous and dark subcomponents. Note the resemblance
of the statistical results to the results for detailed models of B1933+503 in
Fig. 24.

4.9 Stellar Dynamics and Lensing

Stellar dynamical analyses of gravitational lenses have reached the level of
studies of local galaxies approximately 15–20 years ago. The analyses are
based on the spherical Jeans equations (see Binney and Tremaine 1987) with
simple models of the orbital anisotropy and generally ignore both deviations
from sphericity and higher order moments of the velocity distributions. The
spherical Jeans equation
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1
ν

dνσ2
r

dr
+

2β(r)
r

σ2
r = −GM(r)

r2
(90)

relates the radial velocity dispersion σr = 〈v2
r〉1/2, the isotropy parameter

β(r) = 1 − σ2
θ/σ

2
r characterizing the ratio of the tangential dispersion to

the radial dispersion, the luminosity density of the stars ν(r) and the mass
distribution M(r). A well known result from dynamics is that you cannot
infer the mass distribution M(r) without constraining the isotropy β(r) (e.g.
Binney and Mamon 1982). Models with β = 0 are called isotropic models (i.e.
σr = σθ), while models with β → 1 are dominated by radial orbits and models
with β → −∞ are dominated by tangential orbits. These 3D components of
the velocity dispersion must then be projected to measure the line-of-sight
velocity dispersion 〈v2

los〉1/2,

Σ(R)〈v2
los〉(R) = 2

∫ ∞
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∫ ∞
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where Σ(R) = 2
∫∞
0

dzν(r) is the projected surface brightness and z is the co-
ordinate along the line-of-sight. Modern observations of local galaxies break
the degeneracy between mass and isotropy by measuring higher order mo-
ments (〈vn

los〉) of the line-of-sight velocity distribution (LOSVD) because the
shape of the LOSVD is affected by the isotropy of the orbits. Because the ve-
locity dispersions are measured starting from a Gaussian fit to the LOSVD, the
higher order moments are described by the amplitudes hn of a decomposition
of the LOSVD into Gauss–Hermite polynomials (e.g. van der Marel and Franx
1993). In general, the rms velocity (i.e. combining dispersion and rotation) and
higher order moment profiles of early-type galaxies are fairly self-similar, with
nearly flat rms velocity profiles, modest values of h4 � 0.01±0.03 and slightly
radial orbits 〈β〉 � 0.1–0.2 (e.g. Romanowsky and Kochanek 1999; Gerhard
et al. 2001).

Stellar dynamics is used for two purposes in lensing studies. The first is
to provide a mass normalization for lens models used in studies of lens statis-
tics. We will discuss this in Sect. 6. The second is to use comparisons between
a mass estimated from the geometry of a lens and the velocity dispersion
of the lens galaxy to constrain the mass distribution (e.g. Romanowsky and
Kochanek 1999; Trott and Webster 2002; Koopmans and Treu 2002, 2003;
Treu and Koopmans 2002a,b; Koopmans et al. 2003). It is important to un-
derstand that the systematic uncertainties in combining lensing and stellar
dynamics to determine mass distributions are different from using either in
isolation. For local galaxies we measure a velocity dispersion profile. The nor-
malization of the profile sets the mass scale and the changes in the profile (and
any higher order moments) with radius constrains the mass distribution. To
lowest order, a simple scaling error in the velocity measurements will lead to
errors in the mass scale rather than in the mass distribution. For lens galaxies,
it is the comparison between the velocity dispersion and the mass determined
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by the geometry of the images that constrains the mass distribution. Thus, es-
timates of the mass distribution are directly affected by any calibration errors
in the velocity dispersions.

We can understand the differences with a simple thought experiment. Sup-
pose we have a mass distribution M = M0(R/R0)x in projection and we have
mass estimates M1 at R1 and M2 at R2. Combining them we can solve for
the exponent describing the mass distribution, x = ln(M1/M2)/ ln(R1/R2).
In a dynamical observation the mass estimate is some sort of virial estimator
M ∝ σ2

vR/G while in a lensing measurement it is a direct measurement of M .
Standard velocity dispersion measurements start from the best fit Gaussian
line width σ̂ (uncertainties ±eσ) and then subtract an intrinsic line width σc

(due to the instrument and the intrinsic line width of the star, uncertainties
±ec) in quadrature to estimate the portion of the line width due to the motions
of the stars. Thus σ2

v = f2(σ̂2 − σ2
c ) where f � 1 is a scale factor to account

for deviations from spherical symmetry and non-Gaussian line-of-sight veloc-
ity distributions (LOSVDs). In a purely dynamical study, uncertainties in f
and σc produce bigger fractional errors in the absolute mass scale M0 than in
the exponent x. For example, given measurements σ1 and σ2 at radii R1 and
R2, the exponent, x = 1 + ln(σ2

1/σ
2
2)/ ln(R1/R2), depends only on velocity

dispersion ratios in which calibration errors tend to cancel. This is obvious for
the scale factor f , which cancels exactly if it does not vary with radius. Since
studies of lens dynamics use a comparison between a dynamical mass and a
lensing mass to estimate the mass distribution, the results are more sensitive
to calibration problems because these cancellations no longer occur. If we com-
bine a velocity dispersion measurement σ1 with a lensing mass measurement
M2 our estimate of the exponent becomes x = ln(σ2

1R1/GM2)/ ln(R1/R2)
and the uncertainties are linear in the scale factor f rather than canceling.
An error analysis for the effects of σc is messier, but you again find that the
sensitivity in the mixed lensing and dynamics constraint to errors in σc is
greater than in a purely dynamical study.

Velocity dispersions have now been measured for 10 lenses (0047–2808
Koopmans and Treu 2003;CFRS03.1077TreuandKoopmans2004; Q0957+561
Falco et al. 1997; Tonry and Franx 1999; PG1115+080 Tonry 1998; HST14176
+5226 Ohyama et al. 2002; Gebhardt et al. 2003; Treu and Koopmans 2004;
HST15433+5352 Treu and Koopmans 2004; MG1549+3047 Lehár et al. 1996;
B1608+656 Koopmans et al. 2003; MG2016+112 Koopmans and Treu 2002;
Q2237+0305 Foltz et al. 1992). With the exception of Romanowsky and
Kochanek (1999), who fitted for the distribution function of the lens, the
analyses of the data have used the spherical Jeans equations with parameter-
ized models for the isotropy β(r). They include the uncertainties in σc about
as well as any other dynamical study, although it is worth bearing in mind that
this is tricky because we lack nearby stars with the appropriate metallicity and
the problem of matching the spectral resolution for the galaxy and the tem-
plate stars lacks direct checks of the success of the procedure. A useful rule of
thumb to remember is that repeat measurements of velocity dispersions by dif-
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ferent groups almost always show larger scatter than is consistent with the re-
ported uncertainties. For example, the three velocity dispersion measurements
for the lens HST14176+5226 (224 ± 15 km/s by Ohyama et al. 2002, 202 ±
9 km/s by Gebhardt et al. 2003, and 230 ± 14 km/s by Treu and Koopmans
2004) are mutually consistent only if the uncertainties are broadened by 30%.

In Fig. 31 we summarize the dynamical constraints for 9 of these systems
using the self-similar mass distribution from Rusin and Kochanek (2005, (89)).
This model is very similar to that used by Treu and Koopmans (2004). For
most of the lenses, the region producing a good fit to the combined lensing and
dynamical data overlaps the same region preferred by the Rusin and Kochanek
(2005) self-similar models, shows the same general parameter degeneracy and
is consistent with a simple SIS mass distribution (fcdm → 1 and n = 2). This is
particularly true of 0047–2808, HST15433+5352, B1608+656, MG2016+112
and CFRS03.1077. Only Q2237+0305, where the lens is the bulge of a nearby
spiral and we might not expect this mass model to be applicable, shows a very
different trend (e.g. see the models of Trott and Webster 2002). PG1115+080
and to a lesser extent MG1549+3047 might have steeper than isothermal mass
distributions (falling rotation curves) and the possibility of being consistent
with a constant mass-to-light ratio model (Treu and Koopmans 2002a,b).
HST14176+5226 and to a lesser extent HST15433+5352 could have shallower
than isothermal mass distribution (rising rotation curves). Along the degen-
eracy direction for each lens we will find similar mass distributions with very
different decompositions into luminous and dark matter, just as in Fig. 30. The
problem raised by this panorama is whether it shows that the halo structure
is largely homogeneous with some measurement outliers, or that the structure
of early-type is heterogeneous with important implications for understanding
time delays (Sect. 5) and galaxy evolution (Sect. 9).

My own view tends toward the first interpretation – that the dynamical
data supports the homogeneity of early-type galaxy structure. The permitted
bands in Fig. 31 show the 68% confidence regions given the formal measure-
ment errors and the simple, spherical, isotropic Jeans equation models – this
means that the true 68% confidence regions are significantly larger. We have
already argued that the formal errors on dynamical measurements tend to be
underestimates. For example, the need for HST14176+5226 to have a rising
rotation curve would be considerably reduced if we used the higher velocity
dispersion measurements from Ohyama et al. (2002) or Treu and Koopmans
(2004) or if we broadened the uncertainties by the 30% needed to make the
three estimates statistically consistent. Moreover, the existing analyses have
also neglected the systematic uncertainties arising from the scaling factor f .
There are two important issues that make f 
= 1. The first issue is that stan-
dard velocity dispersion measurements are the width of the best fit Gaussian
model for the LOSVD, and this is not the same as the mean square velocity
(〈v2

los〉1/2) appearing in the Jeans equations used to analyze the data unless
the LOSVD is also a Gaussian. Stellar dynamics has adopted the dimen-
sionless coefficients hn of a Gauss–Hermite polynomial series to model the
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Fig. 31. Constraints from lens velocity dispersion measurements on the self-similar
mass distributions of (89) and Fig. 30. The dotted contours show the 68% and
95% confidence limits from the self-similar models for Rb/Re = 50. The shaded
regions show the models allowed (68% confidence) by the formal velocity disper-
sion measurement errors, and the heavy solid lines show contours of the velocity
dispersion in km/s. We used the low (Gebhardt et al. 2003) velocity dispersion for
HST14176+5226 because it has the smallest formal error. These models assumed
isotropic orbits, thereby underestimating the full uncertainties in the stellar dynam-
ical models

deviations of the LOSVD from Gaussian, and a typical early-type galaxy
has |h4| <∼ 0.03 (e.g. Romanowsky and Kochanek 1999). This leads to a sys-
tematic difference between the measured dispersions and the mean square
velocity of 〈v2

los〉1/2 � σ(1 +
√

6h4) (e.g. van der Marel and Franx 1993), so
|f−1| ∼ 7% for |h4| � 0.03. Only the Romanowsky and Kochanek (1999) mod-
els of Q0957+561 and PG1115+080 have properly included this uncertainty.
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In fact, Romanowsky and Kochanek (1999) demonstrated that there were stel-
lar distribution functions in which the mass distribution of PG1115+080 is
both isothermal and agrees with the measured velocity dispersion. While it
is debatable whether these models allowed too much freedom, it is certainly
true that models using the Jeans equations and ignoring the LOSVD have too
little freedom and will overestimate the constraints.

The second issue is that lens galaxies are not spheres. Unfortunately there
are few simple analytic results for oblate or triaxial systems like early-type
galaxies in which the ellipticity is largely due to anisotropies in the velocity
dispersion tensor rather than rotation. For the system as a whole, the tensor
virial theorem provides a simple global relationship between the major and
minor axis velocity dispersions

σmajor

σminor
� 1 +

1
5
e2 +

9
70

e4 + · · · (92)

for an oblate ellipsoid of axis ratio q and eccentricity e = (1 − q2)1/2 (e.g.
Binney and Tremaine 1987). The velocity dispersion viewed along the major
axis is larger than that on the minor, and the correction can be quite large
since a typical galaxy with q = 0.7 will have a ratio σmajor/σminor � 1.16
that is much larger than typical measurement uncertainties. If galaxies are
oblate, this provides no help for the case of PG1115+080 because making the
line-of-sight dispersion too high requires a prolate galaxy. However, it is a
very simple means of shifting HST14176+5226. Crudely, if we start with the
low 209 km/s velocity dispersion and assume that the lens is a q = 0.7 galaxy
viewed pole on, then σmajor/σminor � 1.14 and the corrections for the shape
are large enough to make HST14176+5226 consistent with the other systems.

A final caveat is that neglecting necessary degrees of freedom in your lens
model can bias inferences from the stellar dynamics of lenses just as it can in
pure lens modeling. For example, Sand et al. (2002, 2004) used a comparison
of lensed arcs in clusters to velocity dispersion measurements of the central
cluster galaxy to argue that the cluster dark matter distribution could not have
the ρ ∝ 1/r cusp of the NFW model for CDM halos. However, Bartelmann
and Meneghetti (2004) and Dalal and Keeton (2003) show that the data are
consistent with an NFW cusp if the lens models include a proper treatment
of the non-spherical nature of the clusters. This has not been an issue in the
stellar dynamics of strong lenses where the lens models used to determine the
mass scale have always included the effects of ellipticity and shear, but it is
well worth remembering.

5 Time Delays

Nothing compares to the measurement of the Hubble constant in bringing
out the worst in astronomers. As we discussed in the previous section on
lens modeling, many discussions of lens models seem obfuscatory rather than



164 C.S. Kochanek

illuminating, and the tendency in this direction increases when the models
are used to estimate H0. In this section we discuss the relationship between
time delay measurements, lens models and H0. All results in the literature are
consistent with this discussion, although it may take you several days and a
series of e-mails to confirm it for any particular paper. The basic idea is simple.
We see images at extrema of the virtual time delay surface (e.g. Blandford and
Narayan 1986, Part 1) so the propagation time from the source to the observer
differs for each image. The differences in propagation times, known as time
delays, are proportional to H−1

0 because the distances between the observer,
the lens and the source depend on the Hubble constant (Refsdal 1964a,b).
When the source varies, the variations appear in the images separated by the
time delays and the delays are measured by cross-correlating the light curves.
There are recent reviews of time delays and the Hubble constant by Courbin,
Saha and Schechter (2002b) and Kochanek and Schechter (2004). Portions of
this section are adapted from Kochanek and Schechter (2004) since we were
completing that review at about the same time as we presented these lectures.

To begin the discussion we start with our standard simple model, the
circular power law lens from Sect. 3. As a circular lens, we see two images
at radii θA and θB from the lens center and we will assume that θA > θB

(Fig. 20). Image A is a minimum, so source variability will appear in image
A first and then with a time delay Δt in the saddle point image B. We can
easily fit this data with an SIS lens model (see (21) and (22)) to find that
θA = β + b and θB = b − β where b = (θA + θB)/2 is the critical (Einstein)
radius of the lens and β = (θA − θB)/2 is the source position. The light travel
time for each image relative to a fiducial unperturbed ray is (see Part 1)

τ(θ) =
DdDs

cDds

[
1
2

(θ − β)2 − Ψ(θ)
]
, (93)

where the effective potential Ψ = bθ for the SIS lens. Remember that the
distances are comoving angular diameter distances rather than the more fa-
miliar angular diameter distances and this leads to the vanishing of the extra
1 + zl factor that appears in the numerator if you insist on using angular di-
ameter distances. The propagation time scales as H−1

0 � 10h−1 Gyr because
of the H−1

0 scalings of the distances. After substituting our lens model, and
differencing the delays for the two images, we find that

ΔtSIS = τB − τA =
1
2
DdDs

cDds

(
θ2

A − θ2
B

)
. (94)

The typical deflection angle b ∼ 3 × 10−6 radians (so R2
A ∼ 10−11) converts

the 10h−1 Gyr propagation time into a time delay of months or years that
can be measured by monitoring the light curves of the images. Naively, this
result suggests that the problem of interpreting time delays to measure H0 is
a trivial problem in astrometry.

We can check this assumption by using our general power-law models
from Sect. 3 instead of an SIS. The power-law models correspond to density
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distributions ρ ∝ r−n, surface densities κ ∝ R1−n and circular velocities
vc ∝ r(2−n)/2 of which the SIS model is the special case with n = 2. These
models have effective potentials

Ψ(θ) =
b2

3 − n

(
θ

b

)3−n

. (95)

As we discussed in Sect. 4.1 we can fit our simple, circular two-image lens
with any of these models to determine b(n) and β(n) (66), which we can then
substitute into the expression for the propagation time to find that the time
delay between the images is

Δt(n) = (n− 1)ΔtSIS

[
1 − (2 − n)2

12

(
δθ

〈θ〉

)2

+ · · ·
]
, (96)

where we have expanded the result as a series in the ratio between the mean
radius of the images 〈θ〉 = (θA +θB)/2 and the thickness of the radial annulus
separating them δθ = θA−θB . While the expansion assumes that δθ/〈θ〉 ∼ β/b
is small, we can usually ignore higher order terms even when δθ/〈θ〉 is of
order unity. We now see that the time delay depends critically on the density
profile, with more centrally concentrated mass distributions (larger values of
n) producing longer time delays or implying larger Hubble constants for a
fixed time delay.

The other idealization of the SIS model, the assumption of a circular lens,
turns out to be less critical. A very nice analytic example is to consider a singu-
lar isothermal model with arbitrary angular structure in which κ = bF (χ)/2θ
where F (χ) is an arbitrary function of the azimuthal angle. The singular
isothermal ellipsoid (37) is an example of this class of potential. For this
model family, Δt = ΔtSIS independent of the actual angular structure F (χ)
(Witt, Mao and Keeton 2000).

5.1 A General Theory of Time Delays

Just as for estimating mass distributions (Sect. 4), the aspect of modeling
time delays that creates the greatest suspicion is the need to model the grav-
itational potential of the lens. Just as for mass distributions, this problem
is largely of our own making, arising from poor communication, understand-
ing and competition between groups. Here we will use simple mathematical
expansions to show exactly what properties of the potential determine time
delays. Any models which have these generic properties have all the degrees
of freedom needed to properly interpret time delays. This does not, unfortu-
nately, avoid the problem of degeneracies between the mass models and the
Hubble constant.

The key to understanding time delays comes from Gorenstein, Falco and
Shapiro (1988, Kochanek 2002a,b, see also Saha 2000) who showed that the
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time delay in a circular lens depends only on the image positions and the sur-
face density κ(θ) in the annulus between the images. The two lensed images
at radii θA > θB define an annulus bounded by their radii, with an interior
region for θ < θB and an exterior region for θ > θA (Fig. 20). As we discussed
in Sect. 4.1, the mass in the interior region is implicit in the image positions
and constrained by the astrometry. From Gauss’ law we know that the distri-
bution of the mass in the interior and the amount or distribution of mass in
the exterior region is irrelevant. A useful approximation is to assume that the
surface density in the annulus can be locally approximated by a power law,
κ(θ) ∝ θ1−n for θB < θ < θA, with a mean surface density in the annulus of
〈κ〉 = 〈Σ〉/Σc. The time delay between the images is then (Kochanek 2002a)

Δt = 2ΔtSIS

[
1 − 〈κ〉 − 1 − n〈κ〉

12

(
δθ

〈θ〉

)2

+ O

((
δθ

〈θ〉

)4
)]

, (97)

where 〈θ〉 = (θA + θB)/2 and δθ = θA − θB as before. Thus, the time delay
is largely determined by the average surface density 〈κ〉 with only modest
corrections from the local shape of the surface density distribution even when
δθ/〈θ〉 ∼ 1. This second order expansion is exact for an SIS lens (〈κ〉 = 1/2,
n = 2), and it reproduces the time delay of a point mass lens (〈κ〉 = 0) to
better than 1% even when δθ/〈θ〉 = 1. The local model also explains the
scalings of the global power-law models. A κ ∝ θ1−n global power law has
surface density 〈κ〉 = (3− n)/2 near the Einstein ring, so the leading term of
the time delay is Δt = 2ΔSIS(1 − 〈κ〉) = (n− 1)ΔtSIS just as in (96).

The role of the angular structure of the lens is easily incorporated into
the expansion through the multipole expansion of Sect. 4. A quadrupole term
in the potential with dimensionless amplitude εΨ produces ray deflections of
order O(εΨ b) at the Einstein radius b of the lens. In a four-image lens, the
quadrupole deflections are comparable to the fractional thickness of the annu-
lus, εΨ � δθ/〈θ〉, while in a two-image lens they are smaller. For an ellipsoidal
density distribution, the cos(2mχ) multipole amplitude is smaller than the
quadrupole amplitude by ε2m ∼ εmΨ <∼ (δθ/〈θ〉)m. Hence, to lowest order in
the expansion we only need to include the internal and external quadrupoles
of the potential but not the changes of the quadrupoles in the annulus or any
higher order multipoles. Remember that what counts is the angular structure
of the potential rather than of the density, and that potentials are always much
rounder than densities with a typical scaling of m−1:m:1 between the poten-
tial, deflections and surface density for the cosmχ multipoles (see Sect. 4.4)

While the full expansion for independent internal and external quadrupoles
is too complex to be informative, the leading term for the case when the inter-
nal and external quadrupoles are aligned is informative. We have an internal
shear of amplitude Γ and an external shear of amplitude γ with χγ = χΓ as
defined in (51) and (52). The leading term of the time delay is

Δt � 2ΔtSIS (1 − 〈κ〉) sin2 (ΔχAB/2)
1 − 4fint cos2 (ΔχAB/2)

, (98)
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where ΔχAB is the angle between the images (Fig. 20) and fint = Γ/(Γ + γ)
is the internal quadrupole fraction we explored in Fig. 29. We need not worry
about a singular denominator – successful models of the image positions do
not allow such configurations.

A two-image lens has too few astrometric constraints to fully constrain a
model with independent, misaligned internal and external quadrupoles. For-
tunately, when the lensed images lie on opposite sides of the lens galaxy
(ΔχAB � π + δ with |δ| � 1), the time delay becomes insensitive to the
quadrupole structure. Provided the angular deflections are smaller than the
radial deflections (|δ|〈θ〉 <∼ δθ), the leading term of the time delay reduces to
the result for a circular lens, Δt = 2ΔtSIS(1 − 〈κ〉) if we minimize the total
shear of the lens. In the minimum shear solution the shear converges to the
invariant shear (γ1) and the other shear component γ2 = 0 (see Sect. 4.5). If,
however, you allow the other shear component to be non-zero, then you find
that Δt = 2ΔtSIS(1−〈κ〉−γ2) to lowest order – the second shear component
acts like a contribution to the convergence. In the absence of any other con-
straints, this adds a modest additional uncertainty (5–10%) to interpretations
of time delays in two-image lenses. To first order its effects should average out
in an ensemble of lenses because the extra shear has no preferred sign.

A four image lens has more astrometric constraints and can constrain
a model with independent, misaligned internal and external quadrupoles
– this was the basis of the Turner et al. (2004) summary of the inter-
nal to total quadrupole ratios shown in Fig. 29. If the external shear dom-
inates, then fint � 0 and the leading term of the delay becomes Δt =
2ΔtSIS(1 − 〈κ〉) sin2 ΔχAB/2. If the model is isothermal, like the Ψ = θF (χ)
model we introduced in (42), then fint = 1/4 and we obtain the Witt et
al. (2000) result that the time delay is independent of the angle between
the images Δt � 2ΔtSIS(1 − 〈κ〉). Thus, delay ratios in a four-image lens
are largely determined by the angular structure and provide a check on the
potential model. Unfortunately, the only lens with precisely measured delay
ratios, B1608+656 (Fassnacht et al. 2002), also has two galaxies inside the
Einstein ring and is a poor candidate for a simple multipole treatment (al-
though it is dominated by an internal quadrupole as expected, see Fig. 29).
The delay ratios for PG1115+080 are less well measured (Schechter et al.
1997; Barkana 1997; Chartas et al. 2004), but should be dominated by exter-
nal shear since the estimate from the image astrometry is that fint = 0.083
(0.055 < fint < 0.111 at 95% confidence). Figure 32 shows the dependence of
the PG1115+080 delays on the leading angular dependence of the time delay
(98) after scaling out the standard astrometry factor for the different radii of
the images (94). Formally, the estimate from the time delays that fint = −0.02
(−0.09 < fint < 0.03 at 68% confidence) is a little discrepant, but the two
estimates agree at the 95% confidence level and there are still some system-
atic uncertainties in the shorter optical delays of PG1115+080. Changes in
fint between lenses is one reason why (Saha 2004) found significant scatter
between time delays scaled only by ΔtSIS , since the time delay lenses range
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Fig. 32. (Top) The PG1115+080 time delays scaled by the astrometric factor θ2
i −θ2

j

appearing in ΔtSIS (94) as a function of the leading angular dependence of the
time delay (sin2 Δχij/2) (98). The light solid curve and the dashed curves show
the dependence for the best fit internal shear fraction fint and its 68% confidence
limits. A true external shear fint = 0 is shown by the heavy solid curve inside the
confidence limits, and the scaling for an SIE (fint = 1/4) is shown by the horizontal
line. (Bottom) The χ2 goodness of fit for the internal shear fraction fint from the
time delay ratios is shown by the curve with the 68% confidence region bracketed
by the vertical lines. The estimate of fint from the image astrometry is shown by
the point with an error bar
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from external shear dominated systems like PG1115+080 to internal shear
dominated systems like B1608+656.

5.2 Time Delay Lenses in Groups or Clusters

Most galaxies are not isolated, and many early-type lens galaxies are members
of groups or clusters, so we need to consider the effects of the local environment
on the time delays. Weak perturbations are easily understood since they will
simply be additional contributions to the surface density (κc) and the external
shear/quadrupole (γc) we discussed in Sect. 4. In general the effects of the
external shear γc are minimal because they either have little effect on the
delays (two-image lenses) or are tightly constrained by either the astrometry
or delay ratios (four-image lenses or systems with lensed host galaxies see
Sect. 10). The problems arise from either the degeneracies associated with the
surface density κc or the need for a complete, complicated cluster model.

The problem with κc is the infamous mass-sheet degeneracy (Part 1, Falco,
Gorenstein and Shapiro 1985). If we have a model predicting a time delay Δt0
and add a sheet of constant surface density κc, then the time delay is changed
to (1−κc)Δt0 without changing the image positions, flux ratios, or time delay
ratios. Its effects can be understood from Sect. 5.1 as a contribution to the an-
nular surface density with 〈κ〉 = κc and η = 1. Its only observable effect other
than that on the time delays is a reduction in the mass of the lens galaxy that
could be detected given an independent estimate of the lens galaxy’s mass such
as a velocity dispersion (e.g. Sect. 4.9 see Romanowsky and Kochanek 1998 for
an attempt to do this for Q0957+561). It can also be done given an indepen-
dent estimate of the properties of the group or cluster using weak lensing (e.g.
Fischer et al. 1997 in Q0957+561), cluster galaxy velocity dispersions (e.g.,
Angonin-Willaime, Soucail and Vanderriest 1994 for Q0957+561, Hjorth et al.
2002 for RXJ0911+0551) or X-ray temperatures/luminosities (e.g., Morgan
et al. 2001 for RXJ0911+0551 or Chartas et al. 2002 for Q0957+561). The
accuracy of these methods is uncertain at present because each suffers from
its own systematic uncertainties, and they probably cannot supply the 10%
or higher precision measurements of κc needed to strongly constrain models.
When the convergence is due to an object like a cluster, there is a strong
correlation between the convergence κc and the shear γc that is controlled
by the density distribution of the cluster (for an isothermal model κc = γc).
When the lens is in the outskirts of a cluster, as in RXJ0911+0551, it is prob-
ably reasonable to assume that κc ≤ γc, as most mass distributions are more
centrally concentrated than isothermal. Neglecting the extra surface density
coming from nearby objects (galaxies, groups, clusters) leads to an overesti-
mate of the Hubble constant, because these objects all have κc > 0. For most
time delay systems this correction is probably <∼ 10%.

If the cluster or any member galaxies are sufficiently close, then we cannot
ignore the higher-order perturbations in the expansion of (26). This is certainly
true for Q0957+561 (as discussed in Sect. 4.6) where the lens galaxy is the
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brightest cluster galaxy and located very close to the center of the cluster.
It is easy to gauge when they become important by simply comparing the
deflections produced by any higher order moments of the cluster beyond the
quadrupole with the uncertainties being used for the image positions. For a
cluster of critical radius bc at distance θc from a lens of Einstein radius b, these
perturbations are of order bc(b/θc)2 ∼ bγc(b/θc). Because the astrometric
precision of the measurements is so high, these higher order terms can be
relatively easy to detect. For example, models of PG1115+080 (e.g. Impey
et al. (1998)) find that using a group potential near the optical centroid of the
nearby galaxies produces a better fit than simply using an external shear. In
this case the higher order terms are fairly small and affect the results little,
but results become very misleading if they are important but ignored.

5.3 Observing Time Delays and Time Delay Lenses

The first time delay measurement, for the gravitational lens Q0957+561,
was reported in 1984 (Florentin-Nielsen 1984). Unfortunately, a controversy
then developed between a short delay (� 1.1 years, Schild and Cholfin 1986;
Vanderriest et al. 1989) and a long delay (� 1.5 years, Press, Rybicki, and
Hewitt 1992a,b), which was finally settled in favor of the short delay only af-
ter 5 more years of effort (Kundić et al. 1997; also Schild and Thomson 1997
and Haarsma et al. 1999). Factors contributing to the intervening difficulties
included the small amplitude of the variations, systematic effects, which, with
hindsight, appear to be due to microlensing and scheduling difficulties (both
technical and sociological).

While the long-running controversy over Q0957+561 led to poor publicity
for the measurement of time delays, it allowed the community to come to an
understanding of the systematic problems in measuring time delays, and to
develop a broad range of methods for reliably determining time delays from
typical data. Only the sociological problem of conducting large monitoring
projects remains as an impediment to the measurement of time delays in
large numbers. Even these are slowly being overcome, with the result that
the last five years have seen the publication of time delays in 11 systems (see
Table 1).

The basic procedures for measuring a time delay are simple. A moni-
toring campaign must produce light curves for the individual lensed images
that are well sampled compared to the time delays. During this period, the
source quasar in the lens must have measurable brightness fluctuations on
time scales shorter than the monitoring period. The resulting light curves
are cross correlated by one or more methods to measure the delays and their
uncertainties (e.g., Press et al. 1992a,b; Beskin and Oknyanskij 1995; Pelt
et al. 1996; references in Table 1). Care must be taken because there can be
sources of uncorrelated variability between the images due to systematic er-
rors in the photometry and real effects such as microlensing of the individual
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Table 1. Time delay measurements

system Nim Δt (days) astrometry model ref.

HE1104–1805 2 161 ± 7 + “simple” 1
PG1115+080 4 25 ± 2 + “simple” 2
SBS1520+530 2 130 ± 3 + “simple” 3
B1600+434 2 51 ± 2 +/− “simple” 4
HE2149–2745 2 103 ± 12 + “simple” 5

RXJ0911+0551 4 146 ± 4 + cluster/satellite 6
Q0957+561 2 417 ± 3 + cluster 7
B1608+656 4 77 ± 2 +/− satellite 8

B0218+357 2 10.5 ± 0.2 − “simple” 9
PKS1830–211 2 26 ± 4 − “simple” 10

B1422+231 4 (8 ± 3) + “simple” 11

Nim is the number of images. Δt is the longest of the measured delays and its 1σ
error; delays in parenthesis require further confirmation. The “Astrometry” column
indicates the quality of the astrometric data for the system: + (good), +/− (some
problems), − (serious problems). The “Model” column indicates the type of model
needed to interpret the delays. “Simple” lenses can be modeled as a single primary
lens galaxy in a perturbing tidal field. More complex models are needed if there is
a satellite galaxy inside the Einstein ring (“satellite”) of the primary lens galaxy,
or if the primary lens belongs to a cluster. References: (1) Ofek and Maoz 2003;
Wyrzykowski et al. 2003; (2) Barkana 1997, based on Schechter et al. 1997; (3) Burud
et al. 2002a,b; (4) Burud et al. 2000, also Koopmans et al. 2000a,b; (5) Burud et al.
2002a,b; (6) Hjorth et al. 2002; (7) Kundić et al. 1997, also Schild and Thomson
1997 and Haarsma et al. 1999; (8) Fassnacht et al. 2002; (9) Biggs et al. 1999, also
Cohen et al. 2000; (10) Lovell et al. 1998; (11) Patnaik and Narasimha 2001.

images (e.g., Koopmans et al. 2000a,b; Burud et al. 2002a,b; Schechter et al.
2003). Figure 33 shows an example, the beautiful light curves from the radio
lens B1608+656 by Fassnacht et al. (2002), where the variations of all four
lensed images have been traced for over three years. One of the 11 systems,
B1422+231, is limited by systematic uncertainties in the delay measurements.

We want to have uncertainties in the time delay measurements that are
unimportant for the estimates of H0. For the present, uncertainties of order
3%–5% are adequate (so improved delays are still needed for PG1115+080,
HE2149–2745, and PKS1830–211). In a four-image lens we can measure three
independent time delays, and the dimensionless ratios of these delays pro-
vide additional constraints on the lens models (see Sect. 5.1). These ratios
are well measured in B1608+656 (Fassnacht et al. 2002), poorly measured in
PG1115+080 (Barkana 1997; Schechter et al. 1997; Chartas et al. 2004) and
unmeasured in either RXJ0911+0551 or B1422+231. Using the time delay
lenses as very precise probes of H0, dark matter and cosmology will eventu-
ally require still smaller delay uncertainties (∼ 1%). Once a delay is known
to 5%, it is relatively easy to reduce the uncertainties further because we can
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Fig. 33. VLA monitoring data for the four-image lens B1608+656. The top panel
shows (from top to bottom) the normalized light curves for the B (filled squares),
A (open diamonds), C (filled triangles) and D (open circles) images as a function of
the Modified Julian Day (MJD). The bottom panel shows the composite light curve
for the first monitoring season after cross correlating the light curves to determine
the time delays (ΔtAB = 31.5±1.5, ΔtCB = 36.0±1.5 and ΔtDB = 77.0±1.5 days)
and the flux ratios (from Fassnacht et al. 2002)
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accurately predict when flux variations will appear in the other images and
the lens will need to be monitored more intensively.

The expression for the time delay in an SIS lens (94) reveals the other
data that are necessary to interpret time delays. First, the source and lens
redshifts are needed to compute the distance factors that set the scale of
the time delays. Fortunately, we know both redshifts for all 11 systems in
Table 1 even though missing redshifts are a problem for the lens sample as
a whole (see Sect. 2). The dependence of the distances Dd, Ds and Dds on
the cosmological model is unimportant until our total uncertainties approach
5%. Second, we require accurate relative positions for the images and the lens
galaxy. These uncertainties are always dominated by the position of the lens
galaxy relative to the images. For most of the lenses in Table 1, observations
with radio interferometers (VLA, Merlin, VLBA) and HST have measured the
relative positions of the images and lenses to accuracies <∼ 0.′′005. Sufficiently
deep HST images can obtain the necessary data for almost any lens, but
dust in the lens galaxy (as seen in B1600+434 and B1608+656) can limit the
accuracy of the measurement even in a very deep image. For B0218+357 and
PKS1830–211, however, the position of the lens galaxy relative to the images
is not known to sufficient precision or determined only from models (see Biggs
et al. 1999; Lehár et al. 2000; Courbin et al. 2002a,b; Winn et al. 2002a,b,c;
Wucknitz, Biggs and Browne 2004; York et al. 2005).

We can also divide the systems by the complexity of the required lens
model. We define eight of the lenses as “simple,” in the sense that the available
data suggests that a model consisting of a single primary lens in a perturbing
shear (tidal gravity) field should be an adequate representation of the gravi-
tational potential. In some of these cases, an external potential representing
a nearby galaxy or parent group will improve the fits, but the differences
between the tidal model and the more complicated perturbing potential are
small (see Sect. 5.2). We include the quotation marks because the classification
is based on an impression of the systems from the available data and models.
While we cannot guarantee that a system is simple, we can easily recognize
two complications that will require more complex models.

The first complication is that some primary lenses have less massive satel-
lite galaxies inside or near their Einstein rings. This includes two of the time
delay lenses, RXJ0911+0551 and B1608+656. RXJ0911+0551 could simply
be a projection effect, since neither lens galaxy shows irregular isophotes.
Here the implication for models may simply be the need to include all the
parameters (mass, position, ellipticity, . . . ) required to describe the second
lens galaxy, and with more parameters we would expect greater uncertainties
in H0. In B1608+656, however, the lens galaxies show the heavily disturbed
isophotes typical of galaxies undergoing a disruptive interaction. How one
should model such a system is unclear. If there was once dark matter associ-
ated with each of the galaxies, how is it distributed now? Is it still associated
with the individual galaxies? Has it settled into an equilibrium configuration?
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While B1608+656 can be well fit with standard lens models (Fassnacht et al.
2002; Koopmans et al. 2003), these complications have yet to be explored in
detail.

The second complication occurs when the primary lens is a member of
a more massive (X-ray) cluster, as in the time delay lenses RXJ0911+0551
(Morgan et al. 2001) and Q0957+561 (Chartas et al. 2002). The cluster model
is critical to interpreting these systems (see Sect. 5.2). The cluster surface
density at the position of the lens (κc >∼ 0.2) leads to large corrections to
the time delay estimates and the higher-order perturbations are crucial to
obtaining a good model. For example, models in which the Q0957+561 cluster
was treated simply as an external shear were grossly incorrect (see Sect. 4.6,
Keeton et al. 2000a). In addition to the uncertainties in the cluster model
itself, we must also decide how to include and model the other cluster galaxies
near the primary lens. Thus, lenses in clusters have many reasonable degrees
of freedom beyond those of the “simple” lenses.

5.4 Results: The Hubble Constant and Dark Matter

With our understanding of the theory and observations of the lenses we
will now explore their implications for H0. We focus on the “simple” lenses
PG1115+080, SBS1520+530, B1600+434, and HE2149–2745. We only com-
ment on the interpretation of the HE1104–1805 delay because the measure-
ment is too recent to have been interpreted carefully. We will briefly discuss
the more complicated systems B0218+357, RXJ0911+0551, Q0957+561, and
B1608+656, and we will not discuss the systems with problematic time delays
or astrometry.

The most common, simple, realistic model of a lens consists of a singular
isothermal ellipsoid (SIE) in an external (tidal) shear field (see Sect. 4). The
model has 7 parameters (the lens position, mass, ellipticity, major axis ori-
entation for the SIE, and the shear amplitude and orientation). It has many
degrees of freedom associated with the angular structure of the potential, but
the radial structure is fixed with 〈κ〉 � 1/2. For comparison, a two-image
(four-image) lens supplies 5 (13) constraints on any model of the potential:
2 (6) from the relative positions of the images, 1 (3) from the flux ratios of
the images, 0 (2) from the inter-image time delay ratios, and 2 from the lens
position. With the addition of extra components (satellites/clusters) for the
more complex lenses, this basic model provides a good fit to all the time delay
lenses except Q0957+561. Although a naive counting of the degrees of free-
dom (Ndof = −2 and 6, respectively) suggests that estimates of H0 would be
under constrained for two-image lenses and over constrained for four-image
lenses, the uncertainties are actually dominated by those of the time delay
measurements and the astrometry in both cases. This is what we expect from
Sect. 5.1 — the model has no degrees of freedom that change 〈κ〉 or η, so there
will be little contribution to the uncertainties in H0 from the model for the
potential.
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If we use a model that includes parameters to control the radial density
profile (i.e., 〈κ〉), for example by adding a halo truncation radius a to the SIS
profile (the pseudo-Jaffe model, ρ ∝ r−2(r2 + a2)−1; e.g., Impey et al. 1998;
Burud et al. 2002a)4, then we find the expected correlation between a and
H0 — as we make the halo more concentrated (smaller a), the estimate of H0

rises from the value for the SIS profile (〈κ〉 = 1/2 as a → ∞) to the value for
a point mass (〈κ〉 = 0 as a → 0), with the fastest changes occurring when a is
similar to the Einstein radius of the lens. We show an example of such a model
for PG1115+080 in Fig. 34. This case is somewhat more complicated than a
pure pseudo-Jaffe model because there is an additional contribution to the
surface density from the group to which the lens galaxy belongs. As long as the
structure of the radial density profile is fixed (constant a), the uncertainties
are again dominated by the uncertainties in the time delay. Unfortunately,
the goodness of fit, χ2(a), shows too little dependence on a to determine
H0 uniquely. In general, two-image lenses have too few constraints, and the
extra constraints supplied by a four-image lens constrain the angular structure
rather than the radial structure of the potential. This basic problem holds for
all existing models of the current sample of time delay lenses.

The inability of the present time delay lenses to directly constrain the
radial density profile is the major problem for using them to determine H0.
Fortunately, it is a consequence of the available data on the current sample
rather than a fundamental limitation. It is, however, a simple trade-off –
models with less dark matter (lower 〈κ〉, more centrally concentrated densities)
produce higher Hubble constants than those with more dark matter. We do
have some theoretical limits on the value of 〈κ〉. In particular, we can be
confident that the surface density is bounded by two limiting models. The mass
distribution should not be more compact than the luminosity distribution,
so a constant mass-to-light ratio (M/L) model should set a lower limit on
〈κ〉 >∼ 〈κ〉M/L � 0.2, and an upper limit on estimates of H0. We are also
confident that the typical lens should not have a rising rotation curve at 1–2
optical effective radii from the center of the lens galaxy. Thus, the SIS model
is probably the least concentrated reasonable model, setting an upper bound
on 〈κ〉 <∼ 〈κ〉SIS = 1/2, and a lower limit on estimates of H0. Figure 35
shows joint estimates of H0 from the four simple lenses for these two limiting
mass distributions (Kochanek 2003b). The results for the individual lenses are
mutually consistent and are unchanged by the new 0.149 ± 0.004 day delay
for the A1–A2 images in PG1115+080 (Chartas et al. 2004). For galaxies with
isothermal profiles we find H0 = 48± 3 km s−1 Mpc−1, and for galaxies with
constant M/L we find H0 = 71 ± 3 km s−1 Mpc−1. While our best prior
estimate for the mass distribution is the isothermal profile (see Sect. 4.6), the
lens galaxies would have to have constant M/L to match Key Project estimate

4 This is simply an example. The same behavior would be seen for any other para-
metric model in which the radial density profile can be adjusted.
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Fig. 34. H0 estimates for PG1115+080. The lens galaxy is modeled as an ellipsoidal
pseudo-Jaffe model, ρ ∝ r−2(r2 +a2)−1, and the nearby group is modeled as an SIS.
As the break radius a → ∞ the pseudo-Jaffe model becomes an SIS model, and as
the break radius a → 0 it becomes a point mass. The heavy solid curve (hexact)
shows the dependence of H0 on the break radius for the exact, nonlinear fits of the
model to the PG1115+080 data. The heavy dashed curve (hscaling) is the value found
using our simple theory (Sect. 5.1) of time delays. The agreement of the exact and
scaling solutions is typical. The light solid line shows the average surface density 〈κ〉
in the annulus between the images, and the light dashed line shows the inverse of
the logarithmic slope η in the annulus (κ ∝ θ1−η). For an SIS model we would have
〈κ〉 = 1/2 and η−1 = 1/2, as shown by the horizontal line. When the break radius
is large compared to the Einstein radius (indicated by the vertical line), the surface
density is slightly higher and the slope is slightly shallower than for the SIS model
because of the added surface density from the group. As we make the lens galaxy
more compact by reducing the break radius, the surface density decreases and the
slope becomes steeper, leading to a rise in H0. As the galaxy becomes very compact,
the surface density near the Einstein ring is dominated by the group rather than
the galaxy, so the surface density approaches a constant and the logarithmic slope
approaches the value corresponding to a constant density sheet (η = 1)
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Fig. 35. H0 likelihood distributions. The curves show the joint likelihood functions
for H0 using the four simple lenses PG1115+080, SBS1520+530, B1600+434, and
HE2149–2745 and assuming either an SIS model (high 〈κ〉, flat rotation curve) or a
constant M/L model (low 〈κ〉, declining rotation curve). The heavy dashed curves
show the consequence of including the X-ray time delay for PG1115+080 from Char-
tas et al. (2004) in the models. The light dashed curve shows a Gaussian model for
the Key Project result that H0 = 72 ± 8 km s−1 Mpc−1

of H0 = 72±8 km s−1 Mpc−1 (Freedman et al. 2001) or the WMAP estimate
of H0 = 72±5 km s−1 Mpc−1 for a flat universe with a cosmological constant
(Spergel et al. 2003).

The difference between these two limits is entirely explained by the differ-
ences in 〈κ〉 and η between the SIS and constant M/L models. In fact, it is
possible to reduce the H0 estimates for each simple lens to an approximation
formula, H0 = A(1− 〈κ〉) +B〈κ〉(η− 1). The coefficients, A and |B| ≈ A/10,
are derived from the image positions and the time delay using the simple
theory from Sect. 5.1. These approximations reproduce numerical results using
ellipsoidal lens models to accuracies of 3 km s−1 Mpc−1 (Kochanek 2002a,b).
For example, in Fig. 34 we also show the estimate of H0 computed based on
the simple theory of Sect. 5.1 and the annular surface density (〈κ〉) and slope
(η) of the numerical models. The agreement with the full numerical solutions
is excellent, even though the numerical models include both the ellipsoidal lens
galaxy and a group. No matter what the mass distribution is, the five lenses
PG1115+080, SBS1520+530, B1600+434, PKS1830–211,5 and HE2149–2745
have very similar dark matter halos. For a fixed slope η, the five systems are
consistent with a common value for the surface density of

〈κ〉 = 1 − 1.07h + 0.14(η − 1)(1 − h) ± 0.04, (99)

5 PKS1830–211 is included based on the Winn et al. (2002a,b,c) model of the
HST imaging data as a single lens galaxy. Courbin et al. (2002a,b) prefer an
interpretation with multiple lens galaxies which would invalidate the analysis.
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where H0 = 100h km s−1 Mpc−1 and there is an upper limit of σκ <∼ 0.07 on
the intrinsic scatter of 〈κ〉. Thus, time delay lenses provide a new window into
the structure and homogeneity of dark matter halos, regardless of the actual
value of H0.

There is an enormous range of parametric models that can illustrate how
the extent of the halo affects 〈κ〉 and hence H0 — the pseudo-Jaffe model
we used above is only one example. It is useful, however, to use a physically
motivated model where the lens galaxy is embedded in a standard NFW
(Navarro, Frenk and White 1996) profile halo as we discussed at the end of
Sect. 4.1. The lens galaxy consists of the baryons that have cooled to form
stars, so the mass of the visible galaxy can be parameterized using the cold
baryon fraction fb,cold of the halo, and for these CDM halo models the value of
〈κ〉 is controlled by the cold baryon fraction (Kochanek 2003a,b,c). A constant
M/L model is the limit fb,cold → 1 (with 〈κ〉 � 0.2, η � 3). Since the baryonic
mass fraction of a CDM halo should not exceed the global fraction of fb �
0.17 ± 0.03 (e.g., Spergel et al. 2003), we cannot use constant M/L models
without also abandoning CDM. As we reduce fb,cold, we are adding mass to
an extended halo around the lens, leading to an increase in 〈κ〉 and a decrease
in η. For fb,cold � 0.02 the model closely resembles the SIS model (〈κ〉 � 1/2,
η � 2). If we reduce fb,cold further, the mass distribution begins to approach
that of the NFW halo without any cold baryons. Figure 36 shows how 〈κ〉
and H0 depend on fb,cold for PG1115+080, SBS1520+530, B1600+434 and
HE2149–2745. When fb,cold � 0.02, the CDM models have parameters very
similar to the SIS model, and we obtain a very similar estimate of H0 =
52 ± 6 km s−1 Mpc−1 (95% confidence). If all baryons cool, and fb,cold = fb,
then we obtain H0 = 65 ± 6 km s−1 Mpc−1 (95% confidence), which is still
lower than the Key Project estimates.

We excluded the lenses requiring significantly more complicated models
with multiple lens galaxies or very strong perturbations from clusters. If we
have yet to reach a consensus on the mass distribution of relatively isolated
lenses, it seems premature to extend the discussion to still more complicated
systems. We can, however, show that the clusters lenses require significant
contributions to 〈κ〉 from the cluster in order to produce the same H0 as
the more isolated systems. As we discussed in Sect. 2 the three more complex
systems are RXJ0911+0551, Q0957+561 and B1608+656.

RXJ0911+0551 is very strongly perturbed by the nearby X-ray cluster
(Morgan et al. 2001; Hjorth et al. 2002). Kochanek (2003a,b,c) found H0 =
49±5 km s−1 Mpc−1 if the primary lens and its satellite were isothermal and
H0 = 67 ± 5 km s−1 Mpc−1 if they had constant mass-to-light ratios. The
higher value of H0 = 71 ± 4 km s−1 Mpc−1 obtained by Hjorth et al. (2002)
can be understood by combining Sect. 5.1 and Sect. 5.2 with the differences
in the models. In particular, Hjorth et al. (2002) truncated the halo of the
primary lens near the Einstein radius and used a lower mass cluster, both of
which lower 〈κ〉 and raise H0. The Hjorth et al. (2002) models also included
many more cluster galaxies assuming fixed masses and halo sizes.
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Fig. 36. H0 in CDM halo models. The top panel shows 1 − 〈κ〉 for the “simple”
lenses (PG1115+080, SBS1520+530, B1600+434, and HE2149–2745) as a function
of the cold baryon fraction fb,cold. The solid (dashed) curves include (exclude) the
adiabatic compression of the dark matter by the baryons. The horizontal line shows
the value for an SIS potential. The bottom panel shows the resulting estimates of
H0, where the shaded envelope bracketing the curves is the 95% confidence region
for the combined lens sample. The horizontal band shows the Key Project estimate.
For larger fb,cold, the density 〈κ〉 decreases and the local slope η steepens, leading
to larger values of H0. The vertical bands in the two panels show the lower bound
on fb from local inventories and the upper bound from the CMB
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Q0957+561 is a special case because the primary lens galaxy is the bright-
est cluster galaxy and it lies nearly at the cluster center (Keeton et al. 2000a;
Chartas et al. 2002). As a result, the lens modeling problems are particularly
severe, and Keeton et al. (2000a,b) found that all previous models (most re-
cently, Barkana et al. 1999; Bernstein and Fischer 1999; and Chae 1999, see
Sect. 4.6) were incompatible with the observed geometry of the lensed host
galaxy. While Keeton et al. (2000a) found models consistent with the struc-
ture of the lensed host, they covered a range of almost ±25% in their estimates
of H0. A satisfactory treatment of this lens remains elusive.

HE1104–1805 has the most recently measured time delay (Ofek and Maoz
2003; Wyrzykowski et al. 2003). Given the Δt = 161±7 day delay, a standard
SIE model of this system predicts a very high H0 � 90 km s−1 Mpc−1.
The geometry of this system and the fact that the inner image is brighter
than the outer image both suggest that HE1104–1805 lies in an anomalously
high tidal shear field, while the standard model includes a prior to keep the
external shear small. A prior is needed because a two-image lens supplies
too few constraints to determine both the ellipticity of the main lens and
the external shear simultaneously. Since the images and the lens in HE1104–
1805 are nearly collinear, the anomalous H0 estimate for the standard model
may be an example of the shear degeneracy we briefly mentioned in Sect. 5.1.
At present the model surveys needed to understand the new delay have not
been made. Observations of the geometry of the host galaxy Einstein ring will
resolve any ambiguities due to the shear in the near future (see Sect. 10).

The lens B1608+656 consists of two interacting galaxies, and, as we dis-
cussed in Sect. 2, this leads to a greatly increased parameter space. Fass-
nacht et al. 2002 used SIE models for the two galaxies to find H0 =
61 − 65 km s−1 Mpc−1, depending on whether the lens galaxy positions are
taken from the H-band or I-band lens HST images (the statistical errors are
negligible). The position differences are probably created by extinction effects
from the dust in the lens galaxies. Like isothermal models of the “simple”
lenses, the H0 estimate is below local values, but the disagreement is smaller.
These models correctly match the observed time delay ratios. Koopmans et al.
(2003) obtain a still higher estimate of H0 = 75 ± 7 km s−1 Mpc−1 because
the lens galaxy positions shift after they include extinction corrections. They
use a foreground screen model to make the extinction corrections, which is a
better approximation than no extinction corrections, but is unlikely to allow
precise correction in a system like B1606+656 where the dust and stars are
mixed and there is no simple relation between color excess and optical depth
(e.g. Witt, Thronson and Capuano 1992).

Despite recent progress both in modeling the VLBI structure (Wucknitz
et al. 2004) and obtaining deep images (York et al. 2005) it is unclear whether
B0218+357 has escaped its problems with astrometry and models. While York
et al. (2005) have clearly measured the position of the lens galaxy, the depen-
dence of the position on the choice of the PSF model remains a significant
source of uncertainty for estimates of H0. Models of the system using power
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law models find a slope very close to isothermal η = 2.04 ± 0.02 (ρ ∝ r−η).
Unfortunately, these models have too few degrees of freedom given the small
astrometric uncertainties in the VLBI structures providing the constraints (be-
cause the only angular structure in the model is the ellipsoidal potential used
for the main lens galaxy), and this makes the limits on the power slope suspect
(see Sect. 4.6). For example, while it is true that Lehár et al. (2000) estimated
that the environmental shear near B0218+357 was small, even a γ = 0.01
external tidal shear produces deflections (3 milli-arcseconds) that are large
compared to the accuracy of the constraints used for the models and so must
be included for the models to be reliable. Within these caveats, B0218+357
(like the models of B1608+656 with significant extinction corrections) sup-
ports a nearly isothermal mass distribution with H0 = 73±8 km s−1 Mpc−1.

5.5 The Future of Time Delay Measurements

We understand the theory of time delays very well – the only important
variable in the lens structure is the average surface density 〈κ〉 of the lens
near the images for which the delay is measured. The angular structure of the
potential has an effect on the delays, but it is either small or well-constrained
by the observed image positions. Provided a lens does not lie in a cluster where
the cluster potential cannot be described by a simple expansion, any lens
model that includes the parameters needed to vary the average surface density
of the lens near the images and to change the ratio between the quadrupole
moment of the lens and the environment includes all the variables needed to
model time delays, to estimate the Hubble constant, and to understand the
systematic uncertainties in the results. Unfortunately, there is a tendency in
the literature to confuse rather than to illuminate this understanding, even
though all differences between estimates of the Hubble constant for the simple
time delay lenses can be understood on this basis.

The problem with time delays lies with the confusing state of the data.
The four simplest time delay lenses, PG1115+080, SBS1520+530, B1600+434
and HE2149–2745, can only match the currently preferred estimate of H0 �
72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001; Spergel et al. 2003) if they
have nearly constant M/L mass distributions. If they have the favored quasi-
isothermal mass distributions, then H0 � 48±3 km s−1 Mpc−1. This leads to
a conundrum: why do simple lenses with time delay measurements have falling
rotation curves, while simple lenses with direct estimates of the mass profile
do not? This is further confused by B1608+656 and B0218+357, which due
to their observational complexity would be the last systems I would attempt
to understand, but in current analyses can be both isothermal and have high
H0. In resolving this problem it is not enough to search for a “Golden Lens.”
There is no such thing as a “Golden Lens”. Chanting “my lens is better than
your lens” may be satisfying but contributes little to understanding the basic
problem.
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The difficulty at the moment is that systems I would view as problematic
(B0218+357 due to problems in astrometry or B1608+656 due to the inter-
acting lens galaxies) allow both mass distributions with flat rotation curves
and H0 = 72 km s−1 Mpc−1, while systems that should be simpler to inter-
pret (the simple lenses in Table 1) do not. Yet the preponderance of evidence
on the mass distributions of lens galaxies suggests that they are fairly ho-
mogeneous in structure and have roughly flat rotation curves (Sect. 4). The
simplest way to clarify this problem is to measure accurate time delays for
many more systems. At a fixed value of the Hubble constant we will either
find significant scatter in the surface densities near the images or we will not.

6 Gravitational Lens Statistics

It is the opinion of the author that the statistics of lenses as a method for deter-
mining the cosmological model has largely ceased to be interesting. However,
it is important to understand the underlying physics because it determines
the types of lenses we detect. While most recent analyses have found cosmo-
logical results consistent with the concordance model (Chae et al. 2002; Chae
2003; Davis, Huterer and Krauss 2003, Mitchell et al. 2004) there are still
large statistical uncertainties and some dangerous systematic assumptions.
More importantly, there is little prospect at present of lens statistics becom-
ing competitive with other methods. Gravitational lenses statistics arguably
begins with Press and Gunn (1973), although the “modern” era begins with
the introduction of magnification bias (Turner 1980), the basic statistics of
normal galaxy lenses (Turner, Ostriker and Gott 1984), cross sections and
optical depths for more general lenses (Blandford and Kochanek 1987a,b;
Kochanek and Blandford 1987), explorations of the effects of general cos-
mologies (Fukugita et al. 1990; Fukugita and Turner 1991) and lens structure
(Maoz and Rix 1993; Kochanek 1996a,b) and the development of the general
methodology of interpreting observations (Kochanek 1993a,b,c, 1996a,b).

6.1 The Mechanics of Surveys

There are two basic approaches to searching for gravitational lenses depend-
ing on whether you start with a list of potentially lensed sources or a list of
potential lens galaxies. Of the two, only a search of sources for lensed sources
has a significant cosmological sensitivity – for a non-evolving population of
lenses in a flat cosmological model we will find in Sect. 6.3 that the number
of lensed sources scales with the volume between the observer and the source
D3

s . If you search potential lens galaxies for those which have actually lensed a
source, then the cosmological dependence enters only through distance ratios,
Dds/Ds, and you require a precise knowledge of the source redshift distribu-
tion. Thus, while lenses found in this manner are very useful for many projects
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(mass distributions, galaxy evolution etc.), they are not very useful for deter-
mining the cosmological model. This changes for the case of cluster lenses
where you may find multiple lensed sources at different redshifts behind the
same lens (e.g. Soucail, Kneib and Golse 2004).

Most lenses have been found by searching for lensed sources because the
number of targets which must be surveyed is considerably smaller. This is
basically a statement about the relative surface densities of candidate sources
and lenses. The typical lens is a galaxy with an Einstein radius of approxi-
mately b � 1.′′0 so it has a cross section of order πb2. If you search N lenses
with such a cross section for signs of a lensed source, you would expect to find
Nπb2Σsource lenses where Σsource is the surface density of detectable sources.
If you search N sources for a lens galaxy in front of them, you would expect
to find Nπb2Σlens lenses, where Σlens is the surface density of lens galaxies.
Since the surface density of massive galaxies is significantly higher than the
surface density of easily detectable higher redshift sources (Σlens � Σsource),
you need examine fewer sources than lens galaxies to find the same number
of lensed systems. This is somewhat mitigated by the fact that the surface
density of potential lens galaxies is high enough to allow you to examine many
potential lenses in a single observation, while the surface density of sources is
usually so low that they can be examined only one at a time.

For these reasons, we present a short synopsis of searches for sources be-
hind lenses and devote most of this section to the search for lenses in front
of sources. The first method for finding sources behind lenses is a simple
byproduct of redshift surveys. Redshift surveys take spectra of the central
regions of low redshift galaxies allowing the detection of spectral features
from any lensed images inside the aperture used for the spectrum. Thus, the
lens Q2237+0305 was found in the CfA redshift survey (Huchra et al. 1985)
and SDSS0903+5028 (Johnston et al. 2003) was found in the SDSS survey.
Theoretical estimates (Kochanek 1992a,b; Mortlock and Webster 2000a,b,c)
suggest that the discovery rate should be one per 104–105 redshift measure-
ments, but this does not seem to be borne out by the number of systems
discovered in this age of massive redshift surveys (the origin of the lower rate
in the 2dF survey is discussed by Mortlock & Webster 2001). Miralda-Escude
and Lehár (1992) proposed searching for lensed optical (emission line) rings,
a strategy successfully used by Warren et al. (1996) to find 0047–2808 and by
Ratnatunga, Griffiths and Ostrander (1999) to find lenses in the HST Medium
Deep Survey (MDS). There is also a hybrid approach whose main objective
is simply to find lenses with minimal follow up observations by looking for
high redshift radio lobes that have non-stellar optical counterparts (Lehár et
al. 2001). Since radio lobes have no intrinsic optical emission, a lobe super-
posed on a galaxy is an excellent lens candidate. The present limitation on
this method is the low angular resolution of the available all sky radio surveys
(FIRST, NVSS) and the magnitude limits and star/galaxy separation prob-
lems of the current all-sky optical catalogs. Nonetheless, several systems have
been discovered by this technique.
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The vast majority of lens surveys, however, have focused on either optical
quasars or radio sources because they are source populations known to lie
at relatively high redshift (zs >∼ 1) and that are easily detected even when
there is an intervening lens galaxy. Surveys of lensed optical quasars (Cramp-
ton, McClure and Fletcher 1992; Yee, Fillipenko and Tang 1993; Maoz et al.
1993; Surdej et al. 1993; Kochanek, Falco and Schild 1995) have the advantage
that the sources are bright, and the disadvantages that the bright sources can
mask the lens galaxy and that the selection process is modified by dust in the
lens galaxy and emission from the lens galaxy. We will discuss these effects
in Sect. 9. While many more lensed quasars have been discovered since these
efforts, none of the recent results have been presented as a survey. Surveys of
all radio sources (the MIT/Greenbank survey, Burke, Lehár and Conner 1992)
have the advantage that most lensed radio sources are produced by extended
steep spectrum sources (see Kochanek and Lawrence 1990) but the disadvan-
tage that the complex intrinsic structures of extended radio sources make the
follow up observations difficult. Surveys of flat spectrum radio sources (the
CLASS survey, Browne et al. 2003, the PANELS survey, Winn, Hewitt &
Schechter 2001) have the advantage that the follow up observations are rela-
tively simple because most unlensed flat spectrum sources are (nearly) point
sources. There are disadvantages as well – because the source structure is so
simple, flat spectrum lenses tend to provide fewer constraints on mass mod-
els than steep spectrum lenses. The radio sources tend to be optically faint,
making it difficult to determine their redshifts in many cases.

The second issue for any survey is to understand the method by which
the sources were originally identified. For example, it is important to know
whether the source flux of a lens in the input catalog will be the total flux of
all the images or only a part of the flux (e.g. the flux of the brightest image).
This will have a significant effect on the statistical corrections for using a
flux-limited catalog, a correction known in gravitational lensing as the “mag-
nification bias” (see Sect. 6.6). All large, published surveys were essentially
drawn from samples which would include the total flux of a lensed system. It
is also important to know whether the survey imposed any criterion for the
sources being point-like, since lensed sources are not, or any color criterion
that might be violated by lensed sources with bright lens galaxies or significant
extinction.

The third issue for any survey is to consider the desired selection function
of the observations. This is some combination of resolution, dynamic range
and field of view. These determine the range of lens separations that are de-
tectable, the nature of any background sources, and the cost of any follow
up observations. Any survey is a trade-off between completeness (what frac-
tion of all lenses in sample that can be discovered), false positives (how many
objects selected as lenses candidates that are not), and the cost of follow-up
observations. The exact strategy is not critical provided it is well-understood.
The primary advantages of the surveys of flat spectrum radio sources are the
relatively low false positive rates and follow up costs produced by using a
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source population consisting almost entirely of point sources with no conta-
minating background population. This does not mean that the flat spectrum
surveys are free of false positives – core-jet sources can initially look like
asymmetric two-image lenses. On small angular scales (Δθ <∼ 3.′′0) the quasar
surveys share this advantage, but for wider separations there is contamination
from binary quasars (see Sect. 7.2, Kochanek, Falco and Muñoz 1999; Mort-
lock, Webster and Francis 1999) and Galactic stars (see Kochanek 1993a,b;
Kochanek 1993c).

6.2 The Lens Population

The probability that a source has an intervening lens requires a model for
the distribution of the lens galaxies. In almost all cases these are based on
the luminosity function of local galaxies combined with the assumption that
the comoving density of galaxies does not evolve with redshift. Of course
luminosity is not mass, so a model for converting the luminosity of a local
galaxy into its deflection scale as a lens is a critical part of the process. For
our purposes, the distributions of galaxies in luminosity are well-described by
a Schechter (1976) function,

dn

dL
=

n∗
L∗

(
L

L∗

)α

exp (−L/L∗) . (100)

The Schechter function has three parameters: a characteristic luminosity L∗
(or absolute magnitude M∗), an exponent α describing the rise at low lumi-
nosity, and a comoving density scale n∗. All these parameters depend on the
type of galaxy being described and the wavelength of the observations. In
general, lens calculations have divided the galaxy population into two broad
classes: late-type (spiral) galaxies and early-type (E/S0) galaxies. Over the
period lens statistics developed, most luminosity functions were measured in
the blue, where early and late-type galaxies showed similar characteristic lu-
minosities. The definition of a galaxy type is a slippery problem – it may be
defined by the morphology of the surface brightness (the traditional method),
spectral classifications (the modern method since it is easy to do in redshift
surveys), colors (closely related to spectra but not identical), and stellar kine-
matics (ordered rotational motions versus random motions). Each approach
has advantages and disadvantages, but it is important to realize that the kine-
matic definition is the one most closely related to gravitational lensing and the
one never supplied by local surveys. Figure 37 shows an example of a luminos-
ity function, in this case K-band infrared luminosity function by Kochanek
et al. (2001a,b, also Cole et al. 2001) where MK∗e = −23.53 ± 0.06 mag,
n∗e = (0.45±0.06)×10−2h3 Mpc−3, and αe = −0.87±0.09 for galaxies which
were morphologically early-type galaxies and MK∗l = −22.98 ± 0.06 mag,
n∗l = (1.01 ± 0.13) × 10−2h3 Mpc−3, and αl = −0.92 ± 0.10 for galaxies
which were morphologically late-type galaxies. Early-type galaxies are less
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Fig. 37. Example of a local galaxy luminosity function. These are the K-band
luminosity functions for either all galaxies or by morphological type from Kochanek
et al. (2001a,b). Thecurves show the best fit Schechter models for the luminosity
functions while the points with error bars show a non-parametric reconstruction

common but brighter than late-type galaxies at K-band. It is important to
realize that the parameter estimates of the Schechter function are correlated,
as shown in Fig. 38, and that it is dangerous to simply extrapolate them to
fainter luminosities than were actually included in the survey.

However, light is not mass, and it is mass which determines lensing prop-
erties. One approach would simply be to assign a mass-to-light ratio to the
galaxies and to the expected properties of the lenses. This was attempted
only in Maoz and Rix (1993) who found that for normal stellar mass-to-light
ratios it was impossible to reproduce the data (although it is possible if you
adjust the mass-to-light ratio to fit the data, see Kochanek 1996a,b). Instead,
most studies convert the luminosity functions dn/dL into a velocity func-
tions dn/dv using the local kinematic properties of galaxies and then relate
the stellar kinematics to the properties of the lens model. As Fig. 39 shows
(for the same K-band magnitudes of our luminosity function example), both
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-24

0.1

Fig. 38. Schechter parameters α and M∗ for the 2MASS luminosity functions shown
in Fig. 37. Note there is a significant correlations not only between α and M∗ but
also with the comoving density scale n∗ that should be included in lens statistical
calculations but generally are not

early-type and late-type galaxies show correlations between luminosity and
velocity. For late-type galaxies there is a tight correlation known as the
Tully–Fisher (1977) relation between luminosity L and circular velocity vc

and for early-type galaxies there is a loose correlation known as the Faber–
Jackson (1976) relation between luminosity and central velocity dispersion
σv. Early-type galaxies do show a much tighter correlation known as the fun-
damental plane (Dressler et al. 1987; Djorgovski and Davis 1987) but it is
a three-variable correlation between the velocity dispersion, effective radius
and surface brightness (or luminosity) that we will discuss in Sect. 9. While
there is probably some effect of the FP correlation on lens statistics, it has yet
to be found. For lens calculations, the circular velocity of late-type galaxies
is usually converted into an equivalent (isotropic) velocity dispersion using
vc =

√
2σv. We can derive the kinematic relations for the same K-band-

selected galaxies used in the Kochanek et al. (2001a,b) luminosity function,
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(c) 

(d) 

Fig. 39. K-band kinematic relations for 2MASS galaxies. The top panels show the
Faber–Jackson relation and the bottom panels show the Tully–Fisher relations for
2MASS galaxies with velocity dispersions and circular velocities drawn from the
literature. The left hand panels show the individual galaxies, while the right hand
galaxies show the mean relations. Note the far larger scatter of the Faber–Jackson
relation compared to the Tully–Fisher relation

finding the Faber–Jackson relation

Mk − 5 log h = (−23.83 ± 0.03) − 2.5 × (4.04 ± 0.18)(log vc − 2.5) (101)

and the Tully–Fisher relation

Mk − 5 log h = (−22.92 ± 0.02) − 2.5 × (3.96 ± 0.08)(log vc − 2.3). (102)

These correlations, when combined with the K-band luminosity function have
the advantage that the magnitude systems for the luminosity function and the
kinematic relations are identical, since magnitude conversions have caused
problems for a number of lens statistical studies using older photographic
luminosity functions and kinematic relations. For these relations, the charac-
teristic velocity dispersion of an L∗ early-type galaxy is σ∗e � 209 km/s while
that of an L∗ late-type galaxy is σ∗l � 143 km/s. These are fairly typical
values even if derived from a completely independent set of photometric data.
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(a)

(b)

(c)

Fig. 40. The resulting velocity functions from combining the K-band luminosity
functions (Fig. 37) and kinematic relations (Fig. 39) for early-type (top), late-type
(middle) and all (bottom) galaxies. The points show partially non-parametric es-
timates of the velocity function based on the binned estimates in the right hand
panels of Fig. 39 rather than power-law fits. Note that early-type galaxies dominate
for high circular velocity

Both the Faber–Jackson and Tully–Fisher relations are power-law rela-
tions between luminosity and velocity, L/L∗ ∝ (σv/σ∗)γF J . This allows a sim-
ple variable transformation to convert the luminosity function into a velocity
function,

dn

dv
=

dn

dL

∣∣∣∣dLdv
∣∣∣∣ = γFJ

n∗
σ∗

(
σv

σ∗

)(1+α)γF J−1

exp (−(σv/σ∗)
γ
FJ) (103)

as shown in Fig. 40.
There are three caveats to keep in mind about this variable change. First,

we have converted to the distribution in stellar velocities, not some under-
lying velocity characterizing the dark matter distribution. Many early stud-
ies assumed a fixed transformation between the characteristic velocity of the
stars and the lens model. In particular, Turner, Ostriker and Gott (1984)
introduced the assumption σdark = (3/2)1/2σstars for an isothermal mass
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model based on the stellar dynamics (Jeans equation, (90) and Sect. 4.9)
of a r−3 stellar density distribution in a r−2 isothermal mass distribution.
Kochanek (1993a,b,c, 1994) showed that this oversimplified the dynamics and
that if you embed a real stellar luminosity distribution in an isothermal mass
distribution you actually find that the central stellar velocity dispersion is
close to the velocity dispersion characterizing the dark matter halo. Figure 41
compares the stellar velocity dispersion to the dark matter halo dispersion
for a Hernquist distribution of stars in an isothermal mass distribution. Such
a normalization calculation is required in any calculation matching observed
velocity functions with a particular mass model for the lenses. Second, in
an ideal world, the luminosity function and the kinematic relations should be
derived from a consistent set of photometric data, while in practice they rarely
are. As we will see shortly, the cross section for lensing scales roughly as σ4

∗, so

0.001 0.01 0.1
0
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Fig. 41. Stellar velocity dispersions vlos for a Hernquist distribution of stars in
an isothermal halo of dispersion σDM . The solid curves show the local value vlos

and the dashed curves show the mean interior to the radius 〈v2
los〉. Local velocity

dispersions are typically measured on scales similar to Re/8 where the stellar and
dark matter dispersions are nearly equal rather than matching the viral theorem
limit which would be reached in an infinite aperture. The upper, lower and middle
curves are for stars with isotropies of β = 0.2 (somewhat radial), β = 0 (isotropic)
and β = −0.2 (somewhat tangential)
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small errors in estimates of the characteristic velocity have enormous impacts
on the resulting cosmological results – a 5% velocity calibration error leads to
a 20% error in the lens cross section. Since luminosity functions and kinematic
relations are rarely derived consistently (the exception is Sheth et al. 2003),
the resulting systematic errors creep into cosmological estimates. Finally, for
the early-type galaxies where the Faber–Jackson kinematic relation has sig-
nificant scatter, transforming the luminosity function using the mean relation
as we did in (103) while ignoring the scatter underestimates the number of
high velocity dispersion galaxies (Kochanek 1994; Sheth et al. 2003). This
leads to underestimates of both the image separations and the cross sections.
The fundamental lesson of all these issues is that the mass scale of the lenses
should be “self-calibrated” from the observed separation distribution of the
lenses rather than imposed using local observations (as we discuss below in
Sect. 6.7).

Most lens calculations have assumed that the comoving density of the
lenses does not evolve with redshift. For moderate redshift sources this only
requires little evolution for zl < 1 (mostly zl < 0.5), but for higher redshift
sources it is important to think about evolution as well. The exact degree of
evolution is the subject of some debate, but a standard theoretical prediction
for the change between now and redshift unity is shown in Fig. 42 (see Mitchell

Fig. 42. The ratio of the velocity function of halos at z = 1 to that at z = 0
from Mitchell et al. (2004). The solid curve shows the expectation for an ΩΛ 	 0.78
flat cosmological model. The points show results from an N-body simulation with
ΩΛ 	 0.7 and the dashed curve shows the theoretical expectation. For comparison,
the dotted curve shows the evolution model used by Chae and Mao (2003)
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et al. 2004 and references therein). Because lower mass systems merge to form
higher mass systems as the universe evolves, low mass systems are expected
to be more abundant at higher redshifts while higher mass systems become
less abundant. For the σv ∼ σ∗ ∼ 200 km/s galaxies which dominate lens
statistics, the evolution in the number of galaxies is actually quite modest out
to redshift unity, so we would expect galaxy evolution to have little effect on
lens statistics. Higher mass systems evolve rapidly and are far less abundant
at redshift unity, but these systems will tend to be group and cluster halos
rather than galaxies and the failure of the baryons to cool in these systems is
of greater importance to their lensing effects than their number evolution (see
Sect. 7). There have been a number of studies examining lens statistics with
number evolution (e.g. Mao 1991; Mao and Kochanek 1994; Rix et al. 1994)
and several attempts to use the lens data to constrain the evolution (Ofek,
Rix and Maoz 2003; Chae and Mao 2003; Davis, Huterer and Krauss 2003).

6.3 Cross Sections

The basic quantity we need for any statistical analysis is the cross section
of the lens for producing the desired lensing effect (e.g. multiple images, two
images, bright images...). The simplest cross section is the multiple imaging
cross section of the SIS lens – the angular area on the source plane in which a
source will produce two lensed images. We know from (21) and (22) that the
source must lie within Einstein radius b of the lens center to produce multiple
images, so the cross section is simply σSIS = πb2. Since the Einstein radius
b = 4π(σv/c)2Dls/Ds depends on the velocity dispersion and redshift of the
lens galaxy, we will need a model for the distribution of lenses in redshift
and velocity dispersion to estimate the optical depth for lensing. If we are
normalizing directly to stellar dynamical measurements of lenses, then we will
also need a dynamical model (e.g. the Jeans equations of Sect. 4.9) to relate the
observed stellar velocity dispersions to the characteristic dark matter velocity
dispersion σv appearing as a parameter of the SIS model. We can also compute
cross sections for obtaining different image morphologies. For example, in (32)
we calculated the caustic boundaries for the four-image region of an SIS in an
external shear γ. If we integrate to find the area inside the caustic we obtain
the four-image cross section

σ4 =
3π
2

γ2b2

1 − γ2
, (104)

while (provided |γ| < 1/3) the two-image cross section is σ2 = σSIS − σ4 �
σSIS . If the shear is larger, then the tips of astroid caustic extend beyond
the radial (pseudo-)caustic and the lens has regions producing two images,
three images in the disk geometry (Fig. 18), and four images with no simple
expression for the cross sections. There are no analytic results for the singular
isothermal ellipsoid ((37) with s = 0), but we can power expand the cross
section as a series in the ellipticity to find at lowest order that
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σ4 =
π

6
b2ε2 (105)

for a lens with axis ratio q = 1 − ε, while the total cross section is σSIS =
πb2 (e.g. Kochanek 1996a,b; Finch et al. 2002). As a general rule, a lens of
ellipticity ε is roughly equivalent to a spherical lens in an external shear of
γ � ε/3. According to the cross sections, the fraction of four-image lenses
should be of order σ4/σSIS ∼ γ2 ∼ (ε/3)2 ∼ 0.01 rather than the observed
30%. Most of this difference is a consequence of the different magnification
biases of the two image multiplicities.

There is an important subtlety when studying lens statistics with models
covering a range of axis ratios, namely that the definition of the critical radius
b in (say) the SIE model (37) depends on the axis ratio and exactly what
quantity you are holding fixed in your calculation (see Keeton, Kochanek
and Seljak 1997; Keeton and Kochanek 1998; Rusin and Tegmark 2001; Chae
2003). For example, if we compare a singular isothermal sphere to a face on
Mestel disk with the same equatorial circular velocity, the Einstein radius
of the disk is 2/π smaller than the isothermal sphere because for the same
circular velocity a disk requires less mass than a sphere. Since we usually
count galaxies locally and translate these counts into a dynamical variable,
this means that lens models covering a range of ellipticities must be normalized
in terms of the same dynamical variables as were used to count the galaxies.

Much early effort focused on the effects of adding a finite core radius to
these standard models (e.g. Blandford and Kochanek 1987a,b; Kochanek and
Blandford 1987; Kovner 1987a; Hinshaw and Krauss 1987; Krauss and White
1992; Wallington and Narayan 1993; Kochanek 1996a,b). The core radius s
leads to an evolution of the caustic structures (see Part 1, Blandford and
Narayan 1986) with the ratio between the core radius and the critical radius
s/b. Strong lenses with s/b � 1 act like singular models. Weak, or marginal,
lenses with s/b ∼ 1 have significantly reduced cross sections but higher average
magnifications such that the rising magnification bias roughly balances the
diminishing cross section to create a weaker than expected effect of core radii
on the probability of finding a lens (see Kochanek 1996a,b). As the evidence
that lenses are effectively singular has mounted, interest in these models has
waned, and we will not discuss them further here. There is some interest in
these models as a probe of large separation lenses due to groups and clusters
where a finite core radius is replaced by effects of the shallow ρ ∝ r−1 NFW
density cusp, and we will consider this problem in Sect. 7 where we discuss
large separation lenses.

6.4 Optical Depth

The optical depth associated with a cross section is the fraction of the sky in
which you can place a source and see the effect. This simply requires adding
up the contributions from all the lens galaxies between the observer and the
redshift of the source. For the SIS lens we simply need to know the comoving
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density of lenses per unit dark matter velocity dispersion dn/dσ (which may
be a function of redshift)

τSIS =
∫ zs

0

dV

dzl
dzl

∫ ∞

0

dn

dσv

σSIS

4π
dσv, (106)

where dV/dzl is the comoving volume element per unit redshift (e.g. Turner,
Ostriker and Gott 1984). For a flat cosmology, which we adopt from here
on, the comoving volume element is simply dV = 4πD2

ddDd where Dd is the
comoving distance to the lens redshift (2). The generalization to open or closed
models can be found in Carroll et al. (1992). As with most lens calculations,
this means that the expression simplifies if expressed in terms of the comoving
angular diameter distances,

τSIS =
∫ Ds

0

dDdD
2
d

(
Dds

Ds

)2 ∫ ∞

0

dn

dσv
16π2

(σv

c

)4

(107)

(Gott, Park and Lee 1989; Fukugita, Futamase and Kasai 1990). If the comov-
ing density of the lenses does not depend on redshift, the integrals separate
to give

τSIS =
8π2

15
D3

s

∫ ∞

0

dσv
dn

dσ v

(σv

c

)4

(108)

(Fukugita and Turner 1991). If we now assume that the galaxies can be de-
scribed by the combination of Schechter luminosity functions and kinematic
relations described in Sect. 6.2, then we can do the remaining integral to find
that

τSIS =
8π2

15
n∗
(σ∗

c

)4

D3
sΓ [1 + α + 6/γ] =

1
30

τ∗r−3
H D3

sΓ [1 + α + 6/γ], (109)

where Γ [x] is a Gamma function, rH = c/H0 is the Hubble radius and the
optical depth scale is

τ∗ = 16π3n∗r3
H

(σ∗
c

)4

= 0.026
(

n∗
10−2h3Mpc−3

)(
σ∗

200km s−1

)4

. (110)

Thus, lens statistics are essentially a volume test of the cosmology (the D3
s),

predicated on knowing the comoving density of the lenses (n∗) and their av-
erage mass (σ∗). The result does not depend on the Hubble constant – all
determinations of n∗ scale with the Hubble constant such that n∗D3

s is inde-
pendent of H0.

Two other distributions, those in image separation and in lens redshift at
fixed image separation, are easily calculated for the SIS model and useful if
numerical for any other lens.
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The SIS image separation is Δθ = 8π(σv/c)2Dds/Ds, so

dτSIS

dΔθ
= 1

2D
3
sΔ̂θ

2
(
Γ [1 + α− 2/γFJ , ξ] − 2Δ̂θΓ [1 + α− 4/γFJ , ξ]

+Δ̂θ
2
Γ [1 + α− 6/γFJ , ξ]

)
, (111)

where ξ = (Δθ/Δθ∗)γF J/2 and

Δθ∗ = 8π
(σ∗

c

)2

= 2.′′3
(

σ∗
200km s−1

)2

(112)

is the maximum separation produced by an L∗ galaxy. The mean image sep-
aration,

〈Δθ〉 =
Δθ∗
2

Γ [1 + α + 8/γ]
Γ [1 + α + 6/γ]1/2

, (113)

depends only on the properties of the lens galaxy and not on cosmology. If
the cosmological model is not flat, a very weak dependence on cosmology is
introduced (Kochanek 1993a,b,c). For a known separation Δθ, the probability
distribution for the lens redshift becomes

dP

dzl
∝ D2

d

Ds

dDd

dzl
exp

[
−
(

Δθ

Δθ∗
Ds

Dds

)1/2
]

(114)

(we present the result only for Schechter function α = −1 and Faber–Jackson
γFJ = 4). The location of the exponential cut off introduced by the luminosity
function has a strong cosmological dependence, so the presence or absence
of lens galaxies at higher redshifts dominates the cosmological limits. The
structure of this function is quite different from the total optical depth, which
in a flat cosmology is a slowly varying function with a mean lens distance
equal to one-half the distance to the source. The mean redshift changes with
cosmology because of the changes in the distance-redshift relations, but the
effect is not as dramatic as the redshift distributions for lenses of known
separation.

We end this section by discussing the Keeton (2002) “heresy”. Keeton
(2002) pointed out that if you used a luminosity function derived at interme-
diate redshift rather than locally, then the cosmological sensitivity of the opti-
cal depth effectively vanishes when the median redshift of the lenses matches
the median redshift of the galaxies used to derive the luminosity function.
The following simple thought experiment shows that this is true at one level.
Suppose there was only one kind of galaxy and we make a redshift survey and
count all the galaxies in a thin shell at redshift z, finding N galaxies between z
and z+Δz. The implied comoving density of the galaxies, n = N/(ΔzdV/dz),
depends on the cosmological model with the same volume factor appearing in
the optical depth calculation (106). To the extent that the redshift ranges and
weightings of the galaxy survey and a lens survey are similar, the cosmological
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sensitivity of the optical depth vanishes because the volume factor cancels and
the optical depth depends only on the number of observed galaxies N . This
does not occur when we use a local luminosity function because changes in
cosmology have no effect on the local volume element. The problem with the
Keeton (2002) argument is that it basically says that if we could use galaxy
number counts to determine the cosmological model then we would not need
lensing to do so because the two are redundant. To continue our thought ex-
periment, we also have local estimates nlocal for the density of galaxies, and as
we vary the cosmology we would find that n and nlocal agree only for a limited
range of cosmological models and this would restore the cosmological sensitiv-
ity. The problem is that the comparison of near and distant measurements of
the numbers of galaxies is tricky because it depends on correctly matching the
galaxies in the presence of galaxy evolution and selection effects – in essence,
you cannot use this argument to eliminate the cosmological sensitivity of lens
surveys unless you think you understand galaxy evolution so well that you can
use galaxy number counts to determine the cosmological model, a program of
research that has basically been abandoned.

6.5 Spiral Galaxy Lenses

Discussions of lens statistics, or even lenses in general, focus on early-type
galaxies (E/S0). The reason is that spiral lenses are relatively rare. The
only morphologically obvious spirals are B0218+357 (Sc, York et al. 2005),
B1600+434 (S0/Sa, Jaunsen and Hjorth 1997), PKS1830–211 (Sb/Sc, Winn
et al. 2002a,b,c), PMNJ2004–1349 (Sb/Sc, Winn, Hall and Schechter 2003c),
and Q2237–0305 (Huchra et al. 1985). Other small separation systems may
well be spiral galaxies, but we do not have direct evidence from imaging.
There are studies of individual spiral lenses or the statistics of spiral lenses by
Maller, Flores and Primack (1997); Keeton and Kochanek (1998); Koopmans
et al. (1998); Maller et al. (2000); Trott and Webster (2002); Winn, Hall and
Schechter (2003c).

The reason lens samples are dominated by early-type galaxies is that
the early-type galaxies are more massive even if slightly less numerous
(e.g. Fukugita and Turner 1991, see Sect. 6.2). The relative numbers of
early-type and late-type lenses should be the ratio of their optical depths,
(nl/ne)(σl/σe)4, based on the comoving densities and characteristic velocity
dispersions of the early and late-type galaxies. For example, in the Kochanek
et al. (2001a,b) K-band luminosity function nl/ne � 2.2 while the ratio of the
characteristic velocity dispersions is σ∗l/σ∗e = 0.68 giving an expected ratio
of spiral to early-type lenses of 0.47. Because the typical separation of the
spiral lenses will also be smaller by a factor of (σ∗l/σ∗e)2 = 0.46, they will be
much harder to resolve given the finite resolution of lens surveys. Thus, survey
selections functions discriminate more strongly against late-type lenses than
against early-type lenses. The higher prevalence of dust in late-type lenses
adds a further bias against them in optical surveys.
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6.6 Magnification Bias

The optical depth calculation suggests that the likelihood of finding that a
zs � 2 quasar is lensed is very small (τ ∼ 10−4) , while observational sur-
veys of bright quasars typically find that of order 1% of bright quasars are
lensed. The origin of the discrepancy is the effect known as “magnification
bias” (Turner 1980), which is really the correction needed to account for the
selection of survey targets from flux limited samples. Multiple imaging al-
ways magnifies the source, so lensed sources are brighter than the population
from which they are drawn. For example, the mean magnification of all mul-
tiply imaged systems is simply the area over which we observe the lensed
images divided by the area inside the caustic producing multiple images be-
cause the magnification is the Jacobian relating area on the image and source
planes, d2β = |μ|−1d2θ. For example, an SIS lens with Einstein radius b pro-
duces multiple images over a region of radius b on the source plane (i.e. the
cross section is πb2), and these images are observed over a region of radius
2b on the image plane, so the mean multiple-image magnification is 〈μ〉 =
(4πb2)/(πb2) = 4.

Since fainter sources are almost always more numerous than brighter
sources, magnification bias almost always increases your chances of find-
ing a lens. The simplest example is to imagine a lens which always pro-
duces the same magnification μ applied to a population with number counts
N(F ) with flux F . The number counts of the lensed population are then
Nlens(F ) = τμ−1N(F/μ), so the fraction of lensed objects (at flux F ) is
larger than the number expected from the cross section if fainter objects are
more numerous than the magnification times the density of brighter objects.
Where did the extra factor of magnification come from? It has to be there to
conserve the total number of sources or equivalently the area on the source
and lens planes – you can always check your expression for the magnification
bias by computing the number counts of lenses and checking to make sure that
the total number of lenses equals the total number of sources if the optical
depth is unity.

Real lenses do not produce unique magnifications, so it is necessary to
work out the magnification probability distribution P (> μ) (the probability
of a magnification larger than μ) or its differential dP/dμ and then convolve it
with the source counts. Equivalently we can define a magnification dependent
cross section, dσ/dμ = σdP/dμ where σ is the total cross section. We can do
this easily only for the SIS lens, where a source at β produces two images with
a total magnification of μ = 2/β (21, 22) and μ > 2 in the multiple image
region, to find that P (> μ) = (2/μ)2 and dP/dμ = 8/μ3. The structure at low
magnification depends on the lens model, but all sensible lens models have
P (> μ) ∝ μ−2 at high magnification because this is generic to the statistics
of fold caustics (Part 1, Blandford and Narayan 1986).

Usually people have defined a magnification bias factor B(F ) for sources
of flux F so that the probability p(F ) of finding a lens with flux F is related
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to the optical depth by p(F ) = τB(F ). The magnification bias factor is

B(F ) = N(F )−1

∫
dμ

μ

dP

dμ
N

(
F

μ

)
(115)

for a source with flux F , or

B(m) = N(m)−1

∫
dμ

dP

dμ
N (m + 2.5 log μ) (116)

for a source of magnitude m. Note the vanishing of the extra 1/μ factor when
using logarithmic number counts N(m) for the sources rather than the flux
counts N(F ). Most standard models have magnification probability distribu-
tions similar to the SIS model, with P (> μ) � (μ0/μ)2 for μ > μ0, in which
case the magnification bias factor for sources with power law number counts
N(F ) = dN/dF ∝ F−α is

B(F ) =
2μα−1

0

3 − α
(117)

provided the number counts are sufficiently shallow (α < 3). For number
counts as a function of magnitude N(m) = dN/dm ∝ 10am (where a =
0.4(α− 1)) the bias factor is

B(F ) =
2μ2.5a

0

2.5a− 2
. (118)

The steeper the number counts and the brighter the source is relative to any
break between a steep slope and a shallow slope, the greater the magnification
bias. For radio sources a simple power law model suffices, with α � 2.07±0.11
for the CLASS survey (Rusin and Tegmark 2001), leading to a magnification
bias factor of B � 5. For quasars, however, the bright quasars have number
counts steeper than this critical slope, so the location of the break from the
steep slope of the bright quasars to the shallower slope for fainter quasars near
B ∼ 19 mag is critical to determining the magnification bias. Figure 46 shows
an example of a typical quasar number counts distribution as compared to
several (old) models for the distribution of lensed quasars. The changes in the
magnification bias with magnitude are visible as the varying ratio between
the lensed and unlensed counts, with a much smaller ratio for bright quasars
(high magnification bias) than for faint quasars (low magnification bias) and
a smooth shift between the two limits as you approach the break in the slope
of the counts at B ∼ 19 mag.

