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Grasping28. Grasping

Domenico Prattichizzo, Jeffrey C. Trinkle

This chapter introduces fundamental models of
grasp analysis. The overall model is a coupling
of models that define contact behavior with
widely used models of rigid-body kinematics
and dynamics. The contact model essentially
boils down to the selection of components of
contact force and moment that are transmitted
through each contact. Mathematical properties
of the complete model naturally give rise to five
primary grasp types whose physical interpreta-
tions provide insight for grasp and manipulation
planning.

After introducing the basic model and types of
grasps, this chapter focuses on the most important
grasp characteristic: complete restraint. A grasp
with complete restraint prevents loss of contact
and thus is very secure. Two primary restraint
properties are form closure and force closure.
A form closure grasp guarantees maintenance of
contact as long as the links of the hand and the
object are well approximated as rigid and as long
as the joint actuators are sufficiently strong. As
will be seen, the primary difference between form
closure and force closure grasps is the latter’s
reliance on contact friction. This translates into
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requiring fewer contacts to achieve force closure
than form closure.

28.1 Background

Mechanical hands were developed to give robots the
ability to grasp objects of varying geometric and phys-
ical properties. The first robotic hand designed for
dexterous manipulation was the Salisbury hand [28.1].
It has three three-jointed fingers; enough to control
all six degrees of freedom of an object and the grip
pressure. The fundamental grasp modeling and analysis
done by Salisbury provides a basis for grasp synthesis
and dexterous manipulation research which continues
today. Some of the most mature analysis techniques
are embedded in the software GraspIt! [28.2]. GraspIt!

contains models for several robot hands and provides
tools for grasp selection, dynamic grasp simulation, and
visualization.

The goal of this chapter is to give a thorough under-
standing of the all-important grasp properties of form
and force closure. This will be done through detailed
derivations of grasp models and discussions of illus-
trative examples. For an in-depth historical perspective
and a treasure-trove bibliography of papers addressing
a wide range of topics in grasping, the reader is referred
to [28.3].
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672 Part D Manipulation and Interfaces

28.2 Models and Definitions

A mathematical model of grasping must be capable of
predicting the behavior of the hand and object under
the various loading conditions that may arise during
grasping. Generally, the most desirable behavior is grasp
maintenance in the face of unknown disturbing forces
and moments applied to the object. Typically these dis-
turbances arise from inertia forces which become appre-
ciable during high-speed manipulation or applied forces
such as those due to gravity. Grasp maintenance means
that the contact forces applied by the hand are such that
they prevent contact separation and unwanted contact
sliding. The special class of grasps that can be main-
tained for every possible disturbing load is known as clo-
sure grasps. Figure 28.1 shows the Salisbury hand [28.1,
4] executing a closure grasp of an object by wrapping
its fingers around it and pressing the object against its
palm. Formal definitions, analysis, and computational
tests for closure will be presented in Sect. 28.5.

Figure 28.2 illustrates some of the main quantities
that will be used to model grasping systems. Assume
that the links of the hand and the object are rigid and
that there is a unique, well-defined tangent plane at each
contact point. Let {N} represent a conveniently chosen
inertial frame fixed in the workspace. The frame {B}
is fixed to the object with its origin defined relative
to {N} by the vector p ∈ R

3, where R
3 denotes three-

dimensional Euclidean space. A convenient choice for
p is the center of mass of the object. The position of
contact point i in {N} is defined by the vector ci ∈ R

3.
At contact point i, we define a frame {C}i , with axes
{n̂i , t̂i , ôi} ({C}i is shown in exploded view). The unit
vector n̂i contains ci is normal to the contact tangent

Fig. 28.1 The Salisbury hand grasping an object

plane, and is directed toward the object. The other two
unit vectors are orthogonal and lie in the tangent plane
of the contact.

Let the joints be numbered from 1 to nq . De-
note by q = [q1 · · · qnq ]� ∈ R

nq the vector of joint
displacements, where the superscript � indicates matrix
transposition. Also, let τ = [τ1 · · · τnq ]� ∈ R

nq represent
joint loads (forces in prismatic joints and torques in revo-
lute joints). These loads can result from actuator actions,
other applied forces, and inertia forces. They could also
arise from contacts between the object and hand. How-
ever, it will be convenient to separate joint loads into
two components: those arising from contacts and those
arising from all other sources. Throughout this chapter,
noncontact loads will be denoted by τ.

Let u ∈ R
nu denote the vector describing the position

and orientation of {B} relative to {N}. For planar systems
nu = 3. For spatial systems, nu is three plus the number
of parameters used to represent orientation, typically
three (for Euler angles) or four (for unit quaternions).
Denote by ν = [v�ω�]� ∈ R

nν the twist of the object
described in {N}. It is composed of the translational
velocity v ∈ R

3 of the point p and the angular velocity
ω ∈ R

3 of the object, both expressed in {N}. A twist of
a rigid body can be referred to any convenient frame
fixed to the body. The components of the referred twist
represent the velocity of the origin of the new frame
and the angular velocity of the body, both expressed in
the new frame. For a rigorous treatment of twists and
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Fig. 28.2 Main quantities for grasp analysis
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Grasping 28.2 Models and Definitions 673

wrenches see [28.5, 6]. Note that for planar systems,
v ∈ R

2 and ω ∈ R, and so nν = 3.
Another important point is u̇ �= ν. Instead, these

variables are related by the matrix V as:

u̇ = Vν , (28.1)

where the matrix V ∈ R
nu×nν is not generally square but

nonetheless satisfies V�V = I [28.7], I is the identity
matrix, and the dot over the u implies differentiation
with respect to time. Note that, for planar systems,
V = I ∈ R

3×3.
Let f ∈ R

3 be the force applied to the object at the
point p and let m ∈ R

3 be the applied moment. These are
combined into the object load, or wrench, vector denoted
by g = [ f�m�]� ∈ R

nν , where f and m are expressed
in {N}. Like twists, wrenches can be referred to any
convenient frame fixed to the body. One can think of this
as translating the line of application of the force until it
contains the origin of the new frame, then adjusting the
moment component of the wrench to offset the moment
induced by moving the line of the force. Last, the force
and adjusted moment are expressed in the new frame.
As done with the joint loads, the object wrench will be
partitioned into two main parts: contact and noncontact
wrenches. Throughout this chapter, g will denote the
noncontact wrench on the object.

28.2.1 Velocity Kinematics

The material in this chapter is valid for a wide range of
robot hands and other grasping mechanisms. The hand
is assumed to be composed of a palm that serves as
the common base for any number of fingers, each with
any number of joints. The formulations given in this
chapter are expressed explicitly in terms of only revo-
lute and prismatic joints. However, most other common
joints can be modeled by combinations of revolute and
prismatic joints (e.g., cylindrical, spherical, and planar).
Any number of contacts may occur between any link
and the object.

Grasp Matrix and Hand Jacobian
Two matrices are of the utmost importance in grasp
analysis: the grasp matrix G and the hand Jacobian J.
These matrices define the relevant velocity kinematics
and force transmission properties of the contacts. The
following derivations of G and J will be done under
the assumption that the system is three-dimensional.
Changes for planar systems will be noted later.

Each contact should be considered as two coincident
points: one on the hand and one on the object. The hand

Jacobian maps the joint velocities to the twists of the
hand expressed in the contact frames, while the transpose
of the grasp matrix refers the object twist to the contact
frames. Finger joint motions induce a rigid-body motion
in each link of the hand. It is implicit in the terminology,
twists of the hand, that the twist referred to contact i is
the twist of the link involved in contact i. Thus these
matrices can be derived from the transforms that change
the reference frame of a twist.

To derive the grasp matrix, let ωN
obj denote the angular

velocity of the object expressed in {N} and let vN
i,obj,

also expressed in {N}, denote the velocity of the point
on the object coincident with the origin of {C}i . These
velocities can be obtained from the object twist referred
to {N} as:(

vN
i,obj

ωN
obj

)
= P�

i ν , (28.2)

where

Pi =
(

I3×3 0
S(ci − p) I3×3

)
, (28.3)

I3×3 ∈ R
3×3 is the identity matrix, and S(ci − p) is

the cross-product matrix, that is, given a three-vector
r = [rxryrz]�, S(r) is defined as:

S(r) =
⎛
⎜⎝ 0 −rz ry

rz 0 −rx

−ry rx 0

⎞
⎟⎠ .

The object twist referred to {C}i is simply the vector
on the left-hand side of (28.2) expressed in {C}i . Let
Ri = [n̂i t̂i ôi ] ∈ R

3×3 represent the orientation of the i-
th contact frame {C}i with respect to the inertial frame
(the unit vectors n̂i , t̂i , and ôi are expressed in {N}).
Then the object twist referred to {C}i is given as:

νi,obj = R
�
i

(
vN

i,obj

ωN
obj

)
, (28.4)

where Ri = Blockdiag(Ri , Ri ) =
(

Ri 0
0 Ri

)
∈ R

6×6.

Substituting P�
i ν from (28.2) into (28.4) yields the

partial grasp matrix G̃�
i ∈ R

6×6, which maps the object
twist from {N} to {C}i :

νi,obj = G̃�
i ν , (28.5)

where

G̃�
i = R

�
i P�

i . (28.6)
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674 Part D Manipulation and Interfaces

The hand Jacobian can be derived similarly. Let
ωN

i,hnd be the angular velocity of the link of the hand
touching the object at contact i, expressed in {N}, and
define vN

i,hnd as the translational velocity of contact i
on the hand, expressed in {N}. These velocities are re-
lated to the joint velocities through the matrix Zi whose
columns are the Plücker coordinates of the axes of the
joints [28.5, 6]. We have:(

vN
i,hnd

ωN
i,hnd

)
= Zi q̇ , (28.7)

where Zi ∈ R
6×nq is defined as:

Zi =
(

di,1 · · · di,nq

li,1 · · · li,nq

)
, (28.8)

with the vectors di, j , li, j ∈ R
3 defined as:

di, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

03×1 if contact i does

not affect joint j ,

ẑ j if joint j is prismatic ,

S(ci − ζ j )� ẑ j if joint j is revolute ,

li, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

03×1 if contact i does

not affect joint j ,

03×1 if joint j is prismatic ,

ẑ j if joint j is revolute ,

where ζ j is the origin of the coordinate frame associated
with the j-th joint and ẑ j is the unit vector in the direction
of the z-axis in the same frame, as shown in Fig. 28.11.
Both vectors are expressed in {N}. These frames may
be assigned by any convenient method, for example, the
Denavit–Hartenberg method [28.8]. The ẑ j -axis is the
rotational axis for revolute joints and the direction of
translation for prismatic joints.

The final step in referring the hand twists to the
contact frames is to change the frame of expression of
vN

i,hnd and ωN
i,hnd to {C}i :

νi,hnd = R
�
i

(
vN

i,hnd

ωN
i,hnd

)
. (28.9)

Combining (28.9) and (28.7) yields the partial hand
Jacobian J̃i ∈ R

6×nq , which relates the joint velocities to
the contact twists on the hand:

νi,hnd = J̃i q̇ , (28.10)

where

J̃i = R
�
i Zi . (28.11)

To compact notation, stack all the twists of the hand
and object into the vectors νc,hnd ∈ R

6nc and νc,obj ∈ R
6nc

as follows:

νc,ξ =
(
ν�

1,ξ · · · ν�
nc,ξ

)�
, ξ = {obj, hnd} .

