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Parallel Mech12. Parallel Mechanisms and Robots

Jean-Pierre Merlet, Clément Gosselin

This chapter presents an introduction to the kine-
matics and dynamics of parallel mechanisms, also
referred to as parallel robots. As opposed to classi-
cal serial manipulators, the kinematic architecture
of parallel robots includes closed-loop kinematic
chains. As a consequence, their analysis differs
considerably from that of their serial counterparts.
This chapter aims to presenting the fundamental
formulations and techniques used in their analysis.
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12.1 Definitions

A closed-loop kinematic chain is one in which the links
and joints are arranged such that at least one closed loop
exists. Furthermore, a complex closed-loop kinematic
chain is obtained when one of the links – other than the
base – has a degree of connectivity greater than or equal
to three, i. e., one link other than the base is connected
through joints to at least three other links. A parallel
manipulator can be defined as a closed-loop mechanism
composed of an end-effector having n degrees of free-
dom and a fixed base, linked together by at least two
independent kinematic chains.

An example of such a structure was patented in 1928
by Gwinnett [12.1] to be used as a platform for a movie
theater. In 1947 Gough [12.2] established the basic prin-
ciples of a mechanism with a closed-loop kinematic
structure (Fig. 12.1) that allows the positioning and ori-
entation of a moving platform so as to test tire wear
and tear. He built a prototype of this machine in 1955.
For this mechanism, the moving effector is a hexagonal

platform whose vertices are all connected to a link by
a ball-and-socket (spherical) joint. The other end of the
link is attached to the base by a universal joint. A lin-
ear actuator allows the modification of the total length
of the link; this mechanism is therefore a closed-loop
kinematic structure, actuated by six linear actuators.

In 1965, Stewart [12.3] suggested the use of such
a structure for flight simulators and the Gough mech-
anism is sometimes referred to as a Stewart platform.
The same architecture was also concurrently proposed
by Kappel as a motion simulation mechanism [12.4].
Nowadays the Gough platform is the platform of choice
for flight simulators. The latter application provides
a convincing illustration of the main advantage of paral-
lel robots namely, their load-carrying capacity. Indeed,
while the ratio of the mass of the payload over the mass
of the robot is typically smaller than 0.15 for serial 6R in-
dustrial robots, this ratio can be larger than 10 for parallel
structures. Another advantage of the Gough platform is
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270 Part B Robot Structures

Fig. 12.1 Gough platform (1947)

its very good positioning accuracy. This high accuracy
arises from the fact that the legs are working essentially
in tension/compression and are subjected to virtually no
bending – thereby leading to very small deformations –
and from the fact that the errors in the internal sensors of
the robot (the measurement of the lengths of the legs for
the Gough platform) are mapped into very small errors
of the platform position. Parallel robots are also almost
insensitive to scaling (the same structure can be used for
large or micro robots) and they can be built using almost
any type of actuator or transmission, for example, wire
transmissions can be used (see the Robocrane [12.5]).
The main drawbacks of parallel robots are their small
workspace and the singularities that can appear within
the latter.

Apart from the Gough platform, the most successful
designs of parallel robots are the Delta robot proposed
by Clavel [12.6] (Fig. 12.2) and some planar parallel
robots. The most common planar parallel robots have
three identical legs each having an RP R or RRR archi-
tecture, where the underlined joint is the actuated one;
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Fig. 12.2 The Delta robot
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Fig. 12.3 The 3− RP R planar parallel robot

such robots are often denoted as 3− RP R (see Fig. 12.3)
and 3− RRR.

The geometric arrangement of the joints and links
of the Delta structure provides three translational de-
grees of freedom at the platform. Numerous other types
of parallel robots have been proposed in recent years.
Although most existing architectures are based on the
intuition of their designer, the synthesis of parallel mech-
anisms can be dealt with systematically. An overview of
the main approaches to the type synthesis of parallel
mechanisms is given in the next section.
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Parallel Mechanisms and Robots 12.3 Kinematics 271

12.2 Type Synthesis of Parallel Mechanisms

Determining all potential mechanical architectures of
parallel robots that can produce a given motion pattern
at the moving platform is a challenging problem. Several
authors have addressed this problem, referred to as type
synthesis. The approaches proposed in the literature can
be divided into three groups:

• Approaches based on graph theory: the enumera-
tion of all possible structures having a given number
of degrees of freedom (DOfs) can be performed by
considering that there is only a finite set of pos-
sible kinematic pairs, and hence a very large, but
finite, set of possible structure combinations (see,
for instance, [12.7]). Classical mobility formulae –
e.g., the Chebychev–Grübler–Kutzbach formula –
are then used to determine the number of DOFs in the
structure. Unfortunately these formulae do not take
into account geometric properties of the mechanism
that can change the number of DOFs of the plat-
form. Therefore, synthesis approaches based strictly
on graph theory can produce only limited results
and have been largely superseded by the other two
groups.• Approaches based on group theory: the motion of
a rigid body has the special structure of a group, the
displacement group. Subgroups of the group of dis-
placements, such as the spatial translations or all the
translational and rotational motions about all axes
that are parallel to the axis defined by a given vec-
tor (Schönflies motion) play an important role as
they can be combined through the intersection op-
eration [12.8] when elements of subgroups act on
the same rigid body. Type synthesis consists in de-
termining all the possible subgroups to which the
different kinematic chains that will constitute the
legs of the robot may belong so that their intersection
leads to the desired motion pattern for the platform.
Synthesis approaches based on group theory led to
the discovery of numerous possible architectures.
Nevertheless, the displacement group has special
properties that are not reflected by its group struc-