For optically-selected lenses, magnification bias is “undone” by extinction
in the lens galaxy because extinction provides an effect that makes lensed
quasars dimmer than their unlensed counterparts. Since the quasar samples
were typically selected at blue wavelengths, the rest wavelength correspond-
ing to the quasar selection band at the redshift of the lens galaxy where it
encounters the dust is similar to the U-band. If we use a standard color excess
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E(B−V ) for the amount of dust, then the images become fainter by of order
AUE(B − V ) magnitudes where AU � 4.9. Thus, if lenses had an average
extinction of only E(B − V ) � 0.05 mag, the net magnification of the lensed
images would be reduced by about 25%. If all lenses had the same demagnifi-
cation factor f < 1 then the modifications to the magnification bias would be
straight forward. For power-law number counts N(F ) ∝ F−α, the magnifica-
tion bias is reduced by the factor fα and a E(B − V ) = 0.05 extinction leads
to a 50% reduction in the magnification bias for objects with a slope α � 2
(faint quasars) and to still larger reductions for bright quasars. Some exam-
ples of the changes with the addition of a simple mean extinction are shown
in the right panel of Fig. 46, although the levels of extinction shown there are
larger than observed in typical lenses as we discuss in Sect. 9.1. Comparisons
between the statistics of optically-selected and radio-selected samples can be
used to estimate the magnitude of the correction. The only such compari-
son found estimated extinctions consistent with the direct measurements of
Sect. 9.1 (Falco, Kochanek and Muñoz 1998). However, the ISM of real lenses
is presumably far more complicated, with a distribution of extinctions and
different extinctions for different images which may be a function of orienta-
tion and impact parameter relative to the lens galaxy, for which we have no
good theoretical model.

The flux of the lens galaxy also can modify the magnification bias for
faint quasars, although the actual sense of the effect is complex. The left
panel Fig. 46 shows the effect of dropping lenses in which the lens galaxy
represents some fraction of the total flux of the lensed images. The correction
is unimportant for bright quasars because lens galaxies with B < 19 mag are
rare. In this picture, the flux from the lens galaxy leads to the loss of lenses
because the added flux from the lens galaxy makes the colors of faint lens
galaxies differ from those of quasars so they are never selected as quasars to
begin with. Alternatively, if one need not worry about color contamination,
then the lens galaxy increases the magnification bias by supplying extra flux
that makes lensed quasars brighter.

Any other selection effect, such as the dynamic range allowed for flux
ratios between images as a function of their separation will also have an
effect on the magnification bias. Exactly how the effect enters depends on
the particular class of images being considered. For example, in the SIS
lens (or more generally for two-image lenses), a limitation on the detectable
flux ratio 0 < fmin < 1 sets a minimum detectable magnification μmin =
2(1 + fmin)/(1 − fmin) > μ0 = 2. Since most lens samples have significant
magnification bias, which means that most lenses are significantly magnified,
such flux limits have only modest effects. The other limit, which cannot be
captured in the SIS model, is that almost all bright images are merging pairs
on folds (or triplets on cusps) so the image separation decreases as the mag-
nification increases. The contrast between the merging images and any other
images also increases with increasing magnification – combined with limits
on the detectability of images, these lead to selection effects against highly
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magnified images. This is also usually a modest effect – while magnification
bias is important, the statistics are dominated by modestly magnified sys-
tems rather than very highly magnified images. In fact, there have been few
attempts at complete studies of the complicated interactions between finding
quasars, finding lenses, selection effects and magnification bias. There is an
early general study by Kochanek (1991a,b,c) and a detailed practical appli-
cation of many of these issues to the SDSS survey by Pindor et al. (2003).
Unfortunately, Pindor et al. (2003) seem to arrive at a completeness estimate
from their selection model that is too high given the number of lenses they
found in practice. Some of this may be due to underestimating the luminosity
of lens galaxies, the effects of the lens galaxy or extinction on the selection
of quasars or the treatment of extended, multicomponent lenses compared
to normal quasars in the photometric pipeline. These difficulties, as well as
the larger size of the present radio-selected lens samples, are the reason that
almost all recent statistical studies have focused exclusively on radio lenses.

The standard magnification bias expressions ((115) and (116)) are not
always correct. They are correct for the statistics of lenses selected from source
populations for which the total flux of the source (including all images of a
lensed source) is defining F (or m). This is true of most existing surveys –
for example the CLASS radio survey sources were originally selected from
single dish observations with very poor resolution compared to typical image
separations (see Browne et al. 2003). If, however, the separation of the images
is large compared to the resolution of the observations and the fluxes of the
images are considered separately, then the bias must be computed in terms of
the bright image used to select sources to search for additional images. This
typically reduces the bias. More subtle effects can also appear. For example,
the SDSS survey selects quasar candidates based on the best fit point-source
magnitudes, which will tend to be an underestimate of the flux of a resolved
lens. Hence the magnification bias for lenses found in the SDSS survey will
be less than in the standard theory. Samples selected based on more than
one frequency can have more complicated magnification biases depending on
the structure of the multidimensional number counts (Borgeest, von Linde
and Refsdal 1991; Wyithe, Winn and Rusin 2003). The exact behavior is
complex, but the magnification bias can be tremendously increased if the
fluxes in the bands are completely uncorrelated or tightly but nonlinearly
correlated. For example, if the luminosities in bands A and B are related by
tight, nonlinear correlation of the form LA ∝ L

1/2
B , then the lensed examples

of these objects will lie off the correlation. At present, there are too few deep,
wide-area multiwavelength catalogs to make good use of this idea, but this is
changing rapidly.

While most studies assume lenses are spherical when making statistical
studies, there are significant and trivially observable consequences of elliptic-
ity in lens statistics namely, the four image lenses, whose existence in obser-
vational samples is largely due to the differences in the magnification bias
between quads and doubles. We noted earlier that the expectation from the
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cross section is that four-image lenses should represent order ε2Ψ ∼ γ2 ∼ 0.01
of lenses where εΨ is the ellipticity of the lens potential. Yet in Sect. 2 we saw
that four-image lenses represent roughly one third of the observed population.
Most of this difference is a consequence of the different magnification biases
of the two image multiplicities. In general, the ellipticity of the lenses has
little effect on the expected number of lenses, allowing the use of circular lens
models for statistical studies that are uninterested in the morphologies of the
images (e.g. Keeton, Kochanek and Seljak 1997; Rusin and Tegmark 2001;
Chae 2003).

While simple models generally capture the total magnification bias of a
sample, the magnification bias depends heavily on the number of images.
Figure 43 shows the image magnification contours for an SIS lens in an ex-
ternal shear on both the image and source planes. The highly magnified re-
gions are confined to lie near the critical line. If we Taylor expand the inverse
magnification radially, then μ−1 = Δx|dμ−1/dx| where Δx is the distance
from the critical line, so the magnification drops inversely with the distance
from the critical line. If we Taylor expand the lens equations, then we find
that the change in source plane coordinates is related to the change in im-
age plane coordinates by Δβ = μ−1Δx ∝ μ−2. Thus, if L is the length of

Fig. 43. Magnification contours on the image (left) and source (right) planes for
an SIS in an external shear. The heavy solid contours show the tangential critical
line (left) and its corresponding caustic (right). On the image plane (left), the light
curves are magnification contours. These are positive outside the critical curve and
negative inside the critical curve. The images found in a four-image lens are all found
in the region between the two dashed contours – when two images are merging on
the critical line, the other two images lie on these curves. On the source plane the
solid (dashed) curves show the projections of the positive (negative) magnification
contours onto the source plane. Note that the high magnification regions are domi-
nated by the four-image systems with the exception of the small high magnification
regions found just outside the tip of each cusp
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the astroid curve, the probability of a magnification larger than μ scales as
P (> μ) ∝ μ−2L/|dμ−1/dx|. This applies only to the four image region, be-
cause the only way to get a high magnification in the two-image region is for
the source to lie just outside the tip of a cusp. The algebra is overly complex to
present, but the generic result is that the region producing magnification μ ex-
tends μ−2 from the cusp tip but has a width that scales as μ−1/2, leading to an
overall scaling that the asymptotic cross section declines as P (> μ) ∝ μ−7/2

rather than P (> μ) ∝ μ−2. This can all be done formally (see Blandford and
Narayan 1986) so that asymptotic cross sections can be derived for any model
(e.g. Kochanek and Blandford 1987; Finch et al. 2002), but a reasonable ap-
proximation for the four-image region is to compute the magnification, μ0,
for the cruciform lens formed when the source is directly behind the lens and
then use the estimate that P (> μ) = (μ0/μ)2. Unfortunately, such simple
estimates are not feasible for the two-image region. These distributions are
relatively easy to compute numerically, as in the example shown in Fig. 44.

Because the minimum magnification increases ∝ γ−1 even as the cross sec-
tion decreases as ∝ γ2, the expected number of four-image lenses in a sample
varies much more slowly with ellipticity than expected from the cross section.
The product σ4B(F ) ∝ γ2μα−1

0 , of the four-image cross section, σ4, and the

Fig. 44. The integral magnification probability distributions for a singular isother-
mal ellipsoid with an axis ratio of q = 0.7 normalized by the total cross section
for finding two images. Note that the total four-image cross section is only of order
ε2Ψ ∼ (ε/3)2 ∼ 0.01 of the total, but that the minimum magnification for the four-
image systems (μmin ∼ 1/ε ∼ 10) is much larger than that for the two-image systems
(μmin ∼ 2 just as for an SIS). The entire four-image probability distribution is well
approximated by the P (> μ) ∝ μ−2 power law expected for fold caustics, while the
two-image probability distribution is steeper since highly magnified images can only
be created by the cusps. Figure courtesy of D. Rusin
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magnification bias, B(F ), scales as γ3−α ∝ γ for the CLASS survey (α � 2),
which is a much more gentle dependence on ellipticity than the quadratic
variation expected from the cross section. There is a limit, however, to the
fraction of four-image lenses, as shown in Fig. 45. If the potential becomes too
flat, the astroid caustic extends outside the radial caustic (Fig. 18), to produce
three-image systems in the “disk” geometry rather than additional four-image
lenses. In the limit that the axis ratio goes to zero (the lens becomes a line),
only the disk geometry is produced. The existence of a maximum four-image
lens fraction, and its location at an axis ratio inconsistent with the observed
axis ratios of the dominant early-type lenses has made it difficult to explain
the observed fraction of four image lenses (King and Browne 1996; Kochanek
1996a,b; Keeton, Kochanek and Seljak 1997; Keeton and Kochanek 1998;
Rusin and Tegmark 2001). Recently, Cohn and Kochanek (2004) argued that
satellite galaxies of the lenses provide the explanation by somewhat boosting
the fraction of four-image lenses while at the same time explaining the exis-
tence of the more complex lenses like B1359+154 (Myers et al. 1999; Rusin et
al. 2001) and PMNJ0134–0931 (Winn et al. 2002a,b,c; Keeton and Winn 2003)
formed by having multiple lens galaxies with more complex caustic structures.
It is not, however, clear in the existing data that four-image systems are more
likely to have satellites to the lens galaxy than two-image systems as one
would expect for this explanation.

Gravitational lenses can produce highly magnified images without mul-
tiple images only if they are highly elliptical or have a low central den-
sity. The SIS lens has a single-image magnification probability distribution

Doubles

Quads

Cusps

Fig. 45. The expected number of two-image, four-image and three-image (disk or
cusp) lenses as a function of axis ratio f for the CLASS sample. From Rusin and
Tegmark (2001)
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Fig. 46. Examples of selection effects on optically selected lens samples. The heavy
solid curves in the two panels shows a model for the magnitude distribution of
optically-selected quasars. The light curves labeled ΩM = 1 and λ0 = 1 show the
distribution of lensed quasars for flat cosmologies that are either pure matter or pure
cosmological constant. The change in the ratio between the lensed curves and the
unlensed curves illustrates the higher magnification bias for bright quasars where
the number count distribution is steeper than for faint quasars. In the left panel the
truncated curves show the effect of losing the lensed systems where the lens galaxy
is Δm = 1, 2 or 3 magnitudes fainter than the quasars. Once surveys are searching
for lensed quasars with B >∼ 20 mag, the light from the lens galaxy becomes an
increasing problem, particularly since the systems with the brightest lens galaxies
will also have the largest image separations that would otherwise make them easily
detected. In the right panel we illustrate the effect of adding a net extinction of
AB = 1 or 2 mag from dust in the lens galaxies. These correspond to larger than
expected color excesses of E(B − V ) 	 0.2 and 0.4 mag respectively. Note how the
extinction “undoes” the magnification bias by shifting the lensed distributions to
fainter magnitudes

of τdP/dμ = 2πb2/(μ− 1)3 with μ < 2 compared to τdP/dμ = 2πb2/μ3 with
μ ≥ 2 for the multiply imaged region, so single images are never magnified
by more than a factor of 2. For galaxies, where we always expect high cen-
tral densities, the only way to get highly magnified single images is when the
astroid caustic extends outside the radial caustic (Fig. 18). A source just out-
side an exposed cusp tip can be highly magnified with a magnification prob-
ability distribution dP/dμ ∝ μ−7/2. Such single image magnifications have
recently been a concern for the luminosity function of high redshift quasars
(e.g. Wyithe 2004; Keeton, Kuhlen and Haiman 2005) and will be the high
magnification tail of any magnification perturbations to supernova fluxes (e.g.
Dalal et al. 2003). As a general rule for galaxies, the probability of a single
image being magnified by more than a factor of two is comparable to the
probability of being multiply imaged.



Part 2: Strong Gravitational Lensing 205

6.7 Cosmology With Lens Statistics

The statistics of lenses, in the sense of the number of lenses expected in a sam-
ple of sources as a function of cosmology, is a volume test of the cosmological
model because the optical depth (at least for flat cosmologies) is proportional
to D3

s . However, the number of lenses also depends on the comoving density
and mass of the lenses (n∗, σ∗ and α in the simple SIS model). While n∗ could
plausibly be estimated locally, the σ4

∗ dependence on the mass scale makes it
very difficult to use local estimates of galaxy kinematics or masses to normal-
ize the optical depth. The key step to eliminating this problem is to note that
there is an intimate relation between the cross section, the observed image
separations and the mass scale. While this will hold for any mass model, the
SIS model is the only simple analytic example. The mean image separation for
the lenses should be independent of the cosmological model for flat cosmolo-
gies (and only weakly dependent on it otherwise). Thus, in any lens sample
you can eliminate the dependence on the mass scale by replacing it with the
observed mean image separation, τSIS ∝ n∗〈Δθ〉2D3

s . Full calculations must
include corrections for angular selection effects. Most odd results in lens cos-
mology arise in calculations that ignore the close coupling between the image
separations and the cross section.

In practice, real calculations are based on variations of the maximum like-
lihood method introduced by Kochanek (1993a,b,c, 1996a,b). For each lens i
you compute the probability pi that it is lensed including magnification bias
and selection effects. The likelihood of the observations is then

lnL0 =
∑

lenses

ln pi +
∑

unlensed

ln(1 − pi) �
∑

lenses

ln pi −
∑

unlensed

pi, (119)

where ln(1 − pi) � −pi provided pi � 1. This simply encodes the likelihood
of finding the observed number of lenses given the individual probabilities
that the objects are lensed. Without further information, this likelihood could
determine the limits on the cosmological model only to the extent we had
accurate prior estimates for n∗ and σ∗.

If we add, however, a term for the probability that each detected lens has
its observed separation (including any selection effects)

lnL = lnL0 +
∑

lensed

ln
(
pi(Δθi)

pi

)
, (120)

then the lens sample itself can normalize the typical mass scale of the lenses
(Kochanek 1993a,b,c). This has two advantages. First, it eliminates any sys-
tematic problems arising from the dynamical normalization of the lens model
and its relation to the luminosity function. Second, it forces the cosmological
estimates from the lenses to be consistent with the observed image separations
– it makes no sense to produce cosmological limits that imply image separa-
tions inconsistent with the observations. In theory the precision exceeds that
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of any local calibration very rapidly. The fractional spread of the separations
about the mean is ∼ 0.7, so the fractional uncertainty in the mean separation
scales as 0.7/N1/2 for a sample of N lenses. Since the cross section goes as
the square of the mean separation, the uncertainty in the mean cross section
1.4/N1/2 exceeds any plausible accuracy of a local normalization for σ∗ (10%
in σ∗, or 20% in 〈θ〉 ∝ σ2

∗, or 40% in τ ∝ σ4
∗) with only N � 10 lenses.

Any other measurable property of the lenses can be added to the like-
lihood, but the only other term that has been seriously investigated is the
probability of the observed lens redshift given the image separations and the
source redshift (Kochanek 1992a,b, 1996a,b; Helbig and Kayser 1996; Ofek,
Rix and Maoz 2003). In general, cosmologies with a large cosmological con-
stant predict significantly higher lens redshifts than those without, and in
theory this is a very powerful test because of the exponential cutoff in (114).
The biggest problem in actually using the redshift test, in fact so big that
it probably cannot be used at present, is the high incompleteness of the lens
redshift measurements (Sect. 2). There will be a general tendency, even at
fixed separation, for the redshifts of the higher redshift lens galaxies to be the
ones that are unmeasured. Complete samples could be defined for a separation
range, usually by excluding small separation systems, but a complete analysis
needs to include the effects of groups and cluster boosting image separations
beyond the splitting produced by an isolated galaxy. For example, how do we
include Q0957+561 with its separation of 6.′′2 that is largely due to the lens
galaxy but has significant contributions from the surrounding cluster?

6.8 The Current State

Recent analyses of lens statistics have focused exclusively on the CLASS flat
spectrum radio survey (Browne et al. 2003). Chae et al. (2002); Chae (2003)
and Mitchell et al. (2004) focus on estimating the cosmological model and
find results in general agreement with estimates from Type Ia supernovae (e.g.
Riess et al. 2004). The general approach of both groups is to use variants of the
maximum likelihood methods described above in Sect. 6.7. Chae (2003) uses
an obsolete estimate of the galaxy luminosity function combined with a Faber–
Jackson relation and the variable transformation of (103) but normalized the
velocity scale using the observed distribution of lens separations. Mitchell et al.
(2004) use the true velocity dispersion function from the SDSS survey (Sheth
et al. 2003) and incorporate a Press-Schechter (1974) model for the evolution
of the velocity function. Chae (2003) used ellipsoidal galaxies, although this
has little cosmological effect, while Mitchell et al. (2004) considered only SIS
models. Figure 47 shows the cosmological limits from Mitchell et al. (2004),
which are typical of the recent results. There are also attempts to use lens
statistics to constrain dark energy (e.g. Chae et al. 2004; Kuhlen, Keeton
and Madau 2004), but far larger, well-defined samples are needed before the
resulting constraints will become interesting.
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Fig. 47. (Top) Likelihood functions for the cosmological model from Mitchell et al.
(2004) using the velocity function of galaxies measured from the SDSS survey and
a sample of 12 CLASS lenses. The contours show the 68, 90, 95 and 99% confidence
intervals on the cosmological model. In the shaded regions the cosmological distances
either become imaginary or there is no big bang. (Bottom) The histogram shows
the separation distribution of the 12 CLASS lenses used in the analysis and the
curve shows the distribution predicted by the maximum likelihood model including
selection effects
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Chae and Mao (2003); Davis, Huterer and Krauss (2003) and Ofek, Rix
and Maoz (2003) focused on galaxy properties and evolution in a fixed, con-
cordance cosmology rather than on determining the cosmological models.
Mitchell et al. (2004) compared models where the lenses evolved following
the predictions of CDM models in comparison to non-evolving models. Be-
cause lens statistical estimates are unlikely to compete with other means of
estimating the cosmological models, these are more promising applications of
gravitational lens statistics for the future. Attempts to estimate the evolution
of the lens population usually allow the n∗ and σ∗ parameters of the velocity
function (103) to evolve as power laws with redshift. Mitchell et al. (2004),
Fig. 42) point out that CDM halo models make specific predictions for the
evolution of the velocity function that have a different structure from simple
power laws in redshift, but with the present data the differences are proba-
bly unimportant. All these evolution studies came to the conclusion that the
number density of the σv ∼ σ∗ galaxies which dominate lens statistics has
changed little (∼ ±50%) between the present day and redshift unity.

I have three concerns about these analyses and their focus on the “com-
plete” CLASS lens samples. First, a basic problem with the CLASS survey
is that we lack direct measurements of the redshift distribution of the source
population forming the lenses (e.g Marlow et al. 2000; Muñoz et al. 2003).
In particular, Muñoz et al. (2003) note that the radio source population is
changing radically from nearly all quasars to mostly galaxies as you approach
the fluxes of the CLASS source population. This makes it dangerous to extra-
polate the source population redshifts from the brighter radio fluxes where
the redshift samples are nearly complete to the fainter samples where they
are not. The second problem is that no study has a satisfactory treatment of
the lenses with satellites or associated with clusters. All the analyses use iso-
lated lens models and then either include lenses with satellites but ignore the
satellites or drop lenses with satellites and ignore the fact that they have been
dropped. The analysis by Cohn and Kochanek (2004) of lens statistics with
satellites shows that neither approach is satisfactory – dropping the satellites
biases the results to underestimate cross sections while including them does
the reverse. Cohn and Kochanek (2004) concluded that including the sys-
tems with satellites probably has fewer biases than dropping them. A similar
problem probably arises from the effects of the group halos to which many of
the lenses belong (e.g. Keeton et al. 2000b; Fassnacht and Lubin 2002). My
third concern is that the separations of the radio lenses seem to be systemati-
cally smaller than the optically selected lenses even though the Optical HST
Snapshot Lens Survey (Maoz et al. 1993) had the greatest sensitivity to small
separation systems. It is possible that this is simply due to selection effects
in the optical samples, but I have seen no convincing scenario for producing
such a selection effect. We see no clear correlation of extinction with image
separation (see Sect. 9.1), emission from the lens galaxy is less important for
small separation systems than for large separation systems, and the selection
function due to the resolution of the observations is fairly simple to model.
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On the other hand, the various lens samples may all be consistent. One
way to compare the different data sets is to non-parametrically construct the
velocity function from the observed image separations of the samples. To do
this we assume an SIS lens model for the conversion from image separations
to circular velocities, and then adopt the standard non-parametric methods
used to construct luminosity functions from redshift surveys to construct the
velocity function from the image separations (Kochanek 2003a,b,c). The re-
sults for the flat-spectrum lens surveys (CLASS, JVAS, PANELS), all radio
surveys and all radio surveys plus the quasar lenses are shown in Fig. 48.
We normalized the estimates to the density at vc = 300 km/s to eliminate
any dependence on the cosmological model. The lens data can estimate the
velocity function from roughly vc ∼ 100 km/s to 500 km/s. At lower velocities
the finite resolution of the observations makes the uncertainties in the density
explode, and at higher velocities the surveys have not searched large enough
angular regions around the lens galaxies. The shape of the velocity function is
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Fig. 48. Non-parametric reconstructions of the velocity function from the observed
separations of gravitational lenses assuming an SIS lens model. The velocity func-
tions are all normalized to the bin centered at 300 km/s. The filled squares use only
the lenses in the flat spectrum radio surveys, the triangles use all radio-selected
lenses and the pentagons include all radio lenses and all quasar lenses. The horizon-
tal error bars on the filled squares show the bin widths. The triangles and pentagons
are horizontally offset from the squares to make them more visible. The curves show
the velocity function estimated from the 2MASS sample from Fig. 40. The horizontal
scale at the top of the figure shows the maximum separation produced by a lens of
the corresponding circular velocity. The mean separation produced by such a lens
will be one-half the maximum
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consistent with local estimates (Fig. 40) except in the highest circular velocity
bin where we begin to see the contribution from clusters we will consider in
Sect. 7. Figure 48 also makes it clear why constraints on the evolution of the
lenses are so weak – evolution estimates basically try to compare the low-
redshift separation distribution to the high redshift separation distribution,
and we simply do not have large enough lens samples to begin subdividing
them in redshift (to say nothing of dealing with unmeasured redshifts) and
still have small statistical uncertainties.

7 What Happened to the Cluster Lenses?

One would think from the number of conference proceeding covers featuring
HST images of cluster arcs that these are by far the most common type of
lens. In fact, this is an optical delusion created by the ease of finding the rich
clusters even though they are exponentially rare. The most common kind of
lens is the one produced by a typical massive galaxy – as we saw in Fig. 48.
For a comparison, Fig. 49 shows several estimates of the velocity function
based on standard CDM mass functions and halo models (from Kochanek
and White 2001 and Kochanek 2003a,b,c, using the Sheth and Tormen 1999
mass function combined with the NFW halo model from Sect. 4.1). We see
for high masses or circular velocities that the predicted distribution of halos
agrees with the observed distribution of clusters. At the velocities typical of
galaxies, the observed density of galaxies is nearly an order of magnitude
higher than expected for a CDM halo mass function. At very low velocities
we expect many more halos than we observe galaxies. The velocity function
estimated from the observed image separations matches that of galaxies with
the beginnings of a tail extending onto the distribution of clusters at the high
velocity end (Fig. 49). At low velocities the limited resolution of the present
surveys means that the current lens data does not probe the low velocity
end very well. In this section we discuss the difference between cluster and
galaxy lenses and explain the origin of the break between galaxies and clusters
observed. In Sect. 8 on CDM substructure we will discuss the divergence at
low circular velocities.

The standard halo mass function is roughly a power law with dn/dM ∼
M−1.8 combined with an exponential cutoff at the mass scale corresponding
to the largest clusters that could have formed at any epoch (e.g. the Sheth and
Tormen 1999 halo mass function). Typically these rich clusters have internal
velocity dispersions above 1000 km/s and can produce image splittings of
∼ 30 arcsec. If halo structure was independent of mass, then we would expect
the separation distribution of gravitational lenses to show a similar structure
– a power law out to the mass scale of rich clusters followed by an exponential
cutoff. In Fig. 50 we compare the observed distribution of radio lenses to that
expected from the halo mass function assuming either NFW halos or NFW
halos in which the baryons, representing 5% of the halo mass has cooled
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Fig. 49. The expected circular velocity function dn/d log vc of CDM halos. The
lowest dashed curve labeled NFW vvir shows the velocity function using the NFW
halo virial velocity vvir for the circular velocity (see Sect. 4.1). The middle dashed
curve labeled NFW vc,max shows the velocity function if the peak circular velocity
of the halo is used rather than the virial velocity. The upper dashed curve is a model
in which the baryons of halos with M <∼ 1013M� cool, raising the central density
and circular velocity. The solid curve with the points shows the estimate of the
local velocity function of galaxies (Fig. 40) and the solid curve extending to higher
velocities is an estimate of the local velocity function of groups and clusters

and condensed into the centers of the halos (Kochanek and White 2001). We
would find similar curves if we used simple SIS models rather than these
more complex CDM-based models (Keeton et al. 1998; Porciani and Madau
2000). In practice, the most complete survey for multiply imaged sources,
the CLASS survey, found a largest separation of 4.′′5 (B2108+213) despite
carefully checking candidates out to separations of 15.′′0 (Phillips et al. 2001).
The largest lens found in a search for multiply imaged sources has an image
separation of roughly 15 arcsec (SDSS1004+4112, Inada et al. 2003). The
overall separation distribution (see Fig. 50) has a sharp cutoff on scales of
3 arcsec corresponding to galaxies with velocity dispersions of ∼ 250 km/s.
The principal searches for wide separation lenses are Maoz et al. (1997); Ofek
et al. (2001) and Phillips et al. (2001), although most surveys searched for
image separations of at least 6.′′0. A large number of studies focused only
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Fig. 50. Predicted image separation distributions assuming the structure of halos
does not change with halo mass. The heavy solid line shows the prediction for pure
NFW models while the light solid (dashed) curves shows the predictions after 5% of
the baryons have cooled into a disk (a disk plus a bulge with 10% of the baryonic
mass in the bulge). The curves labeled CLASS (for the CLASS survey lenses) and
all radio (for all radio selected lenses) show the observed distributions

on the properties of lenses produced by CDM mass functions (e.g. Narayan
and White 1988; Wambsganss et al. 1995, 1998; Kochanek 1995a,b; Maoz et
al. 1997; Flores and Primack 1996; Mortlock and Webster 2000a,b,c; Li and
Ostriker 2002; Keeton and Madau 2001b; Wyithe, Turner and Spergel 2001).
We will not discuss these in detail because such models cannot reproduce
the observed separation distributions of lenses. Most recent analyses allow for
changes in the density distributions between galaxies and clusters.

Physically the important difference between galaxies and clusters is that
the baryons in the galaxies have cooled and condensed into the center of the
halo to form the visible galaxy. As the baryons cool, they also drag some of
the dark matter inward through a process known as adiabatic compression
(Blumenthal et al. 1986), although this is less important than the cooling.
As we show in Fig. 51, standard dark matter halos are terrible lenses because
their central cusps (ρ ∝ r−γ and 1.5 ≥ γ ≥ 1) are too shallow. In this case,
a standard NFW halo with a total mass of 1012M� and a concentration of
c = 8 (see (60–62)) at a redshift of zl = 0.5 is unable to produce multiple
images of a source at redshift zs = 2 despite having an asymptotic circular
velocity of nearly 200 km/s. If we now assume that 5% of the mass is in
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Fig. 51. (Top) The rotation curve and (bottom) the bending angle α(x) for a
1012M� halo at zl = 0.5 with a concentration of c = 8 lensing a source at zs = 2.0.
The dashed curves show the results for the initial NFW halo, while the solid curves
show the results after allowing 5% of the mass to cool conserving angular momentum
(spin parameter λ = 0.04) and adiabatically compressing the dark matter. The three
solid curves show the effect of putting 0%, 10% or 20% of the baryonic mass into
a central bulge. Higher bulge masses raise the central circular velocity and steepen
the central deflection profile. The final disk scale length is rd. Compare these to the
bending angles of our simple models in Figs. 10–14
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baryons starting with a typical halo angular momentum and then cooling
into a disk of radius rd while conserving angular momentum we see that the
rotation curve becomes flatter and the galaxy is now able to produce multiple
images. Putting some fraction of the mass into a still more compact, central
bulge make the lens even more supercritical and the bending angle diagram
begins to resemble that of an SIS lens (see Fig. 11). Thus, the cooling of the
baryons converts a sub-critical dark matter halo into one capable of producing
multiple images.

The key point is that only intermediate mass halos contain baryons which
have cooled. High mass halos (groups and clusters) have cooling times longer
than the Hubble time so they have not had time too cool (e.g. Rees and
Ostriker 1977). Most low mass halos also probably resemble dark matter halos
more than galaxies with large quantities of cold baryons because they lost their
baryons due to heating from the UV background during the initial period of
star formation (e.g. Klypin et al. 1999; Bullock, Kravtsov and Weinberg 2000;
see Sect. 8). Here we ignore the very low mass halos and consider only the
distinction between galaxies and groups/clusters. The fundamental realization
in recent studies (e.g. Porciani and Madau 2000; Kochanek and White 2001;
Kuhlen, Keeton and Madau 2004; Li and Ostriker 2003) is that introducing
a cooling mass scale Mc below which the baryons cool to form galaxies and
above which they do not supplies the explanation for the difference between
the observed separation distribution of lenses and naive estimates from halo
mass functions.

Once we recognize the necessity of introducing a distinction between clus-
ter and galaxy mass halos, we can use the observed distribution of lens sep-
arations to constrain the mass scale of the break and the physics of cooling.
Figure 52 shows the most common version of these studies, where separation
distributions are computed as a function of the cooling mass scale Mc. We
show the separation distributions for various cooling mass scales assuming
that 5% of the mass cools into a disk plus a bulge with 10% of the baryonic
mass in the bulge for all halos with M < Mc. If the cooling mass is either too
low or too high we return to the models of Fig. 50, while at some intermediate
mass scale we get the break in the separation distribution to match the ob-
served angular scale. For these parameters, the optimal cooling mass scale is
Mc � 1013M� (Fig. 52). This agrees reasonably well with Porciani and Madau
(2000) and Kuhlen, Keeton and Madau (2004) who found a somewhat higher
mass scale Mc � 3 × 1013M� using SIS models for galaxies. Cosmological
hydrodynamic simulations by Pearce et al. (1999) also found that approxi-
mately 50% of the baryons had cooled on mass scales near 1013M�. Note,
however, that the mass scale needed to fit the data depends on the assumed
fraction of the mass in cold baryons. With fewer cold baryons a halo becomes
a less efficient lens producing smaller image separations so Mc must increase
to keep the break at the observed scale. If the cold baryon fraction is too
low (<∼ 1%), it becomes impossible to explain the data at all. Crudely, the
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Fig. 52. (Top) Predicted separation distributions as a function of the cooling
mass scale Mc in which 5% of the mass cools with 90% of the cooled mater-
ial in a disk and 10% in a bulge. The dashed curves show the distributions for
Mc = 1012M�, 3 × 1012M� and 1013M�, while the solid curves show the distribu-
tions for Mc = 3×1013M�, 1014M� and 3×1014M�. The heavy solid (dashed) curves
shows the observed distribution of the CLASS (all radio-selected) lenses. (Bottom)
The Kolmogorov–Smirnov probability, PKS , of fitting the observed distribution of
CLASS lenses as a function of the cooling mass scale Mc. The heavy solid curves
show the results when 5% of the mass cools without (with) 10% of that mass in a
bulge. The heavy dashed curves show the results for models where lower (1% and
2%) or higher (10% and 20%) halo mass fractions cool, where the optimal cooling
mass scale Mc decreases as the cold baryon fraction increases. For comparison, the
light dashed line shows the cooling time tcool in units of 10 Gyr for the radius en-
closing 50% of the baryonic mass in the standard model. The light solid line shows
the average formation epoch, 〈tform〉, also in units of 10 Gyr
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cooling mass scale depends exponentially on the cold baryon fraction with
logMc/M� � 13.6 − (cold fraction)/0.15.

The mass scale of the break and the cold baryon fraction are not indepen-
dent parameters and should be derivable from the physics of the cooling gas.
In its full details this must include not only the cooling of the gas but also
reheating of the gas in galaxies due to feedback from star formation. Figure 52
also shows the dependence of the cooling time scale and the formation time
scale for halos of mass Mc. For this model (based on the semi-analytic models
of Cole et al. 2000), the cooling time becomes shorter than the age of the
halo very close to the mass scale required to explain the distribution of im-
age separations. These semi-analytic models suggest an alternate approach
in where the cooling mass scale need not be added as an ad hoc parameter.
We could instead follow the semi-analytic models and use the cooling func-
tion to determine the relative cooling rates of halos with different masses.
We leave as the free parameter, the final cosmological density in cold baryons
Ωb,cool ≤ Ωb � 0.04 (i.e. some baryons may never cool or cool and are reheated
by feedback). Low Ωb,cool models have difficulty cooling, making them equiva-
lent to models with a high cooling mass scale (see Fig. 53). High Ωb,cool models
cool easily, making them equivalent to models with a high cooling mass scale.
Models with 0.015 <∼ Ωb,cool <∼ 0.025 agree with the observations (see Fig. 53).
The result depends little on whether we add a bulge, fit the CLASS sample
or all radio lenses or adjust the cooling curve by a factor of two. Thus, the
characteristic scale of the gravitational lens separation distribution is a probe
of the cosmological baryon density Ωb and the fraction of those baryons that
cool in the typical massive galaxy. While it would be premature to use this
as a method for determining Ωb, it is interesting to note that our estimate
is significantly below current cosmological estimates that Ωb � 0.04 which
would be consistent with feedback from star formation and other processes
preventing all baryons from cooling, but well above the estimates of the cold
baryon fraction in local galaxies (0.0045 <∼ Ωb,cool <∼ 0.0068, Fukugita, Hogan
and Peebles 1998). These are also the models generating the velocity function
estimate with baryonic cooling in Fig. 49. The cooling of the baryons shifts
the more numerous low velocity halos to higher circular velocities so that the
models match the observed density of σ∗ galaxies. The models do not correctly
treat the break region because they allow “over-cooled” massive groups, but
then merge back onto the peak circular velocity distribution of the CDM halos
at higher velocities. Since the models allow all low mass halos to cool, there
is still a divergence at low circular velocities which is closely related to the
problem of CDM substructure we discuss in Sect. 8.

7.1 The Effects of Halo Structure and the Power Spectrum

Estimating the structure of clusters using gravitational lensing is primarily a
topic for Part 3, so we include only an abbreviated discussion of lensing by
clusters here. For a fixed cosmological model, two parameters largely control
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Fig. 53. (Top) Predicted separation distributions as a function of the cosmological
cold baryon density Ωb,cool. The dashed curves show the results for Ωb,cool = 0.003,
0.006 and 0.009 (right to left at large separation) and the solid curves show the
results for Ωb,cool = 0.0012, 0.015, 0.018, 0.021, 0.024, 0.030, 0.045 and 0.060 (from
left to right at large separation). The models have 10% of the cold baryons in a
bulge. The heavy solid (dashed) curves show the observed distribution of CLASS
(all radio) lenses. (Bottom) The Kolmogorov–Smirnov probability, PKS , of fitting
the observed distribution of lenses as a function of the cold baryon density Ωb,cool.
The squares (triangles) indicate models with no bulge (10% of the cooled material
in a bulge), and the solid (dashed) lines correspond to fitting the CLASS (all radio)
lenses. For comparison, the horizontal error bar is the estimate by Fukugita, Hogan
and Peebles 1998 for the cold baryon (stars, remnants, cold gas) content of local
galaxies. The vertical line marks the total baryon content of the concordance model
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the abundance of cluster lenses. First, the abundance of clusters varies nearly
exponentially with the standard normalization σ8 � 1 of the power spectrum
on 8h−1 Mpc scales. Second, the cross sections of the individual clusters de-
pend strongly on the exponent of the central density cusp of the cluster. There
are recent studies of these issues by Li and Ostriker (2002, 2003); Huterer and
Ma (2004); Kuhlen, Keeton and Madau (2004); Oguri et al. (2004), and Oguri
and Keeton (2004).

We can understand the general effects of halo structure very easily from
our simple power law model in (9). In Sect. 3 we normalized the models to
have the same Einstein radius, but we now want to normalize them so that
all have the same total mass interior to some much larger radius R0. This is
roughly what happens when we keep the virial mass and break radius of the
halo constant but vary the central density exponent ρ ∝ r−n. The deflection
profile becomes

α(θ) =
b20
R0

(
θ

R0

)2−n

, (121)

where b0 � R0 sets the mass interior to R0 and we recover our old example
if we let b = b0 = R0. The typical image separation is determined by the tan-
gential critical line at θt = R0(b0/R0)2/(n−1), so more centrally concentrated
lenses (larger n) produce larger image separations when b0/R0 � 1. The radial
caustic lies at βr = f(n)θt where f(n) is a not very interesting function of the
index n, so the cross section for multiple imaging σ ∝ β2

r ∝ R2
0(b0/R0)4/(n−1)

– for an SIS profile σ ∝ b4/R2
0, while the cross section for a Moore profile

(n = 3/2) σ ∝ b8/16R6
0 is significantly smaller.

We cannot go to the limit of an NFW profile (n = 1) because our power law
model has a constant surface density rather than a logarithmically divergent
surface density in the limit as n → 1, but we can see that as the density
profile becomes shallower the multiple image cross section drops rapidly when
the models have constant mass inside a radius which is much larger than
their Einstein radius. As a result, the numbers of group or cluster lenses
depends strongly on the central exponent of the density distribution even
when the mass function of halos is fixed. Magnification bias will weaken the
dependence on the density slope because the models with shallower slopes
and smaller cross sections will generally have higher average magnifications.
The one caveat to these calculations is that many groups or clusters will have
central galaxies, and the higher surface density of the galaxy can make the
central density profile effectively steeper than the CDM halo in isolation.

7.2 Binary Quasars

Weedman et al. (1982) reported the discovery of the third “gravitational”
lens, Q2345+007, a pair of z = 2.15 quasars separated by 7.′′3. The optical
spectra of the two images are impressively similar (e.g. Small et al. 1997), but
repeated attempts to find a lens have failed in both the optical (e.g. Pello
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et al. 1996) and with X-rays (Green et al. 2002). Q2345+007 is the founding
member of a class of objects seen in the optical as a pair of quasars with very
similar spectra, small velocity differences and separations 3.′′0 <∼ Δθ <∼ 15.′′0.
The most recent compilation contained 15 examples (Mortlock, Webster and
Francis 1999). The incidence of these quasar pairs in surveys is roughly 2
per 1000 LBQS quasars (see Hewett et al. 1998) and 1 per 14000 CLASS
radio sources (Koopmans et al. 2000a,b). The separations of these objects
correspond to either very massive galaxies or groups/clusters. Obvious lenses
on these scales, in the sense that we see the lens, are rare but have an incidence
consistent with theoretical expectations (see Fig. 50). If, however, even a small
fraction of the objects like Q2345–007 are actually gravitational lenses, then
dark lenses outnumber normal groups and clusters and dominate the halo
population on mass scales above M >∼ 1013M�.

If the criterion of possessing a visible lens is dropped, so as to allow for
dark lenses, proving objects are lenses becomes difficult. There are two un-
ambiguous tests – measuring a time delay between the images, which is very
difficult given the long time delays expected for lenses with such large sepa-
rations, or using deep imaging to show that the host galaxies of the quasars
show the characteristic arcs or Einstein rings of lensed hosts (Figs. 3 and 4).
The latter test is feasible with HST6 and will be trivial with JWST. Spectral
comparisons have been the main area of debate. In the optical, many of the
pairs have alarmingly similar spectra if they are actually binary quasars (e.g.
Q2345+007 or Q1634+267, see Small et al. 1997) – indeed, some of these dark
lens candidates have more similar spectra than genuinely lensed quasars (see
Mortlock, Webster and Francis 1999). The clearest examples of dark lens can-
didates that have to be binary quasars are the cases in which only one quasar
is radio loud. These objects, such as PKS1145–071 (Djorgovski et al. 1987)
or MGC2214+3550 (Muñoz et al. 1998), represent 4 of the 15 candidates.
Similarly, the dramatic difference in the flux ratio between optical and X-ray
wavelengths of Q2345+007 is the strongest direct argument for this object
being a binary quasar (Green et al. 2002).

Two statistical arguments provide the strongest evidence that these ob-
jects must be binary quasars independent of any weighting of spectral simi-
larities. The first argument, due to Kochanek, Falco and Muñoz 1999), is that
the existence of binary quasars like MGC2214+3550 in which only one of the
quasars is radio loud predicts the incidence of pairs in which both are radio
quiet. We can label the quasar pairs as either O2R2, where both quasars are
seen in the optical (O) and the radio (R), O2R, where only one quasar is seen
in the radio, or O2 where neither quasar is seen in the radio. Lenses must
be either O2R2 or O2 pairs. Surveys of quasars find that only PR � 10% of
quasars are radio sources with 3.6 cm fluxes above 1 mJy (e.g. Bischof and

6 We detected the host galaxies of the Q2345–007 quasars in the CASTLES H-band
image. Their morphology is probably inconsistent with the lens hypothesis, but
we viewed the data as too marginal to publish the result.
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Becker 1997). If all the quasar pairs were binary quasars and the probability
of being radio loud is independent of whether a quasar is in a binary, then
the relative number of O2, O2R and O2R2 binaries should be 1 to 2PR = 0.2
to P 2

R = 0.01. Given that we observed 4 O2R binaries we should observe
20 O2 binaries and 0.2 O2R2 binaries. This statistical pattern matches the
data, and Kochanek, Falco and Muñoz (1999) found that the most probable
solution was that all quasar pairs were binary quasars with an upper limit of
only 8% (68% confidence) on the fraction that could be dark lenses. With the
subsequent expansion of the quasar pair sample and the discovery of the first
O2R2 binary (B0827+525, Koopmans et al. 2000a,b), these limits could be
improved.

The second statistical argument is that the dark lens candidates do not
have the statistical properties expected for lenses. Three aspects of the quasar
pairs make them unlikely to be lenses simply given the properties of gravita-
tional lensing. First, there are no four-image dark lens candidates even though
a third of the normal lenses are quads. Second, many of the dark lens can-
didates have very high flux ratios between the images – 4 of the 9 ambigu-
ous quasar pairs considered by Rusin (2002) have flux ratios of greater than
10:1. Magnification bias makes such large flux ratios very improbable for true
gravitational lenses (Sect. 6.6, Kochanek 1995a,b). Third, the suppression of
central/third/odd images in the lens population is a consequence of baryonic
cooling and the resulting increase of the central surface density. Standard dark
matter halos with their shallow central cusps, ρ ∝ r−1, generally produce de-
tectable third images. Since it is probably a requirement for a lens to remain
dark that the baryons in the halo cannot cool (or they would form stars), you
would expect the typical dark lens to resemble APM08279+5255 and have an
easily detectable third image (Rusin 2002). Thus, in the context of CDM we
would expect dark lenses to be standard cuspy density distributions like the
NFW model (60). Rusin (2002) evaluated the likelihood of the quasar pairs
assuming that dark lenses have the structure of CDM halos and found that the
observed flux ratios and the lack of three-image dark lenses were extremely
unlikely. Only the real lens APM08279+5255 had a significant probability of
being produced by a dark CDM halo (also see Muñoz, Kochanek and Keeton
2001), although for this case I think the exposed cusp/disk lens explanation
for the morphology is more likely.

The evidence overwhelmingly favors interpreting the quasar pairs as bi-
nary quasars. However, as originally pointed out by Djorgovski (1991), the
one problem with the binary hypothesis is that the incidence of the quasar
pairs is two orders of magnitude above that expected from an extrapolation
of the quasar-quasar correlation function on scales of Mpc. As discussed in
Kochanek, Falco and Muñoz 1999 and Mortlock, Webster and Francis (1999)
the incidence can be increased if the incipient merger of the two host galax-
ies is triggering the quasar activity. The separation distribution of the binary
quasars is crudely compatible with tidally triggered activity when the merger
starts followed by a coalescence of the host galaxies driven by tidal friction.
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Small separation binary quasars (Δθ < 3.′′0) are rare because the decay of the
host galaxy orbits accelerates as their separation diminishes. Well-measured
angular distributions of binary quasars, potentially obtainable from SDSS,
might allow detailed explorations of the triggering and merging physics.

8 The Role of Substructure

Simulations of CDM halos predicted many more small satellites than were
actually observed in the Milky Way (e.g. Kauffmann et al. 1993; Moore et
al. 1999; Klypin et al. 1999). Crudely 5–10% of the mass was left in satellites
with perhaps 1–2% at the projected separations of 1–2Re where we see most
lensed images (e.g. Zentner and Bullock 2003; Mao et al. 2004). This is far
larger than the observed fraction of 0.01–0.1% in observed satellites (e.g. Chiba
2002). Solutions were proposed in three broad classes: hide the satellites by
preventing star formation so they are present but dark (e.g. Klypin et al. 1999;
Bullock et al. 2000), destroy them using self-interacting dark matter (e.g.
Spergel and Steinhardt 2000), or avoid forming them by changing the power
spectrum to something similar to warm dark matter with significantly less
power on the relevant mass scales (e.g. Bode et al. 2001). These hypotheses
left the major observational challenge of distinguishing dark satellites from
non-existent ones. This became known as the CDM substructure problem.

It was well known in the lensing community that the fluxes of lensed images
were usually poorly fit by lens models. There was a long litany of reasons for
ignoring them arising from possible systematic errors which can corrupt image
fluxes. Differential effects between the images from the interstellar medium of
the lens can corrupt the fluxes (dust in the optical/IR, scatter broadening
in the radio, see Sect. 9.1). Time delays combined with source variability can
corrupt any single-epoch measurement. Microlensing by the stars in the lens
galaxy can modify the fluxes of any sufficiently compact component of the
source (at a minimum the quasar accretion disk, see Part 4). The most pe-
culiar problem was the anomalous flux ratios in radio lenses. Radio sources
are essentially unaffected by the ISM of the lens galaxy in low resolution ob-
servations that minimize the effects of scatter broadening (VLA rather than
VLBI), true absorption appears to be rare, radio sources generally show little
variability even when monitored, and most of the flux should come from re-
gions too large to be affected by microlensing. Yet in B1422+231, for example,
the three cusp images violated the cusp relation for their fluxes (that the sum
of the signed magnifications of the three images should be zero, see Metcalf
and Zhao 2002; Keeton, Gaudi and Petters 2003; or Schneider, Ehlers and
Falco 1992).7

7 In specific models there can also be global invariants relating image positions
and magnifications (e.g. Witt and Mao 2000; Hunter and Evans 2001; Evans and
Hunter 2002). These results are usually for simple softened power law models
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Fig. 54. The most spectacular example of an anomalous flux ratio, SDSS0924+0219
(Inada et al. 2003). In this CASTLES infrared HST image, the D image should be
comparable in brightness to the A image, but is actually an order of magnitude
dimmer. The A and B images are minima, while C and D are saddle points. The
contours are spaced by factors of two from the peak of the A image. The lens galaxy is
seen at the center. At present we do not know whether the suppression of the saddle
point in this lens is due to microlensing or substructure. If it is microlensing, ongoing
monitoring programs should see it return to its expected flux within approximately
10 years

It is easier to outline the problem of anomalous flux ratios near a fold
caustic (such as images A and D in SDSS0924+0219, see Fig. 54), than a cusp
caustic. Near a fold, the lens equations can be reduced to a one-dimensional
model with

β = θ (1 − Ψ ′′) − 1
2
Ψ ′′′θ2 → −1

2
Ψ ′′′θ2 (122)

and inverse magnification

μ−1 = (1 − Ψ ′′) − Ψ ′′′θ → −Ψ ′′′θ, (123)

where we choose our coordinates such that there is a critical line at θ = 0 (i.e.
1 − Ψ ′′ = 0) and the primes denote derivatives of the potential. These equa-
tions are easily solved to find that you have images at θ± = ±(−2β/Ψ ′′′)1/2

if the argument of the square root is positive and no solutions otherwise – as
you cross the fold caustic (β = 0) two images are created or destroyed on the
critical line at θ = 0. Their inverse magnifications of μ−1

± = ∓(−2βΨ ′′′)1/2

using either ellipsoidal potentials or an external shear rather than ellipsoidal
cuspy density distributions with an external shear, so their applicability to the
observed lenses is unclear.
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are equal in magnitude but reversed in sign. Hence, if the assumptions of the
Taylor expansion hold, the images merging at a fold should have identical
fluxes. Either by guessing or by tedious algebra you can determine that the
fractional correction to the magnification from the next order term is of or-
der θ±Ψ (4)/Ψ ′′′. For any reasonable central potential where the images are
at radius θ0 from the lens center, the fractional correction will be of order
θ±/θ0 ∼ 0.1 for the typical pair of anomalous images. Hence, using gravity to
produce the anomalous flux ratios requires terms in the potential with a length
scale comparable to the separation of the images to significantly violate the
rule that they should have similar fluxes. Mao and Schneider (1998) pointed
out that a very simple way of achieving this was to put a satellite near the
images, and they found that this could explain the anomaly in B1422+231.
Metcalf and Madau (2001, also see Bradac et al. 2002 for images of the mag-
nification patterns expected from a CDM halo) put these two pieces together,
pointing out that if normal satellite galaxies were too rare to make anomalous
flux ratios common, the missing CDM substructure was not. They predicted
that in CDM, anomalous flux ratios should be common.

If we add a population of satellites with surface density κsat = Σsat/Σ near
the images we can estimate the nature of the perturbations. If we model them
as pseudo-Jaffe potentials with critical radius b and break radius8 a = (bb0)1/2,
then the satellites produce a deflection perturbation of order

〈δθ2〉1/2 ∼ 10−3b0

(
10Σsat

Σc

)1/2(103b

b0

)3/4

. (124)

Only massive satellites will be able to produce deflection perturbations large
enough to be detected given typical astrometric errors. Because the astromet-
ric constraints for lenses are so accurate, generally better than 0.′′005, satellites
with deflection scales larger than b >∼ 10−2b0 will usually have observable ef-
fects on model fits and must be included in the basic lens model. The shear
perturbation

〈δγ2〉1/2 ∼ 0.1
(

10Σsat

Σc

)1/2(103b

b0

)1/4( lnΛ

10

)1/2

, (125)

where lnΛ = ln(a/s) is a Coulomb logarithm required to make the integral
converge at small separations, is significantly larger. The effects of substruc-
ture gain on those from the primary lens as we move to quantities requiring
more derivatives of the potential because the substructure has less mass but
shorter length scales. For example most astronomical objects have masses
and sizes that scale with internal velocity σv as M ∝ σ4

v and R ∝ σ2
v . So

time delays, which depend on the potential φ ∝ M ∝ σ4
v , will be completely

unaffected by substructure. Deflections, which require one spatial derivative
8 This is the tidal truncation radius for an SIS of critical radius b orbiting in an

SIS of critical radius b0 > b. The total satellite mass is 	 πabΣc.
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of the potential, α ∝ φ/R ∝ σ2
v , are affected only be the more massive sub-

structures. Magnifications, which require two spatial derivatives of the poten-
tial, κ ∼ γ ∼ φ/R2 ∝ σ0

v , are affected equally by all mass scales provided
the Einstein radius of the object is larger than the characteristic size of the
source. Substructure will also affect brighter images more than fainter im-
ages because the magnifications of the brighter images are more unstable to
small perturbations. Recall that the magnification μ = (λ+λ−)−1 where one
of the eigenvalues λ± = 1 − κ ± γ, usually λ−, is small for a highly magni-
fied image. If we now add a shear perturbation δγ, the perturbation to the
magnification is of order δγ/λ− so you have a bigger fractional perturbation
to the magnification for the same shear perturbation if the image is more
highly magnified. The last important effect from substructure, for which I
know of no simple, qualitative explanation, is that substructure discriminates
between saddle points and minima when it is a small fraction of the total sur-
face density (Schechter and Wambsganss 2002; Keeton 2003b). In this regime,
the magnification distributions for the saddle points develop an extended tail
toward demagnification that is not present for the minima.

It turns out that anomalous flux ratios are very common – a fact which had
been staring us in the face but was ignored because most people (including the
author !) were mainly just annoyed that the flux ratios could not be used to
constrain the potential of the primary lens so as to determine the radial mass
profile. When Dalal and Kochanek (2002) collected the available four-image
radio lenses to estimate the abundance of substructure, they found that 5 of 6
systems showed anomalies. In order to estimate the abundance of substructure
Dalal and Kochanek 2002 developed a Bayesian Monte Carlo method which
estimated the likelihood that adding substructure would significantly improve
models of seven four-image lenses including the fact that the model for the
primary lens would have to be adjusted each time any substructure was added.
Figure 55 illustrates some tests of the method. Under the assumption that
the uncertainties in flux measurements (systematic as well as statistical) were
10%, they found a substructure mass fraction of 0.006 < fsat < 0.07 (90%
confidence) with a median estimate of fsat = 0.02. This is consistent with
expectations from CDM simulations, including estimates of the destruction of
the satellites in the inner regions of galaxies (Zentner and Bullock 2003; Mao
et al. 2004), and too high to be explained by normal satellite populations.
Because the result is driven by the flux anomalies, which do not depend on
the mass of the substructures, rather than astrometric anomalies, which do
depend on the mass, the results had almost no ability to estimate the mass
scale associated with the substructure.

While substructure with approximately the surface density expected from
CDM is consistent with the data, it is worth examining other possibilities.
We would expect any effect from the ISM to be strongly frequency dependent
(whether in the radio or in the optical). At least for radio lenses, Kochanek
and Dalal (2004) found that the optical depth function needed to explain the
radio flux anomalies would have to be gray, ruling out all the standard radio
suspects. We would also expect propagation effects at radio frequencies to
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Fig. 55. (Top) A Monte Carlo test for estimating substructure surface densities. The
heavy curves show the estimated probability distribution for the substructure surface
density fraction in a sample of 7 four-image lenses in which the input fraction was
5% (marked by the vertical line). The points on the curve show the median, 1σ and
2σ confidence limits. The output distributions are consistent with the true input
fraction. The dashed line shows how the accuracy would improve given a sample
of 56 lenses (i.e. multiplying the 8 trials of 7 images each). (Bottom) The same
method applied to the real data. The three distributions show the effects of changing
assumptions on the actual flux measurement errors – the greater the measurement
uncertainties the less substructure surface density is required to explain the flux
ratio anomalies. The middle case (10%) is probably slightly too conservative (20%
is ridiculously conservative and 5% is probably too optimistic)
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preferentially affect the faintest images because they have the smallest angu-
lar sizes – remember that more magnified images are always bigger even if
you cannot resolve the change in size. The ISM also cannot discriminate be-
tween images based on parity – the ISM is a local property of the lens and the
parity is not, so they cannot show a correlation. Hence, if radio propagation
effects created the anomalies they should be the same for minima and saddle
points and more important for the fainter than the brighter images. Figure 56
shows the cumulative distributions of flux residuals for radio, optical and com-
bined four-image lens samples from Kochanek and Dalal (2004). The bright
saddle point images clearly have a different distribution in each case, as we
would expect for substructure but not for the ISM. The Kolmogorov–Smirnov
test significance of the differences between the most magnified saddle points
and the other three types of images (brightest minimum, faintest minimum,
faintest saddle) is 0.04%, 5% and 0.3% for the radio, optical and joint sam-
ples respectively. The next most discrepant image is the brightest minimum,
also as expected for substructure, but with less significance. Various statisti-
cal games (bootstrap resampling methods of estimating significance or testing
for anomalies) always give the same results. Thus, the ISM is ruled out as an
explanation.

Even though simple Taylor series arguments make it unlikely that changes
to the central potential are a solution (see Sect. 4.4), it still has its advocates
(Evans and Witt 2003; Quadri et al. 2003; Möller, Hewett and Blain 2003;
Kawano et al. 2004). The basic answer is that it is possible to create flux
anomalies by making the deviations of the central potential from ellipsoidal
sufficiently large for the angular structure of the potential to change rapidly
enough between nearby images to produce the necessary magnification changes.
There are three basic problems with this solution (see Sect. 4.6 as well).

The first problem is that the required deviations from an ellipsoidal profile
are far too large. This is true even though the biggest survey of such mod-
els allowed image positions to shift by approximately 10 times their actual
uncertainties in order to alter the image fluxes (Evans and Witt 2003) – had
they forced the models to match the true astrometric uncertainties they would
have needed even larger perturbations. Kochanek and Dalal (2004) found that
models fitting the flux anomalies required |a4| � 0.01 compared to the typical
values observed for galaxies and simulated halos (|a4| ∼ 0.01, see Sect. 4.4). It
is fair to say, however, that the quantitative results on the multipole structure
of simulated halos are limited.

The second problem is that when we test these solutions in lenses for which
we have additional model constraints, the models are forced back toward the
standard ellipsoidal models. The basic problem, as Evans and Witt (2003)
show, is that the problem of fitting image positions and fluxes with potentials
of the form rF (θ) can be reduced to a problem in linear algebra if F (θ) is ex-
panded as a multipole series – by adding enough terms it is possible to fit any
four-image lens exactly. The reasons go back to the lack of constraints we dis-
cussed in Sect. 4.6. Figure 26 illustrates this point using the lens B1933+503.



Part 2: Strong Gravitational Lensing 227

Kochanek and Dalal (2004) first fit the four compact images with a model in-
cluding deviations from an ellipsoidal surface density. With sufficiently strong
deviations there were models that could eliminate the flux anomalies in this
system. However, this lens, B1933+503, actually has three components to its
source – a compact core forming the four-image system with the anomaly but
also to radio lobes lensed into another four-image system and a two-image
system for 10 images in all (Fig. 6). When we add the constraints from these
other images the model is forced back to being a standard ellipsoidal model
with a flux ratio anomaly. In the future, the degree to which lens galaxy po-
tentials are ellipsoidal could be thoroughly tested in the lenses with Einstein
ring images of their host galaxies.

The third problem with using the central potential to produce flux ratio
anomalies is that it does not lead to the discrimination between saddle points
and minima shown in Fig. 56. Kochanek and Dalal (2004) demonstrate this
with Monte Carlo simulations, but the basic reason is simple. Consider a
lens like PG1115+080 with two images merging at a saddle point. The sense
with which the saddle point and minima are perturbed depends on the phase
of the higher order multipoles relative to the images and the critical line,
but for any fixed lens potential, that phase varies depending on the source
position, so the average effect cannot make the bright saddle points show a
significantly different set of properties from the bright minima. Every observed
flux anomaly could be explained by adding complex angular structures to the
main lens, but the inability of these models to differentiate between saddle
points and minima would still rule them out.

For the moment there are two barriers to improving estimates of the sub-
structure mass fraction. First, radio lens surveys have run out of sources bright
enough to conduct efficient surveys. This will only change as upgrades to ex-
isting radio arrays are completed. The proposed Merlin and VLA upgrades
will provide both sensitivity and resolution improvements that will make the
next generation of radio lens surveys easier than the last. Second, searches for
substructure using optical quasars need to separate the effects of microlensing
and substructure. With simple imaging this can be done by finding parts of
the quasar which are sufficiently extended to avoid significant contamination
from microlensing. Emission line (e.g. Moustakas and Metcalf 2003) and dust
emission regions should both be large enough to filter out the effects of the
stars. Studying emission line ratios is now relatively easy because of the new
generation of small-pixel integral field spectrographs on 8m-class telescopes.
Mid-infrared flux ratios for the dusty regions remain difficult, but they have
been obtained for one lens (Q2237+0305, Agol et al. 2000) and could be ex-
tended to several more.

The gold standard, however, would be astrometric detection of dark sub-
structure so that we would obtain a direct, mass estimate. In all the present
analyses, the most massive substructures were included as part of the model.
They were not, however, dark substructures because they matched to satel-
lites visible in HST images of the lenses. For example, Object X in MG0414
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Fig. 56. Saddle point suppression in lenses. The three panels show the cumulative
distributions of model flux residuals, log(fobs/fmod), in the real data, assuming con-
stant fractional flux errors for each image. The solid (dashed) lines are for minima
(saddle points), with squares (no squares) for the distribution corresponding to the
most (least) magnified image. From top to bottom the distributions are shown for
samples of 8 radio, 10 optical or 15 total four-image lenses. If the flux residuals
are created by propagation effects we would not expect the distributions to depend
on the image parity or magnification, while if they are due to low optical depth
substructure we would expect the distribution for the brightest saddle points to be
shifted to lower observed fluxes

+0534 (Fig. 7) has effects on the image positions that are virtually impos-
sible to reproduce with changes in the potential of the central lens galaxy
(Trotter, Winn and Hewitt 2000), while models with it easily fit the data
(Ros et al. 2000). Figure 57 shows the dependence of the goodness of fit to
MG0414+0534 on the location of an additional lens component, with a deep
minimum located at the observed position of Object X. The deflections pro-
duced by an object of mass M generally scale as M1/2, so it is relatively easy
to detect the deflection perturbations from objects only 1% the mass of the
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Fig. 57. The improvement in the fit to the Ros et al. (2000) VLBI data on
MG0414+0534 from adding an additional lens with an Einstein radius 15% that
of the primary lens galaxy as a function of its position. The squares show the lo-
cation of the quasar images, the central circles mark the position of the main lens
galaxy and the single circle marks the position of object X (see Fig. 7). The heavy
contour has the same χ2 = 123 as single component models, and they then drop a
factor of 0.2 per lighter contour to a minimum of χ2 = 0.6 almost exactly at the
position of Object X

primary lens. One approach is to search lenses with VLBI structures for signs
of perturbations. This has been attempted for B1152+199 by Metcalf (2002),
but the case for substructure is not very solid given the limited nature of
the data. The cleanest example of astrometric detection of something small,
but sadly not dark, is in the VLBI structure of image C in MG2016+112
(Koopmans et al. 2002). The asymmetry in the VLBI component separations
of image C on either side of the critical line (see Fig. 58) is due to a very faint
galaxy 0.′′8 South of the image with a deflection scale ∼ 10% of the primary
lens (see Fig. 7). This is in reasonable agreement with the prediction from
the H-band magnitude difference of 4.6 mag and the (lens) Faber–Jackson
relation between magnitudes and deflections. In this case, we even know that
the satellite is at the same redshift as the lens because Koopmans and Treu
(2002) accidentally measured its redshift in the course of their observations
to measure the velocity dispersion of the lens galaxy.
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Fig. 58. VLBI maps of MG2016+112 (Koopmans et al. 2002). The large difference
in the C11/C12 separation as compared to the C13/C2 separation is the clearest
example of an “astrometric” anomaly in a lens. The critical line passes between C12

and C13 and by symmetry we would expect the separations of the subcomponents on
either side of the critical line to be similar. In this case the cause of the asymmetry
seems to be a galaxy D about 0.′′8 South of the C image (see Fig. 7). Galaxy D has
the same redshift as the primary lens (Koopmans and Treu 2002)‘

8.1 Low Mass Dark Halos

When we are examining a particular lens, almost all the substructure will con-
sist of satellites associated with the lens with only ∼ 10% contamination from
other small halos along the line-of-sight to the source (Chen, Kravtsov and
Keeton 2003). However, the excess of low mass halos in CDM mass functions
relative to visible galaxies is a much more general problem because the low
mass CDM satellites should exist everywhere, not just as satellites of mas-
sive galaxies (Fig. 49, Gonzalez et al. 2000; Kochanek 2003a,b,c). Crudely,
luminosity functions diverge as dn/dL ∼ 1/L ∼ 1/M while CDM mass func-
tions diverge as dn/dM ∼ M−1.8 so the fraction of low mass halos that must
be dark increases ∼ M−0.8 at low masses. Figure 49 illustrates this assuming
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that all low mass halos have baryons which have cooled (e.g. Gonzalez et al.
2000; Kochanek 2003a,b,c). In the context of CDM, the solution to this general
problem is presumably the same as for the satellites responsible for anomalous
flux ratio – they exist but lost their baryons before they could form stars. Such
processes are implicit in semianalytic models which can reproduce galaxy lu-
minosity function (e.g. Benson et al. 2003) but can be modeled empirically in
much the same way was employed for the break between galaxies in clusters in
Sect. 7 (e.g. Kochanek 2003a,b,c). In any model, the probability of the baryons
cooling to form a galaxy has to drop rapidly for halo masses below ∼ 1011M�
just as it has to drop rapidly for halo masses above ∼ 1013M�. Unlike groups
and clusters, where we still expect to be able to detect the halos from either
their member galaxies or X-ray emission from the hot baryons trapped in the
halo, these low mass halos almost certainly cannot be detected in emission.

Unlike substructures in the halo of a massive galaxy that can be detected
from their influence on the fluxes of lensed images, we can only detect isolated,
low-mass dark halos if they multiply image background sources. For SIS lenses
the distribution of image separations for small separations (Δθ/Δθ∗ � 1,
(111)) scales as

dτSIS

dΔθ
∝ Δθ1+γF J (1+α)/2, (126)

where α describes the divergence of the mass/luminosity function at low mass
and γFJ is the conversion from mass to velocity dispersion (see Sect. 6.2). For
the standard parameters of galaxies, α � −1 and γFJ � 4, the separation
distribution is dτSIS/dΔθ ∝ Δθ. In practice we do not observe this distri-
bution because the surveys have angular selection effects that prevent the
detection of small image separations (below 0.′′25 for the radio surveys), so
the observed distributions show a much sharper cutoff (Fig. 1). Even without
a cutoff, there would be few lenses to find – the CLASS survey found 9 lenses
between 0.′′3 ≤ Δθ ≤ 1.′′0 in which case we expect only one lens with Δθ < 0.′′3
even in the absence of any angular selection effects. A VLBI survey of 3% of
the CLASS sources with milli-arcsecond resolution found no lenses (Wilkinson
et al. 2001), nor would it be expected to for normal galaxy populations. Our
non-parametric reconstruction of the velocity function including selection ef-
fects confirms that the existing lens samples are consistent with this standard
model (Fig. 48).

The result is very different if we extrapolate to low mass with the α � −1.8
slope of the CDM halo mass function. The separation distribution becomes
integrably divergent, dτSIS/dΔθ ∝ Δθ−0.6, and we would expect 15 lenses
with Δθ < 0.′′3 given 9 between 0.′′3 ≤ Δθ ≤ 1.′′0. Unfortunately, the Wilkinson
et al. (2001) VLBI survey is too small to rule out such a model. A larger VLBI
survey could easily do so, allowing the lenses to confirm the galaxy counting
argument for the existence of second break in the density structure of halos at
low mass (Kochanek 2003a,b,c; Ma 2003) similar to the one between galaxies
and high mass halos (Sect. 7). If the baryons in the low mass halos either fail to
cool, or cool and are then ejected by feedback, then their density distributions
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should revert to those of their CDM halos. If they are standard NFW halos,
Ma (2003) shows that such low mass dark lenses will be very difficult to detect
even in far larger surveys than are presently possible. Nonetheless, improving
the scale of searches for very small separations from the initial attempt by
Wilkinson et al. (2001) would provide valuable limits on their existence.

The resulting small, dark lenses would be the same as the dark lenses we
discussed in Sect. 7.2 for binary quasars and explored by Rusin (2002). They
will also create the same problems about proving or disproving the lens hy-
pothesis as was raised by the binary quasars with the added difficulty that
they will be far more difficult to resolve. Time delays, while short enough to
be easily measured, will also be on time scales where quasars show little vari-
ability. Confirmation of any small dark lens will probably require systems with
three or four images, rather than two images, and the presence of resolvable
(VLBI) structures.

9 The Optical Properties of Lens Galaxies

The optical properties of lens galaxies and the properties of their interstellar
medium (ISM) are important for two reasons. First, statistical calculations
such as those in Sect. 6 rely on lens galaxies obeying the same scaling rela-
tions as nearby galaxies and the selection effects depend on the properties
of the ISM. Thus, measuring the scaling relations of the observed lenses and
the properties of their ISM are an important part of validating these calcu-
lations. Second, lenses have a unique advantage for studying the evolution of
galaxies because they are the only sample of galaxies selected based on mass
rather than luminosity, surface brightness or color. Evolution studies using
optically-selected samples will always be subject to strong biases arising from
the difficulty of matching nearby galaxies to distant galaxies. Selection by
mass rather than light makes the lens samples almost immune to these biases.

Most lens galaxies are early-type galaxies with relatively red colors and few
signs of significant on-going star formation (like the 3727Å or 5007Å Oxygen
lines). The resulting need to measure absorption line redshifts is one of the
reasons that the completeness of the lens redshift measurements is so poor.
Locally, early-type galaxies follow a series of correlations which also exist for
the lens galaxies and have been explored by Im, Griffiths and Ratnatunga
(1997); Keeton, Kochanek and Falco (1998); Kochanek et al. (2000a,b); Rusin
et al. (2003a); Rusin, Kochanek and Keeton (2003b); van de Ven, van Dokkum
and Franx (2003); Rusin and Kochanek (2005).

The first, crude correlation is the Faber–Jackson relation between ve-
locity dispersion and luminosity used in most lens statistical calculations.
A typical local relation is that from Sect. 6.2 and shown in Fig. 39. Most
lenses lack directly measured velocity dispersions, but all lenses have a well-
determined image separation Δθ. For specific mass models the image separa-
tion can be converted into an estimate of a velocity dispersion, such as the
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Δθ = 8π(σv/c)2Dds/Ds relation of the SIS, but the precise relationship de-
pends on the mass distribution, the orbital isotropy, the ellipticity and so forth
(see Sect. 4.9). For the lenses, there is a close relationship between the Faber–
Jackson relation and aperture mass-to-light ratios. The image separation, Δθ,
defines the aperture mass interior to the Einstein ring,

Map =
π

4
ΣcΔθ2, (127)

where Σc = c2Ds/4πGDdsDd is the critical surface density. By image separa-
tion we usually mean either twice the mean distance of the images from the
lens galaxy or twice the critical radius of a simple lens model rather than a
directly measured image separation because these quantities will be less sensi-
tive to the effects of shear and ellipticity. If we measure the luminosity in the
aperture Lap using (usually) HST, then we know the aperture mass-to-light
(M/L) ratio Υap = Map/Lap.

If the mass-to-light ratio varies with radius or with mass, then to compare
values of Υap from different lenses we must correct them to a common radius
and common mass. If these scalings can be treated as power laws, then we
can define a corrected aperture mass-to-light ratio Υ∗ = Υap(D

ang
d Δθ/2R0)x

where R0 is a fiducial radius and x is an unknown exponent, and we would
expect to find a correlation of the form

log Υ∗ = 2(1 + a) logΔθ + 0.4Mabs + constant, (128)

where Mabs is the absolute magnitude of the lens (in some band) and a value
a 
= 0 indicates that the mass-to-light ratio varies either with mass or with
radius. We can then rewrite this in a more familiar form as

Mabs = Mabs,0 + γEV zl − 1.25γFJ log
(

Δθ

Δθ0

)
, (129)

where Δθ0 sets an arbitrary separation scale, γEV (or a more complicated
function) determines the evolution of the luminosity with redshift, and γFJ =
4(1 + a) sets the scaling of luminosity with normalized separation defined so
that for an SIS lens (where Δθ ∝ σ2

v) the exponent γFJ will match the index
of the Faber–Jackson relation (102). Figure 59 shows the resulting relation
converted to the rest frame B band at redshift zero. The relation is slightly
tighter than local estimates of the Faber–Jackson relation, but the scatter is
still twice that expected from the measurement errors. The best fit exponent
γFJ = 3.29 ± 0.58 (Fig. 59) is consistent with local estimates and implies a
scaling exponent a = −0.18 ± 0.14 that is marginally non-zero. If the mass-
to-light ratio of early-type galaxies increases with mass as Υ ∝ Mx, then
x = −a = 0.18 ± 0.14 is consistent with estimates from the fundamental
plane that more massive early-type galaxies have higher mass-to-light ratios.
The solutions also require evolution with γEV = −0.41 ± 0.21, so that early-
type galaxies were brighter in the past. These scalings can also be done in
terms of observed magnitudes rather than rest frame magnitudes to provide
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Fig. 59. (Top) The “Faber–Jackson” relation for gravitational lenses. The figure
compares the observed absolute B magnitude corrected for evolution to that pre-
dicted from the equivalent of the Faber–Jackson relation for gravitational lenses
(129). The different point styles indicate whether the lens and source redshifts were
directly measured or estimated. From Rusin et al. (2003a,b). (Bottom) The red-
shift zero absolute B-band magnitude and effective exponent of the “Faber–Jackson”
relation L ∝ ΔθγF J /2 for gravitational lenses
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simple estimation formulas for the apparent magnitudes of lens galaxies in
various bands as a function of redshift and separation to an rms accuracy of
approximately 0.5 mag (see Rusin et al. 2003a,b).

The significant scatter of the Faber–Jackson relation makes it a crude tool.
Early-type galaxies also follow a far tighter correlation known as the funda-
mental plane (FP, Dressler et al. 1987; Djorgovski and Davis 1987) between
the central, stellar velocity dispersion σc, the effective radius Re and the mean
surface brightness inside the effective radius 〈SBe〉 of the form

log
(

Re

h−1kpc

)
= α log

(
σc

km s−1

)
+ β

( 〈SBe〉
mag arcsec−2

)
+ γ, (130)

where the slope α and the zero-point γ depend on wavelength but the slope
β � 0.32 does not (e.g. Scodeggio et al. 1998; Pahre, de Carvalho and Djor-
govski 1998). Local estimates for the rest frame B-band give α = 1.25 and
γ0 = −8.895 − log(h/0.5) (e.g. Bender et al. 1998). In principle both the
zero points and the slopes may evolve with redshift, but all existing studies
have assumed fixed slopes and studied only the evolution of the zero point
with redshift. For galaxies with velocity dispersion measurements, the ba-
sis of the method is that measurement of Re and σv provides an estimate
of the surface brightness the galaxy will have at redshift zero. The differ-
ence between the measured surface brightness at the observed redshift and
the surface brightness predicted for z = 0 measures the evolution of the
stellar populations between the two epochs as a shift in the zero-point Δγ.
The change in the zero-point is related to the change in the luminosity by
ΔL = −0.4ΔSBe = Δγ/(2.5β). While these estimates are always referred
to as a change in the mass-to-light ratio, no real mass measurement enters
operationally. If, however, we assume a non-evolving virial mass estimate
M = cMσ2

vRe/G for some constant cM , then the FP can be rewritten in
terms of a mass-to-light ratio,

log Υ = log
(
M

L

)
∝
(

10β − 2α
5β

)
log σc +

(
2 − 5β

5β

)
logRe −

γ

2.5β
, (131)

so that if both α and β do not evolve, the evolution of the mass-to-light ratio
is d log Υ/dz = −(dγ/dz)/(2.5β). Either way of thinking about the FP, either
as an empirical estimator of the redshift zero surface brightness or an implicit
estimate of the virial mass, leads to the same evolution estimates but alternate
ways of thinking about potential systematic errors.

Confusion about applications of lenses to the FP and galaxy evolution usu-
ally arise because most gravitational lenses lack direct measurements of the
central velocity dispersion. Before addressing this problem, it is worth consid-
ering what is done for distant galaxies with direct measurements. The central
dispersion appearing in the FP has a specific definition – usually either the ve-
locity dispersion inside the equivalent of a 3.′′0 aperture in the Coma cluster or
the dispersion inside Re/8. Measurements for particular galaxies almost never
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exactly match these definitions, so empirical corrections are applied to adjust
the velocity measurements in the observed aperture to the standard aperture.
As we explore more distant galaxies, resolution problems mean that the mea-
surement apertures become steadily larger than the standard apertures. The
corrections are made with a single, average local relation for all galaxies –
implicit in this assumption is that the dynamical structure of the galaxies
is homogeneous and non-evolving. This seems reasonable since the minimal
scatter around the FP seems to require homogeneity, but says nothing about
evolution. These are also the same assumptions used in the lensing analyses.

If early-type galaxies are homogeneous and have mass distributions that
are homologous with the luminosity distributions, then there is no difference
between the lens FP and the normal kinematic FP, independent of the actual
mass distribution of the galaxies (Rusin and Kochanek 2005). If the mass dis-
tributions are homologous, then the mass and velocity dispersion are related
by M = cMσ2

cRe/G where cM is a constant, σc is the central velocity disper-
sion (measured in a self-similar aperture like the Re/8 aperture used in many
local FP studies), and Re is the effective radius. If we allow the mass-to-light
ratio to scale with luminosity as Υ ∝ Lx, then the normal FP can be written as

logRe =
2

2x + 1
log σc +

0.4(x + 1)
2x + 1

〈SBe〉 +
log cM

2x + 1
, (132)

which looks like the local FP (130) if α = 2/(2x+1) and β = 0.4(x+1)/(2x+1)
(see Faber et al. 1987). Thus, the lens galaxy FP will be indistinguishable from
the FP provided early-type galaxies are homologous and the slopes can be re-
produced by a scaling of the mass-to-light ratio (as they can for x � 0.3 given
α � 1.2 and β � 0.3, e.g., Jorgensen, Franx and Kjaergaard 1996 or Bender
et al. 1998). All the details about the mass distribution, orbital isotropies
and the radius interior to which the velocity dispersion is measured enter only
through the constant cM or equivalently from differences between the FP zero
point γ measured locally and with gravitational lenses. In practice, Rusin and
Kochanek (2005) show that the zero point must be measured to an accuracy
significantly better than Δγ = 0.1 before there is any sensitivity to the ac-
tual mass distribution of the lenses from the FP. Thus, there is no difference
between the aperture mass estimates for the FP and its evolution and the
normal stellar dynamical approach unless the major assumption underlying
both approaches is violated. It also means, perhaps surprisingly, that measur-
ing central velocity dispersions adds almost no new information once these
conditions are satisfied.

Rusin and Kochanek (2005) used the self-similar models we described in
Sect. 4.8 to estimate the evolution rate and the star formation epoch of the
lens galaxies while simultaneously estimating the mass distribution. Thus, the
models for the mass include the uncertainties in the evolution and the reverse.
Figure 60 shows (top) the estimated evolution rate, and shows (bottom) how
this is related to a limit on the average star formation epoch 〈zf 〉 based on
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Fig. 60. (Top) Constraints on the B-band luminosity evolution rate
d log(M/L)B/dz as a function of the logarithmic density slope n (ρ ∝ r−n) of the
galaxy mass distribution. Solid (dashed) contours are the 68% and 95% confidence
limits on two parameter (one parameter). These use the self-similar mass models of
(89) and are closely related to the fundamental plane. From Rusin and Kochanek
(2005). (Bottom) Constraints on the mean star formation epoch 〈zf 〉 as a function
of the logarithmic density slope n (ρ ∝ r−n) of the galaxy mass distribution. Solid
(dashed) contours are the 68% and 95% confidence limits on two parameter (one
parameter). The horizontal dotted lines mark 〈zf 〉 = 1.3, 1.4, 1.5, 1.6 and 1.7. The
lens sample favors older stellar populations with 〈zf 〉 > 1.5 at 95% confidence. These
use the self-similar mass models of (89) and are closely related to the fundamental
plane. From Rusin and Kochanek (2005)
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Bruzual and Charlot (1993, BC96 version) population synthesis models. This
estimate is consistent with the earlier estimates by Kochanek et al. (2000a,b)
and Rusin et al. (2003a,b) which used only isothermal lens models, as we would
expect. van de Ven, van Dokkum and Franx (2003) found a somewhat lower
star formation epoch (〈zf 〉 = 1.8+1.4

−0.5) when analyzing the same data, which
can be traced to differences in the analysis. First, by weighting the galaxies by
their measurement errors when the scatter is dominated by systematics and
by dropping two higher redshift lens galaxies with unknown source redshifts,
van de Ven et al. (2003) analysis reduces the weight of the higher redshift
lens galaxies, which softens the limits on low 〈zf 〉. Second, they used a power
law approximation to the stellar evolution tracks which underestimates the
evolution rate as you approach the star formation epoch, thereby allowing
lower star formation epochs. These two effects leverage a small difference in
the evolution rate9 into a much more dramatic difference in the estimated
star formation epoch. These evolution rates are consistent with estimates for
cluster or field ellipticals by (e.g. van Dokkum and Franx 1996; van Dokkum
et al. 2001; van Dokkum and Franx 2001; van Dokkum and Ellis 2003; Kelson
et al. 1997; Kelson et al. 2000), and inconsistent with the much faster evolution
rates found by Treu et al. (2001, 2002) or Gebhardt et al. (2003).

9.1 The Interstellar Medium of Lens Galaxies

As well as studying the emission by the lens galaxy we can study its ab-
sorption of emission from the quasar as a probe of the interstellar medium
(ISM) of the lens galaxies. The most extensively studied effect of the ISM is
dust extinction because of its effects on estimating the cosmological model
from optically-selected lenses and because it allows unique measurements of
extinction curves outside the local Group. There are also broad band effects
on the radio continuum due to free-free absorption, scatter broadening and
Faraday rotation. While all three effects have been observed, they have been
of little practical importance so far. Finally, in both the radio and the optical,
the lens can introduce narrow absorption features. While these are observed
in some lenses, observational limitations have prevented them from being as
useful as the are in other areas of astrophysics.

As we mentioned in Sect. 6, extinction is an important systematic problem
for estimating the cosmological model using the statistics of optically selected
lenses. It modifies the results by changing the effective magnification bias
of the sample because it provides an effect to make lensed quasars dimmer
than their unlensed counterparts. Because we see multiple images of the same
quasar, it is relatively easy to estimate the differential extinction between
9 Rusin and Kochanek (2005) obtained d log(M/L)B/dz = −0.50 ± 0.19 including

the uncertainties in the mass distribution, Rusin et al. (2003a,b) obtained −0.54±
0.09 for a fixed SIS model, and van de Ven et al. (2003) obtained −0.62 ± 0.13
for a fixed SIS model.
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lensed images under the assumption that the quasar spectral shapes are not
varying on the time scale corresponding to the time delay between the images
and that microlensing effects are not significantly changing the slope of the
quasar continuum. The former is almost certainly valid, while for the latter
we simply lack the necessary data to check the assumption (although we have
a warning sign from the systems where the continuum and emission line flux
ratios differ, see Part 4). Under these assumptions, the magnitude difference
at wavelength λ between two images A and B

mA(λ) −mB(λ) = −2.5 log
∣∣∣∣μA

μB

∣∣∣∣+ R

(
λ

1 + zl

)
ΔE(B − V ) (133)

depends on the ratio of the image magnifications μA/μB , the differential ex-
tinction ΔE(B − V ) = EA − EB between the two images and the extinction
law R(λ/(1 + zl)) of the dust in the rest frame of the dust. We have the addi-
tional assumption that either the extinction law is the same for both images or
that one image dominates the total extinction (Nadeau et al. 1991). Because
it is a purely differential measurement that does not depend on knowing the
intrinsic spectrum of the quasar, it provides a means of determining extinc-
tions and extinction laws that is otherwise only achievable locally where we
can obtain spectra of individual stars (the pair method, e.g. Cardelli, Clayton
and Mathis 1989). The total extinction cannot be determined to any compa-
rable accuracy because estimates of the total extinction require an estimate
of the intrinsic spectrum of the quasar. Figure 61 shows the distribution of
differential extinctions found in the Falco et al. (1999) survey of extinction in
23 gravitational lenses. Only 7 of the 23 systems had colors consistent with
no extinction, and after correcting for measurement errors and excluding the
two outlying, heavily extincted systems the data are consistent with a one-
sided Gaussian distribution of extinctions starting at 0 and with a dispersion
of σΔE � 0.1 mag. The two outlying systems, B0218+357 and PKS1830–211,
were both radio-selected and both have one image that lies behind a molecular
cloud of the late type lens galaxy (see below).

For lenses that have the right amount of dust, so that the image flux ratio
can be measured accurately over a broad range of wavelengths, it is possi-
ble to estimate the extinction curve R(λ/(1 + zl)) of the dust (Nadeau et
al. 1991) or to estimate the dust redshift under the assumption that the ex-
tinction curve is similar to those measured locally (Jean and Surdej 1998).
Starting with Nadeau et al. (1991), there have been many estimates of ex-
tinction curves in lens galaxies (Falco et al. 1999; Toft, Hjorth and Burud
2000; Motta et al. 2002; Muñoz et al. 2004). The most interesting of these
are for systems where the region near the 2175Å extinction feature is vis-
ible. This requires source and lens redshifts that put the feature at long
enough wavelengths to be easily observed (i.e. higher lens redshifts) with
a quasar UV continuum extending to shorter wavelengths (i.e. lower source
redshifts). Motta et al. (2002) achieved the first cosmological detection of
the feature in the zl = 0.83 lens SBS0909+532, as shown in Fig. 62. The
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Fig. 61. Histograms of the differential extinction in various lens subsamples from
Falco et al. (1999). In each panel the solid histogram shows the full sample of 37 dif-
ferential extinctions measured in 23 lenses while the shaded histogram shows the dis-
tributions for different selection methods (radio/optical) or galaxy types (early/late).
The hatched region shows the extinction range consistent with the Falco, Kochanek
and Muñoz 1998 analysis of the difference between the statistics of radio-selected and
optically-selected lens samples (see Sect. 6.6). Note that the most highly extincted
systems, PKS1830–211 and B0218+357, are both radio-selected and late-type galax-
ies. The lowest differential extinction bins are contaminated by the effects of finite
measurement errors

overall extinction curve is marginally consistent with a standard Galactic
RV = 3.1 extinction curve. Other cosmologically distant extinction curves are
very different from normal Galactic models ranging for an anomalously low
RV curve in MG0414+0534 at zl = 0.96 (Falco et al. 1999), probably an SMC
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Fig. 62. The extinction curve of the dust in SBS0909+532 at zl = 0.83 by Motta et
al. (2002). The solid squares show the magnitude difference as a function of inverse
rest wavelength derived from integral field spectra of the continuum of the quasars.
The open squares are broad band measurements from earlier HST imaging and the
filled triangles are the flux ratios in the quasar emission lines. The solid curve shows
the best fit RV = 2.1 ± 0.9 Cardelli, Clayton and Mathis (1989) extinction curve
while the dashed curve shows a standard RV = 3.1 curve. The offset between the
continuum and emission line flux ratios seems not to depend on wavelength and is
probably due to microlensing

extinction curve in LBQS1009–252 at an estimated redshift of zl � 0.88
(Muñoz et al. 2004), and a anomalously high RV extinction curve for the
dust in the molecular cloud of the zl = 0.68 lens galaxy in B0218+357. The
Jean and Surdej (1998) idea of using the shape of the extinction curve to esti-
mate the redshift of the dust also seems to work given a reasonable amount of
dust and wavelength coverage (see Falco et al. 1999; Muñoz et al. 2004), but
too few lenses with unknown redshifts satisfy the requirements for widespread
use of the method.

For broad band radio emission from the source, the three observed prop-
agation effects are free-free absorption, scatter broadening and Faraday ro-
tation. For example, in PMNJ1632–0033, the candidate third image of the
lens (C) has the same radio spectrum as the other two images except at the
lowest frequency observed (1.4 GHz) where it is fainter than expected. This
can be interpreted as free-free absorption by electrons at the center of the
lens galaxy but the interpretation needs to be confirmed by measurements
at additional frequencies to demonstrate that the dependence of the optical
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depth on wavelength is consistent with the free-free process (Winn, Rusin
and Kochanek 2004). Scatter broadening is observed in many radio lenses
(e.g. PMN0134–0931, Winn et al. 2003a,b,c; B0128+437, Biggs et al. 2004;
PKS1830–211, Jones et al. 1996; B1933+503, Marlow et al. 1999) primarily
as changes in the fluxes of images between high resolution VLBI observations
and lower resolution VLA observations or apparently finite sizes for compact
source components in VLBI observations. Aside from its effects in altering
radio fluxes determined in VLBI observations, it seems to have practical con-
sequences. In the presence of a magnetic field, the scattering medium will also
rotate polarization vectors (e.g. MG1131+0456, Chen and Hewitt 1993). This
is only of practical importance if maps which depend on the polarization vec-
tor are used to constrain the lens potential. In short, these effects are observed
but have so far been of little practical consequence.

More surprisingly, absorption by atoms and molecule has also been of little
practical import for lens physics as yet. Wiklind and Alloin (2002) provide an
extensive review of molecular absorption and emission in gravitational lenses.
The two systems with the strongest absorption systems are B0218+357 and
PKS1830–211 (see Gerin et al. 1997 and references therein) where one of the
two images lies behind a molecular cloud of the spiral galaxy lens. These
two systems also show the highest extinction of any lensed images (Falco
et al. 1999). Molecular absorption systems can be used to determine time
delays (Wiklind and Alloin 2002), measure the redshift of lens galaxies (the
lens redshift in PKS1830-211 is measured using molecular absorption lines,
Wiklind and Combes 1996), and potentially to determine the rotation velocity
of the lens galaxy (e.g. Koopmans and de Bruyn 2003). These studies at
centimeter and millimeter wavelengths are heavily limited by the resolution
and sensitivity of existing instruments, and the importance of these radio
absorption features will probably rise dramatically with the completion of the
next generation of telescopes (e.g. ALMA, LOFAR, SKA).

Similar problems face studies of metal absorption lines in the optical. Since
most lenses are at modest redshifts, the strongest absorption lines expected
from the lens galaxies tend to be observable only from space because they
lie at shorter wavelengths than the atmospheric cutoff. For most lenses only
the MgII (2800Å) lines are potentially observable from the ground since you
only require a lens redshift zl >∼ 0.26 to get the redshifted absorption lines
longwards of 3500Å. The other standard metal line, CIV (1549Å), is only
visible for zl >∼ 1.25, and we have no confirmed lens redshifts in this range.
Spectroscopy with HST can search for metal lines in the UV, but the inte-
gration times tend to be prohibitively long unless the quasar images are very
bright. Thus, while absorption lines either associated with the lens galaxy
or likely to be associated with the lens galaxy are occasionally found (e.g.
SDSS1650+4251, Morgan, Snyder and Reens 2003; or HE1104–1805, Lidman
et al. 2000), there have been no systematic studies of metal absorption in
gravitational lenses. Nonetheless, some very bright quasar lenses are favored
targets for very high dispersion studies of their Lyα forest, particularly the
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four-image lens B1422+231 and the three image lens APM08279+5255, be-
cause the lens magnification makes these systems anomalously bright for
quasars at zs > 3.