Now the complete grasp matrix G̃ ∈ R
6×6nc and the

complete hand Jacobian J̃ ∈ R
6nc×nq relate the various

velocity quantities as

νc,obj = G̃�ν , (28.12)

νc,hnd = J̃q̇ , (28.13)

where

G̃� =

⎛
⎜⎜⎝

G̃�
1
...

G̃�
nc

⎞
⎟⎟⎠ , J̃ =

⎛
⎜⎜⎝

J̃1
...

J̃nc

⎞
⎟⎟⎠ . (28.14)

The term complete is used to emphasize that all 6nc
twist components at the contacts are included in the
mapping. See Example 1, Part 1 and Example 3, Part 1
at the end of this chapter for clarification.

Contact Modeling
Three contact models useful for grasp analysis are
reviewed here. For a complete discussion of contact
modeling in robotics, readers are referred to Chap. 27.

The three models of greatest interest in grasp anal-
ysis are known as point contact without friction, hard
finger, and soft finger [28.9]. These models select com-
ponents of the contact twists to transmit between the
hand and the object. This is done by equating a subset
of the components of the hand and object twist at each
contact. The corresponding components of the contact
force and moment are also equated, but without regard
for the constraints imposed by contact unilaterality and
friction models (Sect. 28.5.2).

The point-contact-without-friction (PwoF) model is
used when the contact patch is very small and the sur-
faces of the hand and object are slippery. With this
model, only the normal component of the translational
velocity of the contact point on the hand (i. e., the first
component of νi,hnd) is transmitted to the object. The
two components of tangential velocity and the three
components of angular velocity are not transmitted.
Analogously, the normal component of the contact force
is transmitted, but the frictional forces and moments are
assumed to be negligible.
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Grasping 28.2 Models and Definitions 675

Table 28.1 Primary notation for grasp analysis

Notation Definition

nc number of contacts

nq number of joints of hand

nν number of degrees of freedom of object

q ∈ R
nq joint displacements

q̇ ∈ R
nq joint velocities

τ ∈ R
nq noncontact joint loads

u ∈ R
nu position and orientation of object

ν ∈ R
nν twist of object

g ∈ R
nν noncontact object wrench

{B} frame fixed in object

{C}i frame at contact i

{N} inertial frame

A hard-finger (HF) model is used when there is sig-
nificant contact friction, but the contact patch is small,
so that no appreciable friction moment exists. When this
model is applied to a contact, all three translational ve-
locity components of the contact point on the hand (i. e.,
the first three components of νi,hnd) and all three com-
ponents of the contact force are transmitted through the
contact. None of the angular velocity components or
moment components are transmitted.

The soft-finger (SF) model is used in situations in
which the surface friction and the contact patch are large
enough to generate significant friction forces and a fric-
tion moment about the contact normal. At a contact
where this model is enforced, the three translational
velocity components of the contact on the hand and
the angular velocity component about the contact nor-
mal are transmitted (i. e., the first four components of
νi,hnd). Similarly, all three components of contact force
and the normal component of the contact moment are
transmitted.

Remark. The reader may see a contradiction between
the rigid-body assumption and the soft-finger model.
The rigid-body assumption is an approximation that
simplifies all aspects of the analysis of grasping, but
nonetheless it is sufficiently accurate in many real situ-
ations and grasp analysis would be impractical without.
On the other hand, the need for a soft-finger model is
a clear admission that the finger links and object are
not rigid. However, it can be usefully applied in situa-
tions in which the amount of deformation required to
obtain a large contact patch is small. Such situations
occur when the local surface geometries are similar. If
large finger or body deformations exist in the real sys-

Table 28.2 Selection matrices for three contact models

Model �i HiF HiM

PwoF 1
(

1 0 0
)

vacuous

HF 3 I3×3 vacuous

SF 4 I3×3

(
1 0 0

)

tem, the rigid-body approach presented in this chapter
should be used with caution.

To develop the PwoF, HF, and SF models, define the
relative twist at contact i as:(

J̃i −G̃�
i

)(
q̇
ν

)
= νi,hnd −νi,obj .

A particular contact model is defined through the matrix
Hi ∈ R

�i ×6, which selects �i components of the relative
contact twist and sets them to zero:

Hi (νi,hnd −νi,obj) = 0 .

These components are referred to as transmitted degrees
of freedom (DOF). Define Hi as:

Hi =
[

HiF 0
0 HiM

]
, (28.15)

where HiF and HiM are the translational and rotational
component selection matrices, respectively. Table 28.2
gives the definitions of the selection matrices for the
three contact models, where vacuous means that the
corresponding block row matrix in (28.15) is void (i. e.,
it has zero rows and columns). Notice that, for the SF
model, HiM selects rotation about the contact normal.

After choosing a transmission model for each con-
tact, the contact constraint equations for all nc contacts
can be written in compact form as:

H(νc,hnd −νc,obj) = 0 , (28.16)

where

H = Blockdiag(H1, . . . , Hnc ) ∈ R
�×6nc ,

and the number of twist components � transmitted
through the nc contacts is given by � = ∑nc

i=1 �i .
Finally, by substituting (28.12) and (28.13) into

(28.16) one obtains:(
J −G�

) (
q̇
ν

)
= 0 , (28.17)

where the grasp matrix and hand Jacobian are

G� = HG̃� ∈ R
�×6 ,

J = HJ̃ ∈ R
�×nq . (28.18)
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676 Part D Manipulation and Interfaces

Table 28.3 Selection matrices for planar contact models

Model �i HiF HiM

PwoF 1
(

1 0
)

vacuous

HF/SF 2 I2×2 vacuous

For more details on the construction of H, the grasp
matrix, and the hand Jacobian, readers are referred
to [28.10–12] and the references therein.

See Example 1, Part 2 and Example 3, Part 2.
It is worth noting that (28.17) can be written in the

following form:

Jq̇ = νcc,hnd = νcc,obj = G�ν , (28.19)

where νcc,hnd and νcc,obj contain only the components
of the twists that are transmitted by the contacts. Note
that this equation implies that grasp maintenance is de-
fined as the situation in which all these equations are
maintained over time. Thus, when a contact is friction-
less, contact maintenance implies continued contact, but
sliding is allowed. However, when a contact is of the HF
type, contact maintenance implies sticking contact, since
sliding would violate the HF model. Similarly, for an SF
contact, there may be no sliding or relative rotation about
the contact normal.

For the remainder of this chapter, it will be assumed
that νcc,hnd = νcc,obj, so the notation will be shortened to
νcc.

Planar Simplifications
Assume that the plane of motion is the (x, y)-plane
of {N}. The vectors ν and g reduce in dimension
from six to three by dropping components three, four,
and five. The dimensions of the vectors ci and p
reduce from three to two. The i-th rotation matrix
becomes Ri = (

n̂i t̂i
) ∈ R

2×2 (where the third compo-
nents of n̂i and t̂i are dropped) and (28.4) holds with
Ri = Blockdiag(Ri , 1) ∈ R

3×3. Equation (28.2) holds
with:

Pi =
(

I2×2 0
S2(ci − p) 1

)
,

where S2 is the analog of the cross-product matrix for
two-dimensional vectors, given as

S2(r) =
(
−ry rx

)
.

Table 28.4 Vectors of contact force and moment com-
ponents, also known as the wrench intensity vector,
transmitted through contact i

Model λi

PwoF ( fin)

HF
(

fin fit fio

)�

SF
(

fin fit fiomin

)�

Equation (28.7) holds with di, j ∈ R
2 and li, j ∈ R defined

as

di, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

02×1 if contact force i does

not affect the joint j ,

ẑ j if joint j is prismatic ,

S(ci − ζ j )� if joint j is revolute ,

li, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if contact force i does

not affect joint j ,

0 if joint j is prismatic ,

1 if joint j is revolute .

The complete grasp matrix and hand Jacobian have
reduced sizes: G̃� ∈ R

3nc×3 and J̃ ∈ R
3nc×nq .

As far as contact constraint is concerned, (28.15)
holds with HiF and HiM in Table 28.3.

In planar cases, the SF and HF models are equiva-
lent, because the object and the hand lie in a plane.
Rotations about the contact normals would cause out-
of-plane motions. Finally, the dimensions of the grasp
matrix and hand Jacobian are reduced to the following
sizes: G� ∈ R

�×3 and J ∈ R
�×nq . See Example 1, Part 3

and Example 2, Part 1.

28.2.2 Dynamics and Equilibrium

The dynamic equations of the system can be written as:

Mhnd(q)q̈ +bhnd(q, q̇)+ J�λ = τapp

Mobj(u)ν̇ +bobj(u, ν)− Gλ = gapp

subject to constraint (28.17) , (28.20)

where Mhnd(·) and Mobj(·) are symmetric positive-
definite inertia matrices and bhnd(·, ·) and bobj(·, ·)
are the velocity-product terms, gapp is the force and
moment applied to the object by gravity and other
external sources, τapp is the vector of external loads
and actuator actions, and the vector Gλ is the total
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Grasping 28.3 Controllable Twists and Wrenches 677

wrench applied to the object by the hand. The vector
λ contains the contact force and moment components
transmitted through the contacts and expressed in the
contact frames. Specifically, λ = [λ�

1 · · ·λ�
nc

]�, where
λi = Hi [ fin fit fio min mit mio]�. The subscripts indi-
cate one normal (n) and two tangential (t, o) components
of contact force f and moment m. For an SF, HF, or
PwoF contact, λi is defined as in Table 28.4. Finally, it
is worth noting that Giλi = G̃i Hiλi is the wrench ap-
plied through contact i, where G̃i and Hi are defined in
(28.6) and (28.15). The vector λi is known as the wrench
intensity vector for contact i.

Equation (28.20) represents the dynamics of the
hand and object without regard for the kinematic con-
straints imposed by the contact models. Enforcing them,
the dynamic model of the system can be written as:(

J�

−G

)
λ =

(
τ

g

)
(28.21)

subject to Jq̇ = G�ν = νcc, where

τ = τapp − Mhnd(q)q̈ −bhnd(q, q̇) ,

g = gapp − Mobj(u)ν̇ −bobj(u, ν) . (28.22)

One should notice that the dynamic equations are
closely related to the kinematic model in (28.17).
Specifically, just as J and G� transmit only selected

components of contact twists, J� and G in (28.20) serve
to transmit only the corresponding components of the
contact wrenches.

When the inertia terms are negligible, as occurs dur-
ing slow motion, the system is said to be quasistatic. In
this case, (28.22) becomes:

τ = τapp ,

g = gapp , (28.23)

and does not depend on joint and object velocities. Con-
sequently, when the grasp is in static equilibrium or
moves quasistatically, one can solve the first equation
and the constraint in (28.21) independently to compute
λ, q̇, and ν. It is worth noting that such a force/velocity
decoupled solution is not possible when dynamic ef-
fects are appreciable, since the first equation in (28.21)
depends on the third one through (28.22).

Remark. Equation (28.21) highlights an important alter-
native view of the grasp matrix and the hand Jacobian.
G can be thought of as a mapping from the transmitted
contact forces and moments to the set wrenches that the
hand can apply to the object, while J� can be thought
of as a mapping from the transmitted contact forces and
moments to the vector of joint loads. Notice that these
interpretations hold for both dynamic and quasistatic
conditions.

