
Revising Knowledge in Multi-agent Systems Using
Revision Programming with Preferences

Inna Pivkina, Enrico Pontelli, and Tran Cao Son

Department of Computer Science,
New Mexico State University

{ipivkina, epontell, tson}@cs.nmsu.edu

Abstract. In this paper we extend the Revision Programming framework—a
logic-based framework to express and maintain constraints on knowledge bases—
with different forms of preferences. Preferences allow users to introduce a bias in
the way agents update their knowledge to meet a given set of constraints. In par-
ticular, they provide a way to select one between alternative feasible revisions and
they allow for the generation of revisions in presence of conflicting constraints,
by relaxing the set of satisfied constraints (soft constraints). A methodology for
computing preferred revisions using answer set programming is presented.

1 Introduction

Multi-Agents Systems (MAS) require coordination mechanisms to facilitate dynamic
collaboration of the intelligent components, with the goal of meeting local and/or global
objectives. In the case of MAS, the coordination structure should provide communication
protocols to link agents having inter-related objectives and it should facilitate mediation
and integration of exchanged knowledge [7]. Centralized coordination architectures (e.g.,
mediator-based architectures) as well as fully distributed architectures (e.g., distributed
knowledge networks) face the problem of non-monotonically updating agent’s theories
to incorporate knowledge derived from different agents. The problem is compounded
by the fact that incoming knowledge could be contradictory—either conflicting with the
local knowledge or with other incoming items—incomplete, or unreliable. Recently a
number of formalisms have been proposed [16, 4, 2, 20, 8] to support dynamic updates
of (propositional) logic programming theories; they provide convenient frameworks
for describing knowledge base updates as well as constraints to ensure user-defined
principles of consistency. These types of formalisms have been proved effective in the
context of MAS (e.g., [12]).

One of such formalisms for knowledge base updates is Revision Programming. Re-
vision programming is a formalism to describe and enforce constraints on belief sets,
databases, and more generally, on arbitrary knowledge bases. The revision programming
formalism was introduced in [15, 16]. In this framework, the initial database represents
the initial state of a belief set or a knowledge base. A revision program is a collection of
revision rules used to describe constraints on the content of the database. Revision rules
could be quite complex and are usually in the form of conditions. For instance, a typical
revision rule may express a condition that, if certain elements are present in the database

J. Dix and J. Leite (Eds.): CLIMA IV, LNAI 3259, pp. 134–158, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Revising Knowledge in Multi-agent Systems 135

and some other elements are absent, then another given element must be absent from (or
present in) the database. Revision rules offer a natural way of encoding policies for the
integration of agent-generated knowledge (e.g., in a mediator-based architecture) or for
the management of inter-agent exchanges.

In addition to being a declarative specification of a constraint on a knowledge base, a
revision rule also has a computational interpretation—indicating a way to satisfy the con-
straint. Justified revisions semantics assigns to any knowledge base a (possibly empty)
family of revisions. Each revision represents an updated version of the original knowl-
edge base, that satisfies all the constraints provided by the revision program. Revisions
are obtained by performing additions and deletions of elements from the original knowl-
edge base, according to the content of the revision rules. Each revision might be chosen
as an update of the original knowledge base w.r.t. the revision program.

The mechanisms used by revision programming to handle updates of a knowledge
base or belief set may lead to indeterminate situations. The constraints imposed on the
knowledge base are interpreted as hard constraints, that have to be met at all costs; never-
theless this is rather unnatural in domains where overlapping and conflicting consistency
constraints may be present (e.g., legal reasoning [18], suppliers and broker agents in a
supply chain [13])—leading to the generation of no acceptable revisions. Similarly, sit-
uations with under-specified constraints or incomplete knowledge may lead to revision
programs that provide multiple alternative revisions for the same initial knowledge base.
While such situations might be acceptable, there are many cases where a single revision
is desired—e.g., agents desire to maintain a unique view of a knowledge base.

Preferences provide a natural way to address these issues; preferences allow the re-
vision programmer to introduce a bias, and focus the generation of revisions towards
more desirable directions. Preferences between revisions rules and/or preferences be-
tween the components of the revisions can be employed to select the way revisions are
computed, ruling out undesirable alternatives and defeating conflicting constraints. The
use of preference structures has been gaining relevance in the MAS community as key
mechanism in negotiation models for MAS coordination architectures [9, 11].

In this work we propose extensions of revision programming that provide general
mechanisms to express different classes of preferences—justified by the needs of knowl-
edge integration in MAS. The basic underlying mechanism common to the extensions
presented in this work is the idea of allowing classes of revision rules to be treated as soft
revision rules. A revision might be allowed even if it does not satisfy all the soft revision
rules but only selected subsets of them; user preferences express criteria to select the
desired subsets of soft revision rules.