10 Extended Sources and Quasar Host Galaxies

As we saw in Figs. 3, 4, and 8, we frequently see lensed emission from ex-
tended components of the source. These arcs and rings are important because
they can supply the extra constraints needed to determine the radial mass
distribution that we lack in a simple two-image or four-image lens (Sect. 4.1).
The magnification produced by gravitational lensing also allows us to study
far fainter quasar host galaxies than is otherwise possible. Comparisons of
the luminosities and colors of high and low redshift host galaxies and the
relative luminosities of the host and the quasar are important for understand-
ing the growth of supermassive black holes and their relationships with their
parent halos.

Modeling extended emission is more difficult than modeling point sources
largely because of the complications introduced by the finite resolution of the
observations. In this section we first discuss a simple theory of Einstein ring
images, then some methods for modeling extended emission, and finally some
results about the mass distributions of lenses and the properties of quasar
host galaxies. All models of extended lenses sources start from the fact that
lensing preserves the surface brightness of the source – what we perceive as
magnification is only an artifact of the finite resolution of our observations.
This can be modified by absorption in the ISM of the lens galaxy (e.g. see,
Koopmans et al. 2003), but we will neglect this complication in what follows.
We start with a simple analytic model for the formation of Einstein rings, then
discuss numerical reconstructions of lenses sources and their ability to con-
straint mass distributions, and end with a survey of the properties of quasar
host galaxies.

10.1 An Analytic Model for Einstein Rings

Most of the lensed extended sources we see are dominated by an Einstein ring
– this occurs when the size of the source is comparable to the size of the astroid
caustic associated with producing four-image lenses. When the Einstein ring is
fairly thin, there is a simple analytic model for the formation of Einstein rings
(Kochanek, Keeton and McLeod 2001a). The important point to understand
is that the ring is a pattern rather than a simple combination of multiple
images. Mathematically, what we identify as the ring is the peak of surface
brightness as a function of angle around the lens galaxy. We can identify
the peak by finding the maximum intensity λ(χ) along radial spokes in
the image plane, θ(λ) = θ0 + λ(cosχ, sinχ). At a given azimuth χ we
find the extremum of the surface brightness of the image fD(θ) along each
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spoke, and these lie at the solutions of

0 = ∂λfD(θ) = ∇θfD(θ) · dθ
dλ

. (134)

The next step is to translate the criterion for the ring location onto the source
plane. In real images, the observed image fD(θ) is related to the actual sur-
face density fI(θ) by a convolution with the beam (PSF), fD(θ) = B ∗ fI(θ),
but for the moment we will assume we are dealing with a true surface bright-
ness map. Under this assumption fD(θ) = fI(θ) = fS(β) because of sur-
face brightness conservation. When we change variables the criterion for the
peak brightness becomes

0 = ∇βfS(β) ·M−1 · dθ
dλ

, (135)

where the inverse magnification tensor M−1 = dθ/dβ is introduced by the
variable transformation. Geometrically we must find the point where the tan-
gent vector of the curve, M−1 · dθ/dλ is perpendicular to the local gradient
of the surface brightness ∇βfS(β). These steps are illustrated in Fig. 63.

This result is true in general but not very useful. We next assume that
the source has ellipsoidal surface brightness contours, fS(m2), with m2 =
Δβ ·S ·Δβ where Δβ = β−β0 is the distance from the center of the source,
β0, and the matrix S is defined by the axis ratio qs = 1− εs ≤ 1 and position
angle χs of the source. We must assume that the surface brightness declines
monotonically, dfs(m2)/dm2 < 0, but require no additional assumptions about
the actual profile. With these assumptions the Einstein ring curve is simply
the solution of

0 = Δβ · S · μ−1 · dθ
dλ

. (136)

The ring curve traces out a four (two) lobed cloverleaf pattern when pro-
jected on the source plane if there are four (two) images of the center of the
source (see Fig. 63). These lobes touch the tangential caustic at their maxi-
mum ellipsoidal distance from the source center, and these cyclic variations
in the ellipsoidal radius produce the brightness variations seen around the
ring. The surface brightness along the ring is defined by fI(λ(χ), χ) for a
spoke at azimuth χ and distance λ(χ) found by solving (135). The extrema
in the surface brightness around the ring are located at the points where
∂χfI(λ(χ), χ) = 0, which occurs only at extrema of the surface brightness of
the source (the center of the source, Δβ = 0 in the ellipsoidal model), or
when the ring crosses a critical line of the lens and the magnification tensor
is singular (|M |−1 = μ−1 = 0) for the minima. These are general results that
do not depend on the assumption of ellipsoidal symmetry.

For an SIE lens in an external shear field we can derive some simple prop-
erties of Einstein rings to lowest order in the various axis ratios. Let the SIE
have critical radius b, axis ratio ql = 1 − εl and put its major axis along θ1.
Let the external shear have amplitude γ and orientation θγ . We let the source
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Fig. 63. An illustration of ring formation by an SIE lens. An ellipsoidal source
(left gray-scale) is lensed into an Einstein ring (right gray-scale). The source plane
is magnified by a factor of 2.5 relative to the image plane. The tangential caustic
(astroid on left) and critical line (right) are superposed. The Einstein ring curve is
found by looking for the peak brightness along radial spokes in the image plane. For
example, the spoke in the illustration defines point A on the ring curve. The long
line segment on the left is the projection of the spoke onto the source plane. Point A
corresponds to point A′ on the source plane where the projected spoke is tangential
to the intensity contours of the source. The ring in the image plane projects into the
four-lobed pattern on the source plane. Intensity maxima along the ring correspond
to the center of the source. Intensity minima along the ring occur where the ring
crosses the critical curve (e.g. point B). The corresponding points on the source
plane (e.g. B′) are where the astroid caustic is tangential to the intensity contours

be an ellipsoid with axis ratio qs = 1−εs and a major axis angle χs located at
position (β cosχ0, β sinχ0) from the lens center. The tangential critical line
of the lens lies at radius

rcrit/b = 1 +
εl
2

cos 2χ− γ cos 2(χ− χγ), (137)

while the Einstein ring lies at

rE

b
= 1 +

β

b
cos(χ− χ0) −

εl
6

cos 2χ + γ cos 2(χ− χγ). (138)

At this order, the Einstein ring is centered on the source position rather than
the lens position. The orientation of the ring is generally perpendicular to that
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of the critical curve, although it need not be exactly so when the SIE and the
shear are misaligned due to the differing coefficients of the shear and ellipticity
terms in the two expressions. These results lead to a false impression that the
results do not depend on the shape of the source. In making the expansion we
assumed that all the terms were of the same order (β/b ∼ γ ∼ εl ∼ εs), but
we are really doing an expansion in the ellipticity of the potential of the lens
eΨ ∼ el/3 rather than the ellipticity of the density distribution of the lens, so
second order terms in the shape of the source are as important as first order
terms in the ellipticity of the potential. For example in a circular lens with no
shear (εl = 0, γ = 0) the ring is located at

rE

b
= 1 +

β

b

(2 − εs) cos(χ− χ0) + εs cos(2χs − χ− χ0)
2 − εs + εs cos 2(χs − χ)

, (139)

which has only odd terms in its multipole expansion and converges slowly
for flattened sources. In general, the ring shape is a weak function of the
source shape only if the potential is nearly round and the source is almost
centered on the lens. The structure of the lens potential dominates the even
multipoles of the ring shape, while the structure of the source dominates the
odd multipoles.

In fact, the shape of the ring can be used to simply “read off” the
amplitudes of the higher order multipoles of the lens potential. This is
nicely illustrated by an isothermal potential with arbitrary angular structure,
Ψ = rbF (χ) with 〈F (χ)〉 = 1 (see Zhao and Pronk 2001; Witt et al. 2000;
Kochanek et al. 2001a,b; Evans and Witt 2001) in the absence of any shear.
The tangential critical line of the lens is

rcrit

b
= F (χ) + F ′′(χ). (140)

If êχ and êθ are tangential and radial unit vectors relative to the lens center
and β0 is the distance of the source from the lens center, then the Einstein
ring curve is

rE

b
= F (χ) + F ′(χ)

êχ · S · êθ

êθ · S · êθ
+

β0 · S · êθ

êθ · S · êθ
→ F (χ) + β0 · êθ (141)

with the limit showing the result for a circular source.
Thus, by analyzing the multipole structure of the ring curve one can deduce

the multipole structure of the potential. While this has not been done non-
parametrically, the ability of standard ellipsoidal models to reproduce ring
curves strongly suggests that higher order multipoles cannot be significantly
different from the ellipsoidal scalings. Figure 64 shows two examples of fits to
the ring curves in PG1115+080 and B1938+666 using SIE plus external shear
lens models. The major systematic problem with fitting the real data are that
bright quasar images must frequently be subtracted from the image before the
ring curve can be extracted, and this can lead to artifacts like the wiggle in the
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Fig. 64. The Einstein ring curves in PG1115+080 (top) and B1938+666 (bottom).
The black squares mark the lensed quasar or compact radio sources. The light black
lines show the ring curve and its uncertainties. The black triangles show the intensity
minima along the ring curve (but not their uncertainties). The best fit model ring
curve is shown by the dashed curve, and the heavy solid curve shows the critical line
of the best fit model. The model was not constrained to fit the critical line crossings
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curve between the bright A1/A2 images of PG1115+080. Other than that, the
accuracy with which the ellipsoidal (plus shear) models reproduce the curves
is consistent with the uncertainties. In both cases the host galaxy is relatively
flat (qs = 0.58 ± 0.02 for PG1115+080 and 0.62 ± 0.14 for B1938+666). The
flatness of the host explains the “boxiness” of the PG1115+080 ring, while
the B1938+666 host galaxy shape is poorly constrained because the center
of the host is very close to the center of the lens galaxy so the shape of the
ring is insensitive to the shape of the source. Unless the source is significantly
offset from the center of the lens as we might see for the host galaxy of an
asymmetric two-image lens, it does not constrain the radial density profile
of the lens very well – after considerable algebraic effort you can show that
the dependence on the radial structure scales as |Δβ|4. It can, however, help
considerably in this circumstance because it eliminates the angular degrees
of freedom in the potential that make it impossible for two-image lenses to
constrain the radial density profile at all.

10.2 Numerical Models of Extended Lensed Sources

Obviously the ring curve and its extrema are an abstraction of the real struc-
ture of the lensed source. Complete modeling of extended sources requires a
real model for the surface brightness of the source. In many cases it is suffi-
cient to simply use a parameterized model for the source, but in other cases
it is not. The basic idea in any non-parametric method is that there is an op-
timal estimate of the source structure for any given lens model. This is most
easily seen if we ignore the smearing of the image by the beam (PSF) and
assume that our image is a surface brightness map. Since surface brightness
is conserved by lensing, fI(θ) = fS(β). For any lens model with parameters
p, the lens equations define the source position β(θ,p) associated with each
image position. If we had only single images of each source point, this would
be useless for modeling lenses. However, in a multiply imaged region, more
than one point on the image plane is mapped to the same point on the source
plane. In a correct lens model, all image plane points mapped to the same
source plane position should have the same surface brightness, while in an
incorrect model, points with differing surface brightnesses will be mapped to
the same source point. This provided the basis for the first non-parametric
method, sometimes known as the “Ring Cycle” method (Kochanek et al. 1989;
Wallington, Kochanek and Koo 1995). Suppose source plane pixel j is asso-
ciated with image plane pixels i = 1, ..., nj with surface brightness fi and
uncertainties σi. The goodness of fit for this source pixel is

χ2
j =

nj∑
i=1

(
fi − fs

σi

)2

, (142)

where fs will be our estimate of the surface brightness on the source plane.
For each lens model we compute χ2(p) =

∑
χ2

j and then optimize the lens
parameters to minimize the surface brightness mismatches.
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The problem with this algorithm is that we never have images that are
true surface brightness maps – they are always the surface brightness map
convolved with some beam (PSF). We can generalize the simple algorithm
into a set of linear equations. Although the source and lens plane are two-
dimensional, the description is simplified if we simply treat them as a vector
fS of source plane surface brightness and a vector f I of image plane flux
densities (i.e. including any convolution with the beam). The two images are
related by a linear operator A(p) that depends on the parameters of the
current lens model and the PSF. In the absence of a lens, A is simply the
real-space (PSF) convolution operator. In either case, the fit statistic

χ2 =
|f I −A(p)fS |2

σ2
(143)

(with uniform uncertainties here, but this is easily generalized) must first be
solved to determine the optimal source structure for a given lens model and
then minimized as a function of the lens model. The optimal source structure
dχ2/dfS = 0 leads to the equation that fS = A−1(p)f I . The problem, which
is the same as we discussed for non-parametric mass models in Sect. 4.7, is
that a sufficiently general source model when combined with a PSF will lead
to a singular matrix for which A(p)−1 is ill-defined – physically, there will be
wildly oscillating source models for which it is possible to obtain χ2(p) = 0.

Three approaches have been used to solve the problem. The first is Lens-
Clean (Kochanek and Narayan 1992; Ellithorpe, Kochanek and Hewitt 1996;
Wucknitz 2004), which is based on the Clean algorithm of radio astronomy.
Like the normal Clean algorithm, LensClean is a non-linear method using a
prior that radio sources can be decomposed into point sources for determining
the structure of the source. The second is LensMEM (Wallington, Kochanek
and Narayan 1996), which is based on the Maximum Entropy Method (MEM)
for image processing. The determination of the source structure is stabilized by
minimizing χ2 + λ

∫
d2βfS ln(fS/f0) while adjusting the Lagrange multiplier

λ such that at the minimum χ2 ∼ Ndof where Ndof is the number of degrees
of freedom in the model. Like Clean/LensClean, MEM/LensMEM is a non-
linear algorithm in which solutions must be solved iteratively. Both LensClean
and LensMEM can be designed to produce only positive-definite sources. The
third approach is linear regularization where the source structure is stabilized
by minimizing χ2 + λfS · H · fS (Warren and Dye 2003; Koopmans et al.
2003). The simplest choice for the matrix H is the identity matrix, in which
case the added criterion is to minimize the sum of the squares of the source
flux. More complicated choices for H will minimize the gradients or curvature
of the source flux. The advantage of this scheme is that the solution is simply
a linear algebra problem with (AT (p)A(p) + λH)fS = AT (p)f I .

In all three of these methods there are two basic systematic issues which
need to be addressed. First, all the methods have some sort of adjustable
parameter – the Lagrange multiplier λ in LensMEM or the linear regular-
ization methods and the stopping criterion in the LensClean method. As the
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lens model changes, the estimates of the parameter errors will be biased if the
treatment of the multiplier or the stopping criterion varies with changes in the
lens model in some poorly understood manner. Second, it is difficult to work
out the accounting for the number of degrees of freedom associated with the
model for the source when determining the significance of differences between
different lens models. Both of these problems are particularly severe when
comparing models where the size of the multiply imaged region depends on
the lens model. Since only multiply imaged regions supply any constraints on
the model, one way to improve the goodness of fit is simply to shrink the mul-
tiply imaged region so that there are fewer constraints. Since changes in the
radial mass distribution have the biggest effect on the multiply imaged region,
this makes estimates of the radial mass distribution particularly sensitive to
controlling these biases. It is fair to say that all these algorithms lack a com-
pletely satisfactory understanding of this problem. For radio data there are
added complications arising from the nature of interferometric observations,
which mean that good statistical models must work with the raw visibility
data rather than the final images (see Ellithorpe et al. 1996).

These methods, including the effects of the PSF, have been applied to de-
termining the mass distributions in 0047-2808 (Dye and Warren 2005), B0218
+357 (Wucknitz, Biggs and Browne 2004), MG1131+0456 (Chen, Kochanek
and Hewitt 1995, and MG1654+134 (Kochanek 1995a,b). We illustrate them
with the Dye and Warren (2005) results for 0047-2808 in Fig. 65. The mass
distribution consists of the lens galaxy and a cuspy dark matter halo, where
Fig. 65 shows the final constraints on the mass-to-light ratio of the stars in
the lens galaxy and the exponent of the central dark matter density cusp
(ρ ∝ r−γ). The allowed parameter region closely resembles earlier results
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Fig. 65. Models of 0047–2808 from Dye and Warren (2005). The right panel shows
the lensed image of the quasar host galaxy after the foreground lens has been sub-
tracted. The middle panel shows the reconstructed source and its position relative
to the tangential (astroid) caustic. The left panel shows the resulting constraints on
the central exponent of the dark matter halo (ρ ∝ r−γ) and the stellar mass-to-light
ratio of the lens galaxy. The dashed contours show the constraints for the same
model using the central velocity dispersion measurement from Koopmans and Treu
(2003)
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using either statistical constraints (Fig. 30 or stellar dynamics (Fig. 31). In
fact, the results using the stellar dynamical constraint from Koopmans and
Treu (2003) are superposed on the constraints from the host in Fig. 65, with
the host providing a tighter constraint on the mass distribution than the cen-
tral velocity dispersion. The one problem with all these models is that they
have too few degrees of freedom in their mass distributions by the standards
we discussed in Sect. 4.6. In particular, we know that four-image lenses require
both an elliptical lens and an external tidal shear in order to obtain a good
fit to the data (e.g. Keeton, Kochanek and Seljak 1997), while none of these
models for the extended sources allows for multiple sources for the angular
structure in the potential. In fact, the lack of an external shear probably drives
the need for dark matter in the 0047–2808 models. Without dark matter, the
decay of the stellar quadrupole and the low surface density at the Einstein
ring means that the models generate too small a quadrupole moment to fit
the data in the absence of a halo. The dark matter solves the problem both
through its own ellipticity and the reduction in the necessary shear with a
higher surface density near the ring (recall that γ ∝ 1 − 〈κ〉). Again see the
need for a greater focus on the angular structure of the potential.

10.3 Lensed Quasar Host Galaxies

The advantage of studying lensed quasars is that the lens magnification enor-
mously enhances the visibility of the quasar host. A typical HST PSF makes
the image of a point source have a mean surface brightness that declines as
R−3 with distance R from the quasar. Compared to an unlensed quasar, the
host galaxy of a lensed quasar is stretched along the Einstein ring leading
to an improvement in the contrast between the host in the quasar of μ2 for
an image magnified by μ – you gain μ3 by stretching the host away from
the quasar and lose μ because the quasar is magnified. Perpendicular to the
Einstein ring, the contrast becomes a factor of μ worse than for an unlensed
quasar. Since the alignment of the magnification tensor relative to the host
changes with each image, the segment of the host where contrast is lost will
correspond to a segment where it is gained for another image leading to a net
gain for almost all parts of the source when you consider all the images. The
distortions produced by lensing also mean the host structure is more easily
distinguished from the PSF. In a few cases, like SDSS0924+0219 in Fig. 54,
microlensing or substructure may provide a natural coronograph that sup-
presses the flux from the quasar but not that from the host. Despite naive
expectations (and TAC comments), the distortions have little consequence for
understanding the structure of the host even though a lens model is required
to produce a photometric model of the host.

The only extensive survey of lensed quasar hosts is that of Peng (2004).
Figure 66 shows the example of PG1115+080, a zs = 1.72 radio-quiet quasar
(RQQ). The Einstein ring image is easily visible even in a short, one-orbit
exposure. For comparison, we also took the final model for the quasar and
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Lensed Host Galaxy

Residuals If not lensed...
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Fig. 66. The host galaxy in PG1115+080. The top left panel shows the 1-orbit
NICMOS image from Impey et al. (1998). The top right panel shows the lensed
host galaxy after subtracting the quasar images and the lens galaxy, The lower
left panel shows the residuals after subtracting the host as well. For comparison, the
lower right panel shows what an image of an unlensed PG1115+080 quasar and host
would look like in the same integration time. The host galaxy is an H= 20.8 mag
late-type galaxy (Sersic index n = 1.4) with a scale length of Re = 1.5h−1 kpc. The
demagnified magnitude of the quasar is H= 19.0 mag. The axis ratio of the source,
qs = 0.65± 0.04 is consistent with the estimate of qs = 0.58± 0.02 from the simpler
ring curve analysis (Sect. 10.1, Fig. 64, Kochanek, Keeton and McLeod 2001a)

the source and produced the image that would be obtained in the same time
if we observed the quasar in the absence of lensing. It is quite difficult to see
the host, and this problem will carry through in any numerical analysis.

At low redshifts (z < 1), quasar host galaxies tend to be massive early-type
galaxies (e.g. Mclure et al. 1999; Dunlop et al. 2003). Over 80% of quasars
brighter than MV < −23.5 mag are in early-type galaxies with L >∼ 2L∗ and
effective radii of Re ∼ 10 kpc for z <∼ 0.5. Radio quiet quasars (RQQ) tend to
be in slightly lower luminosity hosts than radio loud quasars (RLQ) but only
by factors of ∼ 2 at redshift unity. Far fewer unlensed host galaxies have been
detected above redshift unity (e.g. Kukula et al. 2001; Ridgway et al. 2001)
with the surprising result that the host galaxies are 2–3 mag brighter than
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the typical host galaxy at low redshift and corresponded to ∼ 4L∗ galaxies.
Given that the low redshift hosts were already very massive galaxies it was
expected that higher redshift hosts would have lower masses because they were
still in the process of being assembled and forming stars (e.g. Kauffmann and
Haehnelt 2000). One simple explanation was that by selecting from bright
radio sources, these samples picked quasars with more massive black holes as
the redshift increased, creating a bias in favor of more massive hosts. The key
to checking for such a bias is to be able to detect far less luminous hosts, and
the improved surface brightness contrast provided by lensing the host galaxies
provides the means.

Figure 67 shows the observed H-band magnitudes of the lensed hosts as
compared to low redshift host galaxies and other studies of high redshift host

This work (CASTLES)

McLeod & McLeod 2001

Kukula et al.’01 (RLQ)
      "     "    "  (RQQ)

Ridgway et al. 2001

Fig. 67. Observed H-band magnitudes of quasar host galaxies. The solid (open)
points are secure (more questionable) hosts detected in the CASTLES survey of
lensed hosts. The low redshift points are from McLeod and McLeod (2001). All the
Ridgway et al. (2001) systems are radio quiet. For comparison we superpose the
evolutionary tracks for a non-evolving E/S0 galaxy (solid curve), an evolving E/S0
galaxy which starts forming stars at zf = 5 with a 1 Gyr exponentially decaying
star formation rate (long dashed line) and a star forming Sb/c model (short dashed
line). The evolution models are matched to the luminosity of an L∗ early-type
galaxy at redshift zero. The CASTLES observations can reliably detect hosts about
4 magnitudes fainter than the quasar
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galaxies. Although 30% of the lensed quasars are radio-loud, they have lu-
minosities similar to the lensed (or unlensed) radio-quiet hosts. There are no
hosts as bright as the Kukula et al. (2001) radio-loud quasar hosts. Once the
luminosities of the quasar and the host galaxy are measured we can compare
them to the theoretical expectations (Fig. 68). While the models agree with
the data at low redshift, they are nearly disjoint by z ∼ 3 in the sense that the
observed quasars and hosts are significantly more luminous than predicted.
The same holds for the Kukula et al. (2001) and Ridgway et al. (2001) sam-
ples, suggesting that black holes masses grow more rapidly than predicted by
the theoretical models or that accretion efficiencies were higher in the past.
Vestergaard (2004) makes a similar argument based on estimates of black hole
masses from emission line widths.
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Fig. 68. A comparison of the estimated rest frame absolute magnitudes of the
quasars and hosts as compared to the theoretical models for the evolution of galax-
ies and the growth of black holes as a function of redshift by Kauffmann and Haehnelt
(2000). The low redshift quasars from McLeod and McLeod (2001) occupy the trian-
gle in the upper left panel. At intermediate redshift the lensed host galaxies occupy
a region similar to the models, but the two distributions are nearly disjoint by z 	 3.
Both the hosts and the quasars are significantly more luminous than predicted. The
horizontal line marks the luminosity of an L∗ galaxy at z = 0
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11 Does Strong Lensing Have a Future?

Well, you can hardly expect an answer of “No !” at this point, can you? Since
we have just spent nearly 200 pages on the astrophysical uses of lenses, there
is no point in reviewing all the results again here. Instead I suggest some goals
for the future.

Our first goal is to expand the sample of lenses from ∼ 100 to ∼ 200. While
80 lenses seems like a great many compared to even a few years ago, it is still
too few to pursue many interesting questions. The problem worsens if the
analysis must be limited to lenses meeting other criteria (radio lenses, lenses
found in a well-defined survey, lenses outside the cores of clusters,...) or if
the sample must be subdivided into bins (redshift, separation, luminosity,...).
For example, one of the most interesting applications of lenses will be to map
out the halo mass function. This is difficult to do with any other approach
because no other selection method works homogeneously on dark low-mass
halos, galaxies of different types, groups and clusters. Unlike any other sample
in astronomy, gravitational lenses are selected based on mass rather than
luminosity, so the same search method works for all halos – the separation
distribution of lenses is a direct mapping of the halo mass function. It is not
a trivial mapping because the structure of halos changes with mass, but the
systematics are far better than those of any other approach. The fact that
lenses are mass-selected also gives them an enormous advantage in studying
the evolution of galaxies with redshift over optically-selected samples where it
will be virtually impossible to select galaxies in the same manner at both low
and high redshift. The upgraded VLA and Merlin radio arrays are the most
promising tools for this objective.

Our second goal is to systematically monitor the variability of as many
lenses as possible. Time delays, if measured in large numbers and measured
accurately, can resolve most of the remaining issues about the mass distri-
butions of lenses. This is true even if you regard the H0 as unmeasured or
uncertain – the Hubble constant is the same number for all lenses, so as the
number of time delay systems increases, the contribution of the actual value of
the Hubble constant to constraining the mass distribution diminishes. At the
present time, we are certain that the typical early-type galaxy has a substan-
tial dark matter halo, but we are uncertain how it merges with the luminous
galaxy. Steady monitoring of microlensing of the source quasars by the stars
in the lens galaxy will also help to resolve this problem because the patterns of
the microlensing variability constrain both the stellar surface density near the
lensed images and the total density (Part 4, Schechter and Wambsganss 2002).
The constraints from time delays and microlensing will be complemented by
the continued measurement of central velocity dispersions.

Our third goal should be to obtain ultra-deep, high resolution radio maps
of the lenses to search for central images in order to measure the central sur-
face densities of galaxies and to search for supermassive black holes. Keeton
(2003a) showed that the dynamic ranges of the existing radio maps of lenses
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are 1–2 orders of magnitude too small to routinely detect central images given
the expected central surface densities of galaxies. Only very asymmetric dou-
bles like PMN1632–0033, where Winn et al. (2004) have detected a central
image, are likely to show central images with the present data. Once we reach
the sensitivity needed to detect central images, we will also either find central
black holes or set strict limits on their existence (Mao, Witt and Koopmans
2001). This is the only approach that can directly detect even quiescent black
holes and determine their masses at cosmological distances. The existing lim-
its could be considerably improved simply by co-adding the existing radio
maps either for individual lenses or even for multiple lenses in order to obtain
statistical limits.

Our fourth goal should be to unambiguously identify a “dark” satellite of
a lens galaxy. For starters we need to conduct complete statistical analyses of
lens galaxy satellites in general, by determining their mass functions and radial
distributions. As part of such an analysis we can obtain upper bounds on the
number of dark satellites. Then, with luck, we will find an example of a lens
that requires a satellite at a specific location for which there is no optical coun-
terpart. This may be too conservative a condition. For example, Peng (2004)
argues that much of the flux of Object X in MG0414+0534 (Fig. 7) is actually
coming from lensed images of the quasar host galaxy rather than the satellite.

Finally, lens magnification already means that it is far easier to do pho-
tometry of a lensed quasar host galaxy than an unlensed galaxy. The next
frontier is to measure the kinematics of cosmologically distant host galaxies.
This might already be doable for the host galaxy of Q0957+561 at zs = 1.41,
but will generally require either JWST or the next generation of ground
based telescopes. With larger lens samples we may also find more cases like
SDSS0924+0219 where gravitational lensing provides a natural coronograph
for the quasar.
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Part 3: Weak Gravitational Lensing

P. Schneider

1 Introduction

Multiple images, microlensing (with appreciable magnifications) and arcs in
clusters are phenomena of strong lensing. In weak gravitational lensing, the
Jacobi matrix A is very close to the unit matrix, which implies weak dis-
tortions and small magnifications. Those cannot be identified in individual
sources, but only in a statistical sense. Because of that, the accuracy of any
weak lensing study will depend on the number of sources which can be used
for the weak lensing analysis. This number can be made large either by having
a large number density of sources, or to observe a large solid angle on the sky,
or both. Which of these two aspects is more relevant depends on the specific
application. Nearly without exception, the sources employed in weak lensing
studies up to now are distant galaxies observed in the optical or near-IR pass-
band, since they form the densest population of distant objects in the sky
(which is a statement both about the source population in the Universe and
the sensitivity of detectors employed in astronomical observations). To observe
large number densities of sources, one needs deep observations to probe the
faint (and thus more numerous) population of galaxies. Faint galaxies, how-
ever, are small, and therefore their observed shape is strongly affected by the
Point Spread Function, caused by atmospheric seeing (for ground-based ob-
servations) and telescope effects. These effects need to be well understood and
corrected for, which is the largest challenge of observational weak lensing stud-
ies. On the other hand, observing large regions of the sky quickly leads to large
data sets, and the problems associated with handling them. We shall discuss
some of the most important aspects of weak lensing observations in Sect. 3.

The effects just mentioned have prevented the detection of weak lensing
effects in early studies with photographic plates (e.g., Tyson et al. 1984); they
are not linear detectors (so correcting for PSF effects is not reliable), nor
are they sensitive enough for obtaining sufficiently deep images. Weak lens-
ing research came through a number of observational and technical advances.
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Soon after the first giant arcs in clusters were discovered (see Sect. 1.2 of
Schneider, this volume; hereafter referred to as IN) by Soucail et al. (1987) and
Lynds and Petrosian (1989), Fort et al. (1988) observed objects in the lensing
cluster Abell 370 which were less extremely stretched than the giant arc, but
still showed a large axis ratio and was aligned in the direction tangent to
its separation vector to the cluster center; they termed these images ‘arclets’.
Indeed, with the spectroscopic verification (Mellier et al. 1991) of the arclet A5
in Abell 370 being located at much larger distance from us than the lensing
cluster, the gravitational lens origin of these arclets was proven. When the
images of a few background galaxies are deformed so strongly that they can
be identified as distorted by lensing, there should be many more galaxy images
where the distortion is much smaller, and where it can only be detected by
averaging over many such images. Tyson et al. (1990) reported this statistical
distortion effect in two clusters, thereby initiating the weak lensing studies of
the mass distribution of clusters of galaxies. This very fruitful field of research
was put on a rigorous theoretical basis by Kaiser and Squires (1993) who
showed that from the measurement of the (distorted) shapes of galaxies one
can obtain a parameter-free map of the projected mass distribution in clusters.

The flourishing of weak lensing in the past ten years was mainly due to
three different developments. First, the potential of weak lensing was realized,
and theoretical methods were worked out for using weak lensing measurements
in a large number of applications, many of which will be described in later
sections. This realization, reaching out of the lensing community, also slowly
changed the attitude of time allocation committees, and telescope time for
such studies was granted. Second, returning to the initial remark, one requires
large fields-of-views for many weak lensing application, and the development
of increasingly large wide-field cameras installed at the best astronomical sites
has allowed large observational progress to be made. Third, quantitative meth-
ods for the correction of observations effects, like the blurring of images by
the atmosphere and telescope optics, have been developed, of which the most
frequently used one came from Kaiser et al. (1995). We shall describe this
technique, its extensions, tests and alternative methods in Sect. 3.5.

We shall start by describing the basics of weak lensing in Sect. 2, namely
how the shear, or the projected tidal gravitational field of the intervening
matter distribution can be determined from measuring the shapes of images
of distant galaxies. Practical aspects of observations and the measurements
of image shapes are discussed in Sect. 3. The next two sections are devoted to
clusters of galaxies; in Sect. 4, some general properties of clusters are described,
and their strong lensing properties are considered, whereas in Sect. 5 weak
lensing by clusters is treated. As already mentioned, this allows us to obtain
a parameter-free map of the projected (2-D) mass distribution of clusters.

We then turn to lensing by the inhomogeneously distributed matter distri-
bution in the Universe, the large-scale structure. Starting with Gunn (1967),
the observation of the distortion of light bundles by the inhomogeneously dis-
tributed matter in the Universe was realized as a unique probe to study the
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properties of the cosmological (dark) matter distribution. The theory of this
cosmic shear effect, and its applications, was worked out in the early 1990’s
(e.g., Blandford et al. 1991). In contrast to the lensing situations studied in
the rest of this book, here the deflecting mass is manifestly three-dimensional;
we therefore need to generalize the theory of geometrically-thin mass distrib-
utions and consider the propagation of light in an inhomogeneous Universe.
As will be shown, to leading order this situation can again be described in
terms of an ‘equivalent’ surface mass density. The theoretical aspects of this
large-scale structure lensing, or cosmic shear, are contained in Sect. 6. Al-
though the theory of cosmic shear was well in place for quite some time, it
took until the year 2000 before it was observationally discovered, indepen-
dently and simultaneously by four groups. These early results, as well as the
much more extensive studies carried out in the past few years, are presented
and discussed in Sect. 7. In Sect. 8, we consider the weak lensing effects of
galaxies, which can be used to investigate the mass profile of galaxies. As we
shall see, this galaxy-galaxy lensing, first detected by Brainerd et al. (1996),
is directly related to the connection between the galaxy distribution in the
Universe and the underlying (dark) matter distribution; this lensing effect is
therefore ideally suited to study the biasing of galaxies; we shall also describe
alternative lensing effects for investigating the relation between luminous and
dark matter. In the final Sect. 9 we discuss higher-order cosmic shear statis-
tics and how lensing by the large-scale structure affects the lens properties of
localized mass concentrations. Some final remarks are given in Sect. 10.

Until very recently, weak lensing has been considered by a considerable
fraction of the community as ‘black magic’ (or to quote one member of a PhD
examination committee: “You have a mass distribution about which you don’t
know anything, and then you observe sources which you don’t know either,
and then you claim to learn something about the mass distribution ?”). Most
likely the reason for this is that weak lensing is indeed weak. One cannot ‘see’
the effect, nor can it be graphically displayed easily. Only by investigating
many faint galaxy images can a signal be extracted from the data, and the
human eye is not sufficient to perform this analysis. This is different even
from the analysis of CMB anisotropies which, similarly, need to be analyzed
by statistical means, but at least one can display a temperature map of the
sky. However, in recent years weak lensing has gained a lot of credibility, not
only because it has contributed substantially to our knowledge about the mass
distribution in the Universe, but also because different teams, with different
data set and different data analysis tools, agree on their results.

Weak lensing has been reviewed before; we shall mention only five extensive
reviews. Mellier (1999) provides a detailed compilation of the weak lensing
results before 1999, whereas Bartelmann and Schneider (2001; hereafter BS01)
present a detailed account of the theory and technical aspects of weak lensing.1

1 We follow here the notation of BS01, except that we denote the angular diameter
distance explicitly by Dang, whereas D is the comoving angular diameter distance,
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More recent summaries of results can also be found in Wittman (2002) and
Refregier (2003a), as well as the cosmic shear review by van Waerbeke and
Mellier (2003).

The coverage of topics in this review has been a subject of choice; no claim
is made about completeness of subjects or references. In particular, due to the
lack of time during the lectures, the topic of weak lensing of the CMB temper-
ature fluctuations has not been covered at all, and is also not included in this
written version. Apart from this increasingly important subject, I hope that
most of the currently actively debated aspects of weak lensing are mentioned,
and the interested reader can find her/his way to more details through the
references provided.

2 The Principles of Weak Gravitational Lensing

2.1 Distortion of Faint Galaxy Images

Images of distant sources are distorted in shape and size, owing to the tidal
gravitational field through which light bundles from these sources travel to us.
Provided the angular size of a lensed image of a source is much smaller than
the characteristic angular scale on which the tidal field varies, the distortion
can be described by the linearized lens mapping, i.e., the Jacobi matrix A. The
invariance of the surface brightness by gravitational light deflection, I(θ) =
I(s)[β(θ)], together with the locally linearized lens equation,

β − β0 = A(θ0) · (θ − θ0) , (1)

where β0 = β(θ0), then describes the distortion of small lensed images as

I(θ) = I(s)[β0 + A(θ0) · (θ − θ0)] . (2)

We recall (see IN) that the Jacobi matrix can be written as

A(θ) = (1 − κ)
(

1 − g1 −g2

−g2 1 + g1

)
, where g(θ) =

γ(θ)
[1 − κ(θ)]

(3)

is the reduced shear, and the gα, α = 1, 2, are its Cartesian components.
The reduced shear describes the shape distortion of images through gravita-
tional light deflection. The (reduced) shear is a 2-component quantity, most
conveniently written as a complex number,

γ = γ1 + iγ2 = |γ| e2iϕ ; g = g1 + ig2 = |g| e2iϕ ; (4)

which we also write as fK , depending on the context; see Sect. 4.3 of IN for more
details. In most cases, the distance ratio Dds/Ds is used, which is the same for
both distance definitions.
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its amplitude describes the degree of distortion, whereas its phase ϕ yields
the direction of distortion. The reason for the factor ‘2’ in the phase is the
fact that an ellipse transforms into itself after a rotation by 180◦. Consider a
circular source with radius R (see Fig. 1); mapped by the local Jacobi matrix,
its image is an ellipse, with semi-axes

R

1 − κ− |γ| =
R

(1 − κ)(1 − |g|) ;
R

1 − κ + |γ| =
R

(1 − κ)(1 + |g|)

and the major axis encloses an angle ϕ with the positive θ1-axis. Hence, if
sources with circular isophotes could be identified, the measured image ellip-
ticities would immediately yield the value of the reduced shear, through the
axis ratio

|g| =
1 − b/a

1 + b/a
⇔ b

a
=

1 − |g|
1 + |g|

and the orientation of the major axis ϕ. In these relations it was assumed that
b ≤ a, and |g| < 1. We shall discuss the case |g| > 1 later.

However, faint galaxies are not intrinsically round, so that the observed
image ellipticity is a combination of intrinsic ellipticity and shear. The strategy
to nevertheless obtain an estimate of the (reduced) shear consists in locally
averaging over many galaxy images, assuming that the intrinsic ellipticities
are randomly oriented. In order to follow this strategy, one needs to clarify first
how to define ‘ellipticity’ for a source with arbitrary isophotes (faint galaxies
are not simply elliptical); in addition, seeing by the atmospheric turbulence
will blur – and thus circularize – observed images, together with other effects
related to the observation procedure. We will consider these issues in turn.

S

εs

ε

D
A-1

convergence only

convergence and
shear

ϕ

O

β2

β1

θ2

θ1

Fig. 1. A circular source, shown at the left, is mapped by the inverse Jacobian
A−1 onto an ellipse. In the absence of shear, the resulting image is a circle with
modified radius, depending on κ. Shear causes an axis ratio different from unity, and
the orientation of the resulting ellipse depends on the phase of the shear (source:
M. Bradac)
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2.2 Measurements of Shapes and Shear

Definition of Image Ellipticities

Let I(θ) be the brightness distribution of an image, assumed to be isolated
on the sky; the center of the image can be defined as

θ̄ ≡

∫
d2θ I(θ) qI [I(θ)]θ∫
d2θ I(θ) qI [I(θ)]

, (5)

where qI(I) is a suitably chosen weight function; e.g., if qI(I) = H(I − Ith),
where H(x) is the Heaviside step function, θ̄ would be the center of light
within a limiting isophote of the image. We next define the tensor of second
brightness moments,

Qij =

∫
d2θ I(θ) qI [I(θ)] (θi − θ̄i) (θj − θ̄j)∫

d2θ I(θ) qI [I(θ)]
, i, j ∈ {1, 2} . (6)

Note that for an image with circular isophotes, Q11 = Q22, and Q12 = 0.
The trace of Q describes the size of the image, whereas the traceless part of
Qij contains the ellipticity information. From Qij , one defines two complex
ellipticities,

χ ≡ Q11 −Q22 + 2iQ12

Q11 + Q22
and ε ≡ Q11 −Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 −Q2
12)1/2

. (7)

Both of them have the same phase (because of the same numerator), but a
different absolute value. Figure 2 illustrates the shape of images as a function
of their complex ellipticity χ. For an image with elliptical isophotes of axis
ratio r ≤ 1, one obtains

|χ| =
1 − r2

1 + r2
; |ε| =

1 − r

1 + r
. (8)

Which of these two definitions is more convenient depends on the context; one
can easily transform one into the other,

ε =
χ

1 + (1 − |χ|2)1/2
, χ =

2ε
1 + |ε|2 . (9)

In fact, other (but equivalent) ellipticity definitions have been used in the
literature (e.g., Kochanek 1990; Miralda-Escudé 1991; Bonnet and Mellier
1995), but the two given above appear to be most convenient.
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Fig. 2. The shape of image ellipses for a circular source, in dependence on their
two ellipticity components χ1 and χ2; a corresponding plot in term of the ellipticity
components εi would look quite similar. Note that the ellipticities are rotated by
90◦ when χ → −χ (source: D. Clowe)

From Source to Image Ellipticities

In total analogy, one defines the second-moment brightness tensor Q
(s)
ij , and

the complex ellipticities χ(s) and ε(s) for the unlensed source. From

Q
(s)
ij =

∫
d2β I(s)(θ) qI [I(s)(β)] (βi − β̄i) (βj − β̄j)∫

d2β I(s)(θ) qI [I(s)(β)]
, i, j ∈ {1, 2} , (10)

one finds with d2β = detA d2θ, β − β̄ = A
(
θ − θ̄

)
, that

Q(s) = AQAT = AQA , (11)

where A ≡ A(θ̄). Using the definitions of the complex ellipticities, one finds
the transformations (e.g., Schneider and Seitz 1995; Seitz and Schneider 1997)

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗)
; ε(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε− g

1 − g∗ε
if |g| ≤ 1 ;

1 − gε∗

ε∗ − g∗
if |g| > 1 .

(12)

The inverse transformations are obtained by interchanging source and image
ellipticities, and g → −g in the foregoing equations.
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Estimating the (Reduced) Shear

In the following we make the assumption that the intrinsic orientation of
galaxies is random,

E
(
χ(s)

)
= 0 = E

(
ε(s)
)

, (13)

which is expected to be valid since there should be no direction singled out in
the Universe. This then implies that the expectation value of ε is [as obtained
by averaging the transformation law (12) over the intrinsic source orientation]

E(ε) =

⎧⎨⎩ g if |g| ≤ 1

1/g∗ if |g| > 1 .
(14)

This is a remarkable result (Schramm and Kayser 1995; Seitz and Schneider
1997), since it shows that each image ellipticity provides an unbiased estimate
of the local shear, though a very noisy one. The noise is determined by the
intrinsic ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉
,

in the sense that, when averaging over N galaxy images all subject to the
same reduced shear, the 1-σ deviation of their mean ellipticity from the true
shear is σε/

√
N . A more accurate estimate of this error is

σ = σε

[
1 − min

(
|g|2, |g|−2

)]
/
√
N (15)

(Schneider et al. 2000). Hence, the noise can be beaten down by averaging
over many galaxy images; however, the region over which the shear can be
considered roughly constant is limited, so that averaging over galaxy images is
always related to a smoothing of the shear. Fortunately, we live in a Universe
where the sky is ‘full of faint galaxies’, as was impressively demonstrated by
the Hubble Deep Field images (Williams et al. 1996) and previously from
ultra-deep ground-based observations (Tyson 1988). Therefore, the accuracy
of a shear estimate depends on the local number density of galaxies for which
a shape can be measured. In order to obtain a high density, one requires
deep imaging observations. As a rough guide, on a 3 hour exposure with a
4-meter class telescope, about 30 galaxies per arcmin2 can be used for a shape
measurement.

In fact, considering (14) we conclude that the expectation value of the ob-
served ellipticity is the same for a reduced shear g and for g′ = 1/g∗. Schneider
and Seitz (1995) have shown that one cannot distinguish between these two
values of the reduced shear from a purely local measurement, and term this
fact the ‘local degeneracy’; this also explains the symmetry between |g| and
|g|−1 in (15). Hence, from a local weak lensing observation one cannot tell the
case |g| < 1 (equivalent to detA > 0) from the one of |g| > 1 or detA < 0.
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This local degeneracy is, however, broken in large-field observations, as the
region of negative parity of any lens is small (the Einstein radius inside of
which |g| > 1 of massive lensing clusters is typically <∼ 30′′, compared to data
fields of several arcminutes used for weak lensing studies of clusters), and the
reduced shear must be a smooth function of position on the sky.

Whereas the transformation between source and image ellipticity appears
simpler in the case of χ than ε – see (12), the expectation value of χ cannot be
easily calculated and depends explicitly on the intrinsic ellipticity distribution
of the sources. In particular, the expectation value of χ is not simply related
to the reduced shear (Schneider and Seitz 1995). However, in the weak lensing
regime, κ � 1, |γ| � 1, one finds

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2

. (16)

2.3 Tangential and Cross Component of Shear

Components of the Shear

The shear components γ1 and γ2 are defined relative to a reference Carte-
sian coordinate frame. Note that the shear is not a vector (though it is often
wrongly called that way in the literature), owing to its transformation prop-
erties under rotations: Whereas the components of a vector are multiplied by
cosϕ and sinϕ when the coordinate frame is rotated by an angle ϕ, the shear
components are multiplied by cos(2ϕ) and sin(2ϕ), or simply, the complex
shear gets multiplied by e−2iϕ. The reason for this transformation behavior
of the shear traces back to its original definition as the traceless part of the
Jacobi matrix A. This transformation behavior is the same as that of the
linear polarization; the shear is therefore a polar. In analogy with vectors, it
is often useful to consider the shear components in a rotated reference frame,
that is, to measure them w.r.t. a different direction; for example, the arcs in
clusters are tangentially aligned, and so their ellipticity is oriented tangent to
the radius vector in the cluster.

If φ specifies a direction, one defines the tangential and cross components
of the shear relative to this direction as

γt = −Re
[
γ e−2iφ

]
, γ× = −Im

[
γ e−2iφ

]
; (17)

For example, in case of a circularly-symmetric matter distribution, the shear
at any point will be oriented tangent to the direction toward the center of
symmetry. Thus in this case choose φ to be the polar angle of a point; then,
γ× = 0. In full analogy to the shear, one defines the tangential and cross com-
ponents of an image ellipticity, εt and ε×. An illustration of these definitions
is provided in Fig. 3.

The sign in (17) is easily explained (and memorized) as follows: consider
a circular mass distribution and a point on the θ1-axis outside the Einstein
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Fig. 3. Illustration of the tangential and cross-components of the shear, for an image
with ε1 = 0.3, ε2 = 0, and three different directions φ with respect to a reference
point (source: M. Bradac)

radius. The image of a circular source there will be stretched in the direction
of the θ2-axis. In this case, φ = 0 in (17), the shear is real and negative, and
in order to have the tangential shear positive, and thus to define tangential
shear in accordance with the intuitive understanding of the word, a minus
sign is introduced. Negative tangential ellipticity implies that the image is
oriented in the radial direction. We warn the reader that sign conventions and
notations have undergone several changes in the literature, and the current
author had his share in this.

Minimum Lens Strength for its Weak Lensing Detection

As a first application of this decomposition, we consider how massive a lens
needs to be in order that it produces a detectable weak lensing signal. For this
purpose, consider a lens modeled as an SIS with one-dimensional velocity dis-
persion σv. In the annulus θin ≤ θ ≤ θout, centered on the lens, let there be N
galaxy images with positions θi = θi(cosφi, sinφi) and (complex) ellipticities
εi. For each one of them, consider the tangential ellipticity

εti = −Re
(
εi e−2iφi

)
. (18)

The weak lensing signal-to-noise for the detection of the lens obtained by
considering a weighted average over the tangential ellipticity is (see BS01,
Sect. 4.5)

S
N

=
θE

σε

√
πn
√

ln(θout/θin)

= 8.4
(

n

30 arcmin−2

)1/2 ( σε

0.3

)−1
(

σv

600 km s−1

)2

(19)

×
(

ln(θout/θin)
ln 10

)1/2〈
Dds

Ds

〉
,
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where θE = 4π(σv/c)2(Dds/Ds) is the Einstein radius of an SIS, n the mean
number density of galaxies, and the average of the distance ratio is taken
over the source population from which the shear measurements are obtained.
Hence, the S/N is proportional to the lens strength (as measured by θE),
the square root of the number density, and inversely proportional to σε, as
expected. From this consideration we conclude that clusters of galaxies with
σv

>∼ 600 km/s can be detected with sufficiently large S/N by weak lensing,
but individual galaxies (σv

<∼ 200 km/s) are too weak as lenses to be detected
individually. Furthermore, the final factor in (19) implies that, for a given
source population, the cluster detection will be more difficult for increasing
lens redshift.

Mean Tangential Shear on Circles

In the case of axi-symmetric mass distributions, the tangential shear is related
to the surface mass density κ(θ) and the mean surface mass density κ̄(θ)
inside the radius θ by γt = κ̄ − κ, as can be easily shown by the relation in
Sect. 3.1 of IN. It is remarkable that a very similar expression holds for general
matter distributions. To see this, we start from Gauss’ theorem, which states
that ∫ θ

0

d2ϑ ∇ · ∇ψ = θ

∮
dϕ ∇ψ · n ,

where the integral on the left-hand side extends over the area of a circle of
radius θ (with its center chosen as the origin of the coordinate system), ψ
is an arbitrary scalar function, the integral on the right extends over the
circle with radius θ, and n is the outward directed normal on this circle.
Taking ψ to be the deflection potential and noting that ∇2ψ = 2κ, one
obtains

m(θ) ≡ 1
π

∫ θ

0

d2ϑ κ(ϑ) =
θ

2π

∮
dϕ

∂ψ

∂θ
, (20)

where we used that ∇ψ · n = ψ,θ. Differentiating this equation with respect
to θ yields

dm
dθ

=
m

θ
+

θ

2π

∮
dϕ

∂2ψ

∂θ2
. (21)

Consider a point on the θ1-axis; there, ψ,θθ = ψ11 = κ + γ1 = κ − γt.
This last expression is independent on the choice of coordinates and must
therefore hold for all ϕ. Denoting by 〈κ(θ)〉 and 〈γt(θ)〉 the mean surface
mass density and mean tangential shear on the circle of radius θ, (21) be-
comes

dm
dθ

=
m

θ
+ θ [〈κ(θ)〉 − 〈γt(θ)〉] . (22)
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The dimensionless mass m(θ) in the circle is related to the mean surface mass
density inside the circle κ̄(θ) by

m(θ) = θ2 κ̄(θ) = 2
∫ θ

0

dϑ ϑ 〈κ(ϑ)〉 . (23)

Together with dm/dθ = 2θ 〈κ(θ)〉, (22) becomes, after dividing through θ,

〈γt〉 = κ̄− 〈κ〉 , (24)

a relation which very closely matches the result mentioned above for axi-
symmetric mass distributions (Bartelmann 1995). One important immediate
implication of this result is that from a measurement of the tangential shear,
averaged over concentric circles, one can determine the azimuthally-averaged
mass profile of lenses, even if the density is not axi-symmetric.

2.4 Magnification Effects

Recall from IN that a magnification μ changes source counts according to

n(> S,θ, z) =
1

μ(θ, z)
n0

(
>

S

μ(θ, z)
, z

)
, (25)

where n(> S, z) and n0(> S, z) are the lensed and unlensed cumulative num-
ber densities of sources, respectively. The first argument of n0 accounts for
the change of the flux (which implies that a magnification μ > 1 allows the
detection of intrinsically fainter sources), whereas the prefactor in (25) stems
from the change of apparent solid angle. In the case that n0(S) ∝ S−α, this
yields

n(> S)
n0(> S)

= μα−1 , (26)

and therefore, if α > 1 (<1), source counts are enhanced (depleted); the
steeper the counts, the stronger the effect. In the case of weak lensing, where
|μ − 1| � 1, one probes the source counts only over a small range in flux,
so that they can always be approximated (locally) by a power law. Provided
that κ � 1, |γ| � 1, a further approximation applies,

μ ≈ 1 + 2κ ; and
n(> S)
n0(> S)

≈ 1 + 2(α− 1)κ . (27)

Thus, from a measurement of the local number density n(> S) of galaxies, κ
can in principle be inferred directly. It should be noted that α ∼ 1 for galaxies
in the B-band, but in redder bands, α < 1 (e.g., Ellis 1997); therefore, one
expects a depletion of their counts in regions of magnification μ > 1. Broad-
hurst et al. 1995 have discussed in detail the effects of magnification in weak
lensing. Not only are the number counts affected, but since this is a redshift-
dependent effect (since both κ and γ depend, for a given physical surface mass
density, on the source redshift), the redshift distribution of galaxies is locally
changed by magnification.
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Since magnification is merely a stretching of solid angle, Bartelmann and
Narayan (1995) pointed out that magnified images at fixed surface brightness
have a larger solid angle than unlensed ones; in addition, the surface bright-
ness of a galaxy is expected to be a strong function of redshift [I ∝ (1+z)−4],
owing to the Tolman effect. Hence, if this effect could be harnessed, a (redshift-
dependent) magnification could be measured statistically. Unfortunately, this
method is hampered by observational difficulties; it seems that estimating a
reliable estimate for the surface brightness from seeing-convolved images (see
Sect. 3.5) is even more difficult than determining image shapes.

3 Observational Issues and Challenges

Weak lensing, employing the shear method, relies on the shape measurements
of faint galaxy images. Since the noise due to intrinsic ellipticity dispersion is
∝ σε/

√
n, one needs a high number density n to beat this noise component

down. However, the only way to increase the number density of galaxies is
to observe to fainter magnitudes. As it turns out, galaxies at faint magni-
tudes are small, in fact typically smaller than the size of the point-spread
function (PSF), or the seeing disk (see Fig. 4). Hence, for them one needs
usually large correction factors between the true ellipticity and that of the

Fig. 4. The size of galaxies observed with the ACS camera on-board HST. Small
dots denote the half-light radius of individual galaxies, bigger points with error bars
show the mean size in a magnitude bin. The horizontal line of point at rh ≈ 0.′′08
correspond to stellar images in the ACS fields, as they have all the same size but
vary in magnitude, and points at even smaller size are noise artefacts which are not
used for any lensing analysis (source: T. Schrabback)
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seeing-convolved image. On the other hand, fainter galaxies tend to probe
higher-redshift galaxies, which increases the lensing signal due to Dds/Ds-
dependence of the ‘lensing efficiency’.

3.1 Strategy

In the present observational situation, only the optical sky is densely popu-
lated with sources; therefore, weak lensing observations are performed with
optical (or near-IR) CCD-cameras (photographic plates are not linear enough
to measure these subtle effects). In order to substantiate this comment, note
that the Hubble Deep Field North contains about 3000 galaxies, but only
seven radio sources are detected in a very deep integration with the VLA
(Richards et al. 1998).2 In order to obtain a high number density of sources,
long exposures are needed: as an illustrative example, to get a number density
of useful galaxies (i.e., those for which a shape can be measured reliably) of
n ∼ 20 arcmin−2, one needs ∼2 hours integration on a 4-m class telescope in
good seeing σ <∼ 1′′.

Furthermore, large solid angles are desired, either to get large areas around
clusters for their mass reconstruction, or to get good statistics of lenses on
blank field surveys, such as they are needed for galaxy–galaxy lensing and
cosmic shear studies. It is now possible to cover large area in reasonable
amounts of observing time, since large format CCD cameras have recently be-
come available; for example, the Wide-Field Imager (WFI) at the ESO/MPG
2.2-m telescope at La Silla has (8K)2 pixels and covers an area of ∼(0.5 deg)2.
Until recently, the CFH12K camera with 8K×12K pixels and field ∼30′×45′

was mounted at the Canada-French-Hawaii Telescope (CFHT) on Mauna Kea
and was arguably the most efficient wide-field imaging instrument hitherto.
In 2003, MegaCam has been put into operation on the CFHT which has
(18K)2 pixels and covers ∼1 deg2. Several additional cameras of comparable
size will become operational in the near future, including the 1 deg2 instru-
ment OmegaCAM on the newly built VLT Survey Telescope on Paranal. The
largest field camera on a 10-m class telescope is Suprime-Cam, a 34′ × 27′

multi-chip camera on the Subaru 8.2-meter telescope. Unfortunately, many
optical astronomers (and decision making panels of large facilities) consider
the prime use of large telescopes to be spectroscopy; for example, although the
four ESO VLT unit telescopes are equipped with a total of ten instruments,
the largest imagers on the VLT are the two FORS instruments, with a ∼6.′7
field-of-view.3

2 The source density on the radio sky will become at least comparable to that
currently on the optical sky with the future Square Kilometer Array (SKA).

3 Nominally, the VIMOS instrument has a four times larger f.o.v., but our analysis
of early VIMOS imaging data indicates that it is totally useless for weak lensing
observations, owing to its highly anisotropic PSF, which even seems to show
discontinuities on chips, and its large variation of the seeing size across chips. It
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Fig. 5. Mean number density of galaxy images for which a shape can be measured
(upper row) and the r.m.s. noise of a shear measurement in an area of 1 arcmin2 as
a function of the full width at half maximum (FWHM) of the point-spread function
(PSF) – i.e., the seeing. The data were taken on 20 different fields with the FORS2
instrument at the VLT, with different filters (I, R, V and R). Squares show data
taken with about 2 hours integration time, circles those with ∼45 min exposure. The
right-most panels show the coadded data of I,R,V for the long exposures, and I,V,B
for the 45 min fields. The useful number of galaxy images is seen to be a strong
function of the seeing, except for the I-band (which is related to the higher sky
brightness and the way objects are detected). But even more dramatically, the noise
due to intrinsic source ellipticity decreases strongly for better seeing conditions,
which is due to (1) higher number density of galaxies for which a shape can be
measured, and (2) smaller corrections for PSF blurring, reducing the associated
noise of this correction. In fact, this figure shows that seeing is a more important
quantity than the total exposure time (from Clowe et al. 2004b)

The typical pixel size of these cameras is ∼0.′′2, which is needed to sample
the seeing disk in times of good seeing. From Fig. 4 one concludes immedi-
ately that the seeing conditions are absolutely critical for weak lensing: an
image with 0.′′6 is substantially more useful than one taken under the more
typical condition of 0.′′8 (see Fig. 5). There are two separate reasons why the
seeing is such an important factor. First, seeing blurs the images and make

may be hoped that some of these image defects are improved after a complete
overhaul of the instrument which occurred recently.
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them rounder; accordingly, to correct for the seeing effect, a larger correction
factor is needed in the worse seeing conditions. In addition, since the galaxy
images from which the shear is to be determined are faint, a larger seeing
smears the light from these galaxies over a larger area on the sky, reducing
its contrast relative to the sky noise, and therefore leads to noisier estimates
of the ellipticities even before the correction.

Deep observations of a field require multiple exposures. As a characteristic
number, the exposure time for an R-band image on a 4-m class telescope is
not longer than ∼10min to avoid the non-linear part of the CCD sensitivity
curve (exposures in shorter wavelength bands can be longer, since the night
sky is fainter in these filters). Therefore, these large-format cameras imply a
high data rate; e.g., one night of observing with the WFI yields ∼30GB of
science and calibration data. This number will increase by a factor ∼6 for
MegaCam. Correspondingly, handling this data requires large disk space for
efficient data reduction.

3.2 Data Reduction: Individual Frames

We shall now consider a number of issues concerning the reduction of imaging
data, starting here with the steps needed to treat individual chips on indi-
vidual frames, and later consider aspects of combining them into a coadded
image.

Flatfielding

The pixels of a CCD have different sensitivity, i.e., they yield different counts
for a given amount of light falling onto them (Fig. 6). In order to calibrate
the pixel sensitivity, one needs flatfielding. Three standard methods for this
are in use:

1. Dome-flats: a uniformly illuminated screen in the telescope dome is ex-
posed; the counts in the pixels are then proportional to their sensitivity.
The problem here is that the screen is not really of uniform brightness.

2. Twilight-flats: in the period of twilight after sunset, or before sunrise, the
cloudless sky is nearly uniformly bright. Short exposures of regions of the
sky without bright stars are then used to calibrate the pixel sensitivity.

3. Superflats: if many exposures with different pointings are taken with a
camera during a night, then any given pixel is not covered by a source
for most of the exposures (because the fraction of the sky at high galactic
latitudes which is covered by objects is fairly small, as demonstrated by
the deep fields taken by the HST). Hence, the (exposure-time normalized)
counts of any pixel will show, in addition to a little tail due to those ex-
posures when a source has covered it, a distribution around its sensitivity
to the uniform night-sky brightness; from that distribution, the flat-field
can be constructed, by taking its mode or its median.
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Fig. 6. A flat field for the CFH12K camera, showing the sensitivity variations
between pixels and in particular between chips. Also, bad columns are clearly seen

Bad Pixels

Each CCD has defects, in that some pixels are dead or show a signal unre-
lated to their illumination. This can occur as individual pixels, or whole pixel
columns (Fig. 6). No information of the sky image is available at these pixel
positions. One therefore employs dithering: several exposures of the same field,
but with slightly different pointings (dither positions) are taken. Then, any
position of the field falls on bad pixels only in a small fraction of exposures,
so that the full two-dimensional brightness distribution can be recovered.

Cosmic Rays

Those mimic groups of bad pixels; they can be removed owing to the fact
that a given point of the image will most likely be hit by a cosmic only once,
so that by comparison between the different exposures, cosmic rays can be
removed (or more precisely, masked). Another signature of a cosmic ray is
that the width of its track is typically much smaller than the seeing disk, the
minimum size of any real source.

Bright Stars

Those cause large diffraction spikes, and depending on the optics and the de-
sign of the camera, reflection rings, ghost images and other unwanted features.
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Fig. 7. A raw frame from the CFH12K camera, showing quite a number of ef-
fects mentioned in the text: bad column, saturation of bright stars, bleeding, and
sensitivity variations across the field and in particular between chips

It is therefore best to choose fields where no or very few bright stars are
present. The diffraction spikes of stars need to be masked, as well as the other
features just mentioned (Fig. 7).

Fringes

Owing to light reflection within the CCD, patterns of illumination across the
field can be generated (see Fig. 8); this is particularly true for thin chips when
rather long wavelength filters are used. In clear nights, the fringe pattern
is stable, i.e., essentially the same for all images taken during the night; in
that case, it can be deduced from the images and subtracted off the individ-
ual exposures. However, if the nights are not clear, this procedure no longer
works well; it is then safer to observe at shorter wavelength. For example, for
the WFI, fringing is a problem for I-band images, but for the R-band filter,
the amplitude of fringing is small. For the FORS instruments at the VLT,
essentially no fringing occurs even in the I band (Maoli et al. 2001).

Gaps

The individual CCDs in multi-chip cameras cannot be brought together ar-
bitrarily close; hence, there are gaps between the CCDs (see Fig. 9 for an
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Fig. 8. The two left panels show the fringe patterns of images taken with the WFI
in the I-band; the upper one was taken during photometric conditions, the lower
one under non-photometric conditions. Since the fringe pattern is spatially stable, it
can be corrected for (right panels), but the result is satisfactory only in the former
case (source: M. Schirmer and T. Erben)

example). In order to cover the gaps, the dither pattern can be chosen such
as to cover the gaps, so that they fall on different parts of the sky in different
exposures. As we shall see, such relatively large dither patterns also provide
additional advantages.

Satellite Trails, Asteroid Trails

Those have to be identified, either by visual inspection (currently the default)
or by image recognition software which can detect these linear features which
occur either only once, or at different positions on different exposures. These
are then masked, in the same way as some of the other features mentioned
above.
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Fig. 9. Layout of the Wide Field Imager (WFI) at the ESO/MPG 2.2m telescope
at La Silla. The eight chips each have ∼2048 × 4096 pixels and cover ∼7.′5 × 15′

3.3 Data Reduction: Coaddition

After taking several exposures with slightly different pointing positions (for
the reasons given above), frames shall be coadded to a sum-frame; some of
the major steps in this coaddition procedure are:

Astrometric Solution

One needs to coadd data from the same true (or sky) position, not the same
pixel position. Therefore, one needs a very precise mapping from sky coor-
dinates to pixel coordinates. Field distortions, which occur in every camera
(and especially so in wide-field cameras), make this mapping non-linear (see
Fig. 10). Whereas the distortion map of the telescope/camera system is to a
large degree constant and therefore one of the known features, it is not stable
to the sub-pixel accuracy needed for weak lensing work, owing to its depen-
dence on the zenith angle (geometrical distortions of the telescope due to
gravity), temperature etc. Therefore, the pixel-to-sky mapping has to be ob-
tained from the data itself. Two methods are used to achieve this: one of them
makes use of an external reference catalog, such as the US Naval Observatory
catalogue for point sources; it contains about 2 point sources per arcmin2 (at
high Galactic latitudes) with ∼0.3 arcsec positional accuracy. Matching point
sources on the exposures with those in the USNO catalog therefore yields the
mapping with sub-arcsecond accuracy. Far higher accuracy of the relative as-
trometry is achieved (and needed) from internal astrometry, which is obtained
by matching objects which appear at different pixel coordinates, and in par-
ticular, on different CCDs for the various dithering positions. Whereas the
sky coordinates are constant, the pixel coordinates change between dithering
positions. Since the distortion map can be described by a low-order polyno-
mial, the comparison of many objects appearing at (substantially) different



Part 3: Weak Gravitational Lensing 289

174.8 174.6 174.4 174.2

-11.8

-11.6

-11.4

Ra

Fig. 10. This figure shows the geometric distortion of the WFI. Plotted is the
difference of the positions of stars as obtained from a simple translation, and a
third-order astrometric correction obtained in the process of image reduction. The
patterns in the two left chips is due to their rotation relative to the other six chips.
Whereas this effect looks dramatic at first sight, the maximum length of the sticks
corresponds to about 6 pixels, or 1.′′2. Given that the WFI covers a field of ∼33′, the
geometrical distortions are remarkably small – however, they are sufficiently large
that they have to be taken into account in the coaddition process (source: T. Erben
and M. Schirmer)

pixel positions yield many more constraints than the free parameters in the
distortion map and thus yields the distortion map with much higher relative
accuracy than external data. The corresponding astrometric solution can rou-
tinely achieve an accuracy of 0.1 pixel, or typically 0.′′02 – compared with a
typical field size of ∼30′.

Photometric Solution

Flatfielding corrects for the different sensitivities of the pixels and therefore
yields accurate relative photometry across individual exposures. The different
exposures are tied together by matching the brightness of joint objects, in
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particular across chip boundaries. To achieve an absolute photometric cali-
bration, one needs external data (e.g., standard star observations).

The Coaddition Process

Coaddition has to happen with sub-pixel accuracy; hence, one cannot just
shift pixels from different exposures on top of each other, although this pro-
cedure is still used by some groups. The by-now standard method is drizzling
(Fruchter and Hook 2002), in which a new pixel frame is defined which usually
has smaller pixel size than the original image pixels (typically by a factor of
two) and which is linearly related to the sky coordinates. The astrometrically
and photometrically calibrated individual frames are now remapped onto this
new pixel grid, and the pixel values are summed up into the sub-pixel grid,
according to the overlap area between exposure pixel and drizzle pixel (see
Fig. 11). By that, drizzling automatically is flux conserving. In the coaddi-
tion process, weights are assigned, accounting for the noise properties of the
individual exposures (including the masks, of course).

The result of the coaddition procedure is then a science frame, plus a
weight map which contains information about the pixel noise, which is of
course spatially varying, owing to the masks, CCD gaps, removed cosmic rays
and bad pixels. Figure 12 shows a typical example of a coadded image and its
corresponding weight map.

Input Pixel Grid

Output Pixel Grid
Transformation
Geometric

Fig. 11. The principle of drizzling in the process of coaddition is shown. The pixel
grid of each individual exposure is mapped onto an output grid, where the shifts
and geometric distortions obtained during the astrometric solutions are applied. The
counts of the input pixel, multiplied by the relative weight of this pixel, are then
dropped onto the output pixels, according to the relative overlap area, where the
output pixels can be chosen smaller than the input pixels. The same procedure is
applied to the weight maps of the individual exposures. If many exposures are coad-
ded, the input pixel can also be shrunk before dropping onto the output pixel. After
processing all individual exposures in this way, a coadded image and a coadded
weight map is obtained (source: T. Schrabback)
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Fig. 12. A final coadded frame from a large number of individual exposures with
the WFI is shown in the upper left panel, with the corresponding weight map at
the upper right. The latter clearly shows the large-scale inhomogeneity of the chip
sensitivity and the illumination, together with the different number of exposures
contributing to various regions in the output image due to dithering and the gaps
between CCDs. The two lower panels show a blow-up of the central part. Despite
the highly inhomogeneous weight, the coadded image apparently shows no tracer of
the gaps, which indicates that a highly accurate relative photometric solution was
obtained (source: T. Erben and M. Schirmer)

The quality of the coadded image can be checked in a number of ways.
Coaddition should not erase information contained in the original exposures
(except, of course, the variability of sources). This means that the PSF of the
coadded image should not be larger than the weighted mean of the PSFs of
the individual frames. Insufficient relative astrometry would lead to a blurring
of images in the coaddition. Furthermore, the anisotropy of the PSF should be
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similar to the weighted mean of the PSF anisotropies of the individual frames;
again, insufficient astrometry could induce an artificial anisotropy of the PSF
in the coaddition (which can be easily visualized, by adding two round images
with a slight center offset, where a finite ellipticity would be induced).

Probably, there does not exist the ‘best’ coadded image from a given set of
individual exposures. This can be seen by considering a set of exposures with
fairly different individual seeing. If one is mainly interested in photometric
properties of rather large galaxies, one would prefer a coaddition which puts
all the individual exposures together, in order to maximize the total exposure
time and therefore to minimize the photometric noise of the coadded sources.
For weak lensing purposes, such a coaddition is certainly not optimal, as
adding exposures with bad seeing together with those of good seeing creates
a coadded image with a seeing intermediate between the good and the bad.
Since seeing is a much more important quantity than depth for the shape
determination of faint and small galaxy images, it would be better to coadd
only the images with the good seeing. In this respect, the fact that large
imaging instruments are operated predominantly in service observing more
employing queue scheduling is a very valuable asset: data for weak lensing
studies are then taken only if the seeing is better than a specified limit; in
this way one has a good chance to get images of homogeneously good seeing
conditions.

As a specific example, we show in Fig. 13 the ‘deepest wide-field image
in the Southern sky’, targeted toward the Chandra Deep Field South, one of
regions in the sky in which all major observatories have agreed to obtain, and
make publically available, very deep images for a detailed multi-band study.
For example, the Hubble Ultra Deep Field (Beckwith et al. 2003) is located
in the CDFS, the deepest Chandra X-ray exposures are taken in this field,
as well as two ACS@HST mosaic images, one called the GOODS field (Great
Observatories Origins Deep Survey; cf. Giavalisco and Mobasher 2004), the
other the GEMS survey (Rix et al. 2004).

3.4 Image Analysis

The final outcome of the data reduction steps described above is an image
of the sky, together with a weight map providing the noise properties of the
image. The next step is the scientific exploitation of this image, which in the
case of weak lensing includes the identification of sources, and to measure
their magnitude, size and shape.

As a first step, individual sources on the image need to be identified, to
obtain a catalog of sources for which the ellipticities, sizes and magnitudes
are to be determined later. This can done with by-now standard software, like
SExtractor (Bertin and Arnouts 1996), or may be part of specialized software
packages developed specifically for weak lensing, such as IMCAT, developed
by Nick Kaiser (see below). Although this first step seems straightforward at
first glance, it is not: images of sources can be overlapping, the brightness
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Fig. 13. A multi-color WFI image of the CDFS; the field is slightly larger than one-
half degree on the side. To obtain this image, about 450 different WFI exposures
were combined, resulting in a total exposure time of 15.8 hours in B, 15.6 hours
in V, and 17.8 hours in R. The data were obtained in the frame of three different
projects – the GOODS project, the public ESO Imaging Survey, and the COMBO-
17 survey. These data were reduced and coadded by Mischa Schirmer and Thomas
Erben; more than 2 TB of disk space were needed for the reduction

distribution of many galaxies (in particular those with active star formation)
tends to be highly structured, with a collection of bright spots, and therefore
the software must be taught whether or not these are to be split into different
sources, or be taken as one (composite) source. This is not only a software
problem; in many cases, even visual inspection cannot decide whether a given
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light distribution corresponds to one or several sources. The shape and size
of the images are affected by the point-spread function (PSF), which results
from the telescope optics, but for ground-based images, is dominated by the
blurring caused by the atmospheric turbulence; furthermore, the PSF may be
affected by telescope guiding and the coaddition process described earlier.

The Point-Spread Function

Atmospheric turbulence and the other effects mentioned above smear the im-
age of the sky, according to

Iobs(θ) =
∫

d2ϑ I(ϑ)P (θ − ϑ) , (28)

where I(ϑ) is the brightness profile outside the atmosphere, Iobs(ϑ) the ob-
served brightness profile, and P is the PSF; it describes how point sources
would appear on the image. To first approximation, the PSF is a bell-shaped
function; its full width at half maximum (FWHM) is called the ‘seeing’ of the
image. At excellent sites, and excellent telescopes, the seeing has a median of
∼0.′′7–∼0.′′8; exceptionally, images with a seeing of ∼0.′′5 can be obtained. Re-
call that typical faint galaxies are considerably smaller than this seeing size,
hence their appearance is dominated by the PSF.

The main effect of seeing on image shapes is that it makes an elliptical
source rounder: a small source with a large ellipticity will nevertheless appear
as a fairly round image if its size is considerably smaller than the PSF. If not
properly corrected for, this smearing effect would lead to a serious underes-
timate of ellipticities, and thus of the shear estimates. Furthermore, the PSF
is not fully isotropic; small anisotropies can be introduced by guiding errors,
the coaddition, the telescope optics, bad focusing etc. An anisotropic PSF
makes round sources elliptical, and therefore mimics a shear. Also here, the
effect of the PSF anisotropy depends on the image size and is strongest for
the smallest sources. PSF anisotropies of several percent are typical; hence, if
not corrected for, its effect can be larger than the shear to be measured.

The PSF can be measured at the position of stars (point sources) on the
field; if it is a smooth function of position, it can be fitted by a low-order
polynomial, which then yields a model for the PSF at all points, in particular
at every image position, and one can correct for the effects of the PSF. A
potential problem occurs if the PSF jumps between chips boundaries in multi-
chip cameras, since then the coaddition produces PSF jumps on the coadded
frame; this happens in cameras where the chips are not sufficiently planar,
and thus not in focus simultaneously. For the WFI@ESO/MPG 2.2-m, this
however is not a problem, but for some other cameras this problem exists
and is severe. There is an obvious way to deal with that problem, namely to
coadd data only from the same CCD chip. In this case, the gaps between chips
cannot be closed in the coadded image, but for most weak lensing purposes
this is not a very serious issue. In order not to lose too much area in this
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coaddition, the dither pattern, i.e., the pointing differences in the individual
exposures, should be kept small; however, it should not be smaller than, say,
20′′, since otherwise some pixels may always fall onto a few larger galaxies in
the field, which then causes problems in constructing a superflat. Furthermore,
small shifts between exposures means that the number of objects falling onto
different chips in different exposures is small, thus reducing the accuracy of
the astrometric solution. In any case, the dither strategy shall be constructed
for each camera individually, taken into account its detailed properties.

3.5 Shape Measurements

Specific software has been developed to deal with the issues mentioned above;
the one that is most in use currently has been developed by Kaiser et al. (1995;
hereafter KSB), with substantial additions by Luppino and Kaiser (1997), and
later modifications by Hoekstra et al. (1998). The numerical implementation
of this method is called IMCAT and is publically available. The basic features
of this method shall be outlined next.

First one notes that the definition (6) of the second-order moments of
the image brightness is not very practical for applying it to real data. As
the effective range of integration depends on the surface brightness of the
image (through the weight function qI) the presence of noise enters the defin-
ition of the Qij in a non-linear fashion. Furthermore, neighboring images can
lead to very irregularly shaped integration ranges. In addition, this definition
is hampered by the discreteness of pixels. For these reasons, the definition is
modified by introducing a weight function qθ(θ) which depends explicitly on
the image coordinates,

Qij =
∫

d2θ qθ(θ) I(θ) (θi − θ̄i) (θj − θ̄j)∫
d2θ qθ(θ) I(θ)

, i, j ∈ {1, 2} , (29)

where the size of the weight function qθ is adapted to the size of the galaxy
image (for optimal S/N measurement). One typically chooses qθ to be cir-
cular Gaussian. The image center θ̄ is defined as before, but also with the
new weight function qθ(θ), instead of qI(I). However, with this definition, the
transformation between image and source brightness moments is no longer
simple; in particular, the relation (11) between the second-order brightness
moments of source and image no longer holds. The explicit spatial depen-
dence of the weight, introduced for very good practical reasons, destroys the
convenient relations that we derived earlier – welcome to reality.

In KSB, the anisotropy of the PSF is characterized by its (complex) el-
lipticity q, measured at the positions of the stars, and fitted by a low-order
polynomial. Assume that the (reduced) shear g and the PSF anisotropy q are
small; then they both will have a small effect on the measured ellipticity. Lin-
earizing these two effects, one can write (employing the Einstein summation
convention)

χ̂obs
α = χ0

α + P sm
αβ qβ + P g

αβgβ . (30)
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The interpretation of the various terms is found as follows: First consider
an image in the absence of shear and the case of an isotropic PSF; then
χ̂obs = χ0; thus, χ0 is the image ellipticity one would obtain for q = 0 and
g = 0; it is the source smeared by an isotropic PSF. It is important to note
that E(χ0) = 0, due to the random orientation of sources. The tensor P sm de-
scribes how the image ellipticity responds to the presence of a PSF anisotropy;
similarly, the tensor P g describes the response of the image ellipticity to shear
in the presence of smearing by the seeing disk. Both, P sm and P g have to be
calculated for each image individually; they depend on higher-order moments
of the brightness distribution and the size of the PSF. A full derivation of the
explicit equations can be found in Sect. 4.6.2 of BS01.

Given that
〈
χ0
〉

= 0, an estimate of the (reduced) shear is provided by

ε = (P g)−1
(
χ̂obs − P smq

)
. (31)

If the source size is much smaller than the PSF, the magnitude of P g can be
very small, i.e., the correction factor in (31) can be very large. Given that
the measured ellipticity χ̂obs is affected by noise, this noise then also gets
multiplied by a large factor. Therefore, depending on the magnitude of P g,
the error of the shear estimates differ between images; this can be accounted
for by specifically weighting these estimates when using them for statistical
purposes (e.g., in the estimate of the mean shear in a given region). Different
authors use different weighting schemes when applying KSB. Also, the tensors
P sm and P g are expected to depend mainly on the size of the image and
their signal-to-noise; therefore, it is advantageous to average these tensors
over images having the same size and S/N, instead of using the individual
tensor values which are of course also affected by noise. Erben et al. (2001)
and Bacon et al. (2001) have tested the KSB scheme on simulated data and in
particular investigated various schemes for weighting shear estimates and for
determining the tensors in (30); they concluded that simulated shear values
can be recovered with a systematic uncertainty of about 10%.

Maybe by now you are confused – what is ‘real ellipticity’ of an image, inde-
pendent of weights etc. ? Well, this question has no answer, since only images
with conformal elliptical isophotes have a ‘real ellipticity’. By the way, not nec-
essarily the one that is the outcome of the KSB procedure. The KSB process
does not aim toward measuring ‘the’ ellipticity of any individual galaxy im-
age; it tries to measure ‘a’ ellipticity which, when averaged over a random
intrinsic orientation of the source, yields an unbiased estimate of the reduced
shear.

Given that the shape measurements of faint galaxies and their correction
for PSF effects is central for weak lensing, several different schemes for mea-
suring shear have been developed (e.g., Valdes et al. 1983; Bonnet and Mellier
1995; Kuijken 1999; Kaiser 2000; Refregier 2003b; Bernstein and Jarvis 2002).
In the shapelet method of Refregier (2003b; see also Refregier and Bacon
2003), the brightness distribution of galaxy images is expanded in a set of
basis functions (‘shapelets’) whose mathematical properties are particularly



Part 3: Weak Gravitational Lensing 297

convenient. With a corresponding decomposition of the PSF (the shape of
stars) into these shapelets and their low-order polynomial fit across the image,
a partial deconvolution of the measured images becomes possible, using linear
algebraic relations between the shapelet coefficients. The effect of a shear on
the shapelet coefficients can be calculated, yielding then an estimate of the re-
duced shear. In contrast to the KSB scheme, higher-order brightness moments,
and not just the quadrupoles, of the images are used for the shear estimate.

These alternative methods for measuring image ellipticities (in the sense
mentioned above, namely to provide an unbiased estimate of the local reduced
shear) have not been tested yet to the same extent as is true for the KSB
method. Before they become a standard in the field of weak lensing, several
groups need to independently apply these techniques to real and synthetic data
sets to evaluate their strengths and weaknesses. In this regard, one needs to
note that weak lensing has, until recently, been regarded by many researchers
as a field where the observational results are difficult to ‘believe’ (and sure,
not all colleagues have given up this view, yet). The difficulty to display the
directly measured quantities graphically so that they can be directly ‘seen’
makes it difficult to convince others about the reliability of the measurements.
The fact that the way from the coadded imaging data to the final result is,
except for the researchers who actually do the analysis, close to a black box
with hardly any opportunity to display intermediate results (which would
provide others with a quality check) implies that the methods employed should
be standardized and well checked.

Surprisingly enough, there are very few (published) attempts where the
same data set is analyzed by several groups independently, and intermedi-
ate and final results being compared. Kleinheinrich (2003) in her dissertation
has taken several subsets of the data that led to the deep image shown in
Fig. 13 and compared the individual image ellipticities between the various
subsets. If the subsets had comparable seeing, the measured ellipticities could
be fairly well reproduced, with an rms difference of about 0.15, which is small
compared to the dispersion of the image ellipticities σε ∼ 0.35. Hence, these
differences, which presumably are due to the different noise realizations on
the different images, are small compared to the ‘shape noise’ coming from the
finite intrinsic ellipticities of galaxies. If the subsets had fairly different seeing,
the smearing correction turns out to lead to a systematic bias in the measured
ellipticities. From the size of this bias, the conclusions obtained from the sim-
ulations are confirmed – measuring a shear with better than ∼10% accuracy
will be difficult with the KSB method, where the main problem lies in the
smearing correction.

Shear Observations from Space

We conclude this section with a few comments on weak lensing observations
from space. Since the PSF is the largest problem in shear measurements, one
might be tempted to use observations from space which are not affected by



298 P. Schneider

the atmosphere. At present, the Hubble Space Telescope (HST) is the only
spacecraft that can be considered for this purpose. Weak lensing observations
have been carried out using two of its instruments, WFPC2 and STIS. The
former has a field-of-view of about 5 arcmin2, whereas STIS has a field of
51′′. These small fields imply that the number of stars that can be found on
any given exposure at high galactic latitude is very small, in fact typically
zero for STIS. Therefore, the PSF cannot be measured from these exposures
themselves. Given that an instrument in space is expected to be much more
stable than one on the ground, one might expect that the PSF is stable in
time; then, it can be investigated by analyzing exposures which contain many
stars (e.g., from a star cluster). In fact, Hoekstra et al. (1998) and Hämmerle
et al. (2002) have shown that the PSFs of WFPC2 and STIS are approximately
constant in time. The situation is improved with the new camera ACS onboard
HST, where the field size of ∼3.′4 is large enough to contain about a dozen
stars even for high galactic latitude, and where some control over the PSF
behavior on individual images is obtained. We shall discuss the PSF stability
of the ACS in Sect. 7.3 below.

The PSF of a diffraction-limited telescope is much more complex than that
of the seeing-dominated one for ground-based observations. The assumption
underlying the KSB method, namely that the PSF can be described by a
axi-symmetric function convolved with a small anisotropic kernel, is strongly
violated for the HST PSF; it is therefore less obvious how well the shear
measurements with the KSB method work in space. In addition, the HST
PSF in not well sampled with the current imaging instruments, even though
STIS and ACS have a pixel scale of 0.′′05. The number density of cosmic
rays is much larger in space, so their removal can be more cumbersome than
for ground-based observations. The intense particle bombardment also leads
to aging of the CCD, which lose their sensitivity and attain charge-transfer
efficiency problems. Despite these potential problems, a number of highly
interesting weak lensing results obtained with the HST have been reported, in
particular on clusters, and we shall discuss some of them in later sections. The
new Advanced Camera for Surveys (ACS) on-board HST has a considerably
larger field-of-view than previous instruments and will most likely become a
highly valuable tool for weak lensing studies.

4 Clusters of Galaxies: Introduction, and Strong Lensing

4.1 Introduction

Galaxies are not distributed randomly, but they cluster together, forming
groups and clusters of galaxies. Those can be identified as overdensities of
galaxies projected onto the sky, and this has of course been the original method
for the detection of clusters, e.g., leading to the famous and still heavily used
Abell (1958) catalog and its later Southern extension (Abell et al. 1989; ACO).
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Only later – with the exception of Zwicky’s early insight in 1933 that the Coma
cluster must contain a lot of missing mass – it was realized that the visible
galaxies are but a minor contribution to the clusters since they are dominated
by dark matter. From X-ray observations we know that clusters contain a very
hot intracluster gas which emits via free-free and atomic line radiation. Many
galaxies are members of a cluster or a group; indeed, the Milky Way is one of
them, being one of two luminous galaxies of the Local Group (the other one
is M31, the Andromeda galaxy), of which ∼35 member galaxies are known,
most of them dwarfs.

In the first part of this section we shall describe general properties of galaxy
clusters, in particular methods to determine their masses, before turning to
their strong lensing properties, such as show up in the spectacular giant lumi-
nous arcs. Very useful reviews on clusters of galaxies are from Sarazin (1986)
and in a recent proceedings volume (Mulchaey et al. 2004).

4.2 General Properties of Clusters

Clusters of galaxies contain tens to hundreds of bright galaxies; their galaxy
population is dominated by early-type galaxies (E’s and S0’s), i.e. galaxies
without active star formation. Often a very massive cD galaxy is located at
their center; these galaxies differ from normal ellipticals in that they have a
much more extended brightness profile – they are the largest galaxies. The
morphology of clusters as seen in their distribution of galaxies can vary a
lot, from regular, compact clusters (often dominated by a central cD galaxy)
to a bimodal distribution, or highly irregular morphologies with strong sub-
structure. Since clusters are at the top of the mass scale of virialized objects,
the hierarchical merging scenario of structure growth predicts that many of
them have formed only recently through the merging of two or more lower-
mass sub-clusters, and so the irregular morphology just indicates that this
happened.

X-ray observations reveal the presence of a hot (several keV) intracluster
medium (ICM) which is highly enriched in heavy elements; hence, this gas
has been processed through star-formation cycles in galaxies. The mass of the
ICM surpasses that of the baryons in the cluster galaxies; the mass balance
in clusters is approximately as follows: stars in cluster galaxies contribute
∼3% of the total mass, the ICM another ∼15%, and the rest (>∼80%) is dark
matter. Hence, clusters are dominated by dark matter; as discussed below
(Sect. 4.3), the mass of clusters can be determined with three vastly different
methods which overall yield consistent results, leading to the aforementioned
mass ratio.

We shall now quote a few characteristic values which apply to rich, mas-
sive clusters. Their virial radius, i.e., the radius inside of which the mass
distribution is in approximate virial equilibrium (or the radius inside of which
the mean mass density of clusters is ∼200 times the critical density of the
Universe – cf. Sect. 4.5 of IN) is rvir ∼ 1.5h−1 Mpc. A typical value for the
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one-dimensional velocity dispersion of the member galaxies is σv ∼ 1000 km/s.
In equilibrium, this equals the thermal velocity of the ICM, corresponding to
a temperature of T ∼ 107.5 K ∼ 3 keV. The mass of massive clusters within
the virial radius (i.e., the virial mass) is ∼1015M�. The mass-to-light ratio
of clusters (as measured from the B-band luminosity) is typically of order
(M/L) ∼ 300h−1 (M�/L�). Of course, the much more numerous typical clus-
ters have smaller masses (and temperatures).

Cosmological Interest for Clusters

Clusters are the most massive bound and virialized structures in the Uni-
verse; this, together with the (related) fact that their dynamical time scale
(e.g., the crossing time ∼rvir/σv) is not much smaller than the Hubble time
H−1

0 – so that they retain a ‘memory’ of their formation – render them of
particular interest for cosmologists. The evolution of their abundance, i.e.,
their comoving number density as a function of mass and redshift, is an im-
portant probe for cosmological models and traces the growth of structure;
massive clusters are expected to be much rarer at high redshift than today.
Their present-day abundance provides one of the measures for the normaliza-
tion of the power spectrum of cosmological density fluctuations. Furthermore,
they form (highly biased) signposts of the dark matter distribution in the
Universe, so their spatial distribution traces the large-scale mass distribu-
tion in the Universe. Clusters act as laboratories for studying the evolution
of galaxies and baryons in the Universe. Since the galaxy number density is
highest in clusters, mergers of their member galaxies and, more importantly,
other interactions between them occur frequently. Therefore, the evolution
of galaxies with redshift is most easily studied in clusters. For example, the
Butcher–Oemler effect (the fact that the fraction of blue galaxies in clusters
is larger at higher redshifts than today) is a clear sign of galaxy evolution
which indicates that star formation in galaxies is suppressed once they have
become cluster members. More generally, there exists a density-morphology
relation for galaxies, with an increasing fraction of early-types with increasing
spatial number density, with clusters being on the extreme for the latter. Fi-
nally, clusters were (arguably) the first objects for which the presence of dark
matter has been concluded (by Zwicky 1933). Since they are so large, and
present the gravitational collapse of a region in space with initial comoving
radius of ∼8h−1 Mpc, one expects that their mixture of baryonic and dark
matter is characteristic for the mean mass fraction in the Universe (White
et al. 1993). With the baryon fraction of ∼15% mentioned above, and the
density parameter in baryons determined from big-bang nucleosynthesis in
connection to the determination of the deuterium abundance in Lyα QSO
absorption systems, Ωb ≈ 0.02h−2, one obtains a density parameter for mat-
ter of Ωm ∼ 0.3, in agreement with results from other methods, most no-
ticeably from the recent WMAP CMB measurements (e.g., Spergel et al.
2003).
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4.3 The Mass of Galaxy Clusters

Cosmologists can predict the abundance of clusters as a function of their
mass (e.g., using numerical simulations); however, the mass of a cluster is
not directly observable, but only its luminosity, or the temperature of the
X-ray emitting intra-cluster medium. Therefore, in order to compare observed
clusters with the cosmological predictions, one needs a way to determine their
masses. Three principal methods for determining the mass of galaxy clusters
are in use:

• Assuming virial equilibrium, the observed velocity distribution of galaxies
in clusters can be converted into a mass estimate, employing the virial
theorem; this method typically requires assumptions about the statistical
distribution of the anisotropy of the galaxy orbits.

• The hot intra-cluster gas, as visible through its Bremsstrahlung in X-rays,
traces the gravitational potential of the cluster. Under certain assumptions
(see below), the mass profile can be constructed from the X-ray emission.

• Weak and strong gravitational lensing probes the projected mass profile
of clusters, with strong lensing confined to the central regions of clusters,
whereas weak lensing can yield mass measurements for larger radii.