28.3 Controllable Twists and Wrenches

In hand design and in grasp and manipulation plan-
ning, it is important to know the set of twists that can
be imparted to the object by movements of the fin-
gers, and conversely, the conditions under which the
hand can prevent all possible motions of the object.
The dual view is that one needs to know the set of
wrenches that the hand can apply to the object and un-
der what conditions any wrench in R

6 can be applied
through the contacts. This knowledge will be gained by
studying the various subspaces associated with G and
J [28.13].

The spaces, shown in Fig. 28.3, are the column
spaces and null spaces of G, G�, J, and J�. Column
space (also known as range) and null space will be de-
noted by R(·) and N (·), respectively. The arrows show
the propagation of the various velocity and load quanti-
ties through the grasping system. For example, in the left
part of Fig. 28.3 it is shown how any vector q̇ ∈ R

nq can
be decomposed into a sum of two orthogonal vectors in

R(J�) and in N (J) and how q̇ is mapped to R(J) by
multiplication by J.

Joint velocities
q· ∈    nq

0

Contact twists
υcc ∈    l

Object twists
υ ∈    nυ

Joint loads
τ ∈    nq

Wrench intensities
λ ∈     l

Object wrenches
g ∈    nυ

J

(JT)
(J )

0

G+

(GT)(G )

(J ) (G T) (G )(JT)

 

Fig. 28.3 Linear maps relating the twists and wrenches of a grasping
system
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Table 28.5 Basic grasp classes

Condition Class Many to one

N (J) �= 0 Redundant
q̇ → νcc

τ → λ

N (G�) �= 0 Indeterminate
ν → νcc

g → λ

N (G) �= 0 Graspable
λ → g
νcc → ν

N (J�) �= 0 Defective
λ → τ

νcc → q̇

It is important to recall two facts from linear algebra.
First, a matrix A maps vectors from R(A�) to R(A) in
a one-to-one and onto fashion, that is, the map A is a bi-
jection. The generalized inverse A+ of A is a bijection
that maps vectors in the opposite direction [28.14]. Also,
A maps vectors in N (A) to zero. Finally, there is no non-
trivial vector that A can map into N (A�). This implies
that, if N (G�) is nontrivial, then the hand will not be
able to control all degrees of freedom of the object’s
motion. This is certainly true for quasistatic grasping,
but when dynamics are important, they may cause the
object to move along the directions in N (G�).

28.3.1 Grasp Classifications

The four null spaces motivate a basic classification of
grasping systems defined in Table 28.5. Assuming solu-
tions to (28.21) exist, the following force and velocity
equations provide insight into the physical meaning of
the various null spaces:

q̇ = J+νcc + N(J)α , (28.24)

ν = (G�)+νcc + N(G�)β , (28.25)

λ = −G+g + N(G)γ , (28.26)

λ = (J�)+τ + N(J�)η . (28.27)

In these equations, A+ denotes the generalized inverse,
henceforth pseudoinverse, of a matrix A, N(A) denotes
a matrix whose columns form a basis for N (A), and
α, β, γ , and η are arbitrary vectors that parameterize
the solution sets. If not otherwise specified, the context
will make clear whether the generalized inverse is left
or right.

If the null spaces represented in the equations are
nontrivial, then one immediately sees the first many-
to-one mapping in the Table 28.5. To see the other
many-to-one mappings, and in particular the defective
class, consider (28.24). It can be rewritten with νcc de-

composed into components νrs and νlns in R(J) and
N (J�), respectively, as follows:

q̇ = J+(νrs +νlns)+ N(J)α . (28.28)

Recall that every vector in N (A�) is orthogonal to every
row of A+. Therefore J+νlns = 0. If α and νrs are fixed
in (28.28), then q̇ is unique. Thus it is clear that, if
N (J�) is nontrivial, then a subspace of twists of the
hand at the contacts will map to a single joint velocity
vector. Applying the same approach to the other three
equations (28.25–28.27) yields the other many-to-one
mappings listed in Table 28.5.

Equations (28.21) and (28.24–28.27), motivate the
following definitions.

Definition 28.1 Redundant
A grasping system is said to be redundant if N (J) is
nontrivial.

Joint velocities q̇ in N (J) are referred to as internal
hand velocities, since they correspond to finger mo-
tions, but do not generate motion of the hand in the
constrained directions at the contact points. If the qua-
sistatic model applies, it can be shown that these motions
are not influenced by the motion of the object and vice
versa.

Definition 28.2 Indeterminate
A grasping system is said to be indeterminate if N (G�)
is nontrivial.

Object twists ν in N (G�) are called internal object
twists, since they correspond to motions of the object,
but do not cause motion of the object in the constrained
directions at the contacts. If the static model applies, it
can be shown that these twists cannot be controlled by
finger motions.

Definition 28.3 Graspable
A grasping system is said to be graspable if N (G) is

nontrivial.

Wrench intensities λ in N (G) are referred to as inter-
nal object forces. These wrenches are internal because
they do not contribute to the acceleration of the object,
i. e., Gλ = 0. Instead, these wrench intensities affect the
tightness of the grasp. Thus, internal wrench intensities
play a fundamental role in maintaining grasps that rely
on friction (Sect. 28.5.2).
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Grasping 28.3 Controllable Twists and Wrenches 679

Definition 28.4 Defective
A grasping system is said to be defective if N (J�) is
nontrivial.

Wrench intensities λ in N (J�) are called internal
hand forces. These forces do not influence the hand
joint dynamics given in (28.20). If the static model is
considered, it can be easily shown that wrench intensi-
ties belonging to N (J�) cannot be generated by joint
actions, but can be resisted by the structure of the hand.

See Example 1, Part 4; Example 2, Part 2; and
Example 3, Part 3.

28.3.2 Limitations
of Rigid-Body Assumption

The rigid-body dynamics equation (28.20) can be rewrit-
ten with Lagrange multipliers associated with the contact
constraints as:

Mdyn

⎛
⎜⎝q̈

ν̇

λ

⎞
⎟⎠ =

⎛
⎜⎝τ −bhnd

ν −bobj

bc

⎞
⎟⎠ , (28.29)

where bc = [∂(Jq̇)/∂q]q̇ −[∂(Gν)/∂u]u̇ and

Mdyn =
⎛
⎜⎝Mhnd 0 J�

0 Mobj −G
J −G� 0

⎞
⎟⎠ .

In order for this equation to determine the motion of the
system completely, it is necessary that the matrix Mdyn
be invertible. This case is considered in detail in [28.15],
where the dynamics of multifinger manipulation is stud-
ied under the hypothesis that the hand Jacobian is full
row rank, N (J�) = 0. For all manipulation systems with
noninvertible Mdyn, rigid-body dynamics fails to deter-
mine the motion and the wrench intensity vector. By
observing that:

N (Mdyn)

= {(q̈, ν̇λ)�|q̈ = 0, ν̇ = 0, λ ∈ N (J�)∩N (G)} ,

the same arguments apply under the quasistatic condi-
tions defined by (28.21) and (28.23). When N (J�)∩
N (G) �= 0, the rigid-body approach fails to solve the
first equation in (28.21), thus leaving λ indeterminate.

Definition 28.5 Hyperstatic
A grasping system is said to be hyperstatic if N (J�)∩
N (G) is nontrivial.

In such systems there are internal forces (Defini-
tion 28.3) belonging to N (J�) that are not controllable
as discussed for defective grasps. Rigid-body dynam-
ics is not satisfactory for hyperstatic grasps since the
rigid-body assumption leads to undetermined contact
wrenches [28.16].

See Example 3, Part 3.

28.3.3 Desirable Properties

For a general-purpose grasping system, there are three
main desirable properties: control of the object twist ν,
control of object wrench g, and control of the internal
forces. Control of these quantities implies that the hand
can deliver the desired ν and g with specified grip pres-
sure by the appropriate choice of joint velocities and
actions. The conditions on J and G equivalent to these
properties are given in Table 28.6.

We derive the associated conditions in two steps.
First, we ignore the structure and configuration of the
hand (captured in J) by assuming that the contact point
on the finger can be commanded to move in any di-
rection transmitted by the chosen contact model. An
important perspective here is that νcc is seen as the inde-
pendent input variable and ν is seen as the output. The
dual interpretation is that the actuators can generate any
contact force and moment in the constrained directions.
Similarly, λ is seen as the input and g is seen as the
output. The preliminary property of interest under this
assumption is whether or not the arrangement and types
of contacts on the object (captured in G) are such that
a sufficiently dexterous hand could control its fingers so
as to impart any twist ν ∈ R

6 to the object and, similarly,
to apply any wrench g ∈ R

6 to the object.

All Object Twists Possible
Given a set of contact locations and types, by solving
(28.19) for ν or observing the map G on the right side of
Fig. 28.3, one sees that the achievable object twists are
those in R(G). Those in N (G�) could not be achieved
by any hand using the given grasp. Therefore, to achieve
any object twist, we must have: N (G�) = 0, or equiva-

Table 28.6 Desirable properties of a grasp

Task requirement Required conditions

All wrenches possible, g
All twists possible, ν

rank(G) = nν

Control all wrenches, g
Control all twists, ν

{
rank(G) = nν

rank(G J) = nν

Control all internal forces N (G)∩N (J�) = 0
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Fig. 28.4 The Salisbury hand

lently, rank(G) = nν . Any grasp with three non-collinear
hard contacts or two distinct soft contacts satisfies this
condition.

All Object Wrenches Possible
This case is the dual of the previous case, so we ex-
pect the same condition. From (28.21), one immediately
obtains the condition N (G�) = 0, so again we have
rank(G) = nν .

To obtain the conditions needed to control the vari-
ous quantities of interest, the structure of the hand cannot
be ignored. Recall that the only achievable contact twists
on the hand are in R(J), which is not necessarily equal
to R

�.

Control All Object Twists
By solving (28.17) for ν, one sees that, in order to
cause any object twist ν by choice of joint velocities q̇,
we must have R(G J) = R(G) and N (G�) = 0. These
conditions are equivalent to rank(G J) = rank(G) = nν .

Control All Object Wrenches
This property is dual to the previous one. Analysis
of (28.21) yields the same conditions: rank(G J) =
rank(G) = nν .

Control All Internal Forces
Equation (28.20) shows that wrench intensities with no
effect on object motion are only those in N (G). In gen-
eral, not all the internal forces may be actively controlled
by joint actions. In [28.12,17] it has been shown that all
internal forces in N (G) are controllable if and only if
N (G)∩N (J�) = 0.

See Example 1, Part 5 and Example 2, Part 3.

Design Considerations of the Salisbury Hand
The Salisbury hand in Fig. 28.4 was designed to have
the smallest number of joints that would meet all the
task requirements in Table 28.6. Assuming HF contacts,
three non-collinear contacts is the minimum number
such that rank(G) = nν = 6. In this case, G has six
rows and nine columns and the dimension of N (G) is
three [28.1, 4]. The ability to control all internal forces
and apply an arbitrary wrench to the object requires
that N (G)∩N (J�) = 0, so the minimum dimension
of the column space of J is nine. To achieve this, the
hand must have at least nine joints, which Salisbury
implemented as three fingers, each with three revolute
joints.

The intended way to execute a dexterous manipula-
tion task with the Salisbury hand is to grasp the object
at three non-collinear points with the fingertips, forming
a grasp triangle. To secure the grasp, the internal forces
are controlled so that the contact points are maintained
without sliding. Dexterous manipulation can be thought
of as moving the fingertips to control the positions of
the vertices of the grasp triangle.