ture alone. Also, the approach is limited to motion
patterns that can be described by a subgroup of the
displacement group.• Approaches based on screw theory: in this approach,
the first step is to determine the wrench system S that
is reciprocal to the desired velocity twist of the mov-
ing platform. Then, the wrenches of the kinematic
chains of the robot whose union spans the system
S (and that determine all the possible structures of
the kinematic chains that will generate the corre-
sponding wrenches) are enumerated. Then, since all
considered twists and wrenches are instantaneous,
it is necessary to verify that the mobility of the
platform is full-cycle and not only instantaneous.
A systematic implementation of this approach is
provided in [12.9].

These synthesis methods have been used to gen-
erate a large number of architectures that cannot be
presented in this book, but the Web site of Merlet [12.10]
presents a comprehensive description of a large num-
ber of mechanical architectures. Among others, several
remarkable architectures were proposed in the recent
years to fully or partially decouple translational motions
or Schönflies motions (see [12.9] and the references
therein).

It should also be pointed out that for robots with
fewer than six DOFs, synthesis methods generally lead
to architectures that must satisfy stringent geometric
constraints (such as for the Delta robot, where the axes
of the parallelograms should be parallel and their sides
of equal length). Such constraints cannot be exactly ver-
ified in practice and consequently the manipulator will
exhibit parasitic, i. e., unwanted, motion. Open issues
therefore include:

• the determination of the maximal amplitude of the
parasitic motion over a given workspace and for
a given robot• the determination of the geometry of a given struc-
ture such that the maximal amplitude of the parasitic
motion will be smaller than a given threshold

12.3 Kinematics

12.3.1 Inverse Kinematics

The solution of the inverse kinematic problem is usually
straightforward for parallel robots. This can be illus-

trated with the Gough platform. The solution of the
inverse kinematic problem consists in determining the
vector of leg lengths q for a given pose of the platform
defined by the position vector p of a given point on the
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272 Part B Robot Structures

platform in a fixed reference frame and a rotation ma-
trix R representing the orientation of the platform with
respect to the fixed frame. Let ai denote the position vec-
tor of the anchor point of the ith leg on the base given
in the fixed reference frame and bi denote the position
vector of the anchor point of the ith leg on the platform,
given in a moving frame attached to the platform. The
length of the ith leg is the norm of the vector connect-
ing the two anchor points. The latter vector, denoted by
si , can be written as

si = p+ Rbi −ai , i = 1, . . . , 6 . (12.1)

Given the pose of the platform (vector p and matrix R),
the vector si is readily calculated using (12.1), and hence
the leg lengths can be obtained.

12.3.2 Forward Kinematics

The solution of the forward kinematic problem consists
in determining the pose of the platform for a given set
of actuated joint coordinates (a given vector q). This
solution is needed for control purposes, calibration, and
motion planning.

The forward kinematic problem of a parallel robot
is usually much more complex than the inverse kine-
matic problem. Indeed, the loop closure equations
(12.1) are typically highly nonlinear expressions of
the pose variables. They form a nonlinear set of
equations that generally admits multiple solutions (for
example the Gough platform can have up to 40 so-
lutions [12.11–13], while a table with the number of
solutions for Gough platforms with special geometries
is provided in [12.14]). The forward kinematic problem
arises in two different contexts. In the first case, no esti-
mate of the current pose of the platform is available (for
example, when starting the robot) while in the second
case, a relatively precise estimate of the pose is known
(for example in real-time control when the forward kine-
matics has been solved at the previous sampling time of
the controller). In the first case, the only known ap-
proach is to determine all the solutions of the inverse
kinematic equations, although there is no known algo-
rithm to sort the set of solutions. It is often possible to
determine an upper bound on the number of real so-
lutions. Consider for example the case of the planar
3− RP R robot (Fig. 12.3). If the joint at point B3 is
disassembled, two separate mechanisms are obtained,
namely a four-bar linkage and a rotary lever. From the
kinematics of four-bar linkages it is known that point B3
moves on a sixth-order algebraic curve. Moreover, it is
also known that point B3 of the lever moves on a cir-

cle, i. e., a second-order algebraic curve. For a given set
of actuated joint coordinates, solutions to the forward
kinematic problem arise when the two curves intersect,
i. e., when the mechanism can be assembled. Bezout’s
theorem states that algebraic curves of order m, n inter-
sect at nm points, counting their order of multiplicity. In
the above case, this means that the curves intersect in 12
points. However, these 12 points include the two circular
imaginary points that belong to the coupler curve of the
four-bar linkage and to any circle, thereby to their inter-
section. These points are counted three times in Bezout’s
theorem and hence the forward kinematic problem will
have at most six real solutions, corresponding to the
intersection points.

Various methods have been proposed for the solution
of the forward kinematic problem: elimination [12.15],
continuation [12.13], Gröbner bases [12.16], and inter-
val analysis [12.17]. Elimination is usually not very
stable numerically (i. e., it can produce spurious roots
and miss solutions) unless special care is taken in the
implementation of the resulting univariate equation and
the elimination steps. For instance, the transformation
of polynomial solutions into eigenvalue problems can
be used [12.18]. Polynomial continuation, on the other
hand, is much more stable numerically since mature
algorithms can be found in the literature [12.19]. The
fastest methods – although not appropriate for real-time
use – are Gröbner bases and interval analysis. They also
have the advantage of being numerically certified (no
roots can be missed and the solution can be computed
with an arbitrarily prescribed accuracy).