All three methods are complementary; lensing yields the line-of-sight pro-
jected density of clusters, in contrast to the other two methods which probe
the mass inside spheres. On the other hand, those rely on equilibrium (and
symmetry) conditions; e.g., the virial method assumes virial equilibrium (that
the cluster is dynamically relaxed) and the degree of anisotropy of the galaxy
orbit distribution.

Dynamical Mass Estimates

Estimating the mass of clusters based on the virial theorem,

2Ekin + Epot = 0 , (32)

has been the traditional method, employed by Zwicky (1933) to find strong
hints for the presence of dark matter in the Coma cluster. The specific kinetic
energy of a galaxy is v2/2, whereas the potential energy is determined by the
cluster mass profile, which can thus be determined using (32). One should
note that only the line-of-sight component of the galaxy velocities can be
measured; hence, in order to derive the specific kinetic energy of galaxies,
one needs to make an assumption on the distribution of orbit anisotropies in
the cluster potential. Assuming an isotropic distribution of orbits, the l.o.s.
velocity distribution can then be related to the 3-D velocity dispersion, which
in turn can be transformed into a mass estimate if spherical symmetry is
assumed. This method requires many redshifts for an accurate mass estimate,
which are available only for a few clusters. However, a revival of this method
is expected and already seen by now, owing to the new high-multiplex optical
spectrographs.
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X-ray Mass Determination of Clusters

The intracluster gas emits via Bremsstrahlung; the emissivity depends on the
gas density and temperature, and, at lower T , also on its chemical composition,
since at T <∼ 1 keV the line radiation from highly ionized atomic species starts
to dominate the total emissivity of a hot gas. Investigating the properties
of the ICM with X-ray observations have revealed a wealth of information
on the properties of clusters (see Sarazin 1986). Assuming that the gas is in
hydrostatic equilibrium in the potential well of the cluster, the gas pressure
P must balance gravity, or

∇P = −ρg ∇Φ ,

where ρg is the gas density. In the case of spherical symmetry, this becomes

1
ρg

dP
dr

= −dΦ
dr

= −GM(r)
r2

.

From the X-ray brightness profile and temperature measurement, M(r), the
mass inside r, both dark and luminous, can then be determined,

M(r) = −kBTr
2

Gμmp

(
d ln ρg

dr
+

d lnT

dr

)
, (33)

where μmp is the mean particle mass in the gas. Only for relatively few clusters
are detailed X-ray brightness and temperature profile measurements available.
In the absence of a temperature profile measurement, one often assumes that T
does not vary with distance form the cluster center. In this case, assuming that
the dark matter particles also have an isothermal distribution (with velocity
traced by the galaxy velocities), one can show that

ρg(r) ∝ [ρtot(r)]β ; with β =
μmpσ

2
v

kBTg
. (34)

Hence, β is the ratio between kinetic and thermal energy. The mass profile
corresponding to the isothermality assumption follows from the Lame–Emden
equation which, however, has no closed-form solution. In the King approx-
imation, the density and X-ray brightness profile (which is obtained by a
line-of-sight integral at projected distance R from the cluster center over the
emissivity, which in turn is proportional to the square of the electron density,
or ∝ ρ2

g, for an isothermal gas) become

ρg(r) = ρg0

[
1 +

(
r

rc

)2
]−3β/2

; I(R) ∝
[
1 +

(
R

rc

)2
]−3β/2+1/2

,

where rc is the core radius. The observed brightness profile can now be fitted
with these β-models, yielding estimates of β and rc from which the cluster
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mass follows. Typical values for rc range from 0.1 to 0.3h−1 Mpc; and β =
βfit ∼ 0.65. On the other hand, one can determine β from the temperature
T and the galaxy velocity dispersion using (34), which yields βspec ≈ 1. The
discrepancy between these two estimates of β is not well understood and
probably indicates that one of assumptions underlying this ‘β-models’ fails in
many clusters, which is not too surprising (see below).

The hot ICM loses energy through its thermal radiation; the cooling time
tcool of the gas, i.e., the ratio between the thermal energy density and the
X-ray emissivity, is larger than the Hubble time ∼H−1

0 for all but the inner-
most regions. In the center of clusters, the gas density can be high enough
to have tcool < H−1

0 , so that there the gas can no longer be in hydrostatic
equilibrium. One expects that the gas flows toward the cluster center, thereby
being compressed and therefore maintain approximate pressure balance. Such
‘cooling flows’ (see, e.g., Fabian 1994) are observed indirectly, through highly
peaked X-ray emission in cluster centers which indicates a strong increase of
the gas density; furthermore, these cooling-flow clusters show a decrease of
T toward the center. The mass-flow rate in these clusters can be as high as
100M� yr−1 or even more, so that the total cooled mass can be larger than
the baryonic mass of a massive galaxy. However, the fate of the cooled gas is
unknown.

New Results from Chandra and XMM

The two X-ray satellites Chandra and XMM, launched in 1999, have greatly
increased our view of the X-ray Universe, and have led to a number of surpris-
ing results about clusters. X-ray spectroscopy verified the presence of cool gas
near the center of cooling-flow clusters, but no indication for gas with temper-
ature below ∼1 keV has been seen, whereas the cooling is expected to rapidly
proceed to very low temperatures, as the cooling function increases for lower
T where atomic transitions become increasingly important. Furthermore, the
new observations have revealed that at least the inner regions of clusters often
show a considerably more complicated structure than implied by hydrostatic
equilibrium. In some cases, the intracluster medium is obviously affected by
a central AGN, which produces additional energy and entropy input, which
might explain why no sub-keV gas has been detected. As the AGN activity of
a galaxy may be switched on and off, depending on the fueling of the central
black hole, even in clusters without a currently active AGN such heating might
have occurred in the recent past, as indicated in some cases by radio relics.
Cold fronts with very sharp edges (discontinuities in density and temperature,
but such that P ∝ ρT is approximately constant across the front), and shocks
have been discovered, most likely showing ongoing or recent merger events. In
many clusters, the temperature and metallicity appears to be strongly vary-
ing functions of position which invalidates the assumption of isothermality
underlying the β-model. Therefore, mass estimates of central parts of clus-
ters from X-ray observations require special care, and one needs to revise the
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simplified models used in the pre-Chandra era. In fact, has there ever been
the believe that the β-model provides an adequate description of the gas in a
cluster, the results from Chandra and XMM show that this is unjustified. The
physics of the intracluster gas appears to be considerably more complicated
than that.

4.4 Luminous Arcs and Multiple Images

Strong lensing effects in cluster show up in the form of giant luminous arcs,
strongly distorted arclets, and multiple images of background galaxies. Since
strong lensing only occurs in the central part of clusters, it can be used only
to probe their inner mass structure. However, strong lensing yields by far the
most accurate central mass determinations in those cases where several strong
lensing features can be identified. For a detailed account of strong lensing in
clusters, the reader is referred to the review by Fort and Mellier (1994).

Furthermore, clusters thus act as a ‘natural telescope’; many of the most
distant galaxies have been found by searching behind clusters, employing the
lensing magnification. For example, the recently discovered very high redshift
galaxies at z ≈ 7 (Kneib et al. 2004) and z = 10 (Pelló et al. 2004) were
found through a search in the direction of the high-magnification region in
the clusters A 2218 and A1835, respectively. In the first of these two cases,
the multiple imaging of the background galaxy provides not only the mag-
nification, but also an estimate of the redshift of the source (which is not
determined by any spectral line), whereas in the latter case, only the implied
high magnification makes the source visible on deep HST images and allows
its spectroscopy, yielding a spectral line which most likely is due to Lyα. The
magnification is indeed a very important asset, as can be seen from a simple
example: a value of μ = 5 reduces the observing time for obtaining a spectrum
by a factor 25 (in the case where the noise is sky background dominated) –
which is the difference of being doable or not. Recognizing the power of natural
telescopes, the deepest SCUBA surveys for faint sub-millimeter sources have
been conducted (e.g., Blain et al. 1999) around clusters with well-constrained
(from lensing) mass distribution to reach further down the (unlensed) flux
scale.

First go: M(≤ θE)

Giant arcs occur where the distortion (and magnification) is very large,
that is near critical curves. To a first approximation, assuming a spheri-
cal mass distribution, the location of the arc from the cluster center (which
usually is assumed to coincide with the brightest cluster galaxy) yields the
Einstein radius of the cluster, so that the mass estimate (see IN, Eq. 43) can
be applied:

M(θarc) ≈ π (Dang
d θarc)2 Σcr . (35)
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Fig. 14. The galaxy cluster Abell 1689 is the most impressive lensing cluster yet
found. This image has been taken with the new Advanced Camera for Surveys
(ACS) onboard HST. Numerous arcs are seen. A simple estimate for the mass of
the center of the cluster, obtained by identifying the arcs radius with the Einstein
radius, yields an extremely large equivalent velocity dispersion. The distribution of
the arcs shown here indicates that such a simple assumption is misleading, and more
detailed modeling required

Therefore, this simple estimate yields the mass inside the arc radius. However,
this estimate is not very accurate, perhaps good to within ∼30% (Bartel-
mann and Steinmetz 1996). Its reliability depends on the level of asymmetry
and substructure in the cluster mass distribution. Furthermore, it is likely
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to overestimate the mass in the mean, since arcs preferentially occur along
the major axis of clusters. Of course, the method is very difficult to apply
if the center of the cluster is not readily identified or if the cluster is obvi-
ously bimodal. For these reasons, this simple method for mass estimates is
not regarded as particularly accurate.

Detailed Modeling

The mass determination in cluster centers becomes much more accurate if
several arcs and/or multiple images are present, since in this case, detailed
modeling can be done. This typically proceeds in an interactive way: First,
multiple images have to be identified (based on their colors and/or detailed
morphology, as available with HST imaging). Simple (plausible) mass mod-
els are then assumed, with parameters fixed by matching the multiple images,
and requiring the distortion at the arc location(s) to be strong and to have the
correct orientation. This model then predicts the presence of possible further
multiple images; they can be checked for through morphology, surface bright-
ness (in particular if HST images of the cluster are available) and color. If
confirmed, a new, refined model is constructed including these new additional
strong lensing constraints, which yields further strong lensing predictions etc.
As is the case for galaxy lensing (see SL), the components of the mass models
are not arbitrary, but chosen to be physically motivated. Typically, as major
component an ellipsoidal isothermal or NWF distribution is used to describe
the overall mass distribution of the cluster. Refinements of the mass distrib-
ution are introduced as mass components centered on bright cluster member
galaxies or on subgroups of such galaxies, describing massive subhalos which
survived a previous merger. Such models have predictive power and can be
trusted in quite some detail; the accuracy of mass estimates in some favorable
cases can be as high as a few percent.

In fact, these models can be used to predict the redshift of arcs and arclets.
As an example, we mention the strong lensing analysis of the cluster Abell
2390 based on HST imaging (Pelló et al. 1999). Two pairs of multiple images
were identified (see Fig. 15) which then implies that the critical curve has to
pass between the individual components. The location of the critical curves
depends, however, on the source redshift. As shown in the figure, the sources
have to be at a high redshift in order for the corresponding critical curves
to have the correct location. In fact, spectroscopy placed the two sources at
zs = 4.04 and zs = 4.05, as predicted by the lens model.

Since the distortion of a lens also depends on the source redshift, once a
detailed mass model is available from arcs with known redshifts for at least
some of them, one can estimate the value of the lens strength ∝ Dds/Ds and
thus infer the redshift of arclets. This method has been successfully applied
to HST observations of clusters (Ebbels et al. 1998). Of course, having spec-
troscopic redshifts of the arcs available increases the calibration of the mass
models; they are therefore very useful.
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Fig. 15. The lower panel shows the critical curves of the cluster A 2390 (cluster
redshift zd = 0.231), for three different source redshifts of zs = 1, 2.5 and 4 (from
inner to outer). The lens model is based on the detailed HST image shown here.
Identified are two sets of multiple images, shown in the upper two panels, which
obviously need to be at very high redshift. Indeed, spectroscopy shows that they
have zs = 4.04 and zs = 4.05 (from Pelló et al. 1999)

Lens Properties from Fourier Transforms

Before discussing results from these detailed models, a brief technical section
shall be placed here, related to calculating lens properties of general mass
distributions. A general method to obtain the lensing quantities of a mass
distribution is through Fourier transformation. We assume that we have a
mass distribution of finite mass; this is not a serious restriction even for mod-
els with formally infinite total mass, because we can truncate them on large
scales, thus making the total mass finite, without affecting any lensing prop-
erties at smaller scales. We define the Fourier transform κ̂(	) of the surface
mass density as4

κ̂(	) =
∫

IR2
d2θ κ(θ) exp (i	 · θ) , (36)

4 We denote the Fourier variable of three-dimensional space as k, that of angular
position by 	.
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and its inverse by

κ(θ) =
1

(2π)2

∫
IR2

d2" κ̂(	) exp (−i	 · θ) . (37)

Similarly, we define the Fourier transforms of the deflection potential, ψ̂(	), of
the deflection angle, α̂(	), and of the complex shear, γ̂(	). Differentiation by θi

in real space is replaced by multiplication by −i"i in Fourier space. Therefore,
the Fourier transform of ∂ψ/∂θj is −i"jψ̂(	). Hence, the Poisson equation as
given in Sect. 2.2 of IN becomes in Fourier space

−|	|2ψ̂(") = 2κ̂(	) . (38)

Thus, for 	 
= 0, the Fourier transform of the potential which satisfies the
Poisson equation can be readily determined. The 	 = 0 mode remains un-
determined; however, since this mode corresponds to a constant in ψ, it is
unimportant and can be set to zero. Once ψ̂ is determined, the Fourier trans-
form of the deflection angle and the shear follows from their definitions in
terms of the deflection potential, given in Sect. 2.2 of IN,

α̂(	) = −i	ψ̂(	) , (39)

γ̂(	) = −
(
"21 − "22

2
+ i"1"2

)
ψ̂(	) . (40)

Thus, in principle, one determines the relevant quantities by Fourier trans-
forming κ, then calculating the Fourier transforms of the potential, deflection,
and shear, whose real-space counterparts are then obtained from an inverse
Fourier transform, like in (37).

Up to now we have not gained anything; the Fourier transforms as defined
above are two-dimensional integrals, as are the real-space relations between
deflection angle and shear, and the surface-mass density. However, provided
κ becomes ‘small enough’ for large values of |θ|, the integral in (36) may be
approximated by one over a finite region in θ-space. This finite integral is
further approximated as a sum over gridpoints, with a regular grid covering
the lens plane. Consider a square in the lens plane of side L, and let N be
the number of gridpoints per dimension, so that Δθ = L/N is the size of a
gridcell. The inverse grid, i.e., the 	-grid, has a gridcell of size Δ" = 2π/L.
The discrete Fourier transform then uses the values of κ on the θ-grid to
calculate κ̂ on the 	-grid. The latter, in fact, is then the Fourier transform
of the periodic continuation of the mass distribution in θ-space. Because of
this periodic continuation, the deflection angle as calculated from the discrete
Fourier transform, which is performed by the Fast Fourier Transform (FFT)
method, is the sum of the input mass distribution, plus all of its periodic
continuation. Here, finally, is why we have considered the Fourier method: the
FFT is a very efficient and quick procedure (see, e.g., Press et al. 1986), and
arguably the best one in cases of mass distributions for which no analytical
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progress can be made. The lensing properties are calculated on a grid; if
needed, they can be obtained for other points by interpolation.

Because of the periodic continuation, the mass distribution has to decrease
sufficiently quickly for large |θ|, or be truncated at large radii. In any case, L
should be taken sufficiently large to minimize these periodicity effects.

Another point to mention is that a periodic mass distribution, each element
of which has positive total mass, has an infinite mass, so that the deflection
potential has to diverge; on the other hand, the deflection potential is enforced
to be periodic. This apparent contradiction can be resolved by noting that the
	 = 0 mode of κ̂ is not used in the calculation of α̂ and γ̂. Indeed, if ψ̂ and
ψ are calculated from the above equations, then the resulting ψ does not
satisfy the Poisson equation; the ψ resulting from this procedure is the one
corresponding to κ − κ̄, where κ̄ is the average of κ on the θ-grid. A similar
remark is true for the deflection angle. Thus, at the end, one has to add a
term κ̄ |θ|2 /2 to ψ, and a term κ̄θ to α.

Since the FFT is very fast, one can choose N and L large, and then consider
only the central part of the θ-grid needed for the actual lens modeling.

4.5 Results from Strong Lensing in Clusters

The main results of the strong lensing investigations of clusters can be sum-
marized as follows:

• The mass in cluster centers is much more concentrated than predicted by
(simple) models based on X-ray observations. The latter usually predict
a relatively large core of the mass distribution. These large cores would
render clusters sub-critical to lensing, i.e., they would be unable to produce
giant arcs or multiple images. In fact, when arcs were first discovered they
came as a big surprise because of these expectations. By now we know
that the intracluster medium is much more complicated than assumed in
these ‘β-model’ fits for the X-ray emission.

• The mass distribution in the inner region of clusters often shows strong
substructure, or multiple mass peaks. These are also seen in the galaxy
distribution of clusters, but with the arcs can be verified to also correspond
to mass peaks (examples of this include the cluster Abell 2218 where arcs
also curve around a secondary concentration of bright galaxies, clearly in-
dicating the presence of a mass concentration, or the obviously bimodal
cluster Abell 370). These are easily understood in the frame of hierarchi-
cal mergers in a CDM model; the merged clusters retain their multiple
peaks for a dynamical time or even longer, and are therefore not in virial
equilibrium.

• The orientation of the (dark) matter appears to follow closely the orienta-
tion of the light in the cD galaxy; this supports the idea that the growth of
the cD galaxy is related to the cluster as a whole, through repeated accre-
tion of lower-mass member galaxies. In that case, the cD galaxy ‘knows’
the orientation of the cluster.
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• There is in general good agreement between lensing and X-ray mass es-
timates (e.g., Ettori and Lombardi 2003; Donahue et al. 2003) for those
clusters where a ‘cooling flow’ indicates that they are in dynamical equi-
librium, provided the X-ray analysis takes the presence of the cooling flow
into account (Allen 1998).

Probably our ‘favorite’ clusters in which strong lensing effects are investigated
in detail are biased in favor of having strong substructure, as this increases
the lensing cross section for the occurrence of giant arcs (see below). Hence, it
may be that the most detailed results obtained from strong lensing in clusters
apply to a class of clusters which are especially selected because of their ability
to produce spectacular arcs, and thus of their asymmetric mass distribution.
Therefore, one must be careful in generalizing conclusions drawn from the ‘arc
clusters’ to the cluster population as a whole.

Discrepancies

There are a few clusters where the lensing results and those obtained from
analyzing the X-ray observations or cluster dynamics are in stong apparent
conflict. Two of the most prominent ones shall be mentioned here. The cluster
A 1689 (see Fig. 14) has arcs more than ∼40′′ away from the cluster center,
which would imply a huge mass in this cluster center. This high mass is ap-
parently confirmed by the high velocity dispersion of its member galaxies,
although their distribution in redshift makes it likely that the cluster consists
of several subcomponents (see Clowe and Schneider 2001 for a summary of
these results). Several weak lensing results of this cluster have been published,
and they are not all in agreement: whereas Tyson and Fischer (1995) from
weak shear, and Taylor et al. (1998) and Dye et al. (2001) from the magnifica-
tion method (that will be discussed in the next section) find also a very high
mass for this cluster, the weak lensing analysis of Clowe and Schneider (2001;
see also King et al. 2002b), based on deep wide-field imaging data of this clus-
ter, finds a more moderate mass (or equivalent velocity dispersion) for this
cluster. A new XMM-Newton X-ray observation of this cluster (Andersson
and Madejski 2004) lends support for the smaller mass; in fact, their esti-
mate of the virial mass of the cluster agrees with that obtained by Clowe and
Schneider (2001). However, the disrepancy with the strong lensing mass in
the cluster center remains at present; a quantitative analysis of the ACS data
shown in Fig. 14 will hopefully shed light on this issue.

A second clear example for discrepant results in the cluster Cl 0024+17.
It has a prominent arc system, indicating an Einstein radius of ∼30′′, and
thus a high mass. The X-ray properties of this cluster, however, indicate a
much smaller mass (Soucail et al. 2000), roughly by a factor of three. This
discrepancy has been reaffirmed by recent Chandra observations, which con-
firmed this factor-of-three problem (Ota et al. 2004). The resolution of this
discrepancy has probably been found by Czoske et al. (2001, 2002), who per-
formed an extensive spectroscopic survey of cluster galaxies. Their result is
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best interpreted such that Cl 0024+17 presents a merger of two clusters along
our line-of-sight, which implies that the measured velocity dispersion cannot
be easily turned into a mass, as this system is not in virial equailibrium,
and that the X-ray data cannot be converted to a mass either, due to the
likely strong deviation from spherical symmetry and equilibrium. A wide field
sparsely sampled HST observation of this cluster (Kneib et al. 2003) also in-
dicates the presence of a second mass concentration about 3′ away from the
main peak. As will be mentioned below, clusters undergoing mergers have
particularly high cross sections for producing arcs (Torri et al. 2004); hence,
our ‘favorites’ are most likely selected for these non-equilibrium clusters.

Arc Statistics

The abundance of arcs is expected to be a strong function of the cosmolog-
ical parameters: they not only determine the abundance of massive clusters
(through the mass function discussed in Sect. 4.5 of IN), but also the degree of
relaxation of clusters, which in turn affects their strong lensing cross section
(Bartelmann et al. 1998). It is therefore interesting to consider the expected
abundance of arcs as a function of cosmological parameters and compare this
to the observed abundance. In a series of papers, M. Bartelmann and his col-
leagues have studied the expected giant arc abundance, using analytical as
well as numerical techniques (e.g., Bartelmann and Weiss 1994; Bartelmann
et al. 1995, 1998, 2002; Meneghetti et al. 2005; see also Dalal et al. 2003; Oguri
et al. 2003; Wambsganss et al. 2004). Some of the findings of these studies
can be summarized as follows:

• The formation of arcs depends very sensitively on the deviation from spher-
ical symmetry and the detailed substructure of the mass distribution in the
cluster. For this reason, analytical models which cannot describe this sub-
structure with sufficient realism (see Bergmann and Petrosian 1993) do not
provide realiable predictions for the arc statistics (in particular, axisym-
metric mass models are essentially useless for estimating arc statistics),
and one needs to refer to numerical simulations of structure formation.
Since the substructure and triaxiality plays such an important role, these
simulations have to be of high spatial and mass resolution.

• The frequency of arcs depends of course on the abundance of clusters,
which in turn depends on the cosmological model and the fluctuation spec-
trum of the matter, in particular its normalization σ8. Furthermore, clus-
ters at a given redshift have different mean ages in different cosmological
models, as the history of structure growth, and thus the merging history,
depends on Ωm and ΩΛ. Since the age of a cluster is one of the determining
parameters for its level of substructure – younger clusters do not have had
enough time to fully relax – this affects the lensing cross section of the
clusters for arc formation. In fact, during epochs of mergers, the arc cross-
section can have temporary excursions by large factors. Even the same
cluster at the same epoch can have arc forming cross sections that vary by
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more than an order-of-magnitude between different projection directions
of the cluster. For fixed cluster abundance today, low-density models form
clusters earlier than high-density models.

• Since the largest contribution of the total cross section for arc formation
comes from clusters at intermediate redshift (z ∼ 0.4), also the equation-
of-state of the dark energy matters; as shown in Meneghetti et al. (2005),
what matters is the dark energy density at the epoch of cluster formation.
In addition, the earlier clusters form, the higher their characteristic density,
which then makes them more efficient lenses for arc formation.

Taking these effects together, a low-density open model produces a larger
number of arcs than a flat low-density model, which in turn has more arcs
than a high-density model, for a given cluster abundance today. Whereas
the differences between these models obtained by Meneghetti et al. (2005)
are smaller than claimed in Bartelmann et al. (1998), they in principle allow
constraining the cosmological parameters, provided they can be compared
with the observed number of arcs.

Unfortunately, there are only a few systematic studies of clusters with
regards to their strong lensing contents. Luppino et al. (1999) report on 8
giant arcs in their sample of the 38 most massive clusters found in the Einstein
Medium Sensitivity Survey. Zaritsky and Gonzalez (2003) surveyed clusters
in the redshift range 0.5 <∼ z <∼ 0.7 over 69 deg2 and found two giant arcs with
R < 21.5 and a length θ1 > 10′′. Gladders at al. (2003) found 5 arc candidates
in their Red Cluster Sequence survey of 90 deg2, all of them being associated
with high-redshift clusters. In contrast to the claim by Bartelmann et al.
(1998), these observered arc frequencies can be accounted for in a standard
ΛCDM Universe, as shown by Dalal et al. (2003). There are several differences
between these two studies, which are based on different assumptions about the
number density of clusters and the source redshift distribution, which Dalal
et al. (2003) took from the Hubble Deep Field, whereas Bartelmann et al.
(1998) assumed all sources having zs = 1.

The strong dependence on the source redshift distribution has been pointed
out by Wambsganss et al. (2004). In contrast to the other studies, they inves-
tigated the arc statistics using ray tracing through a three-dimensional mass
distribution obtained from cosmological simulations, where- as the other stud-
ies mentioned considered the lensing effect of individual clusters found in these
simulations. Although the former approach is more realistic, the assumption
of Wambsganss et al. (2004) that the magnification of a light ray is a good
measure for the length-to-width ratio of a corresponding arc is certainly not
justified in detail, as shown in Dalal et al. (2003). The agreement of the lensing
probability between Wambsganss et al. (2004) and Bartelmann et al. (1998)
for all zs = 1 is therefore most likely a coincidence.

There are further difficulties in obtaining realistic predictions for the
occurrence of giant arcs that can be compared with observations. First, the
question of whether an image counts as an arc depends on a combination of
source size, lens magnification, and seeing. Seeing makes arcs rounder and
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therefore reduces their length-to-width ratio. An impressive demonstration
of this effect is provided by the magnificent system of arcs in the cluster
A 1689 observed with the ACS onboard the HST, as shown in Fig. 14, com-
pared to earlier ground-based images of this cluster. Second, several of the
above-mentioned papers assume the source size to be θ = 1′′, whereas many
arcs observed with HST are essentially unresolved in width, implying much
smaller source sizes (and accordingly, a much higher sensitivity to seeing ef-
fects). Third, magnification bias is usually not taken into account in these
theoretical studies. In fact, accounting properly for the magnification bias is
quite difficult, as the surveys reporting on arc statistics are not really flux-
limited. One might argue that they are surface brightness-limited, but even
if this were true, the surface brightness of an arc coming from a small source
depends very much on the seeing.

Therefore at present, the abundance of arcs seem to be not in conflict
with a ΛCDM model, but more realistic simulations which take the afore-
mentioned effects into account are certainly needed for a definite conclusion
on this issue. On the observational side, increasing the number of clusters
for which high-quality imaging is performed is of great importance, and the
survey of luminous X-ray clusters imaged either with the ACS@HST or with
ground-based telescopes during periods of excellent seeing would improve the
observational situation dramatically. Blank-field surveys, such as they are con-
ducted for cosmic shear research (see Sect. 7), could be used for blind searches
of arcs (that is, not restricted to regions around known clusters). It may turn
out, however, that the number of ‘false positives’ is unacceptably high, e.g., by
misidentification of edge-on spirals, or blends of sources that yield apparent
images with a high length-to-width ratio.

Constraints on Collisional Dark Matter

Spergel and Steinhardt (2000) suggested the possibility that dark matter par-
ticles are not only weakly interacting, but may have a larger elastic scattering
cross-section. If this cross-section of such self-interacting dark matter is suffi-
ciently large, it may help to explain two of the remaining apparent discrepan-
cies between the predictions of the Cold Dark Matter model and observations:
The slowly rising rotation curves of dwarf galaxies (e.g., de Blok et al. 2001)
and the substructure of galaxy-scale dark matter halos (see Sect. 8 of SL).
Self-interacting may soften the strength of the central density concentration
as compared to the NFW profile, and could destroy most of the subclumps.
However, there are other consequence of such an interaction, in that the shapes
of the inner parts of dark matter halos tend to be more spherical. Meneghetti
et al. (2001) have investigated the influence of self interaction of dark matter
particles on clusters of galaxies, in particular their ability to form giant arcs.
From their numerical simulations of clusters with varying cross-sections of
particles, they showed that even a relatively small cross-section is sufficient to
reduce the ability of clusters to produce giant arcs by an order of magnitude.
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This is mainly due to two effects, the reduced asymmetry of the resulting
mass distribution and the shallower central density profile. Furthermore, self-
interactions destroy the ability of clusters to form radial arcs. Therefore, the
‘desired’ effect of self-interaction – to smooth the mass distribution of galax-
ies – has the same consequence for clusters, and can therefore probably be
ruled out as a possible mechanism to cure the aforementioned apparent prob-
lems of the CDM model. From combining X-ray and lensing data of the cluster
0657−56, Markevitch et al. (2004) obtained upper limits on the self-interaction
cross section of dark matter.

Do Clusters Follow the Universal NFW Profile ?

The CDM paradigm of structure formation predict a universal density pro-
file of dark matter halos. One might therefore investigate whether the strong
lensing properties of clusters are compatible with this mass profile. Of partic-
ular value for such an investigation are clusters which contain several strong
lensing features, and in particular a radial arc, as it probes the inner critical
curve of the cluster. Sand et al. (2004; see also Sand et al. 2002) claim from a
sample of three clusters with radial arcs, that the slope of the inner mass pro-
file must be considerably flatter than predicted by the NFW model. However,
this conclusion is derived under the assumption of an axially-symmetric lens
model. As is true for strong lensing by galaxies (see SL), axisymmetric mass
model are not generic, and therefore conclusions derived from them are prone
to the systematic of the symmetry assumption. That was demonstrated by
Bartelmann and Meneghetti (2004) who showed that, as expected, the con-
clusion about the inner slope changes radically once a finite ellipticity of the
mass distribution is allowed for, removing the apparent discrepancy with the
predictions from CDM models.

Cosmological Parameters from Strong Lensing Systems

The lens strength, at given physical surface mass density Σ, depends on the
redshifts of lens and source, as well as on the geometry of the Universe which
enters the distance-redshift relation. Therefore, it has been suggested that a
cluster which contains a large number of strong lensing features can be used
to constrain cosmological parameters, provided the sources of the arcs and
multiple image systems cover a large range of redshifts (Link and Pierce 1998).
Simulations of this effect, using realistic cluster models, confirmed that such
purely geometrical constraints can in principle be derived (Golse et al. 2002).
One of the best studied strong-lensing cluster up to now is A 2218, for which
four multiple-image systems with measured (spectroscopic) redshift have been
identified which allows very tight constraints on the mass distribution in this
cluster. Soucail et al. (2004) applied the aforementioned method to this cluster
and obtained first constraints on the density parameter Ωm, assuming a flat
cosmological model. This work can be viewed as a proof of concept; the new
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ACS camera onboard HST will allow the identification of even richer strong
lensing systems in clusters, of which the one in A 1689 (see Fig. 14) is a
particularly impressive example.

5 Mass Reconstructions from Weak Lensing

Whereas strong lensing probes the mass distribution in the inner part of
clusters, weak lensing can be used to study the mass distribution at much
larger angular separations from the cluster center. In fact, as we shall see,
weak lensing can provide a parameter-free reconstruction of the projected
two-dimensional mass distribution in clusters – and hence offers the prospect
of mapping the dark matter distribution of clusters directly. This discovery
(Kaiser and Squires 1993) can be viewed to mark the beginning of quanti-
tative weak lensing research. But even before this discovery, weak lensing by
clusters has been observed in a number of cases. Fort et al. (1988) found
that in addition to the giant arc in Abell 370, there are a number of images
stretched in the direction tangent to the center of the cluster, but with much
less spectacular axis ratios than the giant arc in this cluster; they termed
these new features ‘arclets’. Tyson et al. (1990) found a statistically signif-
icant tangential alignment of faint galaxy images relative to the center of
the clusters Abell 1689 and Cl 1409+52, and obtained a mass profile from
these lens distortion maps. Comparison with numerical simulations yielded
an estimate of the cluster velocity dispersion, assuming an isothermal sphere
profile.

In this section we consider the parameter-free mass reconstruction tech-
nique, first the original Kaiser and Squires method, and then a number of
improvements of this method. We then turn to the magnification effects; the
change of the number density of background sources, as predicted from (26),
can be turned into a local estimate of the surface mass density, and this
method has been employed in a number of clusters. Next we shall consider
inverse methods for the reconstruction of the mass distribution, which on
the one hand are more difficult to apply than the ‘direct’ methods, but on
the other hand are expected to yield more satisfactory results. Whereas the
two-dimensional maps yield a good visual impression on the mass distrib-
ution in clusters, it is hard to extract quantitative information from them.
In order to get quantities that describe the mass and that can be compared
between clusters, often parameterized mass models are more useful, which
are considered next. Finally, we consider aperture mass measures, which have
been introduced originally to obtain a mass quantity that is unaffected by
the mass-sheet degeneracy, but as will be shown, has a number of other
useful features. In particular, employing the aperture mass, one can device
a method to systematically search for mass concentrations on cluster-mass
scales, using their shear properties only, i.e. without referring to their luminous
properties.
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5.1 The Kaiser–Squires Inversion

Weak lensing yields an estimate of the local (reduced) shear, as discussed in
Sect. 2.2. Here we shall discuss how to derive the surface mass density from a
measurement of the (reduced) shear. Recalling (IN-26), the relation between
shear and surface mass density is

γ(θ) =
1
π

∫
IR2

d2θ′ D(θ − θ′)κ(θ′) , with

D(θ) ≡ −θ2
1 − θ2

2 + 2iθ1θ2

|θ|4 =
−1

(θ1 − iθ2)2
. (41)

Hence, the complex shear γ is a convolution of κ with the kernel D, or, in
other words, D describes the shear generated by a point mass. This relation
can be inverted: in Fourier space this convolution becomes a multiplication,

γ̂(	) = π−1D̂(	) κ̂(	) for 	 
= 0 ,

which can be inverted to yield

κ̂(	) = π−1γ̂(	) D̂∗(	) for 	 
= 0 , (42)

where the Fourier transform of D is5

D̂(	) = π

(
"21 − "22 + 2i"1"2

)
|	|2 ; (43)

note that this implies that D̂(	)D̂∗(	) = π2, which has been used in obtaining
(42). It is obvious that D̂ is undefined for 	 = 0, which has been indicated in
the foregoing equations. Fourier back-transformation of (42) then yields

κ(θ) − κ0 =
1
π

∫
IR2

d2θ′ D∗(θ − θ′) γ(θ′)

=
1
π

∫
IR2

d2θ′ Re
[
D∗(θ − θ′) γ(θ′)

]
. (44)

Note that the constant κ0 occurs since the 	 = 0-mode is undetermined.
Physically, this is related to the fact that a uniform surface mass density
yields no shear. Furthermore, it is obvious (physically, though not so easily
seen mathematically) that κ must be real; for this reason, the imaginary part

5 The form of D̂ can be obtained most easily by using the relations between the
surface mass density and the shear components in terms of the deflection potential
ψ, given in (IN-18). Fourier transforming those immediately yields κ̂ = −|	|2ψ̂/2,
γ̂1 = −(�21 − �22)ψ̂/2, γ̂2 = −�1�2ψ̂. Eliminating ψ̂ from the foregoing relations,
the expression for D̂ is obtained.
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of the integral should be zero, and taking the real-part only [as in the second
line of (44)] makes no difference. However, in practice this is different, since
noisy data, when inserted into the inversion formula, will produce a non-zero
imaginary part. What (44) shows is that if γ can be measured, κ can be
determined.

Before looking at this in more detail, we briefly mention some difficulties
with the inversion formula as given above:

• Since γ can at best be estimated at discrete points (galaxy images),
smoothing is required. One might be tempted to replace the integral in
(44) by a discrete sum over galaxy positions, but as shown by Kaiser and
Squires (1993), the resulting mass density estimator has infinite noise (due
to the θ−2-behavior of the kernel D).

• It is not the shear γ, but the reduced shear g that can be determined from
the galaxy ellipticities; hence, one needs to obtain a mass density estimator
in terms of g. In the case of ‘weak’ weak lensing, i.e., where κ � 1 and
|γ| � 1, then γ ≈ g.

• The integral in (44) extends over IR2, whereas data are available only on a
finite field; therefore, it needs to be seen whether modifications allow the
construction of an estimator for the surface mass density from finite-field
shear data.

• To get absolute values for the surface mass density, the additive constant
κ0 is of course a nuisance. As will be explained soon, this indeed is the
largest problem in mass reconstructions, and is the mass-sheet degeneracy
discussed in Sect. 2.5 of IN.

5.2 Improvements and Generalizations

Smoothing

Smoothing of data is needed to get a shear field from discrete data points.
Consider first the case that we transform (44) into a sum over galaxy images
(ignoring the constant κ0 for a moment, and also assuming the weak lensing
case, κ � 1, so that the expectation value of ε is the shear γ),

κdisc(θ) =
1
nπ

∑
i

Re [D(θ − θi) εi] , (45)

where the sum extends over all galaxy images at positions θi and complex el-
lipticity εi, and n is the number density of background galaxies. As shown by
Kaiser and Squires (1993), the variance of this estimator for κ diverges. How-
ever, one can smooth this estimator, using a weight function W (Δθ) (assumed
to be normalized to unity), to obtain

κsmooth(θ) =
∫

d2θ′ W (|θ − θ′|)κdisc(θ′) , (46)
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which now has a finite variance. One might expect that, since (i) smoothing
can be represented by a convolution, (ii) the relation between κ and γ is a
convolution, and (iii) convolution operations are transitive, it does not matter
whether the shear field is smoothed first and inserted into (44), or one uses
(46) directly. This statement is true if the smoothing of the shear is performed
as

γsmooth;1(θ) =
1
n

∑
i

W (|θ − θi|) εi . (47)

If this expression is inserted into (44), one indeed recovers the estimate (46).
However, this is not a particularly good method for smoothing, as can be seen
as follows: the background galaxy positions will at least have Poisson noise; in
fact, since the angular correlation function even of faint galaxies is non-zero,
local number density fluctuations will be larger than predicted from a Poisson
distribution. However, in the estimator (45) and in the smoothing procedure
(47), these local variations of the number density are not taken into account.
A much better way (Seitz and Schneider 1995a,b) to smooth the shear is given
by

γsmooth;2(θ) =

[∑
i

W (|θ − θi|)
]−1 ∑

i

W (|θ − θi|) εi , (48)

which takes these local number density fluctuations into account. Lombardi
and Schneider (2001) have shown that the expectation value of the smoothed
shear estimate (48) is not exactly the shear smoothed by the kernel W , but
the deviation (i.e., the bias) is very small provided the effective number of
galaxy images inside the smoothing function W is substantially larger than
unity, which will always be the case for realistic applications. Lombardi and
Schneider (2002) then have demonstrated that the variance of (48) is indeed
substantially reduced compared to that of (47), in agreement with the finding
of Seitz and Schneider (1995a,b).

When smoothed with a Gaussian kernel of angular scale θs, the covariance
of the resulting mass map is finite, and given by (Lombardi and Bertin 1998;
van Waerbeke 2000)

Cov
(
κ(θ), κ(θ′)

)
=

σ2
ε

4πθ2
sn

exp
(
−|θ − θ′|2

2θ2
s

)
. (49)

Thus, the larger the smoothing scale, the less noisy is the corresponding mass
map; on the other hand, the more are features washed out. Choosing the
appropriate smoothing scale is not easy; we shall come back to this issue in
Sect. 5.3 below.

The Non-linear Case, g �= γ

Noting that the reduced shear g = γ/(1 − κ) can be estimated from the
ellipticity of images (assuming that we avoid the potentially critical inner
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region of the cluster, where |g| > 1; indeed, this case can also be taken into
account, at the price of somewhat increased complexity), one can write:

κ(θ) − κ0 =
1
π

∫
IR2

d2θ′
[
1 − κ(θ′)

]
Re
[
D∗(θ − θ′) g(θ′)

]
; (50)

this integral equation for κ can be solved by iteration, and it converges quickly
(Seitz and Schneider 1995a,b). Note that in this case, the undetermined con-
stant κ0 no longer corresponds to adding a uniform mass sheet. What the
arbitrary value of κ0 corresponds to can be seen as follows: The transformation

κ(θ) → κ′(θ) = λκ(θ) + (1 − λ) or

[1 − κ′(θ)] = λ[1 − κ(θ)]
(51)

changes the shear γ → γ′ = λγ, and thus leaves g invariant; this is the
mass-sheet degeneracy ! It can be broken if magnification information can be
obtained, since A → A′ = λA, so that

μ → μ′ = λ−2μ .

Magnification information can be obtained from the number counts of images
(Broadhurst et al. 1995), owing to the magnification bias, provided the un-
lensed number density is sufficiently well known. In principle, the mass sheet
degeneracy can also be broken if redshift information of the source galaxies
is available and if the sources are widely distributed in redshift; this can be
seen as follows: let

Z(zs) =
Dds/Ds

limzs→∞ Dds/Ds
H(zs − zd) (52)

(H being the Heaviside step function) be the ratio of the lens strength of a
source at zs to that of a fiducial source at infinite redshift (see Fig. 16); then,
if κ∞ and γ∞ denote the surface mass density and shear for such a fiducial
source, the reduced shear for a source at zs is

g =
Zγ∞

1 − Zκ∞
, (53)

and there is no global transformation of κ∞ that leaves g invariant for sources
at all redshifts, showing the validity of the above statement. However, even
in this case the mass-sheet degeneracy is only mildly broken (see Bradac
et al. 2004). In particular, only those regions in the cluster where the non-
linearity (i.e., the difference between γ and g) is noticeable can contribute
to the degeneracy breaking, that is, the region near the critical curves where
|g| ∼ 1.

In the non-linear case (γ 
= g) the reduced shear needs to be obtained from
smoothing the galaxy ellipticities in the first place. Since the relation between
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Fig. 16. The redshift weight function Z(zs), defined in (52), for three different
values of the lens redshift zd = 0.2, 0.5, and 0.8, and three different geometries of
the Universe, as indicated in the labels (here, Ωm is denoted as Ω0). Asymptotically
for zs → ∞, all curves tend to Z = 1 (from Bartelmann and Schneider 2001)

g and κ is non-linear, the ‘transitivity of convolutions’ no longer applies; one
thus cannot start from a discretization of an integral over image ellipticities
and smooth the resulting mass map later. We also note that the accuracy with
which the (reduced) shear is estimated can be improved provided redshift esti-
mates of individual source galaxies are available (see Fig. 17). In particular for
high-redshift clusters, redshift information on individual source galaxies be-
comes highly valuable. This can be understood by considering a high-redshift
lens, where an appreciable fraction of faint ‘source’ galaxies are located in
front of the lens, and thus do not contribute to the lensing signal. However,
they do contribute to the noise of the measurement. Redshift information al-
lows the elimination of these foreground galaxies in the shear estimate and
thus the reduction of noise.

Finite-Field Mass Reconstruction

In order to obtain a mass map from a finite data field, one starts from the
relation (Kaiser 1995)

∇κ =
(
γ1,1 + γ2,2

γ2,1 − γ1,2

)
≡ uγ(θ) , (54)

which is a local relation between shear and surface mass density; it can easily
be derived from the definitions of κ and γ in terms of ψ,ij . A similar relation
can be obtained in terms of reduced shear,

∇K(θ) =
−1

1 − g2
1 − g2

2

(
1 − g1 −g2

−g2 1 + g1

) (
g1,1 + g2,2

g2,1 − g1,2

)
≡ ug(θ) , (55)
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Fig. 17. The fractional gain in accuracy of the shear estimate when using redshift
information of individual source galaxies, relative to the case where only the redshift
distribution of the population is known, plotted as a function of the lens redshift.
It is assumed that the sources have a broad redshift distribution, with a mean of
〈zs〉 = 0.9 (solid and dotted curves) or 〈zs〉 = 1.5 (short-dashed and long-dashed
curves). The gain of accuracy also depends on the lens strength; the dotted and
long-dashed curves assume local lens parameters of γ∞ = 0.3 = κ∞, whereas the
solid and short-dashed curves assume only very weak lensing, here approximated by
γ∞ = 0 = κ∞. One sees that the gain is dramatic once the lens redshift becomes
comparable to the mean redshift of the source galaxies and is therefore of great
importance for high-redshift clusters (from Bartelmann and Schneider 2001)

where

K(θ) ≡ ln[1 − κ(θ)] (56)

is a non-linear function of κ. Based on these local relations, finite-field inver-
sion relations can be derived, and several of them appeared in the literature
right after the foregoing equations have been published. For example, it is pos-
sible to obtain finite-field mass maps from line integrations (Schneider 1995;
for other methods, see Squires and Kaiser 1996). Of all these finite-field meth-
ods, one can be identified as optimal, by the following reasoning: in the case of
noise-free data, the imaginary part of (44) should vanish. Since one is always
dealing with noisy data (at least coming from the finite intrinsic ellipticity
distribution of the sources), in real life the imaginary part of (44) will not
be zero. But being solely a noise component, one can choose that finite-field
inversion which yields a zero imaginary component when averaged over the
data field (Seitz and Schneider 1996). One way of deriving this mass map is
obtained by a further differentiation of (54); this then yields a von Neumann
boundary-value problem on the data field U (Seitz and Schneider 2001),

∇2κ = ∇ · uγ with n · ∇κ = n · uγ on ∂U , (57)
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where n is the outward-directed normal on the boundary ∂U of U . The anal-
ogous equation holds for K in terms of g and ug,

∇2K = ∇ · ug with n · ∇K = n · ug on ∂U . (58)

Note that (57) determines the solution κ only up to an additive constant,
and (58) determines K only up to an additive constant, i.e., (1 − κ) up to a
multiplicative factor. Hence, in both cases we recover the mass-sheet degen-
eracies for the linear and non-linear case, respectively. The numerical solution
of these equations is fast, using overrelaxation (see Press et al. 1992). In fact,
the foregoing formulation of the problem is equivalent (Lombardi and Bertin
1998) to the minimization of the action

A =
∫
U

d2θ |∇κ(θ) − uγ(θ)|2 , (59)

from which the von Neumann problem can be derived as the Euler equation
of the variational principle δA = 0. Furthermore, Lombardi and Bertin (1998)
have shown that the solution of (57) is ‘optimal’, in that for this estimator
the variance of κ is minimized.

Since (57) provides a linear relation between the shear and the surface
mass density, one expects that it can also be written in the form

κ(θ) =
∫
U

d2θ′ H(θ;θ′) · uγ(θ′) , (60)

where the vector field H(θ;θ′) is the Green’s function of the von Neumann
problem (57). Accordingly,

K(θ) =
∫
U

d2θ′ H(θ;θ′) · ug(θ′) . (61)

Seitz and Schneider (1996) gave explicit expression for H in the case of a
circular and rectangular data field.

One might ask how important the changes in the resulting mass maps are
compared to the Kaiser–Squires formula applied to a finite data field. For
that we note that applying (44) or (50) to a finite data field is equivalent
to setting the shear outside the data field to zero. Hence, the resulting mass
distribution will be such as to yield a zero shear outside the data field, despite
the fact that we have no indication from data that the shear indeed is zero
there. This induces features in the mass map, in form of a pillow-like overall
mass distribution. The amplitude of this feature depends on the strength of
the lens, its location inside the data field, and in particular the size of the
data field. Whereas for large data fields this amplitude is small compared to
the noise amplitude of the mass map, it is nevertheless a systematic that can
easily be avoided, and should be avoided, by using the finite-field inversions,
which cause hardly any additional technical problems.
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Various tests have been conducted in the literature as to the accuracy of
the various inversions. For those, one generates artificial shear data from a
known mass distribution, and compares the mass maps reconstructed with
the various methods with the original (e.g., Seitz and Schneider 1996, 2001;
Squires and Kaiser 1996). One of the surprising results of such comparisons
is that in some cases, the Kaiser and Squires original reconstruction faired
better than the explicit finite-field inversions, although it is known to yield
systematics. The explanation for this apparent paradox is, however, easy: the
mass models used in these test consisted of one or more localized mass peaks
well inside the data field, so the shear outside the data field is very small.
Noting that the KS formula applied to a finite data field is equivalent to
setting γ = 0 outside the data field, this methods provides ‘information’ to
the reconstruction process which is not really there, but for the mass models
used in the numerical tests is in fact close to the truth. Of course, by adding
this nearly correct ‘information’ to the mass reconstruction, the noise can be
lowered relative to the finite-field reconstructions where no assumptions about
the shear field outside the data field is made.

Constraints on the Geometry of the Universe from Weak Lensing
Mass Reconstructions

The strength of the lensing signal depends, for a given lens redshift, on the
redshift of the sources, through the function Z(zs) (52). Suppose that the
surface mass density of a cluster was well known, and that the redshifts of
background sources can be determined. Then, by comparing the measured
shear signal from sources at a given redshift zs with the one expected from the
mass distribution, the value of Z(zs) can be determined. Since Z(z) depends
on the geometry of the Universe, parameterized through Ωm and ΩΛ, these
cosmological parameters can in principle be determined. A similar strategy
for strong lensing clusters was described at the end of Sect. 4.

Of course, the surface mass density of the cluster cannot be assumed to
be known, but needs to be reconstructed from the weak lensing data itself.
Consider for a moment only the amplitude of the surface mass density, assum-
ing that its shape is obtained from the reconstruction. Changing the function
Z(z) by a multiplicative factor would be equivalent to changing the surface
mass density Σ of the cluster by the inverse of this factor, and hence such a
constant factor in Z is unobservable due to the mass-sheet degeneracy. Hence,
not the amplitude of the function Z(z) shown in Fig. 16 is important here,
but its shape.

Lombardi and Bertin (1999) have suggested a method to perform clus-
ter mass reconstructions and at the same time determine the cosmological
parameters by minimizing the difference between the shear predicted from
the reconstructed mass profile and the observed image ellipticities, where the
former depends on the functional form of Z(z). A nice and simple way to
illustrate such a method was given in Gautret et al. (2000), called the ‘triplet
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method’. Consider three background galaxies which have a small separation
on the sky, and assume to know the three source redshifts. Because of their
closeness, one might assume that they all experience the same tidal field and
surface mass density from the cluster. In that case, the shear of the three
galaxies is described by five parameters, the two components of γ∞, κ, and
Ωm and ΩΛ. From the six observables (two components of three galaxy ellip-
ticities), one can minimize the difference between the predicted shear and the
observed ellipticities with respect to these five parameters, and in particular
obtain an estimate for the cosmological parameters. Repeating this process
for a large number of triplets of background galaxies, the accuracy on the Ω’s
can be improved, and results from a large number of clusters can be combined.

This procedure is probably too simple to be applied in practice; in partic-
ular, it treats κ∞ and γ∞ for each triplet as independent numbers, whereas
the mass profile of the cluster is described by a single scalar function. How-
ever, it nicely illustrates the principle. Lombardi and Bertin (1999) have used
a single density profile κ∞(θ) of the cluster, but assumed that the mass-sheet
degeneracy is broken by some other means. Jain and Taylor (2003) suggested a
similar technique for employing the lensing strength as a function of redshifts
and cosmological parameters to infer constraints on the latter. Clearly, more
work is needed in order to turn these useful ideas into a practically applicable
method.

5.3 Inverse Methods

In addition to these ‘direct’ methods for determining κ, inverse methods have
been developed, such as a maximum-likelihood fit (Bartelmann et al. 1996;
Squires and Kaiser 1996) to the data. There are a number of reasons why
these are in principle preferable to the direct method discussed above. First,
in the direct methods, the smoothing scale is set arbitrarily, and in general
kept constant. It would be useful to obtain an objective way how this scale
should be chosen, and perhaps, that the smoothing scale be a function of
position: e.g., in regions with larger number densities of sources, the smoothing
scale could be reduced. Second, the direct methods do not allow additional
input coming from complementary observations; for example, if both shear and
magnification information are available, the latter could not be incorporated
into the mass reconstruction. The same is true for clusters where strong lensing
constraints are known.

The Shear Likelihood Function

In the inverse methods, one tries to fit a (very general) lens model to the
observational data, such that the data agree within the estimated errors with
the model. In the maximum-likelihood methods, one parameterizes the lens
by the deflection potential ψ on a grid and then minimizes the regularized
log-likelihood
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− lnL =
Ng∑
i=1

|εi − g (θi, {ψn}) |2
σ2

i (θi, {ψn})
+ 2 lnσi(θi, {ψn}) + λeS({ψn}) , (62)

where σi ≈ σε

(
1 − |g(θi, {ψn})|2

)
[see (15) for the case |g| < 1 that was

assumed here], with respect to these gridded ψ-values; this specific form of the
likelihood assumes that the intrinsic ellipticity distribution follows a Gaussian
with width σε.6 In order to avoid overfitting, one needs a regularization term
S; entropy regularization (Seitz et al. 1998) seems very well suited (see Bridle
et al. 1998; Marshall et al. 2002 for alternative regularizations). The entropy
term S gets large if the mass distribution has a lot of structure; hence, in
minimizing (62) one tries to match the data as closely as permitted by the
entropic term (Narayan and Nityananda 1986). As a result, one obtains a
model as smooth as compatible with the data, but where structure shows up
where the data require it. The parameter λe is a Langrangean multiplier which
sets the relative weight of the likelihood function and the regularization; it
should be chosen such that the χ2 per galaxy image is about unity, i.e.,

Ng∑
i=1

|εi − g (θi, {ψn}) |2
σ2

i (θi, {ψn})
≈ Ng ,

since then the deviation of the observed galaxy ellipticities from their expecta-
tion value g is as large as expected from the ellipticity dispersion. This choice
of the regularization parameter λe then fixes the effective smoothing used for
the reconstruction.

Strong lensing constraints can be incorporated into the inverse method
by adding a term to the log-likelihood function which forces the minimum
to satisfy these strong constraints nearly precisely. E.g., if a pair of multiple
images at θ1 and θ2 is identified, one could add the term

λs |β(θ1) − β(θ2)|2 = λs |[θ1 − α(θ1)] − [θ2 − α(θ2)]|2

to the log-likelihood; by turning up the parameter λs, its minimum is guaran-
teed to correspond to a solution where the multiple image constraint is satis-
fied. Note that the form of this ‘source-plane minimization’ is simplified – see
Sect. 4.6 of SL – but in the current context this approach suffices.

6 This specific form (62) of the likelihood function assumes that the sheared ellip-
ticity probability distribution follows a two-dimensional Gaussian with mean g
and dispersion σ; note that this assumption is not valid in general, not even when
the intrinsic ellipticity distribution is Gaussian (see Geiger and Schneider 1999
for an illustration of this fact). The exact form of the lensed ellipticity distrib-
ution follows from the intrinsic distribution ps(ε

(s)) and the transformation law
(12) between intrinsic and lensed ellipticity, p(ε) = ps

(
ε(s)(ε; g)

)
det
(
∂ε(s)/∂ε

)
.

However, in many cases the Gaussian approximation underlying (62) is sufficient
and convenient for analytical considerations.
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Magnification Likelihood

Similarly, when accurate number counts of faint background galaxies are
available, the magnification information can be incorporated into the log-
likelihood function. If the number counts behave (locally) as a power law,
n0(> S) ∝ S−α, the expected number of galaxies on the data field U then is

〈N〉 = n0

∫
U

d2θ |μ(θ)|α−1 ; (63)

see (26). The likelihood of observing N galaxies at the positions θi can then be
factorized into a term that yields the probability of observing N galaxies when
the expected number is 〈N〉, and one that the N galaxies are at their observed
locations. Since the probability for a galaxy to be at θi is proportional to the
expected number density there, n = n0 μ

α−1, the likelihood function becomes
(Seitz et al. 1998)

Lμ = PN (〈N〉)
N∏

i=1

|μ(θi)|α−1 , (64)

with the first factor yielding the Poisson probability. Note that this expression
assumes that the background galaxies are unclustered on the sky; in reality,
where (even faint) galaxies cluster, this factorization does not strictly apply.

It should be pointed out that the deflection potential ψ, and not the sur-
face mass density κ, should be used as variable on the grid, for two reasons:
first, shear and κ depend locally on ψ, and are thus readily calculated by finite
differencing from ψ, whereas the relation between γ and κ is non-local and
requires summation over all gridpoints, which is of course more time consum-
ing. Second, and more important, the surface mass density on a finite field
does not determine γ on this field, since mass outside the field contributes to
γ as well. In fact, one can show (Schneider and Bartelmann 1997) that the
shear inside a circle is fully determined by the mass distribution inside the
circle and the multipole moments of the mass distribution outside the circle;
in principle, the latter can thus be determined from the shear measurement.

Despite these reasons, some authors prefer to construct inverse methods
in which the surface mass density on a grid serves as variables (e.g., Bridle
et al. 1998; Marshall et al. 2002). The fact that the mass density on a finite
field does not describe the shear in this field is accounted for in these methods
by choosing a reconstruction grid that is larger than the data field and by
allowing the surface mass density in this outer region to vary as well. Whereas
the larger numerical grid requires a larger numerical effort, in addition to the
non-local relation between κ and γ, this is of lesser importance, provided the
numerical resources are available. Worse, however, is the view that the mass
distribution outside the data field obtained by this method has any physical
significance ! It has not. This mass distribution is solely one of infinitely many
that can approximately generate the shear in the data field from mass outside
the data field. The fact that numerical tests show that one can indeed recover
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some of the mass distribution outside the data field is again a fluke, since these
models are usually chosen such that all mass distribution outside the field in
contained in a boundary region around the data field which is part of the
numerical grid – and hence, the necessary ‘external’ shear must be generated
by a mass distribution in this boundary zone which by construction is where
it is. In real life, however, there is no constraint on where the ‘external’ shear
contribution comes from.

5.4 Parameterized Mass Models

Whereas the parameter-free mass maps obtained through one of the methods
discussed above provide a direct view of the mass distribution of a cluster,
their quantitative interpretation is not straightforward. Peaks in the surface
mass density can indicate the presence of a mass concentration, or else be a
peak caused by the ellipticity noise of the galaxies. Since the estimated values
for κ at different locations θ are correlated [see (49)], it is hard to imagine
‘error bars’ attached to each point. Therefore, it is often preferable to use pa-
rameterized mass models to fit the observed data; for example, fitting shear
(and/or magnification) data to an NFW mass profile (see IN, Sect. 6.2) yields
the virial mass M200 of the cluster and its concentration index c. There are
basically two methods which have been used to obtain such parameterized
models. The first one, assuming a spherical mass model, orders the tangential
component of the observed image ellipticities into radial bins and fits a pa-
rameterized shear profile through these bins, by minimizing a corresponding
χ2-function. One of the disadvantages of this method is that the result of the
fitting process can depend on the selected binning, but this can be largely
avoided by choosing the bins fine enough. This then essentially corresponds
to minimizing the first term in (62).

Alternatively, a likelihood method can be used, in which the log-likelihood
function (62) – without the regularization term – is minimized, with the val-
ues of the potential on the grid {ψn} replaced by a set of parameters which
describe the mass profile. Schneider et al. (2000) have used this likelihood
method to investigate with which accuracy the model parameters of a mass
profile can be obtained, using both the shear information as well as mag-
nification information from number counts depletion. One of the surprising
findings of this study was that the slope of the fitted mass profile is highly
degenerate if only shear information is used; indeed, the mass-sheet degener-
acy strikes again and causes even fairly different mass profiles to have very
similar reduced shear profiles, as is illustrated for a simple example in Fig. 18.
In Fig. 19, the resulting degeneracy of the profile slope is seen. This degener-
acy can be broken if number count information is used in addition. As seen in
the middle panel of Fig. 18, the magnification profiles of the four models dis-
played are quite different and thus the number counts sensitive to the profile
slope. Indeed, the confidence regions in the parameter fits, shown in Fig. 19,
obtained from the magnification information are highly inclined relative to
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Fig. 18. The Einstein radius of a spherical mass distribution was assumed to be
θE = 0.′5, and the density profile outside the Einstein radius was assumed to follow
a power law, κ(θ) = a(θ/θE)−q; an SIS would have a = 1/2 and q = 1. The figure
displays for four combinations of model parameters the surface mass density κ(θ),
the function μ−1/2, which would be the depletion factor for source counts of slope
β = 1/2, and the reduced shear g(θ). As can be seen, whereas the density profiles
of the four models are quite different, the reduced shear profiles are pairwise almost
fully degenerate. This is due to the mass-sheet degeneracy; it implies that it will
be difficult to determine the slope q of the profiles from shear measurements alone,
unless much larger fields around the cluster are used (from Schneider et al. 2000)

those from the shear measurements, implying that the combination of both
methods yields much better constraints on the model parameters. Of course,
as mentioned before, the mass-sheet degeneracy can also be broken if redshift
information of individual background galaxies is available.

However, in order for the magnification information to yield significant
constraints on the mass parameters, one needs to know the unlensed number
density n0 of sources quite accurately. In fact, even an uncertainty of less than
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Fig. 19. For the power-law models of Fig. 18, confidence regions in the slope q
and amplitude a are drawn, as derived from the shear (thin solid contours), the
magnification (dotted) and their combination (thick solid). A number density of
30/arcmin2 for shear measurements and 120/arcmin2 for number counts was as-
sumed. Thick dashed curves show models with constant total number of galaxies in
the field, demonstrating that most of the constraint from magnification is due to
the total counts, with little information about the detailed profile. It was assumed
here that the unlensed number density of background galaxies is perfectly known;
the fact that most of the magnification information comes from the total number of
galaxies in the field implies that any uncertainty in the unlensed number density will
quickly remove most of the magnification information (from Schneider et al. 2000)

∼10% in the value of n0 renders the magnification information in relation to
the shear information essentially useless (in the frame of parameterized mod-
els). Note that an accurate determination of n0 is difficult to achieve: since n0

corresponds to the unlensed number density of faint galaxies at the same flux
limit as used for the actual data field, one requires an accurate photometric
calibration. A flux calibration uncertainty of 0.1mag corresponds to an un-
certainty in n0 of about ∼5% for a slope of α = 0.5, and such uncertainties
are likely at the very faint flux limits needed to achieve a high number density
of sources. In addition, the presence of bright cluster galaxies renders the de-
tection and accurate brightness measurement of background galaxies difficult
and requires masking of regions around them. Nevertheless, in cases where
only magnification information is available, it can provide information on the
mass profile by itself. Such a situation can occur for observing conditions with
seeing above ∼1′′, when the shear method is challenged by the smallness of
faint galaxies.

The result shown in Fig. 19 implies that the shape of the mass profile can-
not be very well determined from the shear method, owing to the mass sheet
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degeneracy. This result extends to more general mass profiles than power-law
models; e.g., King and Schneider 2001 considered NFW models with their
two parameters c and r200. A fairly strong degeneracy between these two
parameters was found. Furthermore, the mass-sheet degeneracy renders it
surprisingly difficult to distinguish an isothermal mass model from an NFW
profile. The ability to distinguish these two families of models increases with
a larger field-of-view of the observations. This expectation was indeed ver-
ified in King et al. 2002b where the wide-field imaging data of the cluster
A 1689 were analyzed with the likelihood method. Although the field size is
larger than 30′, so that the shear profile up to ∼15′ from the cluster cen-
ter can be measured, an NFW profile is preferred with less than 90% confi-
dence over a power-law mass model. The determination of the mass profiles
is likely to improve when strong lensing constraints are taken into account
as well.

The likelihood method for obtaining the parameters of a mass model is
robust in the sense that the result is only slightly affected by substructure,
as has been shown by King et al. (2001) using numerically generated cluster
models. However, if a ‘wrong’ parameterization of the mass distribution is
chosen, the interpretation of the resulting best-fit model must proceed care-
fully, and the resulting physical parameters, such as the total mass, may be
biased. The principal problems with parameterized models are the same as
for lens galaxies in strong lensing: unless the parameters have a well-defined
physical meaning, one does not learn much, even if they are determined with
good accuracy (see Sect. 4.7 of SL).

5.5 Problems of Weak Lensing Cluster Mass Reconstruction
and Mass Determination

In this section, some of the major problems of determining the mass profile
of clusters from weak lensing techniques are summarized. The finite ellipticity
dispersion of galaxies generates a noise which provides a fundamental limit
to the accuracy of all shear measurements. We will mention a number of
additional issues here.

Number 1: The Mass-Sheet Degeneracy

As mentioned several times, the major problem is the mass-sheet degeneracy,
which implies that there is always one arbitrary constant that is undetermined
from the shear data. Number count depletion can in principle lift this degen-
eracy, but this magnification effect has been observed in only a few clusters
yet, and as mentioned above, this method has its own problems. Employing
redshift information of individual source galaxies can also break this degen-
eracy (Bradac et al. 2004). Note that the mass-sheet degeneracy causes quite
different mass profiles to have very similar reduced shear profiles.
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Source Redshift Distribution

Since the critical surface mass density Σcr depends on the source redshift, a
quantitative interpretation of the weak lensing mass reconstruction requires
the knowledge of the redshift distribution of the galaxy sample used for the
shear measurements. Those are typically so faint (and numerous) that it is
infeasible to obtain individual spectroscopic redshifts for them. There are sev-
eral ways to deal with this issue: probably the best is to obtain multi-color
photometry of the fields and employ photometric redshift techniques (e.g.
Connolly et al. 1995; Beńıtez 2000; Bolzonella et al. 2000). In order for them
to be accurate, the number of bands needs to be fairly large; in addition,
since much of the background galaxy population is situated at redshifts above
unity, one requires near-IR images, as optical photometry alone cannot be
used for photometric redshifts above z >∼ 1.3 (where the 4000 Å-break is red-
shifted out of the optical window). The problem with near-IR photometry is,
however, that currently near-IR cameras have a substantially smaller field-of-
view than optical cameras; in addition, due to the much higher sky brightness
for ground-based near-IR observations, they extend to brighter flux limits (or
smaller galaxy number densities) than optical images, for the same observing
time. Nevertheless, upcoming wide-field near-IR cameras, such as theVISTA
project on Paranal or WIRCAM at the CFHT, will bring great progress in
this direction.

The alternative to individual redshift estimates of background galaxies
is to use the redshift distribution obtained through spectroscopic (or de-
tailed photometric redshift) surveys in other fields, and identify this with
the faint background galaxy population at the same magnitude. In this way,
the redshift distribution of the galaxies can be estimated. The issues that
need to be considered here is that neither the targets for a spectroscopic sur-
vey, nor the galaxy population from which the shear is estimated, are strictly
magnitude selected. Very small galaxies, for example, cannot be used for a
shear estimate (or are heavily downweighted) owing to their large smearing
corrections from the PSF. Similarly, for low-surface brightness galaxies it is
much harder to determine a spectroscopic redshift. Hence, in these redshift
identifications, care needs to be excersized.

For cluster mass reconstructions, the physical mass scale is obtained from
the average β := 〈Dds/Ds〉 over all source galaxies. This average is fairly
insensitive to the detailed redshift distribution, as long as the mean source
redshift is substantially larger than the lens redshift. This is typically the
case for low-redshift (z <∼ 0.3) clusters. However, for higher-redshift lenses,
determining β requires a good knowledge of the galaxy redshift distribution.

Contamination of the Source Sample

Next on the list is the contamination of the galaxy sample from which the
shear is measured by cluster galaxies; a fraction of the faint galaxies will be
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foreground objects or faint cluster members. Whereas the foreground pop-
ulation is automatically taken into account in the normal lensing analysis
(i.e., in determining β), the cluster members constitute an additional popu-
lation of galaxies which is not included in the statistical redshift distribution.
The galaxy sample used for the shear measurement is usually chosen as to
be substantially fainter than the brighter cluster member galaxies; however,
the abundance of dwarf galaxies in clusters (or equivalently, the shape of the
cluster galaxy luminosity function) is not well known, and may vary substan-
tially from cluster to cluster (e.g., Trentham and Tully 2002, and references
therein). Including cluster members in the population from which the shear
is measured weakens the lensing signal, since they are not sheared. As a con-
sequence, a smaller shear is measured, and a lower cluster mass is derived. In
addition, the dwarf contamination varies as a function of distance from the
cluster center, so that the shape of the mass distribution will be affected. Color
selection of faint galaxies can help in the selection of background galaxies, i.e.,
to obtain a cleaner set of true background galaxies. Of course, cluster dwarfs,
if not properly accounted for, will also affect the magnification method. One
method to deal with this problem is to use only galaxies redder than the Red
Cluster Sequence of the cluster galaxies in the color-magnitude diagram, as
this sequence indicates the reddest galaxies at the corresponding redshift.

Accuracy of Mass Determination via Weak Lensing

Comparing the ‘true’ mass of a cluster with that measured by weak lensing
is not trivial, as one has to define what the true mass of a cluster is. Using
clusters from numerical simulations, the mass is defined as the mass inside a
sphere of radius r200 around the cluster center within which the overdensity
is 200 times the critical density of the universe at the redshift considered.
When comparing this mass with the projected mass inside a circle of radius
R = r200, one should not be surprised that the latter is larger (Metzler et al.
2001), since one compares apples (the mass inside a sphere) with oranges (the
mass within a cylinder). Metzler et al. ascribed this to the mass in dark matter
filaments at the intersection of which massive clusters are located, but it is
most likely mainly an effect of the mass definitions.

The mass-sheet degeneracy tell us there is little hope to measure the ‘total’
mass of a cluster without further assumptions. Therefore, one natural strat-
egy is to assume a parameterized mass profile and see how accurately one can
determine these parameters. The effect of ellipticity noise has already been
described in Sect. 5.4. Using simulated clusters, Clowe et al. (2004a) have
studied the effect of asphericity and substructure of clusters on these mass
parameters, by analyzing the shear field obtained from independent projec-
tion of the clusters. They find that the non-spherical mass distribution and
substructure induce uncertainties in the two parameters (r200 and the concen-
tration c) of an NWF profile which are larger than those from the ellipticity
noise under very good observing conditions. Among different projections of
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the same cluster, the value of r200 has a spread of 10–15%, corresponding to a
spread in virial mass of ∼40 %. Averaging over the different projections, they
find that there is little bias in the mass determination, except for clusters with
very large ellipticity.

Lensing by the Large-Scale Structure

Lensing by foreground and background density inhomogeneities (i.e., the LSS),
yields a fundamental limit to the accuracy of cluster mass estimates. Since
lensing probes the projected density, these foreground and background inho-
mogeneities are present in the lensing signal. Hoekstra (2003) has investigated
this effect in the determination of the parameters of an NFW mass profile; we
shall return to this issue in Sect. 9.2 below when we consider lensing by the
large-scale structure. In principle, the foreground and background contribu-
tions can be eliminated if the individual redshifts of the source galaxies are
known, since in this case a three-dimensional mass reconstruction becomes
possible (see Sect. 7.6); however, the resulting cluster mass map will be very
noisy.

5.6 Results

After the first detection of a coherent alignment of galaxy images in two
clusters by Tyson et al. (1990) and the development of the Kaiser and Squires
(1993) mass reconstruction method, the cluster MS 1224+20 was the first for
which a mass map was obtained (Fahlman et al. 1994). This investigation of
the X-ray selected cluster yielded a mass map centered on the X-ray centroid
of the cluster, but also a surprisingly high M/L-ratio of ∼800h (here and
in following we quote mass-to-light ratios always in Solar units). This high
M/L ratio has later been confirmed in an independent analysis by Fischer
(1999). This mass estimate is in strong conflict with that obtained from a
virial analysis (Carlberg et al. 1994); however, it is known that this cluster
has a very complex structure, is not relaxed, and most likely a superposition
of galaxy concentrations in redshift.

Since this pioneering work,mass reconstructions of many clusters have been
performed; see Mellier (1999) and Sect. 5.4 of BS. Here, only a few recent
results shall be mentioned, followed by a summary.

Wide-Field Mass Reconstructions

The advent of large mosaic CCD cameras provides an opportunity to map
large regions around clusters to be used for a mass reconstruction, and thus
to measure the shear profile out to the virial radius of clusters. These large-
scale observations offer the best promise to investigate the outer slope of the
mass profile, and in particular distinguish between isothermal distributions
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Fig. 20. Contours show the mass reconstruction of the cluster A 1689, obtained
from data taken with the WFI at the ESO/MPG 2.2m telescope. The image is ∼33′

on a side, corresponding to ∼4.3 h−1 Mpc at the cluster redshift of zd = 0.18. In the
lower panel, the reduced shear profile is shown, together with the best fitting SIS
and NFW models. The mass reconstruction has been smoothed by a 1.′15 Gaussian,
and contour spacing is Δκ = 0.01. No corrections have been applied to account
for contamination of the lensing signal by cluster dwarf galaxies – that would in-
crease the mass of the best fit models by ∼25 % (taken from Clowe and Schneider
2001)

and those following the NWF profile. Figure 20 shows an example of such
a mass reconstruction, that of the cluster Abell 1689 with zd = 0.182. A
significant shear is observed out to the virial radius. The mass peak is centered
on the brightest cluster galaxy, and the overall lens signal is significant at the
13.4-σ level. The shear signal is fit with two models, as shown in the lower
panel of Fig. 20; the NWF profile yields a better fit than an SIS profile. Two
more clusters observed with the WFI by Clowe and Schneider (2002) yield
similar results, i.e., a detection of the lensing signal out to the virial radius,
and a preference for an NWF mass profile, although in one of the two cases
this preference is marginal. The lensing signal of such rich clusters could be
contaminated by faint cluster member galaxies; correcting for this effect would
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increase the estimate of the lensing strength, but requires multi-color imaging
for source selection.

The cluster A 1689 is (one of) the strongest lensing clusters known (see
Fig. 14); in fact, it is strong enough so that a weak lensing signal can be
significantly detected from near-IR images (King et al. 2002a) despite the fact
that the usable number density of (background) galaxies is only ∼3 arcmin−2.
The estimate of its velocity dispersion from weak lensing yields an Einstein
radius well below the distance of the giant arcs from the cluster center. Hence,
in this cluster we see a discrepancy between the strong and weak lensing
results, which cannot be easily explained by redshift differences between the
arc sources and the mean redshift of the faint galaxies used for the weak lensing
analysis. On the other hand, A 1689 is known to be not a relaxed cluster, due
to the redshift distribution of its member galaxies. This may explain the fact
that the weak lensing mass estimates is also lower than that obtained from
X-ray studies.

Filaments Between Clusters

One of the predictions of CDM models for structure formation is that clusters
of galaxies are located at the intersection points of filaments formed by the
dark matter distribution. In particular, this implies that a physical pair of clus-
ters should be connected by a bridge or filament of (dark) matter, and weak
lensing mass reconstructions can in principle be used to search for them. In the
investigation of the z = 0.42 supercluster MS 0302+17, Kaiser et al. (1998)
found an indication of a possible filament connecting two of the three clus-
ters, with the caveat (as pointed out by the authors) that the filament lies just
along the boundary of two CCD chips; in fact, an indepedent analysis of this
supercluster (Gavazzi et al. 2004) failed to confirm this filament. Gray et al.
(2002) saw evidence for a filament connecting the two clusters A 901A/901B
in their mass reconstruction of the A 901/902 supercluster field. Another po-
tential filament has been found in the wide-field mass reconstruction of the
field containing the pair of clusters A 222/223 (Fig. 21, Dietrich et al. 2004).
Spectroscopy shows that there are also galaxies at the same redshift as the
two clusters present in the ‘filament’ (Dietrich et al. 2002).

One of the problems related to the unambiguous detection of filaments
is the difficulty to define what a ‘filament’ is, i.e. to device a statistics to
quantify the presence of a mass bridge. The eye easily picks up a pattern and
identifies it as a ‘filament’, but quantifying such a pattern turns out to be
very difficult, as shown by Dietrich et al. (2004). Because of that, it is difficult
to distinguish between noise in the mass maps, the ‘elliptical’ extension of
two clusters pointing toward each other, and a true filament. However, this
problem is not specific to the weak investigation: even if the true projected
mass distribution of a pair of clusters were known (e.g., from a cluster pair
in numerical simulations), it is not straightforward to define what a filament
would be.
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Fig. 21. A deep R-band image of the cluster pair Abell 222/223, obtained from
two different pointings with the WFI@ESO/MPG 2.2m, with contours showing the
reconstructed κ-map. The two clusters are in the region where the pointings overlap
and thus deep imaging is available there. Both clusters are obviously detected in
the mass map, with A223 (the Northern one) clearly split up into two subclusters.
The mass reconstruction shows a connection between the two clusters which can be
interpreted as a filament; galaxies at the clusters’ redshift are present in this inter-
cluster region. A further mass concentration is seen about 13′ to the South-East
of A222, which is significant at the 3.5σ level and where a clear concentration of
galaxies is visible. A possible red cluster sequence indicates a substantially higher
redshift for this cluster, compared to z ≈ 0.21 of the double cluster (from Dietrich
et al. 2004)

Correlation Between Mass and Light

Mass reconstructions on wide-fields, particularly those covering superclus-
ter regions, are ideally suited to investigate the relation between mass and
galaxy light. For example, a smoothed light map of the color-selected early-
type galaxies can be correlated with the reconstructed κ-map; alternatively,
assuming that light traces mass, the expected shear map can be predicted
from the early-type galaxies and compared to the observed shear, with the
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mass-to-light ratio being the essential fit parameter. Such studies have been
carried out on the aforementioned supercluster fields, as well as on blank fields
(Wilson et al. 2001). These studies yield very consistent results, in that the
mass of clusters is very well traced by the distribution of early-type galaxies,
but the mass-to-light ratio seems to vary between different fields, with ∼400h
(in solar units) for the 0302 supercluster (Gavazzi et al. 2004), ∼200h for
the A 901/902 supercluster (Gray et al. 2002), and ∼300h for empty fields
(Wilson et al. 2001) in the rest-frame B-band. When one looks in more detail
at these supercluster fields, interesting additional complications appear. The
three clusters in the 0302 field, as well as the three clusters in the A 901/902
field (A 901 is indeed a pair of clusters) have quite different properties. In
terms of number density of color-selected galaxies, A 901a and A 902 domi-
nate the field, whereas only A 901b seems to be detected inX-rays. Consider-
ing early-type galaxies’ luminosity, A 901a is the most prominent of the three
clusters. In contrast to this, A 902 seems to be most massive as judged from
the weak lensing reconstruction. Similar differences between the three clus-
ters in the 0302 field are also seen. It therefore appears that the mass-to-light
properties of clusters cover quite a range.

Cluster Mass Reconstructions from Space

The exquisite image quality that can be achieved with the HST – imaging
without the blurring effects of atmospheric seeing – suggests that such data
would be ideal for weak lensing studies. This is indeed partly true: from space,
the shape of smaller galaxy images can be measured than from the ground
where the size of the seeing disk limits the image size of galaxies that can
be used for ellipticity measurements in practice. Figure 22 shows an HST
image of the cluster A 851 (zd = 0.41), together with a mass reconstruction.
The agreement between the mass distribution and the angular distribution
of bright cluster galaxies is striking. A detailed X-ray observation of this
cluster with XMM-Newton (De Filippis et al. 2003) finds two extended X-ray
components coinciding with the two maxima of the bright galaxy distribution,
and thus of the mass map shown in Fig. 22, in addition to several compact
X-ray sources inside the HST field. Clearly, this cluster is a dynamically young
system, as also seen by the inhomogeneities of the X-ray temperature and
metallicity of the intracluster gas.

The drawback of cluster weak lensing studies with the HST is the small
field-of-view of its WFPC2 camera, which precludes imaging of large regions
around the cluster center. To compensate for this, one can use multiple point-
ings to tile a cluster. For example, Hoekstra and collaborators have observed
three X-ray selected clusters with HST mosaics; the results from this sur-
vey are summarized in Hoekstra et al. (2002d). One example is shown in
Fig. 23, the high-redshift cluster MS 1054−03 at zd = 0.83. Also in this clus-
ter one detects clear substructure, here consisting of three mass peaks, which
is matched by the distribution of bright cluster galaxies. The shape of the
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Fig. 22. The left panel shows an WFPC2@HST image of the cluster Cl0939+4713
(=Abell 851; taken from Seitz et al. 1996; the field is about 2.′5 on a side), whereas the
right panel shows a mass reconstruction obtained by Geiger and Schneider (1999);
this was obtained using the entropy-regularized maximum likelihood method of Seitz
et al. (1998). One notices the increased spatial resolution of the resulting mass
map near the center of the cluster, which this method yields ‘automatically’ in
those regions where the shear signal is large. Indeed, this mass map predicts that
the cluster is critical in the central part, in agreement with the finding of Trager
et al. (1997) that strong lensing features (multiple images plus an arc) of sources
with z ∼ 4 are seen there. The strong correlation between the distribution of mass
and that of the bright cluster galaxies is obvious: Not only does the peak of the
mass distribution coincide with the light center of the cluster, but also a secondary
maximum in the surface mass density corresponds to a galaxy concentration (seen
in the lower middle), as well as a pronounced minimum on the left where hardly any
bright galaxies are visible

mass maps indicates that this cluster is not relaxed, but perhaps in a later
stage of merging, a view also supported by its hot X-ray temperature. In fact,
new observations with Chandra and XMM-Newton of MS 1054 have shown
that this cluster has a much lower temperature than measured earlier with
ASCA (Gioia et al. 2004). Only two of the three components seen in the
galaxy distribution and the mass reconstruction are seen in X-rays, with the
central weak lensing component being the dominant X-ray source. The newly
determined X-ray temperature is consistent with the velocity dispersion of
cluster galaxies.

Magnification Effects

As mentioned in Sect. 2.4, the magnification of a lens can also be used to
reconstruct its surface mass density (Broadhurst et al. 1995). Provided a pop-
ulation of background source galaxies is identified whose number count slope
α – see (26) - differs significantly from unity, local counts of these sources
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Fig. 23. Mass reconstruction (contours) of the inner part of the high-redshift (zd =
0.83) cluster MS 1054−03, based on a mosaic of six pointings obtained with the
WFPC2@HST (from Hoekstra et al. 2000). The splitting of the cluster core into
three subcomponents, also previously seen from ground-based images by Clowe et al.
(2000), shows that this cluster is not yet relaxed

can be turned into an estimator of the local magnification. If the lens is weak,
(27) provides a relation between the local number counts and the local surface
mass density. If the lens is not weak, this relation no longer suffices, but one
needs to use the full expression

|μ|−1 =
∣∣(1 − κ)2 − |γ|2

∣∣ , (65)

where we have written absolute values to account for the fact that the sign of
the magnification cannot be observed. There are two obvious difficulties with
(65): the first comes from the sign ambiguities, namely whether μ is positive
or negative, and whether κ < 1 or >1. Assuming that we are in the region of
the cluster where μ > 0 and κ < 1 (that is, outside the outer critical curve),
then (65) can be rewritten as

κ = 1 −
√

μ−1 + |γ|2 , (66)

which shows the second difficulty: in order to estimate κ from μ, one needs to
know the shear magnitude |γ|.

There are various ways to deal with this second problem. Consider first
the case that the (reduced) shear is also observed, in which case one better
writes

κ = 1 −
[
μ
(
1 − |g|2

)]−1/2
; (67)

but of course, if shear measurements are available, they should be combined
with magnification observations in a more optimized way. A second method,
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using magnification only, is based on the fact that γ depends linearly on κ
(ignoring finite-field problems here), and so (66) can be turned into a quadratic
equation for the κ field (Dye and Taylor 1998). From numerical models of
clusters, van Kampen (1998) claimed that the shear in these clusters approx-
imately follows on average a relation of the form |γ| = (1 − c)

√
κ/c, with

c ∼ 0.7; however, there is (as expected) large scatter around this mean re-
lation which by itself has little theoretical justification. Figure 24 shows the
mass reconstruction of the cluster Cl 0024+17 using galaxy number counts
and the two reconstruction methods just mentioned.

Fig. 24. Mass reconstruction of the cluster Cl 0024+17 from the magnification
method. The two different reconstructions are based on two different ways to turn
the magnification signal – number count depletions – into a surface mass density
mass, as described in the text: in the upper panel, a local relation between surface
mass density and shear magnitude has been used, whereas in the lower panel, the
magnification was transformed into a κ map using the (non-local) quadratic depen-
dence of the inverse magnification on the surface mass density field. Overall, these
two reconstructions agree very well. To account for the presence of bright foreground
galaxies, the data field had to be masked before local number densities of background
galaxies were estimated – the mask is shown in Fig. 25 (from Dye et al. 2002)
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Magnification effects have been observed for a few clusters, most notice-
ably Cl 0024+17 (Fort et al. 1997; Rögnvaldsson et al. 2001; Dye et al. 2002)
and A 1689 (Taylor et al. 1998; Dye et al. 2001). We shall describe some of
the results obtained for Cl 0024+17 as an example (Dye et al. 2002). Since the
cluster galaxies generate a local overdensity of galaxy counts, they need to be
removed first, which can be done based on a color and magnitude criterion.
Comparison with extensive spectroscopy of this cluster (Czoske et al. 2001)
shows that this selection is very effective for the brighter objects. For the
fainter galaxies – those from which the lensing signal is actually measured
– a statistical subtraction of foreground and cluster galaxies needs to be
performed, which is done by subtracting galaxies according to the field lu-
minosity function with z < zd and cluster galaxies according to the cluster
luminosity function. The latter is based on the assumption that the lumi-
nosity distribution of cluster galaxies is independent from the distance to
the cluster center. Next, the field of the cluster needs to be masked for
bright objects, near which the photometry of fainter galaxies becomes in-
accurate or impossible; Fig. 25 shows the masked data field. The number
density of sources is then determined from the unmasked area. The result-
ing mass reconstruction is shown in Fig. 24. The results confirm the earlier
finding from strong lensing (see Sect. 4.4) that the mass in the inner part of
this cluster is larger by a factor ∼3 than estimated from its X-ray emission
(Soucail et al. 2000).

Fig. 25. The mask of the data field of the cluster Cl 0024+17 (grey circles) and the
location of putative background objects (crosses). The inner dashed circle shows the
critical curve of the cluster as derived from the multiply imaged arc system (from
Dye et al. 2002)
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Magnification and Shear Method Compared

It is interesting to consider the relative merits of shear and magnification
methods for weak lensing studies. The number of clusters that have been
investigated with either method are quite different, with less than a handful
for which the magnification effect has been seen. The reason for this is multi-
fold. First, the shear method does not need external calibration, as it is based
on the assumption of random source ellipticity; in contrast to this, the mag-
nification method requires the number counts of unlensed sources. Whereas
this can be obtained from the same dataset, provided it covers a sufficiently
large area, this self-calibration removes one of the strongest appeals of the
magnification effect, namely its potential to break the mass-sheet degener-
acy. Second, the magnification method is affected by the angular correlation
of galaxies, as clearly demonstrated by Athreya et al. (2002) in their study
of the clusterMS 1008−1224, where the background number counts revealed
the presence of a background cluster which, if not cut out of the data, would
contaminate the resulting mass profile substantially. Third, the removal of
foreground galaxies, and more seriously, of faint cluster members introduces
an uncertainty in the results which is difficult to control. Finally, the number
count method yields a lower lensing signal-to-noise than the shear method:
If we consider Nγ and Nμ galaxies in a given patch of the sky, such that for
the former ones the ellipticities have been measured, and for the latter ones
accurate photometry is available and the galaxies are above the photometric
completeness brightness, the signal-to-noise ratio from the shear – see (15) –
and number count methods are(

S
N

)
γ

=
|γ|
σε

√
Nγ ;

(
S
N

)
μ

= 2κ|α− 1|
√

Nμ , (68)

where we employed (27) in the latter case and assumed that the source galaxy
positions are uncorrelated. The ratio of these two S/N values is

(S/N)γ

(S/N)μ
=

|γ|
κ

1
2σε|1 − α|

√
Nγ

Nμ
. (69)

For an isothermal mass profile, the first of these factors is unity. With σε ≈ 0.4
and α ≈ 0.75 for R-band counts, the second factor is ∼5. The final factor
depends on the quality of the data: in good seeing conditions, this ratio is of
order unity. However, when the seeing is bad, the photometric completeness
level can be considerably fainter than the magnitude for which the shape
of galaxies can be measured reliably. Therefore, for data with relatively bad
seeing, the magnification effect may provide a competitive means to extract
weak lensing information. Having said all of this, the magnification method
will keep its position as an alternative to shear measurements, in particular
for future multi-color datasets where the separation of foreground and cluster
galaxies from the background population can be made more cleanly.
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Summary

The mass reconstruction of clusters using weak lensing has by now become
routine; quite a few cameras at excellent sites yield data with sub-arcsecond
image quality to enable this kind of work. Overall, the reconstructions have
shown that the projected mass distribution is quite similar to that of the
projected galaxy distribution and the shape of the X-ray emission, at least
for clusters that appear relaxed. There is no strong evidence for a discrepancy
between the mass obtained from weak lensing and that from X-rays, again
with exceptions like for Cl0024+16 mentioned above (which most likely is
not a single cluster). The weak lensing mass profiles are considered more
reliable than the ones obtained from X-ray studies, since they do not rely
on symmetry or equilibrium assumptions. On the other hand, they contain
contributions from foreground and background mass inhomogeneities, and
are affected by the mass-sheet degeneracy. What is still lacking is a combined
analysis of clusters, making use of weak lensing, X-ray, Sunyaev–Zeldovich,
and galaxy dynamics measurements, although promising first attempts have
been published (e.g., Zaroubi et al. 1998, 2001; Reblinsky 2000; Doré et al.
2001; Marshall et al. 2003).

5.7 Aperture Mass and Other Aperture Measures

In the weak lensing regime, κ � 1, the mass-sheet degeneracy corresponds to
adding a uniform surface mass density κ0. However, one can define quantities
in terms of the surface mass density which are invariant under this transfor-
mation. In addition, several of these quantities can be determined directly in
terms of the locally measured shear. In this section we shall present the basic
properties of the aperture measures, whereas in the following section we shall
demonstrate how the aperture mass can be used to find mass concentrations
based solely on their weak lensing properties.

Aperture Mass

Let U (|θ|) be a compensated weight (or filter) function, meaning
∫

dθ θ U(θ) =
0, then the aperture mass

Map(θ0) =
∫

d2θ κ(θ)U(|θ − θ0|) (70)

is independent of κ0, as can be easily seen. For example, if U has the shape
of a Mexican hat, Map will have a maximum if the filter center is centered
on a mass concentration. The important point to notice is that Map can be
written directly in terms of the shear (Kaiser et al. 1994; Schneider 1996)

Map(θ0) =
∫

d2θ Q(|θ|) γt(θ;θ0) , (71)
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where we have defined the tangential component γt of the shear relative to
the point θ0 [cf. 17], and

Q(θ) =
2
θ2

∫ θ

0

dθ′ θ′ U(θ′) − U(θ) . (72)

These relations can be derived from (54), by rewriting the partial derivatives
in polar coordinates and subsequent integration by parts (see Schneider and
Bartelmann 1997); it can also be derived directly from the Kaiser and Squires
inversion formula (44), as shown in Schneider (1996). Perhaps easiest is the
following derivation (Squires and Kaiser 1996): We first rewrite (70) as

Map = 2π
∫ θu

0

dϑ ϑU(ϑ) 〈κ(ϑ)〉

= 2π [X(ϑ) 〈κ(ϑ)〉]θu
0 − 2π

∫ θu

0

dϑ X(ϑ)
d 〈κ〉
dϑ

, (73)

where θu is the radius of the aperture, and we have defined

X(θ) =
∫ θ

0

dϑ ϑU(ϑ) .