28.4 Restraint Analysis

The most fundamental requirements in grasping and
dexterous manipulation are the abilities to hold an object
in equilibrium and control the position and orientation of
the grasped object relative to the palm of the hand. The
two most useful characterizations of grasp restraint are
force closure and form closure. These names were in use
over 125 years ago in the field of machine design to dis-
tinguish between joints that required an external force
to maintain contact, and those that did not [28.18]. For
example, some water wheels had a cylindrical axle that

was laid in a horizontal semicylindrical groove split on
either side of the wheel. During operation, the weight of
the wheel acted to close the groove–axle contacts, hence
the term force closure. By contrast, if the grooves were
replaced by cylindrical holes just long enough to accept
the axle, then the contacts would be closed by the ge-
ometry (even if the direction of the gravitational force
were reversed), hence the term form closure.

When applied to grasping, form and force closure
have the following interpretations. Assume that a hand
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Fig. 28.5 The palm, fingers, wrist, and watch band com-
bine to create a very secure form closure grasp of a TV
remote controller

grasping an object has its joint angles locked and its
palm fixed in space; then the grasp has form closure, or
the object is form closed, if it is impossible to move the
object, even infinitesimally. Under the same conditions,
the grasp has force closure, or the object is force closed,
if for any noncontact wrench experienced by the object,
contact wrench intensities exist that satisfy (28.20) and
are consistent with the constraints imposed by the fric-
tion models applicable at the contact points. Notice that
all form closure grasps are also force closure grasps.
When under form closure, the object cannot move at

Fig. 28.6 This grasp has a force closure grasp appropriate
for dexterous manipulation (Image of Shadow Dextrous
Hand c© Shadow Robot Company 2008)

Fig. 28.7 In the grasp depicted, contact with the ridges on
the gasoline cap creates partial form closure in the direction
of cap rotation (when screwing it in) and also in the direc-
tions of translation perpendicular to the axis of rotation. To
achieve complete control over the cap, the grasp achieves
force closure over the other three degrees of freedom

all, regardless of the noncontact wrench. Therefore, the
hand maintains the object in equilibrium for any external
wrench, which is the force closure requirement.

Roughly speaking, form closure occurs when the
palm and fingers wrap around the object forming a cage
with no wiggle room such as the grasp shown in
Fig. 28.5. This kind of grasp is also called a power
grasp [28.19] or an enveloping grasp [28.20]. However,
force closure is possible with fewer contacts, as shown
in Fig. 28.6, but in this case force closure requires the
ability to control internal forces. It is also possible for
a grasp to have partial form closure, indicating that only
a subset of the possible degrees of freedom are restrained
by form closure [28.21]. An example of such a grasp is
shown in Fig. 28.7. In this grasp, fingertip placement
between the ridges around the periphery of the gaso-
line cap provide form closure against relative rotation
about the axis of the helix of the threads and also against
translation perpendicular to that axis, but the other three
degrees of freedom are restrained through force closure.
Strictly speaking, given a grasp of a real object by a hu-
man hand, it is impossible to prevent relative motion of
the object with respect to the palm due to the compliance
of the hand and object. Preventing all motion is possible
only if the contacting bodies are rigid, as is assumed in
most mathematical models employed in grasp analysis.

28.4.1 Form Closure

To make the notion of form closure precise, introduce
a gap function denoted by ψi (u, q) at each of the nc
contact points between the object and the hand. The
gap function is zero at each contact, becomes positive if
contact breaks, and negative if penetration occurs. The
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gap function can be thought of as the distance between
the contact points. In general, this function is dependent
on the shapes of the contacting bodies. Let ū and q̄
represent the configurations of the object and hand for
a given grasp; then:

ψi (ū, q̄) = 0 ∀ i = 1, . . . , nc . (28.30)

The form closure condition can now be stated in terms
of a differential change du of ū:

Definition 28.6
A grasp (ū, q̄) has form closure if and only if the
following implication holds:

ψ(ū+ du, q̄) ≥ 0 ⇒ du = 0 , (28.31)

where ψ is the nc-dimensional vector of gap functions
with i-th component equal to ψi (u, q). By definition,
inequalities between vectors imply that the inequality
is applied between corresponding components of the
vectors.

Expanding the gap function vector in a Taylor series
about ū yields infinitesimal form closure tests of various
orders. Let βψ(u, q), β = 1, 2, 3, . . . denote the Taylor
series approximation truncated after the terms of order
β in du. From (28.30), it follows that the first-order
approximation is:

1ψ(ū+ du, q̄) = ∂ψ(u, q)

∂u

∣∣∣∣
(ū,q̄)

du ,

where ∂ψ(u, q)/∂u|(ū,q̄) denotes the partial derivative
of ψ with respect to u evaluated at (ū, q̄). Replacing
ψ with its approximation of order β in (28.31) implies
three relevant cases of order β:

1. if there exists du such that βψ(ū+ du, q̄) has at least
one strictly positive component, then the grasp does
not have form closure of order β;

2. if for every nonzero du, βψ(ū+ du, q̄) has at least
one strictly negative component, then the grasp has
form closure of order β;

3. if neither case 1 nor case 2 applies for all αψ(ū+
du, q̄) ∀ α ≤ β, then higher-order analysis is required
to determine the existence of form closure.

Figure 28.8 illustrates form closure concepts using
several planar grasps of gray objects by fingers shown as
dark disks. The concepts are identical for grasps of three-
dimensional objects, but are more clearly illustrated in
a plane. The grasp on the left has first-order form clo-
sure. Note that first-order form closure only involves

the first derivatives of the distance functions. This im-
plies that the only relevant geometry in first-order form
closure are the locations of the contacts and the direc-
tions of the contact normals. The grasp in the center
has form closure of higher order, with the specific order
depending on the degrees of the curves defining the sur-
faces of the object and fingers in the neighborhoods of
the contacts [28.22]. Second-order form closure analysis
depends on the curvatures of the two contacting bodies
in addition to the geometric information used to analyze
first-order form closure. The grasp on the right does not
have form closure of any order, because the object can
translate horizontally and rotate about its center.

First-Order Form Closure
First-order form closure exists if and only if the follow-
ing implication holds:

∂ψ(u, q)

∂u

∣∣∣∣
(ū,q̄)

du ≥ 0 ⇒ du = 0 .

The first-order form closure condition can be written in
terms of the object twist ν:

G�
n ν ≥ 0 ⇒ ν = 0 , (28.32)

where G�
n = ∂ψ/∂uV ∈ R

nc×6. Because the gap func-
tions only quantify distances, the product G�

n ν is the
vector of normal components of the instantaneous vel-
ocities of the object at the contact points (which must
be nonnegative to prevent interpenetration). This in turn
implies that the grasp matrix is the one that would re-
sult from the assumption that all contacts are of the type
PwoF.

An equivalent condition in terms of the contact
wrench intensity vector λn ∈ R

nc can be stated as fol-
lows. A grasp has first-order form closure if and only

Fig. 28.8 Three planar grasps: two with form closure of
different orders and one without form closure
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if:

Gnλn = −g
λn ≥ 0

}
∀ g ∈ R

6 . (28.33)

The physical interpretation of this condition is that equi-
librium can be maintained under the assumption that the
contacts are frictionless. Note that the components of
λn are the magnitudes of the normal components of the
contact forces. The subscript (.)n is used to emphasize
that λn contains no other force or moment components.

Since g must be in the range of Gn for equilibrium
to be satisfied, and since g is an arbitrary element of
R

6, then in order for condition (28.33) to be satisfied,
the rank of Gn must be six. Assuming rank(Gn) = 6,
another equivalent mathematical statement of first-order
form closure is: there exists λn such that the following
two conditions hold [28.23]:

Gnλn = 0 ,

λn > 0 . (28.34)

This means that there exists a set of strictly compres-
sive normal contact forces in the null space of Gn. In
other words, one can squeeze the object as tightly as
desired while maintaining equilibrium. A second inter-
pretation of this condition is that the nonnegative span
of the columns of Gn must equal R

6. As will be seen,
this interpretation will provide a conceptual link called
frictional form closure that lies between form closure
and force closure.

The duality of conditions (28.32) and (28.33) can be
seen clearly by examining the set of wrenches that can
be applied by frictionless contacts and the corresponding
set of possible object twists. For this discussion, it is
useful to give definitions of cones and their duals.

Definition 28.7
A cone C is a set of vectors ς such that, for every ς in
C, every nonnegative scalar multiple of ς is also in C.

Equivalently, a cone is a set of vectors closed under
addition and nonnegative scalar multiplication.

Table 28.7 Minimum number of contacts nc required to
form close an object with nν degrees of freedom

nν nc

3 (planar grasp) 4

6 (spatial grasp) 7

nν (general) nν +1

Definition 28.8
Given a cone C with elements ς, the dual cone C∗
with elements ς∗ is the set of vectors such that the dot
product of ς∗ with each vector in C is nonnegative.
Mathematically:

C∗ = {ς∗|ς�ς∗ ≥ 0, ∀ς ∈ C} . (28.35)

See Example 4.

First-Order Form Closure Requirements
Several useful necessary conditions for form closure are
known. In 1897 Somov proved that at least seven contacts
are necessary to form close a rigid object with six degrees
of freedom [28.24]. Lakshminarayana generalized this
to prove that nν +1 contacts are necessary to form close
an object with nν degrees of freedom [28.21] (based
on Goldman and Tucker 1956 [28.25]), see Table 28.7.
This led to the definition of partial form closure that
was mentioned above in the discussion of the hand
grasping the gasoline cap. Markenscoff and Papadim-
itriou determined a tight upper bound, showing that,
for all objects whose surfaces are not surfaces of revo-
lution, at most nν +1 contacts are necessary [28.26].
Form closure is impossible to achieve for surfaces of
revolution.

To emphasize the fact that nν +1 contacts are neces-
sary and not sufficient, consider grasping a cube with
seven or more points of contact. If all contacts are on
one face, then clearly the cube is not form closed.

First-Order Form Closure Tests
Because form closure grasps are very secure, it is desir-
able to design or synthesize such grasps. To do this, one
needs a way to test candidate grasps for form closure,
and rank them so that the best grasp can be chosen. One
reasonable measure of form closure can be derived from
the geometric interpretation of the condition (28.34).
The null space constraint and the positivity of λn rep-
resent the addition of the columns of Gn scaled by the
components of λn. Any choice of λn closing this loop
is in N (Gn). For a given loop, if the magnitude of the
smallest component of λn is positive, then the grasp has
form closure, otherwise it does not. Let us denote this
smallest component by d. Since such a loop, and hence
d, can be scaled arbitrarily, λn should be bounded for
computational expedency.

After verifying that Gn has full row rank, a quanti-
tative form closure test based on the above observations
can be formulated as a linear program (LP) in the
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unknowns d and λn as follows:

LP1: maximize : d (28.36)

subject to: Gnλn = 0 (28.37)

Iλn −1d ≥ 0 (28.38)

d ≥ 0 (28.39)

1�λn ≤ nc , (28.40)

where I ∈ R
nc×nc is the identity matrix and 1 ∈ R

n
c is

a vector with all components equal to 1. The last in-
equality is designed to prevent this LP from becoming
unbounded. A typical LP solution algorithm determines
infeasibility or unboundedness of the constraints in
the, so-called, phase I of the algorithm, and consid-
ers the result before attempting to calculate an optimal
value [28.27]. If LP1 is infeasible, or if the optimal value
d∗ is zero, then the grasp is not form closed.