However, in the simplest cases, elimination can
usually be used to produce stable implementations. Con-
sider, for example, the case of the planar 3− RP R robot
(Fig. 12.3), where the fixed reference frame has its origin
at point A1 and its x-axis passes through the point A2.
Similarly, point B1 is chosen as the origin of the mov-
ing frame while the x-axis of this frame passes through
point B2. The pose of the platform is then defined by
the coordinates (x, y) of point B1 in the fixed reference
frame and by the angle θ between the x-axes of the refer-
ence and moving frames. The known length q1 of link 1
can thus be written simply as

q2
1 = x2 + y2 . (12.2)

Then, the length qi of the other links can be written as:

q2
i = x2 + y2 + gi(x, y, θ) , i = 2, 3 , (12.3)

where gi is linear in x, y. Subtracting the length of link 1
from the latter two equations leads to a linear system of
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Parallel Mechanisms and Robots 12.4 Velocity and Accuracy Analysis 273

two equations in the unknowns x and y. This system is
solved and x and y are obtained as functions of θ. The
expressions for x and y are then substituted into (12.2),
thereby leading to a single equation in the unknown θ.
This unknown appears in the equation through its sine
and cosine, and by using the Weierstrass substitution,
the equation can be transformed into a sixth-order poly-
nomial equation in the unknown T = tan(θ/2). Solving
this equation in T allows one to compute all possible so-
lutions in θ, from which the values of x and y are readily
obtained. It is noted that this polynomial is of minimal
degree since it was established that the number of real
solutions cannot exceed six. It can also be shown that
there exist configurations of the robot for which there
are exactly six real solutions to the forward kinemat-
ics. Finally, it should be pointed out that the forward
kinematic problem of the 3− RRR robot is mathemat-
ically exactly the same as the one developed above for
the 3− RP R robot. This is typical for parallel robots.

When a priori information (an initial guess of the
solution) is available, the forward kinematics is usually
solved using the Newton–Raphson or the Newton–
Gauss iterative scheme. Consider the solution to the
inverse kinematic problem, written as:

q = f (x) . (12.4)

Iteration k of the Newton–Raphson procedure is written
as

xk+1 = xk + A(q − f (xk)) , (12.5)

where q is the vector of prescribed joint variables. The
matrix A is usually chosen as ( ∂ f

∂q )−1(xk) (the inverse
matrix may not be computed at each iteration or even be
chosen as constant). The iterative scheme stops when the
magnitude of the difference vector (q − f (xk)) is smaller
than a chosen threshold.

The choice of the inverse kinematics equations
plays an important role in the convergence of this
method [12.20]. For example, for a Gough platform,
a minimal set of equations (six equations involving six

unknowns: three for the translation and three orienta-
tion angles) can be used, but other representations are
possible. For instance, the position coordinates of three
of the platform anchor points – in the fixed reference
frame – can be used as unknowns (the coordinates of the
remaining three points are then readily computed upon
convergence). Using this representation, nine equations
are needed. Six equations are obtained based on the
known distances between the anchor points on the base
and platform and three additional equations are obtained
based on the known distances between all combinations
of the three selected platform anchor points.

Provided that a good initial estimate of the solution
is available, the Newton–Raphson algorithm is usually
very fast. However, the procedure may not converge or,
even worse, it may converge to a solution that is not
the correct pose of the platform, i. e., it may converge
to another assembly mode. Such a situation may occur
even if the initial guess is arbitrarily close to the correct
pose. If the result is used in a control loop, the conse-
quences can be catastrophic. Fortunately mathematical
tools such as the Kantorovitch theorem combined with
interval analysis can be used to determine if the solution
found by the Newton–Raphson scheme is the correct
pose of the robot, i. e., to certify the result at the cost of
a larger computation time, yet still compatible with real
time [12.17].

Another possible approach for the solution of the
forward kinematic problem is either to add sensors on
the passive joints (e.g., on the U joints of a Gough plat-
form) or to add passive legs with sensed joints. The
main issue is then to determine the number and location
of the additional sensors that will lead to a unique solu-
tion [12.21,22] and to determine the effect of the sensor
errors on the positioning error of the platform. For ex-
ample, Stoughton mentions that, for a Gough platform
with sensors in the U joints, it was still necessary to use
the Newton–Raphson scheme to improve the accuracy
of the solution because the solutions obtained with the
additional sensors were very sensitive to measurement
noise [12.23].

12.4 Velocity and Accuracy Analysis

Similarly to serial robots, the actuated joint velocity
vector of parallel robots q̇ is related linearly to the vector
of translational and angular velocities of the platform
(for simplicity, the latter vector is denoted here by ṗ,
although the angular velocity is not the time derivative

of any set of angular parameters). The linear mapping
between the two vectors is provided by the Jacobian
matrix J:

ṗ = J(p)q̇ . (12.6)
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274 Part B Robot Structures

However, for parallel robots, a closed-form expression
is usually available for the inverse Jacobian J−1, but this
is much more difficult for J (more precisely, the closed
form for most six-DOF robots will be so complex that it
cannot be used in practice). For example, a simple static
analysis can be used to show that the ith row J−1

i of
matrix J−1 for a Gough platform can be written as

J−1
i = n�

i (ci × ni )
� , (12.7)

where ni represents the unit vector defined along leg i
and ci is the vector connecting the origin of the mobile
frame attached to the platform to the ith anchor point on
the platform.