This definition and the compensated nature of U implies that the boundary
terms in (73) vanish. Making use of (24), one finds that

d 〈κ〉
dϑ

=
dκ̄
dϑ

− d 〈γt〉
dϑ

= − 2
ϑ
〈γt〉 −

d 〈γt〉
dϑ

,

where we used (23) and (24) to obtain dκ̄/dϑ = −2 〈γt〉 /ϑ. Inserting the
foregoing equation into (73), one obtains

Map = 2π
∫ θu

0

dϑ ϑ
2X(ϑ)
ϑ2

〈γt(ϑ)〉

+ 2π [X(ϑ) 〈γt(ϑ)〉]θu
0 − 2π

∫ θu

0

dϑ
dX
dϑ

〈γt(ϑ)〉 . (74)

The boundary term again vanishes, and one sees that the last equation has
the form of (71), with the weight function Q = 2X/ϑ2 −U , reproducing (72).

We shall now consider a few properties of the aperture mass, which follow
directly from (72).

• If U has finite support, then Q has finite support, which is due to the
compensated nature of U . This implies that the aperture mass can be
calculated on a finite data field, i.e., from the shear in the same circle
where U 
= 0.

• If U(θ) = const. for 0 ≤ θ ≤ θin, then Q(θ) = 0 for the same interval,
as is seen directly from (72). Therefore, the strong lensing regime (where
γ deviates appreciably from g) can be avoided by properly choosing U
(and Q).
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• If U(θ) = (πθ2
in)−1 for 0 ≤ θ ≤ θin, U(θ) = −[π(θ2

out − θ2
in)]−1 for θin <

θ ≤ θout, and U = 0 for θ > θout, then Q(θ) = θ2
out θ

−2
[
π(θ2

out − ϑ2
in)
]−1

for θin ≤ θ ≤ θout, and Q(θ) = 0 otherwise. For this special choice of U ,

Map = κ̄(θin) − κ̄(θin, θout) , (75)

the mean mass density inside θin minus the mean density in the annulus
θin ≤ θ ≤ θout (Kaiser 1995). Since the latter is non-negative, this yields a
lower limit to κ̄(θin), and thus to M(θin).

The aperture mass can be generalized to the case where the weight function U
is constant on curves other than circles, e.g., on ellipses, in the sense that the
corresponding expressions can be rewritten directly in terms of the shear on a
finite region (see Squires and Kaiser 1996 for the case where U is constant on
a set of self-similar curves, and Schneider and Bartelmann 1997 for a general
set of nested curves). In general, Map is not a particularly good measure for
the total mass of a cluster – since it employs a compensated filter – but it
has been specifically designed that way to be immune against the mass-sheet
degeneracy. However, Map is a very convenient measure for mass concentra-
tions (see Sect. 5.8) and, as shown above, yields a robust lower limit on cluster
masses.

Aperture Multipoles

The aperture method can also be used to calculate multipoles of the mass
distribution: define the multipoles

Q(n) :=
∫

d2θ |θ|n U(|θ|) eniϕ κ(θ) , (76)

then the Q(n) can again be expressed as an integral over the shear. Here, U is a
radial weight function for which certain restrictions apply (see Schneider and
Bartelmann 1997 for details), but is not required to be compensated for n > 0.
A few cases of interest are: a weight function U which is non-zero only within
an annulus θin ≤ θ ≤ θout and which continuously goes to zero as θ → θin,out;
in this case, the shear is required only within the same annulus. Likewise,
if U is constant for 0 ≤ θ ≤ θin and then decreases smoothly to zero at
θout, only the shear within the annulus is required to calculate the multipoles.
Aperture multipoles can be used to calculate the multipole moments of mass
concentrations like clusters directly from the shear, i.e., without obtaining
first a mass map, which allows a more direct quantification of signal-to-noise
properties.

The Cross Aperture

We have seen that the Kaiser and Squires inversion, given by the first ex-
pression in (44), must yield a real result; the imaginary part of the integral
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in (44) vanishes in the absence of noise. Suppose one would multiply the com-
plex shear by i = e2iπ/4; this would transform the real part of the integral
into the imaginary part and the imaginary part into the negative of the real
part. Geometrically, multiplication by this phase factor corresponds to rotat-
ing the shear at every point by 45◦. Hence, if all shears are rotated by π/4,
the real part of the Kaiser and Squires inversion formula (44) yields zero.
This 45-degree test has been suggested by A. Stebbins; it can be used on real
data to test whether typical features in the mass map are significant, as those
should have larger amplitude than spurious features obtained from the mass
reconstruction in which the shear has been rotated by π/4 (the corresponding
‘mass map’ then yields a good indication of the typical noise present in the
real mass map).

One can define in analogy to (71) the cross aperture by replacing the
tangential component of the shear by its cross component. According to the
45-degree test, the resulting cross aperture should be exactly zero. Hence, if
we define for θ0 = 0

M := Map + iM⊥=
∫

d2θ Q(|θ|) [γt(θ) + iγ×(θ)]

= −
∫

d2θ Q(|θ|) γ(θ) e−2iφ , (77)

where φ is the polar angle of θ as in (17), then M is expected to be purely
real. We shall make use of this definition and the interpretation of M in later
sections.

5.8 Mass Detection of Clusters

Motivation

If a weak lensing mass reconstruction of a cluster has been performed and a
mass peak is seen, it can also be quantified by applying the aperture mass sta-
tistics to it: placing the center of the aperture on the mass peak, and choosing
the radius of the aperture to match the extent of the mass peak will give a sig-
nificant positive value of Map. Now consider to observe a random field in the
sky, and to determine the shear in this field. Then, one can place apertures on
this field and determine Map at each point. If Map attains a significant positive
value at some point, it then corresponds to a point around which the shear
is tangentially oriented. Such shear patterns are generated by mass peaks ac-
cording to (70) – hence, a significant peak in the Map-map corresponds to a
mass concentration (which can, in principle at least, be a mass concentration
just in two-dimensional projection, not necessarily in 3D). Hence, the aper-
ture mass statistics allows us to search for mass concentrations on blank fields,
using weak lensing methods (Schneider 1996). From the estimate (19), we see
that the detectable mass concentrations have to have typical cluster masses.
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The reason why this method is interesting is obvious: As discussed in
Sect. 6 of IN, the abundance of clusters as a function of mass and redshift is
an important cosmological probe. Cosmological simulations are able to predict
the abundance of massive halos for a given choice of cosmological parameters.
To compare these predictions with observations, cluster samples are analyzed.
However, clusters are usually detected either as an overdensity in the galaxy
number counts (possibly in connection with color information, to employ the
red cluster sequence – see Gladders and Yee 2000), or from extended X-ray
sources. In both cases, one makes use of the luminous properties of the clusters,
and cosmologists find it much more difficult to predict those, as the physics
of the baryonic component of the matter is much harder to handle than the
dark matter. Hence, a method for cluster detection that is independent of
their luminosity would provide a clean probe of cosmology. From what was
said above, the aperture mass provides such method (Schneider 1996).

To illustrate this point, we show in Fig. 26 the projected mass and the cor-
responding shear field as it results from studying the propagation of light rays
through a numerically generated cosmological matter distribution (Jain et al.
2000; we shall return to such simulations in Sect. 6.6). From the comparison
of these two panels, one sees that for each large mass concentration there is a
tangential shear pattern centered on the mass peak. Thus, a systematic search
for such shear patterns can reveal the presence and abundance of peaks in the
mass map.

The Method

The search for mass concentrations can thus be carried out by calculating the
aperture mass on a grid over the data field and to identify significant peaks.
A practical estimator for Map is obtained by replacing the integral in (71) by
a finite sum over image ellipticities:

M̂ap(θ0) =
1
n

∑
i

εti(θ0)Q(|θi − θ0|) , (78)

where n is the mean number density of galaxy images, and εti(θ0) is the
ellipticity component of a galaxy at θi tangent to the center θ0 of the aperture.
This estimator has easy-to-quantify signal-to-noise properties. In the absence
of a lensing signal,

〈
M̂ap

〉
≡ 0, and the dispersion of M̂ap(θ0) is

σ2(θ0) =
σ2

ε

2n2

∑
i

Q2(|θi − θ0|) ; (79)

hence, the signal-to-noise of M̂ap(θ0) is

S
N

=
√

2
σε

∑
i εti(θ0)Q(|θi − θ0|)√∑

i Q
2(|θi − θ0|)

. (80)
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Fig. 26. Projected mass distribution of the large-scale structure (left), and the
corresponding shear field (right), where the length and orientation of the sticks
indicate the magnitude and direction of the local shear. The top panels correspond
to an Einstein–de Sitter model of the Universe, whereas the bottom panels are for
a low density open model. The size of the field is one degree on the side, and the
background galaxies are assumed to all lie at the redshift zs = 1. Note that each
mass concentration seen in the left-hand panels generates a circular shear pattern
at this position; this forms the basic picture of the detection of mass concentrations
from a weak lensing observation (from Jain et al. 2000)

The noise depends on θ0, as the image number density can vary of data field.
The size (or radius) of the aperture shall be adapted to the mass concentra-
tions excepted: too small aperture radii miss most of the lensing signal of real
mass concentrations, but is more susceptible to noise peaks, whereas too large
aperture radii include regions of very low signal which may be swamped again
by noise. In addition, the shape of the filter function Q can be adapted to
the expected mass profiles of mass concentrations; e.g., one can design filters
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which are particularly sensitive to NFW-like density profiles. In order not to
prejudice the findings of a survey, it may be advantageous to use a ‘generic’
filter function, e.g., of the form

U(ϑ) =
9

πθ2

(
1 − ϑ2

θ2

)(
1
3
− ϑ2

θ2

)
; Q(ϑ) =

6
πθ2

ϑ2

θ2

(
1 − ϑ2

θ2

)
. (81)

The relation between the two expressions for Map given by (70) and (71) is
only valid if the aperture lies fully inside the data field. If it does not, i.e., if the
aperture crosses the boundary of the data field, these two expressions are no
longer equivalent; nevertheless, the estimator (78) still measures a tangential
shear alignment around the aperture center and thus signifies the presence of
a mass concentration.

There are superior estimates of the significance of a detected mass peak
than using the signal-to-noise ratio (80). One consists in bootstrapping; there
one calculates Map at a given point (where N galaxies are in the aperture)
many times by randomly drawing – with replacement – N galaxies and tests
how often is signal negative. The fraction of cases with negative values corre-
sponds to the error level of having a positive detection of Map. Alternatively,
one can conduct another Monte-Carlo experiment, by randomizing all galaxy
image orientations and calculating Map from these randomized samples, and
ask in which fraction of realizations is the value of Map larger than the mea-
sured value ? As the randomized galaxies should show no lensing signal, this
fraction is again the probability of getting a value as large as that measured
from random galaxy orientations. In fact, from the central limit theorem one
expects that the probability distribution of Map from randomizing the im-
age orientations will be a Gaussian of zero mean, and its dispersion can be
calculated directly from (78) to be

σ2(θ0) =
1

2n2

∑
i

|εi|2 Q2(|θi − θ0|) , (82)

which is similar to (79), but accounts for the moduli of the ellipticity of the
individual galaxy images.

Both of the aforementioned methods take the true ellipticity distribution
of galaxy images into account, and should yield very similar results for the
significance. Highly significant peaks signify the presence of a mass concen-
tration, detected solely on the basis of its mass, and therefore, it is a very
promising search method for clusters.

There is nothing special about the weight function (81), except mathe-
matical simplicity. It is therefore not clear whether these filter functions are
most efficient to detect cluster-mass matter concentrations. In fact, as shown
in Schneider (1996), the largest S/N is obtained if the filter function U fol-
lows the true mass profile of the lens or, equivalently, if Q follows its radial
shear profile. Hennawi and Spergel (2005) and Schirmer (2004) tested a large
range of filter functions, including (81), Gaussians, and those approximating
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an NFW profile. Based on numerical ray-tracing simulations, Hennawi and
Spergel conclude that the ‘truncated’ NFW filter is most efficient for cluster
detections; the same conclusion has been achieved by Schirmer (2004) based
on wide-field imaging data.

Furthermore, Hennawi and Spergel have complemented their cluster search
by a ‘tomographic’ component, assuming that the source galaxies have (pho-
tometric) redshift estimates available. Since the lens strength is a function of
source redshift, the expected behavior of the aperture mass signal as a func-
tion of estimated source redshift can be used as an additional search criteria.
They shown that this additional information increases the sensitivity of weak
lensing to find mass concentrations, in particular for higher-redshift ones; in
fact, the cluster search by Wittman et al. (described below) has made use of
redshift information. As an additional bonus, this method also provides an
estimate of the lens redshift.

Results

In the past few years, a number of clusters and/or cluster candidates have
been detected by the weak lensing method, and a few of them shall be dis-
cussed here. The right-hand panel of Fig. 27 shows the mass reconstruction

Fig. 27. A cosmic shear survey was carried out with the FORS1 instrument on the
VLT (see Maoli et al. 2001 and Sect. 7.1 below). The left panel shows one of the 50
fields observed in the course of this survey, whereas the right panel shows a weak-
lensing mass reconstruction of this field. Obviously, a strong mass peak is detected in
this reconstruction, indicated by the circle. At the same position, one finds a strong
overdensity of relatively bright galaxies on the VLT image; therefore, this mass peak
corresponds to a cluster of galaxies. A reanalysis of all 50 VLT fields (Hetterscheidt
2003) yielded no further significant cluster candidate; however, with a field size of
only ∼6.′5, detecting clusters in them is difficult unless these are positioned close to
the field centers
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of one of the 50 FORS1@VLT fields observed in the course of a cosmic shear
survey (see Sect. 7.1). This reconstruction shows an obvious mass peak, in-
dicated by a circle. The left panel shows the optical image, and it is ob-
vious that the location of the mass peak coincides with a concentration of
bright galaxies – this certainly is a cluster, detected by its weak lensing signal.
However, no follow-up observations have been conducted yet to measure its
redshift.

Wittman et al. (2001, 2003) reported on the discovery of two clusters
from their wide-field weak lensing survey; one of them is shown in Fig. 28
and discussed here. First, a peak in their mass reconstruction was identified
which has a significance of 4.5σ. The location of the mass peak is identified
with a concentration of red elliptical galaxies, with the two centers separated
by about 1′ (which is about the accuracy with which the centers of mass
concentrations are expected to be determined from mass reconstructions).
Follow-up spectroscopy confirmed the galaxy concentration to be a cluster at
redshift zd = 0.28, with a velocity dispersion of σv ∼ 600 km/s. Since multi-
color photometry data are available, photometric redshift estimates of the
faint galaxy population have been obtained, and the tangential shear around
the mass peak has been investigated as a function of this estimated redshift.
The lens signal rises as the redshift increases, as expected due to the lensing
efficiency factor Dds/Ds. In fact, from the source redshift dependence of the
lens signal, the lens redshift can be estimated, and yields a result within
∼0.03 of the spectroscopically measured zd. Hence, in this case not only can
the presence of a cluster be inferred from weak lensing, but at the same time
a cluster redshift has been obtained from lensing observations alone. This is
one example of using source redshift information to investigate the redshift
structure of the lensing matter distribution; we shall return to a more general
discussion of this issue in Sect. 7.6.

Fig. 28. Left: BTC image of a blank field, right: mass reconstruction, showing the
presence of a (mass-selected) cluster near the lower right corner – spectroscopically
verified to be at z = 0.276 (from Wittman et al. 2001)
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In a wide-field imaging weak lensing survey of galaxy clusters, Dahle et al.
(2003) detected three significant mass peaks away from the clusters that were
targeted. One of these cases is illustrated in Fig. 29, showing the mass recon-
struction in the field of the cluster Abell 1705. The mass peak South-West of
the cluster coincides with a galaxy concentration at z ∼ 0.55, as estimated
from their color, and an arc is seen near the brightest galaxy of this cluster.
A further cluster was detected in the wide-field image of the A222/223 dou-
ble cluster field (Dietrich et al. 2004) which coincides with an overdensity of
galaxies. Hence, by now of order ten cluster-mass matter concentrations have
been discovered by weak lensing techniques and verified as genuine clusters
from optical photometry and, for some of them, spectroscopy.

Miyazaki et al. (2002) used a 2.1 deg2 deep image taken with the Suprime-
Cam wide-field imager on Subaru to search for mass peaks. They compared
their peak statistics with both, the expected peak statistics from a noise field
created by intrinsic galaxy ellipticities (Jain and van Waerbeke 2000) as well
as from N-body simulations, and found a broader distribution in the actual
data. They interpret this as statistical evidence for the presence of mass peaks;
however, their interpretation of the significant dips in the mass map as ev-
idence for voids cannot hold, as the density contrast of voids is too small
(since the fractional density contrast δ > −1) to be detectable with weak

Fig. 29. Shown is the mass reconstruction of the field containing the cluster A 1705,
located near the center of this field. The peak ∼4′ to the North-East of A 1705 ap-
pears to be associated with galaxies at the same redshift as A 1705. However, the
peak ∼4′ South-West of A 1705 seems to be associated with galaxies at considerably
larger redshift, at z ∼ 0.55 ± 0.05, as determined from the V − I colors of the cor-
responding galaxy concentration. Indeed, an arc curving around the central galaxy
of this newly detected cluster candidate is observed (from Dahle et al. 2003)
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lensing. They find a number density of > 5σ peaks of about 5 deg−2, well
in agreement with predictions from Kruse and Schneider (1999) and Reblin-
sky et al. (1999). Schirmer (2004) investigated about 16 deg2 of images taken
with the WFI@ESO/MPG 2.2m, and detected 100 > 4σ-peaks, again in good
agreement with theoretical expectations.

Dark Clusters?

In addition, however, this method has the potential to discover mass concen-
trations with very large mass-to-light ratio, i.e., clusters which are very faint
optically and which would be missed in more conventional surveys for clusters.
Two potential ‘dark clusters’ have been reported in the literature.7 Umetsu
and Futamase (2000), using the WFPC2 onboard HST detected a highly sig-
nificant (4.5σ) mass concentration 1.′7 away from the cluster Cl 1604+4304,
also without an apparent overdensity of associated galaxies.

In the course of a wide-field weak lensing analysis of the cluster A 1942,
Erben et al. (2000) detected a mass peak which, using the aperture mass sta-
tistics introduced previously, has been shown to be highly significant (∼4.7σ
on the V-band image), with the significance being obtained from the random-
ization and bootstrapping techniques described above. An additional I-band
image confirmed the presence of a mass peak at the same location as on the
V-band image, though with somewhat lower significance. No concentration of
galaxies is seen near the location of the mass peak, which indicates that it
either is a very dark mass concentration, or a cluster at a fairly high redshift
(which, however, would imply an enormous mass for it), or, after all, a statis-
tical fluke. It is important to note that the signal in Map comes from a range
of radii (see Fig. 30); it is not dominated by a few highly flattened galaxies
which happen to have a fortuitous orientation. Gray et al. (2000) have used
near-IR images to search for a galaxy concentration in this direction, without
finding an obvious candidate. Therefore, at present it is unclear whether the
‘dark clump’ is indeed a very unusual cluster. A low-significance X-ray source
near its position, as obtained in a ROSAT observation of Abell 1942, cer-
tainly needs confirmation by the more sensitive X-ray observatory XMM.8 Of
course, if there are really dark clusters, their confirmation by methods other
than weak lensing would be extremely difficult; but even if we are dealing
with a statistical fluke, it would be very important to find the cause for it.
An HST mosaic observation of this field has been conducted; a first analysis
of these data was able to confirm the findings of Erben et al., in the sense
that the shear signal from galaxies seen in both, the HST images and the

7 A third case reported in Miralles et al. (2002) has in the meantime been consid-
erably weakened (Erben et al. 2003).

8 Judging from the results of several proposal submissions, people on X-ray TACs
seem not to care too much about dark cluster candidates.
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Fig. 30. Tangential shear profile from both (V- and I-band) images around the
‘dark cluster’ candidate near the cluster A1942. For each angular scales, two points
(and corresponding error bars) are plotted, which are derived from two different
images of the field in the V- and I-band. It can be seen that the tangential shear
signal extends over quite a range in radius (from Erben et al. 2000)

ground-based data, have a significant tangential alignment (von der Linden
2004). However, contrary to expectations if this was truly a lensing mass sig-
nal, there is hardly any tangential alignment from fainter galaxies, although
they are expected to be located at higher redshift and thus should show a
stronger shear signal. However, as a word of caution, the PSF anisotropy of
WFPC2 cannot be controlled from stars on the image, owing to the small field-
of-view, and no stellar cluster has been observed with the filter with which the
dark clump observations were conducted, so that the PSF anisotropy cannot
be accurately inferred from such calibration images. The existence of dark
clusters would be highly unexpected in view of our current understanding of
structure formation and galaxy evolution, and would require revisions of these
models.

The search for clusters by weak lensing will certainly continue, due to the
novel properties of the cluster samples obtained that way. The observational
data required are the same as those used for cosmic shear studies, and several
very wide-field surveys are currently conducted, as will be described in Sect. 7.
Hence, we can expect to have a sizable sample of shear-selected clusters in the
near future. The search for mass concentrations by weak lensing techniques
is affected by foreground and background inhomogeneities, which impose fun-
damental limits on the reliability and completeness of such searches; we shall
return to this issue in Sect. 9.2.
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Expectations

Kruse and Schneider (1999) have calculated the expected number density of
lensing-detected clusters, using the aperture-mass method, for different cos-
mological parameters; these have been verified in numerical simulations of the
large-scale structure by Reblinsky et al. (1999). Depending on the cosmological
model, a few clusters per deg2 should be detected at about the 5σ level. The
dependence of the expected number density of detectable mass peaks on the
cosmological parameters can be used as a cosmological probe; in particular,
Bartelmann et al. (2002) and Weinberg and Kamionkowski (2003) demon-
strate that the observed abundance of weak lensing clusters can probe the
equation-of-state of the dark energy. Bartelmann et al. (2001) argued that
the abundance of weak lensing detected clusters strongly depends on their
mass profile, with an order-of-magnitude difference between NFW profiles and
isothermal spheres. Weinberg and Kamionkowski (2002) argued, based on the
spherical collapse model of cluster formation, that a considerable fraction of
such detections are expected to be due to non-virialized mass concentrations,
which would then be considerably weaker X-ray emitters and may be candi-
dates for the ‘dark clusters’.

6 Cosmic Shear – Lensing by the LSS

Up to now we have considered the lensing effect of localized mass concentra-
tions, like galaxies and clusters. In addition to that, light bundles propagating
through the Universe are continuously deflected and distorted by the gravita-
tional field of the inhomogeneous mass distribution, the large-scale structure
(LSS) of the cosmic matter field. This distortion of light bundles causes shape
and size distortions of images of distant galaxies, and therefore, the statistics
of the distortions reflect the statistical properties of the LSS (Gunn 1967;
Blandford et al. 1991; Miralda-Escudé 1991; Kaiser 1992).

Cosmic shear deals with the investigation of this connection, from the
measurement of the correlated image distortions to the inference of cosmo-
logical information from this distortion statistics. As we shall see, cosmic
shear has become a very important tool in observational cosmology. From a
technical point-of-view, it is quite challenging, first because the distortions are
indeed very weak and therefore difficult to measure, and second, in contrast to
‘ordinary’ lensing, here the light deflection does not occur in a ‘lens plane’ but
by a 3-D matter distribution, implying the need for a different description of
the lensing optics. We start by looking at the description of light propagating
through the Universe, and then consider the second-order statistical proper-
ties of the cosmic shear which reflect the second-order statistical properties of
the cosmic matter field, i.e., the power spectrum. Observational results from
cosmic shear surveys are presented in Sect. 7, whereas higher-order statistical
properties of the shear field will be treated in Sect. 9.
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6.1 Light Propagation in an Inhomogeneous Universe

In this brief, but rather technical section, we outline the derivation of the
lensing effects of the three-dimensional mass distribution between the faint
background galaxy population and us; the reader is referred to Bartelmann
and Schneider (2001) for a more detailed discussion. The final result of this
consideration has a very simple interpretation: in the lowest-order approxi-
mation, the 3-D cosmological mass distribution can be considered, for sources
at a single redshift zs, as an effective surface mass density κ, just like in or-
dinary lensing. The resulting κ is obtained as a line-of-sight integral of the
density contrast Δρ, weighted by the usual geometrical factor entering the
lens equations.

The laws of light propagation follow from Einstein’s General Relativity;
according to it, light propagates along the null-geodesics of the space-time
metric. As shown in Schneider et al. (1992, hereafter SEF; see also Seitz et al.
1994), one can derive from General Relativity that the governing equation for
the propagation of thin light bundles through an arbitrary space-time is the
equation of geodesic deviation,

d2ξ

dλ2
= T ξ , (83)

where ξ is the separation vector of two neighboring light rays, λ the affine
parameter along the central ray of the bundle, and T is the optical tidal matrix
which describes the influence of space-time curvature on the propagation of
light. T can be expressed directly in terms of the Riemann curvature tensor
(Fig. 31).

For the case of a weakly inhomogeneous Universe, the tidal matrix can be
explicitly calculated in terms of the peculiar Newtonian potential. For that,
we write the slightly perturbed metric of the Universe in the form

ds2 = a2(τ)
[(

1 +
2Φ
c2

)
c2dτ2 −

(
1 − 2Φ

c2

)(
dw2 + f2

K(w)dω2
)]

, (84)

where w is the comoving radial distance, a = (1 + z)−1 the scale factor,
normalized to unity today, τ is the conformal time, related to the cosmic time

F

F

f  (w)K

f  (w)K

db dx= K

0

(x,w’)

(w’)

f  (w–w’)
x(w)

w w’

b(   ) =w

Fig. 31. Illustration of the evolution of the separation between two light rays in a
curved space-time (source: T. Schrabback)
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t through dt = a dτ , fK(w) is the comoving angular diameter distance, which
equals w in a spatially flat model, and Φ(x, w) denotes the Newtonian peculiar
gravitational potential which depends on the comoving position vector x and
cosmic time, here expressed in terms of the comoving distance w (see Sect. 4
of IN for a more detailed description of the various cosmological terms). In
this metric, the tidal matrix T can be calculated in terms of the Newtonian
potential Φ, and correspondingly, the equation of geodesic deviation (83) yields
the evolution equation for the comoving separation vector x(θ, w) between a
ray separated by an angle θ at the observer from a fiducial ray (Fig. 31)

d2x
dw2

+ K x = − 2
c2

[
∇⊥Φ (x(θ, w), w) −∇⊥Φ(0) (w)

]
, (85)

where K = (H0/c)2 (Ωm + ΩΛ − 1) is the spatial curvature of the Universe,
∇⊥ = (∂/∂x1, ∂/∂x2) is the transverse comoving gradient operator, and
Φ(0)(w) is the potential along the fiducial ray.9 The formal solution of this
transport equation is obtained by the method of Green’s function, to yield

x(θ, w) = fK(w)θ− 2
c2

∫ w

0

dw′ fK(w−w′)
[
∇⊥Φ (x(θ, w′), w′) −∇⊥Φ(0) (w′)

]
.

(86)
A source at comoving distance w with comoving separation x from the fiducial
light ray would be seen, in the absence of lensing, at the angular separation
β = x/fK(w) from the fiducial ray (this statement is nothing but the defi-
nition of the comoving angular diameter distance). Hence, β is the unlensed
angular position in the ‘comoving source plane’ at distance w, where the ori-
gin of this source plane is given by the intersection point with the fiducial
ray. Therefore, in analogy with standard lens theory, we define the Jacobian
matrix

A(θ, w) =
∂β

∂θ
=

1
fK(w)

∂x
∂θ

, (87)

and obtain from (86)

Aij(θ, w) = δij −
2
c2

∫ w

0

dw′ fK(w − w′)fK(w′)
fK(w)

Φ,ik (x(θ, w′), w′) Akj(θ, w′) ,

(88)
which describes the locally linearized mapping introduced by LSS lensing. To
derive (88), we noted that ∇⊥Φ(0) does not depend on θ, and used the chain

9 In some of the literature, this transport equation is written without the term ac-
counting for the potential along the fiducial ray. The idea behind this is to compare
a light ray in the inhomogeneous universe with one in the homogeneous, unper-
turbed universe. Apart from the conceptual difficulty, this ‘first-order expansion’
is not justified, as the light rays in an inhomogeneous universe can deviate quite
significantly from straight rays in the homogeneous reference universe – much
more than the length scale of typical density fluctuations. These difficulties are all
avoided if one starts from the exact equation of geodesic deviation, as done here.
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rule in the derivative of Φ. This equation still is exact in the limit of validity
of the weak-field metric. Next, we expand A in powers of Φ, and truncate the
series after the linear term:

Aij(θ, w) = δij −
2
c2

∫ w

0

dw′ fK(w − w′)fK(w′)
fK(w)

Φ,ij (fK(w′)θ, w′) . (89)

Hence, to linear order, the distortion can be obtained by integrating along the
unperturbed ray x = fK(w)θ; this is also called the Born approximation. Cor-
rections to the Born approximation are necessarily of order Φ2. Throughout
this article, we will employ the Born approximation; later, we will comment
on its accuracy. If we now define the deflection potential

ψ(θ, w) :=
2
c2

∫ w

0

dw′ fK(w − w′)
fK(w) fK(w′)

Φ (fK(w′)θ, w′) , (90)

then Aij = δij − ψ,ij , just as in ordinary lens theory. In this approximation,
lensing by the 3-D matter distribution can be treated as an equivalent lens
plane with deflection potential ψ, mass density κ = ∇2ψ/2, and shear γ =
(ψ,11 − ψ,22)/2 + iψ,12.

6.2 Cosmic Shear: The Principle

The Effective Surface Mass Density

Next, we relate κ to fractional density contrast δ of matter fluctuations in the
Universe; this is done in a number of steps:

1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term
Φ,33 in the resulting integrand; this latter term vanishes in the line-of-
sight integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates

∇2Φ =
3H2

0Ωm

2a
δ (91)

to obtain

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0

dw′ fK(w′)fK(w − w′)
fK(w)

δ (fK(w′)θ, w′)
a(w′)

. (92)

Note that κ is proportional to Ωm, since lensing is sensitive to Δρ ∝ Ωm δ,
not just to the density contrast δ = Δρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pw(w) dw, the effec-
tive surface mass density becomes

κ(θ) =
∫

dw pw(w)κ(θ, w)

=
3H2

0Ωm

2c2

∫ wh

0

dw g(w) fK(w)
δ (fK(w)θ, w)

a(w)
, (93)
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with

g(w) =
∫ wh

w

dw′ pw(w′)
fK(w′ − w)
fK(w′)

, (94)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a
density fluctuation at distance w, and wh is the comoving horizon distance,
obtained from w(a) by letting a → 0.

The expression (92) for the effective surface mass density can be inter-
preted in a very simple way. Consider a redshift interval of width dz around
z, corresponding to the proper radial distance interval dDprop = |cdt| =
H−1(z)(1 + z)−1 cdz. The surface mass density in this interval is ΔρdDprop,
where only the density contrast Δρ = ρ−ρ̄ acts as a lens (the ‘lensing effect’ of
the mean matter density of the Universe is accounted for by the relations be-
tween angular diameter distance and redshift; see Schneider and Weiss 1988a).
Dividing this surface mass density by the corresponding critical surface mass
density, and integrating along the line-of-sight to the sources, one finds

κ =
∫ zs

0

dz
4πG
c2

Dang
d Dang

ds

Dang
s

dDprop

dz
Δρ . (95)

This expression is equivalent to (92), as can be easily shown (by the way,
this is a good exercise for practicing the use of cosmological quantities like
redshift, distances etc.).

Limber’s Equation

The density field δ is assumed to be a realization of a random field. It is the
properties of the random field that cosmologists can hope to predict, and not
a specific realization of it. In particular, the second-order statistical proper-
ties of the density field are described in terms of the power spectrum (see
IN, Sect. 6.1). We shall therefore look at the relation between the quantities
relevant for lensing and the power spectrum Pδ(k) of the matter distribution
in the Universe. The basis of this relation is formed by Limber’s equation. If
δ is a homogeneous and isotropic 3-D random field, then the projections

gi(θ) =
∫

dw qi(w) δ (fK(w)θ, w) (96)

also are (2-D) homogeneous and isotropic random fields, where the qi are
weight functions. In particular, the correlation function

C12 = 〈g1(ϕ1) g2(ϕ2)〉 ≡ C12(|ϕ1 − ϕ2|) (97)

depends only on the modulus of the separation vector. The original form of
the Limber (1953) equation relates C12 to the correlation function of δ which
is a line-of-sight projection. Alternatively, one can consider the Fourier-space
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analogy of this relation: The power spectrum P12(") – the Fourier transform
of C12(θ) – depends linearly on Pδ(k) (Kaiser 1992, 1998),

P12(") =
∫

dw
q1(w) q2(w)

f2
K(w)

Pδ

(
"

fK(w)
, w

)
, (98)

if the largest-scale structures in δ are much smaller than the effective range
Δw of the projection. Hence, we obtain the (very reasonable) result that the
2-D power at angular scale 1/" is obtained from the 3-D power at length scale
fK(w) (1/"), integrated over w.

Comparing (93) with (98), one sees that κ(θ) is such a projection of δ with
the weights q1(w) = q2(w) = (3/2)(H0/c)2Ωmg(w)fK(w)/a(w), so that

Pκ(") =
9H4

0Ω
2
m

4c4

∫ wh

0

dw
g2(w)
a2(w)

Pδ

(
"

fK(w)
, w

)
. (99)

The power spectrum Pκ, if observable, can therefore be used to constrain
the 3-D power spectrum Pδ. For a number of cosmological models, the power
spectrum Pκ(") is plotted in Fig. 32. Predictions of Pκ are plotted both for
assuming linear growth of the density structure (see Sect. 6.1 of IN), as well
as the prescription of the fully nonlinear power spectrum as given by the
fitting formulae of Peacock and Dodds (1996). From this figure one infers
that the nonlinear evolution of the density fluctuations becomes dominant
for values of " >∼ 200, corresponding to an angular scale of about 30′; the
precise values depend on the cosmological model and the redshift distribution
of the sources. Furthermore, the dimensionless power spectrum "2 Pκ("), that
is, the power per logarithmic bin, peaks at around " ∼ 104, corresponding
to an angular scale of ∼1′, again somewhat depending on the source redshift
distribution. Third, one notices that the shape and amplitude of Pκ depends
on the values of the cosmological parameters; therefore, by measuring the
power spectrum, or quantities directly related to it, one can constrain the
values of the cosmological parameters. We consider next appropriate statistical
measures of the cosmic shear which are directly and simply related to the
power spectrum Pκ.

6.3 Second-Order Cosmic Shear Measures

We will now turn to statistical quantities of the cosmic shear field which are
quadratic in the shear, i.e., to second-order shear statistics. Higher-order sta-
tistical properties, which already have been detected in cosmic shear surveys,
will be considered in Sect. 9. As we shall see, all second-order statistics of
the cosmic shear yield (filtered) information about, and are fully described in
terms of Pκ. The most-often used second-order statistics are:

• The two-point correlation function(s) of the shear, ξ±(θ),
• the shear dispersion in a (circular) aperture,

〈
|γ̄|2
〉
(θ), and

• the aperture mass dispersion,
〈
M2

ap

〉
(θ).
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Fig. 32. The power spectrum Pκ(�) (left panel) and its dimensionless form �2 Pκ(�)
(right panel) for several cosmological models (where here, � is denoted by s). Specif-
ically, EdS denotes an Ωm = 1, ΩΛ = 0 Einstein-de Sitter model, OCDM an open
Ωm = 0.3, ΩΛ = 0 Universe, and ΛCDM a flat, low-density Ωm = 0.3, ΩΛ = 0.7
model. Numbers in parenthesis indicate (Γspect, σ8), where Γspect is the shape pa-
rameter of the power spectrum (see IN, Sect. 6.1) and σ8 is the power-spectrum
normalization. For these power spectra, the mean redshift of the galaxy distribution
was assumed to be 〈zs〉 = 1.5. Thin curves show the power spectra assuming linear
evolution of the density fluctuations in the Universe, and thick curves use the fully
non-linear evolution, according to the prescription of Peacock and Dodds (1996).
For angular scales below ∼30′, corresponding to � ≥ 200, the non-linear evolution
of the power spectrum becomes very important (from Schneider et al. 1998a)

Those will be discussed next, and their relation to Pκ(") shown. As a prepa-
ration, consider the Fourier transform of κ,

κ̂(	) =
∫

d2θ ei	·θ κ(θ) ; (100)

then, 〈
κ̂(	)κ̂∗(	′)

〉
= (2π)2 δD(	 − 	′)Pκ(") , (101)

which provides another definition of the power spectrum Pκ [compare with
(123) of IN]. The Fourier transform of the shear is

γ̂(	) =

(
"21 − "22 + 2i"1"2

|	|2

)
κ̂(	) = e2iβ κ̂(	) , (102)

where β is the polar angle of the vector 	; this follows directly from (42) and
(43). Equation (102) implies that〈

γ̂(	)γ̂∗(	′)
〉

= (2π)2 δD(	 − 	′)Pκ("). (103)

Hence, the power spectrum of the shear is the same as that of the surface
mass density.
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Shear Correlation Functions

Consider a pair of points (i.e., galaxy images); their separation direction ϕ
(i.e. the polar angle of the separation vector θ) is used to define the tan-
gential and cross-component of the shear at these positions for this pair,
γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (17). Using these two shear

components, one can then define the correlation functions 〈γtγt〉 (θ) and
〈γ×γ×〉 (θ), as well as the mixed correlator. However, it turns out to be more
convenient to define the following combinations,

ξ±(θ) = 〈γtγt〉 (θ) ± 〈γ×γ×〉 (θ) , ξ×(θ) = 〈γtγ×〉 (θ) . (104)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a
transformation, γt → γt, but γ× → −γ×. Next we relate the shear correlation
functions to the power spectrum Pκ: Using the definition of ξ±, replacing γ
in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds (e.g.,
Kaiser 1992)

ξ+(θ) =
∫ ∞

0

d" "
2π

J0("θ)Pκ(") ; ξ−(θ) =
∫ ∞

0

d" "
2π

J4("θ)Pκ(") , (105)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be mea-
sured as follows: on a data field, select all pairs of faint galaxies with sepa-
ration within Δθ of θ and then take the average 〈εti εtj〉 over all these pairs;
since εi = ε

(s)
i + γ(θi), the expectation value of 〈εti εtj〉 is 〈γtγt〉 (θ), provided

source ellipticities are uncorrelated. Similarly, the correlation for the cross-
components is obtained. It is obvious how to generalize this estimator in the
presence of a weight factor for the individual galaxies, as it results from the
image analysis described in Sect. 3.5.

The Shear Dispersion

Consider a circular aperture of radius θ; the mean shear in this aperture
is γ̄. Averaging over many such apertures, one defines the shear dispersion〈
|γ̄|2
〉
(θ). It is related to the power spectrum through

〈
|γ̄|2
〉

(θ) =
1
2π

∫
d" " Pκ(")WTH("θ) , where WTH(η) =

4J2
1(η)
η2

(106)

is the top-hat filter function (see, e.g., Kaiser 1992). A practical unbiased
estimator of the mean shear in the aperture is ˆ̄γ = N−1

∑N
i=1 εi, where N is

the number of galaxies in the aperture. However, the square of this expres-
sion is not an unbiased estimator of

〈
|γ̄|2
〉
, since the diagonal terms of the

resulting double sum yield additional terms, since E (εiε∗i ) = |γ(θi)|2 + σ2
ε .
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An unbiased estimate for the shear dispersion is obtained by omitting the
diagonal terms, ̂〈|γ̄|2〉 =

1
N(N − 1)

N∑
i�=j

εi ε
∗
j . (107)

This expression is then averaged over many aperture placed on the data field.
Again, the generalization to allow for weighting of galaxy images is obvious.
Note in particular that this estimator is not positive semi-definite.

The Aperture Mass

Consider a circular aperture of radius θ; for a point inside the aperture, define
the tangential and cross-components of the shear relative to the center of the
aperture (as before); then define

Map(θ) =
∫

d2ϑ Q(|ϑ|) γt(ϑ) , (108)

where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
Q given in (81), the dispersion of Map(θ) is related to power spectrum by
(Schneider et al. 1998a)

〈
M2

ap

〉
(θ) =

1
2π

∫ ∞

0

d" " Pκ(")Wap(θ") , with Wap,1(η) :=
576J2

4(η)
η4

.

(109)
Crittenden et al. (2002) suggested a different pair U and Q of filter functions,

U(ϑ) =
1

2π θ2

[
1 −

(
ϑ2

2θ2

)]
exp

(
− ϑ2

2θ2

)
; Q(ϑ) =

ϑ2

4πθ4
exp

(
− ϑ2

2θ2

)
.

(110)
These function have the disadvantage of not having finite support; however,
due to the very strong fall-off for ϑ � θ, for many practical purposes the
support can be considered effectively as finite. This little drawback is com-
pensated by the convenient analytic properties of these filter functions, as
we shall see later. For example, the relation of the corresponding aperture
mass dispersion is again given by the first of (109), but the filter function
simplifies to

Wap,2(η) =
η4

4
e−η2

. (111)

Whereas the filter functions which relate the power spectrum to the shear cor-
relation functions, i.e., the Bessel function appearing in (105), and to the shear
dispersion, given by WTH, are quite broad filters, implying that these statis-
tics at a given angular scale depend on the power spectrum over a wide range
of ", the two filter functions Wap,1,2 are very localized and thus the aperture
mass dispersion yields highly localized information about the power spectrum



364 P. Schneider

(see Bartelmann and Schneider 1999, who showed that replacing the filter
function W by a delta-‘function’ causes an error of only ∼10%). Hence, the
shape of

〈
M2

ap

〉
(θ) directly reflects the shape of the power spectrum as can

also be seen in Fig. 35 below.

Interrelations

These various 2-point statistics all depend linearly on the power spectrum Pκ;
therefore, one should not be too surprised that they are all related to each
other (Crittenden et al. 2002). The surprise perhaps is that these interrelations
are quite simple. First, the relations between ξ± and Pκ can be inverted,
making use of the orthonormality relation of Bessel functions:

Pκ(") = 2π
∫ ∞

0

dθ θ ξ+(θ) J0("θ) = 2π
∫ ∞

0

dθ θ ξ−(θ) J4("θ) . (112)

Next, we take one of these and plug them into the relation (105) between the
other correlation function and Pκ, to find:

ξ+(θ) = ξ−(θ) +
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ)

(
4 − 12

θ2

ϑ2

)
; (113)

ξ−(θ) = ξ+(θ) +
∫ θ

0

dϑϑ

θ2
ξ+(ϑ)

(
4 − 12

ϑ2

θ2

)
. (114)

These equations show that the two shear correlation functions are not inde-
pendent of each other, the reason for that being that the shear (which itself
is a two-component quantity) is derived from a single scalar field, namely the
deflection potential ψ. We shall return to this issue further below. Using (112)
in the equation for the shear dispersion, one finds

〈
|γ̄|2
〉

(θ) =
∫ 2θ

0

dϑϑ

θ2
ξ+(ϑ)S+

(
ϑ

θ

)
=
∫ ∞

0

dϑϑ

θ2
ξ−(ϑ)S−

(
ϑ

θ

)
,

where the S± are simple functions, given explicitly in Schneider et al. (2002a)
and plotted in Fig. 33. Finally, the same procedure for the aperture mass
dispersion lets us write

〈
M2

ap

〉
(θ) =

∫ 2θ

0

dϑϑ

θ2
ξ+(ϑ)T+

(
ϑ

θ

)
=
∫ 2θ

0

dϑϑ

θ2
ξ−(ϑ)T−

(
ϑ

θ

)
, (115)

again with analytically known functions T±, given for the filter function (81)
in Schneider et al. (2002a), and for the filter function (110) in Jarvis et al.
(2003). Hence, all these 2-point statistics can be evaluated from the correlation
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Fig. 33. The function S±(x) and T±(x) which relate the shear and aperture mass
dispersion to the correlation functions. Note that S− does not vanish for x > 2, as
is the case for the other three functions (from Schneider et al. 2002a)

functions ξ±(θ), which is of particular interest, since they can be measured
best: Real data fields contain holes and gaps (like CCD defects; brights stars;
nearby galaxies, etc.) which makes the placing of apertures difficult; however,
the evaluation of the correlation functions is not affected by gaps, as one uses
all pairs of galaxy images with a given angular separation. Furthermore, it
should be noted that the aperture mass dispersion at angular scale θ can be
calculated from ξ±(ϑ) in the finite range ϑ ∈ [0, 2θ], and the shear dispersion
can be calculated from ξ+ on ϑ ∈ [0, 2θ], but not from ξ− on a finite interval;
this is due to the fact that ξ− on small scales does not contain the informa-
tion of the power spectrum on large scales, because of the filter function J4

in (105).
We also note that from a cosmic shear survey, the power spectrum Pκ

can be determined directly, as has been investigated by Kaiser (1998), Seljak
(1998) and Hu and White (2001). This is not done by applying (112), as
these relations would require the determination of the correlation function for
all separation, but by more sophisticated methods. A simple example (though
not optimal) is to consider the measured shear field on the square; Fourier
transforming it and binning modes in |	| then yields an estimate of the power
spectrum, once the power from the intrinsic ellipticity dispersion is subtracted.
Better methods aim at minimizing the variance of the reconstructed power
spectrum (Seljak 1998; Hu and White 2001). As mentioned before, the aper-
ture mass dispersion is a filtered version of the power spectrum with such
a narrow filter, that it contains essentially the same information as Pκ over
the corresponding angular scale and at " ∼ 5/θ, provided Pκ has no sharp
features.
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6.4 Cosmic Shear and Cosmology

Why Cosmology From Cosmic Shear ?

Before continuing, it is worth to pause for a second and ask the question why
one tries to investigate cosmological questions by using cosmic shear – since
it is widely assumed that the CMB will measure ‘all’ cosmological quantities
with high accuracy. Partial answers to this question are:

• Cosmic shear measures the mass distribution at much lower redshifts (z <∼
1) and at smaller physical scales [R ∼ 0.3h−1 (θ/1′)Mpc] than the CMB;
indeed, it is the only way to map out the dark matter distribution directly
without any assumptions about the relation between dark and baryonic
matter.

• Cosmic shear measures the non-linearly evolved mass distribution and its
associated power spectrum Pδ(k); hence, in combination with the CMB it
allows us to study the evolution of the power spectrum and in particular,
provide a very powerful test of the gravitational instability paradigm for
structure growth.

• As was demonstrated by the recent results from the WMAP satellite
(Bennett et al. 2003), the strongest constraints are derived when combin-
ing CMB measurements (constraining the power spectrum on large spatial
scales) with measurements on substantially smaller scales, to break para-
meter degeneracies remaining from the CMB results alone (see Spergel et
al. 2003). Hu and Tegmark (1999) have explicitly demonstrated how much
the accuracy of estimates of cosmological parameters is improved when
the CMB results from missions like WMAP and later Planck is comple-
mented by cosmic shear measurements (see Fig. 34). In fact, as we shall
see later, combinations of CMB anisotropy measurements have already
been combined with cosmic shear measurements (see Fig. 47) and lead to
substantially improved constraints on the cosmological parameters.

• It provides a fully independent way to probe the cosmological model; given
the revolutionary claims coming from the CMB, SN Ia, and the LSS of the
galaxy distribution, namely that more than 95% of the contents in the Uni-
verse is in a form that we have not the slightest idea about what it is (the
names ‘dark matter’ and ‘dark energy’ reflect our ignorance about their
physical nature), an additional independent verification of these claims is
certainly welcome.

• For a foreseeable future, astronomical observations will provide the only
possibility to probe the dark energy empirically. The equation of state of
the dark energy can be probed best at relatively low redshifts, that is with
SN Ia and cosmic shear observations, whereas CMB anisotropy measure-
ments are relatively insensitive to the properties of the dark energy, as the
latter was subdominant at the epoch of recombination.

• As we have seen in Sect. 5.8, cosmic shear studies provide a new and highly
valuable search method for cluster-scale matter concentrations.



Part 3: Weak Gravitational Lensing 367

WL
WK

ns, 
Wmh2, Wbh2

mn
t

T/S
A

zs

0.01 0.1 1

1

10

10–5 10–4 10–3fsky:

WL
WK

Wmh2
mn

zs

Qdeg

1
1

10

10 100

(a) Weak Lensing + MAP

(b) Weak Lensing + Planck

im
pr

ov
em

en
t 

 (
s C

M
B
/s

C
M

B
+

W
L
)

Fig. 34. The improvement of the accuracy of cosmological parameters when sup-
plementing CMB data from WMAP (upper panel) and the Planck satellite (lower
panel) by a cosmic shear survey of solid angle θ2π. The accuracies are significantly
improved, certainly when combined with WMAP, but even in combination with
Planck, the accuracies of the density parameters can be increased, when using next-
generation cosmic shear surveys with hundreds of square degrees (from Hu and
Tegmark 1999)

Expectations

The cosmic shear signal depends on the cosmological model, parameterized
by Ωm, ΩΛ, and the shape parameter Γspect of the power spectrum, the nor-
malization of the power spectrum, usually expressed in terms of σ8, and the
redshift distribution of the sources. By measuring ξ± over a significant range
of angular scales one can derive constraints on these parameters. To first or-
der, the amplitude of the cosmic shear signal depends on the combination
∼σ8 Ω

0.5
m , very similar to the cluster abundance. Furthermore, the cosmic

shear signal shows a strong dependence on the source redshift distribution.
These dependencies are easily understood qualitatively: A higher normaliza-
tion σ8 increases Pδ on all scales, thus increasing Pκ. The increase with Ωm is
mainly due to the prefactor in (99), i.e. due to the fact that the light deflec-
tion depends on Δρ, not just merely on δ = Δρ/ρ̄, as most other cosmological
probes. Finally, increasing the redshift of sources has two effects: first, the lens
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efficiency Dds/Ds = fK(ws − w)/fK(ws) at given distance w increases as the
sources are moved further away, and second, a larger source redshift implies
a longer ray path through the inhomogeneous matter distribution.

In Fig. 35 the predictions of the shear dispersion and the aperture mass
dispersion are shown as a function of angular scale, for several cosmological
models. The dependencies of the power spectrum Pκ on cosmological para-
meters and " is reflected in these cosmic shear measures. In particular, the
narrow filter function which relates the aperture mass dispersion to the power
spectrum implies that the peak in "2Pκ(") at around " ∼ 104 (see Fig. 32)
translates into a peak of

〈
M2

ap

〉
at around θ ∼ 1′. The non-linear evolution

of the power spectrum is dominating the cosmic shear result for scales below

Fig. 35. The square root of the aperture mass dispersion (left) and of the shear
dispersion (right), for the same cosmological models as were used for Fig. 32, again
with results from assuming linear growth of structure in the Universe shown as thin
curves, whereas the fully non-linear evolution was taken into account for the thick
curves. One sees that the aperture mass signal is considerably smaller than that of
the shear dispersion; this is due to the fact that the filter function Wap is much
narrower than WTH; hence, at a given angular scale,

〈
M2

ap

〉
samples less power than〈

|γ̄|2
〉
. However, this also implies that the aperture mass dispersion provides much

more localized information about the power spectrum than the shear dispersion and
is therefore a more useful statistics to consider. Other advantages of

〈
M2

ap

〉
will be

described further below. For scales below ∼30′, the non-linear evolution of the power
spectrum becomes very important (from Schneider et al. 1998a)
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∼30′; the fact that the non-linear prediction approach the linear ones at some-
what smaller scales for the shear dispersion

〈
|γ̄|2
〉

is due to the fact that this
statistics corresponds to a broad-band filter WTH (106) of Pκ which includes
the whole range of small " values, which are less affected by non-linear evolu-
tion.

Deriving Constraints

From the measured correlation functions ξ±(θ) (or any other measure of the
cosmic shear, but we will concentrate on the statistics which is most easily
obtained from real data), obtaining constraints on cosmological parameters
can proceed through maximizing the likelihood L(p|ξobs), which yields the
probability for the set of cosmological parameters being p, given the observed
correlation function ξobs. This likelihood is given by the probability P (ξobs|p)
that the observed correlation function is ξobs, given the parameters p. For a
given set of parameters p, the correlation function ξ(p) is predicted. If one
assumes that the observed correlations ξobs are drawn from a (multi-variate)
Gaussian probability distribution, then

P (ξobs|p) =
1

(2π)n/2
√

det Cov
exp

(−χ2(p, ξobs)
2

)
,

with
χ2(p, ξobs) =

∑
ij

(
ξi(p) − ξobs

i

)
Cov−1

ij

(
ξj(p) − ξobs

j

)
. (116)

Here, the ξi = ξ(θi) are the values of the correlation function(s) (i.e., either ξ±,
or using both) in angular bins, n is the number of angular bins in case either
one of the ξ± is used, or if both are combined, twice the number of angular
bins, and Cov−1

ij is the inverse of the covariance matrix, which is defined as

Covij =
〈[
ξi(p) − ξobs

i

] [
ξj(p) − ξobs

j

]〉
, (117)

where the average is over multiple realizations of the cosmic shear survey
under consideration. Covij can be determined either from the ξ± itself, from
simulations, or estimated from the data in terms of the ξobs

± (see Schneider
et al. 2002b; Kilbinger and Schneider 2004, Simon et al. 2004). Nevertheless,
the calculation of the covariance is fairly cumbersome, and most authors have
used approximate methods to derive it, such as the field-to-field variations of
the measured correlation. In fact, this latter approach may be more accurate
than using the analytic expressions of the covariance in terms of the correlation
function, which are obtained by assuming that the shear field is Gaussian, so
that the four-point correlation function can be factorized as products of two-
point correlators. As it turns out, ξ+(θ) is strongly correlated across angular
bins, much less so for ξ−(θ); this is due to the fact that the filter function
that describes ξ in terms of the power spectrum Pκ is much broader for ξ+
(namely J0) than J4 which applies for ξ−.
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The accuracy with which ξ± can be measured, and thus the covariance
matrix, depends on the number density of galaxies (that is, depth and quality
of the images), the total solid angle covered by the survey, and its geometrical
arrangement (compact survey vs. widely separated pointings). The accuracy
is determined by a combination of the intrinsic ellipticity dispersion and the
cosmic (or sampling) variance. The likelihood function then becomes

L(p|ξobs) =
1

(2π)n/2
√

det Cov
exp

(−χ2(p, ξobs)
2

)
Pprior(p) , (118)

where Pprior(p) contains prior information (or prejudice) about the parame-
ters to be determined. For example, the redshift distribution of the sources
(at given apparent magnitude) is fairly well known from spectroscopic redshift
surveys, and so the prior probability for zs would be chosen to be a fairly nar-
row function which describes this prior knowledge on the redshifts. One often
assumes that all but a few parameters are known precisely, and thus considers
a restricted space of parameters; this is equivalent to replacing the prior for
those parameters which are fixed by a delta-‘function’. If m parameters are
assumed to be undetermined, but one is mainly interested in the confidence
contours of m′ < m parameters, then the likelihood function is integrated over
the remaining m − m′ parameters; this is called marginalization and yields
the likelihood function for these m′ parameters.

There are two principal contributions to the ‘noise’ of cosmic shear mea-
surements. One is the contribution coming from the finite intrinsic ellipticity
dispersion of the source galaxies, the other due to the finite data fields of any
survey. This latter effect implies that only a typical part of the sky is mapped,
whose properties will in general deviate from the average properties of such a
region in the sky for a given cosmology. This effect is called cosmic variance,
or sample variance. Whereas the noise from intrinsic ellipticity dispersions
dominates at small angular scales, at scales beyond a few arcminutes the cos-
mic variance is always the dominating effect (e.g., Kaiser 1998; White and Hu
2000).

Of course, all of what was said above can be carried over to the other
second-order shear statistics, with their respective covariance matrices. The
first cosmic shear measurements were made in terms of the shear dispersion
and compared to theoretical prediction from a range of cosmological models.
As is true for the correlation functions, the shear dispersion is strongly corre-
lated between different angular scales. This is much less the case for the aper-
ture mass dispersion, where the correlation quickly falls off once the angular
scales differ by more than a factor ∼1.5 (see Schneider et al. 2002b). Even less
correlated is the power spectrum itself. These properties are of large interest if
the results from a cosmic shear survey are displayed as a curve with error bars;
for the aperture mass dispersion and the power spectrum estimates, these er-
rors are largely uncorrelated. However, for deriving cosmological constraints,
the correlation function ξ± are most useful since they contain all second-order
information in the data, in addition of being the primary observable.
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6.5 E-Modes, B-Modes

In the derivation of the lensing properties of the LSS, we ended up with
an equivalent surface mass density. In particular, this implied that A is a
symmetric matrix, and that the shear can be obtained in terms of κ or ψ.
Now, the shear is a 2-component quantity, whereas both κ and ψ are scalar
fields. This then obviously implies that the two shear components are not
independent of each other !

Recall that (54) yields a relation between the gradient of κ and the first
derivatives of the shear components; in particular, (54) implies that ∇×uγ ≡
0, yielding a local constraint relation between the second derivatives of the
shear components. The validity of this constraint equation guarantees that the
imaginary part of (44) vanishes. This constraint is also present at the level of
2-point statistics, since one expects from (112) that∫ ∞

0

dθ θ ξ+(θ)J0(θ") =
∫ ∞

0

dθ θ ξ−(θ)J4(θ") .

Hence, the two correlation functions ξ± are not independent. The observed
shear field is not guaranteed to satisfy these relations, due to noise, remaining
systematics, or other effects. Therefore, searching for deviations from this re-
lation allows a check for these effects. However, there might also be a ‘shear’
component present that is not due to lensing (by a single equivalent thin mat-
ter sheet κ). Shear components which satisfy the foregoing relations are called
E-modes; those which don’t are B-modes – these names are exported from the
polarization of the CMB, which has the same mathematical properties as the
shear field, namely that of a polar.

E mode

B mode

Fig. 36. Sketch of the distinction between E- and B-modes of the shear. The upper
row shows a typical E-mode shear pattern coming from a mass overdensity (left) or
underdensity (right), yielding tangential and radial alignment of the shear, respec-
tively. The lower row shows a B-mode pattern, which is obtained from the E-mode
pattern by rotating all shears by 45◦. Those cannot be produced from gravitational
lensing (from van Waerbeke and Mellier 2003)
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The best way to separate these modes locally is provided by the aperture
measures:

〈
M2

ap(θ)
〉

is sensitive only to E-modes. If one defines in analogy –
recall (77)

M⊥(θ) =
∫

d2ϑ Q(|ϑ|) γ×(ϑ) , (119)

then
〈
M2

⊥(θ)
〉

is sensitive only to B-modes. In fact, one can show that for
a pure E-mode shear field, M⊥ ≡ 0, and for a pure B-mode field, Map ≡ 0.
Furthermore, in general (that is, even if a B-mode is present), 〈Map〉 = 0,
since 〈κ〉 = 0, and 〈M⊥〉 = 0, owing to parity invariance: a non-zero mean
value of M⊥ would introduce a net orientation into the shear field. Using the
same argument, one finds that

〈
Mm

apM
n
⊥
〉

= 0 for n odd (Schneider 2003).

E/B-mode Decomposition of a Shear Field

There are a number of (equivalent) ways to decompose a shear field into its
two modes. One is provided by the Kaiser and Squires mass reconstruction
(44), which yields, for a general shear field, a complex surface mass density
κ = κE + iκB. Another separation is obtained by considering the vector field
uγ(θ) (54) obtained from the first derivatives of the shear components. This
vector will in general not be a gradient field; its gradient component corre-
sponds to the E-mode field, the remaining one to the B-mode. Hence one
defines

∇2κE = ∇ · uγ ; ∇2κB = ∇× uγ . (120)

In full analogy with the ‘lensing-only’ case (i.e., a pure E-mode), one de-
fines the (complex) potential ψ(θ) = ψE(θ) + iψB(θ) by the Poisson equation
∇2ψ = 2κ, and the shear is obtained in terms of the complex ψ in the usual
way,

γ = γ1 + iγ2 = (ψ,11 − ψ,22) /2 + iψ,12

=
[
1
2
(
ψE

,11 − ψE
,22

)
− ψB

,12

]
+ i
[
ψE

,12 +
1
2
(
ψB

,11 − ψB
,22

)]
. (121)

On the level of second-order statistics, one considers the Fourier transforms of
the E- and B-mode convergence, and defines the two power spectra PE, PB,
and the cross-power spectrum PEB by〈

κ̂E(	)κ̂E∗(	′)
〉

= (2π)2 δD(	 − 	′)PE(") ,〈
κ̂B(	)κ̂B∗(	′)

〉
= (2π)2 δD(	 − 	′)PB(") , (122)〈

κ̂E(	)κ̂B∗(	′)
〉

= (2π)2 δD(	 − 	′)PEB(") .

From what was said above, the cross power PEB vanishes for parity-symmetric
shear fields, and we shall henceforth ignore it. The shear correlation functions
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now depend on the power spectra of both modes, and are given as (Crittenden
et al. 2002; Schneider et al. 2002a)

ξ+(θ) =
∫ ∞

0

d" "
2π

J0("θ) [PE(") + PB(")] ,

ξ−(θ) =
∫ ∞

0

d" "
2π

J4("θ) [PE(") − PB(")] .

Hence, in the presence of B-modes, the ξ− correlation function cannot be ob-
tained from ξ+, as was the case for a pure E-mode shear field. The inverse
relation (112) now gets modified to

PE(") = π

∫ ∞

0

dθ θ [ξ+(θ)J0("θ) + ξ−(θ)J4("θ)] ,

PB(") = π

∫ ∞

0

dθ θ [ξ+(θ)J0("θ) − ξ−(θ)J4("θ)] . (123)

Hence, the two power spectra can be obtained from the shear correlation
functions. However, due to the infinite range of integration, one would need
to measure the correlation functions over all angular scales to apply the pre-
vious equations for calculating the power spectra. Much more convenient for
the E/B-mode decomposition is the use of the aperture measures, since one
can show that

〈
M2

ap

〉
(θ) =

1
2π

∫ ∞

0

d" " PE(")Wap(θ") ,

〈
M2

⊥
〉
(θ) =

1
2π

∫ ∞

0

d" " PB(")Wap(θ") , (124)

so that these two-point statistics clearly separate E- and B-modes. In ad-
dition, as mentioned before, they provide a highly localized measure of the
corresponding power spectra, since the filter function Wap(η) involved is very
narrow. As was true for the E-mode only case, the aperture measures can be
expressed as finite integrals over the correlation functions,

〈
M2

ap

〉
(θ)=

1
2

∫
dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
,

〈
M2

⊥
〉
(θ) =

1
2

∫
dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
− ξ−(ϑ)T−

(
ϑ

θ

)]
, (125)

where the two functions T± are the same as in (115) and have been given ex-
plicitly in Schneider et al. (2002a) for the weight function Q given in (81), and
in Jarvis et al. (2003) for the weight function (110). Hence, the relations (125)
remove the necessity to calculate the aperture measures by placing apertures
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on the data field which, owing to gaps and holes, would make this an inac-
curate and biased determination. Instead, obtaining the correlation functions
from the data is all that is needed.

The relations given above have been applied to recent cosmic shear surveys,
and significant B-modes have been discovered (see Sect. 7); the question now
is what are they due to ? As mentioned before, the noise, which contributes to
both E- and B-modes in similar strengths, could be underestimated, the cos-
mic variance which also determines the error bars on the aperture measures
and which depends on fourth-order statistical properties of the shear field
could also be underestimated, there could be remaining systematic effects, or
B-modes could indeed be present. There are two possibilities known to gener-
ate a B-mode through lensing: The first-order in Φ (or ‘Born’) approximation
may not be strictly valid, but as shown by ray-tracing simulations through
cosmic matter fields (e.g., Jain et al. 2000), the resulting B-modes are expected
to be very small. Clustering of sources also yields a finite B-mode (Schneider
et al. 2002a), but again, this effect is much smaller than the observed ampli-
tude of the B-modes (see Fig. 37).

Fig. 37. The correlation functions ξ±(θ) for a ΛCDM model with Γspect = 0.21
and σ8 = 1, and a source population with mean redshift of 〈zs〉 = 1.5. Also plotted
are the corresponding correlation functions that arise separately from the E- and
B-modes, with the ξE+ mode curve coinciding within the line thickness with ξ+. In
this calculation, the clustering of the faint galaxy population was taken into account,
and they give rise to a very small B-mode contribution, as can be seen from the ξB±
curves. The smallness of the B-mode due to intrinsic source clustering renders this
effect not viable to explain the B-modes observed in some of the cosmic shear surveys
(from Schneider et al. 2002a)
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Intrinsic Alignment of Source Galaxies

Currently the best guess for the generation of a finite B-mode are intrinsic
correlations of galaxy ellipticities. Such intrinsic alignments of galaxy ellip-
ticities can be caused by tidal gravitational fields during galaxy formation,
owing to tidal interactions between galaxies, or between galaxies and clusters.
Predictions of the alignment of the projected ellipticity of the galaxy mass
can be made analytically (e.g. in the frame of tidal torque theory) or from
numerical simulations; however, the predictions from various groups differ by
large factors (e.g., Croft and Metzler 2001; Crittenden et al. 2001; Heavens
et al. 2000; Jing 2002) which means that the process is not well understood
at present. For example, the results of these studies depend on whether one
assumes that the light of a galaxy is aligned with the dark matter distribu-
tion, or aligned with the angular momentum vector of the dark halo. This is
related to the question of whether the orientation of the galaxy light (which
is the issue of relevance here) is the same as that of the mass.

If intrinsic alignments play a role, then

ξ+ =
〈
εi ε

∗
j

〉
=
〈
ε
(s)
i ε

(s)∗
j

〉
+ ξlens

+ , (126)

and measured correlations ξ± contain both components, the intrinsic corre-
lation and the shear. Of course, there is no reason why intrinsic correlations
should have only a B-mode. If a B-mode contribution is generated through this
process, then the measured E-mode is most likely also contaminated by in-
trinsic alignments. Given that intrinsic alignments yield ellipticity correlations
only for spatially close sources (i.e., close in 3-D, not merely in projection),
it is clear that the deeper a cosmic shear survey is, and thus the broader the
redshift distribution of source galaxies, the smaller is the relative amplitude
of an intrinsic signal. Most of the theoretical investigations on the strength
of intrinsic alignments predict that the deep cosmic shear surveys (say, with
mean source redshifts of 〈zs〉 ∼ 1) are affected at a ∼10% level, but that shal-
lower cosmic shear surveys are more strongly affected; for them, the intrinsic
alignment can be of same order or even larger than the lensing signal.

However, the intrinsic signal can be separated from the lensing signal if red-
shift information of the sources is available, owing to the fact that

〈
ε
(s)
i ε

(s)∗
j

〉
will be non-zero only if the two galaxies are at essentially the same redshift.
Hence, if z-information is available (e.g., photometric redshifts), then galaxy
pairs which are likely to have similar redshifts are to be avoided in estimating
the cosmic shear signal (King and Schneider 2002, Heymans and Heavens 2003,
Takada and White 2004). This will change the expectation value of the shear
correlation function, but in a controllable way, as the redshifts are assumed
to be known. Indeed, using (photometric) redshifts, one can simultaneously
determine the intrinsic and the lensing signal, essentially providing a cosmic
shear tomography (King and Schneider 2003). This again is accomplished by
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employing the fact that the intrinsic correlation can only come from galax-
ies very close in redshift. Hence, in the presence of intrinsic alignments, the
redshift dependent correlation functions ξ±(z1, z2; θ) between galaxies with
estimated redshifts zi are expected to show a strong peak over the range
|z1 − z2| <∼ Δz, where Δz is the typical uncertainty in photometric redshifts.
It is this peak that allows one to identify and subtract the intrinsic signal
from the correlation functions. An efficient method to calculate the covari-
ance of the redshift-dependent correlation functions has been developed by
Simon et al. (2004), where the improvement in the constraints on cosmolog-
ical parameters from redshift information has been studied, confirming the
earlier results by Hu (1999) which were based on considerations of the power
spectrum.

Brown et al. (2003) obtained a measurement of the intrinsic ellipticity cor-
relation from the Super-COSMOS photographic plate data, where the galaxies
are at too low a redshift for cosmic shear playing any role. Heymans et al.
(2004) used the COMBO-17 data set (that will be described in Sect. 7.3 below)
for which accurate photometric redshifts are available to measure the intrin-
sic alignment. The results from both studies is that the models predicting a
large intrinsic amplitude can safely be ruled out. Nevertheless, intrinsic align-
ment affects cosmic shear measurements, at about the 2% level for a survey
with the depth of the VIRMOS-DESCART survey, and somewhat more for
the slightly shallower COMBO-17 survey. Hence, to obtain precision measure-
ments of cosmic shear, very important for constraining the equation of state
of dark energy, these physically close pairs of galaxies need to be identified in
the survey, making accurate photometric redshifts mandatory.

Correlation Between Intrinsic Ellipticity and Shear

The relation (126) above implicitly assumes that the shear is uncorrelated
with the intrinsic shape of a neighboring galaxy. However, as pointed out
by Hirata and Seljak (2004), this is not necessarily the case. Hence consider
galaxies at two significantly different redshifts zi < zj . For them, the first
term in (126) vanishes. However, making use of ε = ε(s) + γ, one finds〈

εiε
∗
j

〉
=
〈
ε
(s)
i γ∗

j

〉
+ ξlens

+ , (127)

where the first term on the right-hand side describes the correlation between
the intrinsic ellipticity of the lower-redshift galaxy with the shear along the
l.o.s. to the higher-redshift one. The correlation can in principle be non-zero: if
the intrinsic alignment of the light of a galaxy is determined by the large-scale
tidal gravitational field, then this tidal field at the redshift zi causes both, an
alignment of the nearer galaxy and a contribution to the shear of the more
distant one (see Fig. 38). This alignment effect can therefore not be removed
by considering only pairs at different redshifts.

The importance of this effect depends on the nature of the alignment of
galaxies relative to an external tidal field. If the alignment is linear in the tidal
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Fig. 38. A tidal gravitational field, for example caused by two matter concentra-
tions, can produce an alignment of a galaxy situated at the same redshift (indicated
by the solid ellipse), as well as contributing to the shear toward a more distant
galaxy (as indicated by the dashed ellipse) (from Hirata and Seljak 2004)

field strength, then this effect can be a serious contaminant of the cosmic shear
signal, in particular for relatively shallow surveys (where the mean source red-
shift is small); in particular, this effect can yield much larger contaminations
than the intrinsic alignment given by the first term in (126). As can be seen
from Fig. 38, the resulting contribution is negative, hence decreases the lens-
ing signal. If, however, the intrinsic alignment depends quadratically on the
tidal field, as is suggested by tidal torque theory, than this effect is negligible.
Whether or not this effect is relevant needs to be checked from observations.
Assuming that the matter density field is represented approximately by the
galaxy distribution, the latter can be used to estimate the tidal gravitational
field, in particular its direction. Alternatively, since the correlation between
the intrinsic alignment and the shear toward more distant galaxies has a differ-
ent redshift dependence than the lensing shear signal, these two contributions
can be disentangled from the z-dependence of the signal.

It should be noted that the use of photometric redshifts also permits to
study the cosmic shear measures as a function of source redshift; hence, one
can probe various redshift projections Pκ(") of the underlying power spec-
trum Pδ(k; z) separately. This is due to the fact that the cosmic shear signal
from different populations of galaxies (i.e., with different redshift distribu-
tions) lead to different weight functions g(w) [see (94)], and thus to different
weighting in the projection (99) of the power spectrum. Not surprisingly, un-
certainties of cosmological parameters are thereby reduced (Hu 1999; Simon
et al. 2004). Also, as shown by Taylor (2001), Hu and Keeton (2002) and
Bacon and Taylor (2003), in principle the three-dimensional mass distribu-
tion δ(x) can be reconstructed if the redshifts of the source galaxies are known
(see Sect. 7.6).

6.6 Predictions; Ray-Tracing Simulations

The power spectrum of the convergence Pκ can be calculated from the power
spectrum of the cosmological matter distribution Pδ, using (99); the latter in
turn is determined by the cosmological model. However, since the non-linear
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evolution of the power spectrum is essential for making accurate quantitative
predictions for the shear properties, there is no analytic method known how
to calculate the necessary non-linear Pδ. As was mentioned in Sect. 6.1 of
IN, fairly accurate fitting formulae exist which yield a closed-form expression
for Pδ and which can be used to obtain Pκ (see, e.g., Jain and Seljak 1997).
Nevertheless, there are a number of reasons why this purely analytic approach
should at least be supplemented by numerical simulations.

• First, the fitting formulae for Pδ (Peacock and Dodds 1996; Smith et al.
2003) have of course only a finite accuracy, and are likely to be insufficient
for comparison with results from the ongoing cosmic shear surveys which
are expected to yield very accurate measurements, owing to their large
solid angle.

• A second reason why simulations are needed is to test whether the var-
ious approximations that enter the foregoing analytical treatment are in
fact accurate enough. To recall them, we employed the Born approxima-
tion, i.e., neglected terms of higher order than linear in the Newtonian
potential when deriving the convergence, and we assumed that the shear
everywhere is small, so that the difference between shear and reduced
shear can be neglected, at least on average. This, however, is not guaran-
teed: regions in the sky with large shear are most likely also those regions
where the convergence is particularly large, and therefore, there one ex-
pects a correlation between γ and κ, which can affect the dispersion of
g = γ/(1 − κ).

• Third, whereas fairly accurate fitting formulae exist for the power spec-
trum, this is not the case for higher-order statistical properties of the
matter distribution; hence, when considering higher-order shear statistics
(Sect. 9), numerical simulations will most likely be the only way to obtain
accurate predictions.

• The covariance of the shear correlations (and all other second-order shear
measures) depends on fourth-order statistics of the shear field, for which
hardly any useful analytical approximations are available. The analytical
covariance estimates are all based on the Gaussian assumption for the
fourth-order correlators. Therefore, simulations are invaluable for the cal-
culation of these covariances, which can be derived for arbitrary survey
geometries.

Ray-Tracing Simulations: The Principle

The simulations proceed by following light rays through the inhomogeneous
matter distribution in the Universe. The latter is generated by cosmological
simulations of structure evolution. Those start at an early epoch by generating
a realization of a Gaussian random field with a power spectrum according to
the cosmological model considered, and follow the evolution of the density and
velocity field of the matter using Newtonian gravity in an expanding Universe.
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The mass distribution is represented by discrete particles whose evolution in
time is followed. A finite volume of the Universe is simulated this way, typically
a box of comoving side-length L, for which periodic boundary conditions are
applied. This allows one to use Fast Fourier Transforms (FFT) to evaluate
the gravitational potential and forces from the density distribution. The box
size L should be chosen such that the box contains a representative part of the
real Universe, and must therefore be larger than the largest scales on which
structure is expected, according to the power spectrum; a reasonable choice
is L >∼ 100h−1 Mpc. The number of grid points and the number of particles
that can be distributed in this volume is limited by computer memory; modern
simulations work typically with 2563 points and the same number of particles,
though larger simulations have also been carried out; this immediately yields
the size of grid cells, of order 0.5h−1 Mpc. This comoving length, if located
at a redshift of z ∼ 0.3 (which is about the most relevant for cosmic shear),
subtends an angle of roughly 2′ on the sky. The finite number of particles
yields the mass resolution of the simulations, which is typically ∼1010h−1M�,
depending on cosmological parameters.

In order to obtain higher spatial resolution, force calculations are split up
into near-field and far-field forces. The gravitational force due to the distant
matter distribution is obtained by grid-based FFT methods, whereas the force
from nearby masses is calculated from summing up the forces of individual
particles; such simulations yield considerably higher resolution of the resulting
mass distribution. Since the matter in these simulations is represented by mas-
sive particles, these can undergo strong interactions, leading to (unphysical)
large orbital deflections. In order to avoid these unphysical strong collisions,
the force between pairs of particles is modified at short distances, typically
comparable to the mean separation of two particles in the simulation. This
softening length defines the minimum length scale on which the results from
numerical simulations can be considered reliable. Cosmological simulations
consider either the dark matter only or, more recently, the hydrodynamics
effects of baryons have been incorporated as well.

The outcome of such simulations, as far as they are relevant here, are
the 3-dimensional positions of the matter particles at different (output) times
or redshifts. In order to study the light propagation through this simulated
mass distribution, one employs multiple lens-plane theory. First, the vol-
ume between us and sources at some redshift zs is filled with boxes from
the cosmological simulations. That is, the comoving distance ws = w(zs) is
split up into n intervals of length L, and the mass distribution at an out-
put time close to ti = t(w = (i − 1/2)L) is considered to be placed at this
distance. In this way, one has a light cone covered by cubes containing rep-
resentative matter distributions. Since the mass distributions at the different
times ti are not independent of each other, but one is an evolved version
of the earlier one, the resulting mass distribution is highly correlated over
distances much larger than L. This can be avoided by making use of the sta-
tistical homogeneity and isotropy of the mass distribution: each box can be
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translated by an arbitrary two-dimensional vector, employing the periodicity
of the mass distribution, and rotated by an arbitrary angle; furthermore, the
three different projections of the box can be used for its orientation. In this
way – a kind of recycling of numerical results – the worst correlations are
removed.

Alternatively, one can combine the outputs from several simulations with
different realizations of the initial conditions. In this case, one can use simu-
lation boxes of different spatial extent, to match the comoving size of a big
light cone as a function of redshift. That is, for a given light-cone size, only
relatively small boxes are needed at low redshifts, and bigger ones at higher
redshift (see White and Hu 2000).

Second, the mass in each of these boxes is projected along the line-of-
sight, yielding a surface mass density at the appropriate comoving distance
wi = (i− 1/2)L. Each of these surface mass densities can now be considered
a lens plane, and the propagation of light can be followed from one lens plane
to the next; the corresponding theory was worked out in detail by Blandford
and Narayan(1986; see also Chap. 9 of SEF), but applied as early as 1970
by Refsdal (1970) for a cosmological model consisting of point masses only
(see also Schneider and Weiss 1988a,b). Important to note is that the sur-
face mass density Σ in each lens plane is the projection of Δρ = ρ − ρ̄ of
a box, so that for each lens plane, 〈Σ〉 = 0. As has been shown in Seitz
et al. (1994), this multiple lens-plane approach presents a well-defined dis-
cretization of the full 3-dimensional propagation equations. Light bundles are
deflected and distorted in each lens plane and thus represented as piecewise
straight rays. The resulting Jacobi matrix A is then obtained as a sum of
products of the tidal matrices in the individual lens planes, yielding a dis-
cretized version of the form (88) for A. The result of such simulations is
then the matrix A(θ) on a predefined angular grid, as well as the positions
β(θ) in the source plane. The latter will not be needed here, but have been
used in studies of multiple images caused by the LSS (see Wambsganss et al.
1998).

One needs special care in applying the foregoing prescription; in particular,
in the smoothing process to obtain a mass distribution from the discrete par-
ticles; Jain et al. (2000) contains a detailed discussion on these issues.10 The
finite spatial resolution in the simulations translates into a redshift-dependent
angular resolution, which degrades for the low redshift lens planes; on the
other hand, those have a small impact on the light propagation due to the
large value of Σcr for them [see (10) of IN]. The discreteness of particles gives
rise to a shot-noise term in the mass distribution, yielding increased power on
small angular scales.

10 For other recent ray-tracing simulations related to cosmic shear, see e.g. Barber
et al. (2000); Hamana and Mellier (2001); Premadi et al. (2001); Taruya et al.
(2002); Fluke et al. (2002); Barber (2002); Vale and White (2003).



Part 3: Weak Gravitational Lensing 381

Results From Ray-Tracing Simulations

We shall summarize here some of the results from ray-tracing simulation:

• Whereas the Jacobi matrix in this multi-deflection situation is no longer
symmetric, the contribution from the asymmetry is very small. The power
spectrum of the asymmetric part of A is at least three orders of mag-
nitude smaller than the power spectrum Pκ, for sources at zs = 1 (Jain
et al. 2000). This result is in accord with analytical expectations (e.g.,
Bernardeau et al. 1997; Schneider et al. 1998a), i.e., that terms quadratic
in the Newtonian potential are considerably smaller than first-order terms,
and supports the validity of the Born approximation. Furthermore, this
result suggests that a simpler method for predicting cosmic shear distri-
butions from numerical simulations may be legitimate, namely to project
the mass distribution of all lens planes along the grid of angular positions,
with the respective weighting factors, according to (92), i.e., employing the
Born approximation. Of course this simplified method is computationally
much faster than the full ray-tracing.

• The power spectra obtained reproduce the ones derived using (99), over
the range of wavevectors which are only mildly affected by resolution and
discreteness effects. This provides an additional check on the accuracy of
the fitting formulae for the non-linear power spectrum.

• The simulation results give the full two-dimensional shear map, and thus
can be used to study properties other than the second-order ones, e.g.,
higher-order statistics, or the occurrence of circular shear patters indicat-
ing the presence of strong mass concentrations. An example of such maps
is shown in Fig. 26. These shear maps can be used to simulate real sur-
veys, e.g, including the holes in the data field resulting from masking or
complicated survey geometries, and thus to determine the accuracy with
which the power spectra can be determined from such surveys. Note that
in order to quantify the error (or covariance matrix) of any second-order
statistics, one needs to know the fourth-order statistics, which in general
cannot be obtained analytically when outside the linear (Gaussian) regime.
Simulations are also used to obtain good survey strategies.

Higher-Order Correction Terms

Up to now we have considered the lowest-order approximation of the Jacobi
matrix (88) and have argued that this provides a sufficiently accurate descrip-
tion. Higher-order terms in Φ were neglected since we argued that, because the
Newtonian potential is very small, these should play no important role. How-
ever, this argument is not fully correct since, whereas the potential certainly
is small, its derivatives are not necessarily so. Of course, proper ray-tracing
simulation take these higher-order terms automatically into account.
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We can consider the terms quadratic in Φ when expanding (88) to higher
order. There are two such terms, one containing the product of second-order
derivatives of Φ, the other a product of first derivatives of Φ and its third
derivatives. The former is due to lens-lens coupling: The shear and surface
mass densities from different redshifts (or lens planes, in the discretized ap-
proximation) do not simply add, but multi lens plane theory shows that the
tidal matrices from different lens planes get multiplied. The latter term comes
from dropping the Born approximation and couples the deflection of a light
ray (first derivative of Φ) with the change of the tidal matrix with regards
to the position (third derivatives of Φ). These terms are explicitly given in
the appendix of Schneider et al. (1998a), in Bernardeau et al. (1997) and in
Cooray and Hu (2002) and found to be indeed small, providing corrections
of at most a few percent. Furthermore, Hamana (2001) has shown that the
magnification bias caused by the foreground matter inhomogeneities on the
selection of background galaxies has no practical effect on second-order cosmic
shear statistics.

Another effect that affects the power spectrum Pκ is the difference between
shear and reduced shear, the latter being the observable. Since the correlation
function of the reduced shear is the correlation function of the shear plus a
term containing a product of two shears and one surface mass density, this
correction depends linearly on the third-order statistical properties of the
projected mass κ. Also this correction turns out to be very small; moreover,
it does not give rise to any B-mode contribution (Schneider et al. 2002a).

7 Large-Scale Structure Lensing: Results

After the theory of cosmic shear was considered in some detail in the previous
section, we shall summarize here the observational results that have been ob-
tained so far. In fact, as we will see, progress has been incredibly fast over the
past ∼four years, with the first detections reported in 2000, and much larger
surveys being available by now, with even larger ones ongoing or planned.
Already by now, cosmic shear is one of the pillars on which our cosmological
model rests.

The predictions discussed in the previous section have shown that the rms
value of cosmic shear is of the order of ∼2 % on angular scales of ∼1′, and con-
siderably smaller on larger scales. These small values make the measurements
of cosmic shear particularly challenging, as the observational and instrumen-
tal effects described in Sect. 3 are expected to be larger than the cosmic shear
signal, and thus have to be understood and removed with great precision. For
example, the PSF anisotropy of nearly all wide-field cameras is considerably
larger than a few percent and thus needs to be corrected for. But, as also dis-
cussed in Sect. 3, methods have been developed and thoroughly tested which
are able to do so.
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7.1 Early Detections of Cosmic Shear

Whereas the theory of cosmic shear was worked out in the early 1990’s (Bland-
ford et al. 1991; Miralda-Escudé 1991; Kaiser 1992), it took until the year 2000
before this effect was first discovered.11 The reason for this evolution must be
seen by a combination of instrumental developments, i.e. the wide-field CCD
mosaic cameras, and the image analysis software, like IMCAT (the software
package encoding the KSB method discussed in Sect. 3.5), with which shapes
of galaxies can be accurately corrected for PSF effects. Then in March 2000,
four groups independently announced their first discoveries of cosmic shear
(Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al. 2000, Wittman
et al. 2000). In these surveys, of the order of 105 galaxy images have been an-
alyzed, covering about 1 deg2. Later that year, Maoli et al. (2001) reported a
significant cosmic shear measurement from 50 widely separated FORS1@VLT
images, each of size ∼6.′5×6.′5, which also agreed with the earlier results. The
fact that the results from four independent teams agreed within the respec-
tive error bars immediately lend credit to this new window of observational
cosmology. This is also due to the fact that 4 different telescopes, 5 different
cameras (the UH8K and CFH12K at CFHT, the 8′ × 16′-imager on WHT,
the BTC at the 4m-CTIO telescope and FORS1 at the VLT), independent
data reduction tools and at least two different image analysis methods have
been used. These early results are displayed in Fig. 39, where the (equivalent)
shear dispersion is plotted as a function of effective circular aperture radius,
together with the predictions for several cosmological models. It is immedi-
ately clear that a high-normalization Einstein-de Sitter model can already be
excluded from these early results, but the other three models displayed are
equally valid approximations to the data.

Maoli et al. (2001) considered the constraints one obtains by combining the
results from these five surveys, in terms of the normalization parameter σ8 of
the power spectrum. The confidence contours in the Ωm−σ8-plane are shown
in Fig. 40. There is clearly a degeneracy between these two parameters from
the data sets considered, roughly tracing σ8 ∼ 0.59Ω−0.47

m ; although the best
fitting model is defined by Ωm = 0.26, σ8 = 1.1, it cannot be significantly
distinguished from, e.g., a Ωm = 1, σ8 = 0.62 model since the error bars
displayed in Fig. 39 are too large and the range of angular scales over which
the shear was measured is too small. In Fig. 40, the solid curve displays the
normalization as obtained from the abundance of massive clusters, which is
seen to follow pretty much the valley of degeneracy from the cosmic shear
analysis. This fact should not come as a surprise, since the cluster abundance
probes the power spectrum on a comoving scale of about 8h−1 Mpc, which is

11 An early heroic attempt by Mould et al. (1994) to detect cosmic shear on a single
∼9′ × 9′ field only yielded an upper limit, and the putative detection of a shear
signal by Schneider et al. (1998b; see also Fort et al. 1996) in three 2′ × 2′ fields
is, due to the very small sky area, of no cosmological relevance.
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Fig. 39. Shear dispersion as a function of equivalent circular aperture radius as
obtained from the first five measurements of cosmic shear (MvWM+: Maoli et al.
2001; vWME+: van Waerbeke et al. 2000; KWL: Kaiser, Wilson and Luppino 2000;
BRE: Bacon, Refregier and Ellis 2000; WTK: Wittman et al. 2000). The data points
within each team are not statistically independent, due to the fairly strong covari-
ance of the shear dispersion on different angular scales, but points from different
teams are independent (see text). The error bars contain the noise from the intrinsic
ellipticity dispersion and, for some of the groups, also an estimate of cosmic variance.
The four curves are predictions from four cosmological models; the upper-most one
corresponds to an Einstein-de Sitter Universe with normalization σ8 = 1, and can
clearly be excluded by the data. The other three models are cluster normalized –
see Sect. 4.4 of IN – and all provide equally good fits to these early data (courtesy:
Y. Mellier)

comparable to the median scale probed by the cosmic shear measurements.
However, the predictions of the cluster abundance rely on the assumption that
the initial density field was Gaussian, whereas the cosmic shear prediction is
independent of this assumption, which therefore can be tested by comparing
the results from both methods.

7.2 Integrity of the Results

As mentioned before, the cosmic shear effects are smaller than many observa-
tional effects (like an anisotropic PSF) that could mimic a shear; it is therefore
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Fig. 40. Constraints on Ωm and σ8 from the five surveys shown in Fig. 39; shown are
1, 2 and 3-σ confidence regions. The cross denotes the best-fitting model, but as can
be seen, these two parameters are highly degenerate with the data used. The solid
curve displays the constraint from cluster normalization (from Maoli et al. 2001)

necessary to exclude as much as possible such systematics from the data. The
early results described above were therefore accompanied by quite a large
number of tests; they should be applied to all cosmic shear surveys as a sanity
check. A few of those shall be mentioned here.

Stellar Ellipticity Fits

The ellipticity of stellar objects should be well fitted by a low-order function,
so one is able to predict the PSF anisotropy at galaxy locations. After sub-
tracting this low-order fit from the measured stellar ellipticities, there should
be no coherent spatial structure remaining, and the ellipticity dispersion of
the corrected ellipticities should be considerably smaller that the original ones,
essentially compatible with measurement noise.

Correlation of PSF Anisotropy with Corrected Galaxy Ellipticities

After correcting for the anisotropy of the PSF, there should remain no cor-
relation between the corrected galaxy ellipticities and the ellipticity of the
PSF. This correlation can be measured by considering 〈ε ε∗〉, where ε is the
corrected galaxy ellipticity (31), and ε∗ the uncorrected stellar ellipticity (i.e.,
the PSF anisotropy). Bacon et al. (2000) found that for fairly low signal-to-
noise galaxy images, this correlation was significantly different from zero, but
for galaxies with high S/N (only those entered their cosmic shear analysis), no
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significant correlation remained. The same was found in van Waerbeke et al.
(2000), except that the average 〈ε1〉 was slightly negative, but independent of
ε∗1. The level of 〈ε1〉 was much smaller than the estimated cosmic shear, and
does not affect the latter by more than 10 %.

Spatial Dependence of Mean Galaxy Ellipticity

When a cosmic shear survey consist of many uncorrelated fields, the mean
galaxy ellipticity at a given position on the CCD chips should be zero, due to
the assumed statistical isotropy of the shear field. If, on the other hand, the
shear averaged over many fields shows a dependence on the chip position, most
likely optical distortions and/or PSF effects have not been properly accounted
for.

Parity Invariance

The two-point correlation function ξ×(θ) = 〈γtγ×〉 (θ) is expected to vanish
for a density distribution that is parity symmetric. More generally, every as-
trophysical cause for a ‘shear’ signal (such as intrinsic galaxy alignments, or
higher-order lensing effects) is expected to be invariant under parity transfor-
mation. A significant cross-correlation ξ× would therefore indicate systematic
effects in the observations and/or data analysis.

7.3 Recent Cosmic Shear Surveys

Relatively soon after the announcement of the first cosmic shear detections,
additional results were published. These newer surveys can roughly be classi-
fied as follows: deep surveys, shallower, but much wider surveys, and special
surveys, such as obtained with the Hubble Space Telescope. We shall mention
examples of each of these classes here, without providing a complete list.