The quantitative form closure test (28.36–28.40) has
nc +8 constraints and nc +1 unknowns. For a typical
grasp with nc < 10, this is a small linear program that
can be solved very quickly using the simplex method.
However, one should note that the metric d∗ is dependent
on the choice of units used when forming Gn. It would
be advisable to nondimensionalize the components of
the wrenches to avoid dependence of the optimal d on
ones choice of units. This could be done by dividing the
first three rows of G by a characteristic force and the
last three rows by a characteristic moment.

However, if one desires a binary test, LP1 can be con-
verted into one by dropping the last constraint (28.40)
and applying only phase I of the simplex algorithm.

In summary, form closure testing is a two-step pro-
cess:

Form Closure Test
1. Compute rank(Gn).

a) If rank(Gn) �= nν , then form closure does not
exist. Stop.

b) If rank(Gn) = nν , continue.
2. Solve LP1.

a) If d∗ = 0, then form closure does not exist.
b) If d∗ > 0, then form closure exists and d∗ is
a crude measure of how far the grasp is from losing
form closure.

Variations of the Test
If the rank test fails, then the grasp could have partial
form closure over as many as rank(Gn) degrees of free-
dom. If one desires to test this, then LP1 must be solved
using a new Gn formed by retaining only the rows cor-

3

3

2

2

1
1

4

4 C2

C1

C1

C2

Fig. 28.9 Planar grasps with first-order form closure

responding to the degrees of freedom for which partial
form closure is to be tested. If d∗ > 0, then partial form
closure exists. A second variation is to constrain d to be
greater than some large negative value. If this is done,
then d∗ < 0 is a crude measure of how far a grasp is from
achieving form closure.

See Example 5.

Planar Simplifications
In the planar case, Nguyen [28.28] developed a graphical
qualitative test for form closure. Figure 28.9 shows two
form closure grasps with four contacts. To test form
closure one partitions the normals into two groups of
two. Let C1 be the nonnegative span of two normals in
one pair and C2 be the nonnegative span of the other pair.
A grasp has form closure if and only if C1 and C2 or
−C1 and −C2 see each other for any pairings. Two cones
see each other if the open line segment defined by the
vertices of the cones lies in the interior of both cones. In
the presence of more than four contacts, if any set of four
contacts satisfies this condition, then the grasp has form
closure. Notice that this graphical test can be difficult to
execute for grasps with more than four contacts. Also,
it does not extend to grasps of three-dimensional (3-D)
objects and does not provide a closure measure.

28.4.2 Force Closure

A grasp has force closure, or is force closed, if the grasp
can be maintained in the face of any object wrench.
Force closure is similar to form closure, but relaxed to
allow friction forces to help balance the object wrench.
A benefit of including friction in the analysis is the
reduction in the number of contact points needed for
closure. A three-dimensional object with six degrees of
freedom requires seven contacts for form closure, but for
force closure, only two contacts are needed if they are
modeled as soft fingers, and only three (non-collinear)
contacts are needed if they are modeled as hard fingers.

Force closure relies on the ability of the hand to
squeeze arbitrarily tightly in order to compensate for
large applied wrenches that can only be resisted by
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Table 28.8 Norms for the three main contact models

Model ||λi ||w
PwoF 0

HF 1
μi

√
f 2
it + f 2

io

SF 1
μi

√
f 2
it + f 2

io + 1
aυi

|min|

friction. Figure 28.14 shows a grasped polygon (see Ex-
ample 2). Consider applying a wrench to the object that
is a pure force acting upward along the y-axis of the in-
ertial frame. It seems intuitive that, if there is enough
friction, the hand will be able to squeeze the object with
friction forces preventing the object’s upward escape.
Also, as the applied force increases in magnitude, the
magnitude of the squeezing force will have to increase
accordingly.

Since force closure is dependent on the friction mod-
els, common models will be introduced before giving
formal definitions of force closure.

Friction Models
Recall the components of force and moment transmit-
ted through contact i under the various contact models
given earlier (Table 28.4). At contact point i, the fric-
tion law imposes constraints on the components of the
contact force and moment. Specifically, the frictional
components of λi are constrained to lie inside a limit
surface, denoted by Li , that scales linearly with the
product μi fin, where μi is the coefficient of friction at
contact i. In the case of Coulomb friction, the limit sur-
face is a circle of radius μi fin. The Coulomb friction
cone Fi is a subset of R

3:

Fi =
{

( fin, fit, fio)|
√

f 2
it + f 2

io ≤ μi fin

}
. (28.41)

More generally, the friction laws of interest have
limit surfaces defined in the space of friction compo-
nents, R

�i−1, and friction cones Fi defined in the space
of λi , R

�i . They can be written as

Fi = {
λi ∈ R

�i | ||λi ||w ≤ fin
}

, (28.42)

where ||λi ||w denotes a weighted quadratic norm of the
friction components at contact i. The limit surface is
defined by ||λi ||w = fin.

Table 28.8 defines useful weighted quadratic norms
for the three contact models: PwoF, HF, and SF. The
parameter μi is the friction coefficient for the tangential
forces, υi is the torsional friction coefficient, and a is the
characteristic length of the object that is used to ensure
consistent units in the terms of the norm of the SF model.

Remark. There are several noteworthy points to be made
about the friction cones. First, all of them implicitly or
explicitly constrain the normal component of the con-
tact force to be nonnegative. The cone for SF contacts
has a cylindrical limit surface with circular cross section
in the ( fit, fio)-plane and rectangular cross section in
the ( fit, min)-plane. With this model, the amount of tor-
sional friction that can be transmitted is independent of
the lateral friction load. An improved model that couples
the torsional friction limit with the tangential limit was
studied by Howe and Cutkosky [28.29].

A Force Closure Definition
One common definition of force closure can be stated
simply by modifying condition (28.33) to allow each
contact force to lie in its friction cone rather than along
the contact normal. Because this definition does not con-
sider the hand’s ability to control contact forces, this
definition will be referred to as frictional form closure.
A grasp will be said to have frictional form closure if
and only if the following conditions are satisfied:

Gλ = −g
λ ∈ F

}
∀g ∈ R

nν ,

where F is the composite friction cone defined as:
F = F1 × · · ·× Fnc = {λ ∈ R

m |λi ∈ Fi; i = 1, . . . , nc},
and each Fi is defined by (28.42) and one of the models
listed in Table 28.8.

Letting Int(F ) denote the interior of the composite
friction cone, Murray et al. give the following equivalent
definition [28.15]:

Definition 28.9
(Proposition 5.2, Murray et al.) A grasp has frictional

form closure if and only if the following conditions are
satisfied:

1. rank(G) = nν

2. ∃ λ such that Gλ = 0 and λ ∈ Int(F ).

These conditions define what Murray et al. call force
closure. The force closure definition adopted here is
stricter than frictional form closure; it additionally re-
quires that the hand be able to control the internal object
forces.

Definition 28.10
A grasp has force closure if and only if rank(G) = nν,
N (G)∩N (J�) = 0, and there exists λ such that Gλ = 0
and λ ∈ Int(F ).
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The full row rank condition on the matrix G is the
same condition required for form closure, although G
is different from Gn used to determine form closure. If
the rank test passes, then one must still find λ satisfying
the remaining three conditions. Of these, the null space
intersection test can be performed easily by linear pro-
gramming techniques, but the friction cone constraint
is quadratic, and thus forces one to use nonlinear pro-
gramming techniques. While exact nonlinear tests have
been developed [28.30], only approximate tests will be
presented here.

Approximate Force Closure Tests
Any of the friction cones discussed can be approximated
as the nonnegative span of a finite number ng of genera-
tors sij of the friction cone. Given this, one can represent
the set of applicable contact wrenches at contact i as
follows:

Giλi = Siσi , σi ≥ 0 ,

where Si = (si1 · · · sing ) and σi is a vector of nonnegative
generator weights. If contact i is frictionless, then ng = 1
and Si = [n̂�

i (ci − p) × n̂i )�]�.
If contact i is of type HF, we represent the fric-

tion cone by the nonnegative sum of uniformly spaced
contact force generators (Fig. 28.10) whose nonnegative
span approximates the Coulomb cone with an inscribed
regular polyhedral cone. This leads to the following
definition of Si :

Si =
⎛
⎜⎝· · · 1 · · ·

· · · μi cos(2kπ/ng) · · ·
· · · μi sin(2kπ/ng) · · ·

⎞
⎟⎠ , (28.43)

Linearized
friction cone

fin

fio

fit

Fig. 28.10 Quadratic cone approximated as a polyhedral
cone with seven generators

where the index k varies from 1 to ng. If one prefers
to approximate the quadratic friction cone by a circum-
scribing polyhedral cone, one simply replaces μi in the
above definition with μi/ cos(πng).

The adjustment needed for the SF model is quite
simple. Since the torsional friction in this model is de-
coupled from the tangential friction, its generators are
given by [1 0 0 ±bυi ]�. Thus Si for the SF model is:

Si =

⎛
⎜⎜⎜⎝

· · · 1 · · · 1 1

· · · μi cos(2kπ/ng) · · · 0 0

· · · μi sin(2kπ/ng) · · · 0 0

· · · 0 · · · bυi −bυi

⎞
⎟⎟⎟⎠ ,

(28.44)

where b is the characteristic length used to unify units.
The set of total contact wrenches that may be applied
by the hand without violating the contact friction law at
any contact can be written as:

Gλ = Sσ , σ ≥ 0 ,

where S = (S1, · · · , Sng ) and σ = (σ�
1 · · · σ�

ng
)�.

It is convenient to reformulate the friction constraints
in a dual form:

Fiλi ≥ 0 . (28.45)

In this form, each row of Fi is normal to a face formed
by two adjacent generators of the approximate cone. For
an HF contact, row i of Fi can be computed as the cross
product of si and si+1. In the case of an SF contact, the
generators are of dimension four, so simple cross prod-
ucts will not suffice. However, general methods exist to
perform the conversion from the generator form to the
face normal form [28.25].

The face normal constraints for all contacts can be
combined into the following compact form:

Fλ ≥ 0 , (28.46)

where F = Blockdiag(F1, . . . , Fnc ).
Let ei ∈ R

�i be the first row of Hi . Further let e =
(e1, . . . , enc ) ∈ R

� and let E = Blockdiag(e1, . . . , enc )
∈ R

�×nc . The following linear program is a quantitative
test for frictional form closure. The optimal objective
function value d∗ is a measure of the distance the contact
forces are from the boundaries of their friction cones,
and hence a crude measure of how far a grasp is from
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losing frictional form closure.

LP2: maximize : d

subject to: Gλ = 0

Fλ−1d ≥ 0

d ≥ 0

eλ ≤ nc .

The last inequality in LP2 is simply the sum of the mag-
nitudes of the normal components of the contact forces.
After solving LP2, if d∗ = 0 frictional form closure does
not exist, but if d∗ > 0, then it does.

If the grasp has frictional form closure, the last step
to determine the existence of force closure is to verify
the condition N (G)∩N (J�) = 0. If it holds, then the
grasp has force closure. This condition is easy to verify
with another linear program LP3.

LP3: maximize : d

subject to: Gλ = 0

J�λ = 0

Eλ−1d ≥ 0

d ≥ 0

eλ ≤ nc .