The effect of the joint sensor errors Δq on the posi-
tioning error Δp follows the same relationship, namely

Δp = J(p)Δq . (12.8)

Since the matrix J is difficult to obtain in closed form,
accuracy analysis (i. e., finding the maximal position-
ing errors over a given workspace for bounded joint
sensor errors) is much more difficult than for serial
robots [12.20, 24]. Apart from the measurement errors,
there are other sources of inaccuracy in parallel robots,
namely: clearance in the passive joints, manufacturing
tolerances, thermal errors, and gravity-induced and dy-
namic errors [12.25, 26]. The effect of joint clearances
on trajectories followed by serial and parallel robots
was studied in [12.27–29]. According to these works, it

is impossible to determine trends for the effect of the ge-
ometric errors: a case-by-case study must be performed
since the effect is highly dependent on the mechanical
architecture, dimensioning, and workspace of the robot.
Thermal effects are sometimes mentioned as possible
sources of inaccuracy, although few works substantiate
this claim [12.30] and cooling may slightly reduce their
effects [12.31].

Calibration is another means of improving the ac-
curacy of parallel robots. This issue was addressed in
Chap. 3. The methods and procedures used for paral-
lel robots differ slightly from the ones used for serial
robots since only the inverse kinematic equations are
available and since the positioning of the platform is
much less sensitive to the geometric errors than in serial
robots [12.32, 33]. Hence the measurement noise oc-
curring during calibration has a significant impact and
may lead to surprising results. For example, the clas-
sical least-squares method may lead to parameters that
are such that some constraint equations are not satis-
fied even when the measurement noise is taken into
account [12.34]. It has also been shown with experi-
mental data that classical parallel robot modeling leads
to constraint equations that do not have any solution ir-
respective of the measurement noise [12.35]. Moreover,
calibration is very sensitive to the choice of the calibra-
tion poses [12.36]: it seems that the optimal choice is to
select poses on the workspace boundary [12.37, 38].

12.5 Singularity Analysis

12.5.1 General Formulation

The analysis of singularities of parallel mechanisms was
first addressed by Gosselin and Angeles [12.39]. In this
formulation, the kinematic equations were reduced to the
input–output relationship between the actuated joint co-
ordinate vector q and the platform Cartesian coordinate
vector p, namely

f (q, p) = 0 . (12.9)

Differentiating (12.9) with respect to time leads to

Bq̇ + Aṗ = 0 . (12.10)

Three types of singularities can then be defined:

• when matrix B is singular (termed serial singularity)• when matrix A is singular (termed parallel singular-
ity)

• when the input–output equations degenerate (termed
an architecture singularity) in which case matrices
A and B can both be singular.

In a serial singular configuration, the joints can have
a nonzero velocity while the platform is at rest. In a par-
allel singularity, there exist nonzero platform velocities
for which the joint velocities are zero. In the neigh-
borhood of such a configuration, the robot can undergo
an infinitesimal motion while the actuators are locked.
Since the mobility of the end-effector should be zero
when the actuators are locked, it is also said that in such
a configuration the robot gains some DOFs. As a con-
sequence, certain degrees of freedom of the platform
cannot be controlled, and this is a major problem.

A more general study of singularities was proposed
by Zlatanov [12.40]. The latter analysis uses the velocity
equations involving the full twist of the end-effector and
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Parallel Mechanisms and Robots 12.5 Singularity Analysis 275

all joint velocities (passive or actuated). This approach
led to a more detailed classification of singularities and
was also used later to reveal special singularities (re-
ferred to as constraint singularities) [12.41] that could
not be found with the analysis presented in [12.39].

The singularity analyses discussed above are of the
first order. Second- (and higher-)order singularity anal-
yses can also be performed, although the latter are much
more complex [12.29, 42].

12.5.2 Parallel Singularity Analysis

This type of singularity is especially important for par-
allel robots because it corresponds to configurations in
which the control of the robot is lost. Furthermore, very
large joint forces can occur in the vicinity of singular
poses, that may lead to a breakdown of the robot. The
main issues to be addressed in this context are:

• the characterization of the singularities• the definition of performance indices representing
the closeness to a singularity• the development of algorithms that are capable of
detecting the presence of singularities over a given
workspace or trajectory

Parallel singularities arise when the 6 × 6 full inverse
Jacobian J f (i. e., the matrix that maps the full twist
of the platform into active – and eventually passive –
joint velocities) is singular, i. e., when its determinant
det(J f ) is equal to 0. It is pointed out that passive joint
velocities sometimes have to be included because re-
stricting the analysis to the active joint velocities may
not allow the determination of all singular configura-
tions of the mechanism (see the example of the 3−U PU
robot [12.43]). Usually, a proper velocity analysis allows
one to establish this matrix in closed form, but comput-
ing the determinant of this matrix may be difficult even
with symbolic computation tools (see the example of
the Gough platform [12.44, 45]). The advantage of this
approach is that once the expression of the determinant
is obtained, the locus of singular configurations can be
plotted in the workspace, thereby leading to graphical
representations that can be useful in a context of design.
However, the determinant itself is usually a large ex-
pression that does not provide insight into the geometric
conditions associated with the singularities.