Deep Surveys

Currently the largest of the deep surveys from which cosmic shear results
have been published is the VIRMOS-DESCART survey, carried out with the
CFH12K camera at the CFHT; this camera covers about 45′ × 30′ in one
exposure. The exposure time of the images, taken in the I-band, is one hour.
The survey covers four fields of 2◦ × 2◦ each, of which roughly 8.5 deg2 have
been used for a weak lensing analysis up to now (van Waerbeke et al. 2001,
2002). About 20% of the area is masked out, to account for diffraction spikes,
image defects, bright and large foreground objects etc. The number density of
galaxy images used for the cosmic shear analysis is about 17 arcmin−2. A small
part of this survey was used for the early cosmic shear detection (van Waerbeke
et al. 2000). Compared to the earlier results, the error bars on the shear
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Fig. 41. The shear dispersion as a function of aperture radius (left) and the shear
correlation function ξ+(θ) (right) as measured from the VIRMOS-DESCART sur-
vey (van Waerbeke et al. 2001). The lower panel on the right shows an enlarge-
ment with logarithmic axis of the larger figure. The error bars were calculated from
simulations in which the galaxy images have been randomized in orientation. The
curves show predictions from three different cosmological models, corresponding to
(Ωm, ΩΛ, σ8) = (0.3, 0, 0.9) (open model, short-dashed curves), (0.3, 0.7, 0.9) (low-
density flat model, solid curves), and (1, 0, 0.6) (Einstein-de Sitter Universe, long-
dashed curves). In all cases, the shape parameter of the power spectrum was set to
Γspect = 0.21. The redshift distribution of the sources was assumed to follow the law
(128), with α = 2, β = 1.5 and z0 = 0.8, corresponding to a mean redshift of z̄ ≈ 1.2

measurements are greatly reduced, owing to the much better statistics. We
show in Fig. 41 the shear dispersion and the correlation function as measured
from this survey. Furthermore, this survey yielded the first detection of a
significant

〈
M2

ap

〉
-signal; we shall come back to this later. In order to compare

the measured shear signal with cosmological predictions, one needs to assume
a redshift distribution for the galaxies; a frequently used parameterization for
this is

p(z) = N

(
z

z0

)α

exp

[
−
(

z

z0

)β
]

, (128)

where α and β determine the shape of the redshift distribution, z0 the charac-
teristic redshift, and N is a normalization factor, chosen such as

∫
dz p(z) = 1.

Another example of a deep survey is the Suprime-Cam survey (Hamana
et al. 2003), a 2.1 deg2 survey taken with the wide-field camera Suprime-
Cam (with a 34′ × 27′ field-of-view) at the 8.2-m Subaru telescope. With an
exposure time of 30min, the data is considerably deeper than the VIRMOS-
DESCART survey, due to the much larger aperture of the telescope. After
cuts in the object catalog, the resulting number density of objects used for
the weak lensing analysis is ≈ 30 arcmin−2. Figure 42 shows how small the
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Fig. 42. Stellar ellipticities before and after correction for PSF anisotropies in the
Suprime-Cam survey. Numbers give mean and dispersion of stellar ellipticities |χ|
(from Hamana et al. 2003)

PSF anisotropy is, and that the correction with a fifth-order polynomial over
the whole field-of-view in fact reduces the remaining stellar ellipticities consid-
erably. This survey has detected a significant cosmic shear signal, as measured
by the shear correlation functions and the aperture mass dispersion, over an-
gular scales 2′ <∼ θ <∼ 40′. The shear signal increases as fainter galaxies are
used in the analysis, as expected, since fainter galaxies are expected to be at
larger mean redshift and thus show a stronger shear signal.

Bacon et al. (2003) combine images taken at the Keck II telescope and the
WHT. For the former, 173 fields were used, each having a f.o.v. of 2′×8′; and
the data from WHT were obtained from 20 different fields, covering about
1 deg2 in total. The large number of fields minimizes the sample variance of
this particular survey, and the two instruments used allowed a cross-check of
instrumental systematics.

Very Wide Surveys

Within a given observing time, instead of mapping a sky region to fairly deep
magnitudes, one can also map larger regions with smaller exposure time; since
most of the surveys have been carried out with goals in addition to cosmic
shear, the survey strategy will depend on these other considerations. We shall
mention two very wide surveys here.

Hoekstra et al. (2002a; also Hoekstra et al. 2002b) used the Red Cluster
Sequence (RCS) survey, a survey designed to obtain a large sample of galaxy
clusters using color selection techniques (Gladders and Yee 2000). The cosmic
shear analysis is based on 53 deg2 of RC-band data, spread over 13 patches
on the sky and observed with two different instruments, the CFH12K@CFHT
for Northern fields, and the Mosaic II camera at the CTIO 4m telescope in
the South. The integration times are 900 s and 1200 s, respectively. The shear
dispersion as measured with the two instruments are in satisfactory agreement
and thus can be safely combined. Owing to the shallower magnitude, the
detected shear is smaller than in the deeper surveys mentioned above: on a
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scale of 2.5 arcmin, the shear dispersion is
〈
|γ̄|2
〉
∼ 4 × 10−5 in the RCS

survey, compared to ∼2 × 10−4 in the deeper VIRMOS-DESCART survey
(see Fig. 41), in accordance with expectations.

Jarvis et al. (2003) presented a cosmic shear survey of 75 deg2, taken with
the BTC camera and the Mosaic II camera on the CTIO 4m telescope, with
about half the data taken with each instrument. The survey covers 12 fields,
each with sidelength of ∼2.5◦. For each pointing, three exposures of 5min
were taken, making the depth of this survey comparable to the RCS. A total
of ∼2 × 106 galaxies with R ≤ 23 were used for the shear analysis. Since
this survey has some peculiar properties which are very educational, it will be
discussed in somewhat more detail. The first point to notice is the large pixel
size of the BTC, of 0.′′43 per pixel – for comparison, the CFH12K has ∼0.′′20
per pixel. With a median seeing of 1.′′05, the PSF is slightly undersampled
with the BTC. Second, the PSF anisotropy on the BTC is very large, as
shown in Fig. 43 – a large fraction of the exposures has stellar images with
ellipticities higher than 10%. Obviously, this renders the image analysis and
the correction for PSF effects challenging. As shown on the right-hand part
of Fig. 43, this challenge is indeed met. This fact is very nicely illustrated
in Fig. 44, where the corrected stellar ellipticities are shown as a function of
the PSF anisotropy; in essence, the correction reduces the PSF anisotropy by
nearly a factor of 300 !

The third point to notice is that the image analysis for this survey has
not been carried out with IMCAT (as for most of the other surveys), but by
a different image analysis method described in Bernstein and Jarvis (2002).

1% ellipticity

Fig. 43. On the left-hand side, the raw ellipticities of stars are shown for the four
CCDs of the BTC instrument; for reference, a 1% ellipticity is indicated. After
correcting for the PSF anisotropy, the remaining stellar ellipticities (shown on the
right) are of order 1–2%, and essentially uncorrelated with position on the chip, i.e.,
they are compatible with measurement noise (from Jarvis et al. 2003)
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Fig. 44. These two plots show the two components of the stellar ellipticities as mea-
sured on the data (x-axis) and after correction, from the Jarvis et al. (2003) survey.
The slope of the straight line is about 1/300, meaning that the strong PSF anisotropy
can be corrected for up to this very small residual. The final PSF anisotropy is well
below 5 × 10−4. This figure, together with Fig. 43, demonstrates how well the pro-
cedures for PSF corrections work (from Jarvis et al. 2003)

In this respect, this survey is independent of all the others described in this
section; it is important to have more than one image analysis tool to check
potential systematics of either one.

One of the amazing results from the CTIO cosmic shear survey is that the
shear dispersion can be measured with about a 3σ significance on each of the
12 fields. Hence, this provides a shear dispersion measurement on scales larger
than 1 degree (the radius of a circle with area of the mean area of the 12 fields
of ∼6.2 deg2); the shear dispersion on these scales is

〈
|γ̄|2
〉

= 0.0012± 0.0003.

Special Surveys

There are a number of cosmic shear surveys which cover a much smaller total
area than the ones mentioned above, and are thus not competitive in terms
of statistical accuracy, but which have some special properties which give
them an important complementary role. One example are surveys carried out
with the Hubble Space Telescope. Since for them the PSF is much smaller
than for ground-based observations, PSF corrections in measuring galaxy el-
lipticities are expected to be correspondingly smaller. The drawback of HST
observations is that its cameras, at least before the installment of the ACS,
have a small field-of-view, less than 1 arcmin2 for the STIS CCD, and about
5 arcmin2 for WFPC2. This implies that the total area covered by HST sur-
veys are smaller than those achievable from the ground, and that the number
of stars per field are very small, so that PSF measurements are typically not
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possible on those frames which are used for a cosmic shear analysis. Hence, the
PSF needs to be measured on different frames, e.g., taken on star clusters, and
one needs to assume (this assumption can be tested, of course) that the PSF
is fairly stable in time. In fact, this is not really true, as the telescopes moves
in and out the Earth’s shadow every orbit, thereby changing its temperature
and thus changing its length (an effect called breathing). A further potential
problem of HST observations is that the WFPC2 has a pixel scale of 0 .′′1 and
thus substantially undersamples the PSF; this is likely to be a serious problem
for very faint objects whose size is not much larger than the PSF size.

Cosmic shear surveys from two instruments onboard HST have been re-
ported in the literature so far. One of the surveys uses archival data from the
Medium Deep Survey, a mostly parallel survey carried out with the WFPC2.
Refregier et al. (2002) used 271 WFPC2 pointings observed in the I-band,
selected such that each of them is separated from the others by at least
10′ to have statistically independent fields. They detected a shear disper-
sion on the scale of the WFC-chips (which is equivalent to a scale θ ∼ 0.′72)
of
〈
|γ̄|2
〉
∼ 3.5 × 10−4, which is a 3.8σ detection. The measurement accuracy

is lower than that, owing to cosmic variance and uncertainties in the redshift
distribution of the sources. Hämmerle et al. (2002) used archival parallel data
taken with STIS; from the 121 fields which are deep enough, have multiple
exposures, and are at sufficiently high galactic latitude, they obtained a shear
dispersion of

〈
|γ̄|2
〉
∼ 15 × 10−4 on an effective scale of ∼30′′, a mere 1.5σ

detection. This low significance is due to the small total area covered by this
survey. On the other hand, since the pixel scale of STIS is half of that of
WFPC2, the undersampling problem is much less in this case. A larger set
of STIS parallel observations were analyzed with respect to cosmic shear by
Rhodes et al. (2004) and Miralles et al. (2005). Whereas Rhodes et al. ob-
tained a significant (∼5σ) detection on an angular scale of ∼30′′, Miralles
et al. concluded that the degradation of the STIS CCD in orbit regarding
the charge transfer efficiency prevents a solid measurement of weak lensing.
The discrepancies between these two works, which are based to a large de-
gree on the same data set, is unclear at present. Personally I consider this
discrepancy as a warning sign that weak lensing measurement based on small
fields-of-view, and correspondingly too few stars to control the PSF on the
science exposures, need to be regarded with extreme caution.

The new ACS onboard HST offers better prospects for cosmic shear mea-
surements, since it has a substantially larger field-of-view. A first result was
derived by Schrabback (2004), again based on parallel data. He found that the
PSF is not stable in time, but that the anisotropy pattern changes among only
a few characteristic patterns. He used those as templates, and the (typically
a dozen) stars in the science frames to select a linear combination of these
templates for the PSF correction of individual frames, thereby obtaining a
solid detection of cosmic shear from the early ACS data.

A further survey that should be mentioned here is the one conducted on
COMBO-17 fields (Brown et al. 2003). COMBO-17 is a one square degree
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survey, split over four fields, taken with the WFI at the ESO/MPG 2.2m tele-
scope on La Silla, in 5 broad-band and 12 medium-band filters. In essence,
therefore, this multi-band survey produces low-resolution spectra of the ob-
jects and thus permits to determine very accurate photometric redshifts of the
galaxies taken for the shear analysis. Therefore, for the analysis of Brown et
al., the redshift distribution of the galaxies is assumed to be very well known
and not a source of uncertainty in translating the cosmic shear measurement
into a constraint on cosmological parameters. We shall return to this aspect in
Sect. 7.6. The data set was reanalyzed by Heymans et al. (2004) where special
care has been taken to identify and remove the signal coming from intrinsic
alignment of galaxy shapes.

7.4 Detection of B-Modes

The recent cosmic shear surveys have measured the aperture mass dispersion〈
M2

ap(θ)
〉
, as well as its counterpart

〈
M2

⊥(θ)
〉

for the B-modes (see Sect. 6.5).
These aperture measures are obtained in terms of the directly measured shear
correlation functions, using the relations (125). As an example, we show in
Fig. 45 the aperture measures as obtained from the Red Cluster Sequence
survey (Hoekstra et al. 2002a). A significant measurement of

〈
M2

ap(θ)
〉

is
obtained over quite a range of angular scales, with a peak around a few ar-
cminutes, as predicted from CDM power spectra (see Fig. 35). In addition
to that, however, a significant detection of

〈
M2

⊥(θ)
〉

signifies the presence of
B-modes. As discussed in Sect. 6.5, those cannot be due to cosmic shear. The
only plausible explanation for them, apart from systematics in the observa-
tions and data analysis, is an intrinsic alignment of galaxies. If this is the
cause of the B-modes, then one would expect that the relative contribution of
the B-mode signal decreases as higher-redshift galaxies are used for the shear
measurement. In fact, this expectation is satisfied, as shown in Fig. 45, where
the galaxy sample is split into a bright and faint part, and the relative am-
plitude of the B-mode signal is smaller for the fainter (and thus presumably
more distant) sample.

Similar detections of a B-mode signal have been obtained by the other
surveys. For example, van Waerbeke et al. (2001) reported a significant B-
mode signal on angular scales of a few arcminutes. In the reanalysis of the
VIRMOS-DESCART data, van Waerbeke et al. (2002) reported that the B-
mode on these scales was caused by the polynomial PSF anisotropy fit: the
third-order function (fitted for each chip individually) has its largest amplitude
near the boundary of the chips and is least well constrained there, unless one
finds stars close to these edges. If a second-order polynomial fit is used, the
B-modes on a few arcminute scales disappear. van Waerbeke et al. (2002)
calculate the aperture statistics from the uncorrected stellar ellipticities in
their survey and found that the ‘E- and B-modes’ of the PSF anisotropy
have very similar amplitude and shape (as a function of θ). This similarity
is unlikely to change in the course of the PSF correction procedure. Thus,
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Fig. 45. The aperture mass dispersion
〈
M2

ap(θ)
〉

(top panels) and the cross aperture

dispersion
〈
M2

⊥(θ)
〉

(bottom panels) from the RCS survey (Hoekstra et al. 2002a).
In the left panels, all galaxies with apparent magnitude 20 ≤ RC ≤ 24 are used,
the middle and right panels show the same statistics for the brighter and fainter
subsamples of background galaxies, respectively. Error bars in the former are larger,
owing to the smaller number of bright galaxies

they argue, that if the B-mode is due to systematics in the data analysis, a
systematic error of very similar amplitude will also affect the E-mode. Jarvis
et al. (2003) found a significant B-mode signal on angular scales below ∼30′;
hence, despite their detection of an E-mode signal over a large range of angular
scales 1′ <∼ θ <∼ 100′, one suspects that part of this signal might be due to
non-lensing effects.

Given our lack of understanding about the origin of the B-mode signal,
and the associated likelihood that any effect causing a B-mode signal also
contributes a non-lensing part to the E-mode signal, one needs a prescrip-
tion on how to use the detected E-mode signal for a cosmological analysis.
Depending on what one believes the B-modes are due to, this prescription
varies. For example, if the B-mode is due to a residual systematic, one would
add its signal in quadrature to the error bars of the E-mode signal, as done
in van Waerbeke et al. (2002). On the other hand, if the B-mode signal is due
to intrinsic alignments of galaxies, as is at least suggested for the RCS survey
from Fig. 45 owing to its dependence on galaxy magnitudes, then it could be
more reasonable to subtract the B-mode signal from the E-mode signal, if one
assumes that intrinsic alignments produce similar amplitudes of both modes
[which is far from clear, however; Mackey et al. (2002) find that the E-mode
signal from intrinsic alignments is expected to be ∼3.5 times higher than the
corresponding B-mode signal].
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Owing to the small size of the fields observed with the early HST instru-
ments, no E/B-mode decomposition can be carried out from these surveys –
the largest size of these fields is smaller than the angular scale at which the
aperture mass dispersion is expected to peak (see Fig. 35). However, future
cosmic shear studies carried out with ACS images will most likely be able to
detect, or set upper bounds on the presence of B-modes.

In fact, it is most likely that (most of) the B-mode signal seen in the cosmic
shear surveys is due to remaining systematics. Hoekstra (2004) investigated
the PSF anisotropy of the CFH12k camera using fields with a high number
density of stars. Randomly selecting about 100 stars per CCD, which is the
typical number observed in high galactic latitute fields, he fitted a second-
order polynomial to these stars representing the PSF anisotropy. Correcting
with this model all the stars in the field, the remaining stellar ellipticities
carry substantial E- and B-mode signals, essentially on all angular scales, but
peaking at about the size of a CCD. A substantially smaller residual is ob-
tained if the ellipticities of stars in one of the fields is corrected by a more
detailed model of the PSF anisotropy as measured from a different field; this
improvement indicates that the PSF anisotropy pattern in the data set used
by Hoekstra is fairly stable between different exposures. This, however, is not
necessarily the case in other datasets. Nevertheless, if one assumes that the
PSF anisotropy is a superposition of two effects, one from the properties of
the telescope and instrument itself, the other from the specific observation
procedure (e.g., tracking, wind shake, etc.), and further assuming that the
latter one affects mainly the large-scale properties of the anisotropy pattern,
then a superposition of a PSF model (obtained from a dense stellar field and
describing the small-scale properties of the anisotropy pattern) plus a low-
order polynomial can be a better representation of the PSF anisotropy. This
indeed was verified in the tests made by Hoekstra (2004). In their reanalysis
of the VIRMOS-DESCART survey, van Waerbeke et al. (2005) have fitted
the PSF anisotropy with a rational function, instead of a polynomial. This
functional form was suggested by the study of Hoekstra (2004). When cor-
recting the galaxy ellipticities with this new PSF model, essentially no more
B-modes in the VIRMOS-DESCART survey are detected. Further studies on
PSF anisotropy corrections need to be conducted; possibly the optimal way
of dealing with them will be instrument-specific.

7.5 Cosmological Constraints

The measured cosmic shear signal can be translated into constraints on cos-
mological parameters, by comparing the measurements with theoretical pre-
dictions. In Sect. 6.4 we have outlined how such a comparison can be made;
there, we have concentrated on the shear correlation functions as the primary
observables. However, the detection of significant B-modes in the shear field
makes the aperture measures the ‘better’ statistics to compare with predic-
tions. They can be calculated from the shear correlation functions, as shown
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in (125). Calculating a likelihood function from the aperture mass dispersion
proceeds in the same way as outlined in Sect. 6.4 for the correlation functions.

We have argued in Sect. 6.3 that
〈
M2

ap(θ)
〉

provides very localized infor-
mation about the power spectrum Pκ(") and is thus a very useful statistic.
One therefore might expect that the aperture mass dispersion as calculated
from the shear correlation functions contains essentially all the second-order
statistical information of the survey. This is not true, however; one needs to
recall that the shear correlation function ξ+ is a low-pass filter of the power
spectrum, and thus contains information of Pκ on angular scales larger than
the survey size. This information is no longer contained in the aperture mass
dispersion, owing to its localized associated filter. Therefore, in order to keep
this long-range information in the comparison with theoretical predictions, it
is useful to complement the estimates of

〈
M2

ap(θ)
〉

with either the shear dis-
persion, or the correlation function ξ+, at a scale which is not much smaller
than the largest scale at which

〈
M2

ap(θ)
〉

is measured. Note, however, that
this step implicitly assumes that on these large angular scales, the shear sig-
nal is essentially free of B-mode contributions. If this assumption is not true,
and cannot be justified from the survey data, then this additional constraint
should probably be dropped.

The various constraints on parameters that have been derived from the
cosmic shear surveys differ in the amount of prior information that has been
used. As an example, we consider the analysis of van Waerbeke et al. (2002).
These authors have considered a model with four free parameters: Ωm, the
normalization σ8, the shape parameter Γspect and the characteristic redshift
zs (or, equivalently, mean redshift z̄s) of their galaxy sample, assuming a flat
Universe, i.e., ΩΛ = 1−Ωm. They have used a flat prior for Γspect and z̄s in a
fairly wide interval over which they marginalized the likelihood function (see
Fig. 46). Depending on the width of these intervals, the confidence regions are
more or less wide. It should be noted that the confidence contours close if
Γspect and z̄s are assumed to be known (see van Waerbeke et al. 2001), but
when these two parameters are kept free, Ωm and σ8 are degenerate.

The right panel of Fig. 46 shows the corresponding constraints as obtained
from the RCS survey. Since this survey is shallower and only extends to magni-
tudes where spectroscopic surveys provide information on their redshift distri-
bution, the range of z̄s over which the likelihood is marginalized is smaller than
for the VIRMOS-DESCART survey. Correspondingly, the confidence region
is slightly smaller in this case. Even smaller confidence regions are obtained
if external information is used: Hoekstra et al. (2002a) considered Gaussian
priors with Ωm + ΩΛ = 1.02 ± 0.06, as follows from pre-WMAP CMB re-
sults, Γspect = 0.21 ± 0.03, as follows from the 2dF galaxy redshift survey,
and z̄s = 0.59±0.02, for which the width of the valley of maximum likelihood
narrows considerably. Jarvis et al. (2003) used for their estimate of cosmolog-
ical parameters the aperture mass dispersion at three angular scales plus the
shear dispersion at θ = 100′, and they considered alternatively the E-mode
signal, and the E-mode signal ± the B-mode signal, to arrive at constraints
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Fig. 46. Constraints on Ωm and σ8 from two cosmic shear surveys. Left : The
VIRMOS-DESCART survey (van Waerbeke et al. 2002). The grey-scale and dashed
contours show the 68%, 95% and 99.9% confidence regions with a marginaliza-
tion over the range Γspect ∈ [0.05, 0.7], and mean galaxy redshift in the range
z̄s ∈ [0.50, 1.34], whereas the solid contours show the same confidence regions with
the stronger priors Γspect ∈ [0.1, 0.4] and z̄s ∈ [0.8, 1.1]. Right : The RCS survey
(Hoekstra et al. 2002a,b,c,d), showing the 1, 2, and 3σ confidence regions for a prior
Γspect ∈ [0.05, 0.5] and mean redshift z̄s ∈ [0.54, 0.66]. In both cases, a flat Universe
has been assumed

on the Ωm–σ8 parameter plane. Since the CTIO survey samples a larger an-
gular scale than the other surveys (data at small angular scales are discarded
owing to the large B-mode signal there), the results are much less sensitive
to Γspect; furthermore, for the same reason the Jarvis et al. results are much
less sensitive to the fit of the non-linear power spectrum according to Peacock
and Dodds (1996) which van Waerbeke et al. (2002) found to be not accurate
enough for some cosmological models. In fact, if instead of the Peacock and
Dodds fitting formula, the fit by Smith et al (2003) is used to describe the
non-linear power spectrum, the resulting best estimate of σ8 is decreased by
8% for the RCS survey (as quoted in Jarvis et al. 2003).

For the RCS and the CTIO surveys, the covariance matrix was obtained
from field-to-field variations, i.e., Covij = 〈(di − μi)(dj − μj)〉, where μi is
the mean of the observable di (e.g., the aperture mass dispersion at a spe-
cific angular scale) over the independent patches of the survey, and angular
brackets denote the average over all independent patches. The estimate of the
covariance matrix for the VIRMOS-DESCART survey is slightly different, as
it has only four independent patches.

To summarize the results from these surveys, each of them found that
a combination of parameters of the form σ8Ω

α
m is determined best from the

data, with α ∼ 0.55, where the exact value of α depends on the survey depth.
If we consider the specific case of Ωm = 0.3 which is close to the concordance
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value that was recently confirmed by WMAP, then the VIRMOS-DESCART
survey yields σ8 = 0.94± 0.12, the RCS survey has σ8 = 0.91+0.05

−0.12, which im-
proves to σ8 = 0.86+0.04

−0.05 if the stronger (Gaussian) priors mentioned above are
used, and the CTIO survey yields σ8 = 0.71+0.12

−0.16, here as 2σ limits. Whereas
these results are marginally in mutual agreement, the CTIO value for σ8 is
lower than the other two. The higher values are also supported by results
from the WFPC2 survey by Refregier et al. (2002), who find σ8 = 0.94±0.17,
Bacon et al. (2003) with σ8 = 0.97 ± 0.13, and the earlier surveys discussed
in Sect. 7.1. The only survey supporting the low value of the CTIO survey is
COMBO17 (Brown et al. 2003; see also the reanalysis of this dataset by Hey-
mans et al. 2004). Most likely, these remaining discrepancies will be clarified in
the near future; see discussion below. It should also be noted that at least for
some of the surveys, a large part of the uncertainty comes from the unknown
redshift distribution of the galaxies; this situation will most likely improve,
as efficient spectrographs with large multiplex capability become available at
10m-class telescopes, which will in the near future deliver large galaxy redshift
surveys at very faint magnitudes. Those can be used to much better constrain
the redshift distribution of the source galaxies in cosmic shear surveys.

7.6 3-D Lensing

As mentioned several times before, using individual source redshift informa-
tion, as will become available in future multi-color wide-field surveys, can
improve the cosmological constraints obtained from weak lensing. In this sec-
tion we shall therefore summarize some of the work that has been published
on this so-called 3-D lensing.

Three-dimensional Matter Distribution

Provided the redshifts of individual source galaxies are known (or estimated
from their multiple colors), one can derive the 3-D matter distribution, not
only its projection. The principle of this method can be most easily illustrated
in the case of a flat Universe, for which the surface mass density κ(θ, w) for
sources at comoving distance w becomes – see (93)

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0

dw′ w
′(w − w′)

w

δ(w′θ, w′)
a(w′)

. (129)

Multiplying this expression by w and differentiating twice yields

d2

dw2
(w κ(θ, w)) =

3H2
0Ωm

2c2
w

a(w)
δ(wθ, w) ,

which therefore allows one to obtain the three-dimensional density contrast δ
in terms of the surface mass densities κ at different source redshifts. As we
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have seen in Sect. 5, there are several methods how to obtain the surface mass
density from the observed shear. To illustrate the 3-D method, we use the
finite-field reconstruction in the form of (60), for which one finds

δ(wθ, w) =
2c2

3H2
0Ωm

a(w)
w

∫
d2θ′ H(θ;θ′) · d2

dw2

[
w uγ(θ′, w)

]
. (130)

Taylor (2001) derived the foregoing result, but concentrated on the 3-D grav-
itational potential instead of the mass distribution, and Bacon and Taylor
(2003) and Hu and Keeton (2002) discussed practical implementations of this
relation. First to note is the notorious mass-sheet degeneracy, which in the
present context implies that one can add an arbitrary function of w to the re-
constructed density contrast δ. This cannot be avoided, but if the data field is
sufficiently large, so that averaged over it, the density contrast is expected to
vanish, this becomes a lesser practical problem. For such large data fields, the
above mass reconstruction can be substituted in favor of the simpler original
Kaiser and Squires (1993) method. Still more freedom is present in the recon-
struction of the gravitational potential. The second problem is one of smooth-
ing: owing to the noisiness of the observed shear field, the w-differentiation (as
well as the θ-differentiation present in the construction of the vector field uγ)
needs to be carried out on the smoothed shear field. A discretization of the
observed shear field, as also suggested by the finite accuracy of photometric
redshifts, can be optimized with respect to this smoothing (Hu and Keeton
2002).

A first application of this methods was presented in Taylor et al. (2004)
on one of the COMBO17 fields which contains the supercluster A 901/902.
The clusters present clearly show up also in the 3-D mass map, as well as a
massive structure behind the cluster A 902 at higher redshift. Already earlier,
Wittman et al. (2001, 2003) estimated the redshifts of clusters found in their
deep blank-field data by studying the dependence of the weak lensing signal
on the estimated source redshifts, and subsequent spectroscopy showed that
these estimates were fairly accurate.

Power Spectrum Estimates

A redshift-dependent shear field can also be used to improve on the cosmo-
logical constraints obtained from cosmic shear. Hu (1999) has pointed out
that even crude information on the source redshifts can strongly reduce the
uncertainties of cosmological parameters. In fact, the 3-D power spectrum can
be constructed from redshift-dependent shear data (see, e.g., Heavens 2003,
Hu 2002, and references therein). For illustration purposes, one can use the
κ power spectrum for sources at fixed comoving distance w, which reads in a
flat Universe – see (99)

Pκ(", w) =
9H4

0Ω
2
m

4c4

∫ w

0

dw′ (w − w′)2

w2 a2(w′)
Pδ

(
"

w′ , w
′
)

. (131)
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Differentiating w2Pκ three times w.r.t. w then yields (Bacon et al. 2004)

Pδ(k,w) =
2c4

9H4
0Ω

2
m

a2(w)
d3

dw3

[
w2 Pκ(wk,w)

]
. (132)

In this way, one could obtain the three-dimensional power spectrum of the
matter. However, this method is essentially useless, since it is both very noisy
(due to the third-order derivatives) and throws away most of the information
contained in the shear field, as it makes use only of shear correlations of
galaxies having the same redshift, and not of all the pairs at different distances.
A much better approach to construct the three-dimensional power spectrum
is given, e.g., by Pen et al. (2003a).

In my view, the best use of three-dimensional data is to construct the shear
correlators ξ±(θ; z1, z2), as they contain all second-order statistical informa-
tion in the data and at the same time allow the identification and removal
of a signal from intrinsic shape correlations of galaxies (King and Schneider
2003). From these correlation functions, one can calculate a χ2 function as
in (116) and minimize it w.r.t. the wanted parameters. One problem of this
approach is the large size of the covariance matrix, which now has six ar-
guments (two angular separations and four redshifts). However, as shown in
Simon et al. (2004), it can be calculated fairly efficiently, provided one as-
sumes that the fourth-order correlations factorize into products of two-point
correlators, i.e., Gaussian fields (if this assumption is dropped, the covariance
must be calculated from cosmological N-body simulations).

Bacon et al. (2004) used the COMBO17 data to derive the shape of the
power spectrum, using the redshift dependent shear correlations. They para-
meterize the power spectrum in the form P (k, z) ∝ Akαe−sz, so that it is
described by an amplitude A, a local slope α and a growth parameter s which
describes how the amplitude of the power spectrum declines toward higher
redshifts. In fact, the slope α = −1.2 was fixed to the approximate value in
ΛCDM models over the relevant range of spatial scales and redshifts probed
by the COMBO17 data (since the data used cover only 1/2 deg2, reducing
the number of free parameters by fixing α is useful). The evolution of the
power spectrum is found with high significance in the data. Furthermore, the
authors show that the use of redshift information improves the accuracy in
the determination of σ8 by a factor of two compared to the 2-D cosmic shear
analysis of the same data (Brown et al. 2003).

The main application of future multi-waveband cosmic shear surveys will
be to derive constraints on the equation of state of dark energy, as besides
lensing there are only a few methods available to probe it, most noticeably the
magnitude-redshift relation of SN Ia. Since dark energy starts to dominate the
expansion of the Universe only at relatively low redshifts, little information
about its properties is obtainable from the CMB anisotropies alone. For that
reason, quite a number of workers have considered the constraints on the
dark energy equation of state that can be derived from future cosmic shear
surveys (e.g., Huterer 2002; Hu 2002; Munshi and Wang 2003; Hu and Jain
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2004; Abazajian and Dodelson 2003; Benabed and van Waerbeke 2003; Song
and Knox 2004). The results of these are very encouraging; the sensitivity on
the dark energy properties is due to its influence on structure growth. With
(photometric) redshift information on the source galaxies, the evolution of
the dark matter distribution can be studied by weak lensing, as shown above.
van Waerbeke and Mellier (2003) have compared the expected accuracy of the
cosmic shear result from the ongoing CFHT Legacy Survey with the variation
of various dark energy models and shown that the CFHTLS will be able to
discriminate between some of these models, with even much better prospects
from future space-based wide-field imaging surveys (e.g., Hu and Jain 2004).

7.7 Discussion

The previous sections have shown that cosmic shear research has matured;
several groups have successfully presented their results, which is important in
view of the fact that the effects one wants to observe are small, influenced by
various effects, and therefore, independent results from different instruments,
groups, and data analysis techniques are essential in this research. We have
also seen that the results from the various groups tend to agree with each
other, with a few very interesting discrepancies remaining whose resolution
will most likely teach us even more about the accuracies of data analysis
procedures.

Lessons for Cosmology

A natural question to ask is, what has cosmic shear taught us so far about
cosmology ? The most important constraint coming from the available cosmic
shear results is that on the normalization σ8, for which only few other accu-
rate methods are available. We have seen that cosmic shear prefers a value
of σ8 ≈ 0.8 − 0.9, which is slightly larger than current estimates from the
abundance of clusters, but very much in agreement with the measurement of
WMAP. The estimate from the cluster abundance is, however, not without
difficulties, since it involves several scaling relations which need to be accu-
rately calibrated; hence, different authors arrive at different values for σ8 (see,
e.g., Pierpaoli, Scott and White 2001; Seljak 2002; Schuecker et al. 2003). The
accuracy with which σ8 is determined from CMB data alone is comparable to
that of cosmic shear estimates; as shown in Spergel et al. (2003), more accu-
rate values of σ8 are obtained only if the CMB measurements are combined
with measurements on smaller spatial scales, such as from galaxy redshift sur-
veys and the Lyman alpha forest statistics. Thus, the σ8-determination from
cosmic shear is certainly competitive with other measurements. Arguably, cos-
mic shear sticks out in this set of smaller-scale constraints due to the fewer
physical assumptions needed for its interpretation.

But more importantly, it provides a fully independent method to mea-
sure cosmological parameters. Hence, at present the largest role of the cosmic
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shear results is that it provides an independent approach to determining these
parameters; agreement with those obtained from the CMB, galaxy redshift
surveys and other methods are thus foremost of interest in that they provide
additional evidence for the self-consistency of our cosmological model which,
taken at face value, is a pretty implausible one: we should always keep in
mind that we are claiming that our Universe consists of 4.5% normal (bary-
onic) matter, with the rest being shared with stuff that we have given names
to (‘dark matter’, ‘dark energy’), but are pretty ignorant about what that
actually is. Insofar, cosmic shear plays an essential role in shaping our cos-
mological view, and has become one of the pillars on which our standard
model rests.

Agreement, or Discrepancies ?

How to clarify the remaining discrepancies that were mentioned before – what
are they due to ? One needs to step back for a second and be amazed that
these results are in fact so well in agreement as they are, given all the technical
problems a cosmic shear survey has to face (see Sect. 3). Nevertheless, more
investigations concerning the accuracy of the results need to be carried out,
e.g., to study the influence of the different schemes for PSF corrections on the
final results. For this reason, it would be very valuable if the same data set
is analyzed by two independent groups and to compare the results in detail.
Such comparative studies may be a prerequisite for the future when much
larger surveys will turn cosmic shear into a tool for precision cosmology.

Joint Constraints from CMB Anisotropies and Cosmic Shear

As mentioned before, the full power of the CMB anisotropy measurements is
achieved when these results are combined with constraints on smaller spatial
scales. The tightest constraints from WMAP are obtained when it is com-
bined with results from galaxy redshift surveys and the statistics of the Lyα
forest absorption lines (Spergel et al. 2003). Instead of the latter, one can use
results from cosmic shear, as it provides a cleaner probe of the statistical prop-
erties of the matter distribution in the Universe. As was pointed out before
(e.g., Hu and Tegmark 1999; see Fig. 34), the combination of CMB measure-
ments with cosmic shear results is particularly powerful to break degeneracies
that are left from using the former alone. Contaldi et al. (2003) used the
CMB anisotropy results from WMAP (Bennett et al. 2003), supplemented by
anisotropy measurements on smaller angular scales from ground-based exper-
iments, and combined them with the cosmic shear aperture mass dispersion
from the RCS survey (Hoekstra et al. 2002a). As is shown in Fig. 47, the con-
straints in the Ωm-σ8-parameter plane are nearly mutually orthogonal for the
CMB and cosmic shear, so that the combined confidence region is substan-
tially smaller than each of the individual regions.
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Fig. 47. The confidence region in the Ωm-σ8-plane obtained from the two-
dimensional marginalized likelihood. Shown are the 68% and 95% confidence re-
gions derived individually from the CMB and the RCS cosmic shear survey, as well
as those obtained by combining both constraints (Contaldi et al. 2003)

Wide vs. Deep Surveys

In designing future cosmic shear surveys, the survey strategy needs to decide
the effective exposure time. For a given total observing time (the most im-
portant practical constraint), one needs to find a compromise between depth
and area. Several issues need to be considered in this respect:

• The lensing signal increases with redshift, and therefore with increasing
depth of a survey; it should therefore be easier to detect a lensing signal in
deep surveys. Furthermore, by splitting the galaxy sample into subsamples
according to the magnitude (and/or colors), one can study the dependence
of the lensing signal on the mean source redshift, which is an important
probe of the evolution of the matter power spectrum, and thus of cosmol-
ogy. If one wants to probe the (dark) matter distribution at appreciable
redshifts (z ∼ 0.5), one needs to carry out deep surveys.

• A wider survey is more likely to probe the linear part of the power spectrum
which is more securely predicted from cosmological models than the non-
linear part; on the other hand, measurement of the latter, when compared
with precise models (e.g., from numerical simulations), can probe the non-
linear gravitational clustering regime.

• Depending on the intrinsic galaxy alignment, one would prefer deeper sur-
veys, since the relative importance of the intrinsic signal decreases with
increasing survey depth. Very shallow surveys may in fact be strongly af-
fected by the intrinsic signal (e.g., Heymans and Heavens 2003). On the
other hand, for precision measurements, as will become available in the
near future, one needs to account for the intrinsic signal in any case, using
redshift information (at least in a statistical sense), and so shallow surveys



Part 3: Weak Gravitational Lensing 403

lose this potential disadvantage. In fact, the redshift estimates of shallower
surveys are easier to obtain than for deeper ones.

• In this context, one needs to compromise between area and the number
of fliters in which exposures should be taken. Smaller area means worse
statistics, e.g., larger effects of cosmic variance, but this has to be balanced
against the additional redshift information. Also, if a fixed observing time
is used, one needs to account for the weather, seeing and sky brightness
distribution. One should then devise a strategy that the best seeing periods
are used to obtain images in the filter which is used for shape measure-
ments, and bright time shall be spent on the longest wavelength bands.

• Fainter galaxies are smaller, and thus more strongly affected by the point-
spread function. One therefore expects that PSF corrections are on average
smaller for a shallow survey than for a deeper one. In addition, the sep-
aration between stars and galaxies is easier for brighter (hence, larger)
objects.

The relative weight of these arguments is still to be decided. Whereas some of
the issues could be clarified with theoretical investigations (i.e., in order to ob-
tain the tightest constraints on cosmological parameters, what is the optimal
choice of area and exposure time, with their product being fixed), others (like
the importance of intrinsic alignments) still remain unclear. Since big imag-
ing surveys will be conducted with a broad range of scientific applications in
mind, this choice will also depend on those additional science goals.

Future Surveys

We are currently witnessing the installment of square-degree cameras at some
of the best sites, among them MegaCam at the CFHT, and OmegaCAM at the
newly built VLT Survey Telescope (the 2.6m VST) on Paranal (I present here
European-biased prospects, as I am most familiar with these projects). Weak
lensing, and in particular cosmic shear has been one of the science drivers for
these instruments, and large surveys will be carried out with them. Already
ongoing is the CFHT Legacy Survey, which will consist of three parts; the most
interesting one in the current context is a ∼160 deg2 survey with an exposure
time of ∼1 h in each of five optical filters. This survey will therefore yield
a more than ten-fold increase over the current VIRMOS-DESCART survey,
with corresponding reductions of the statistical and cosmic variance errors on
measurements. The multi-color nature of this survey implies that one can ob-
tain photometric redshift estimates at least for a part of the galaxies which will
enable the suppression of the potential contribution to the shear signal from
intrinsic alignments of galaxies. A forecast of the expected accuracy of cos-
mological parameter estimates from the CFHTLS combined with the WMAP
CMB measurements has been obtained by Tereno et al. (2005). It is expected
that a substantial fraction of the VST observing time will be spend on multi-
band wide-field surveys which, if properly designed, will be extremely useful
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for cosmic shear research. In order to complement results from the CFHTLS,
accounting for the fact that the VST has smaller aperture than the CFHT
(2.6m vs. 3.6m), a somewhat shallower but wider-field survey would be most
reasonable. For both of these surveys, complementary near-IR data will be-
come available after about 2007, with the WirCam instrument on CFHT, and
the newly build VISTA 4m-telescope equipped with a wide-field near-IR cam-
era on Paranal, which will yield much better photometric redshift estimates
than the optical data alone. Furthermore, with the PanStarrs project, a novel
method for wide-field imaging and a great leap forward in the data access rate
will be achieved.

Toward the end of the decade, a new generation of cosmic shear surveys
may be started; there are two projects currently under debate which would
provide a giant leap forward in terms of survey area and/or depth. One is a
satellite project, SNAP/JDEM, originally designed for finding and follow-up
of high-redshift supernovae to study the expansion history of the Universe and
in particular to learn about the equation of state of the dark energy. With
its large CCD array and multi-band imaging, SNAP will also be a wonderful
instrument for cosmic shear research, yielding photometric redshift estimates
for the faint background galaxies, and it is expected that the observing time
of this satellite mission will be split between these two probes of dark energy.
The other project under discussion is the LSST, a 8m telescope equipped
with a ∼9 deg2 camera; such an instrument, with an efficiency larger than
a factor 40 over MegaCam@CFHT, would allow huge cosmic shear surveys,
easily obtaining a multi-band survey over all extragalactic sky (modulo the
constraints from the hemisphere). Since studying the equation of state of dark
energy will be done most effectively with good photometric redshifts of source
galaxies, the space experiment may appear more promising, given the fact that
near-IR photometry is needed for a reliable redshift estimate, and sufficiently
deep near-IR observations over a significant area of sky is not possible from
the ground.

8 The Mass of, and Associated with Galaxies

8.1 Introduction

Whereas galaxies are not massive enough to show a weak lensing signal indi-
vidually (see 19), the signal of many galaxies can be superposed statistically.
Therefore, if one considers sets of foreground (lens) and background galaxies,
then in the mean, in a foreground–background galaxy pair, the image ellip-
ticity of the background galaxy will be preferentially oriented in the direction
tangent to the line connecting foreground and background galaxy. The am-
plitude of this tangential alignment then yields a mean lensing strength that
depends on the redshift distributions of foreground and background galaxies,
and on the mass distribution of the former population. This effect is called
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galaxy–galaxy lensing and will be described in Sect. 8.2 below; it measures the
mass properties of galaxies, provided the lensing signal is dominated by the
galaxies themselves. This will not be the case for larger angular separations
between foreground and background galaxies, since then the mass distribu-
tion in which the foreground galaxies are embedded (e.g., their host groups
or clusters) starts to contribute significantly to the shear signal. The interpre-
tation of this signal then becomes more difficult. On even larger scales, the
foreground galaxies contribute negligibly to the lens signal; a spatial corre-
lation between the lens strength and the foreground galaxy population then
reveals the correlation between light (galaxies) and mass in the Universe. This
correlated distribution of galaxies with respect to the underlying (dark) mat-
ter in the Universe – often called the bias of galaxies – can be studied with
weak lensing, as we shall describe in Sect. 8.3 by using the shear signal, and
in Sect. 8.4 employing the magnification effect. It should be pointed out here
that our lack of knowledge about the relation between the spatial distribution
of galaxies and that of the underlying (dark) matter is one of the major prob-
lems that hampers the quantitative interpretation of galaxy redshift surveys;
hence, these lensing studies can provide highly valuable input into the con-
clusions drawn from these redshift surveys regarding the statistical properties
of the mass distribution in the Universe.

8.2 Galaxy–Galaxy Lensing

The Average Mass Profile of Galaxies

Probing the mass distribution of galaxies usually proceeds with dynamical
studies of luminous tracers. The best-known method is the determination of
the rotation curves of spiral galaxies, measuring the rotational velocity of stars
and gas as a function of distance from the galaxy’s center (see Sofue and Rubin
2001 for a recent review). This then yields the mass profile of the galaxy, i.e.
M(≤ r) ∝ v2

rot(r) r. For elliptical galaxies, the dynamics of stars (like velocity
dispersions and higher-order moments of their velocity distribution, as a func-
tion of r) is analyzed to obtain their mass profiles; as the kinematics of stars
in ellipticals is more complicated than in spirals, their mass profiles are more
difficult to measure (e.g., Gerhard et al. 2001). In both cases, these dynamical
methods provided unambiguous evidence for the presence of a dark matter
halo in which the luminous galaxy is embedded; e.g., the rotation curves of
spirals are flat out to the most distant point where they can be measured.
The lack of stars or gas prevents the measurement of the mass profile to radii
beyond the luminous extent of galaxies, that is beyond ∼10h−1 kpc. Other
luminous tracers that have been employed to study galaxy masses at larger
radii include globular clusters that are found at large galacto-centric radii
(Coté et al. 2003), planetary nebulae, and satellite galaxies. Determining the
relative radial velocity distribution of the latter with respect to their sus-
pected host galaxy leads to estimates of the dark matter halo out to distances
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of ∼100h−1 kpc. These studies (e.g., Zaritsky et al. 1997) have shown that the
dark matter halo extends out to at least these distances.

One of the open questions regarding the dark matter profile of galaxies is
the spatial extent of the halos. The dynamical studies mentioned above are all
compatible with the mass profile following approximately an isothermal law
(ρ ∝ r−2), which has to be truncated at a finite radius to yield a finite total
mass. Over the limited range in radii, the isothermal profile cannot easily
be distinguished from an NFW mass profile (see IN, Sect. 6.2), for which
measurements at larger distances are needed (the mass distribution in the
central parts of galaxies is affected by the baryons and thus not expected to
follow the NFW profile; see Sect. 7 of SL).

Weak gravitational lensing provides a possibility to study the mass profiles
of galaxies at still larger radii. Light bundles from distant background galax-
ies provide the ‘dynamical tracers’ that cannot be found physically associated
with the galaxies. Light bundles get distorted in such a way that on average,
images of background sources are oriented tangent to the transverse direc-
tion connecting foreground (lens) and background (source) galaxy. The first
attempt to detect such a galaxy–galaxy lensing signal was reported in Tyson
et al. (1984), but the use of photographic plates and the relatively poor seeing
prevented a detection. Brainerd et al. (1996) presented the first detection and
analysis of galaxy–galaxy lensing. Since then, quite a number of surveys have
measured this effect, some of them using millions of galaxies.

Strategy

Consider pairs of fore- and background galaxies, with separation in a given
angular separation bin. The expected lensing signal is seen as a statistical
tangential alignment of background galaxy images with respect to foreground
galaxies. For example, if φ is the angle between the major axis of the back-
ground galaxy and the connecting line, values π/4 ≤ φ ≤ π/2 should be
slightly more frequent than 0 ≤ φ ≤ π/4 (see Fig. 48). Using the fact that the
intrinsic orientations of background galaxies are distributed isotropically, one
can show (Brainerd et al. 1996) that

p(φ) =
2
π

[
1 − γt

〈
1
|εs|

〉
cos(2φ)

]
, (133)

where φ ∈ [0, π/2] and γt is the mean tangential shear in the angular bin
chosen. Thus, the amplitude of the cos-wave yields the (average) strength of
the shear.

The mean tangential ellipticity 〈εt(θ)〉 of background galaxies relative to
the direction toward foreground galaxies measures the mean tangential shear
at separation θ. Since the signal is averaged over many foreground–background
pairs, it measures the average mass profiles of the foreground galaxies. For
sufficiently large samples of galaxies, the lens sample can be split into several
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Fig. 48. The probability distribution p(φ) of the angle φ between the major axis
of the background galaxy image and the connecting line to the foreground galaxy is
plotted for the sample of Brainerd et al. (1996), together with the best fit according
to (133). The galaxy pairs have separation 5′′ ≤ Δθ ≤ 34′′, and are foreground-
background selected by their apparent magnitudes

subsamples, e.g., according to their color and/or morphology (early-type vs.
late-type galaxies), or, if redshift estimates are available, they can be binned
according to their luminosity. Then, the mass properties can be derived for
each of the subsamples.

The distinction between foreground and background galaxies is ideally
performed using redshift information. This is indeed the case for the galaxy-
galaxy lensing studies based on the Sloan Digital Sky Survey, for which early
results have been reported by McKay et al. (2001); all lens galaxies used there
have spectroscopic redshifts, whereas the source galaxies are substantially
fainter than the lens galaxies so that they can be considered as a background
population. For other surveys, the lack of redshift information requires the
separation of galaxies to be based solely on their apparent magnitudes: fainter
galaxies are on average at larger distances than brighter ones. However, the
resulting samples of ‘foreground’ and ‘background’ galaxies will have (often
substantial) overlap in redshift, which needs to be accounted for statistically
in the quantitative analysis of these surveys.

Quantitative Analysis

The measurement of the galaxy–galaxy lensing signal provides the tangential
shear as a function of pair separation, γt(θ). Without information about the
redshifts of individual galaxies, the separation of galaxies into a ‘foreground’
and ‘background’ population has to be based on apparent magnitudes only. In
the ideal case of a huge number of foreground galaxies, one could investigate
the mass properties of ‘equal’ galaxies, by finely binning them according to
redshift, luminosity, color, morphology etc. However, in the real world such a
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fine binning has not yet been possible, and therefore, to convert the lensing
signal into physical parameters of the lens, a parameterization of the lens
population is needed. We shall outline here how such an analysis is performed.

The first ingredient is the redshift probability distribution p(z|m) of galax-
ies with apparent magnitude m which is assumed to be known from redshift
surveys (and/or their extrapolation to fainter magnitudes). This probability
density depends on the apparent magnitude m, with a broader distribution
and larger mean redshift expected for fainter m. Since the distribution of
‘foreground’ and ‘background’ galaxies in redshift is known for a given survey,
the probabilities p(z|m) can be employed to calculate the value of Dds/Ds,
averaged over all foreground–background pairs (with this ratio being set to
zero if zs ≤ zd). For given physical parameters of the lenses, the shear signal
is proportional to this mean distance ratio.

The mass profiles of galaxies are parameterized according to their luminos-
ity. For example, a popular parameterization is that of a truncated isothermal
sphere, where the parameters are the line-of-sight velocity dispersion σ (or
the equivalent circular velocity Vc =

√
2σ) and a truncation radius s at which

the ρ ∝ r−2 isothermal density profile turns into a steeper ρ ∝ r−4 law. The
velocity dispersion is certainly dependent on the luminosity, as follows from
the Tully–Fisher and Faber–Jackson relations for late- and early-type galax-
ies, respectively. One therefore assumes the scaling σ = σ∗(L/L∗)β/2, where
L∗ is a fiducial luminosity (and which conveniently can be chosen close to the
characteristic luminosity of the Schechter luminosity function). Furthermore,
the truncation scale s is assumed to follow the scaling s = s∗(L/L∗)η. The
total mass of a galaxy then is M ∝ σ2s, or M = M∗(L/L∗)β+η.

Suppose m and z were given; then, the luminosity of galaxy would be
known, and for given values of the parameters σ∗, s∗, β and η, the mass prop-
erties of the lens galaxy would be determined. However, since z is not known,
but only its probability distribution, only the probability distribution of the
lens luminosities, and therefore the mass properties, are known. One could
in principle determine the expected shear signal γt(θ) for a given survey by
calculating the shear signal for a given set of redshifts zi for all lens and source
galaxies, and then averaging this signal over the zi using the redshift proba-
bility distribution p(zi|mi). However, this very-high dimensional integration
cannot be performed; instead, one uses a Monte-Carlo integration method
(Schneider and Rix 1997): Given the positions θi and magnitudes mi of the
galaxies, one can draw for each of them a redshift according to p(zi|mi), and
then calculate the shear at all positions θi corresponding to a source galaxy,
for each set of parameters σ∗, s∗, β and η. This procedure can be repeated
several times, yielding the expected shear 〈γi〉 and its dispersion σγ,i for each
source galaxy’s position. One can then calculate the likelihood function

L =
Ns∏
i=1

1
π(σ2

ε + σ2
γ,i)

exp

(
−|εi − 〈γi〉 |2

σ2
ε + σ2

γ,i

)
, (134)
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where σε is the intrinsic ellipticity dispersion of the galaxies. L depends on
the parameters of the model, and can be maximized with respect to them,
thereby yielding estimates of σ∗, s∗, β and η.

First Detection

The galaxy–galaxy lensing effect was first found by Brainerd et al. (1996),
on a single 9.′6 × 9.′6 field. They considered ‘foreground’ galaxies in the mag-
nitude range m ∈ [20, 23], and ‘background’ galaxies with m ∈ [23, 24]; this
yielded 439 foreground and 506 background galaxies, and 3202 pairs with
Δθ ∈ [5′′, 34′′].12 For these pairs, the distribution of the alignment angle φ is
plotted in Fig. 48. This distribution clearly is incompatible with the absence
of a lens signal (at the 99.9% confidence level), and thus provides a solid
detection.

They analyzed the lens signal γt(θ) in a way similar to the method out-
lined above, except that their Monte-Carlo simulations also randomized the
positions of galaxies. The resulting likelihood yields σ∗ ≈ 160+50

−60 km/s (90%
confidence interval), whereas for s∗ only a lower limit of 25h−1 kpc (1σ) is
obtained; the small field size, in combination with the relative insensitivity
of the lensing signal to s∗ once this value is larger than the mean transverse
separation of lensing galaxies, prohibited the detection of an upper bound on
the halo size.

Galaxy–Galaxy Lensing from the Red-Sequence Cluster
Survey (RCS)

Several groups have published results of their galaxy–galaxy lensing surveys
since its first detection. Here we shall describe the results of a recent wide-field
imaging survey, the RCS; this survey was already described in the context of
cosmic shear in Sect. 7.3. 45.5 square degrees of single-band imaging data were
used (Hoekstra et al. 2004). Choosing lens galaxies with 19.5 ≤ RC ≤ 21, and
source galaxies having 21.5 ≤ RC ≤ 24 yielded ∼1.2× 105 lenses with median
redshift of 0.35 and ∼1.5×106 sources with median redshift of ∼0.53, yielding
〈Dds/Ds〉 = 0.29 ± 0.01 for the full sample of lenses and sources. Figure 49
shows the shear signal for this survey.

The lens signal is affected by galaxies counted as lenses, but which in
fact are in the foreground. As long as they are not physically associated
with lens galaxies, this effect is accounted for in the analysis, i.e., in the
value of 〈Dds/Ds〉. However, if fainter galaxies cluster around lens galaxies,

12 The lower angular scale has been chosen to avoid overlapping isophotes of fore-
ground and background galaxies, whereas the upper limit was selected since it
gave the largest signal-to-noise for the deviation of the angular distribution shown
in Fig. 48 from a uniform one.
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Fig. 49. (a) Tangential shear as a function of angular separation, obtained from the
RCS survey; the shear signal is detected out to nearly one degree scale. (b) Cross
shear signal, which is expected to vanish identically in the absence of systematic
effects on the ellipticity measurements. As can be seen, the cross signal in indeed
compatible with zero. The inset expands the scale, to better show the error bars
(from Hoekstra et al. 2003)

this produces an additional effect. Provided the orientation of the associ-
ated faint galaxies are random with respect to the separation vector to their
bright neighbor, these physical pairs just yield a dilution of the shear signal.
The amplitude of this effect can be determined from the angular correlation
function of bright and faint galaxies, and easily corrected for. Once this has
been done, the corrected shear signal within 10′′ ≤ θ ≤ 2′ has been fitted
with an SIS model, yielding a mean velocity dispersion of the lens galaxies of√
〈σ2〉 = 128± 4 km/s. If the scaling relations between galaxy luminosity and

velocity dispersion as described above is employed, with β = 0.6, the result is
σ∗ = 140 ± 4 km/s for L∗ = 1010h−2L� in the blue passband.

To interpret the shear results on larger angular scales, the SIS model
no longer suffices, and different mass models need to be employed. Using a
truncated isothermal model, the best-fitting values of the scaling parameters
β = 0.60 ± 0.11 and η = 0.24+0.26

−0.22 are obtained, when marginalizing over all
other parameters. Furthermore, σ∗ = 137 ± 5 km/s, in very close agreement
with the results from small θ and the SIS model; this is expected, since most of
the signal comes from these smaller separations. Most interesting, the analy-
sis also yields an estimate of the truncation scale of s∗ = (185 ± 30)h−1 kpc,
providing one of only a few estimates of the scale of the dark matter halo.
Hoekstra et al. also performed the analysis in the frame of an NFW mass
model.
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These results can then be used to calculate the mass-to-light ratio of an L∗
galaxy and, using the scaling, of the galaxy population as a whole. Considering
only galaxies with M ≥ 1010h−1M�, the mean mass-to-light ratio inside the
virial radius of galaxy halos is about 100 in solar units.

The Shape of Dark Matter Halos

In the mass models considered before, the mass distribution of galaxies was
assumed to be axi-symmetric. In fact, this assumption is not crucial, since the
relation between shear and surface mass density, γt(ϑ) = κ̄(ϑ) − κ(ϑ) is true
for a general mass distribution, provided γt and κ(ϑ) are interpreted as the
mean tangential shear and mean surface mass density on a circle of radius ϑ,
and κ̄(ϑ) as the mean surface mass density inside this circle (see 24). However,
deviations from axial symmetry are imprinted on the shear signal and can in
principle be measured. If the mass distribution is ‘elliptical’, the shear along
the major axis (at given distance ϑ) is larger than that along the minor axis,
and therefore, an investigation of the strength of the shear signal relative to the
orientation of the galaxy can reveal a finite ellipticity of the mass distribution.
For that, it is necessary that the orientation of the mass distribution is (at
least approximately) known. Provided the orientation of the mass distribution
follows approximately the orientation of the luminous part of galaxies, one can
analyze the direction dependence of the shear relative to the major axis of the
light distribution (Natarajan and Refregier 2000). Hoekstra et al. (2002b) have
used the RCS to search for such a direction dependence; they parameterized
the lenses with a truncated isothermal profile with ellipticity εmass = fεlight,
where f is a free parameter. The result f = 0.77± 0.2 indicates first that the
mass distribution of galaxies is not round (which would be the case for f = 0,
which is incompatible with the data), and second, that the mass distribution
is rounder than that of the light distribution, since f < 1. However, it must be
kept in mind that the assumption of equal orientation between light and mass
is crucial for the interpretation of f ; misalignment causes a decrease of f . Note
that numerical simulations of galaxy evolution predict such a misalignment
between total mass and baryons, with an rms deviation of around 20◦ (van den
Bosch et al. 2002). Given the above result on f , it is therefore not excluded
that the flattening of halos is very similar to that of the light. Also note that
this result yields a value averaged over all galaxies; since the lens efficiency of
elliptical galaxies (at given luminosity) is larger than that of spirals, the value
of f is dominated by the contributions from early-type galaxies.

Results From the Sloan Survey

The Sloan Digital Sky Survey (e.g., York et al. 2000) will map a quarter of
the sky in five photometric bands, and obtain spectra of about one million
galaxies. A large fraction of the data has already been taken by SDSS, and
parts of this data have already been released (Abazajian et al. 2004). The huge
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amount of photometric data in principle is ideal for weak lensing studies, as it
beats down statistical uncertainties to an unprecedented low level. However,
the site of the telescope, the relatively large pixel size of 0.′′4, the relatively
shallow exposures of about one minute and the drift-scan mode in which data
are taken (yielding excellent flat-fielding, and thus photometric properties,
somewhat at the expense of the shape of the PSF) render the data less useful
for, e.g., cosmic shear studies: the small mean redshift of the galaxies yields a
very small expectation value of the cosmic shear, which can easily be mimicked
by residuals from PSF corrections. However, galaxy–galaxy lensing is much
less sensitive to larger-scale PSF problems, since the component of the shear
used in the analysis is not attached to pixel directions, but to neighboring
galaxies, and thus varies rapidly with sky position. Another way of expressing
this fact is that the galaxy–galaxy lensing signal would remain unchanged if a
uniform shear would be added to the data; therefore, SDSS provides a great
opportunity for studying the mass profile of galaxies.

Fischer et al. (2000) reported the first results from the SDSS, and a larger
fraction of the SDSS data was subsequently used in a galaxy–galaxy lensing
study by McKay et al. (2001), where also the spectroscopic redshifts of the
lens galaxies were used. Their sample consists of ∼31000 lens galaxies with
measured redshifts, and ∼3.6 × 106 source galaxies selected in the brightness
range 18 ≤ r ≤ 22. For this magnitude range, the redshift distribution of
galaxies is fairly well known, leaving little calibration uncertainty in the in-
terpretation of the shear signal. In particular, there is very little overlap in
the redshift distribution of source and lens galaxies. The data set has been
subjected to a large number of tests, to reveal systematics; e.g., null results
are obtained when the source galaxies are rotated by 45◦ (or, equivalently,
if γ× is used instead of γt), or if the lens galaxies are replaced by an equal
number of randomly distributed points relative to which the tangential shear
component is measured. Since the redshifts of the lens galaxies are known,
the shear can be measured directly in physical units, so one can determine

ΔΣ+ = Σ̄(≤ R) −Σ(R) (135)

in M�/pc2 as a function of R in kpc.
Figure 50 shows the lensing result from McKay et al. (2001), where the

lens sample has been split according to the type of galaxy (early vs. late
type) and according to the local spatial number density of galaxies, which is
known owing to the spectroscopic redshifts. The fact that most of the signal
on small scales is due to ellipticals is expected, as they are more massive at
given luminosity than spirals. The large spatial extent of the shear signal for
ellipticals relative to that of spirals can be interpreted either by ellipticals
having a larger halo than spirals, or that ellipticals are preferentially found
in high-density environments, which contribute to the lens signal on large
scales. This latter interpretation is supported by the lower panel in Fig. 50
which shows that the signal on large scales is entirely due to lens galaxies in
dense environments. This then implies that the galaxy–galaxy lensing signal
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Fig. 50. The galaxy–galaxy lensing signal from the SDSS plotted against physical
radius R. The lens sample has been subdivided into early- and late-type galax-
ies (upper panel), and in galaxies situated in dense environments vs. those with a
smaller neighboring galaxy density (lower panel). The figure clearly shows that the
lensing signal is dominated by elliptical galaxies, and by those located in dense en-
vironment. Owing to the morphology–density relation of galaxies, these two results
are not mutually independent. Note that the lensing signal can be measured out
to 1h−1 Mpc, considerably larger than the expected size of galaxy halos; therefore,
the shear at these large separations is most likely caused by the larger-scale mass
distribution in which the galaxies are embedded (from McKay et al. 2001)

on large scales no longer measures the density profile of individual galaxies,
but gets more and more dominated by group and cluster halos in which these
(predominantly early-type) galaxies are embedded.

A separation of these contributions from the data themselves is not possi-
ble at present, but can be achieved in the frame of a theoretical model. Guzik
and Seljak (2001) employed the halo model for the distribution of matter in
the universe (see Cooray and Sheth 2002) to perform this separation. There,
the galaxy–galaxy lensing signal either comes from matter in the same halo in
which the galaxy is embedded, or due to other halos which are physically as-
sociated (i.e., clustered) with the former. This latter contribution is negligible
on the scales below ∼1h−1 Mpc on which the SDSS obtained a measurement.
The former contribution can be split further into two terms: the first is from
the dark matter around the galaxies themselves, whereas the second is due to
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the matter in groups and clusters to which the galaxies might belong. The rel-
ative amplitude of these two terms depends on the fraction of galaxies which
are located in groups and clusters; the larger this fraction, the more important
are larger-scale halos for the shear signal. Guzik and Seljak estimate from the
radial dependence of the SDSS signal that about 20% of galaxies reside in
groups and clusters; on scales larger than about 200h−1 kpc their contribu-
tion dominates. The virial mass of an early-type L∗ galaxy is estimated to
be M200(L∗) = (9.3 ± 2.2) × 1011h−1M�, and about a factor of three smaller
for late-type galaxies (with luminosity measured in a red passband; the differ-
ences are substantially larger for bluer passbands, owing to the sensitivity of
the luminosity to star formation activity in late types). From the mass-to-light
ratio in red passbands, Guzik and Seljak estimate that an L∗ galaxy converts
about 10–15% of its virial mass into stars. Since this fraction is close to the
baryon fraction in the universe, they conclude that most of the baryons of
an L∗ galaxy are transformed into stars. For more massive halos, the mass-
to-light ratio increases (M/L ∝ L0.4±0.2), and therefore their conversion of
baryons into stars is smaller – in agreement with what we argued about clus-
ters, where most of the baryons are present in the form of a hot intracluster
gas.

Yang et al. (2003) studied the cross-correlation between mass and galaxies
using numerical simulations of structure formation and semi-analytic models
of galaxy evolution. The observed dependence of the galaxy–galaxy lensing
signal on galaxy luminosity, morphological type and galaxy environment, as
obtained by McKay et al. (2001), is well reproduced in these simulations.
The galaxy-mass correlation is affected by satellite galaxies, i.e. galaxies not
situated at the center of their respective halo. Central galaxies can be selected
by restricting the foreground galaxy sample to relatively isolated galaxies. The
galaxy–galaxy lensing signal for such central galaxies can well be described
by an NFW mass profile, whereas this no longer is true if all galaxies are
considered. Combining the measurement with the simulation, they find that
an L∗-galaxy typically resides in a halo with a virial mass of ∼2×1012h−1M�.

With the SDSS progressing, larger datasets become available, allowing
a more refined analysis of galaxy–galaxy lensing (Sheldon et al. 2004; Seljak
et al. 2004). In the analysis of Seljak et al. (2004), more than 2.7×105 galaxies
with spectroscopic redshifts have been used as foreground galaxies, and as
background population those fainter galaxies for which photometric redshifts
have been estimated. The resulting signal is shown in Fig. 51, for six different
bins in (foreground) galaxy luminosity.

In a further test to constrain systematic effects in the data, Hirata et al.
(2004) have used spectroscopic and photometric redshifts to study the ques-
tion whether an alignment of satellite galaxies around the lens galaxies can
affect the galaxy–galaxy lensing signal from the SDSS; they obtain an upper
limit of a 15% contamination.

The SDSS already has yielded important information about the mass
properties of galaxies; taken into account that only a part of the data of
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Fig. 51. The galaxy–galaxy lensing signal for six luminosity bins of foreground
galaxies, as indicated by the absolute magnitude interval in each panel. The curves
show a two-parameter model fitted to the data, based on the halo model, and the fit
parameters are indicated: M is the virial mass of the halo (in units of 1011h−1M�)
in which the galaxies reside, and α is the fraction of the galaxies which are not
central inside the halo, but satellite galaxies (from Seljak et al. 2004)

the complete survey has been used in the studies mentioned above, an analy-
sis of the final survey will yield rich harvest when applied to a galaxy–galaxy
lensing analysis.

Lensing by Galaxies in Clusters

As an extension of the method presented hitherto, one might use galaxy–
galaxy lensing also to specifically target the mass profile of galaxies in the
inner part of clusters. One might expect that owing to tidal stripping, their
dark matter halo has a considerably smaller spatial extent than that of the
galaxy population as a whole. The study of this effect with lensing is more
complicated than galaxy–galaxy lensing in the field, both observationally and
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from theory. Observationally, the data sets that can be used need to be taken
in the inner part of massive clusters; since these are rare, a single wide-field
image usually contains at most one such cluster. Furthermore, the number of
massive galaxies projected near the center of a cluster is fairly small. There-
fore, in order to obtain good statistics, the data of different clusters should be
combined. Since the cores of clusters are optically bright, measuring the shape
of faint background galaxies is more difficult than in a blank field. From the
theoretical side, the lensing strength of the cluster is much stronger than that
of the individual cluster galaxies, and so this large-scale shear contribution
needs to be accounted for in the galaxy–galaxy lensing analysis.

Methods for performing this separation between cluster and galaxy shear
were developed by Natarajan and Kneib (1997) and Geiger and Schneider
(1998). Perhaps the simplest approach is provided by the aperture mass meth-
ods, applied to the individual cluster galaxies; there one measures the tan-
gential shear inside an annulus around each cluster galaxy. This measure is
insensitive to the shear contribution which is linear in the angular variable
θ, which is a first local approximation to the larger-scale shear caused by
the cluster. Alternatively, a mass model of the (smoothed) cluster can be ob-
tained, either from strong or weak lensing constraints, or preferentially both,
and subtracted from the shear signal around galaxies to see their signal. How-
ever, once the mass fraction in the galaxies becomes considerable, this method
starts to become biased. Geiger and Schneider (1999) have suggested to si-
multaneously perform a weak lensing mass reconstruction of the cluster and a
determination of the parameters of a conveniently parameterized mass model
of cluster galaxies (e.g., the truncated isothermal sphere); since the maxi-
mum likelihood method for the mass reconstruction (see Sect. 5.3) was used,
the solution results from maximizing the likelihood with respect to the mass
profile parameters (the deflection potential on a grid) and the galaxy mass
parameters.

Natarajan et al. (1998), by analyzing HST data of the cluster AC 114,
concluded that the truncation radius of a fiducial L∗ galaxy in this clus-
ter is ∼15h−1 kpc; similarly, Geiger and Schneider (1999) showed that the
best-fitting truncation radius for early-type galaxies in the cluster A 851 is
∼10h−1 kpc (see Fig. 52). Although the uncertainties are fairly large, these
results indicate that indeed galaxies near cluster centers have a halo size con-
siderably smaller than the average galaxy. The sample of clusters which can
be investigated using this method will dramatically increase once the cluster
sample observed with the new ACS camera onboard HST becomes available
and gets properly analyzed.

8.3 Galaxy Biasing: Shear Method

On small scales, galaxy–galaxy lensing measures the mass profile of galaxies,
whereas on intermediate scales the environment of galaxies starts to dominate
the shear signal. On even larger scale (say, beyond ∼1h−1 Mpc), the host halo
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Fig. 52. Significance contours (solid) for galaxy properties obtained from galaxy–
galaxy lensing of galaxies in the cluster Cl 0939+4713. The parameters are the veloc-
ity dispersion σ∗ and the halo truncation radius s∗ of an L∗-galaxy. Based on HST
data (see Fig. 22), a simultaneous reconstruction of the cluster mass profile and the
determination of the galaxy mass parameters was performed. No significant lensing
signal is seen from the 55 late-type galaxies (lower panel), but a clear detection and
upper bound to the halo size is detected for the 56 early-types. Dashed and dotted
curves connect models with the same mass inside 8h−1 1kpc and total mass of an
L∗-galaxy, respectively (from Geiger and Schneider 1999)

contribution becomes negligible. Beyond that distance, any signal must come
from the correlation of galaxy positions with the mass distribution in the
Universe. This correlation, and the related issue of galaxy biasing (see Sect. 6.1
of IN), can ideally be studied with weak lensing. In this section we shall
outline how these quantities can be determined from shear measurements, and
describe some recent results. As we shall see, this issue is intimately related to
galaxy–galaxy lensing. The next section deals with the magnification of distant
sources caused by mass overdensities correlated with galaxies and thereby
causing an apparent correlation between high-redshift sources and low-redshift
galaxies; the amplitude of this signal is again proportional to the correlation
between galaxies and the underlying dark matter.

An interesting illustration of the correlation between galaxies and mass has
been derived by Wilson et al. (2001). They studied 6 fields with 30′×30′ each,
selected bright early-type galaxies from their V − I colors and I magnitudes
and measured the shear from faint galaxies. Assuming that mass is strongly
correlated with early-type galaxies, these can be used to predict the shear
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field, with an overall normalization given by the mean mass-to-light ratio of
the early-type galaxies. This correlation has indeed been found, at the 5.2-σ
significance level, and a value of M/L ≈ 300h in solar units has been obtained,
assuming a flat low-density Universe.

The Galaxy–Mass Correlation and the Bias Parameter

First, the concept of the correlation between galaxies and mass shall be de-
scribed more quantitatively. The mass density inhomogeneities are described,
as before, by the dimensionless density contrast δ(x, w). In analogy to this
quantity, one defines the number density contrast δg(x, w) of galaxies as

δg(x, w) :=
n(x, w) − n̄(w)

n̄(w)
, (136)

where n(x, w) is the number density of galaxies at comoving position x and
comoving distance w (the latter providing a parameterization of cosmic time
or redshift), and n̄(w) is the mean number density of galaxies at that epoch.
Since the galaxy distribution is discrete, the true number density is simply a
sum of delta-functions. What is meant by n is that the probability of finding
a galaxy in the volume dV situated at position x is n(x) dV .

The relation between δ and δg describes the relative distribution of galaxies
and matter in the Universe. The simplest case is that of an unbiased distribu-
tion, for which δg = δ; then, the probability of finding a galaxy at any location
would be just proportional to the matter density. However, one might expect
that the relation between luminous and dark matter is more complicated.
For example, galaxies are expected to form preferentially in the high-density
peaks in the early Universe, which would imply that there are proportionally
more galaxies within mass overdensities. This led to the introduction of the
concept of biasing (e.g., Bardeen et al. 1986; Kaiser 1984). The simplest form
of biasing, called linear deterministic biasing, is provided by setting δg = b δ,
with b being the bias parameter. One might suspect that the relative bias is
approximately constant on large scales, where the density field is still in its
linear evolution (i.e., on scales >∼ 10h−1 Mpc today). On smaller scales, how-
ever, b most likely is no longer simply a constant. For example, the spatial
distribution of galaxies in clusters seems to deviate from the radial mass pro-
file, and the distributions of different galaxy types are different. Furthermore,
by comparing the clustering properties of galaxies of different types, one can
determine their relative bias, from which it is concluded that more luminous
galaxies are more strongly biased than less luminous ones, and early-type
galaxies are more strongly clustered than late-types (see Norberg et al. 2001,
and Zehavi et al. 2002 for recent results from the 2dFGRS and the SDSS).
This is also expected from theoretical models and numerical simulations which
show that more massive halos cluster more strongly (e.g., Sheth et al. 2001;
Jing 1998). In order to account for a possible scale dependence of the bias, one
considers the Fourier transforms of δ and δg and relates them according to
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δ̂g(k, w) = b(|k|, w) δ̂(k, w) , (137)

thus accounting for a possible scale and redshift dependence of the bias.
Even this more general bias description is most likely too simple, as it is

still deterministic. Owing to the complexity of galaxy formation and evolution,
it is to be expected that the galaxy distribution is subject to stochasticity in
excess to Poisson sampling (Tegmark and Peebles 1998; Dekel and Lahav
1999). To account for that, another parameter is introduced, the correlation
parameter r(|k|, w), which in general will also depend on scale and cosmic
epoch. To define it, we first consider the correlator〈

δ̂(k, w) δ̂∗g(k′, w)
〉

= (2π)3 δD(k − k′)Pδg(|k|, w) , (138)

where the occurrence of the delta function is due to the statistical homogeneity
of the density fields, and Pδg denotes the cross-power between galaxies and
matter. The correlation parameter r is then defined as

r(|k|, w) =
Pδg(|k|, w)√

Pδ(|k|, w)Pg(|k|, w)
. (139)

In the case of stochastic biasing, the definition of the bias parameter is modified
to

Pg(|k|, w) = b2(|k|, w)Pδ(|k|, w) , (140)

which agrees with the definition (137) in the case of r ≡ 1, but is more general
since (140) no longer relates the phase of (the Fourier transform of) δg to that
of δ. Combining the last two equations yields

Pδg(|k|, w) = b(|k|, w) r(|k|, w)Pδ(|k|, w) . (141)

We point out again that galaxy redshift surveys are used to determine the
two-point statistics of the galaxy distribution, and therefore Pg; in order to
relate these measurements to Pδ, assumptions on the properties of the bias
have to be made. As we shall discuss next, weak lensing can determine both
the bias parameter and the correlation parameter.

The Principle

In order to determine b and r, the three power spectra defined above (or func-
tions thereof) need to be measured. Second-order cosmic shear measures, as
discussed in Sect. 6, are proportional to the power spectrum Pδ. The corre-
lation function of galaxies is linearly related to Pg. In particular, the three-
dimensional correlation function is just the Fourier transform of Pg, whereas
the angular correlation function contains a projection of Pg along the line-of-
sight and thus follows from Limber’s equation as discussed in Sect. 6.2. Finally,
the cross-power Pδg describes the correlation between mass and light, and thus
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determines the relation between the lensing properties of the mass distribu-
tion in the Universe to the location of the galaxies. galaxy–galaxy lensing on
large angular scales (where the mass profile of individual galaxies no longer
yields a significant contribution) provides one of the measures for such a cor-
relation. Hence, measurements of these three statistical distributions allow a
determination of r and b.

As we shall consider projected densities, we relate the density field of galax-
ies on the sky to the spatial distribution. Hence, consider a population of (‘fore-
ground’) galaxies with spatial number density n(x, w). The number density of
these galaxies on the sky at θ is then N(θ) =

∫
dw ν(w)n(fk(w)θ, w), where

ν(w) is the redshift-dependent selection function, describing which fraction of
the galaxies at comoving distance w are included in the sample. Foremost, this
accounts for the fact that for large distances, only the more luminous galax-
ies will be in the observed galaxy sample, but ν can account also for more
subtle effects, such as spectral features entering or leaving the photometric
bands due to redshifting. The mean number density of galaxies on the sky is
N̄ =

∫
dw ν(w) n̄(w); the redshift distribution, or more precisely, the distribu-

tion in comoving distance, of these galaxies therefore is pf(w) = ν(w) n̄(w)/N̄ ,
thus relating the selection function ν(w) to the redshift distribution. Using
the definition (136), one then finds that

N(θ) = N̄

[
1 +

∫
dw pf(w) δg(fK(w)θ, w)

]
. (142)

We shall denote the fractional number density by κg(θ) :=
[
N(θ) − N̄

]
/N̄ =∫

dw pf(w) δg(fK(w)θ, w).

Aperture Measures

We have seen in Sect. 6.3 that the aperture mass dispersion provides a very
convenient measure of second-order cosmic shear statistics. Therefore, it is
tempting to use aperture measures also for the determination of the bias
and the mass–galaxy correlation. Define in analogy to the definition of the
aperture mass Map in terms of the projected mass density the aperture counts
(Schneider 1998),

N (θ) =
∫

d2ϑ U(|ϑ|)κg(ϑ) , (143)

where the integral extends over the aperture of angular radius θ, and ϑ mea-
sures the position relative to the center of the aperture. An unbiased estimate
of the aperture counts is N̄−1

∑
i U(|θi|), where the θi are the positions of

the galaxies. We now consider the dispersion of the aperture counts,〈
N 2(θ)

〉
=
∫

d2ϑ U(|ϑ|)
∫

d2ϑ′ U(|ϑ′|)
〈
κg(ϑ)κg(ϑ′)

〉
. (144)

The correlator in the last expression is the angular two-point correlation func-
tion ω(Δϑ) of the galaxies; its Fourier transform is the angular power spectrum
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Pω(") of galaxies. Using the definition of κg together with the result (98) al-
lows us to express Pω in terms of the three-dimensional power spectrum of
the galaxy distribution,

Pω(") =
∫

dw
p2
f (w)

f2
K(w)

b2
(

"

fK(w)
, w

)
Pδ

(
"

fK(w)
, w

)

= b̄2
∫

dw
p2
f (w)

f2
K(w)

Pδ

(
"

fK(w)
, w

)
, (145)

where we made use of (140), and in the final step we defined the mean bias
parameter b̄ which is a weighted average of the bias parameter over the redshift
distribution of the galaxies and which depends on the angular wave number ".
To simplify notation, we shall drop the bar on b and consider the bias factor as
being conveniently averaged over redshift (and later, also over spatial scale).
The aperture count dispersion then becomes〈

N 2(θ)
〉

=
1
2π

∫
d" " Pω(")Wap(θ") = 2π b2 Hgg(θ) , (146)

where Wap is given in (109), and we have defined

Hgg(θ) =
∫

dw
p2
f (w)

f2
K(w)

P(w, θ) , (147)

with

P(w, θ) =
1

(2π)2

∫
d" " Pδ

(
"

fK(w)
, w

)
Wap(θ") . (148)

Using the same notation (following Hoekstra et al. 2002c), we can write the
aperture mass dispersion as

〈
M2

ap(θ)
〉

=
9π
2

(
H0

c

)4

Ω2
m Hκ(θ) , (149)

with

Hκ(θ) =
∫

dw
g2(w)
a2(w)

P(w, θ) , (150)

where g(w) (see 94) describes the source-redshift weighted efficiency factor of
a lens at distance w. One therefore obtains an expression for the bias factor,

b2 =
9
4

(
H0

c

)4
Hκ(θ)
Hgg(θ)

Ω2
m

〈
N 2(θ)

〉〈
M2

ap(θ)
〉 = fb(θ)Ω2

m

〈
N 2(θ)

〉〈
M2

ap(θ)
〉 . (151)

Note that fb(θ) depends, besides the aperture radius θ, on the cosmological
parameters Ωm and ΩΛ, but for a given cosmological model, it depends only
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weakly on the filter scale θ and on the adopted power spectrum Pδ (van Waer-
beke 1998; Hoekstra et al. 2002c). This is due to the fact that both,

〈
N 2(θ)

〉
and

〈
M2

ap(θ)
〉

are linear in the power spectrum, through the functions H, and
in both cases they probe only a very narrow range of k-values, owing to the
narrow width of the filter function Wap. Hence, the ratio

〈
N 2(θ)

〉
/
〈
M2

ap(θ)
〉

is expected to be very close to a constant if the bias factor b is scale
independent.

Next we consider the correlation coefficient r between the dark matter
distribution and the galaxy field. Correlating Map(θ) with N (θ) yields

〈Map(θ)N (θ)〉 =
∫

d2ϑ U(|ϑ|)
∫

d2ϑ′ U(|ϑ′|)
〈
κ(ϑ)κg(ϑ′)

〉
= 3π

(
H0

c

)2

Ωm b r Hκg(θ) , (152)

with

Hκg(θ) =
∫

dw
pf(w) g(w)
a(w) fK(w)

P(w, θ) . (153)

It should be noted that 〈Map(θ)N (θ)〉 is a first-order statistics in the cosmic
shear. It correlates the shear signal with the location of galaxies, which are
assumed to trace the total matter distribution. As shown in Schneider (1998),
the signal-to-noise of this correlator is higher than that of

〈
M2

ap

〉
, and therefore

was introduced as a convenient statistics for the detection of cosmic shear. In
fact, in their original analysis of the RCS, based on 16 deg2, Hoekstra et al.
(2001) obtained a significant signal for 〈Map(θ)N (θ)〉, but not for

〈
M2

ap(θ)
〉
.

Combining (146) and (149) with (152), the correlation coefficient r can be
expressed as

r =

√
Hκ(θ)Hgg(θ)
Hκg(θ)

〈Map(θ)N (θ)〉√〈
M2

ap(θ)
〉
〈N 2(θ)〉

= fr(θ)
〈Map(θ)N (θ)〉√〈
M2

ap(θ)
〉
〈N 2(θ)〉

.

(154)

As was the case for fb, the function fr depends only very weakly on the filter
scale and on the adopted form of the power spectrum, so that a variation of the
(observable) final ratio with angular scale would indicate the scale dependence
of the correlation coefficient.

Whereas the two aperture measures Map and N can in principle be ob-
tained from the data field by putting down circular apertures, and the corre-
sponding second-order statistics can likewise be determined through unbiased
estimators defined on these apertures, this is not the method of choice in
practice, due to gaps and holes in the data field. Note that in our discussion
of cosmic shear in Sect. 6.3, we have expressed

〈
M2

ap(θ)
〉

in terms of the shear
two-point correlation functions ξ±(θ) – see (115) – just for this reason. In close
analogy, N 2(θ) can be expressed in terms of the angular correlation function
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ω(θ) of the projected galaxy positions, as seen by (144), or more explicitly,
when replacing the power spectrum Pω(") in (146) by its Fourier transform,
which is the angular correlation function, one finds〈

N 2(θ)
〉

=
∫ 2θ

0

dϑ ϑ

θ2
ω(ϑ)T+

(
ϑ

θ

)
, (155)

where the function T+ is the same as that occurring in (115). Correspondingly,
we introduce the power spectrum Pgκ("), which is defined as〈

κ̂(	)κ̂∗
g(	

′)
〉

= (2π)2δD(	 − 	′)Pκg(|	|) . (156)

Applying (98), as well as the definitions of the bias and correlation functions,
this projected cross-power spectrum is related to the 3-D density contrast by

Pκg(") =
3
2

(
H0

c

)2

Ωmbr

∫
dw

g(w)pf(w)
a(w)fK(w)

Pδ

(
"

fK(w)
, w

)
. (157)

The angular correlation function
〈
κ(ϑ)κ(ϑ′)

〉
occurring in (152) can then be

replaced by its Fourier transform Pκg. On the other hand, since the Fourier
transform of the surface mass density κ is simply related to that of the shear,
one can consider the correlation between the galaxy positions with the tan-
gential shear component,

〈γt(θ)〉 := 〈κg(0)γt(θ)〉

= −
∫

d2"

(2π)2

∫
d2"′

(2π)2
e2i(β′−ϕ) exp

(
−iθ · 	′

) 〈
κ̂g(	)κ̂(	′)

〉
=

1
2π

∫
d" " J2(θ")Pκg(") (158)

⇒ Pκg(") = 2π
∫

dθ θ 〈γt(θ)〉 J2(θ") .

Note that 〈γt(θ)〉 is just the galaxy–galaxy lensing signal discussed in Sect. 8.2;
this shows very clearly that galaxy–galaxy lensing measures the correlation of
mass and light in the Universe. In terms of this mean tangential shear, the
aperture mass and galaxy number counts can be written as

〈Map(θ)N (θ)〉 =
∫ 2θ

0

dϑ ϑ

θ2
〈γt(ϑ)〉 T2

(
ϑ

θ

)
, (159)

where the function T2 is defined in a way similar to T± and given explicitly as

T2(x) = 576
∫ ∞

0

dt
t3

J2(xt) [J4(t)]
2 ; (160)

this function vanishes for x > 2, so that the integral in (159) extends over
a finite interval only. Hence, all three aperture correlators can be calculated
from two-point correlation functions which can be determined from the data
directly, independent of possible gaps in the field geometry.
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Results from the RCS

Hoekstra et al. (2002c) have applied the foregoing equations to a combina-
tion of their RCS survey and the VIRMOS-DESCART survey. The former
was used to determine

〈
N 2
〉

and 〈MapN〉, the latter for deriving
〈
M2

ap

〉
. As

pointed out by these authors, this combination of surveys is very useful, in
that the power spectrum at a redshift around z ∼ 0.35 can be probed; indeed,
they demonstrate that the effective redshift distribution over which the power
spectrum, and thus b and r are probed, are well matched for all three statis-
tics for their choice of surveys. ‘Foreground’ galaxies for the measurement of
ω(θ) and 〈γt(θ)〉 are chosen to have 19.5 ≤ RC ≤ 21, ‘background’ galaxies
are those with 21.5 ≤ RC ≤ 24. In Fig. 53 the three aperture statistics are
shown as a function of angular scale, as determined from their combined sur-
vey, whereas in the right panels, the ratios of these statistics as they appear in
(151) and (154) are displayed. Also shown are predictions of these quantities
from two cosmological models, assuming b = 1 and r = 1. The fact that these
model predictions are fairly constant in the right-hand panels shows that the
factors fb and fr are nearly independent of the radius θ of the aperture, as
mentioned before.

Fig. 53. The left figure displays the three aperture statistics as measured by com-
bining the RCS and the VIRMOS-DESCART survey. Points show measured values,
as determined from the correlation functions. The right panels display the ratios of
the aperture statistics as they appear in (151) and (154). The dotted and dashed
curves in all panels show the predictions for an OCDM and a ΛCDM model, respec-
tively, both with Ωm = 0.3, σ8 = 0.9, and Γspect = 0.21, for the fiducial values of
b = 1 = r. The fact that the curves in the right panels are nearly constant show
the near-independence of fb and fr on the filter scale. The upper axis in the right
panels show the effective physical scale on which the values of b and r are measured
(from Hoekstra et al. 2002c)
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The results for the bias and correlation factor are shown in Fig. 54, as
a function of angular scale and effective physical scale, corresponding to a
median redshift of z ∼ 0.35. The results indicate that the bias factor and
the galaxy-mass correlation coefficient are compatible with a constant value
on large scales, >∼ 5h−1 Mpc, but on smaller scales both seem to change with
scale. The transition between these two regimes occurs at about the scale
where the density field at redshift z ∼ 0.35 turns from linear to non-linear
evolution. In fact, in the non-linear regime one does not expect a constant
value of both coefficients, whereas in the linear regime, constant values for
them appear natural. It is evident from the figure that the error bars are
still too large to draw definite conclusions about the behavior of b and r as a
function of scale, but the approach to investigate the relation between galaxies
and mass is extremely promising and will certainly yield very useful insight
when applied to the next generation of cosmic shear surveys. In particular,
with larger surveys than currently available, different cuts in the definition
of foreground and background galaxies can be used, and thus the redshift
dependence of b and r can be investigated. This is of course optimized if
(photometric) redshift estimates for the galaxy sample become available.

Fig. 54. The values of the bias and correlation coefficient, as determined from (151)
and (154) and the results shown in Fig. 53; here, a ΛCDM model has been assumed
for the cosmology dependence of the functions fb and fr. The upper axis indicates
the effective scale on which b and r are measured (from Hoekstra et al. 2002c)
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Results from the SDSS

The large sample of galaxies with spectroscopic redshifts already available
now from the SDSS permits an accurate study of the biasing properties of
these galaxies (see the end of Sect. 8.2). Two different approaches should be
mentioned here: the first follows along the line discussed above and has been
published in Sheldon et al. (2004). In short, the galaxy–galaxy signal can
be translated into the galaxy-mass cross-correlation function ξgm, due to the
knowledge of galaxy redshifts. The ratio of ξgm and the galaxy two-point
correlation function ξgg then depends on the ratio r/b. In Fig. 55 we show the
galaxy-mass correlation as a function of linear scale, as well as the ratio b/r.
Note that from the SDSS no cosmic shear measurement has been obtained
yet, owing to the complex PSF properties, and therefore b and r cannot be
measured separately from this data set.

The galaxy-mass correlation function follows a power law over more than
two orders-of-magnitude in physical scale, and its slope is very similar to the
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Fig. 55. The galaxy–mass cross-correlation function ξgm(r), as a function of linear
scale (dots with error bars), scaled to a matter density parameter of Ωm = 0.27,
as well as the two-point galaxy correlation function obtained from the same set
of (foreground) galaxies (solid curve). The ratio between these two is given in the
lower panel, which plots b/r as a function of scale. Over the full range of scales,
ξgm can be well approximated by a power law, ξgm = (r/r0)

−γ , with slope γ =
1.79±0.06 and correlation length r0 = (5.4±0.7)(Ωm/0.27)−1/γh−1 Mpc. The ratio
r/b ≈ (1.3 ± 0.2)(Ωm/0.27) is consistent with being scale-independent
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slope of the galaxy two-point correlation function. Hence, the ratio between
these two is nearly scale-independent. When splitting the sample into blue
and red, and early- and late-type galaxies, the correlation length is larger for
the red and the early-type ones. Furthermore, as expected, the lensing signal
increases with the velocity dispersion in early-type galaxies.