In summary, force closure testing is a three-step
process:

Approximate Force Closure Test
1. Compute rank(G).

a) If rank(G) �= nν, then force closure does not
exist. Stop.

b) If rank(G) = nν , continue.
2. Solve LP2: Test frictional form closure.

a) If d∗ = 0, then frictional form closure does not
exist. Stop.

b) If d∗ > 0, then frictional form closure exists and
d∗ is a crude measure of how far the grasp is from
losing frictional form closure.

3. Solve LP3. Test control of internal force.
a) If d∗ > 0, then force closure does not exist.
b) If d∗ = 0, then force closure exists.

See Example 1, Part 6.

Planar Simplifications
In planar grasping systems, the approximate method de-
scribed above is exact. This is because the SF models
are meaningless, since rotations about the contact nor-
mal would cause motions out of the plane. With regard to
the HF model, for planar problems, the quadratic friction
cone becomes linear, with its cone represented exactly
as:

Fi = 1√
1+μ2

i

(
μi 1

μi −1

)
. (28.47)

Nguyen’s graphical form closure test can be applied
to planar grasps with two frictional contacts [28.28]. The
only change is that the four contact normals are replaced
by the four generators of the two friction cones. How-
ever, the test can only determine frictional form closure,
since it does not incorporate the additional information
needed to determine force closure.

28.5 Examples

28.5.1 Example 1: Grasped Sphere

Part 1: G̃ and J̃
Figure 28.11 shows a planar projection of a three-
dimensional sphere of radius r grasped by two fingers,
which make two contacts at angles θ1 and θ2. The frames
{C}1 and {C}2 are oriented so that their ô-directions point
out of the plane of the figure (as indicated by the small
bold circle). The axes of the frames {N} and {B} were
chosen to be axis-aligned with coincident origins located
at the center of the sphere. The z-axes are pointing out
of the page. Observe that, since the two joint axes of the
left finger are perpendicular to the (x, y)-plane, it oper-
ates in that plane for all time. The other finger has three

revolute joints. Because its first and second axes, ẑ3 and
ẑ4, currently lie in the plane, rotation about ẑ3 will cause
ẑ4 to attain an out-of-plane component and would cause
the finger tip at contact 2 to leave the plane.

In the current configuration, the rotation matrix for
the i-th contact frame is defined as

Ri =
⎛
⎜⎝− cos(θi ) sin(θi ) 0

− sin(θi ) − cos(θi ) 0

0 0 1

⎞
⎟⎠ . (28.48)

The vector from the origin of {N} to the i-th contact
point is given by

ci − p = r
(

cos(θi ) sin(θi ) 0
)�

. (28.49)
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y

x
z

c1–�1

θ1

c2–�4

t̂2

t̂1

ẑ2

n̂1

n̂2 ẑ5

ô2
ô1

ẑ3

ẑ4

ẑ1

Fig. 28.11 A sphere grasped by a two-fingered hand with
five revolute joints

Substituting into (28.3) and (28.6) yields the complete
grasp matrix for contact i:

G̃i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ci si 0

−si −ci 0 0
0 0 1

0 0 rsi −ci si 0

0 0 −rci −si −ci 0

0 −r 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28.50)

where 0 ∈ R
3×3 is the zero matrix and ci and si

are abbreviations for cos(θi ) and sin(θi ), respect-
ively. The complete grasp matrix is defined as:
G̃ = (G̃1 G̃2) ∈ R

6×12.
The accuracy of this matrix can be verified by inspec-

tion; for example, the first column is the unit wrench of
the unit contact normal, the first three components are the
direction cosines of n̂i , and the last three are (ci − p)× n̂i .
Since n̂i is collinear with (ci − p), the cross products (the
last three components of the column) are zero. The last
three components of the second column represent the
moment of t̂i about the x-, y-, and z-axes of {N}. Since
t̂i lies in the (x, y)-plane, the moments with the x- and
y-axes are zero. Clearly t̂i produces a moment of −r
about the z-axis.

Construction of the complete hand Jacobian J̃i for
contact i requires knowledge of the joint axis direc-
tions and the origins of the frames fixed to the links of

ẑ2

ẑ5

{C }2
l4l6

l5

l3

l7

l2

l1

{C }1

ẑ3

ẑ4

ẑ1

Fig. 28.12 Relevant data for the hand Jacobian

each finger. Figure 28.12 shows the hand in the same
configuration as in Fig. 28.11, but with some additional
data needed to construct the hand Jacobian. Assume
that the origins of the joint frames lie in the plane of the
figure.

In the current configuration, the quantities of interest
for contact 1, expressed in {C}1 are:

c1 − ζ1 =
(

l2 l1 0
)�

, (28.51)

c1 − ζ2 =
(

l7 l3 0
)�

, (28.52)

ẑ1 = ẑ2 =
(

0 0 1
)�

. (28.53)

The quantities of interest for contact 2, in {C}2 are:

c2 − ζ3 = c2 − ζ4 =
(

l4 −l5 0
)�

, (28.54)

c2 − ζ5 =
(

l6 0 0
)�

, (28.55)

ẑ3 =
(

0 −1 0
)�

, (28.56)

ẑ4(q3) =
√

2

2

(
−1 −1 0

)�
, (28.57)

ẑ5(q3, q4) =
(

0 0 1
)�

. (28.58)

Generally all of the components of the c− ζ and ẑ
vectors (including the components that are zero in the
current configuration) are functions of q and u. The
dependencies of the ẑ vectors are shown explicitly.
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Substituting into (28.14), (28.11), and (28.8) yields
the complete hand Jacobian J̃ ∈ R

12×5:

J̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−l1 −l3

l2 l7

0 0

0 0 0
0 0

1 1

0 0 0

0 0 l6

l4

√
2

2 (l4 + l5) 0

0 0 −
√

2
2 0

−1 −
√

2
2 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The horizontal dividing line partitions J̃ into J̃1 (on
top) and J̃2 (on the bottom). The columns correspond
to joints 1–5. The block diagonal structure is a result of
the fact that finger i directly affects only contact i.

Example 1, Part 2: G and J
Assume that the contacts in Fig. 28.11 are both of type
SF. Then the selection matrix H is given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0 0
0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

thus the matrices G� ∈ R
8×6 and J ∈ R

8×5 are con-
structed by removing rows 5, 6, 11, and 12 from G̃�
and J̃:

G� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c1 −s1 0 0 0 0

s1 −c1 0 0 0 −r

0 0 1 rs1 −rc1 0

0 0 0 −c1 −s1 0

−c2 −s2 0 0 0 0

s2 −c2 0 0 0 −r

0 0 1 rs2 −rc2 0

0 0 0 −c2 −s2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28.59)

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−l1 −l3

l2 l7 0
0 0

0 0

0 0 0

0 0 l6

0 d
√

2
2 (l4 + l5) 0

0 −
√

2
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28.60)

Notice that changing the contact models is easily accom-
plished by removing more rows. Changing contact 1 to
HF would eliminate the fourth rows from G� and J,
while changing it to PwoF would eliminate the second,
third, and fourth rows of G� and J. Changing the model
at contact 2 would remove either just the eighth row or
the sixth, seventh, and eighth rows.

Example 1, Part 3: Reduction to the Planar Case
The grasp shown in Fig. 28.11 can be reduced to a planar
problem by following the explicit formulas given above,
but it can also be done by understanding the physical
interpretations of the various rows and columns of the
matrices. Proceed by eliminating velocities and forces
that are out of the plane. This can be done by remov-
ing the z-axes from {N} and {B}, and the ô-directions at
the contacts. Further, joints 3 and 4 must be locked.
The resulting G� and J are constructed eliminating
certain rows and columns. G� is formed by removing
rows 3, 4, 7, and 8 and columns 3, 4, and 5. J is formed
by removing rows 3, 4, 7, and 8 and columns 3 and 4,

Table 28.9 Dimensions of the main subspaces and classi-
fications of the grasp studied in Example 1

Models Dimension Class

HF,HF dim N (J) = 1 Redundant

dim N (G�) = 1 Indeterminate

dim N (G) = 1 Graspable

dim N (J�) = 2 Defective

SF,HF dim N (J) = 1 Redundant

dim N (G) = 1 Graspable

dim N (J�) = 3 Defective

HF,SF dim N (G) = 1 Graspable

dim N (J�) = 2 Defective

SF,SF dim N (G) = 2 Graspable

dim N (J�) = 3 Defective
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yielding:

G� =

⎛
⎜⎜⎜⎝

−c1 −s1 0

s1 −c1 −r

−c2 −s2 0

s2 −c2 −r

⎞
⎟⎟⎟⎠ , (28.61)

J =

⎛
⎜⎜⎜⎝

−l1 −l3 0

l2 l7 0

0 0 0

0 0 l6

⎞
⎟⎟⎟⎠ . (28.62)

Example 1, Part 4: Grasp Classes
The first column of Table 28.9 reports the dimensions of
the main subspaces of J and G for the sphere grasping
example with different contact models. Only nontrivial
null spaces are listed.

In the case of two HF contact models, all four null
spaces are nontrivial, so the system satisfies the condi-
tions for all four grasp classes. The system is graspable
because there is an internal force along the line seg-
ment connecting the two contact points. Indeterminacy
is manifested in the fact that the hand cannot resist a mo-
ment acting about that line. Redundancy is seen to exist
since joint 3 can be used to move contact 2 out of the
plane of the figure, but joint 4 can be rotated in the oppo-
site direction to cancel this motion. Finally, the grasp is
defective, because the contact forces and the instantan-
eous velocities along the ô1 and n̂2 directions of contact 1
and 2, respectively, cannot be controlled through the
joint torques and velocities. These interpretations are
borne out in the null space basis matrices below,
computed using r = 1, cos(θ1) = −0.8 = − cos(θ2),
sin(θ1) = cos(θ2) = −0.6, and l7 = 0:

N(J) ≈

⎛
⎜⎜⎜⎜⎜⎝

0

0

−0.73

0.69

0

⎞
⎟⎟⎟⎟⎟⎠ , N(G�) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0.51

0.86

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(28.63)

N(G) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.57

−0.42

0

0.57

0.42

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N(J�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 −1

1 0

0 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28.64)

Notice that changing either contact to SF makes it
possible for the hand to resist external moments ap-
plied about the line containing the contacts, so the
grasp loses indeterminacy, but retains graspability (with
squeezing still possible along the line of the con-
tacts). However, if contact 2 is the SF contact, the
grasp loses its redundancy. While the second contact
point can still be moved out of the plane by joint 3
and back in by joint 4, this canceled translation of
the contact point yields a net rotation about n̂2 (this
also implies that the hand can control the moment
applied to the object along the line containing the con-
tacts). Changing to SF at contact 2 does not affect the
hand’s inability to move contact 1 and contact 2 in
the ô1 and n̂2 directions, so the defectivity property is
retained.