An alternative approach is to use line geometry: in-
deed, for several parallel robots (although not all), a row
of J f corresponds to the Plücker vector of some line de-
fined on the links of the robot. For example, for a Gough
platform, the rows of J f are the normalized Plücker

vectors of the lines associated with the legs of the robot.
A singularity of matrix J f therefore implies a linear de-
pendency between these vectors (they then constitute
a linear complex), a situation that may occur only if the
lines associated with the vectors verify particular geo-
metric constraints [12.46] (for example, three Plücker
vectors will be linearly dependent if and only if their as-
sociated lines are coplanar and intersect at a common
point). These geometric constraints have been identi-
fied by Grassmann for every set of three, four, five or six
vectors. Singularity analysis is thus reduced to determin-
ing conditions on the pose parameters for which these
constraints are satisfied, giving geometric information
on the singularity variety. The closed-form singularity
condition can then be substituted into the Jacobian ma-
trix and the kernel of the matrix calculated in order to
determine the singular motion [12.47].

Measuring closeness between a pose and a singu-
lar configuration is a difficult problem: there exists no
mathematical metric defining the distance between a pre-
scribed pose and a given singular pose. Hence, a certain
level of arbitrariness must be accepted in the definition
of the distance to a singularity and none of the pro-
posed indices is perfect. For example, a possible index
is the determinant of J f : unfortunately when the plat-
form is subjected to both translational and rotational
motion, the latter matrix is not dimensionally homo-
geneous and hence the value of the determinant will
change according to the physical units used to describe
the geometry of the robot. Dexterity indices, as defined
in Chap. 11 (although they are less relevant for parallel
robots than for serial robots [12.24]), can also be used
and special indices for parallel robots have also been
proposed [12.48, 49].

Most of the analyses based on the above indices
are local, i. e., valid only for a given pose, while in
practice the problem is to determine if a singular config-
uration can occur over a given workspace or trajectory.
Fortunately, an algorithm exists that allows this veri-
fication, even if the geometric model of the robot is
uncertain [12.50]. However, it should be pointed out that
a singularity-free workspace may not always be optimal
for parallel robots. Indeed, other performance require-
ments may impose the presence of singularities in the
workspace or, the robot may have part of its workspace
singularity-free (for example its working region) while
exhibiting singularities outside this region. Therefore,
a motion planner producing a trajectory that avoids sin-
gularities while remaining close to a desired path is
advisable and various approaches have been proposed
to address this problem [12.51, 52].
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Finally, it is noted that being close to a singular
configuration may be useful in some cases. For exam-
ple, large amplification factors between the end-effector
motion and the actuated joint motion may be inter-
esting for fine-positioning devices with a very small
workspace or for improving the sensitivity along some

measurement directions for a parallel robot used as
a force sensor [12.53]. It should also be mentioned
that parallel robots that remain permanently in a sin-
gular configuration may be interesting since they are
capable of producing complex motions with only one
actuator [12.54–56].

12.6 Workspace Analysis

As mentioned in the introduction, one of the main
drawbacks of parallel robots is their small workspace.
Moreover, their workspace analysis is usually more com-
plex than for serial robots, especially if the platform has
more than 3 DOFs. Indeed, the platform motion capa-
bilities are usually coupled, thereby prohibiting simple
graphical representations of the workspace. Decoupled
robots have also been proposed [12.57–59] but they do
not provide the load-carrying capacity of conventional
parallel robots. In general, the workspace of parallel
robots is restricted by

• the limitations on the actuated joint variables: for
example, the length of the legs of a Gough platform
have a minimum and maximum value,• the limitations on the range of motion of the passive
joints: for example the U and S joints of a Gough
platform have restricted ranges of angular motion,• the mechanical interferences between the bodies of
the mechanism (legs, base, and platform).

Different types of workspaces can be defined such as
the dextrous workspace (the set of platform locations in
which all rotations are possible), the maximal workspace
(the set of platform locations that may be reached with
at least one orientation) or the orientation workspace
(the set of orientations that can be reached for a given
location of the platform).

A possible approach for representing the workspace
of parallel robots with n > 3 DOFs is to fix the value
of n −3 pose parameters in order to be able to plot
the workspace over the remaining three DOFs. Such
plots can be obtained very efficiently using geometric
methods if the plotted variables involve only transla-
tional motions because a geometric approach usually
allows one to establish the nature of the boundary of
the workspace (see, for example, [12.60,61] for the cal-
culation of the workspace of a Gough platform when
its orientation is fixed). Another advantage of this ap-
proach is that it allows the computation of the surface
and volume of the workspace while being very efficient

in terms of storage space. However, when rotational mo-
tion is included, the geometric approach becomes rather
complex. Possible alternatives include:

• discretization methods in which all poses of a n-
dimensional grid are checked with respect to the
kinematic constraints. Such methods are compu-
tationally intensive because the computation time
increases exponentially with the resolution of the
mesh. Also they require a large storage space. On
the other hand, the advantage of discretization is
that it is usually simple to implement and it allows
one to take into account all kinematic constraints as
they can usually be simply verified for a given pose,• numerical methods that allow the determination of
the workspace boundary [12.62, 63],• numerical methods based on interval analysis that
allow the determination of an approximation of
the workspace volume up to an arbitrary accu-
racy [12.64]. This representation is also appropriate
for motion planning problems.