An alternative approach was taken by Seljak et al. (2004). Their starting
point is the fact that the biasing properties of dark matter halos is very well
determined from cosmological simulations. This is of course not true for the bi-
asing of galaxies. The bias parameter of galaxies with luminosity L is given as

b(L) =
∫

dM p(M |L) bh(M) , (161)

where bh is the bias of halos of mass M relative to the large-scale matter
distribution, and p(M |L) is the probability that a galaxy with luminosity L
resides in a halo of mass M . This latter probability distribution is then pa-
rameterized for any luminosity bin, by assuming that a fraction 1 − α of all
galaxies in the luminosity bin considered are at the center of their parent
halos, whereas the remaining fraction α are satellite galaxies. For the central
galaxies, a unique mass M(L) is assigned, whereas for the non-central ones, a
mass distribution is assumed. The values of α and M for six luminosity bins
are shown in the various panels of Fig. 51; they are obtained by fitting the
galaxy–galaxy lensing signal with the model just described. The main reason
why the mass spectrum can be probed is that the numerous low-mass galaxy
halos contribute to the lensing signal only at relatively small scales, whereas
at larger scales the higher-mass halos dominate the signal; hence, different
halo masses appear at different separations in the galaxy–galaxy lensing sig-
nal. In this way, b(L) can be determined, which depends on the non-linear
mass scale M∗ (see Sect. 6.2 of IN). The bias parameter is a relatively slowly
varying function of galaxy luminosity for L <∼ L∗, approaching a value ∼0.7
for very low-luminosity galaxies, but quickly rises for L > L∗.

Seljak et al. combined these measurements of the bias parameter with
the clustering properties of the SDSS galaxies and the WMAP results on the
CMB anisotropy, and derived new constraints on σ8 = 0.88±0.06 and the bias
parameter of an L∗-galaxy, b∗ = 0.99± 0.07; furthermore, the combination of
these datasets is used to obtain new constraints on the standard cosmological
parameters. This work has opened up a new way on how to employ the results
from galaxy–galaxy lensing as a cosmological tool.

8.4 Galaxy Biasing: Magnification Method

High-redshift QSOs are observed to be correlated on the sky with lower-
redshift galaxies and clusters. This topic has indeed an interesting history:
The detection of very close associations of high-z QSOs with low-z galaxies
(see Arp 1987, and references therein) has been claimed as evidence against
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the cosmological interpretation of the QSO redshifts, as the probabilities of ob-
serving such close pairs of objects which are physically unrelated were claimed
to be vanishingly small. However, these probabilities were obtained a poste-
riori, and of course, any specific configuration has a vanishingly small prob-
ability. Since the cosmological interpretation of QSO redshifts is supported
by overwhelming evidence, the vast majority of researchers consider these
associations as a statistical fluke.

A physical possibility to generate the association of background sources
with foreground objects is provided by the magnification bias caused by lens-
ing: the number counts of background sources is changed in regions where a
foreground lens yields magnifications different from unity – see Sect. 5 of IN.
Thus, close to a galaxy where μ > 1, the number counts of bright background
QSOs can be enhanced since the slope of their counts is steeper than unity.
There have been various attempts in the literature to ‘explain’ the observed
QSO-galaxy associations by invoking the magnification bias, either with a
smooth galaxy mass distribution or by including the effects of microlensing;
see SEF for a detailed discussion of this effect. The bottom line, however, is
that the magnification effect is by far not large enough to account for the
small (a posteriori) probabilities of the observed individual close associations.

The topic has been revived, though in a different direction, by the finding
that high-redshift AGNs are statistically associated with low-redshift galaxies.
Fugmann (1990) provided evidence that radio-selected high-z AGNs from the
1-Jansky-catalog are correlated with relatively bright (and therefore low-z)
galaxies taken from the Lick catalog, an analysis that later on was repeated by
Bartelmann and Schneider (1993), using a slightly different statistics. Different
samples of foreground and background populations have been employed in
further studies, including the correlation between 1-Jansky AGN with bright
IRAS galaxies (Bartelmann and Schneider 1994; Bartsch et al. 1997), high-z
QSOs with clusters from the Zwicky catalog of clusters (Rodrigues-Williams
and Hogan 1994; Seitz and Schneider 1995b), 1-Jansky AGNs with red galaxies
from the APM catalog (Beńıtez and Mart́ınez-González 1995; see also Norman
and Impey 2001), to mention just a few. Radio-selected AGN are considered
to be a more reliable probe since their radio flux is unaffected by extinction,
an effect which could cause a bias (if the sky shows patchy extinction, both
galaxies and QSOs would have correlated inhomogeneous distributions on
the sky) or anti-bias (if extinction is related to the lensing matter) for flux-
limited optical surveys of AGNs, and which therefore needs to be taken into
account in the correlation analysis of optically-selected AGNs. However, most
radio source catalogs are not fully optically identified and lack redshifts, and
using incomplete radio surveys therefore can induce a selection bias (Beńıtez
et al. 2001). These latter authors investigated the correlation between two
completely identified radio catalogs with the COSMOS galaxy catalog, and
found a very significant correlation signal.

The upshot of all these analyses is that there seems to be a positive cor-
relation between the high-z sources and the low-z objects, on angular scales
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between ∼1′ and about 1◦. The significances of these correlations are often
not very large, they typically are at the 2–3σ level, essentially limited by the
finite number of high-redshift radio sources with a large flux (the latter being
needed for two reasons: first, only radio surveys with a high flux threshold,
such as the 1-Jansky catalog, have been completely optically identified and
redshifts determined, which is necessary to exclude low-redshift sources which
could be physically associated with the ‘foreground’ galaxy population, and
second, because the counts are steep only for high fluxes, needed to obtain a
high magnification bias). If this effect is real, it cannot be explained by lensing
caused by individual galaxies; the angular region on which galaxies produce an
appreciable magnification is just a few arcseconds. However, if galaxies trace
the underlying (dark) matter distribution, the latter can yield magnifications
(in the same way as it yields a shear) on larger scales. Thus, an obvious qual-
itative interpretation of the observed correlation is therefore that it is due to
magnification of the large-scale matter distribution in the Universe of which
the galaxies are tracers. This view is supported by the finding (Ménard and
Péroux 2003) that there is a significant correlation of bright QSOs with metal
absorption systems in the sense that there are relatively more bright QSOs
with an aborber than without; this effect shows the expected trend from mag-
nification bias caused by matter distributions associated with the absorbing
material.

We therefore consider a flux-limited sample of AGNs, with distance prob-
ability distribution pQ(w), and a sample of galaxies with distance distribution
pf(w). It will be assumed that the AGN sample has been selected such that
it includes only objects with redshift larger than some threshold zmin, cor-
responding to a minimum comoving distance wmin, which is larger than the
distances of all galaxies in the sample. We define the AGN-galaxy correlation
function as

wQg(θ) =

〈[
Ng(φ) − N̄g

] [
NQ(φ + θ) − N̄Q

]〉
N̄g N̄Q

, (162)

where Ng(φ) and NQ(φ) are the observed number densities of galaxies and
AGNs, respectively. The former is given by (142). The observed number den-
sity of AGN is affected by the magnification bias. Provided the unlensed counts
can be described (locally) as a power-law in flux, NQ,0(> S) ∝ S−β , then from
(108) of IN we find that NQ(φ) = NQ,0 μ

β−1(φ), where μ(φ) is the magni-
fication in the direction φ. Then, if the magnifications that are relevant are
small, we can approximate

μ(φ) ≈ 1 + 2κ(φ) = 1 + δμ(φ) , (163)

and the projected surface mass density κ is given by (93) with pw in (94)
replaced by pQ. Assuming that the magnifications do not affect the mean
source counts N̄Q, the cross-correlation becomes

wQg(θ) = 2(β − 1)b̄(θ) r̄(θ)wκg(θ) , (164)
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where b̄ and r̄ are the effective bias factor of the galaxies and the mean
galaxy-mass correlation function just as in Sect. 8.3, and wκg is the corre-
lation between the projected density field κ and the projected number density
of galaxies κg, defined after (142), which is the Fourier transform of Pκg(")
defined in (141). Hence, a measurement of this correlation, together with a
measurement of the correlation function of galaxies, can constrain the values
of b and r (Dolag and Bartelmann 1997; Ménard and Bartelmann 2002).

The observed correlation between galaxies and background AGN appears
to be significantly larger than can be accounted for by the models presented
above. On scales of a few arcmin, Beńıtez et al. (2001) argued that the ob-
served signal exceeds the theoretical expectations by a factor of a few. This
discrepancy can be attributed to either observational effects, or shortcomings
of the theoretical modeling. Obviously, selection effects can easily produce
spurious correlations, such as patchy dust obscuration or a physical associa-
tion of AGNs with the galaxies. Furthermore, the weak lensing approximation
employed above can break down on small angular scales. Jain et al. (2003,
see also Takada and Hamana 2003) argued that the simple biasing model
most likely breaks down for the small scales where the discrepancy is seen,
and employed the halo model for describing the large-scale distribution of
matter and galaxies to predict the expected correlations. For example, the
strength of the signal depends sensitively on the redshifts, magnitudes and
galaxy type.

At present, the shear method to determine the bias factor and the galaxy-
mass correlation has yielded more significant results than the magnification
method, owing to the small complete and homogeneous samples of high-
redshift AGNs. As pointed out by Ménard and Bartelmann (2002), the SDSS
may well change this situation shortly, as this survey will obtain ∼105 ho-
mogeneously selected spectroscopically verified AGNs. Provided the effects
of extinction can be controlled sufficiently well, this data should provide a
precision measurement of the QSO–galaxy correlation function.

9 Additional Issues in Cosmic Shear

9.1 Higher-Order Statistics

On the level of second-order statistics, ‘only’ the power spectrum is probed. If
the density field was Gaussian, then the power spectrum would fully character-
ize it; however, in the course of non-linear structure evolution, non-Gaussian
features of the density field are generated, which show up correspondingly in
the cosmic shear field and which can be probed by higher-order shear sta-
tistics. The usefulness of these higher-order measures for cosmic shear has
been pointed out in Bernardeau et al. (1997), Jain and Seljak (1997), Schnei-
der et al. (1998a) and van Waerbeke et al. (1999); in particular, the near-
degeneracy between σ8 and Ωm as found from using second-order statistics
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can be broken. However, there are serious problems with higher-order shear
statistics, that shall be illustrated below in terms of the third-order statistics.

But first, we can give a simple argument why third-order statistics is able
to break the degeneracy between Ωm and σ8. Consider a density field on a scale
where the inhomogeneities are just weakly non-linear. One can then employ
second-order perturbation theory for the growth of the density contrast δ.
Hence, we write δ = δ(1)+δ(2)+. . ., where δ(1) is the density contrast obtained
from linear perturbation theory, and δ(2) is the next-order term. This second-
order term is quadratic in the linear density field, δ(2) ∝

(
δ(1)
)2

. The linear
density field is proportional to σ8, and the projected density κ ∝ Ωmσ8.
Hence, in the linear regime,

〈
κ2
〉
∝ Ω2

mσ2
8 , where

〈
κ2
〉

shall denote here any
second-order shear estimator. The lowest order contribution to the third-order
statistics is of the form 〈

κ3
〉
∝
(
δ(1)
)2

δ(2) ∝ Ω3
m σ4

8 ,

since the term
(
δ(1)
)3

yields no contribution owing to the assumed Gaussianity
of the linear density field. Hence, a skewness statistics of the form〈

κ3
〉
/
〈
κ2
〉2 ∝ Ω−1

m

will be independent of the normalization σ8, at least in this simplified per-
turbation approach. In more accurate estimates, this is not exactly true; nev-
ertheless, the functional dependencies of the second- and third-order shear
statistics on σ8 and Ωm are different, so that these parameters can be deter-
mined separately.

The Shear Three-Point Correlation Function

Most of the early studies on three-point statistics concentrated on the third-
order moment of the surface mass density κ in a circular aperture, 〈κ(θ)〉;
however, this is not a directly measureable quantity, and therefore useful only
for theoretical considerations. As for second-order statistics, one should con-
sider the correlation functions, which are the quantities that can be obtained
best directly from the data and which are independent of holes and gaps in
the data field. The three-point correlation function (3PCF) of the shear has
three independent variables (e.g. the sides of a triangle) and 8 components; as
was shown in Schneider and Lombardi (2003), none of these eight components
vanishes owing to parity invariance (as was suspected before – this confusion
arises because little intuition is available on the properties of the 3PCF of a
polar). This then implies that the covariance matrix has 6 arguments and 64
components ! Of course, this is too hard to handle efficiently, therefore one
must ask which combinations of the components of the 3PCF are most useful
for studying the dark matter distribution. Unfortunately, this is essentially
unknown yet. An additional problem is that the predictions from theory are
less well established than for the second-order statistics.
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A further complication stems from a certain degree of arbitrariness on how
to define the 8 components of the 3PCF. For the 2PCF, the vector between
any pair of points defines a natural direction with respect to which tangential
and cross components of the shear are defined; this is no longer true for three
points. On the other hand, the three points of a triangle define a set of centers,
such as the ‘center of mass’, or the center of the in- or circum-circle. After
choosing one of these centers, one can define the two components of the shear
which are then independent of the coordinate frame.

Nevertheless, progress has been achieved. From ray-tracing simulations
through a cosmic matter distribution, the 3PCF of the shear can be deter-
mined (Takada and Jain 2003a; see also Zaldarriaga and Scoccimarro 2003;
furthermore, the three-point cosmic shear statistics can also be determined
in the frame of the halo model, see Cooray and Hu 2001; Takada and Jain
2003b), whereas Schneider and Lombardi (2003) have defined the ‘natural
components’ of the shear 3PCF which are most easily related to the bispec-
trum of the underlying matter distribution. Let γc(θi) = γt +iγ× = −γ e−2iζi

be the complex shear measured in the frame which is rotated by the angle ζi

relative to the Cartesian frame, so that the real and imaginary parts of γc are
the tangential and cross components of the shear relative to the chosen center
of the triangle (which has to be defined for each triplet of points separately).
Then the natural components are defined as

Γ (0) = 〈γc(θ1) γc(θ2) γc(θ3)〉 ,

Γ (1) = 〈γc∗(θ1) γc(θ2) γc(θ3)〉 , (165)

and correspondingly for Γ (2) and Γ (3). Each of the natural components of the
3PCF constitutes a complex number, which depends just on the three sep-
arations between the points. Special care is required for labeling the points,
and one should follow the rule that they are labeled in a counter-clock direc-
tion around the triangle. If such a unique prescription is not systematically
applied, confusing and wrong conclusions will be obtained about the behavior
of the shear 3PCF with respect to parity transformations (as the author has
experienced painfully enough). In Schneider et al. (2005), explicit relations
are derived for the natural components of the shear 3PCF in terms of the bis-
pectrum (that is, the generalization of the power spectrum for the three-point
statistics) of the underlying mass distribution κ.

Third-Order Aperture Statistics

Alternatively, aperture measures can be defined to measure the third-order
statistics. Schneider et al. (1998a) calculated

〈
M3

ap

〉
(θ) in the frame of the

quasi-linear structure evolution model and showed it to be a strong function
of Ωm. van Waerbeke et al. (2001) calculated the third-order aperture mass,
using a fitting formula of the non-linear evolution of the dark matter bispec-
trum obtained by Scoccimarro and Couchman (2001) and pointed out the
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strong sensitivity with respect to cosmological parameters. Indeed, as men-
tioned before,

〈
M3

ap

〉
is sensitive only to the E-modes of the shear field. One

might be tempted to use
〈
M3

⊥
〉
(θ) as a measure for third-order B-mode statis-

tics, but indeed, this quantity vanishes owing to parity invariance (Schneider
2003). However,

〈
M2

⊥ Map

〉
is a measure for the B-modes at the third-order

statistical level. Jarvis et al. (2004) have calculated
〈
M3

ap(θ)
〉

in terms of the
shear 3PCF, for the weight function (110) in the definition of Map. Schneider
et al. (2005) have shown that this relation is most easily expressed in terms of
the natural components of the shear 3PCF. On the other hand, Jarvis et al.
(2004) have expressed

〈
M3

ap(θ)
〉

in terms of the bispectrum of κ, and as was
the case for the aperture dispersion in relation to the power spectrum of κ, the
third-order aperture mass is a very localized measure of the bispectrum and is
sensitive essentially only to modes with three wavevectors with equal magni-
tudes. For that reason, Schneider et al. (2005) have generalized the definition
of the third-order aperture measures, correlating the aperture mass of three
different sizes, 〈Map(θ1)Map(θ2)Map(θ3)〉. This third-order statistics is again
a very localized measure of the bispectrum, but this time with wave vectors of
different magnitude "i ≈ π/θi, and therefore, by considering the third-order
aperture mass for all combinations of θi, one can probe the full bispectrum.
Therefore, the third-order aperture mass correlator with three independent
arguments (i.e., angular scales) should contain essentially the full third-order
statistical information of the κ-field, since in contrast to the two-point sta-
tistics, the shear 3PCF does not contain information about long-wavelength
modes.

Furthermore, the third-order aperture statistics can be expressed directly
in terms of the shear 3PCF through a simple integration, very similar to
the relations (125) for the two-point statistics. Finally, the other three third-
order aperture statistics (e.g., 〈M⊥(θ1)Map(θ2)Map(θ3)〉) can as well be ob-
tained from the natural components of the shear 3PCF. These correlators
are expected to vanish if the shear is solely due to lensing, but intrinsic
alignments of galaxies can lead to finite correlators which include B-modes.
However, as shown in Schneider (2003), 〈Map(θ1)Map(θ2)M⊥(θ3)〉, as well
as 〈M⊥(θ1)M⊥(θ2)M⊥(θ3)〉, are expected to vanish even in the presence of
B-modes, since these two correlators are not invariant with respect to a par-
ity transformation. Therefore, non-zero results of these two correlators signify
the violation of parity invariance and therefore provide a clean check on the
systematics of the data and their analysis.

First Detections

Bernardeau et al. (2002) measured for the first time a significant third-order
shear from the VIRMOS-DESCART survey, employing a suitably filtered in-
tegral over the measured 3PCF (as defined in Bernardeau et al. 2003). Pen
et al. (2003a,b) used the aperture statistics to detect a skewness in the same
data set. The accuracy of these measurements is not sufficient to derive strong
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constraints on cosmological parameters, owing to the limited sky area avail-
able. However, with the upcoming large cosmic shear surveys, the 3PCF will be
measured with high accuracy. Determining the 3PCF from observed galaxy el-
lipticities cannot be done by straightforwardly considering any triple of galax-
ies – there are just too many. Jarvis et al. (2004) and Zhang and Pen (2005)
have developed algorithms for calculating the 3PCF in an efficient way.

Based on the halo model for the description of the LSS, Takada and Jain
(2003b) studied the dependence of the shear 3PCF on cosmological parame-
ters. For relatively large triangles, the 3PCF provides a means to break the
degeneracies of cosmological parameters that are left when using the second-
order statistics only, as argued above. For small triangles, the 3PCF is domi-
nated by the one-halo term, and therefore primarily probes the mass profiles of
halos. Ho and White (2004) show that the 3PCF on small angular scales also
contains information on the asphericity of dark matter halos. The full power
of third-order statistics is achieved once redshift information on the source
galaxies become available, in which case the combination of the 2PCF and
3PCF provides a sensitive probe on the equation-of-state of the dark energy
(Takada and Jain 2004).

Beyond Third Order

One might be tempted to look into the properties of the fourth-order shear
statistics (though I’m sure the reader can control her/himself in doing this –
but see Takada and Jain 2002). OK, the four-point correlation function has
16 components and depends on 5 variables, not to mention the corresponding
covariance or the redshift dependent fourth-order correlator. One can consider
correlating the aperture mass of four different angular sizes, but in contrast to
the third-order statistics, this is expected not to contain the full information
on the trispectrum (which describes the fourth-order statistical properties of
κ). Perhaps a combination of this fourth-order aperture mass with the average
of the fourth power of the mean shear in circular apertures will carry most of
the information. And how much information on cosmological parameters does
the fourth-order shear statistics contain ? And even higher orders ?

Already the third-order shear statistic is not acccurately predictable
from analytic descriptions of the non-linear evolution of the matter inhomo-
geneities, and the situation worsens with even higher order.13 One therefore
needs to refer to detailed ray-tracing simulations. Although they are quite
time consuming, I do not see a real bottleneck in this aspect: Once a solid

13 In the limits of small and large angular scales, analytic approximations can be
obtained. For small scales, the highly non-linear regime is often described by the
hierarchical ansatz and hyperextended perturbation theory (see Munchi and Jain
2001 and references therein), whereas on very large scales second-order perturba-
tion theory can be used. Nevertheless, the range of validity of these perturbation
approximations and their accuracy have to be checked with numerical simulations.
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and accurate measurement of the three-point correlation function becomes
available, certainly considerable effort will be taken to compare this with nu-
merical simulations (in particular, since such a measurement is probably a
few years ahead, in which the computer power will increase by significant fac-
tors). If we accept this point, then higher-order statistics can be obtained from
these simulations, and several can be ‘tried out’ on the numerical data such
that they best distinguish between different models. For example, one can
consider the full probability distribution p(Map; θ) on a given data set (Kruse
and Schneider 2000; Reblinsky et al. 1999; Bernardeau and Valageas 2000;
Munshi et al. 2004). To obtain this from the observational data, one needs
to place apertures on the data field which, as we have argued, is plagued
with holes and gaps in the data. However, we can place the same gaps on the
simulated data fields and therefore simulate this effect. Similarly, the numer-
ical simulations should be used to find good strategies for combining second-
and third-order shear statistics (and potentially higher-order ones) for an op-
timal distinction between comological model parameters, and, in particular,
the equation-of-state of dark energy. Another issue one needs to consider for
third- (and higher-)order cosmic shear measures is that intrinsic clustering of
sources, and the correlation between galaxies and the dark matter distribu-
tion generating the shear field has an influence on the expected signal strength
(Bernardeau (1998); Hamana (2001); Hamana et al. (2002)). Obviously, there
are still a lot of important studies to be done.

Third-Order Galaxy–Mass Correlations

We have shown in Sect. 8 how galaxy–galaxy lensing can be used to probe the
correlation between galaxies and the underlying matter distribution. With
the detection of third-order shear statistics already in currently available data
sets, one might expect that also higher-order galaxy-mass correlations can be
measured from the same data. Such correlations would then probe, on large
angular scales, the higher-order biasing parameters of galaxies, and thereby
put additional constraints on the formation and evolution of galaxies. Ménard
et al. (2003) considered the correlation between high-redshift QSOs and pairs
of foreground galaxies, thus generalizing the methods of Sect. 8.4 to third-
order statistics. The galaxy–galaxy-shear correlation, and the galaxy-shear-
shear correlations have been considered by Schneider and Watts (2005). These
correlation functions have been related to the underlying bispectrum of the
dark matter and the third-order bias and correlation functions, and appropri-
ate aperture statistics have been defined, that are related in a simple way to
the bispectra and the correlation functions.

In fact, integrals of these higher-order correlations have probably been
measured already. As shown in Fig. 50, galaxies in regions of high galaxy
number densities show a stronger, and more extended galaxy–galaxy lensing
signal than more isolated galaxies. Hence there is a correlation between the
mean mass profile around galaxies and the local number density of galaxies,
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which is just an integrated galaxy–galaxy-shear correlation. In fact, such a
correlation is only first order in the shear and should therefore be much easier
to measure than the shear 3PCF. Furthermore, the galaxy-shear-shear cor-
relation seems to be present in the cosmic shear analysis of the COMBO-17
fields by Brown et al. (2003), where they find a stronger-than-average cosmic
shear signal in the A 901 field, and a weaker cosmic shear signal in the CDFS,
which is a field selected because it is rather poor in brighter galaxies.

9.2 Influence of LSS Lensing on Lensing by Clusters
and Galaxies

The lensing effect of the three-dimensional matter distribution will conta-
minate the lensing measurements of localized objects, such as galaxies and
clusters. Some of the associated effects are mentioned in this section.

Influence of Cosmic Shear on Strong Lensing by Galaxies

The lensing effect of foreground and background matter in a strong lensing
system will affect the image positions and flux ratios. As this 3-D lensing
effects are not recognized as such in the lens modeling, a ‘wrong’ lens model
will be fitted to the data, in the sense that the mass model for the lensing
galaxy will try to include these additional lensing effects not associated with
the galaxy itself. In particular, the corresponding predictions for the time
delays can be affected through this effect.

Since the image separation of strong lens systems are less than a few arc-
seconds, the lensing effect of the LSS can be well approximated by a linear
mapping across this angular scale. In this case, the effect of the 3-D matter
distribution on the lens model can be studied analytically (e.g., Bar-Kana
1996). The lens equation resulting from the main lens (the galaxy) plus the
linearized inhomogeneities of the LSS is strictly equivalent to the single-plane
gravitational lens equation without these cosmological perturbations, and the
mass distribution of the equivalent single-plane lens can be explicitly derived
(Schneider 1997). For example, if the main lens is described by elliptical isopo-
tential curves (i.e., elliptical contours of the deflection potential ψ) plus ex-
ternal shear, the equivalent single-plane lens will be of the same form. The
orientation of the ellipticity of the lens, as seen by the observer, will be rotated
by the foreground LSS by the same angle as the potential of the equivalent
lens, so that no observable misalignment is induced. This equivalence then
implies that the determination of the Hubble constant from time-delay mea-
surements is affected by the same mass-sheet degeneracy transformation as
for a single plane lens.

LSS Effects on the Mass Determination of Clusters

The determination of mass parameters of a cluster from weak lensing is af-
fected by the inhomogeneous foreground and background matter distribution.
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The effect of local mass associated with a cluster (e.g., filaments extending
from the cluster along the line-of-sight) will bias the mass determination
of clusters toward higher values, since clusters are likely to be located in
overdense regions of the LSS, though this effect is considerably smaller than
claimed by Metzler et al. (2001), as shown by Clowe et al. (2004a).

Hoekstra (2001, 2003) considered the effect of the LSS on the determi-
nation of mass parameters of clusters, using either SIS or NFW models. For
the SIS model, the one parameter characterizing this mass profile (σv) can be
obtained as a linear estimator of the shear. The dispersion of this parameter is
then the sum of the dispersion caused by the intrinsic ellipticity of the source
galaxies and the cosmic shear dispersion. For the NFW model, the relation
between its two parameters (M200, the mass inside the virial radius r200, and
the concentration c) and the shear is not linear, but the effect of the LSS can
still be estimated from Monte-Carlo simulations in which the cosmic shear is
assumed to follow Gaussian statistics with a power spectrum following the
Peacock and Dodds (1996) prescription.

For the SIS model, the effect of the LSS on the determination of σv is small,
provided the cluster is at intermediate redshift (so that most source galaxies
are in the background). The noise caused by the finite ellipticity in this case
is almost always larger than the effect by the LSS. There is an interesting
effect, however, in that the relative contribution of the LSS and shape noise
changes as larger aperture fits to the SIS model are considered: The larger
the field over which the shear is fitted to an SIS model, the larger becomes the
impact of cosmic shear, and this increase compensates for the reduced shape
noise. In effect, cosmic shear and shape noise together put an upper limit on
the accuracy of the determination of σv from shear data. The same is true for
the determination of the mass parameters of the NFW model, as shown in
Fig. 56. The uncertainties of the mass parameters of NFW profiles are about
twice as large as if the effects from the LSS are ignored, whereas the effect
is considerably smaller for the one-parameter model of the SIS. One should
also note that a decrease of the shape noise, which can be obtained by using
data with a fainter limiting magnitude, yields an increase of the noise from
the LSS, since the fainter galaxies are expected to be at higher redshift and
therefore carry a larger cosmic shear signal. For low-redshift clusters, these
two effects nearly compensate.

The Efficiency and Completeness of Weak Lensing Cluster
Searches

We take up the brief discussion at the end of Sect. 5.8 about the potential of
deriving a shear-selected sample of galaxy clusters. The first studies of this
question were based on analytical models (e.g., Kruse and Schneider 1999)
or numerical models of isolated clusters (Reblinsky and Bartelmann 1999).
Those studies can of course not account for the effects of lensing by the LSS.
Ray-tracing simulations through N-body generated LSS were carried out by
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Fig. 56. The dispersion of the determination of the mass and concentration of three
NFW halos at redshift zd = 0.3. These parameters were derived by fitting an NFW
shear profile to the shear simulated from an NFW halo with parameters indicated
in the figure and adding shape noise and noise from cosmic shear. The outer angular
scale over which the fit was performed is θmax. Dotted curves show the effect from
shape noise alone, dashed curves show the dispersion from cosmic shear, and the solid
curves contain both effects. Surprisingly, the accuracy of the NFW parameters does
not increase once θmax ∼ 15′ is reached, as for larger radii, the cosmic shear noise
more than compensates for the reduced ellipticity noise. Another way to express
that is that the lensing signal at very large distance from the halo center is weaker
than the rms cosmic shear and therefore does not increase the signal-to-noise any
more (from Hoekstra 2003)

Reblinsky et al. (1999), White et al. (2002), Hamana et al. (2004), Vale and
White (2003), Hennawi and Spergel (2005) and others. In these cosmological
simulations, halos were identified based on their 3-D mass distribution. They
were then compared to the properties of the lensing results obtained from ray
tracing, either by considering the (smoothed) surface mass density κ (that
could be obtained from a mass reconstruction from the shear field) or by
studying the aperture mass Map which can be obtained directly from the
shear. In both cases, noise due to the finite intrinsic source ellipticity can be
added.

The two basic quantities that have been investigated in these studies are
completeness and efficiency. Completeness is the fraction of dark matter ha-
los above some mass threshold Mmin that are detected in the weak lensing
data, whereas efficiency is the fraction of significant lensing detections that
correspond to a real halo. Both of these quantities depend on a number of
parameters, like the mass threshold of a halo and the limiting significance ν
of a lensing detection [in the case of the aperture mass, this would correspond
to (80)], as well as on the choice of the filter function Q. Hennawi and Spergel
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(2005) have pointed out that even without noise (from observations or intrin-
sic galaxy ellipticities), the efficiency is limited to about 85% – even under
these idealized condition, the selected sample will be contaminated by at least
15% of spurious detections, generated by projection effects of the LSS.

To compare these predictions with observations, the six highest-redshift
EMSS clusters were all detected at high significance with a weak lensing analy-
sis (Clowe et al. 2000). Clowe et al. (2004b) have studied 20 high-redshift clus-
ters with weak lensing techniques. These clusters were optically selected and
are expected to be somewhat less massive (and potentially more affected by
foreground galaxies) than the EMSS clusters. Only eight of these 20 clusters
are detected with more than 3σ significance, but for none of them does the
SIS fit produce a negative σ2

v . Only for four of these clusters are the lensing
results compatible with no shear signal.

10 Concluding Remarks

Weak lensing has become a standard tool in observational cosmology, as we
have learned how to measure the shape of faint galaxy images and to correct
them for distortions in the telescope and camera optics and for PSF effects.
These technical issues are at the very center of any observational weak lens-
ing research. It appears that at present, the accuracy with which shear can
be measured is sufficient for the data available today, in the sense that sta-
tistical uncertainties are likely to be larger than potential inaccuracies in the
measurement of unbiased shear estimates from faint images. This, however,
will change quickly. The upcoming large cosmic shear surveys will greatly re-
duce statistical uncertainties, and then the accuracy of shear measurements
from the data will be the essential limiting factor. Alternatives to KSB have
been developed, but they need to undergo thorough testing before becoming
a standard tool for observers. It should also be noted that the KSB method
is applied differently by different groups, in particular with regards to the
weighting of galaxies and other details. What is urgently needed is a study in
which different groups apply their version of KSB to the same data set and
compare the results. Furthermore, starting from raw data, the specific data
reduction methods will lead to slightly different coadded images, and shear
measurements on such differently reduced imaged should be compared. These
technical issues will be a central challenge for weak lensing in the upcoming
years.

The ongoing and planned wide-field imaging surveys mentioned at the end
of Sect. 7.7 will allow us to investigate several central questions of cosmology.
The two aspects that I consider most relevant are the investigation of the
equation-of-state of the dark energy and the relation between galaxies and the
underlying dark matter distribution. The former question about the nature
of dark energy is arguably the central challenge of modern cosmology, and
cosmic shear is one of the very few methods how it can be studied empirically.
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The relation between dark matter and galaxies is central to our understanding
of how galaxies form and evolve, and galaxy–galaxy lensing is the only way
how this relation can be investigated without a priori assumptions.

Essentially all weak lensing studies today have used faint galaxies as
sources, since they form the densest source population currently observable.
The uniqueness of faint optical galaxies will not stay forever, with the cur-
rently planned future instruments. For example, there is a rich literature of
weak lensing of the cosmic microwave background which provides a source
of very accurately known redshift. Weak lensing by the large-scale structure
enhances the power spectrum of the CMB at small angular scales, and the
Planck satellite will be able to measure this effect. In particular, polarization
information will be very useful, since lensing can introduce B-modes in the
CMB polarization. The James Webb Space Telescope, with its large aperture
of 6.5 meters and its low temperature and background will increase the num-
ber density of observable faint sources in the near-IR up to 5μm to several
hundred per square arcminute, many of them at redshifts beyond 3, and will
therefore permit much more detailed weak lensing studies, in particular of
clusters (see Fig. 57; an observation of this huge number of arcs and multi-
ple images will answer questions about the mass distribution of clusters that
we have yet not even dared to ask). The envisioned next generation radio
telescope Square Kilometer Array will populate the radio sky with very com-
parable source density as currently the deepest optical images. Since the beam
(that is, the point-spread function) of this radio interferometer will be known
very accurately, PSF corrections for this instrument will be more reliable than
for optical telescopes. Furthermore, higher-order correlation of the shear field
with sources in the field will tell us about non-Gaussian properties of galaxy–
matter correlations and biasing, and therefore provide important input into
models of galaxy formation and evolution.
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Beńıtez, N. 2000, ApJ 536, 571
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Rögnvaldsson, Ö.E., Greve, T.R., Hjorth, J. et al. 2001, MNRAS 322, 131
Rodrigues-Williams, L.L. & Hogan, C.J. 1994, AJ 107, 451



Part 3: Weak Gravitational Lensing 449

Sand, D.J., Treu, T. & Ellis, R.S. 2002, ApJ 574, L129
Sand, D.J., Treu, T., Smith, G.P. & Ellis, R.S. 2004, ApJ 604, 88
Sarazin, C.L. 1986, RvMP 58, 1
Schirmer, M. 2004, PhD Dissertation, Univ. Bonn
Schneider, P. 1995, A&A 302, 639
Schneider, P. 1996, MNRAS 283, 83
Schneider, P. 1997, MNRAS 292, 673
Schneider, P. 1998, ApJ 498, 43
Schneider, P. 2003, A&A 408, 829
Schneider, P. & Bartelmann, M. 1997, MNRAS 286, 696
Schneider, P., Ehlers, J. & Falco, E.E. 1992, Gravitational Lenses (New York:

Springer) (SEF)
Schneider, P., Kilbinger, M. & Lombardi, M. 2005, A&A 431, 9, also astro-

ph/0308328
Schneider, P., King, L. & Erben, T. 2000, A&A 353, 41
Schneider, P. & Kneib, J.-P. 1998, in The Next Generation Space Telescope,
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Schuecker, P., Böhringer, H., Collins, C.A. & Guzzo, L. 2003, A&A 398, 867
Scoccimarro, R. & Couchman, H. 2001, MNRAS 325, 1312
Seitz, C., Kneib, J.-P., Schneider, P. & Seitz, S. 1996, A&A 314, 707
Seitz, C. & Schneider, P. 1995a, A&A 297, 287
Seitz, C. & Schneider, P. 1997, A&A 318, 687
Seitz, S., Saglia, R., Bender, R., Hopp, U., Belloni, P. & Ziegler, B. 1998,

MNRAS 298, 325
Seitz, S. & Schneider, P. 1995b, A&A 302, 9
Seitz, S. & Schneider, P. 1996, A&A 305, 383
Seitz, S. & Schneider, P. 2001, A&A 374, 740
Seitz, S., Schneider, P. & Bartelmann, M. 1998, A&A 337, 325
Seitz, S., Schneider, P. & Ehlers, J. 1994, Class. Quantum Grav. 11, 2345
Seljak, U. 1998, ApJ 506, 64



450 P. Schneider

Seljak, U. 2002, MNRAS 337, 769
Seljak, U., Makarov, A., Mandelbaum, R. et al. 2004, PhRvD 71, 043511, also

astro-ph/0406594
Sheldon, E.S., Johnston, D.E., Frieman, J.A. et al. 2004, AJ 127, 2544
Sheth, R.K., Mo, H.J. & Tormen, G. 2001, MNRAS 323, 1
Simon, P., King, L.J. & Schneider, P. 2004, A&A 417, 873
Smith, R.E., Peacock, J.A., Jenkins, A. et al. 2003, MNRAS 341, 1311
Sofue, Y. & Rubin, V. 2001, ARA&A 39, 137
Song, Y.-S. & Knox, L. 2004, PhRvD 70, 063510, also astro-ph/0312175
Soucail, G., Fort, B., Mellier, Y. & Picat, J.P. 1987, A&A 172, L14
Soucail, G., Kneib, J.-P. & Golse, G. 2004, A&A 417, L33
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Tereno, I., Doré, O., van Waerbeke, L. & Mellier, Y. 2005, A&A 429, 383, also

astro-ph/0404317
Torri, E., Meneghetti, M., Bartelmann, M., Moscardini, L., Rasia, E. &

Tormen, G. 2004, MNRAS 349, 476
Trager, S.C., Faber, S.M., Dressler, A. & Oemler, A. 1997, ApJ 485, 92
Trentham, N. & Tully, R.B. 2002, MNRAS 335, 712
Tyson, J.A. 1988, AJ 96, 1
Tyson, J.A. & Fischer, P. 1995, ApJ 446, L55
Tyson, J.A., Valdes, F., Jarvis, J.F. & Mills Jr., A.P. 1984, ApJ 281, L59
Tyson, J.A., Valdes, F. & Wenk, R.A. 1990, ApJ 349, L1
Umetsu, K. & Futamase, T. 2000, ApJ 539, L5
Valdes, F., Jarvis, J.F. & Tyson, J.A. 1983, ApJ 271, 431
Vale, C. & White, M. 2003, ApJ 592, 699
van den Bosch, F.C., Abel, T., Croft, R.A.C., Hernquist, L. & White, S.D.M.

2002, ApJ 576, 21



Part 3: Weak Gravitational Lensing 451

van Kampen, E. 1998, MNRAS 301, 389
van Waerbeke, L. 1998, A&A 334, 1
van Waerbeke, L. 2000, MNRAS 313, 524
van Waerbeke, L., Bernardeau, F. & Mellier, Y. 1999, A&A 342, 15
van Waerbeke, L., Hamana, T., Scoccimarro, R., Colombi, S. & Bernardeau, F.

2001, MNRAS 322, 918
van Waerbeke, L. & Mellier, Y. 2003, astro-ph/0305089
van Waerbeke, L., Mellier, Y., Erben, T. et al. 2000, A&A 358, 30
van Waerbeke, L., Mellier, Y. & Hoekstra, H. 2005, A&A 429, 75, also astro-

ph/0406468
van Waerbeke, L., Mellier, Y., Pello, R., et al. 2002, A&A 393, 369
van Waerbeke, L., Mellier, Y., Radovich, M. et al. 2001, A&A 374, 757
von der Linden, A. 2004, Diploma Thesis, Univ. Bonn
Wambsganss, J., Bode, P. & Ostriker, J.P. 2004, ApJ 606, L93
Wambsganss, J., Cen, R. & Ostriker, J.P. 1998, ApJ 494, 29
Weinberg, N.N. & Kamionkowski, M. 2002, MNRAS 337, 1269
Weinberg, N.N. & Kamionkowski, M. 2003, MNRAS 341, 251
White, M. & Hu, W. 2000, ApJ 537, 1
White, M., van Waerbeke, L. & Mackey, J. 2002, ApJ 575, 640
White, S.D.M., Navarro, J.F., Evrard, A.E. & Frenk, C.S. 1993, Nat 366, 429
Williams, R.E., Blacker, B., Dickinson, M. et al. 1996, AJ 112, 1335
Wilson, G., Kaiser, N. & Luppino, G. 2001, ApJ 556, 601
Wittman, D. 2002, in Gravitational Lensing: An Astrophysical Tool, F.

Courbin & D. Minniti (eds.) (Springer-Verlag: Berlin), Lecture Notes in
Physics, 608, 55

Wittman, D., Margoniner, V.E., Tyson, J.A., Cohen, J.G., Becker, A.C. &
Dell’Antonio, I. 2003, ApJ 597, 218

Wittman, D.M., Tyson, J.A., Kirkman, D., Dell’Antonio, I. & Bernstein, G.
2000, Nat 405, 143

Wittman, D., Tyson, J.A., Margoniner, V.E., Cohen, J.G. & Dell’Antonio, I.
2001, ApJ 557, L89

Yang, X.H., Mo, H.J., Kauffmann, G. & Chu, Y.Q. 2003, MNRAS 339, 387
York, D.G., Adelman, J., Anderson, J.E. et al. 2000, AJ 120, 1579
Zaldarriaga, M. & Scoccimarro, R. 2003, ApJ 584, 559
Zaritsky, D. & Gonzalez, A.H. 2003, ApJ 584, 691
Zaritsky, D., Smith, R., Frenk, C. & White, S.D.M. 1997, ApJ 478, 39
Zaroubi, S., Squires, G., Hoffman, Y. & Silk, J. 1998, ApJ 500, L87
Zaroubi, S., Squires, G., de Gasperis, G., Evrard, A.E., Hoffman, Y. & Silk,

J. 2001, ApJ 561, 600
Zehavi, I., Blanton, M.R., Frieman, J.A. et al. 2002, ApJ 571, 172
Zhang, L.L. & Pen, U.-L. 2005, New Astronomy 10, 569, also astro-ph/0305447
Zwicky, F. 1933, Helv. Phys. Acta 6, 110



Part 4: Gravitational Microlensing

J. Wambsganss

Gravitational Microlensing can be thought of as a version of strong gravi-
tational lensing in which the image separation is too small to be resolved.
Multiple images are formed, but their typical separation – Δθ ≈ 2 θE – is far
below the limiting resolution determined by observational constraints. Given
the dependence of the Einstein radius on lens mass and geometry, it is clear
that microlensing will occur for sufficiently small masses and sufficiently dis-
tant lenses and sources. In very general terms, microlensing deals with the
lensing effects of compact objects in the mass range 10−6 ≤ m/M� ≤ 106.
This translates into Einstein radii/angular separations of a milli-arcsecond or
smaller for the two main distance regimes: “galactic” – lens/source distances
of order 10 kpc, and “extragalactic/cosmological” – lens/source distances of
order Gpc. Both regimes will be discussed at length in the subsequent sections.

The mathematical possibility of microlensing – lensing effects of stellar
mass objects on background stars – was already discussed many decades ago
(Chwolson 1924; Einstein 1936). Right after the discovery of the first gravi-
tational lens system in the late 1970s (Walsh et al. 1979), interest in lensing
by stellar mass objects was revived: Chang and Refsdal (1979), Gott (1981),
Paczyński (1986a,b), Kayser et al. (1986). Bohdan Paczynśki was the first to
use the term “microlensing” for light deflection by stellar masses. The first
observational detection of the microlensing effect came in 1989 (Vanderriest
et al. 1989; Irwin et al. 1989) when individual stars in the lensing galaxies of
gravitationally lensed quasars QSO 0957+561 and QSO 2237+0305 altered the
magnification of one of the quasar images relative to other(s). The first Galac-
tic microlensing events were reported in 1993: Alcock et al. (1993), Aubourg
et al. (1993), and Udalski et al. (1993).

Most of the sections in this part of the proceedings deal with stellar or
Galactic microlensing, the last one treats quasar or cosmological microlens-
ing. There exist a number of good and more detailed reviews on microlensing,
e.g. Paczyński (1996), Mao (2001), Mollerach and Roulet (2002), Courbin,
Saha and Schechter (2002).

Wambsganss J (2006), Gravitational microlensing. In: Meylan G, Jetzer Ph and North P
(eds) Gravitational lensing: Strong, weak, and micro. Saas-Fee Adv Courses vol 33,
pp 453–540
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1 Lensing of Single Stars by Single Stars

1.1 Brief History

Commonly it is assumed that light deflection is a modern phenomenon. How-
ever, more than 200 years ago scientists started to think about it. In the
beginning of the 19th century, Johann Georg Soldner wrote an article entitled
“Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes”1, in which
he investigated the possibility that a light ray be attracted by the gravitation
of a “heavenly body” (Soldner 1801). He even derived the deflection angle for
a light ray passing close to the solar limb, arriving at half the correct value.
In 1911, Einstein had thought about light deflection as well and published the
same value (Einstein 1911). Only with the completion of the General The-
ory of Relativity, Einstein found the value that was later confirmed by the
famous solar eclipse expedition. Chwolson (1924) mentioned a “fictitious dou-
ble” star, an apparent illusion due to the light deflection of a foreground star
by a background star, even considering a ring-like image for perfect alignment
between lensing and lensed star. He was uncertain whether this might ever be
observable. Years later, Einstein published again a letter on star–star lensing,
initiated by a visit of the Czech engineer Mandl (Einstein 1936). He mentions
the appearance of a luminous circle for perfect alignment between source and
lens and derives the magnification properties. But he was skeptical regarding
the observability: “of course, there is not much hope of observing this phenom-
enon directly”. Renn et al. (1997) report that Einstein had dealt with the same
question already as early as 1911/1912: in his notebooks he had derived the re-
lations regarding double images, magnification, separation of images etc., but
apparently had never bothered to publish it. Link (1937, 1967) had treated
lensing of stars by stars as well, and produced tables for the magnification of
finite sized background stars. With the seminal papers in the 1960s (Klimov
1963; Liebes 1964; Refsdal 1964a,b) lensing was put on firm theoretical footing
and applicable to interesting astrophysical goals. Chang and Refsdal (1979,
1984) suggested that the lensing action of individual stars affect the apparent
brightness of multiply imaged quasars. Gott (1981) suggested that lensing by
stellar mass objects in halos of lensing galaxies can be used to detect compact
dark matter, and finally Paczyński (1986a,b) introduced the term “microlens-
ing”, both for the action of stars in distant lensing galaxies on quasar images
and for stars or dark matter objects in the Milky Way acting on background
stars in the bulge or in the Large/Small Magellanic Clouds.

1.2 Theoretical Background

This section considers the mathematically simplest case: the lensing effect of a
single foreground star on a single background star in the Milky Way or Local
Group. It is typical and representative for most Galactic lensing systems. In

1 “On the influence of gravity on the propagation of light”
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this regime, lens and source distances are of the order kpc, the lenses have
roughly stellar masses. This results in angular Einstein ring radii which are
on the order of 10−3 arcsec, and Ds is small enough that we may reasonably
set Dds = Ds −Dd.

Point Source – Point Lens

Over a large range of current astrophysical interest, the stellar source subtends
a considerably smaller angle than θE, so that it may be approximated as a
point. Symmetry allows us the freedom to choose the origin as the position
of the lens and a position along the positive θ1 axis for the point source. The
characteristic length scale is θE, by which we scale the one-dimensional lens
equation

y = x− 1
x

, (1)

where x ≡ θ/θE is a (normalized) image position corresponding to the (nor-
malized) source position y ≡ β/θE. The two solutions

x± =
1
2

(
y ±

√
y2 + 4

)
(2)

to the quadratic lens equation correspond to positions which straddle the lens
on the sky, with the positive parity image (+) on the source side of the lens,
always magnified and further away from the lens than the negative parity
image (−), which is the less magnified of the two.

Indeed, we can formulate the magnification of the two images as (cf. In-
troduction):

μ± =
1

detA±
=
(

1 − 1
x4±

)−1

= ±1
4

[
y√

y2 + 4
+

√
y2 + 4
y

± 2

]
. (3)

Note that the image separation is Δx ≡ |x+ − x−| =
√

y2 + 4. Relations
for the total magnification μ, and the sum and ratio of the individual image
magnifications can then be derived (however, only the total magnification is
observable in (photometric) microlensing):

μ ≡ μ+ + |μ−| = μ+ − μ− =
1
2

[
y√

y2 + 4
+

√
y2 + 4
y

]
=

y2 + 2

y
√
y2 + 4

, (4)

μ+ + μ− = 1, (5)∣∣∣∣μ−
μ+

∣∣∣∣ =

(
y −

√
y2 + 4

y +
√

y2 + 4

)2

=
(
x−
x+

)2

. (6)

For a point lens, the two-dimensional magnification distribution in the
source plane – the magnification pattern – consists of circular contours of
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Fig. 1. Total magnification μ, normalized image positions x±, and ratio of image
magnifications for a point lens as a function of the normalized source position y
(Figure courtesy Penny Sackett)

constant total magnification: the circles are centered on the lens position with
a magnification value μ → 1/y for small impact parameters y, and μ → 1 for
large y. For source positions y > 0, the x+ image is responsible for the lion’s
share of the total magnification μ for all source positions y (Fig. 1). At the
fiducial source position y = 1 where μ = 1.34, e.g., the positive parity image
contributes 87% of the total magnification.

Microlensing “Events”

If the instantaneous magnification of a microlensing event were the only mea-
surable quantity in a static stellar microlensing scenario, then the science of
microlensing would be much less rich and its literature much less voluminous2.
However, stars move around the Galactic center (and have an additional ran-
dom velocity component with respect to one another). The relative velocities
are such, that the time scale of the relative change of lens and source posi-
tions is of order of weeks or shorter. Hence this motion introduces a temporal
component into the lensing geometry, causing the impact parameter and thus
the normalized bending angle and the magnification to vary measurably as a
function of time.

In general, the observer, the lens, and the source are all in motion, all
with a certain three-dimensional velocity vector. The temporal behavior of
2 In fact, without independent knowledge of the unlensed flux emanating from a

source, it would not be possible at all to ascertain whether, or by how much, a
background star is lensed.
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the magnification – the “light curve” of the source – is dictated by the relative
motion of the lens across the observer–source line-of-sight. The distances Dd,
Ds, and Dds, and thus the relative scalings of β, θ, and α, may also change
with time, but in astrophysical situations these changes have a negligible effect
on the lensing equation compared to changes in the impact parameter due to
the projected relative motion.

The characteristic time scale for these changes is given by the Einstein
time

tE ≡ Dd θE/v⊥, (7)

where v⊥ is the transverse speed of the lens relative to the source–observer
line-of-sight. For y < 1, the total magnification of a point source can be ex-
pected to change appreciably over a time tE. Stellar lenses in our own Galaxy
are associated with typical tE on the order of a month, and thus the change in
the observed brightness of the source they induce are referred to as microlens-
ing “events”.

Since the magnification depends only on the source position in units of θE

(cf. (4)), we need only describe how the source moves relative to the lens as a
function of time to obtain a description of the light curve of the microlensed
source. Assuming that for the duration of the observable event (say, several tE)
this motion is rectilinear, the relative motion of the source on the sky differs
from that of the lens only by the sign. Taking the time t0 to be that at which
the source-lens separation y takes on its smallest value y0, the trajectory of
the source can be represented by

y(t) =

√
y2
0 +

(
t− t0
tE

)2

, (8)

since the line joining the lens to the source at time t0 is perpendicular to
the lens-source relative motion3. The corresponding light curve F (t) = μ(t)Fs

of the source, examples of which are shown in Fig. 2, is then obtained by
substituting y(t) into (4) and multiplying by the unlensed source flux Fs.

Observables

A simple, point-source, point-lens microlensing light curve is thus described
by four parameters: unlensed flux F0, t0, y0 and tE. Of these, F0 can be mea-
sured in the absence of microlensing, t0 sets an arbitrary time scale, and y0

depends on the random placement of lens and source on the sky. Only tE =
DdθE/v⊥ contains physical information about the lensing system, albeit in a
degenerate combination. Assuming that the source distance Ds can be deter-
mined from its properties (membership in a stellar system, spectral type and

3 It may be worth noting that in the microlensing literature, the normalized source-
lens separation on the sky, y, is often alternatively denoted as u. This convention
is used below as well.



458 J. Wambsganss

Fig. 2. Point-lens, point-source light curves for minimum impact parameters
y0 = 0.1 (top), 0.3,...,1.1 (bottom) and the corresponding trajectories across the
Einstein ring (Figure courtesy Penny Sackett)

apparent magnitude), we are left with three physical parameters, lens mass
M , lens distance Dd, and lens relative transverse velocity v⊥, to determine
from one observable. Other additional information is needed, if we want to
learn more about the lens system. Unlike other forms of gravitational lensing,
a microlens is not observed directly in general (however, cf. Subsection ‘Direct
Lens Detection’ in Sect. 5).

As Fig. 1 illustrates, significant magnification occurs when the source lies
within one angular Einstein radius of the lens. The microlensing event itself
gives us very little possibility to measure or estimate the lens mass M , the lens
distance Dd or the transverse velocity v⊥ independently. To understand the
severity of this degeneracy, consider a Galactic microlensing system in which
the source is known to lie in the Galactic Bulge at, say, precisely 8 kpc and
the Einstein time tE has been precisely determined to be (a rather typical)
40 days. Assuming the lens to be bound to the Galaxy, it is likely that 0 <
v⊥ < 600 km−1 with values nearer to the middle of the range statistically
favored. Figure 3 shows the resulting degeneracy in the mass and distance
of the lens. The distribution of lens masses ranges from those massive brown
dwarfs (<∼ 0.1M�) to that of a heavy stellar black hole (∼10M�).

1.3 How Good is the Point Lens – Point Source Approximation?

Information about individual image positions, magnifications and shape is
entirely lost in a standard microlensing situation. This results in degeneracies
in the lens–source combinations that can lead to the same observables. In order



Part 4: Gravitational Microlensing 459

Fig. 3. Degeneracy between mass M and distance Dd for a Galactic microlens for
different assumptions for its transverse speed (50 ≤ v⊥ ≤ 400 km s−1, in steps of
50 km s−1) across the line-of-sight to the source (Figure courtesy Penny Sackett)

to understand what information remains, and how it is related to the physical
parameters of the system, we begin with a simple model and gradually add
complexity.

To a very good approximation, we can assume that the mass distribution
of a star is spherically symmetric, hence the projected mass distribution is
axisymmetric, independent of the direction. Since the mean free path of pho-
tons is quite short in all but the extreme outer layers of stellar atmospheres,
we also assume that stellar lenses are not transparent. Taken together, this
implies that we can model a single stellar lens as a point mass M as long as
we consider only impact parameters larger than the stellar radius of the lens.
The ratio of the angular size of the source compared to

θE =
√

(4GMDds)/(c2 Dd Ds) (9)

will determine whether it is appropriate to use the point source approximation.
Although a normal star acting as a lens emits light that could yield in-

formation about lens properties, this light is mixed with that of the source
and any other luminous object lying in the same resolution element. How-
ever, most sources are bright giants, and most lenses are presumably faint
(M-)dwarfs: Since bright stars are easier to detect at great distances, giants
are much more likely sources. And since low mass stars are much more abun-
dant than massive ones in the Milky Way disk (consequence of the the Initial
Mass Function of stars), they are much more likely lenses. Combined with the
luminosity-mass relation this means: in a microlensing event, the source light
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dominates lens light dramatically. Even if the lens contributes substantially
to the total flux received during a microlensing event, the lens mass-distance
degeneracy may not be reduced. The microlensing light curve is now a func-
tion of five parameters: Fs (actual source flux at baseline), t0, y0, tE, and the
blending flux Fb (constant flux contribution of some unrelated star) with the
result that tE is more difficult to determine.

The symmetry of the point-source, point-lens light curve aids in deter-
mining t0 and the total baseline flux F0 = Fs + Fb can be measured well
after the lensing event is over. The fraction of F0 that is contributed by the
source, fs ≡ Fs/F0, must be determined from subtleties in the light curve it-
self (e.g., color changes, or astrometric information), and thus can be strongly
degenerate with y0 and tE.

Most of the measured microlensing events are indeed well fitted and de-
scribed by the simple point lens–point source approximation and linear rela-
tive motion. Occasionally, some events were very well covered with hundreds
of data points with small error bars. For some of them, the point lens–point
source approximation did not produce satisfactory fits. In binary microlensing
events with caustic crossings, the point source approximation breaks down.
This can be used to determine source size and even source profile information.
These cases and effects will be discussed in Sect. 5.

1.4 Statistical Ensembles

Gravitational microlensing offers the opportunity to measure the density and
total mass of a population of objects – bright or dark – between a background
population of sources and the observer on Earth. Paczyński (1986b) worked
out this idea quantitatively, and applied it to objects potentially making up
the dark matter halo of the Milky Way. If such objects had masses in the stellar
range (very roughly from 10−6 ≤ M/M� ≤ 102), they would produce time-
variable magnification of background stars in the Large or Small Magellanic
Clouds. Quantitatively important in such a situation are: probability and
duration of such events.

The optical depth to gravitational microlensing is equal to the ratio of
surface mass density of microlensing objects to the critical mass density (cf.
Introduction). For a variable mass density, the optical depth is an integral
expression along the line-of-sight (Paczyński 1986b):

τ =
∫ Ds

0

4πGD

c2
ρ(Dd)dDd, (10)

where ρ(Dd) is the average microlensing matter density at distance Dd from
the observer, and D = (DdDds/DS). The resulting optical depth depends a
bit on the exact direction and parameters of the isothermal halo. Assuming a
simple isothermal sphere model (M(R) = V 2

rotR/G, ρ(R) = V 2
rot/4πGR2

GC) for
the dark halo of the Milky Way (RGC is the distance to the Galactic Center),
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Paczyński derived the numerical value of the optical depth turns out to be of
order

τ0 = 5 × 10−7. (11)

This means that roughly one out of a million stars in the nearby galaxies
will be strongly lensed, i.e. the source is located within the Einstein radius
of the lens and hence magnified by at least μ ≥ 3/50.5 ≈ 1.34. The concept
of optical depth can easily be visualized in the following way: if all the lenses
would be represented as dark disks with their respective Einstein radii, then
the sum of the areas of all these disks would cover exactly the fraction τ0 of
the sky.

The event duration (defined as the time it takes to cross the Einstein
radius) depends on the transverse velocity of the object and its mass (cf. (7)).
A typical value for an object at a distance of Dd = 10 kpc and a tangential
velocity of v⊥ = 200 km/sec is

t0 ≈ 6 × 106 sec
(

M

M�

)0.5

≈ 0.2 yr
(

M

M�

)0.5

. (12)

However, even assuming that all the lenses had the same mass and the same
(randomly oriented) three-dimensional velocity, the event durations would
cover a wide range. In particular, there should be a tail of relatively long
events, because a fraction of lenses my have a three-dimensional velocity vector
close to radial. Also, since the actual lens population most likely consists of a
range of masses and velocities and distances, this would broaden the duration
distribution even more.

If all events had the same time scale t0, then the event rate N would be
given as (cf. Paczyński 1996):

N =
2
π

n τ
Δt

t0
, (13)

where n is the total number of sources monitored, τ is the optical depth,
and Δt is the time interval of the monitoring campaign. In his review article,
Paczyński (1996) derives the probability distribution of event durations; a
more detailed analysis can be found in Mao and Paczyński (1996).

2 Binary Lenses

After treating the case of a single lens, the logical next step is the binary lens
scenario. In the lens equation, the only change is that the deflection angle now
consists of the sum of two point lenses:

α(x) =
4G
c2

(
MA(x − xA)
(x − xA)2

+
MB(x − xB)
(x − xB)2

)
, (14)
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where MA, MB are the masses of the two lenses and xA, xB are their positions.
Due to the non-linearity of the lens equation, the effect of replacing a single
lens by two separate lenses does not at all have the effect of a simple sum or
superposition of two single lens cases: the caustics and the two-dimensional
magnification distributions in the source plane look very different compared
to the single-lens case, and so do the lightcurves.

The major new phenomenon of a binary (or any asymmetric) lens, com-
pared to the isolated point lens is the occurence of extended caustics in the
source plane (cf. Introduction), due to the astigmatism of the lens. Caus-
tics separate regions of different image multiplicities: when a source crosses
a caustic, a new image pair is created or destroyed. Due to the very small
image separation for stellar mass lenses (compared to the resolution of the
telescope), these new images cannot be observed directly. However, since
these new images are very highly magnified, the combined magnification of
all images (which is an observable) is dominated by these bright new images:
the lightcurve of a source undergoing a caustic crossing exhibits high peaks.
Formally, a point source would even be infinitely magnified. Due to the
realistic finite source size, the actual magnification remains finite but can
get very high (events with magnifications of more than five magnitudes have
been detected).

In a binary lens scenario, the second lens introduces three new parameters:

• the mass ratio q = m1/m2,
• the binary separation d (in units of the Einstein radius for the total mass

m = m1 + m2),
• the angle φ between the source trajectory and the line connecting the two

lenses.

This allows for a very large variety of binary lens lightcurves: “A double lens
is vastly more complicated than a single one” (Paczyński 1996).

2.1 Theory and Basics of Binary Lensing

The properties of a system consisting of two point lenses have been explored in
great detail in a seminal paper by Schneider and Weiss (1986). They derive an-
alytically the critical curves and caustics for the binary lens with equal masses:
m1 = m2, i.e. q = 1. They found three regimes for binary lensing: when the
two lenses are widely separated, they act like two single lenses which are
slightly perturbed: the degenerate point caustic of an isolated lens is slightly
deformed into a small asymmetric asterisk with four cusps, and the circular
critical line, the Einstein ring, is slightly deformed into an oval (see top left
panel of Fig. 4 for a separation of d = 1.2). Once the separation of the two
lenses approaches one Einstein radius, the two critical lines merge, forming the
“infinity” sign, and the two separate caustics merge accordingly (cf. top right
panel of Fig. 4). For further decreasing separation between the binary com-
ponents, there is now one closed critical line and one closed six-cusp-caustic
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Fig. 4. The critical curves in the lens plane (lower or left part of each panel) and
the caustics in the source plane (upper or right part of each panel) are depicted for a
binary lens situation with equal masses (MA = MB) and decreasing separation: from
1.2 RE (top left) to 0.3 RE (bottom right). In particular the “transition cases” (sepa-
ration 1.0 RE and 8−1/2RE) are of interest (from Schneider and Weiss (1986), Fig. 2)

(middle panel of Fig. 4). When the separation reaches d = 8−0.5 ≈ 0.35355,
another change of topology occurs: two regions inside the main critical line de-
tach, and the caustic divides up into three parts as well: two triangular shaped
caustics and one four-cusp asterisk (bottom left panels of Fig. 4). When the
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two lenses approach each other even further, the two triangular caustics move
away from the main caustic very rapidly (bottom right panel of Fig. 4).

Figure 4 (a reproduction of Fig. 2 from Schneider and Weiss (1986)) also
indicates the parity of the images in the lens plane with a plus or minus sign
(the explanation of the additional labels can be found in the original paper).
Accordingly, the image configuration for a binary lens can be very diverse,
even for given mass ratio and separation. This was illustrated by Schneider
and Weiss (1986) as well for an extended source and is reproduced here in
Fig. 5 for equal masses (q = 1) and a separation of d = 0.5: A source inside
the caustic (inset) has five images (top left panel in Fig. 5). When the source
touches a caustic (other three panels), two or three images merge, respectively.
In the panels, the size/area of an image is proportional to its magnification.

Schneider and Weiss (1986) studied also the effect of the source size on
the magnification during a caustic crossing. In Fig. 6 (reproduced from their
Fig. 9) the “lightcurve” of a variety of circular sources with different radii and

Fig. 5. Image configurations for an extended source and a binary lens with equal
masses (MA = MB) and separation 0.5 RE . The critical curves are shown as dashed
lines, the solid contours indicate the image shapes. The inset at the top left corners
of the four panels indicate the respective source position with respect to the binary
lens caustic (from Schneider and Weiss (1986), Fig. 6)
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Fig. 6. Lightcurves of a caustic crossing (fold) for a point source (R = 0.0) and ex-
tended sources with radii varying from R = 0.005RE to R = 0.05RE (from Schneider
and Weiss (1986), Fig. 9a)

constant surface brightness is shown: the maximum magnification as well as
the exact shape of the lightcurve depend strongly on the source radius, here
shown for a range from θ/θE = 0.05, 0.03, 0.01, 0.005 and for point-like source.

The study of Schneider and Weiss (1986) was generic in the sense that
it was applicable to close pairs of galaxies as well as double stars. Mao and
Paczyński (1991) concentrated entirely on microlensing of binary stars. Based
on the observational fact that more than 50% of all stars are members of
binaries or multiple star systems, they predicted that it is unavoidable that
microlensing lightcurves of binary stars and star-plus-planet systems will be
observed. However, due to the large range of separations, most of the physical
binary stars will either act as two individual lenses (for large separation) or
as a single lens (for very small separation). If the (projected) separation is
of order the Einstein radius of the combined mass, it gets “interesting” for
lensing (cf. also Figs. 4 and 5), i.e. deviations from single-lens lightcurves
are to be expected. They concluded that about 10% of all observed stellar
microlensing events should show signatures of the binarity of the lens.

Witt and Mao (1995) explored the binary lens further and found that the
minimum total magnification for a source inside the caustic is three. They
suggested that for an observed lightcurve in which this is apparently not the
case, there are two possibilities: either there is light from another component
(“blending”), which could be the lens itself or an unrelated background star,
or the lens system consists of more than two stars (triple lens).

An illustration of the variety of lightcurves for a binary lens with separa-
tion d = 0.5 (and mass ratio q = 1) is shown in Fig. 7 for 5 parallel tracks and a
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Fig. 7. The left hand panel indicates a binary lens caustic, the positions of the two
(equal mass) lenses with separation 1.0RE , and the parallel tracks of an extended
source (width of track corresponds to two source radii: R = 0.05RE). On the right
hand panel, the five corresponding lightcurves are displayed, offset by one magnitude
for easier visibility (from Sackett [private communication], after Paczyński 1996)

finite source size. At http://www.sns.ias.edu/∼gaudi/movies.html, Scott
Gaudi’s website, he provides a full suite of animations of binary microlens-
ing scenarios with variable mass ratio and separation, indicating the critical
lines, the caustics, the individual micro-images and the lightcurve for relative
motion. A static example is shown in Fig. 8.

2.2 First Microlensing Lightcurve of a Binary Lens: OGLE-7

The first microlensing lightcurve of a binary lens to be detected was OGLE-7
(more on the OGLE-team in Sect. 3.3), for which two peaks were measured
in the course of the 1993 season (see Fig. 9, top panel). This lightcurve was
originally classified as “unusual”, because the star had brightened by more
than 2 magnitudes but deviated from the expected single-lens–single-source
lightcurve: The flux as a function of time displayed a double-peak structure,
following a completely flat and constant lightcurve at a low level in the previ-
ous season. This relatively bright phase lasted for about 60 days. The OGLE
team (Udalski et al. (1994a,b)) found a simple binary lens solution (Fig. 9,
bottom panel) with the following parameters: mass ratio q = 1.02, projected
separation a = 1.14RE , impact parameter b = 0.050RE , angle θ = 48.3 de-
grees, time scale tE = 80 days, baseline magnitude I0 = 18.1, and fraction of
“blended” light f = 56%.

The last value indicates that the measured apparent brightness must con-
sist of two contributions, and so Udalski et al. (1994a,b) concluded that the
lensed star should have a composite spectrum: the lens model required light
from an additional (unresolved) star.
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Fig. 8. Snapshot of a binary microlensing animation made available on the web by
Scott Gaudi, under http://www.sns.ias.edu/∼gaudi/movies.html. This particu-
lar situation illustrates the case of a binary lens with equal masses: in the top panel
the critical line (thick solid line), the caustics (thin line with 6 cusps), the source size
and position (little circle) and the three images (thick circles/ellipses) are shown
for one particular instant of time; the source moves along a horizontal line from left
to right. The bottom panel indicates the lightcurve (sum of all the micro-images)
as it develops during the animation, with the current instant displayed at the top
panel corresponding to the end of the black line

As mentioned above, Witt and Mao (1995) showed a few months later that
the minimum magnification between the peaks of a double caustic crossing
is three (for OGLE-7 it was factors of 2.2 and 2.4, respectively, in R and I
filters). So in hindsight this fact showed unambigously that either there is
blended light contributing to the lightcurve, or the event OGLE-7 is caused
by lensing of a system with more than two components.

2.3 Binary Lens MACHO 1998-SMC-1

In the following years, the data reduction systems of the microlensing teams
were dramatically improved in order to allow detection of microlensing events
while they were still ongoing, with the goal of real-time detection. MACHO-
98-SMC-1 was the first caustic crossing binary event toward the Magellanic
Clouds which was ‘caught in action’ in this way (Alcock et al. (1999)).
This allowed very good coverage of the lightcurve: Once an anomaly is recog-
nized “on the run”, the observing strategy can be changed immediately with
a much more frequent monitoring of the active event. As a consequence, a
prediction for the time of the second caustic crossing became possible.
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Fig. 9. Lightcurve obtained by the OGLE team of the first double-lens microlens-
ing event OGLE-7 (top) and corresponding double lens configuration with caustics,
critical lines and relative track (from Udalski et al. 1994a)

The event was originaly recognized on May 25.9, 1998 (UT), when it had
brightened by 0.9 mag. At this time the first “alert” was activated (see Fig. 10,
top panel). On June 6.5, 1998 (UT), a sudden brightening by another 1.5 mag
was detected. This caused a level-2 alert, which meant that MACHO-98-SMC-
1 was a likely caustic crossing event. An accurate prediction of the timing of
the second caustic crossing was then a very important task (later it was shown
by Jaroszyński and Mao (2001) that a reliable prediction of the exact timing of
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Fig. 10. Lightcurve obtained by the MACHO team of the first double-lens mi-
crolensing in the Small Magellanic Cloud, SMC-1 (top). The six panels represent
data from three observing sites and two filters, respectively. The times of the first
and second alerts are indicated by arrows. The bottom panel is a zoom around the
second caustic crossing, indicated is the predicted epoch of the caustic crossing, and
the time when it was announced (from Alcock et al. 1999)
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Fig. 11. Probability distribution for certain values of the transverse velocities of the
lens in MACHO-SMC-1 (from Alcock et al. 1999), assuming that the lens resides in
the LMC (dashed) or in the Milky Way halo (solid). The vertical solid (dotted) line
shows the measured value (including the error bars)

the second caustic crossing is intrinsically difficult and possible only relatively
late). The first prediction for the second caustic crossing was for UT June
(19.3 ± 1.5), issued on June 15.3 (see Fig. 10, bottom panel). This value was
revised on June 17 to UT June (18.2 ± 1.5), when it actually happened. The
possibility to analysze the lightcurve while it is still ongoing made it hence
possible to react quickly. This resulted in an amazing 1598 data points for
this double peak microlensing event within about 50 days (Fig. 10)!

Measuring the caustic crossing time can help break the degeneracy between
the lensing parameters. The method is very simple: assuming that locally the
(fold) caustic is a straight line in the source plane, the duration of the caustic
crossing is then just the time it takes the star to move its own stellar diameter,
2 t∗. As described in Alcock et al. (1999), they could make a very accurate
measurement of the duration of the caustic crossing: t∗ = (0.116 ± 0.010)
days. With the knowledge of the physical size of the star, R∗ = (1.1±0.1)R�,
from its spectral type (Teff = 8000K), it became possible to determine the
proper motion of the lens with respect to the source. Alcock et al. (1999)
estimated the transverse velocity of the lens projected to the SMC distance
to be v = (76 ± 10) km/s. This in turn allows to estimate the distance to
the lens, one of the very interesting parameters which cannot be obtained in
“normal” microlensing cases, due to the degeneracy of the parameters lens
mass, distance and transverse motion (cf. Sect. 1.2).
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In Fig. 11, the expected distribution of relative lens velocities projected to
the source (SMC) plane are shown for two potential lens populations: if the
lenses are in the Milky Way Halo, the typical (projected) velocities are in the
range of about 1000 km/sec, whereas for a lens population in the SMC, it is
rather around 60 km/sec.

The measured value of the projected transverse velocity hence clearly
favors a lens position in the (foreground of the) SMC. Alcock et al. (1999)
analyzed this quantitatively as well: The probability for a halo star to have
such a low velocity is only 0.12%, whereas 38% of the SMC stars would have
such a value or smaller. Hence Alcock et al. (1999) concluded that the lensing
system responsible for MACHO-99-SMC-1 is much more likely to reside in
the SMC rather than in the Galactic halo, hence it is a case of “self lensing”
(Sahu 1994).

2.4 Binary Lens MACHO 1999-BLG-047

The well covered microlensing event MACHO 1999-BLG-047 displays a “nearly
normal” lightcurve with a small but highly significant deviation close to
the peak (Fig. 12). Since such small-amplitude deviations near the peak of
a lightcurve can be produced by planetary lenses (cf. Griest and Safizadeh
1998), this event attracted a lot of interest. However, roughly equal mass bi-
nary lenses with either very small or very wide separation can introduce very
similar features in the lightcurve. The analysis of Albrow et al. (2002) showed
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Fig. 12. Lightcurve of the binary microlensing event MACHO 99-BLG-47 obtained
by the MACHO and PLANET teams (from Albrow et al. 2002). The symbols denote
the data points from the various observatories. The solid line is the best fit, the dotted
line is the best single lens fit, clearly not at all reproducing the high magnification
data points
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that these two cases can be distinguished with a high quality data set, and
that in particular the event MACHO 1999-BLG-047 is produced by an ex-
treme binary event. However, the analysis yielded two “islands” in the mass
ratio versus separation diagram which both satisfied the observational data
equally well (Fig. 13): it was not possible to find a unique solution. The two
best fit models require the binary lens to be either a close binary with para-
meters d/RE = 0.134 ± 0.009 and q = 0.340 ± 0.041 or d/RE = 11.31 ± 0.96
and q = 0.751 ± 0.193 (more details see in Albrow et al. 2002).

2.5 Binary Lens EROS BLG-2000-005

The triple-peak microlensing event EROS BLG-2000-005 (Fig. 14, An et al.
2002) became one of the most spectacular examples of stellar microlensing
(An et al. 2002). Originally detected by the EROS team, an alert was issued
on May 5, 2000 for a possible microlensing event. On June 8, 2000, the MPS
team (Microlensing Planet Search) sent an anomaly alert, stating that the
star has changed its brightness by 0.5 mag compared to the previous night,
and that it was still brightening at the remarkable rate of 0.1 mag per 40
minutes (!). The PLANET team increased the monitoring frequency of this
event and kept it at a high level until about a year later.

Fig. 13. Mass ratio versus separation for the binary lens parameters of the PLANET
analysis of the binary microlensing event MACHO 99-BLG-47: shown are contour
of good fits, based on PLANET and MACHO data. The binary separation d is
in units of the Einstein radius of the combined mass, and the mass ratio q is the
ratio of the farther component to the closer component to the source trajectory
(i.e., q > 1 means that the source passes by the secondary). Contours are shown
for Δχ2 = 1, 4, 9, 16, 25, 36 (with respect to the global minimum). It is obvious that
there are two well separated minima. Also drawn are the curves of models with the
same quadrupole moment Q̂ as the best-fit close-binary model and the same shear
γ as the best-fit wide-binary model (from Albrow et al. 2002)
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Fig. 14. Lightcurve of the binary microlensing event EROS BLG-2000-5 (from An
et al. 2002). The I-band data points are displayed, the baseline magnitude Is is
given, the three peaks are labeled A, B and C. The inset at the top right indicates
the geometry of the stellar track crossing the caustic, with the three caustic crossings
labeled according to the maxima in the lightcurve

The I-band data of the PLANET team are presented in Fig. 14, containing
1286 data points (cf. An et al. 2002). The different symbols indicate the four
PLANET telescopes in South Africa (SAAO), Tasmania (Canopus), Chile
(YALO) and West Australia (Perth). The two main maxima in the lightcurve
are more than 3.5 mag above the baseline and show very steep rising or drop-
ping flanks, indicative of caustic crossings. The third peak is slightly less steep
and shows the characteristics of a cusp passage. The inset in the top right part
of Fig. 14 shows the track of the source star relative to the binary lens caustic.
The two caustic crossings are labeled ‘A’ and ‘B’, whereas the cusp passage
has the label ‘C’.

The quality of the data is very good and the duration of the event long
enough, in order to measure the parallax due to the motion of the Earth
around the Sun. In Fig. 15, the geometry of the event as projected on the sky
is shown (from An et al. (2002)). It shows very clearly the difference of the
relative paths as seen from the Earth (solid track) and from the Sun (dashed
track), i.e. the parallax effect.

In Fig. 16, a close-up of the previous figure is shown for the time of the
cusp passage. The circle represents the source at the time of closest approach
to the cusp (see also the inset panel).

The system could not be modeled satisfactorily without including the or-
bital motion of the binary (cf. Figs. 15 and 16). This made it possible to
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Fig. 15. Geometry of microlensing event EROS BLG-2000-5 as projected on the sky
(from An et al. (2002)). The origin (marked with a small cross) is the center of mass
of the binary lens. The path of the source relative to the lens as seen from the Earth
is shown as the solid curve, whereas the relative proper motion as seen from the
Sun is indicated as the short-dashed line (length of both trajectories corresponds to
six months). The circle (long-dashed line) is the Einstein ring, and the lines within
(solid and dotted) are the caustics of the binary system at two different epochs.
The labels “Gl.E.” and “Gl.N.” indicate the directions East and North in galactic
coordinates, “Ec.N.” and “Ec.W.” stand for North and West in ecliptic coordinates,
respectively (from An et al. 2002)

Fig. 16. Relative track of the source in the binary microlensing event EROS BLG-
2000-5 during the time of closest approach to the cusp (from An et al. 2002). The
symbols indicate the positions of the source center during data taking at the various
observatories (cf. Fig. 14)
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measure the projected Einstein radius r̃E = (3.61 ± 0.11) AU. The angular
Einstein radius, on the other hand, could be determined from the finite source
effects on the lightcurve to θE = (1.38 ± 0.12) mas with an estimate of the
physical source size from its position in the color-magnitude-diagram, these
two measurements result in a determination of the lens mass: Mlens = (0.612±
0.057)M�. This is the first time that a microlens parallax was measured for a
caustic crossing event, and also the first time that the lens mass degeneracy
could be broken and that the mass of a microlens could be derived from
photometric measurements alone.

3 Microlensing and Dark Matter: Ideas, Surveys
and Results

3.1 Why We Need Dark Matter: Flat Rotation Curves (1970s)

Since the 1970s, measurements of the rotation curves of galaxies showed that
the (rotational) velocity as a function of radius is roughly constant: galaxies
have flat rotation curves (e.g., Bosma (1978); Rubin (1983)), see also Fig. 17,
top left panel. This is a non-trival result: in the Solar System, as a contrast,
the planets follow the Kepler law: velocity decreases with the square root of
the radius (bottom left panel in Fig. 17). In general, for a stable circular orbit,
gravitation is balanced by the centrifugal forces:

GM(r)
r2

=
v(r)2

r
.

If v(r) = const for a broad range of radii r, this implies: M(r) ∝ r. In other
words: flat rotation curves mean that the mass of the galaxy increases linearly
with radius. In Fig. 17, three idealized rotation curves are shown for solid body
rotation (top right), Keplerian rotation (bottom left) and a relation in which
mass increases linearly with radius: M(r) ∝ r.

Using the 21 cm Hydrogen line, the rotation velocity of spiral galaxies could
even be measured far beyond the visible stellar part: The interesting – and very
unexpected – result was: galactic rotation curves remain flat even outside the
regions in which stars exist. These observations imply: more than 90% of the
mass of a galaxy must be in an unknown and invisible form, soon to be called
“dark matter”. From its presumed roughly spherical distribution around the
visible galaxies, the concept of “dark matter halos” was established4.

For some time, an alternative explanation for the flat rotation curves was
put forward: the concept that Newton’s law of gravity (and also Einstein’s

4 To this day it is not really understood what dark matter is. The concept of “Dark
Matter Halos”, however, is so ubiquitous inside and outside physics, that it made
it even into art/literature, see Reza (2000).
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Fig. 17. Different types of rotation curves (schematically): observed flat rotation
curve of spiral galaxies (top left); solid body rotation curve (top right): vrot(r) ∝ r;
Keplerian rotation curve (bottom left): vrot(r) ∝ r−0.5; rotation curve for constant
velocity (bottom right): vrot(r) = const (in other words: ∝ r0)

General Theory of Relativity) changes on large length scales. Two of the
theories in the latter categories are the “MOdified Newtonian Dynamics”, or
MOND (Milgrom 2001), and the “conformal gravity” (Mannheim 1992). These
theories change the relation between gravity and distance and try to avoid the
concept of “dark matter” altogether. We cannot go into any more detail here,
but rather refer the interested reader to a recent review on alternative theories
of gravity (Sanders and McGaugh 2002). However, in the light of the latest
results of the Wilkinson Microwave Anisotropy Probe (WMAP, Spergel et al.
2003), these alternative explanations seem not to be viable any more.

Though experimentalists have tried very hard for many decades (Rees
2003), no physical candidate for dark matter was detected. Two main dark
matter candidate types were proposed: massive elementary particles and as-
trophysical compact objects. The list of elementary particle candidates for
dark matter comprises many dozen candidates, among them many hypotheti-
cal ones: neutralino, Higgs particle, WIMPs (weakly interacting massive parti-
cles), axions. The suggested astrophysical candidates were stellar or sub-stellar
mass black holes, neutron stars, white dwarfs, brown dwarfs, or planets.
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3.2 How to Search for Compact Dark Matter (as of 1986)

In 1986, Bohdan Paczyński proposed a clean experiment for testing whether
the latter type, compact astrophysical objects of roughly stellar mass, can
make up the dark matter halo of the Milky Way (Paczyński 1986b). His idea
was simple5 and brilliant at the same time: if a class of compact objects in
the mass range of very roughly 10−6 ≤ m/M� ≤ 106 exists in the Milky Way
halo and makes up a fair fraction of the dark matter, then occasionally one of
these objects must pass very close to the line-of-sight to a background star in
the large magellanic cloud (LMC). As a consequence, the apparent brightness
of this background star is magnified temporarily, in exactly the way that is
explained in Sect. 1: single lens, single source.

Paczyński determined the fraction of background stars that would be
within the Einstein radius of these MACHOs6, the so called optical depth, to
be in the range pMACHO = 10−6...10−7. This is a remarkably small number: it
means that the apparent brightness of a few million stars has to be monitored
very frequently, in order to find the handful of candidate lightcurves7.

3.3 Just Do It: MACHO, EROS, OGLE et al. (as of 1989)

What sounded like science fiction at the time (Paczyński even refers to it this
way in his original article), soon became reality, due to four developments:

1. Optical CCD chips got bigger, and it became possible to build cameras
consisting of an array of such CCDs. This way one could determine the
apparent brightness of many stars in “one shot”.

2. Software could be developed for automatic data reduction pipelines, so
that a large number of objects could be treated and analyzed with no or
little human interaction.

3. Computer power kept increasing according to Moore’s law, i.e. speed dou-
bling roughly every 18 months, as well as data storage became available
in sufficient amounts, so that by the mid 1990s literally tens of millions
of stars could be monitored frequently enough with lightcurves being pro-
duced.

4. Scientists realized that the normal procedure of applying for a certain
chunk of time at a certain telescope did not make much sense: they needed
(and succeeded in getting!) dedicated telescopes.

5 It was in fact so simple that the referee first rejected the paper; only after some
discussion between author, referee and editor, the paper was published; and at
the time of this writing, it has collected more than 500 references.

6 MACHO - MAssive Compact Halo Object, an acronym coined for these dark
matter candidates originally by Griest (1991)

7 Paczyński’s optimistic suggestion that this might be measurable was in stark
contrast to Einstein’s pessimistic view exactly 50 years earlier: he had derived
the basic equation and estimated the probabilites and written that there is ‘no
hope of observing such a phenomenon directly’ (Einstein 1936).
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In the years following Paczyński’s article, three teams formed and started
to address the scientific question posed. Later on, a number of additional
collaborations followed:

• the MACHO Team (USA/Australia), MAssive Compact Halo Objects:
http://wwwmacho.anu.edu.au/

• the EROS Team (France), Expérience pour la Recherche d’Objets Som-
bres: http://eros.in2p3.fr/

• the OGLE Team (Poland/USA), The Optical Gravitational Lensing Ex-
periment: http://www.astrouw.edu.pl/∼ogle/

• the MOA Team (NZ/Japan), Microlensing Observations in Astrophysics:
http://www.physics.auckland.ac.nz/moa/

They determined the apparent brightnesses of stars in the direction to the
LMC/SMC and to the Galactic Bulge a few times per week, constructed
lightcurves, identified the variable stars, and searched for the rare “needle-in-
the-haystake” microlensing signal among the millions of stars.

3.4 “Pixel”-Lensing: Advantage Andromeda!

In 1992, Arlin Crotts had suggested to use the Andromeda Galaxy as a “unique
laboratory for gravitational microlensing”. M31 is roughly 15 times as distant
as the LMC/SMC, hence individual stars cannot be resolved any more: only
the combined flux of many stars can be measured in any resolution element
of the CCD camera. This means that a possible microlensing event would
be “buried” among an ensemble of constant or variable unrelated stars. The
magnification consequently is diluted: “blending” dominates the lightcurve
very heavily. Only very high magnification events would be detectable. How-
ever, Crotts (1992) pointed out that M31 does have a number of advantages
compared to LMC/SMC searches: smaller angular size of source stars, (much)
greater total mass, favorable geometry and foreground/background asymme-
try, which should statistically allow to distinguish microlensing events due
to Milky Way halo objects from those produced by M31-halo objects. This
method was subsequently somewhat improperly called “pixel-lensing” and be-
came popular under this name.

Subsequently, a number of teams jumped on the pixel-lensing train:

• AGAPE: Andromeda Galaxy Amplified Pixel Experiment (later POINT-
AGAPE): http://cdfinfo.in2p3.fr/Experiences/Agape/

• MEGA: Microlensing Exploration of the Galaxy and Andromeda
http://www.astro.columbia.edu/∼arlin/MEGA/

• WeCAPP: Wendelstein Calar Alto Pixellensing Project,
http://www.usm.uni-muenchen.de/people/fliri/wecapp.html.

For the “Theory of Pixel Lensing”, see Gould (1996).
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3.5 Current Interpretation of Microlensing Surveys with Respect
to Halo Dark Matter (as of 2004)

In the more than ten years which have passed since the first publication of
stellar microlensing events toward the LMC (Alcock et al. 1993; Aubourg et
al. 1993), many more microlensing events have been discovered (and some of
the first discovered events were retracted because they were later classified
as misinterpretations of a rare kind of variable stars, so-called blue bumpers
[Tisserand and Milsztajn, private communication 2004]). With a baseline of
five years or longer, statistically quantitative results have been obtained. In
the meantime, both MACHO and EROS have ended their campaigns. Final
results and/or conference summaries have been published. The two robust
results of these two experiments are:

• A certain relatively small number of lightcurves of LMC (and SMC) stars
have been obtained which were definitely produced by microlensing of an
intermediate single or binary star. “Intermediate” between source star and
observer could mean in the Galactic Halo, in the disk of the Milky Way,
or in the foreground of the LMC/SMC.

• The total number of these microlensing lightcurves (fewer than two dozen)
is definitely far too small to explain ALL the dark matter in the Gala-
ctic halo by compact objects, even if all the lenses were objects in the
Galactic halo. What fraction of the halo dark matter could still be ex-
plained by MACHOs is a matter of debate. The estimates range from
about 20% to zero.

Here the results are summarized:

MACHO

The MACHO team ended their operation in 1999. Results are summarized in
Alcock et al. (2000b): They were in operation for 5.7 years and had monitored
11.7 million stars in the LMC. The identification of microlensing events is not
trivial: They applied two criteria and found 13 or 17 events, respectively. The
time scales of these events range from tE = 34 to 230 days. According to
their modeling, they expected 2–4 events from known stellar populations in
the Milky Way.

Their analysis results in an optical depth of

τLMC(MACHO) = 1.2+0.4
−0.3 × 10−7,

plus an estimated systematic error of 20%. Their interpretation is that about
20% of the Milky Way halo could be made of dark matter objects in the mass
range 0.15 ≤ m/M� ≤ 0.9, with a 90% confidence interval of 8% – 50%.

The lack of long duration events allows them to put limits on more massive
objects, in particular potential black holes: they conclude that objects in the
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Fig. 18. MACHO fields with events indicated, from Alcock et al. (2000b): R-band
LMC, 8.2 degrees at a side, 30 MACHO fields (squares), with 17 microlensing events
(numbers in circles)

mass range 0.3 ≤ m/M� ≤ 30 cannot make up the entire dark matter halo
(Alcock et al. 2000a,b).

In Fig. 18, the 30 central monitoring fields of the MACHO team are indi-
cated on an R-band image, including the location of the 17 identified events8.
The detection efficiencies of the MACHO team – defined as the fraction of
events of a certain duration that would have been identified in the data, given
the actual sampling and data quality – for microlensing events of certain du-
ration are shown in Fig. 19 as a function of increasing coverage: 1 year, 2 years
and 5 years (and two selection criteria for the latter). More information and
detailed analyses can be found in Alcock et al. (2000a,b).

8 The monitoring data of the MACHO team for 73 million stars in the LMC, the
Small Magellanic Cloud and in the Galactic Bulge are available to the general
public at http://wwwmacho.mcmaster.ca or http://wwwmacho.anu.edu.au.
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Fig. 19. Detection efficiencies of the MACHO experiment for one year, two years,
and five years of operation, as a function of event duration (from Alcock et al.
2000b)

EROS

The EROS team ended their operation in February 2003. Preliminary results
were already published in Lasserre et al. (2000): They had ruled out sub-solar
mass dark matter objects as an important component of the Galactic Halo.
In an analysis of 5 years of EROS data toward the Small Magellanic Cloud,
Afonso et al. (2003a) concluded: Objects in the mass range from 2× 10−7M�
to 1M� cannot contribute more than 25% of the total halo. They derived an
upper limit on the optical depth:

τSMC(EROS) ≤ 10−7

(stating in addition that the long duration of all the EROS SMC candidates
may point to the fact that they are more likely due to unidentified vari-
able stars or self-lensing within the SMC, rather than due to halo objects).
A preliminary analysis of the full 6.7 year EROS data set on the LMC
strengthens this result (Glicenstein private communication 2003; Tisserand,
private communication 2004): some of the formerly claimed EROS candidates
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turned out to be variable stars, and the derived optical depth toward the LMC
is in the range

τLMC(EROS) ≈ 10−7.

A graphic depiction of the EROS mass exclusion range for both the SMC and
LMC directions can be found in Fig. 20 (from Afonso et al. 2003a). Similar
results were obtained in an analysis of the microlensing experiments by Jetzer
et al. (2004).

Some additional results of EROS are: they had identified 4 long duration
events, which are most likely not produced by a halo population. The main
EROS result concerning the dark matter fraction is: less than 25% of the
standard Milky Way Halo can be in objects with masses between 2×10−7M�
and 1M�.

Where are the Lenses?