Example 1, Part 5: Desirable Properties
Assuming contact model types of SF and HF at con-
tacts 1 and 2, respectively, G is full row rank and so
N (G�) = 0 (Table 28.9). Therefore, as long as the the
hand is sufficiently dexterous, it can apply any wrench
in R

6 to the object. Also, if the joints are locked, object
motion will be prevented. Assuming the same problem
values used in the previous part of this problem, the
matrix G� is:

G� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c1 −s1 0 0 0 0

s1 −c1 0 0 0 −r

0 0 1 rs1 −rc1 0

0 0 0 −c1 −s1 0

−c2 −s2 0 0 0 0

s2 −c2 0 0 0 −r

0 0 1 rs2 −rc2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28.65)

Bases for the three nontrivial null spaces are:

N(J�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

0 0 −1

1 0 0

0 −1 0

0 0 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (28.66)

N(J) ≈

⎛
⎜⎜⎜⎜⎜⎝

0

0

−0.73

0.69

0

⎞
⎟⎟⎟⎟⎟⎠ ,
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N(G) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.57

−0.42

0

0

0.57

0.42

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28.67)

Since R(J) is four dimensional and N (G) is one di-
mensional, the maximum dimension of R(J)+N (G)
cannot be more than five, and therefore, the hand
cannot control all possible object velocities, for exam-
ple, the contact velocity νcc = (0 0 0 0.8 0 0 0)� is in
N (J�), and so cannot be controlled by the fingers. It
is also equal to 0.6 times the third column of G� plus
the fourth column of G� and therefore is in R(G�).
Since the mapping between R(G) and R(G�) is one
to one and onto, this uncontrollable contact velocity
corresponds to a unique uncontrollable object velocity,
ν = (0 0 0.6 1 0 0). In other words, the hand cannot cause
the center of the sphere to translate in the z-direction,
while also rotating about the x-axis (and not other axes
simultaneously).

On the question of controlling all internal object
forces, the answer is yes, since N (J�)∩N (G) = 0.
This conclusion is clear from the fact that N (G) has
nonzero values in the first, second, and sixth posi-
tions, while all columns of N (J�) have zeros in those
positions.

2.50.5 1 1.5 2

Force closure metric for grasped sphereMetric

Metric limited
by friction at
second contact

Force
closure
archieved

Friction coefficient at contact 1

0.7

0.6

0,5

0.4

0.3

0.2

0.1

0

Fig. 28.13 Plot of the force closure metric versus the fric-
tion coefficient on contact 1

Example 1, Part6: Force Closure
Again assume that contacts 1 and 2 on the grasped
sphere were modeled as SF and HF contacts, respect-
ively. Under this assumption, G is full row rank, and the
internal force corresponds to equal and opposite contact
forces. For frictional form closure to exist, the inter-
nal force must lie within the friction cones. Choosing r
and the sines and cosines of θ1 and θ2 as in example 1,
part 4, frictional form closure can be shown to exist if
both friction coefficients are greater than 0.75. For this
grasp, since N (J�)∩N (G) = 0, frictional form closure
is equivalent to force closure.

The plot in Fig. 28.13 was generated by fixing
μ2 = 2.0 and varying μ1. Notice that, for μ1 < 0.75,
force closure does not exist. The metric increases
smoothly until μ1 becomes equal to μ2. At this point,
increasing μ1 further does not improve force closure,
since contact 2 becomes the limiting factor. To increase
the metric further, both friction coefficients must be
increased.

28.5.2 Example 2:
Grasped Polygon in the Plane

Part 1: G and J
Figure 28.14 shows a planar hand grasping a polygon.
Finger 1 (on the right) contains two joints numbered
1 and 2. Finger 2 contains joints 3–7, which are
numbered in increasing order moving from the palm
distally. The inertial frame has been chosen to lie inside
the object, with its x-axis passing through contacts 1
and 2, and collinear with the normal vector of con-
tact 2.

l2

l5

l7

x

y

l6

l8

l1

l3

l4

τ1, q1

τ2, q2

τ3, q3

Fig. 28.14 Planar hand with two fingers and seven joints
grasping a polygonal object
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The rotation matrices are given by

R1 =
(

−0.8 −0.6

0.6 −0.8

)
, R2 =

(
1 0

0 1

)
. (28.68)

Assuming HF contacts, G is given as

G =
⎛
⎜⎝ −0.8 −0.6 1 0

0.6 −0.8 0 1

l6 −l7 0 −l8

⎞
⎟⎠ . (28.69)

Notice that the first two columns of G correspond to the
normal and tangential unit vectors at contact 1. The third
and fourth columns correspond to contact 2.

Assuming HF contacts and that all joints are active
(i. e., not locked), J is

J� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8l1 0.6l1 0
−0.6l2 0.8l2

−l1 0

−l3 0

0 −l3 l5

−l3 + l4 l5

−l3 + l4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28.70)

The first two columns of J� are the torques required to
produce a unit force in the n̂1 and t̂1 directions at con-
tact 1. The horizontal line through the matrix partitions
the contributions for the first finger (the upper part) and
second finger. Notice that both J� and G are full column
rank.

Example 2, Part 2: Grasp Classes
This example clearly illustrates the physical qualities of
the various grasp classes without introducing features
that can cloud the descriptions.

We now discuss the details of the four grasp classes
using the previous planar example. During these dis-
cussions it is useful to choose nondimensional values
for the parameters in the grasping system. Assume l4
is the unit length. The other lengths as fractions of l4
are:

l1 = 2.7 , l2 = 1.0 , l3 = 1.7 , (28.71)

l4 = 1.0 , l5 = 1.0 , l6 = 1.0 , (28.72)

l7 = 1.3 , l8 = 1.5 . (28.73)

Redundant
Redundancy exists if N (J) is nontrivial. Assuming that
both contacts are hard contacts and that all the joints

are active, rank(J) = 4, so N (J) is three dimensional.
A basis for N (J) was obtained as

N(J) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 0

−0.50 −0.24 −0.18

0.53 0.67 −0.10

0.48 −0.49 −0.02

−0.48 0.49 0.02

−0.02 0.01 0.98

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28.74)

Since the first two rows are zero, N (J) does not in-
clude motions of the first finger (on the right of the palm).
To understand this, assume that the object is fixed in
the plane. Then the first finger cannot maintain sticking
contact at contact 1 unless its joints are also fixed.

The three nonzero columns corresponding to finger 2
show that there are three basis motions of its joints that
allow the finger contact to stick to the object contact. For
example, the first column shows that, if joint 3 moves
roughly as much as joints 4, 5, and 6, but in the opposite
direction as joints 4 and 5 and in the same direction as
joint 6, while joint 7 is more or less fixed, then contact 2
will be maintained.

Notice that finger 2 contains a parallelogram. Be-
cause of this geometry, one can see that the vector
(0 0 0 −1 1 −1 1)� is an element of N (J). The ve-
locity interpretation of this vector is that the link of the
finger connected to the palm, and the link touching the
object remain fixed in space, while the parallelogram
moves as a simple four-bar mechanism. Similarly, joint
actions in N (J) do not affect the contact forces, but
cause internal hand velocities. Also, notice that, since
N (J�) = 0, the entire space of possible generalized vel-
ocities and forces at the contacts can be generated by the
joints.

Indeterminate
As noted above, with HF contact models, the system is
graspable. However, replacing the HF models with PwoF
models removes the tangent force components in the t̂1
and t̂2 directions. This effectively removes columns 2
and 4 from G, which guarantees that the system will be
indeterminate. The reduced matrix is denoted by G(1,3).
In this case N (G�

(1,3)) is

N(G�
(1,3)) ≈

⎛
⎜⎝ 0

−0.86

0.51

⎞
⎟⎠ . (28.75)
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Physically, this basis vector corresponds to moving the
object such that the point coincident with the origin of
{N} moves directly downward, while the object rotates
counterclockwise. Also, if the analogous force and mo-
ment were applied to the object, the frictionless contacts
could not maintain equilibrium.

Graspable
With two HF contact models in force, rank(G) = 3, so
N (G) is one dimensional and the system is graspable.
The null space basis vector of the grasp matrix is:

N(G) ≈

⎛
⎜⎜⎜⎝

0.57

0.42

0.71

0

⎞
⎟⎟⎟⎠ . (28.76)

The physical interpretation of this basis vector is two
opposing forces acting through the two contact points.
Recall that, because the contact model is kinematic, there
is no consideration of contact friction. However, given
the direction of the contact normal relative to the line of
the internal force, one can see that if the coefficient of
friction is not greater than 0.75, squeezing tightly will
cause sliding at contact 1, thus violating the kinematic
contact model.

Defective
In a defective grasp, N (J�) �= 0. Given that the original
J is full row rank, the grasp is not defective. However,
it can be made defective by locking a number of joints
and/or changing the hand’s configuration so that J is no
longer full rank. For example, locking joints 4, 5, 6, and
7 makes finger 2 a single-link finger with only joint 3
active. In this new grasping system, J�

(1,2,3) is simply
the first three rows of the original J� given in (28.70),
where the subscript is the list of indices of active joints.
The null space basis vector is:

N(J�
(1,2,3)) =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ . (28.77)

This grasp is defective, since there is a subspace
of contact velocities and forces that cannot be con-
trolled by joint generalized velocities and forces. Since
only the last component of N(J�

(1,2,3)) is nonzero, it

ẑ2 ẑ3

n̂2

n̂1

λh
n̂3

t̂1

t̂2

t̂3

ẑ1

Fig. 28.15 A sphere grasped by a finger with three revolute
joints. The force direction λh (dashed line) is a force that
belongs to both N (G) and N (J�) and causes hyperstaticity

would be impossible for the hand to give the contact
point 2 on the object a velocity in the t̂2-direction while
maintaining the contact. This is also clear from the ar-
rangement of joint 3, contact 2, and the direction of the
contact normal. The dual interpretation is that forces
in N (J�) are resisted by the structure and the corres-
ponding joint loads is zero, or equivalently that those
forces are not controllable by the hand. Notice that if
the model of contact 2 were changed to point without
friction, then N(J�

(1,2,3)) = 0 and the system would no
longer be defective.

28.5.3 Example 3: Hyperstatic Grasps

Part 1: G̃ and J̃
Figure 28.15 shows a planar projection of a three-
dimensional sphere of radius l grasped by one finger
only, with three revolute joints, through three contacts.
The frames {C}1, {C}2, and {C}3 are oriented so that
their ô-directions point out of the plane of the figure
(as indicated by the small bold circle). The axes of the
frames {N} and {B} were chosen to be axis-aligned with
coincident origins located at the center of the sphere.
The z-axes are pointing out of the page. Observe that
since the three joint axes of the finger are perpendicular
to the (x, y)-plane, the grasp operates in that plane for
all time.

Assume that the width of all the links of the robotic
hand is zero. Rotation matrices Ri and vectors ci − p for
i = 1, . . . , 3, can be computed as in (28.48) and (28.49)
considering that θ1 = π, for contact 1, θ2 = π/2 and
θ3 = 0, for contacts 2 and 3, respectively. Finally, the

complete grasp matrix is G̃� =
(

G̃1 G̃2 G̃2

)� ∈ R
18×6
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where G̃i is as defined in (28.50):

G̃� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 −l

0 0 1 0 l 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −1 0 0 0 0

1 0 0 0 0 −l

0 0 1 l 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 −l

0 0 1 0 −l 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Construction of the complete hand Jacobian J̃i for con-
tact i requires knowledge of the joint axis directions and
the origins of the frames fixed to the links of each finger.
Assume that the origins of the DH frames lie in the plane
of the figure. In the current configuration, the quantities
of interest for contact 1, expressed directly in {N}, are

c1 − ζ1 =
(

0 l 0
)�

,

ẑ1 =
(

0 0 1
)�

.

The quantities of interest for contact 2, in {N}, are

c2 − ζ1 =
(

l 2l 0
)�

,

c2 − ζ2 =
(

l 0 0
)�

,

ẑ1 =
(

0 0 1
)�

,

ẑ2 =
(

0 0 1
)�

.