Singularities can also split the workspace calculated
from the above kinematic constraints into elementary
components, called aspects by Wenger [12.65] and
which are separated by a singularity variety. However,
determining the aspects for spatial robots is still an open
problem. A parallel robot may not always be able to
move from one aspect to another (at least without con-
sidering the dynamics of the robot [12.66]) and hence
the useful workspace can be reduced.

A problem related to workspace analysis is the
motion planning problem, which is slightly different
from that encountered with serial robots. For parallel
robots, the problem is not to avoid obstacles within the
workspace but to determine if a given trajectory lies en-
tirely inside the workspace of the robot or to determine
a trajectory between two poses that lies in the workspace
and is singularity-free. Algorithms for checking if a tra-
jectory is valid are available [12.67] but finding such
a trajectory is more difficult. Indeed, classical serial
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robot motion planners work in the joint space and as-
sume that there is a one-to-one relationship between the
joint space and the operational space. With this assump-
tion, it is possible to determine a set of points in the joint
space that is collision-free and to use this knowledge to
build a collision-free path between two poses. However,
this assumption is not valid for parallel robots because
the mapping between the joint space and the operational
space is not one-to-one: a point in the joint space may
either correspond to multiple points in the operational
space or have no correspondence because the closure
equations of the mechanism are not satisfied. For par-
allel robots, the most efficient motion planner seems to
be an adaptation of a probabilistic motion planner that
takes into account – to a certain extent – the closure
equations [12.68, 69].

Another motion planning problem is related to tasks
where a limited number of DOFs of the robot are used.
For example, when a six-DOF parallel robot is used
for machining, the rotation of the platform around the
axis of the tool is not used since the spindle rotation
ensures the needed motion. Thus, an additional DOF
is available that can be used to increase the machine’s
workspace, to avoid singularities or to optimize some
performance index of the robot [12.70, 71]. Along the
same lines, it is possible to define the part position-
ing problem [12.72] as determining the pose of a rigid
body with respect to the workspace of the robot so that
this pose satisfies some constraints (e.g., the rigid body
should lie fully inside the workspace and at all points
of its surface the robot should have some rotational
ability).

12.7 Static Analysis and Static Balancing

Similarly to serial robots, the static analysis of parallel
robots can be readily performed using the Jacobian ma-
trix. Indeed, the mapping between the vector of actuated
joint forces/torques τ and the external wrench f exerted
by the platform can be written as

τ = J� f , (12.11)

where J� is the transpose of the Jacobian matrix of the
robot. Equation (12.11) can be used for various purposes,
namely

• during the design process in order to determine
the actuator forces/torques (for actuator selection).
In this case, the designer is interested in finding
the maximal actuator forces/torques over the robot
workspace. This is a complex issue since J� is not
known in closed form,• in applications where the robot is used as a force
sensor: if τ is measured and the pose of the platform
is known, then (12.11) can be used to calculate f
so that the robot can be used both as a motion and
sensing platform [12.73–75].

The stiffness matrix K of a parallel robot is defined
similarly to that of serial robots as

K = J−�K j J−1 , (12.12)

where K j is the diagonal matrix of actuated joint stiff-
ness. Duffy [12.76] notes that this derivation is, in
general, incomplete. For example, for a Gough platform

this derivation assumes that there is no initial load on
the elastic element of the link. Assuming that the length
of the unloaded link is q0

i leads to

Δ f =
i=6∑

i=1

kΔqini + ki (qi −q0
i )Δni ,

Δm =
i=6∑

i=1

kΔqici × ni + ki (qi −q0
i )Δ(ci × ni ) ,

where ki denotes the axial stiffness of the leg, ni rep-
resents the unit vector defined along the ith leg, ci is
the vector connecting the origin of the moving reference
frame to the ith anchor point of the platform, and f and
m are the external force and moment vectors that are
applied by the platform. Consequently, the stiffness ma-
trix as defined in (12.12) is valid only if qi = q0

i , and is
coined the passive stiffness.

Moreover, it was pointed out in the literature [12.77]
that the formulation of (12.12) is valid only when the
external wrench is zero. Indeed, the above formulation
does not account for the fact that the Jacobian matrix
is configuration dependent and therefore changes with
the applied loads. The formulation proposed in [12.77]
and termed the conservative congruence transformation
(CCT) takes these changes into account and leads to
a stiffness matrix defined as

Kc = J−�K j J−1 +
(

∂J−�τ

∂ p

)
, (12.13)
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where p is the vector of Cartesian coordinates and τ is the
vector of actuated joint forces/torques. Whenever pos-
sible, the formulation of (12.13) should be used instead
of that of (12.12) because it is mechanically consistent.

Another interesting static problem is the static
balancing of parallel robots. The static balancing of
mechanisms in general has been an important research
topic for several decades (see, for instance, [12.78] for
an account of the state of the art and many recent
new results). Parallel mechanisms are said to be stat-
ically balanced when the weight of the links does not
produce any torque (or force) at the actuators under
static conditions, for any configuration of the manipula-
tor or mechanism. This condition is also referred to as
gravity compensation. The gravity compensation of par-
allel mechanisms was addressed by Dunlop [12.79] who
suggested the use of counterweights to balance a two-
DOF parallel robot used for antenna aiming, and by
Jean [12.80] for planar robots. The latter case leads to
simple and elegant balancing conditions.