Combining the EROS and MACHO data results in roughly 20 microlensing
events in the directions toward the LMC and the SMC. Originally, the ex-
periments were set up to find compact dark matter objects in the Galactic
Halo. So the big question is: are the lenses that caused the microlensing events
dark matter objects? This is difficult to answer, because this would involve to

Fig. 20. Limits on Halo Mass fraction of EROS team: the 95% exclusion probability
for the standard halo model are shown. Dashed lines: limits toward the LMC from
EROS-1 and EROS-2; thin line: limit toward the SMC; thick line: combination of
five EROS sub-experiments. The dotted line indicates the limits that would have
been obtained without any detected events, it illustrates the overall sensitivity of
the EROS experiment (from Afonso et al. 2003a)
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uncover the nature of an invisible object, which is almost impossible to do.
However, what may help answer this question is a related one: where are the
lenses? And the answer to this latter question may be easier to obtain. From
a purely observational point of view, the lenses could be at three distinct
locations:

• in the Milky Way (thin/thick) disk: the lenses – in that case presumably
normal stars – might become visible a few years after the event, once they
have moved away from the bright background LMC/SMC star.

• in the Milky Way Halo: then they could be the searched for dark matter
population. The density of events should be proportional to the density of
stars in the LMC.

• inside the LMC/SMC: foreground stars could act as lenses on background
stars: the density of events should be proportional to the star density
squared.

Jetzer et al. (2004) conclude that the microlensing events are produced
by various populations: a combination of self-lensing in the LMC, thick disk,
spheroid, plus some “true machos” in the halo of the Milky Way and the LMC
itself. Taking advantage of the apparent near-far asymmetry of the spatial dis-
tribution of the LMC events, Mancini et al. (2004) re-analyzed the possibility
of self-lensing. Their main conclusion is that even considering this, self-lensing
cannot account for all the observed microlensing events toward the LMC.

In an earlier conference proceedings contribution, Sahu (2003) discussed
the issue: “Microlensing toward the Magellanic Clouds: Nature of the Lenses
and Implications for Dark Matter” in some detail. In particular, Sahu inves-
tigated the question of the distance of the 17 MACHO events toward the
Magellanic Clouds. As a first step he summarizes:

• for one of them, a binary-lens event, the distance could be determined
securely via its caustic crossing time scale: it is within the SMC
(cf. Fig. 10).

• for three more, the lens location could be estimated. This estimate is less
certain than for the SMC event, but the evidence suggests that it is very
likely that the lenses are located within the Magellanic Clouds as well.

As an independent second step, Sahu (2003) mentions that – assuming
that most of the events are dark matter objects in the Galactic Halo – the
time scales of the events toward the LMC would imply that masses are of
the order of 0.5 M� (cf. Alcock et al. 2000a). However, with the same line
of thought, the most likely masses for the events toward the SMC would be
in the range 2 – 3 M�. Could the mass distribution of objects with differ-
ent masses be different from each other? No model of the Galaxy is consis-
tent with such an inhomogeneous mass distribution. On the other hand, if
one assumes that most of the events are caused by foreground objects in the
LMC/SMC, then the expected masses would be of order 0.2 M� for both LMC
and SMC.
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A third line of argument uses the frequency of binary lenses. Two of the
17 events are caused by binary lenses. In both cases, the lenses are most likely
objects located within the LMC/SMC. Assuming that roughly 50% of the
potential lenses in the LMC/SMC are in binary systems (similar to the stars
in the solar neighborhood), one would expect that 10% of all microlensing
events would show binary characteristics (cf. Mao and Paczyński 1991 and
Sect. 2.1). This implies that of order 20 events are expected to be caused
by single stars within the LMC/SMC. So this would be perfectly consistent,
if most of the observed microlensing events are caused by foreground stars
within LMC/SMC.

A fourth argument of Sahu (2003): If the microlensing events are caused by
0.5 M� objects in the Galactic Halo (as claimed from the LMC observations),
one would have expected to detect about 15 events in the direction toward
the SMC, with time scales of about 40 days. Not a single event of this kind
was detected: in fact, both SMC events are shown to be due to self-lensing.

Although each individual of these four arguments is not very strong, the
combination of them provides relatively firm evidence against them being
interpreted as mostly due to halo objects.

The conclusions in Sahu (2003) are: “Close scrutinity of the microlensing
results toward the Magellanic Clouds reveals that stars are major contributions
as lenses, and the contribution of MACHOs to dark matter is 0% to 5%.”.
This view might not be shared by everyone working in the field. However, it
is certainly a viable one9.

3.6 Microlensing toward the Galactic Bulge

As originally suggested by Paczyński (1986b), monitoring stars in the Galactic
Bulge turned out to be a very fruitful enterprise. Originally meant as a safety
measure10, in the mean time the Bulge microlensing turned out to be a source
of exciting astrophysical results in itself.

The angular distribution of the microlensing events lead to the re-discovery
of the galactic bar (see Stanek et al. 1994; Paczyński et al. 1994). The mi-
crolensing optical depth in this direction turned out to be higher than ex-
pected: the original results by MACHO/OGLE were roughly

τBulge(MACHO/OGLE) ≈ 3 − 4 × 10−6

9 In an earlier independent analysis, Graff (2001) had concluded: “Occam’s razor
suggests · · · that microlensing experiments have simply found a background of
ordinary stars”.

10 Microlensing experiments toward the Bulge would produce microlensing events
with certainty due to the known population of disk stars, which could be used as a
test of the experimental setup; otherwise, the potential lack of microlensing events
toward the LMC/SMC could always have two reasons: there are no MACHOs, or
the experiment does not work properly.
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(Udalski et al. 1994b; Alcock et al. 1997a,b). This caused some kind of prob-
lems of our understanding of the Galactic dynamics: the high optical depth
for microlensing implies much more mass than people had thought there is in
the inner part of the Galaxy. Quite a number of papers dealt with this issue
and tried to solve the discrepancy.

Recently, EROS published their analysis for the optical depth toward the
Galactic bulge, based on the identification of 16 microlensing events with
clump giants from a region of 15 contiguous one-square-degree fields with a
total of 1.42 × 106 clump giants. The distribution of the time scales of their
microlensing events is displayed in Fig. 21: in a logarithmic presentation, most
events were found with Einstein time scales of 10 – 30 days. EROS found a
much lower value than what was previously favored:

τBulge(EROS) = (0.94 ± 0.29) × 10−6

(Afonso et al. 2003b), which lead to the remark “The issue of the optical depth
to the bulge is solved” by one of the experts in the Galactic microlensing
community (Andy Gould, private communication March 2003). Considering
the error bars of the published values, the problem was never really severe:
the new EROS result still agrees with most of the previous results at the 2σ

Fig. 21. Time scales of the 16 EROS bulge candidate events of clump giants: dashed
line corresponds to raw data, the solid line shows the (rescaled) distribution, cor-
rected for the detection efficiency (from Afonso et al. 2003b)
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level. But it is closer to the many predicted values. For a detailed discussion
of the differences between the various observational and theoretical analyses,
see Afonso et al. (2003b).

4 Microlensing Surveys in Search of Extrasolar Planets

The very first time that microlensing by planets was mentioned in the litera-
ture was the paper by Shude Mao and Bohdan Paczyński from 1991: “Grav-
itational microlensing by double stars and planetary systems”. This seminal
paper with more than 150 citations by now (Dec. 2003) states the situation and
explores the possibilities. Experiments for the detection of compact objects of
stellar mass in the halo or the disk of the Milky Way via microlensing were
planned and prepared at that time. Mao and Paczyński (1991) figured out that
binary signatures of the lenses should be visible in some of the lightcurves. In
addition, they stated that this microlensing technique will be able to detect
planetary systems ultimately as well.

In this section, the current state of microlensing searches for extrasolar
planets is summarized. The basics of the method are explained, the advan-
tages and disadvantages are discussed and compared with other planet-search
techniques. The teams active in the microlensing searches (OGLE, MOA,
PLANET, MicroFUN) are presented. A number of recent observational and
theoretical results on planet microlensing are mentioned. Good descriptions
of the basics of planet microlensing can be found, e.g., in Paczyński (1996),
Sackett (2001) and Gaudi (2003).

4.1 How Does the Microlensing Search for Extrasolar Planet
Work? The Method

Only a few years after the original idea proposed by Paczyński (1986b) to
use gravitational microlensing as potential test for stellar mass objects in the
Galactic halo, Mao and Paczyński (1991) calculated that roughly 10% of all
lensing events had to show the signature of a binary companion. So it only
was a quantitative question: One had to monitor the apparent brightness of
a very large number of stars in the Milky Way bulge, with the goal to detect
the passage of a binary star or star-plus-planet system in the line-of-sight to
one of these background stars, producing a very characteristic magnification
lightcurve.

Compared to the situation of a single stellar lens, there are three additional
parameters in a situation of a star-plus-planet lens (as shown in the binary
lens case, Sect. 2.1): the mass ratio q = MPL/M∗, the projected separation
between planet and star d, and the angle between the relative source track
and the connecting line between star and planet. The binary-lens nature of the
star-plus-planet system affects the observed lightcurves most strongly if the
separation is in a certain range, the so-called lensing zone: 0.6 ≤ d/RE ≤ 1.6.
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Fig. 22. Left: Caustics of a saturn-mass planet (mass ratio q = 10−4) with
a projected separation close to one Einstein radius: the six panels from top
to bottom show parts of the magnification patterns for separations d/RE =
1.105, 1.051, 1.025, 0.975, 0.951, 0.905; right: typical (difference) lightcurves obtained
from the second, fourth and sixth panel; time scale is in units of the Einstein time
tE . The amplitude is given in magnitudes (after Wambsganss 1997)

In this case, the planet caustic(s) are within the Einstein radius of the host
star. Due to a coincidence, this lensing zone corresponds to a projected
distance range of order 1 AU. This means that the microlensing method is
in principle capable of detecting planets at distances overlapping with the
habitable zone11.

In Fig. 22, six magnification patterns are shown for planet distances
very close to the Einstein radius, so called “resonant lensing”: d/RE =
1.11, . . . , 0.91 (Wambsganss 1997). The lightcurves on the right hand side (dis-
played is the “difference lightcurve” between the star-plus-planet lightcurve
and the star-only lightcurve) show that the deviations are typically of small
amplitude (few percent) and short duration (few percent of the Einstein time,
i.e. order a day or shorter).
11 ‘Habitable zone’ is defined as the distance range around a central star which would

allow life to develop on a planet; because of lack of better criteria – and based on
life as we know it – what is chosen in the simplest version is a temperature range
between 0 and 100 degrees Celsius (centigrade), which allows water to be in the
fluid phase.



488 J. Wambsganss

Very nice animations of planet microlensing showing relative tracks, indi-
vidual images and magnification as a function of time for various mass ratios
q and separations d are provided by Scott Gaudi at:
http://cfa-www.harvard.edu/∼sgaudi/movies.html.

4.2 Why Search for Extrasolar Planets with Microlensing? –
Advantages and Disadvantages

Searching for extrasolar planets is a tough astrophysical enterprise. There
are a number of different techniques being pursued: radial velocity variations
or doppler wobble, transits, astrometric variations, pulsar timing, or direct
detection. Each of those methods is used by a number of groups (more than
20 different teams, e.g., for transit searches alone, see review by Horne (2003)).
So it is a fair question to ask: why bother applying yet another technique?

In this subsection, the microlensing method for planet searching is com-
pared to the other indirect methods. It will be shown that microlensing is
indeed a complementary method with different strengths, and that it is very
worthwhile pursuing this search technique. As the starting point, here fol-
lows a list of commonly mentioned “disadvantages” of the microlensing planet
searching technique (with a few comments added in parentheses):

1. The probability for an individual planet-lensing event is very small (yes
indeed, the chance for detecting a planet-microlensing event by monitoring
an arbitrary background star in the galactic bulge is very roughly of order
10−8 or smaller).

2. The duration of the planet-induced deviation in the microlensing lightcurve
is very short (yes, estimated typical durations for planet deviations are of
order hours to days).

3. The planets – once found – will be very distant (true, most likely distance
is a few kpc), and even worse: the exact distance determination will turn
out to be very difficult or close to impossible (true, unless we get additional
information about the event).

4. It is close to impossible to do subsequently more detailed investigations
of the planet (fair enough).

5. The lightcurve shapes caused by extrasolar planets are diverse, occasion-
ally there might be a parameter degeneracy when modeling the event,
with no unique relation between lightcurve and planet parameters (yes).

6. Even when unambiguously detected, what can be determined is not the
mass of the planet, but only the mass ratio between host star and planet
(true).

7. No independent confirmation will be possible after the detection: it is a
once-and-only event (yes).

These are fair points of critique toward using microlensing as a planet search
technique. So, why bother anyway? Firstly I would like to emphasize and
recall that almost all these arguments were put forward already more than a
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decade ago, then used against the “normal” stellar/dark matter microlensing
which had been proposed by Paczyński (1986b) and produced the first results
a few years later (Alcock et al. 1993; Aubourg et al. 1993; Udalski et al. 1993).
Today no one has any doubts any more about the reality of the many stellar
microlensing events, despite, say, their non-repeatability. Secondly, I now try
to present one by one good reasons why the above arguments – though true
to a large degree – are not really arguments against using the microlensing
technique for planet searching:

1. Small probability: The probability for “normal” microlensing events in
the galactic halo or disk (i.e., directions to the LMC/SMC or the galac-
tic bulge) is already very small (of order 10−6...10−7). Nevertheless, more
than a dozen microlensing events have been found toward the LMC/SMC
(Alcock et al. 2000a,b) and more than 1000 events (!) have been de-
tected in the direction of the galactic bulge (see, e.g., on the OGLE web
page http://www.astrouw.edu.pl/∼ogle/ogle3/ews/ews.html). This
shows: small probability in itself is certainly not a strong argument against
using this technique. It is just a matter of statistics: even today it is pos-
sible to monitor of order 107 stars on a regular basis with sampling every
few days on comparably small operational cost. Doubtlessly, this number
will increase by an order of magnitude every few years.

2. Short duration: In the current “mode-of-operation”, the planet-searching
teams take advantage of the relatively coarse sampling in the time do-
main of the microlensing monitoring teams (in particular OGLE and
MOA), they work “piggy-back”: once a deviation indicative of a stellar
microlensing event is detected by these monitoring teams, the planet-
searching teams follow those alerted events with a very dense coverage
in time. This can result in lightcurves with an average sampling of many
data points per hour. A number of events with more than 1000 data points
(An et al. 2002) with photometric accuracy of 1% or better have been ob-
served. Due to a set-up of telescopes in Australia, South Africa and Chile,
lightcurve coverage around the clock is possible, weather permitting (see
‘The 24-Hour Night Shift’, Sackett 2001). So even planetary deviations in
the lightcurve lasting only a couple of hours can be covered very well with
many data points.

3. Large (and unknown) distance to the planet in general: The distances to
the microlensing planets will be larger by one or two orders of magnitude
than those found with the conventional techniques. This is true, too, for
the pulsar planets (Wolszczan 1994) and not a disadvantage in itself. The
“not-well-determined” aspect can be treated in a statistical way for a
sample of events. If there is additional information available (parallax,
astrometric signatures), the distance can be determined for the individual
events (cf. Alcock et al. 2001a; Gould 2001).

4. More detailed investigation impossible: Indeed, a more detailed study of
the planet candidate will turn out to be very difficult. However, we may be
able to get more information about the star which the planet is circling:
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Alcock et al.,(2001a, b) show, that due to the relative proper motion, the
projected positions of source star and lens star will move away from each
other, so that we may be able to detect and measure the parent star and
the relative proper motion of the star-plus-planet system, a few years after
the event.

5. Parameter degeneracy: Lightcurves covering only the central caustic or
only the outer caustic are likely to have two sets of solutions. However,
there is a wide range of planetary lightcurves which will result in unique
solutions/fits, if the data sampling and quality is good enough.

6. Only mass ratios determinable: Most stars in the disk of the Milky Way
are low mass main sequence stars, M-dwarfs. Hence there is a relatively
narrow range of absolute masses for most of the planets. Statistically,
the planet mass distribution from microlensing can be determined to the
same accuracy to which we know the mass function of the (host) stars.
Furthermore, the most successful exoplanet search method to date – the
radial velocity technique – also cannot determine the individual planet
mass to better than a factor 1/ sin i, due to the unknown inclination i of
the orbital plane of the planetary system relative to the line-of-sight.

7. Once-and-only event, no independent confirmation: Most star-plus-planet
microlensing events will not repeat, this is true. But whether the event
is “believable” or not is just a question of signal-to-noise: once there
are enough data points with small enough error bars, this is convincing.
A lightcurve consisting of more than 1000 data points with accuracy of
order of 1% or better (cf. PLANET team caustic crossing data of event
EROS-BLG 2000-005, An et al. 2002) is beyond any reasonable doubt. In
addition, lightcurves are often collected by two or more separate teams,
which is a good independent confirmation. Furthermore, supernovae or
gamma-ray bursts also do not repeat; no one takes this as an argument
against them being real.

So all the arguments commonly used against microlensing as a useful planet
search technique can be refuted or weakened. If the sampling and the photo-
metric accuracy are good enough, planet microlensing deviations will be be-
lieved by the astronomical community. Occasionally there might still be model
degeneracies. The most significant ones, though, just concern the projected
separation between planet and host star: for each solution with separation d
there is usually also one with separation 1/d. We have to live with this, as
well as we do with the unknown sin i of the radial velocity planets.

After having discussed in detail the potential or perceived disadvantages,
let us now come to the positive aspects of planet searching with the microlens-
ing technique, compared to the other methods:

• No bias for nearby stars: Almost all the conventional planet search tech-
niques concentrate their efforts on nearby stars, mainly because the sig-
nals are stronger, the closer the host stars are. The solar neighborhood,
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however, might not be representative for the galactic planet population.
Microlensing searches for planets are sensitive to stars anywhere along the
line-of-sight to the source star in the galactic bulge at a distance of about
8.5 kpc, most sensitive for a lens position roughly half-way in between.

• No bias for planets around solar-type stars/main sequence stars: Almost
all the conventional planet search techniques select and target the host
stars. The very successful radial velocity technique cannot be applied to
all stellar types, in particular not to active stars with broad and/or variable
lines, so it has limited applications. Microlensing searches are “blind” for
the characteristics of their host stars. Planet and host star will be found
in proportion to their actual frequency in the Milky Way disk. The host
stars of the microlensing planets will represent fair samples of the planet-
carrying stars in the Milky Way. Planet microlensing is not constrained to
any spectral type of host star, nor does it exclude any early type or active
stars.

• No strong bias for planets with large masses: All conventional techniques
are most sensitive to massive planets, with sensitivity strongly declining
with decreasing planet mass. To first order, the microlensing signal – the
amplitude of the lightcurve deviation – is independent of the planet mass.
The duration and hence the probability for detection decreases, though,
with decreasing planet mass. However, the size of the source star is im-
portant, and the lightcurve signal will be affected/smoothed by the finite
source diameter, resulting in a lower amplitude signal (compared to a point
source) and hence a lower detection probability.

• Earth-bound method sensitive down to (almost) Earth-masses: In principle,
it is possible to detect even Earth-mass planets with ground based moni-
toring via microlensing. In practise, however, this would mean extremely
high monitoring frequency and photometric accuracy. It is certainly true,
though, that currently microlensing is able to reach down to lower planet
masses than any other technique.

• Most sensitive for planets in lensing zone, overlapping with habitable zone:
In the current mode-of-operation (“alerted” microlensing events being fol-
lowed by dedicated planet-search groups), the most likely range of pro-
jected separations is the so-called lensing zone, roughly corresponding to a
projected separation between 0.6 AU and 1.6 AU (Bennett and Rhie 1996).
For low mass main sequence stars, this region overlaps with the habitable
zone. This coincidence makes microlens-detected planets particularly in-
teresting with regard to the question whether and how many planets exist
in the habitable zone.

• Multiple planet systems detectable: There are two “channels”, in which mi-
crolensing can even detect multiple planet systems: well sampled, very high
magnification events have such small impact parameters that they pass
the central caustic, which carries the signature of all the planets. Another
channel would be the chance passage through two or more planet caustics,
in case they happen to lie along the path of the background source star.
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• “Instantanous” detection of large semi-major axes: The detection of long
period planets is a long lasting process with the radial velocity or astrome-
try or transit techniques (years, decades?): ideally it takes at least one full
period for confirmation, better two or three. Microlensing will find large-
separation planets basically instantaneously. The measured (projected!)
distance between planet and host-star is, though, only a lower limit to the
real semi-major axis (statistically, the 3-dimensional distribution can be
inferred under the assumption that there is no preferred direction of the
planetary orbital planes in the Milky Way).

• Detection of free-floating planets (“isolated bodies of planetary mass”):
The next generation of microlensing searches for planets most likely will
not work in the two-step mode-of-operation described below, with one
team sampling lightcurves coarsely and then follow-up teams sampling
selected candidate frequently. Rather, they will do very massive photome-
try ground-based (cf. Sackett 1997), or potentially even continuously from
space, as the satellite project “Microlensing Planet Finder” (MPF, for-
merly called GEST) promises to do (Bennett and Rhie 2002; Bennett et
al. 2003). Once such an experiment is implemented, microlensing will also
detect a potential population of free-floating planets, by the microlensing
signature of single lenses with small mass, i.e. very short duration (Han
and Kang 2003).

• Ultimately best statistics of galactic population of planets: Gravitational
microlensing will ultimately provide the best statistics for planets in the
Milky Way; it is not without biases, but the biases in the microlensing
search technique are very different from those of all other methods and
can easier be quantified.

So gravitational microlensing is a very powerful and promising method for
the search for extrasolar planets. It is largely complementary to other planet
search techniques and has relatively little sensitivity to the planet mass. It
also has a number of not-so-favorable aspects, which, however, are more than
balanced by the advantages listed above.

4.3 Who is Searching? The Teams: OGLE, MOA, PLANET,
MicroFUN

The search for planets with the microlensing technique is currently done in a
two-step process with shared tasks:

1. Stellar microlensing events have to be discovered while they are still in
progress. This task is being done by two monitoring teams which measure
the apparent brightness of a few million stars every few days:
• MOA (“Microlensing Observations in Astronomy”; New Zealand/Japan,

60 cm telescope on Mt. John, NZ): covers about 20 square degrees few
times per night; geared to high magnification events (Bond and Rat-
tenbury et al. 2002): 10 events expected per season with Amax > 100.
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In total, 74 alerts in the whole 2003 bulge season. MOA alert page:
http://www.massey.ac.nz/simiabond/alert/alert.html.
From 2005 on, the MOA team will use a dedicated 1.8 m telescope
for their microlensing searches, which will improve their efficiency dra-
matically.

• OGLE (“Optical Gravitational Lens Experiment”, Poland/USA; 1.3 m
telescope on Las Campanas, Chile): monitor 170 million stars regularly
(Udalski 2003). In total 462 alerted events in the 2003 bulge season.
OGLE alert page:
http://www.astrouw.edu.pl/∼ogle/ogle3/ews/ews.html

These monitoring teams use the image subtraction technique (Alard and
Lupton 1998) for accurate photometry and do basically online data re-
duction (Woźniaket al. 2001). Once they have discovered an ongoing mi-
crolensing event, these teams alert the community for follow-up observa-
tions, which involves the second step:

2. Two specialized teams concentrate only on follow-up monitoring of cur-
rently ongoing microlensing events:
• PLANET (“Probing Lens Anomaly NETwork”; international team,

various telescopes in Australia, South Africa and Chile): monitor se-
lected on-going events around the clock. PLANET home page:
http://planet.iap.fr

• MicroFUN (“MICROlensing Follow-Up Network”, US/SA/Israel/ Ko-
rea; 1.3 m telescope, Cerro Tololo): informal consortium of observers
dedicated to photometric monitoring of interesting microlensing events
in the Galactic Bulge. MicroFUN home page:
http://www.astronomy.ohio-state.edu/∼microfun/.

Both follow-up teams monitor only alerted events with high frequency
(ideally few times per hour) and high photometric accuracy. At any given
time there are usually a few dozen interesting events being followed up.

4.4 What is the Status of Microlensing Planet Searches so far?
The Results

At the time of the 33rd Saas Fee Advanced Course on Gravitational Lensing
(April 2003), there were no definitive results on the detection of planets with
the microlensing technique. A few candidates had been proposed, however,
they remain controversial. Here a selected number of recent observational and
theoretical results with respect to planet microlensing are presented:

PLANET Results

The PLANET team has put limits on Jupiters orbiting Galactic M-dwarfs
(Gaudi et al. 2001, 2002): Analysis of 5 years of PLANET monitoring data
toward the bulge with respect to short-duration events from single-lens light
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curves yielded a well defined sample of 43 intensely monitored events. The
search for planet perturbations over a densely sampled region of parameter
space (two decades in mass ratio and projected separation) resulted in no vi-
able planetary lensing candidates. This analysis found that less than 25% of
the primary lenses can have companions with mass ratio q = 10−2 and sepa-
rations in the “lensing zone”: 0.6 ≤ d/RE ≤ 1.6. With a model for the mass,
velocity, and spatial distribution of the stars/lenses in the bulge, astronomical
limits could be obtained: less than 33% of the M dwarfs in the Galactic bulge
can have companions with MJupiter between 1.5 AU and 4 AU; and, less than
45% of the M dwarfs in Galactic bulge can have companions with MJupiter

between 1 AU and 7 AU.

Event OGLE-2002-BLG-055: Possibly Planetary?

The microlensing event OGLE-2002-BLG-055 was investigated by Jaroszyński
and Paczyński (2002a,b). The lightcurve contains one data point which lies
Δm = 0.6 mag above the “single-lens, single-source” fit (Fig. 23, left). There
is only this one deviant point, but it is very reliable. The authors argue cor-
rectly, that there is no reason to ignore it. The simplest interpretation for the
lightcurve is: a binary lens with parallax and mass ratio q = 0.001−0.01. The
lower q-value would correspond to roughly a Jupiter-mass planet (depending
on the exact mass of the primary). The authors caution, however: with a sin-
gle deviant point, it is impossible to fit a unique model (cf. Fig. 23, right)!

Fig. 23. Left : OGLE data of the microlensing event OGLE-2002-BLG-055 with
the best fit single-lens-lightcurve including all data points. Right : zoom around the
deviating data point with two well fitting binary lens models of mass ratios q = 0.01
(short-dashed) and 0.001 (long-dashed). The solid line indicates the best-fit single-
lens lightcurve (from Jaroszyński and Paczyński 2002a,b))
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Instead, they conclude: In order to make sure that for similar events in the
future, more data points in the relevant epoch will be obtained, the OGLE
observing strategy should be modified in the following sense:

1. instant verification of deviant points in a microlensing lightcurve,
2. in positive case (deviation confirmed): change observing strategy, follow

this particular event by frequent time sampling to make unique model
possible.

As a very fast consequence of this suggestion, Andrzej Udalski imple-
mented a very fast check-and-verification system, the OGLE Early Early
Warning System (EEWS). It uses the automatic data reduction and searches
for deviations “on the fly”, i.e. recognize and verify possible planetary distur-
bance in real time with instant follow up (Udalski 2003). Very impressively,
OGLE is now able to verify or falsify a deviant data point within 5 minutes !
As shown by events OGLE-2003-BLG-170 and OGLE-2003-BLG-194 in June
2003 (cf. OGLE web page at http://www.astrouw.edu.pl/∼ogle): it works !
This new developement is very promising indeed.

Limits on Number/Orbits of Exoplanets from 1998-2000 OGLE
Data

Tsapras et al. (2003) analyzed the OGLE data base of the years 1998 to 2000.
They put limits on the number and orbits of extrasolar planets. They focused
on the frequency of “cool” Jupiters at a few astronomical units separation,
based on 145 OGLE events. They used a maximum likelihood technique and
found n ≤ 2 realistic candidate events for a mass ratio of q = 10−3. Their
result: less than 21 × n% of all the lensing stars have Jupiter-mass planets
within 1 < a/AU < 4. An additional result of their analysis is: it is more effi-
cient to observe many events less densely in time, than intensively monitoring
only a small number of events

New Theoretical Results

In a recent analysis, Gould, Gaudi, and Han (2003, 2004) looked into the ques-
tion, how the different planet searching techniques fare in terms of sensitivity
to Earth mass planets. Playing every method “to its strength”, they found
that only microlensing provides a realistic prospect with high signal-to-noise
values for Earth-mass companions. In particular for orbital periods of order
one year or larger, microlensing fares very well. Their conclusion is: microlens-
ing has the best chances of all the methods studied for realistically detecting
Earth-mass planets, with the above mentioned limitation that only the mass
ratio is determined, which leaves the mass itself uncertain to within a factor
of a few.
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New Channels for Planet Detection

Already a few years ago, Di Stefano and Scalzo (1999a, b) had pointed out
two other ways of finding planetary systems with microlensing: They showed
that the microlensing signature of planets in wide orbits (d > 1.5RE) could be
seen as an isolated event of short duration. They figured that a distribution of
events by stars with wide-orbit planets is necessarily accompanied by a distri-
bution of shorter events. What is very important: very accurate photometry
is necessary! Since the size of the star is comparable to the Einstein radius
RE of the planet, the amplitude Δm in the lightcurve will be low, the shape
of the event is distorted and broader than the point source approximation (cf.
Han and Kang 2003). In addition, for very wide planetary orbits, there could
also be repeating single-lens events, in case the track of the source relative to
the lens passed both within an Einstein radius of the stars and the planet.
These events will be rare, but they must occur, and hence previous stellar mi-
crolensing events should be monitored with higher frequency in the following
observing seasons!

Additional Future Ways for Planet Detection with Microlensing

Recently, one additional aspect of planet microlensing was discussed: Ashton
and Lewis (2001) looked into the question whether planets accompanying the
source stars can be detected. They found that during a caustic crossing, the
(reflected) light of the planet can be very highly magnified due to the very
small size of this secondary source, and hence potentially be detected. The
deviation is proportional to f×θP , where f is the fraction of star light reflected
by the planet, and θP is the angular radius of the planet in Einstein radii.
They figured that even rings, satellites and atmospheric features on planets
are detectable this way. Even in an optimistic scenario, though, it will take
quite a number of years until such a measurement will be possible. But it is
a very exciting possibility.

4.5 When will Planets be Detected with Microlensing?
The Prospects

Considering that ...

• ... both OGLE and MOA have improved their alert efficiencies consider-
ably, so that already now there are of order 1000 events per year measured,

• ... OGLE has implemented their early early warning system (EEWS),
• ... the PLANET team has improved their priority scheme for selecting

between the events going on at the same time,
• ... PLANET and MicroFUN keep doing follow-up photometry with high

sampling
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• ... MOA follows very/extremely high magnification events,
• ... the new MOA 1.8 m dedicated telescope is under construction, (first

light planned for 2004/05),
• ... microlensing IS sensitive down to Earth masses,

... the question is WHEN rather then WHETHER planets will be detected
with the microlensing technique. My answer is: SOONER rather than LATER.
I am very optimistic that within the next 2 to 3 years at the latest, the first
convincing planet will have been detected with the microlensing technique.

4.6 Note Added in April 2004 (About One Year after the 33rd
Saas Fee Advanced Course)

During the 33rd Sass Fee Advanced Course on Gravitational Lensing – which
took place in April 2003 – the author (J.W.) had offered a bet (which was
accepted by one of the student participants) that the first convincing detec-
tion of an extrasolar planet with the microlensing technique would take place
within 12 months time.

Indeed, on a NASA press conference in April 2004, it was announced that
MOA/OGLE/MICROfun had detected a microlensing event which can be
explained only with a very low mass companion to the primary star: OGLE
2003-BLG-235 or MOA 2003-BLG-53. The result is published meanwhile as
Bond et al. (2004), see also Fig. 24. In the original words of the authors:

“A short-duration (∼7 days) low-amplitude deviation in the light
curve due to a single-lens profile was observed in both the MOA and
OGLE survey observations. We find that the observed features of the
light curve can only be reproduced using a binary microlensing model
with an extreme (planetary) mass ratio of 0.0039+11

−07 for the lensing
system. If the lens system comprises a main-sequence primary, we
infer that the secondary is a planet of about 1.5 Jupiter masses with
an orbital radius of ∼3 AU.”

The author considers this a very convincing planet microlensing event.

4.7 Summary

Microlensing as a planet search technique has stepped out of its infancy. It
is a viable method which is complementary to other techniques. There is
one unambiguous microlensing planet detection (Fig. 24; Bond et al. 2004)
as of yet (April 2004): A star-plus-planet system with a mass ratio of q =
0.004. Furthermore, microlensing monitoring has put limits on the frequency
of Jupiter-like planets at semi-major axes between 1 AU and 4 AU around
M-dwarfs: PLANET results show that less than one third of M-dwarfs host
them (Gaudi et al. 2001). Soon these limits will be pushed further down,
maybe to the few percent level. Stellar/binary microlensing lightcurves with
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Fig. 24. Top left : Lightcurve of microlensing event OGLE 2003-BLG-235/MOA
2003-BLG-53: open (filled) symbols are MOA (OGLE) data points. Data points are
shown individually in the top level, and binned in one-day intervals in the bottom
panel. Top right : Data points and models covering about 18 days around the plan-
etary deviation: long-dashed line – single lens case; short-dashed line – double lens
with q ≥ 0.03; solid line – best fit with q = 0.004. Bottom: Constraints and likelihood
for the distance and mass of the lens: the thick solid line with the accompanying
dashed lines as error limits shows the constraints on lens mass and distance from
the measurement of the Einstein radius. The thin line (likelihood function) assumes
the lens to be main sequence star (from Bond et al. 2004)

> 1000 data points have been obtained: binary/planetary signatures can be
covered with very high signal-to-noise: non-repeatability is no problem. With
improved detection software: OGLE/MOA produce routinely more than 1000
alerts per year of events caught “in action”. Implementation of EEWS (OGLE)
guarantees verification of any signification deviation “on-the-fly”, within 5
minutes ! Microlensing remains the most promising method for the detection
of Earth-mass companions, either ground- or space-based.



Part 4: Gravitational Microlensing 499

5 Higher Order Effects in Microlensing:

As originally worked out by Einstein (1936) and Paczyński (1986b), the mag-
nification of a point source by a point lens is a very simple function of im-
pact parameter or time (see also Sect. 1.2). The first observed microlensing
lightcurves were well fit by this functional form. However, the point-lens–
point-source ansatz with a linear relative motion between source, lens and
observer is clearly a mathematical idealization.

In one sense, realistic situations are more complicated. In another sense,
this helps us measure more/additional parameters and sometimes even break
some of the degeneracies mentioned in previous sections. Some of the real
world effects will be discussed here, for example:

• Blending – due to the dense star fields which are studied and the (very)
large number of faint stars, often more than one star contributes to the
light within the seeing disk. As a consequence, the measured microlensing
lightcurve consists of two parts: a more-or-less constant background con-
tribution (the “blending”), and the source star which is being microlensed.

• Parallax – For microlensing events with a duration of many months or
longer (i.e. comparable to the orbital period of the Earth), the relative
motion cannot be treated strictly as a straight line, but rather the changing
observer position has to be considered. This leads to a modulation of the
point source - point lens (PSPL)-lightcurve: it is not symmetric any more.

• Binary Lens – a binary lens clearly provides the most dramatic deviation
from a PSPL-lightcurve: the caustic crossings are distincly different fea-
tures; this situation was already treated in Sect. 2. For a binary lens in
a short-period orbit, the caustic configuration may change both its shape
and position in the course of the microlensing event.

• Finite Source Effects, Limb Darkening, Star Spots – for small impact
parameter/high magnification microlensing events and for caustic cross-
ing in binary events, the finite size of the source has to be considered.
It can strongly affect the lightcurve. During caustic crossings, the one-
dimensional surface brightness profile of a background source can be de-
termined from a careful analysis/fitting of the well-sampled lightcurve. In
principle, even star spots can be determined this way.

• Direct Detection of the Lens – most (micro-)lenses presumably are stellar
objects; due to the relative motion between lens and source (which can be
measured in units of angular Einstein radii per time), the lens will move
away from the position of the source. By selection, the light contributing
to the lightcurve is dominated by the background (giant) star. However, if
the lens is a faint/low-mass star, at some angular distance from the source
star, it may become visible. From the spectrum and the stellar type, the
mass and maybe even the distance of the lens can be estimated, and hence
the degeneracies can be broken.
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• Binary Source – the source can also be a physical binary system. The
measured lightcurve is then a superposition of two PSPL-curves, in general
with different impact parameters, different colors and different times of
closest approach.

Blending

The microlensing monitoring programs need to cover as many stars as possible
on one CCD frame. Hence they select dense star fields, e.g. toward the Galactic
bulge. The typical angular separation between stars in such fields is much
smaller than the seeing disk. Hence it is unavoidable that flux of more than
one star is contributing to the light measured for the light curve. The blending
can be due to a physical companion of the source star, due to the lens itself,
or due to a random superposition of a star along the line-of-sight (which is
too far away in units of Einstein angles to affect the point-lens lightcurve, but
still within the seeing disk).

The source stars for the lensing events are usually giants in the Galactic
bulge, they dominate the light. However, the additional ‘blending’ light cannot
be entirely neglected. Di Stefano and Esin (1995) investigated this question.
They concluded that the optical depth for lensing of giants is greater than
for the lensing of main-sequence stars, and that this effect can be quantified.
The direct consequence of blending is that the measured lightcurve is not
represented by the ideal point-lens-point-source model lightcurve. Di Stefano
and Esin (1995) present methods to test whether the deviation from a PSPL-
lightcurve can be attributed to blending. They also suggest that the effect of
blending can be used to learn more about the lensing event than would be
possible otherwise (e.g., it could be that without the blend contribution, this
particular star may not have been above the brightness threshhold at baseline
and hence not among the list of monitored stars). If blending is neglected,
the lens mass distribution will be skewed toward lower masses than the actual
underlying distribution of lenses.

Woźniak and Paczyński (1997) point out a strong degeneracy of the fitting
procedure for single lensing events between blended and non-blended events.
They conclude that it is practically impossible to identify blending by photo-
metric means alone. Some blends might be detected astrometrically, but the
majority has to be corrected for statistically.

Alard (1997) analyzed the situation in which the lensing event is not on
the main star, but rather on an unresolved background star which represents
only a ‘blended’ contribution to the light of the main (giant) star. He showed
that such apparently short-duration events can be easily misinterpreted as
brown-dwarf lensing events. Furthermore, Alard (1997) points out that there
are ways to identify such events: usually, there is a color shift during the
event. High resolution, dense, multi-band sampling helps identify such events
and to estimate their contribution to the total lensing rates. He identifies
OGLE-5 (Udalski et al. 1994a, b) as an obvious such event. Another method
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to identify and ‘deblend’ such events was suggested by Goldberg (1998): the
shift of the center-of-light due to one of the stars in the seeing disk being
magnified produces an astrometric signature which should be measurable in
a fair fraction of such events.

Han et al. (1998) found that the contribution of the lens to the blend-
ing (suggested by Nemiroff 1997) has a small to moderate effect on the de-
termination of the optical depth (decrease of 20% under the most extreme
circumstances) and the Galactic mass distribution. Han and Kim (1999) de-
rived analytical relations between the lensing parameters with and without
the effect of blending and investigated the dependence of the derived lensing
parameters on the amount of blended light and the impact parameter. In Han
et al. (2000), it is shown that the difference image analysis method (Alard
and Lupton 1998) is a very efficient way for the astrometric deblending of
microlensing events, which was further developed by Gould and An (2002).

Parallax Effects

For microlensing events with a duration of many months or longer (i.e. compa-
rable to the orbital period of the Earth) and a relative velocity between source,
lens and observer comparable to (or smaller than) the orbital velocity of the
Earth, the relative motion cannot be treated as a straight line any more.
Rather, the changing observer’s position in the course of the microlensing
event influences the shape of the lightcurve: the PSPL-lightcurve is modified,
it is not symmetric any more. Such events were predicted by Refsdal (1966)
and Gould (1992), with the suggested applications to get more information
and constraints on mass and transverse velocities of the lenses.

The first such event observed was reported by Alcock et al. (1995). It is
the longest of their 45 microlensing events detected toward the Galactic bulge
in their first year of observation (Alcock et al.1997a, b). In Fig. 25, the B-band
and R-band lightcurves are shown, together with the best fit assuming only
linear motion (dashed line), and the best fit including the motion of the Earth
(solid line). Whereas the former clearly shows systematic deviations, the latter
provides a very good fit. Since the event is achromatic, there is little doubt
that this is a bona fide microlensing event, despite the deviation from the
symmetric PSPL-shape.

Alcock et al. (1995) discuss the nature of the deviation from linear motion
and emphasize that it is impossible to distinguish between the possibilities
that motions of lens, source or observer lead to this modification. However,
with the knowledge of the orbital parameters of the Earth, they tried to fit
the lightcurve and argued that their reasonable fit with these assumptions is a
strong argument in favor of Earth’s motion really causing the deviations. This
then allows them to compare the projected Einstein ring diameter crossing
time with the size of the Earth orbit and hence obtaining a second constraint
on the three unknown parameters of a typical microlens situation: lens mass
M , lens distance Dd and relative transverse velocity vt.
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Fig. 25. Lightcurve of the first detected parallax lightcurve in R band (top) and
B band (bottom); the (linear) magnification is shown as a function of time in days
from JD 2,449,000. The dashed curve shows the best linear velocity point-lens–point-
source fit, the solid line is the best fit allowing for the parallax effect, the motion of
the Earth around the Sun, from Alcock et al. (1995)

In order to include the orbital motion of the Earth, the expression of the
impact parameter as a function of time u(t) gets more complicated than the
standard form (Alcock et al. 1995):

u2(t) = u2
0 + ω2(t− t0)2 + α2 sin2[Ω(t− tc)]

+2α sin[Ω(t− tc)][ω(t− t0) sin θ + u0 cos θ]
+α2 sin2 β cos2[Ω(t− tc)]

+2α sinβ cos θ[Ω(t− tc)][ω(t− t0) cos θ − u0 sin θ], (15)

where θ is the angle between the velocity vector vt and the north ecliptic axis,
the angular frequency ω = 2/t̂, and tc is the time at which the Earth is closest
to the line connecting Sun and source. The parameters α and Ω are defined
as:

α =
ω(1AU)

ṽ
{1 − ε cos[Ω0(t− tp)]} (16)

and

Ω = Ω0 +
2ε sin[Ω0(t− tp)]

(t− tc)
. (17)

Here tp is the time of the perihelion, ṽ = vt/(1− x) is the transverse speed of
the lensing object projected to the solar position, Ω0 = 2π/yr and ε = 0.017
is the eccentricity of the Earth motion. This inclusion of the Earth’s motion
into their fitting procedure reduced the χ2 per degree of freedom from roughly
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10 to a value of order unity (for 206 degrees of freedom; more details see in
Alcock et al. 1995).

With the additional parameter vt = ṽ(1 − x) replaced in the equation
defining the Einstein crossing time, one obtains for the mass of the lens M(x)
as a function of the lens distance:

M(x) =
1 − x

x

ṽ2t̂2c2

16GL
, (18)

which is displayed in Fig. 26. This curve shows that the lens could, e.g., be a
low mass object (brown dwarf) in the Galactic bulge at large Dlens, or an M
dwarf in an intermediate distance range of 2 kpc to 6 kpc, or a solar type star
(or even higher mass) nearby. However, from the limits on the apparent bright-
ness of the lens (as a massive main sequence star only milli-arcseconds away
from the background lensed star, it should contribute a significant amount of
light within the seeing disk of the latter) one can constrain the mass at the
upper end.

Alcock et al. (1995) tried to use even more constraints, namely on the
velocities of lens and source and obtained two likelihood functions (dashed
lines in Fig. 26) for the distance of the lens, based on some reasonable velocity
limits. The most likely distance of the lens appears to be DL = 1.7+1.1

−0.7 kpc,
corresponding to a mass range of M = 1.3+1.3

−0.6M�. With the assumption
that the lens is a main sequence star, the constraints are slightly different:
DL,MS = 2.8+1.1

−0.6 kpc and M = 0.6+0.4
−0.2M�.

For another case, Mao (1999) reported about an ongoing microlensing
event toward the Carina spiral arm, discovered by the OGLE team (Udalski
et al. 1998): OGLE-1999-CAR-1 (see Fig. 27). He showed that this long

Fig. 26. Lens mass versus lens distance (solid line, left scale) and likelihood function
for lens distance, using projected velocity and Galactic model (long-dashed curve,
right scale) plus upper limit on brightness from a main-sequence lens (short-dashed
line, right scale), from Alcock et al. (1995)
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Fig. 27. Lightcurves of event OGLE-1999-CAR-1 in I band (left) and V-band
(right): dotted lines are best fit PSPL-fits (linear motion), whereas the solid lines
are best fits including both parallax and blending (from Mao (2001); more details
there)

duration event exhibits strong parallax signatures, and determines the lens
transverse velocity projected onto the Sun-source line to be about 145 km/s.

In a systematic search for parallax signatures among 512 OGLE-II mi-
crolensing from 1997-1999, Smith, Mao and Wozniak 2002a fitted both stan-
dard linear motion models and parallax models which included the motion of
the earth around the Sun. Using additionally information on the duration of
the events, they identified one convincing new candidate, sc33 4505, which is
caused by a slow-moving and likely low-mass object, similar to other known
parallax events (see Fig. 28). Smith et al. (2002a) emphasize that irregular
sampling and gaps between observing seasons hamper the recovery of paral-
lax events.

The first multi-peak parallax event (predicted by Gould 1994) was pub-
lished by Smith et al. (2002b): the highly unusual microlensing lightcurve of
OGLE-1999-BUL-19 (Fig. 29) exhibits multiple peaks which are not caustic
crossings. The Einstein radius crossing time for this event is approximately
1 yr, which is unusually long. Smith et al. (2002b) show that a simple explana-
tion for these additional peaks in the light curve is the parallax motion of the
Earth. The fact that this effective transverse velocity between lens and source
is significantly lower than the speed of the orbit of the Earth around the Sun
(vEarth ≈ 30 km/s) results in a periodic modulation of the impact parameter,
superimposed on the linear motion: the motion of the Earth induces these
multiple peaks. Smith et al. (2002b) also discuss binary-source signature but
conclude that this is a less likely explanation.

In Fig. 29, the lightcurve of the multi-peak event OGLE-1999-BUL-19 is
shown (bottom panel). The top panel shows the modulated apparent motion
of the lens, projected in the observer plane relative to the observer–source
line-of-sight, i.e. the location of the lens with respect to the Earth (denoted
by the small cross).
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Fig. 28. Lightcurve of event OGLE-II event sc33 4505 toward the Carina spiral
arm. The solid line is the best linear motion PSPL-fit, whereas the dotted line is
the best parallax fit (from Smith et al. (2002a))

Short-Period Binaries

In Sect. 2, lensing by binary stars is considered. There, only the static situ-
ation is discussed: the lens configuration is assumed constant during the mi-
crolensing event, i.e. the binary period is much larger than the crossing time.
However, this assumption will not always be true, there are small-separation
binaries with periods of order years, months, or days.

Dominik (1998) investigated this case and discussed three scenarios: the
rotating binary lens, rotating binary source, and observer on Earth orbiting
the Sun (parallax, see above discussion). The most dramatic effects are ex-
pected in the case of a rotating binary lens, because the caustic structure
changes with time. In the other two scenarios, the caustic configuration is sta-
tic, the effect is only a modulation of the straight relative motion (parallax)
and/or the superposition of two “static” lightcurves, which might cause some
color changes as well (cf. Griest and Hu 1992). In this sub-section, only the
rotating lens will be discussed further.

Dominik (1998) shows that the scenario of a rotating binary introduces
five additional parameters, compared to a static binary: two rotation angles,
the rotation period, the eccentricity and the phase. In Fig. 30, the effect of
binary motion is illustrated on a lightcurve comparable to that of the event
MACHO-LMC-1: the binary period varies between 365 days and 25 days. It is
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Fig. 29. Multi-peak lightcurve OGLE-1999-BUL-19: lens position relative to the
observer as a function of time (top panel) and lightcurve plus corresponding impact
parameter as a function of time (bottom panel) with best fit linear motion PSPL-
curve (dashed) and best fit parallax model (solid), from Smith et al. (2002b)

obvious that the effect of binary rotation is most pronounced for short binary
periods, compared to the event duration.

In 2000, the first detection of a rotating binary lens was published (Fig. 31):
the lightcurve of MACHO 97-BLG-41 was the first event with a source crossing
two physically distinct caustics (Albrow et al. 2000). Analyzing PLANET
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Fig. 30. Simulated lightcurves for a rotating binary lens, based on MACHO-LMC-
1: binary rotation periods decrease from 365 days (top left) to 100 days (top right),
50 days (bottom left) and 25 days (bottom right), from Dominik (1998)

data for MACHO 97-BLG-41 (46 V-band and 325 I-band observations from
five southern observatories), Albrow et al. (2000) showed that this data set
is incompatible with a static binary lens. They do find a good model with
a rotating binary lens of mass ratio q = 0.34 and angular separation d =
0.5RE . The binary separation changes significantly in size during the 35.17
days between the separate caustic transits. Albrow et al. (2000) use this event
to derive the first kinematic estimate of the mass, distance, and period of a
binary microlens. The relative probability distributions for these parameters
peak at a total lens mass of M ≈ 0.3M�, which would imply an M-dwarf
binary system. The most likely lens distance is DL ≈ 5.5 kpc, and the binary
period is P ≈ 1.5 yr.

What made this model particularly convincing is the following: MA-
CHO/GMAN data covering several sharp features in the light curve which
are not probed by the PLANET observations and which did not enter the
modeling, fall almost perfectly on the best fit lightcurve. This event MACHO
97-BLG-41 (see Fig. 31) had previously been modeled by a static binary lens
plus a planetary companion. This much simpler and more robust rotating
binary model makes a fit using a third lensing body less plausible.

Finite Source, Limb Darkening, Star Spots

When the source size is small compared to the Einstein radius of the lens and
to the impact parameter, then the point source approximation is justified in
a single lens scenario. However, if one of these conditions is violated, then the
microlensing lightcurve is affected by the finite source.

Nemiroff and Wickramasinghe (1994) were the first to investigate this.
They show that the central peak of the lightcurve is modified if the impact
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Fig. 31. Rotating binary event MACHO 97-BLG-41: (a) PLANET data (points)
and best-fit rotating binary model (solid line); inset enlarges the two caustic cross-
ing regions (top left); (b) same best-fit line as in (a), but here the data points of the
MACHO/GMAN collaboration are added which did not enter the modeling proce-
dure (top right); (c) caustic topology of best-fit rotating binary model, shown at
time close to first and second caustic crossing. Straight line shows source trajectory.
The positions of the two binary lens components are shown as large/small dots.
Insets show regions close to the caustics, with the two additional lines indicating the
finite source size (bottom) (from Albrow et al. 2000)

parameter u0 is smaller than the source radius: Figure 32 (top) shows a circular
source with uniform surface brightness crossing the point caustic behind a
point lens centrally (top arrow and top lightcurve) and just barely within the
source diameter (lower arrow and lightcurve).
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Fig. 32. Finite source effect: (a) central part for lightcurves with zero or very small
impact parameter (left, from Nemiroff and Wickramasinghe 1994); (b) lightcurves
for a limb darkened source with radius r = 0.055RE , corresponding to star with
R = 10R� at DS = 9kpc and a 0.1M� lens at DL = 8kpc; four different impact
parameters: u0 = 0.00, 0.055, 0.2 and 0.5 (right, from Peng 1997)

The central peak of the microlensing lightcurve is clearly lower and broader
than for a point source. Nemiroff and Wickramasinghe (1994) pointed out
that an exact determination of the deviation from the PSPL-lightcurve can
be used to determine the time it took the stellar disk to cross the central
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point caustic. With an independent determination of the source radius from
knowledge of the stellar type and use of stellar evolution theory, this could
be used to determine the transverse velocity. Witt (1995) estimated that at
least 3% of all microlensing events in the Galactic bulge will be affected by
finite source effects. He defined “being affected” by angular impact parameter
being smaller than the angular source radius.

Peng (1997) looked into this question in more detail and presented the
effects for a limb-darkened finite source with radius r = 0.055RE , correspond-
ing to a star with R = 10R� at DS = 9kpc and a 0.1M�-lens at DL = 8kpc.
Figure 32 (bottom) shows lightcurves for such a source with four different
impact parameters: u0 = 0.00, 0.055, 0.2 and 0.5. He finds that the source size
can be fitted with reasonable accuracy only if the impact parameter u0 of the
event is smaller than the stellar radius.

The first observed finite source effect was reported by Alcock et al.
(1997a,b) Their lightcurve of MACHO Alert 95-30 shows significant devi-
ations from the point source lightcurve near the peak (cf. Fig. 33). They
could determine the ratio between impact parameter and stellar radius to
u0/R∗ = 0.715 ± 0.003. With additional spectroscopic and photometric in-
formation they could identify the source as an M4 III star with a radius of
R = (61±12)R� located at the far side of the Galactic bulge at about DS ≈ 9
kpc. The lens angular velocity could be determined relative to the source, to
(21.5± 2.9) km/sec/kpc. With a likelihood analysis, the lens mass was deter-
mined to mL = 0.67+2.53

−0.46M�.
Yoo et al. (2004) analyzed the short-duration event OGLE-2003-BLG-262,

tE = (12.5±0.1) day. The lens is identified as a K giant in the Galactic bulge.
The finite-source effects are used to measure the angular Einstein radius to
be θE = (195 ± 17)μas. The lens mass could be constrained to the FWHM
interval 0.08 < M/M� < 0.54, and the lens-source relative proper motion to
vrel = (27 ± 2) km/s/kpc.

As described in the context of binary lenses, the lightcurve of a caustic
crossing event offers the opportunity to determine the size of the source star,
and even the surface brightness profile, i.e. to measure limb darkening of a star
that is many kpc away ! This was successfully applied for the first time by the
PLANET team on the event MACHO 97-BLG-28 (Albrow et al. 1999). The
source star could be spectroscopically identified as a K giant. The observed
lightcurve (Fig. 34) was modeled as being due to a cusp crossing of a binary
lens caustic (cf. Fig. 35).

Modeling of the lens system resulted in a binary with mass ratio q = 0.23,
and an instantaneous projected separation of d = 0.69 (for a lens in the Galac-
tic bulge this corresponds to roughly 1 to 2 AU). The very good coverage of
the lightcurve (696 data points in V and I from PLANET observatories in
Chile, South Africa and Australia) made it possible to determine the ra-
dial surface brightness profile of the source star in the Galactic bulge. In
particular the sharp central peak could be monitored with a time resolu-
tion of 3 to 30 minutes. The analysis resulted in a determination of the
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Fig. 33. Finite source effect: Full lightcurve of MACHO Alert 95-30 (top) and data
close to the central peak (bottom) with point source and extended source fit; the
arrow indicates when the alert was sent out (from Alcock et al. 1997a,b)
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Fig. 34. PLANET lightcurve of event MACHO 97-BLG-28, covering a 300 day
period (left) and a zoom of 30 days around the maximum (right). The V band
lightcurve (top) consists of 155 data points, the I band lightcurve (bottom) comprises
431 data points. (from Albrow et al. 1999)
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Fig. 35. Binary lens configuration (masses M1 and M2), caustic configuration and
source track (width corresponds to diameter) of event MACHO 97-BLG-28 (from
Albrow et al. 1999)

square-root limb darkening coefficient: for the assumed two parameter limb
darkening law

Iλ(θ) = Iλ(0) [1 − cλ(1 − cos θ) − dλ(1 −
√

cos θ)], (19)

where θ is the angle between the normal to the stellar surface and the line-
of-sight, and Iλ is the intensity for wavelength λ, the parameters were deter-
mined for the two filters to cI = 0.40, dI = 0.37, and cV = 0.55, dV = 0.44.
These values are in excellent agreement with the predictions for K giants from
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numerical modeling of stellar atmospheres. A source profile with a uniform
surface brightness could be strongly ruled out.

Another example is event OGLE-1999-BUL-23 (Albrow et al. 2001), a
binary lens system as well, for which modeling resulted in a mass ratio q =
0.39 and an instantaneous projected separation of d = 2.42. The source star
is assumed to be a G/K subgiant in the Galactic bulge with an effective
temperature of Teff ≈ 4800K. The resulting limb darkening coefficients (a
different limb darkening law was applied here) are consistent as well with
theoretical predictions.

The possibility to detect star spots with microlensing has been explored
by Hendry et al. (2002). It turns out that this will indeed be possible, though
not in the immediate future. With sufficiently well-sampled lightcurves and
high photometric accuracy, stellar microlensing will at least be able to put
interesting constraints on the presence or absence of photospheric star spots.

Direct Lens Detection

In December 2001, for the first time the direct image of a lensing object
in a microlensing event was published. Alcock et al. (2001a, b) reported the
photographic image of a second object very close to the source star of the
microlensing event LMC-5. The microlensing event had its maximum on
February 5, 1993. Due to the relative motion of lensing object and source star,
the angular separation was expected to increase with time. If the lens happens
to be an ordinary main sequence star (rather than a “dark object”), there is
a chance that after some time it will become visible next to the source star.
The exact time cannot be predicted, because neither the transverse velocity
nor the distance is known.

The MACHO team had successfully proposed for HST time to take very
high resolution images of their previous microlensing events in the direction
toward the LMC. On May 13, 1999 an image was taken of this particular
source star, and 6.3 years after the peak in the microlensing lightcurve, this
HST picture (see Fig. 36) revealed a “faint, red object displaced by 0.124
arcsec from the centre of an LMC main-sequence star that, on the basis of
previous analysis, is the source star of this event” (Alcock et al. 2001a, b)12.

The event LMC-5 had been a very high magnification and hence a very
small impact parameter event. So it is safe to assume that at the time of
the peak in the microlensing lightcurve, lens and source “coincided”. So the
relative proper motion of the lens can be easily determined to μrel = (0.0214±
0.0007) arcsec/yr.

12 The authors emphasize that one normal disk star among the lenses of the 13 to 18
microlensing events toward the LMC is consistent with the number of expected
“foreground” events (compared to the majority of the events which may be pro-
duced by MACHOs and which should correspond to no visible lens star in the
future).
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Fig. 36. Image of the region near the source star of microlensing event LMC-5
(peaked at February 5, 1993), taken with the HST WFPC2 camera on May 13,
1999. It reveals a faint red object (marked with an arrow) 0.124 arcsec to the top
right from the center of the blue source star. The two arrows at the top (ΘHST, ΘPAR)
indicate the direction of the lens motion determined by two methods (from Alcock
et al. 2001a, b)

Alcock et al. (2001a, b) show that the HST and a parallax fit to the
lightcurve data (which yields the transverse velocity projected on the ob-
server’s plane ṽ = −18.42+1.83

−1.91AU/yr) can be combined for a complete solution
for this lens system. The lens mass is expressed by the observed parameters:

mL =
c2

16G
ṽt̂2μrel. (20)

This yields a value of ML = 0.039M�, with a 3σ upper limit of ML ≤
0.097M�. This is at or below the low end of the stellar mass scale.

In addition, the relation between the relative proper motion (μrel in arc-
sec/yr) with the relative parallax (πrel, in arcsec) and the transverse velocity
(ṽ, in AU/yr) provides an estimate for the lens parallax:

ṽ/μrel = 1/πrel ≈ 1/πL. (21)

The last approximate relation is valid because the lens as a disk star is
much closer than the source star in the LMC. The lens parallax gives the
distance to the lens: dL = π−1

L ≈ 200+40
−30pc. This leads to an absolute

magnitude of MV = 16.2+0.6
−0.5. Finally a spectrum taken with the ESO

VLT telescope revealed the star to be an M4-5 dwarf in the mass range
MM4−5V ≈ (0.095–0.13)M�, inconsistent at the 3σ level with the parallax
determined lens mass ! A photometric distance based on an empirical relation
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between color and absolute magnitude for M dwarfs leads to a distance de-
termination of DM4−5V ≈ (650 ± 190)pc, inconsistent at the 2σ level with
the parallax distance. It was obvious immediately that this apparent conflict
should be resolvable with future HST ACS imaging.

The solution of this puzzle came about soon: Drake, Cook and Keller
(2004) had used the new HST’s Advanced Camera for Surveys (ACS) in
order to get very high resolution images of lens and source stars of the
MACHO-LMC-5 event. They measure the parallax and determine the dis-
tance of the lens star to DL = 578+65

−53pc, and the proper motion to μ =
(21.39 ± 0.04)mas/yr (Fig. 37). They conclude that the lens is an M dwarf
which is more likely to be part of the thick disk than the thin disk popu-
lation. In particular, they confirm Gould (2004) suggestion that the event
MACHO-LMC-5 is a “jerk-parallax” event. Gould had found a second solu-
tion to the microlens parallax which was different from the one presented in
Alcock et al. (2001a b).

Furthermore, Nguyen et al. (2004) obtained infrared images of the MACHO-
LMC-5 region with the newly launched Spitzer Telescope. Their photometry
established an infrared excess, hence confirming that the lens is a M5 dwarf
star with a mass of about 0.2 M�.

Fig. 37. Motion of the lensing star relative to the lensed star at the time of closest
approach of event LMC-5. The inset is a zoom and shows the three measurements
of the HST HRC camera in 2002. The source star is at location (0.00,0.00) (from
Drake et al. 2004)
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6 Astrometric Microlensing

In the point-lens–point-source scenario, there are always two images of a back-
ground star. Only when the impact parameter is of order a few Einstein radii,
the secondary image very close to the point lens is magnified enough to be-
come important (cf. (3)). Usually, only the combined magnification of the two
images is measured, because the separation of the images is of order milli-
arcseconds, unresolvable in most circumstances. Looking into the exact geo-
metrical arrangement of image positions relative to the lens, one sees that the
two images, the lens and the source always form a straight line in a point-lens–
point-source scenario, as is illustrated in Fig. 38 (top panel). The line rotates
by almost 180 degrees in the course of the lensing event. The corresponding
center-of-light lies on this straight line as well (Fig. 38, bottom panel).

Paczyński (1998) has shown that the light centroid is displaced relative to
the source position by a maximum of

δφmax = 8−0.5φE ≈ 0.354φE for umin =
√

2. (22)

Fig. 38. Top: Alignment of the two images with the lens in a point-lens–point-source
scenario: the source moves in a straight line in the background from left to right
(open circles), the corresponding images (one inside, one outside the dashed Einstein
circle), the source position and the lens lie on a straight line which apparently rotates
around the lens position, here anticlockwise because the source position is above the
lens (image courtesy Penny Sackett). Bottom: Similar situation, here the center-of-
light is indicated (filled circle) for one particular arrangement (image courtesy Scott
Gaudi)
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Fig. 39. Astrometric displacement (in ecliptic coordinates) caused by three mi-
crolensing events described in the text: The source is assumed to be a star in the
LMC at a distance of 50 kpc, the lens has a mass of M = 0.3M�, and the three solid
lines correspond to three lens distances of DL = 10, 30 and 45 kpc (the largest lens
distance produces the innermost curve). The impact parameter is umin = 0.2, cor-
responding to a maximum magnification of μmax = 5.07. The largest displacement
of the curves is 81/2 times smaller than the corresponding Einstein radius. The mi-
crolensing time scale is t0 = 50 days in all three cases. The dashed curve corresponds
to the DL = 10 kpc case, with the effect of Earth’s orbital motion suppressed (from
Paczyński 1998)

In Fig. 39, three tracks are shown for umin = 0.2, μmax = 5.07, DS = 50 kpc,
DL = 10, 30 and 45 kpc, and m = 0.3M�.

The fascinating aspect of this center-of-light variation is: if it is measured,
the mass of the lens can be determined, the degeneracies can be broken.
Combining the definition of the angular Einstein radius

φE ≈ 0.902mas
(

M

M�

)1/2 [
10kpc

(
1
Dd

− 1
Ds

)]1/2

(23)

with the relative parallactic motion with the angular amplitude (in radians)

πds = 1AU
(

1
Dd

− 1
Ds

)
, (24)

(assuming linear relative motion between source and lens), one obtains

M = 0.123M�
φ2

E

πds
, (25)

where πds, is the measurable parallax of the lens-source !
Currently, the astrometric resolution of the best telescopes is of order 0.1

arcsec. Considering that light centroids can be determined to an accuracy of
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about 10% of that value, this still leaves us with a 10 milli-arcsec positional
accuracy, at least two orders of magnitudes larger than the expected tens or
hundreds of micro-arcsec from the astrometric microlensing.

However, this is not a lost case: there are instruments at the horizon which
will make such a measurement possible: VLTI (Very Large Telescope Interfer-
ometry) and SIM (Space Interferometry Mission). The VLTI uses the combi-
nation of the four 8.2m-ESO telescopes in their interferometric mode, making
use of the maximum 200m baseline between the unit telescopes. SIM, on the
other hand, is a satellite project which will do astrometry with unprecedented
accuracy: the specifications state that SIM will be able to do wide-angle as-
trometry with a nominal accuracy of 4 micro-arcsec, in the narrow-angle mode
the accuracy should be as high as 1 micro-arcsec for a 20 mag star ! In addi-
tion, parallaxes will be measured with an accuracy of about 5 micro-arcsec,
and proper motions down to 2 micro-arcsec/yr. Launch is planned for 2010,
according to the web site http://sim.jpl.nasa.gov, where also much more
information can be found.

Paczyński (1998) had derived the above relations and values for the SIM
mission: SIM can measure the astrometric displacements of the light centroid
of microlensing events which are discovered/detected photometrically from
the ground. The amplitude of the center-of-light variation can reach a few
tenths of the Einstein radius. Such a measurement will make it possible to
determine the mass, the distance and the proper motion of almost any star or
MACHO, capable of inducing a microlensing event toward the Galactic bulge
or the LMC/SMC.

In addition, Paczyński (1998) pointed out another mode of operation: he
suggested to select lenses rather than sources, in order to get interesting re-
sults, namely very high proper-motion stars. These stars are relatively nearby,
therefore their angular Einstein radii are relatively large, which means they
have a (very) large cross section for astrometric microlensing. As an exam-
ple, Barnard’s star with a parallax of πBarnard = 0.522”, a proper motion of
10.31”/yr, and an assumed mass of 0.2 M� has an angular Einstein radius of

φE,Barnard = 30mas
MBarnard

0.2M�
.

Since the astrometric lensing effect only falls off with 1/r, a background star at
an angular distance as large as 9 arcsec would still be displaced by 100 micro-
arcseconds, a huge value for SIM. Another nice aspect of this suggestion by
Paczyński: these events can be predicted ! There are more than 10,000 stars in
the Hipparcos catalog with distances under 100pc and proper motion higher
than 100 mas/yr !

Mao and Witt (1998a, b) treat finite source effects with respect to astro-
metric microlensing. They obtain analytically the centroid motion of a source
with uniform surface brightness. They conclude that the finite source does
affect the centroid shift significantly only when the angular impact parameter
is comparable to the angular source size. In that case, the trajectories of the
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Fig. 40. Left panel : Four examples of astrometric trajectories showing finite source
size effects: The source size is assumed to be θs = 0.5 θE . In each example, the black
dot marks the source position and the lens is moving from −∞ to +∞, parallel to
the x-axis. The centroid motion starts at the origin and moves counter-clockwise.
The impact parameter (here labeled p) of each trajectory is shown at the top left
corner in each panel p = 3.0, 0.8, 0.5, 0.1. For each example, the solid line shows the
trajectory that takes into account the finite source size effect while the dashed lines
shows that for a point-source approximation. Right panel : Simulated astrometric
trajectories for the first microlensing event (95-BLG-30) that shows photometric
extended source effects (parameters taken from Alcock et al. (1997a,b)). The dashed
ellipse is the centroid motion for a point source. The solid line shows the trajectory
for a source with constant surface brightness, whereas the dotted and long-dashed
lines show the predictions for the MACHO R and V bands, respectively. The two
insets show magnified views of two regions to indicate the differences between various
curves more clearly (both panels from from Mao and Witt 1998a,b)

light centroid become clover-leaf like. This offers the exciting possibility to
detect stellar radii to very good accuracy. In Fig. 40, four examples of astro-
metric trajectories with a finite source size of θs = 0.5θE are shown, with
impact parameters u0 = 3.0, 0.8, 0.5, 0.1. For comparison, the corresponding
point source effect is shown as a dashed line as well. The second panel in this
figure is a simulation of how the first microlensing event that showed extended
source effects photometrically (MACHO 95-BLG-30) would have looked like
astrometrically.

Han and Kim (1999) looked into another degeneracy: can astrometric mi-
crolensing help in uncovering blended microlensing events. They found that
indeed, due to the high resolution of SIM, many blends will be directly identi-
fied: the imaging resolution of SIM is supposed to be 10 milli-arcseconds. But
even for very close blends with a separation smaller than that (e.g. physical
binary lenses), the blend signature can be identified in the blend contribution
to the astrometric signature. In Fig. 41, the effect of the blended astrometric
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Fig. 41. Distortion of the astrometric trajectory of a binary companion: the dotted
line is the astrometric shift without blending; with a binary companion a location
(θB,x, θB,y), the light centroid will shift toward the companion. The solid line is the
resulting trajectory. Parameters used here are time scale tE = 15d, angular Einstein
radius θE = 0.5mas, contributing light fraction of the blending star is f = 0.3 (from
Han and Kim 1999)

microlensing is illustrated qualitatively, in Fig. 42, various simulations are
shown for increasing blend contribution (left hand column) and increasing
binary separation (right hand column).

7 Quasar Microlensing

Quasars are affected by gravitational lensing in two ways: the “macrolensing”
describes multiply imaged quasars, with angular separations of roughly one
arcsecond. These cases are produced by typical galaxy lenses with masses of
order 1012 M�. About one out of 500 quasars is multiply imaged. Some 80
such cases are known to date (cf. http://cfa-www.harvard.edu/glensdata,
the CASTLES web page), most of them consist of double or quadruple images.
Once time delays between the images are determined and the mass distribu-
tions of the lenses are modeled properly, these quasar lenses can be used to
measure the Hubble constant. Or one can turn this line of reasoning around:
assuming one knows the Hubble constant, one can infer the mass profiles of
the lensing galaxies (cf. Kochanek et al. 2003).

The second interesting regime is “microlensing”: stellar mass lenses affect
the apparent brightness of the quasar images. Microlens-induced variability
can be used to study two cosmological issues of great interest, the size and
brightness profile of quasars on the one hand, and the distribution of compact
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Fig. 42. Various forms of centroid shifts by binary-star blending: top panel : no
blend contribution; left column: increasing blend contribution from top to bottom;
right column: increasing binary separation from top to bottom (from Han and Kim
1999)

(dark) matter along the line-of-sight on the other hand. Here a summary of
recent observational evidence for quasar microlensing is given, as well as a
review of theoretical progress in the field. Particular emphasis is given to
the questions which microlensing can address regarding the search for dark
matter, both in the halos of lensing galaxies and in a cosmologically distributed
form. A discussion of desired observations and required theoretical studies is
presented at the end.

7.1 Microlensing Mass, Length and Time Scales

The lensing effects on quasars by compact objects in the mass range 10−6 ≤
m/M� ≤ 103 are usually called “quasar microlensing”. The microlenses can be
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ordinary stars, brown dwarfs, planets, black holes, molecular clouds, globular
clusters or other compact mass concentrations (as long as their physical size is
smaller than the Einstein radius). In most practical cases, the microlenses are
part of a galaxy which acts as the main (macro-)lens. However, microlenses
could also be located in, say, clusters of galaxies or they could even be imagined
“free floating” and filling intergalactic space.

The relevant length scale for microlensing is the Einstein radius of the lens
in the quasar plane:

rE ≈ 4 × 1016
√
M/M� cm,

where “typical” lens and source redshifts of zL ≈ 0.5 and zS ≈ 2.0 are assumed
for the numerical value on the right hand side. Quasar microlensing turns out
to be an interesting phenomenon, because (at least) the size of the continuum
emitting region of quasars is comparable to or smaller than the Einstein radius
of stellar mass objects.

The length scale translates into an angular Einstein scale of

θE ≈ 10−6
√
M/M� arcsec.

It is obvious that image splittings on such angular scales cannot be observed
directly. What makes microlensing observable anyway is the fact that ob-
server, lens(es) and source move relative to each other. Due to this relative
motion, the micro-image configuration changes with time, and so does the
total magnification, i.e. the sum of the magnifications of all the micro-images.
This change in magnification can be measured over time: microlensing is a
“dynamical” phenomenon.

There are two time scales involved: the standard lensing time scale tE
is the time it takes the source to cross the Einstein radius of the lens, i.e.

tE = rE/v⊥,eff ≈ 15
√

M/M� v−1
600 years,

where the same assumptions are made as above, and the effective relative
transverse velocity v⊥,eff is parametrized in units of 600 km/sec: v600. This
time scale tE results in discouragingly large values. However, in practice we can
expect fluctations on much shorter time intervals. The reason is that the sharp
caustic lines separate regions of low and high magnification. Hence, if a source
crosses such a caustic line, we can observe a large change in magnification
during the crossing time tcross it takes the source to cross its own diameter
Rsource:

tcross = Rsource/v⊥,eff ≈ 4R15 v−1
600 months.

Here the quasar size R15 is parametrized in units of 1015 cm.
In microlensing of multiple quasars, the normalized surface mass density

is of order unity: κ ≈ 1. This means that at any given time, a whole ensemble
of microlenses is affecting the quasar. An illustration is shown in Fig. 43: in
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Fig. 43. Microlensing effect on an extended source: top: superposition of example
source profile and microlensing magnication pattern produced by an ensemble of
stellar lenses; bottom: corresponding image configuration

the top panel, an example source profile is superimposed on the magnifica-
tion pattern of a randomly placed ensemble of microlenses for a surface mass
density κ = 0.5. The bottom panel shows the corresponding micro-image con-
figuration, which displays all effects that gravitational lensing can produce:
offset of position, distortion, magnification and multiple images !
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7.2 Early and Recent Theoretical Work on Quasar Microlensing

Right after the discovery of the first multiply imaged quasar, Chang and
Refsdal (1979) suggested that the flux of the two quasar images can be affected
by stars close to the line-of-sight. Gott (1981) proposed that a massive galaxy
halo could be made of low mass stars and “should produce fluctuations of
order unity in the intensities of the QSO images on time scales of 1–14 years.”
Young (1981) was the first to use numerical simulations in order to explore
the effect of quasar microlensing.

Because the optical depth (or surface mass density) at the position of
an image is of order unity, microlensing is expected to be going on basically
“all the time”, due to the relative motion of source, lens(es) and observer. In
addition, this means that the lens action is due to a coherent effect of many
microlenses, because the action of two or more point lenses whose projected
positions is of order of their Einstein radii combines in a very non-linear way
(cf. Wambsganss 1998). An illustration of this coherent action can be found
in Figs. 44 and 45:

The magnification distribution produced by an ensemble of lenses is in-
dicated in the quasar plane by different colors. The three dashed lines show
the tracks of a quasar. In Fig. 45 the corresponding lightcurves are displayed,
for two different source sizes. If the size of the quasar is small compared to
the inter-caustic spacing, each caustic crossing is resolved individually, which
results in relatively high maxima in the lightcurves (solid line). For a larger
source (dashed line, factor 10 larger than solid line), the peaks are smoothed
out, the character of the lightcurve is different.

The lens action of more than two point lenses cannot be easily treated ana-
lytically any more. Hence numerical techniques were developed in order to sim-
ulate the gravitational lens effect of many compact objects. Paczyński (1986a)
had used a method to look for the extrema in the time delay surface. Kayser,
Refsdal and Stabell 1986, Schneider and Weiss (1987) and Wambsganss (1990)
had developed and applied an inverse ray-shooting technique that produced a
two-dimensional magnification distribution in the source plane. An alternative
technique was developed by Witt (1993) and Lewis et al. (1993); they solved
the lens equation along a linear source track. All the recent theoretical work
on microlensing is based on either of these techniques.

More recently, Fluke and Webster (1999) explored analytically caustic
crossing events for a quasar. Lewis et al. (1998) showed that spectroscopic
monitoring of multiple quasars can be used to probe the broad line regions
(cf. also Lewis and Belle 1998). Wyithe et al. (2000a, b) investigated and found
limits on the quasar size and on the mass function in Q2237+0305.

Agol and Krolik (1999) and Mineshige and Yonehara (1999) developed
techniques to recover the one-dimensional brightness profile of a quasar, based
on the earlier work by Grieger and Kayser (1988) and Grieger et al. (1991):
Agol and Krolik showed that frequent monitoring of a caustic crossing event in
many wave bands (they used of order 40 simulated data points in eleven filters
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Fig. 44. Microlensing magnification pattern produced by stars in a lensing galaxy.
The color steps represent different magnifications, with the sharp caustic lines corre-
sponding to the highest magnification. The dashed lines indicates three tracks along
which a background quasar moves. The corresponding lightcurves are displayed in
Fig. 45

over the whole electromagnetic range), one can recover a map of the frequency-
dependent brightness distribution of a quasar. Mineshige and Yonehara (1999)
in a similar approach explored the effect of microlensing on two different
accretion disk models. In another paper, Yonehara et al. (1998) showed that
monitoring a microlensing event in the X-ray regime can reveal structure of
the quasar accretion disk as small as AU-size.

Summarized, the theoretical papers exploring microlensing made basically
four predictions concerning the potential scientific results. Microlensing should
help us to determine:

1. the existence and effects of compact objects between the observer and the
source,

2. the size of quasars,
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Fig. 45. Microlensing lightcurves for the three tracks shown in Fig. 44. The solid
line correspond to a small source (Gaussian shape with width of about 3% of the
Einstein radius), the dashed line represents a source that is a factor of 10 larger

3. the two-dimensional brightness profile of quasars,
4. the mass (and mass distribution) of lensing objects.

In the following sub-section the observational results to date will be discussed
in some detail.

7.3 Observational Evidence for Quasar Microlensing

Fluctuations in the brightness of a quasar can have two causes: they can be
intrinsic to the quasar, or they can be microlens-induced. For a single quasar
(i.e., one that is not multiply imaged), the difference is hard to tell. However,
once there are two or more gravitationally lensed (macro-)images of a quasar,
we have a relatively good handle to distinguish the two possible causes of
variability: any fluctuations caused by intrinsic variability of the quasar show
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up in all the quasar images, after a certain time delay13. So once a time delay
is measured in a multiply-imaged quasar system, one can shift the lightcurves
of the different quasar images relative to each other by the time delay, correct
for the different (macro-)magnification, and subtract them from each other.
All remaining incoherent fluctuations in the “difference lightcurve” can be
attributed to microlensing. In a few quadruple lens systems we can detect
microlensing even without measuring the time delay: in some cases the image
arrangement is so symmetrical around the lens that any possible lens model
predicts very short time delays (of order days or shorter), so that fluctuations
in individual images that last longer than a day or so and are not followed
by corresponding fluctuations in the other images, can be safely attributed to
microlensing. This is in fact the case in the quadruple system Q2237 + 0305.

The Einstein Cross: Quadruple Quasar Q2237+0305

In 1989, evidence for cosmological microlensing was found by Irwin et al.
(1989) in the quadruple quasar Q2237+0305: one of the components showed
fluctuations, whereas the others stayed constant. In the mean time, Q2237 +
0305 has been monitored by many groups (Corrigan et al. 1991; Ostensen et al.
1996; Lewis et al. 1998). The most recent (and most exciting) results (Fig. 46,
and Woźniak et al. 2000a, b) show that all four images vary dramatically,
going up and down like a rollercoaster in the last three years: ΔmA ≈ 0.6 mag,
ΔmB ≈ 0.4 mag, ΔmC ≈ 1.3 mag, ΔmD ≈ 0.6 mag. Comparison of these
lightcurves with simulations (cf. Figs. 44 and 45) show that the continuum
emitting region of the quasar is relatively small, of order 1014 cm (see, e.g.,
Wambsganss, Paczyński and Schneider 1990; Wyithe 2000b, Yonehara 2001).

The Double Quasar Q0957 + 561

The microlensing results for the double quasar Q0957 + 561 are not quite
as exciting. Vanderriest et al. (1989) were the first to put attention on the
observational evidence for potential microlensing in early lightcurve of the
double quasar. In the first few years after its discovery, there is an almost
linear change in the (time-shifted) brightness ratio between the two images
(Schild 1996): ΔmAB ≈ 0.25 mag over 5 years. But since about 1991, this
ratio stayed more or less “constant” within about 0.05 mag, so not much
microlensing has been going on in this system recently (Schild 1996; Pelt et
al. 1998; Schmidt and Wambsganss 1998).

With numerical simulations and limits obtained from three years of Apache
Point monitoring data of Q0957+561 (see Fig. 47), Wambsganss et al. (2000)

13 This argument can even be turned around: the measured time delays in multiple
quasars are the ultimate proof of the intrinsic variability of quasars.
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Fig. 46. Microlensing lightcurve of the quadruple quasar Q2237+0305, as measured
by the OGLE team (Woźniak et al. 2000a, b; see also http://bulge.princeton.edu/
∼ogle/ogle2/huchra.html)

exclude a whole range of “MACHO” masses as possible dark matter candi-
dates in the halo of the lensing galaxy in 0957+561. They extracted simulated
lightcurves according to the timing of the observed ones and evaluated 100000
cases for seven different values for the lens mass (from m/M� = 10−7 to 100)
and four different quasar sizes (1014 cm to 3×1015 cm): The small “difference”
between the time-shifted and magnitude-corrected lightcurves of images A and
B (|ΔmA−B,Q0957| ≤ 0.05 mag) excludes a halo of the lensing galaxy made of
compact objects with masses of 10−7M� − 10−2M� (cf. Figs. 48 and 49).

Refsdal et al. (2000) investigated the microlensing properties of the double
quasar as well, using both the original linear change of 0.25 mag over a five
year period and the subsequent 8 years of no or very little microlensing. They
found constraints on the source size of R ≤ 6 × 1015 cm, and the mass of the
microlensing objects most likely to be in the range 10−6 ≤ M/M� ≤ 5.

Recently, the double quasar Q0957 + 561 was the target of a monitoring
campaign particularly searching for short time scale variations. Colley et al.
(2003a, b) report the observations and the result: making use of their very
precise determination of the time delay in this system: Δt = (417.09 ± 0.07)
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Fig. 47. Observed lightcurves of the double quasar Q0957+561; top: superposition
of lightcurves of image A and (time shifted and magnitude shifted) image B; bottom:
difference lightcurves (Wambsganss et al. 2000)

days, they found no microlensing fluctuations with amplitudes higher than
0.1 mag, and nearly rule out that objects in the mass range about 10−5M�
make up a large fraction of the dark matter in the lens galaxy. In a further
analysis of this data set, Colley and Schild (2003) report a microlensing signal
at the 1% level with a time scale of 12 hours. If this result can be confirmed,
it does provide a very interesting new window of exploration (and a challenge
for theory).

Other Multiple Quasars/Radio Microlensing?

A number of other multiple quasar systems are being monitored more or less
regularly. For some of them microlensing has been suggested (e.g. H1413+117,
Ostensen et al. 1997; or B0218 + 357, Jackson et al. 2000). In particular the
possiblity for “radio”-microlensing appears very interesting (B1600 + 434,
Koopmans and de Bruyn 2000), because this is unexpected, due to the
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Fig. 48. Simulated microlensing lightcurves for the double quasar Q0957+561; Left :
Magnification patterns for compact objects in three different mass ranges; the three-
part straight line indicates the track of the background quasar. Right : corresponding
three-part microlensing lightcurves (Wambsganss et al. 2000)

Fig. 49. Exclusion diagram: the highest (white) columns indicate values of quasar
source size and “macho” mass which are excluded by more than 99.9% probability;
the other columns show exlusion probabilities of between 40% and 85% (Wambsganss
et al. 2000)



Part 4: Gravitational Microlensing 531

presumably larger source size of the radio emission region. The possibility
of relativistic motion of radio jets may make up for this “disadvantage”.

Unconventional Microlensing I: In Individual Quasars?

There were a number of papers interpreting the variability of individual
quasars as microlensing (e.g., Hawkins and Taylor 1997, Hawkins 1998).
Although this is an exciting possibility and it could help us detect a popula-
tion of cosmologically distributed lenses, it is not entirely clear at this point
whether the observed fluctuations can be really attributed to microlensing.
After all, quasars are intrinsically variable, and the expected microlensing in
single quasars must be smaller than in multiply imaged ones, due to the lower
surface mass density. More studies are necessary to clarify this issue.

Unconventional Microlensing II: Centroid Shifts/Astrometric
Microlensing

As in stellar microlensing (cf. Sect. 6), in quasar microlensing the astrometric
signal of the lenses can be used and investigated as well. This was first put
forward by Lewis and Ibata (1998), then further investigated by Treyer and
Wambsganss (2004). At each caustic crossing, a new very bright image pair
emerges or disappears, giving rise to sudden changes in the “center of light”
positions (cf. Fig. 50).

The amplitude could be of order 100 micro-arcseconds or larger, which
should be observable with the SIM satellite (Space Interferometry Mission),
to be launched in 2010. This astrometric microlensing offers the exciting pos-
sibility to measure the mass of the lenses (in a statistical way) !

Unconventional Microlensing III: Million Solar Mass Objects
or Sub-Structure: Milli-Lensing

A decade ago, the idea was popular that dark halos of galaxies could be made
of black holes in the mass range of about a million solar masses. Wambsganss
and Paczyński (1992) explored this effect on VLBI jets of multiply imaged
quasars and suggested that this hypothesis could be tested: High signal-to-
noise imaging of the two jet images of Q0957 + 561 should indicated clear
lensing signatures, like kinks, holes, additional milli-images, if a significant
fraction of the dark matter in the halo is made of such million solar mass
objects (see Fig. 51). Garrett et al. (1994) presented such results and ruled
out that the halo of the lensing galaxy in this double quasar consist of such
objects.

Flux Ratio Anomaly: Microlensing or Substructure?

Microlensing may help solve another interesting issue: In a macrolensing sce-
nario producing a quadruple quasar configuration with one close pair – cor-
responding to the source sitting inside but close to the (macro-)caustic – this
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Fig. 50. Astrometric microlensing of quasars: due to the relative motion of quasar
and foreground stellar lenses, the microimage configuration changes with time. This
leads to a change of the light centroid which may be observable. The three panels
show three epochs. On the left hand side, the caustics are shown superimposed with
the quasar profile. On the right hand side, the micro-image configuration is shown.
The plus sign indicates the “center-of-light”; the points next to the plus sign mark
the light-centroid of previous epochs, i.e. the motion of the center-of-light for fixed
quasar and moving microlenses (after Treyer and Wambsganss 2004)
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Fig. 51. Millilensing by million solar mass black holes affects the VLBI jets of
multiply imaged quasars: the top row shows model VLBI jets for images A and B
of the double quasar Q0957 + 561, as produced by the smooth lensing potential.
If the halo of the lensing galaxy is made of million solar mass black holes (here:
m/M� = 3×105), then the two jets should be affected by them differently, as shown
in the four examples below: kinks, holes, additional milli-images should appear in
both images uncoherently (Wambsganss and Paczyński 1991)

image pair should be highly magnified with very similar magnification of the
two components. In most of the observed cases, however, this is not the case:
close image pairs tend to have quite different magnifications. In almost all
cases, the fainter (or demagnified) image seems to be the saddle point im-
age. There are two competing explanations: Substructure in the macro-lens
(galaxy) could introduce this flux ratio anomaly (Dalal and Kochanek 2002;
Metcalf and Madau 2001; Metcalf and Zhao 2002). However, another possibil-
ity is microlensing by compact stellar mass objects plus smoothly distributed
(dark) matter (Schechter and Wambsganss 2002). A nice thing about the two
proposed mechanisms is that they make different predictions: If substructure
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is the cause for the flux ratio anomaly, then it should act the same way in
basically all wave bands, and the flux ratio should be constant in time. If
microlensing plus smooth matter is the origin of the discrepancy, then we
expect different behavior in different wavebands, due to the fact, that source
size changes as seen in different energy bands. In general, small source sizes
(shorter wavelengths) should be affected more drastically then larger sources
(which smooth out the microlensing caustics). A second consequence of this
microlensing explanation is that the flux ratio should change with time, be-
cause the relative positions of the microlenses change over the course of a
few years and hence produce fluctuations in the magnification. This issue of
microlensing and flux ratio anomalies is discussed in detail in Schechter and
Wambsganss (2002).

7.4 Quasar Microlensing: Now and Forever?

Monitoring observations of various multiple quasar systems in the last decade
have clearly established that the phenomenon of quasar microlensing exists.
There are uncorrelated variations in multiple quasar systems with amplitudes
of more than a magnitude and time scales of weeks to months to years. How-
ever, in order to get close to a quantitative understanding, much better mon-
itoring programs need to be performed. Summarized, and considering the
“early promises” of quasar microlensing, the following can be stated:

1. the existence and effects of compact objects between the observer and the
source: has been achieved;

2. the size of quasars: partly fulfilled, some limits on the size of quasars have
been obtained;

3. the two-dimensional brightness profile of quasars: we are still (far) away
from solving this promise;

4. the mass (and mass distribution) of lensing objects: it is fair to say that
the observational results are consistent with certain (conservative) mass
ranges.

Looking at the issue today, there are two important questions on the the-
oretical side: what do the lightcurves tell us about the lensing objects, and
what can we learn about the size and structure of the quasar. As a response
to the first question, the numerical simulations are able to give a qualita-
tive understanding of the measured lightcurves (detections of microlensing in
lightcurves of some multiply imaged quasars, and non-detections in others).
The amplitudes and times scales of the events are in general consistent with
“conservative” assumptions about the object masses and velocities. But due to
the large number of parameters/unknowns (quasar size, masses of lensing ob-
jects, transverse velocity) and due to the large variety of lightcurve shapes, no
satisfactory quantitative explanation or even prediction could be achieved. So
far mostly “limits” on certain parameters have been obtained. The prospects
of getting much better lightcurves of multiple quasars, as shown by the OGLE
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collaboration, should be motivating enough to explore this direction in much
more quantitative detail.

The question of the structure of quasars deserves more attention. Here
gravitational lensing is in the unique situation to be able to explore an as-
trophysical field that is unattainable by any other means. Hence more effort
should be put into attacking this problem. This involves much more ambi-
tious observing programs, with the goal to monitor caustic crossing events
in many filters over the whole electromagnetic spectrum, and to further de-
velop numerical techniques to obtain useful values for the quasar size and
profile from unevenly sampled data in (not enough) different filters. Theoret-
ically, Kochanek (2004) attacked this question in a brute force way: simulat-
ing microlensing for a large set of parameters and comparing with observed
lightcurves for constraints on the input values. So far only a restricted data
set of Q2237+0305 was used. This method should clearly be applied to more
microlensing lightcurves. On the observational side, the way to go is building
one (or more) dedicated telescope(s) for quasar monitoring. Moderate size is
sufficient: 1 m to 2 m class. Excellent site is essential: median seeing better
than one arcsecond. The use of robotic telescopes in a time-sharing mode is
a much desired first step in this direction.
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Paczyński, B. 1998, ApJ 494, L23
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Wambsganss, J., Paczyński, B. 1992, ApJ 397, 1
Wambsganss, J. 1997, MNRAS 284, 172
Wambsganss, J. 1998, Living Reviews in Relativity 1, No. 12,
http://relativity.livingreviews.org/Articles/lrr-1998-12

Wambsganss, J., Schmidt, R.W., Colley, W.N., Kundić, T., Turner, E.L. 2000,
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