The quantities of interest for contact 3, in {N}, are

c3 − ζ1 =
(

2l l 0
)�

,

c3 − ζ2 =
(

2l −l 0
)�

,

c3 − ζ3 =
(

0 −l 0
)�

,

ẑ1 =
(

0 0 1
)�

,

ẑ2 =
(

0 0 1
)�

,

ẑ3 =
(

0 0 1
)�

.

The complete hand Jacobian J̃ ∈ R
18×3 (contact vel-

ocities are expressed in {C}i ) is:

J̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−l 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

−l −l 0

−2l 0 0

0 0 0

0 0 0

0 0 0

1 1 0

l −l −l

−2l −2l 0

0 0 0

0 0 0

0 0 0

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The horizontal dividing line partitions J̃ into J̃1 (on top),
J̃2, and J̃3 (on the bottom). The columns correspond to
joints 1–3.

Example 3, Part 2: G and J
Assume that the three contacts in Fig. 28.15 are of type
HF. Then the selection matrix H is given by

H =
⎛
⎜⎝I 0 0 0 0 0

0 0 I 0 0 0
0 0 0 0 I 0

⎞
⎟⎠ , (28.78)

where I and 0 are in R
3×3, thus the matrices G� ∈ R

9×6

and J ∈ R
9×3 are obtained by removing rows related to
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rotations from G̃� and J̃:

G� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 −l

0 0 1 0 l 0

0 −1 0 0 0 0

1 0 0 0 0 −l

0 0 1 l 0 0

−1 0 0 0 0 0

0 −1 0 0 0 −l

0 0 1 0 −l 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l 0 0

0 0 0

0 0 0

l l 0

2l 0 0

0 0 0

l l l

2l 2l 0

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Example 3, Part 3: Grasp Classes
The first column of Table 28.10 reports the dimensions of
the main subspaces of J� and G for the sphere grasping
example with three hard-finger contacts. Only nontrivial
null spaces are listed.

The system is defective because there are general-
ized contact forces belonging to the subspace that are
resisted by the structure, which correspond to zero joint
actions:

N(J�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 −2

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The first three columns represent generalized forces
acting at the three contact points in a direction perpen-
dicular to the plane of the Fig. 28.15. The fourth column
corresponds to a contact force applied only along the t̂1
direction.

Table 28.10 Dimensions of the main subspaces and classi-
fications of the grasp given in Example 3

Dimension Class

dim N (J�) = 6 Defective

dim N (G) = 3 Graspable

dim N (J�)∩N (G) = 1 Hyperstatic

The system is graspable because the subspace of
internal forces is three dimensional; a possible basis
matrix is:

N(G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0

1 0 1

0 0 0

1 0 2

−1 0 0

0 0 0

0 1 0

0 0 −1

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The three force vectors of the subspace N(G) are easily
identified from Fig. 28.15. Note that all forces are ex-
pressed in local contact frames. The first column vector
of N(G) represents opposed forces at contacts 1 and 2
along the line joining contacts 1 and 2. The second col-
umn vector parameterizes opposed forces at contacts 1
and 3 along the line joining contacts 1 and 3. The last
vector represents forces along direction λh, shown as
the dashed lines in Fig. 28.15. Note that this direction
(in wrench intensity space) corresponds to two upward
friction forces at the left and right contacts and one
downward with double the magnitude from the center
of the top link in the work space.

Finally, the grasp is hyperstatic because

N(G)∩ N(J�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

2

0

0

0

−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�= 0 .

Hyperstatic forces in this subspace are internal forces
that cannot be controlled through the hand joints. In
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y

2-D grasp
of a disc

Force and
velocity cones

Force cone
is ray

Force cone

Force cone is
the plane

Velocity cone is
half  plane

Velocity cone is
the origin

Velocity cone

1

1

1

2

2

1
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y
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x

y

1

3

3

2

Fig. 28.16 The case of a translating disc in the plane: re-
lationship between frictionless contacts and possible disc
velocities and net contact forces

Fig. 28.15 the internal force λh that is also in N(J�) is
reported.

The grasp in Fig. 28.15 is an example of a power
grasp, a style of grasp mentioned earlier that uses many
contact points not only on the fingertips but also on the
links of fingers and the palm [28.4, 20, 31].

All power grasps are kinematically defective
(N (J�) �= 0) and are usually hyperstatic. According to

x

α

C2

C1

y

4

21

3

l

l
7
4

Fig. 28.17 Planar grasp with first-order form closure if
1.052 < α < π

2

Sect. 28.4.2, rigid-body modeling is not sufficient to cap-
ture the overall system behavior, because the generalized
contact forces in N (G)∩N (J�) leave the dynamics
indeterminate.

Many approaches have been used to overcome the
rigid-body limitation in hyperstatic grasps such as those
proposed in [28.12, 16, 17] where viscoelastic contact
models have been used to solve the force indeterminacy.
In [28.32], the authors found that a sufficient condition
for hyperstaticity is m > q +6, where m is the dimension
of the contact force vector.

28.5.4 Example 4: Duality

Consider a frictionless disc constrained to translate in
the plane (Fig. 28.16). In this problem nν = 2, so the
space of applied contact forces and object velocities
is the plane R

2. In the top pair of pictures, a single
(fixed) contact point imposes a half-space constraint
on the instantaneous velocity and limits the force at
a frictionless contact to the ray. Both the ray and the
(dark gray) half space are defined by the contact nor-
mal pointing into the object. Notice that the ray and half
space are dual cones. When two contacts are present,
the (light gray) force cone becomes the nonnegative
span of the two contact normals and the velocity cone
is its dual. With the addition of the third contact,
the grasp has form closure, as indicated by the de-
generation of the velocity cone to the origin and the
expansion of the force cone to become equal to the
plane.

1.81 1.2 1.4 1.6

Metric

Angle of  contact

0.7

0.6

0,5

0.4

0.3

0.2

0.1

0

Fig. 28.18 Plot of closure metric versus angle of contact if
1.04 < α < 1.59
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It is important to point out that the discussion of
the dual cones applies to three-dimensional bodies after
replacing the contact normals with the columns of G.

28.5.5 Example 5: Form Closure

Form closure of a spatial object requires seven con-
tacts, which is difficult to illustrate. Therefore, the only
form closure example analyzed in this chapter is for the
following planar problem.

The fundamental features of a planar grasp with four
contacts are shown in Fig. 28.17. Notice that the normal
at the fourth contact is well defined despite the contact
occurring on the vertex of the object. The angle α of the
finger is allowed to vary, and it can be shown that form

closure exists if α lies in the interval 1.0518 < α < π
2 .

Notice that a critical value of α occurs when the lower
edge of C2 contains contact point 3 (α ≈ 1.0518) and
contact point 2 (α = π

2 ).
Choosing the frame for analysis with origin at the

fourth contact point, the grasp matrix for this example is

G =
⎛
⎜⎝ 0 0 1 − cos(α)

1 1 0 − sin(α)

−l 0 7
4 l 0

⎞
⎟⎠ . (28.79)

Form closure was tested for a range of angles as shown
in the plot in Fig. 28.18, which indicates that the grasp
farthest from losing form closure has α ≈ 1.22 radians,
which is the configuration shown in the figure.

28.6 Conclusion and Further Reading

A great deal of understanding of grasping systems can
be derived from the simple linear kinematic, dynamic,
and contact models. The most widely used grasp classi-
fications and closure properties can all be derived from
these models under the rigid-body assumption. Lineariz-
ing these models leads to metrics and tests that can be
computed efficiently using computational linear algebra
and linear programming techniques. In-depth discus-
sions of grasp kinematics and grasp classification can
be found in [28.11, 16, 21, 32–36]. When making sim-
plifying assumptions, one has to wonder what insights
have been lost. For the interested reader, there are a host
of papers that analyze grasping system under more so-
phisticated assumptions. In general, bodies are curved
and compliant [28.13, 22, 31, 37–39]. Contact friction
models are not quite as simple as the Coulomb approxi-
mation so widely adopted, and presented in this chapter;
for example, if a contact has to resist a moment about
its normal, its effective tangential friction coefficient is
reduced [28.29]. In our analysis, the quadratic Coulomb
friction cone was approximated by a polyhedral cone.
The analysis problems are more difficult when using the
quadratic cone, but they are quite tractable [28.30, 40].
In principle, a properly designed hand–object system
could be controlled to maintain all contacts, but worldly
realities can lead to unwanted slipping or twisting.

Other important research topics within the area of
grasping are: grasp synthesis, force distribution, sta-
bility, and dexterous manipulation. Grasp synthesis is
the problem of choosing the posture of the hand and
contact point locations to optimize a grasp quality met-
ric. Note that this is quite a different issue from grasp

acquisition, which refers to the act of achieving the
chosen grasp. Grasp acquisition is an act of dexterous
manipulation. One of the first studies of grasp synthe-
sis for multifingered hands was undertaken by Jameson
in 1985 [28.41] who designed a Levenberg–Marquardt
algorithm to search the surface of an object for the lo-
cations of three points that would achieve force closure.
Since this work, many other metrics and approaches
to searching for high-quality grasps have been imple-
mented (see, for example, [28.42–47]). A recent paper
by Liu et al. provides an in-depth discussion of several
quality metrics. They further demonstrate that, if one
chooses finger contact locations by optimizing the met-
rics and if a force closure grasp exists, then the grasps
obtained are force closed [28.48]. For grasping of several
objects simultaneously, see [28.49].

The grasp force distribution problem is that of find-
ing good joint actions and contact forces to balance
a given external load applied to the object. This prob-
lem was studied in the context of walking machines
first by McGhee and Orin [28.50] and later by sev-
eral others [28.51, 52]. Kumar and Waldron applied
similar techniques to force distribution problems in
grasping [28.53]. Recent work by Han et al. and Buss
et al. has solved the force distribution problem with
nonlinear friction cone constraints by taking advantage
of second-order cone programming and related tech-
niques [28.30, 40, 54]. In power grasps, this problem
is more involved because contact forces that cannot be
applied may exist, as studied in [28.17, 19, 20, 55].

Grasp stability is too often equated to grasp closure,
because all external forces can be balanced by the hand.
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However, grasp closure is really equivalent to the ex-
istence of equilibrium, which is a necessary condition
for stability, but not a sufficient condition. The com-
mon definition of stability outside of the field of robotic
grasping requires that, when a system is deflected from
an equilibrium point, the system returns to this point.
This was the approach taken by Hanafusa and Asada,
who studied grasp stability for a hand with three elas-
tic fingers [28.56]. Cutkosky took the analysis to three
dimensions and accounted for finger and object curva-
tures [28.37]. He showed that stability was dependent
on the stiffnesses of the fingers and controller and on the
curvatures of the bodies in contact.

Dexterous manipulation research first appeared in
the literature in the 1970s. Hanafusa and Asada devel-
oped a plan to turn a nut onto a bolt [28.57]. Since
then a progression of increasingly complex manipula-
tion tasks have been studied at varying degrees of detail.
Mason and many of his students studied pushing tasks in
the horizontal plane, see for example [28.58–61]. Other
notable planar work can be found in [28.62–66]. The
planning and execution of dexterous manipulation tasks
in three dimensions continues to be an open problem
in robotics. However, for several interesting approaches
and many useful insights, the following reading is rec-
ommended [28.67–72].
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