In general, static balancing can be achieved using
counterweights and/or springs. When springs are used,
static balancing can be defined as the set of conditions
for which the total potential energy in the mechanism
– including gravitational energy and the elastic energy
stored in the springs – is constant for any configuration
of the mechanism. When no springs – or other means of
storing elastic energy – are used, then static balancing
conditions imply that the center of mass of the mecha-
nism does not move in the direction of the gravity vector,
for any motion of the mechanism.

Consider a general spatial n-degree-of-freedom par-
allel mechanism composed of nb moving bodies and one
fixed link. Moreover, let the position vector of the cen-
ter of mass of each moving body with respect to a fixed
reference frame be noted ci and let the mass of the ith
moving body be noted mi . The position vector of the
center of mass of the mechanism with respect to the
fixed frame, noted c, can be written as

c = 1

M

nb∑

i=1

mici , (12.14)

where M is the total mass of the moving links, i. e.,

M =
nb∑

i=1

mi . (12.15)

In general, the vector c is a function of the configuration
of the mechanism, i. e.,

c = c(θ) , (12.16)

where θ is the vector comprising all the joint coordinates
of the mechanism.

Following this notation, and if no elastic components
are used, the condition for static balancing can be written
as

e�
z c = Ct , (12.17)

where Ct is an arbitrary constant and ez is a unit vector
oriented in the direction of gravity.

When elastic components are used, the total potential
energy in the mechanism, denoted by V , is defined as
the sum of the gravitational and elastic potential energy
and can be written as

V = ge�
z

nb∑

i=1

mici + 1

2

ns∑

j=1

k j (s j − s0
j )

2 , (12.18)

where g is the magnitude of the gravitational accelera-
tion, ns is the number of linear elastic components in the
system, k j is the stiffness of the jth elastic component,
s j is the length of the j-th elastic component, and s0

j is
its undeformed length. As mentioned above, when elas-
tic elements are used, the condition for static balancing
is that the total potential energy is constant, which can
be written as

V = Vc , (12.19)

where Vc is an arbitrary constant.
The general equations given above can be used to

obtain the conditions under which a given mechanism
is statically balanced. In general, the equations pro-
vide sufficient conditions for balancing. The problem
of statically balancing spatial parallel robots is usually
complex. Several papers were published recently on this
subject [12.81, 82]. Among other results, it was pointed
out that it is not possible to balance a 6−UPS robot in all
poses by using only counterweights [12.83]. Alternative
mechanisms (using parallelograms) that can be balanced
using only springs were suggested [12.81, 84, 85].

A natural extension of static balancing is dynamic
balancing. The dynamic balancing problem consists in
finding parallel mechanisms that do not produce any
reaction force or torque on their base for arbitrary tra-
jectories. This problem was addressed for planar and
spatial parallel mechanisms. In [12.86], it was shown
that dynamically balanced parallel mechanisms with up
to six DOFs can be synthesized, although the resulting
mechanical architectures may be complex.
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12.8 Dynamic Analysis

The dynamic model of parallel robots has a form similar
to that of serial robots (see Chap. 2), namely

M(x) p̈+C( ṗ, q̇, p, q)+ G(p, q) = τ , (12.20)

where M is the positive-definite generalized inertia ma-
trix, G is the gravitational term, and C is the centrifugal
and Coriolis term. However, this equation is more dif-
ficult to obtain for parallel robots because the closure
equations have to be satisfied. A classical method for
calculating the dynamic models of closed-chain mech-
anisms is to consider first an equivalent tree-structure,
and then to enforce the kinematic constraints using La-
grange multipliers or d’Alembert’s principle [12.87,88],
a principle that has proved to be valid in [12.89]. Other
approaches include the use of the principle of virtual
work [12.90–93], the Lagrange formalism [12.94–96],
Hamilton’s principle [12.97], and Newton–Euler equa-
tions [12.98–103].

The main drawbacks of dynamic models obtained for
parallel robots is that they are usually rather complex,
they require the determination of dynamic parameters
that are often not well known, and they involve solv-
ing the forward kinematics. Therefore, their calculation

is computer intensive while they must be used in real
time.

Using dynamic models for control purposes was
proposed [12.104, 105], usually in the context of an
adaptive control scheme, in which the tracking errors
are used online to correct the parameters used in the
dynamic equations [12.106, 107]. Control laws were
proposed mainly for planar robots and for the Delta
robot [12.108–110] although some implementations
have been proposed for general six-DOF robots [12.111,
112] or vibration platforms [12.113]. However for six-
DOF robots, the benefits of using dynamic models for
high-speed motions are difficult to establish because the
computational burden of the dynamic model somewhat
reduces the potential gains.

This is clearly an important and open issue since
parallel robots can operate at velocities and accelerations
much larger than those of serial robots. For example,
some Delta robots have reached accelerations of the
order of 500 m/s2 while wire-driven robots can probably
exceed this value.

Finally, the optimization of the dynamic properties
of parallel mechanisms can be addressed by minimizing
the variation of the inertia over the workspace [12.114].

12.9 Design

The design of a robot can be decomposed into two main
phases:

• structural synthesis: finding the general mechanical
structure of the robot• geometric synthesis: determining the value of the
geometric parameters involved in a given structure
(here geometric parameters must be understood in
a loose sense, for example, mass and inertia may
also be involved)

The problem of structural synthesis (type synthesis) was
addressed in Sect. 12.2. However, performance require-
ments other than the motion pattern of the robot have
to be taken into account in the design of a robot. Serial
robots have the advantage that the number of possi-
ble mechanical architectures is relatively small and that
some of these architectures have clear advantages in
terms of performance compared to others (for example,
the workspace of a 3R structure is much larger than the
workspace of a Cartesian robot of similar size).

Unfortunately no such rules exist for parallel robots,
for which there are furthermore a large number of possi-
ble mechanical designs. Additionally, the performances
of parallel robots are very sensitive to their geometric pa-
rameters. For example, the extremal stiffness of a Gough
platform over a given workspace can change by 700%
for a change of only 10% of the platform radius. Conse-
quently, structural synthesis cannot be dissociated from
the geometric synthesis. In fact, it is conjectured that
a well-dimensioned robot of any structural type will in
general perform better than a poorly designed robot with
a structure that may seem more appropriate for the task
at hand.

Usually the design process is treated as an optimiza-
tion problem. To each specified performance require-
ment is associated a performance index whose value
increases with the level of violation of the performance
requirement. These performance indices are summed in
a weighted real-valued function called the cost function,
which is a function of the geometric design parameters

Part
B

1
2
.9



280 Part B Robot Structures

and then a numerical optimization procedure is used
to find the parameters that minimize the cost function
(hence this approach leads to what is called an opti-
mal design) [12.115–117]. There are however numerous
drawbacks to this approach: the determination and effect
of the weights in the cost function are difficult to ascer-
tain, imperative requirements are difficult to incorporate
and make the optimization process more complex, and
the definition of the performance indices is not trivial,
to name but a few. The main issues can be stated as:

• the robustness of the design solution obtained with
the cost function approach with respect to the
uncertainties in the final design. Indeed the real in-
stantiation of a theoretical solution will always differ
from the latter because of the manufacturing toler-
ances and other uncertainties that are inherent to
a mechanical system,• performance requirements may be antagonistic (e.g.,
workspace and accuracy) and the optimal design ap-
proach only provides a compromise between these
requirements that is difficult to master through the
weights.

An alternative to optimal design is referred to as
appropriate design, in which no optimization is con-
sidered but the objective is to ensure that desired
requirements are satisfied. This approach is based on
the definition of the parameter space in which each
dimension is associated with a design parameter. Per-
formance requirements are considered in turn and the
regions of the parameter space that correspond to
robots satisfying the requirements are calculated. The
design solution is then obtained as the intersection
of the regions obtained for each individual require-
ment.

In practice, only an approximation of the regions is
necessary since values close to the boundary cannot be
physically realized due to manufacturing tolerances. For
that calculation, interval analysis was successfully used
in various applications [12.20, 118].

The appropriate design approach is clearly more
complex to implement than the cost function approach
but has the advantage of providing all design solutions,
with the consequence that manufacturing tolerances may
be taken into account to ensure that the real robot will
also satisfy the desired requirements.

12.10 Application Examples

Parallel robots have been successfully used in many ap-
plications, a few of which will now be briefly mentioned.
Almost all recent land-based telescopes use parallel
robots, either as a secondary mirror alignment system
(for example the University of Arizona MMT or the Eu-
ropean Organisation for Astronomical Research in the
Southern Hemisphere (ESO) Visible and Infrared Sur-
vey Telescope for Astronomy (VISTA)) or as a primary
mirror pointing device. A wire-driven parallel robot flew
in the space shuttle mission STS-63 in February 1999
while an octopod (a parallel robot with eight legs) was
used to isolate the space shuttle payload from vibration.
A parallel platform is used in the medical rehabili-
tation platform Caren of Motek. All flight simulators
use a parallel structure as a motion platform. They are
nowadays used for driving simulators as well [12.119].

In industry, numerous machine tools based on paral-
lel structures have been designed: some of them have
found a niche market (e.g., the Tricept) and it can be ex-
pected that more will be used in the future (especially
for high-speed manufacturing) as soon as a controller
specifically designed for parallel structures is devel-
oped (current controllers are basically identical to the
ones used for the classical linear machine tools and
hence do not allow the potential of parallel structures
to be fully exploited). Ultra-accurate positioning devices
based on parallel robots are proposed by companies such
as Physik Instrumente, Micos, and Alio. In the food in-
dustry the Delta robot proposed by Demaurex and SIG
Robotics is widely used for fast packaging. Other com-
panies such as Adept are also developing fast parallel
robots with three and four degrees of freedom.
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12.11 Conclusion and Further Reading

The analysis of a parallel mechanism may be partly
based on methods that are presented in other chapters of
this handbook:

• kinematics: kinematics background is covered in
Chap. 1,• dynamics: general approaches are presented in
Chap. 2 while identification of the dynamic parame-
ters is addressed in Chap. 14,• design: design methodologies are covered in
Chap. 10,• control: control issues are presented in Chaps. 5, 6,
and 7 although the closed-loop structure of parallel
robots may require some adaptation of the control
schemes.

It must also be emphasized that efficient numerical anal-
ysis is a key point for many algorithms related to parallel
robots. System solving with Gröbner basis, continuation
method, and interval analysis is essential for kinematics,
workspace, and singularity analysis.

Further information and up-to-date extensive refer-
ences and papers related to parallel robots can be found
on the following two web sites [12.120, 121]

Useful complementary readings on parallel robots
are [12.9, 122, 123].

Parallel robots are slowly finding their way into var-
ious applications, not only in industry but also in field
and service robotics, as discussed in Part F of this hand-
book. Still, compared to their serial counterpart, their
analysis is far from being complete.
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