Our first approach (Section 3) is based on the use of revision programs with pref-
erences, where dynamic partial orders are established between the revision rules. It
provides a natural mechanism to select preferred ways of computing revisions, and to
prune revisions that are not deemed interesting. This approach is analogous to the or-
dered logic program (a.k.a. prioritized logic program) approach explored in the context
of logic programming (e.g., [6, 5]). In a labeled revision program, the revision program
and the initial knowledge base are enriched by a control program, which expresses pref-
erences on rules. The control program may include revision literals as well as conditions
on the initial knowledge base. Given an initial knowledge base, the control program



136 I. Pivkina, E. Pontelli, and T.C. Son

and the revision program are translated into a revision program where regular justified
revisions semantics is used. This approach provides preference capabilities similar to
those supported by the MINERVA agent architecture [12].

The second approach (Section 4) generalizes revision programs through the introduc-
tion of weights (or costs) associated to the components of a revision program (revision
rules and/or database atoms). The weights are aimed at providing general criteria for the
selection of subsets of the soft revision rules to be considered in the computation of the
revisions of the initial database. Different policies in assigning weights are considered,
allowing for the encoding of very powerful preference criteria (e.g., revisions that differ
from the initial database in the least number of atoms). This level of preference manage-
ment addresses many of the preference requirements described in the MAS literature
(e.g., [11]).

For each of the proposed approaches to the management of preferences, we provide
an effective implementation schema based on translation to answer set programming—
specifically to the smodels [17] language. This leads to effective ways to compute
preferred revisions for any initial database w.r.t. a revision program with preferences.

The main contribution of this work is the identification of forms of preferences
that are specifically relevant to the revision programming paradigm and justified by the
needs of knowledge maintenance and integration in MAS, and the investigation of the
semantics and implementation issues deriving from their introduction.

2 Preliminaries: Revision Programming

In this section we present the formal definition of revision programs with justified revision
semantics and some of their properties [16, 15, 14].

Elements of some finite universe U are called atoms. Subsets of U are called data-
bases. Expressions of the form in(a) or out(a), where a is an atom, are called revision
literals. For a revision literal in(a), its dual is the revision literal out(a). Similarly, the
dual of out(a) is in(a). The dual of a revision literal α is denoted by αD.A set of revision
literals L is coherent if it does not contain a pair of dual literals. For any set of atoms
B ⊆ U , we denote Bc = {in(a) : a ∈ B} ∪ {out(a) : a /∈ B}. A revision rule is an
expression of one of the following two types:

in(a)← in(a1), . . . , in(am), out(b1), . . . , out(bn) or (1)

out(a)← in(a1), . . . , in(am), out(b1), . . . , out(bn), (2)

where a, ai and bi are atoms.A revision program is a collection of revision rules. Revision
rules have a declarative interpretation as constraints on databases. For instance, rule (1)
imposes the following condition: a is in the database, or at least one ai, 1 ≤ i ≤ m, is
not in the database, or at least one bj , 1 ≤ j ≤ n, is in the database.

Revision rules also have a computational (imperative) interpretation that expresses
a way to enforce a constraint. Assume that all data items ai, 1 ≤ i ≤ m, belong to the
current database, say I , and none of the data items bj , 1 ≤ j ≤ n, belongs to I . Then,
to enforce the constraint (1), the item a must be added to the database (removed from it,
in the case of the constraint (2)), rather than removing (adding) some item ai (bj).



Revising Knowledge in Multi-agent Systems 137

Given a revision rule r, by head(r) and body(r) we denote the literal on the left
hand side and the set of literals on the right hand side of the←, respectively.

A set of atoms B ⊆ U is a model of (or satisfies) a revision literal in(a) (resp.,
out(a)), if a ∈ B (resp., a �∈ B). A set of atoms B is a model of (or satisfies) a revision
rule r if either B is not a model of at least one revision literal from the body of r, or
B is a model of head(r). A set of atoms B is a model of a revision program P if B is
a model of every rule in P . Let P be a revision program. The necessary change of P ,
NC(P ), is the least model of P , when treated as a Horn program built of independent
propositional atoms of the form in(a) and out(b).

The collection of all revision literals describing the elements that do not change their
status in the transition from a database I to a database R is called the inertia set for I
and R, and is defined as follows:

Inertia(I,R) = {in(a): a ∈ I ∩R} ∪ {out(a): a /∈ I ∪R}.
By the reduct of P with respect to a pair of databases (I,R), denoted by PI,R, we

mean the revision program obtained from P by eliminating from the body of each rule
in P all literals in Inertia(I,R). The necessary change of the program PI,R provides a
justification for some insertions and deletions. These are exactly the changes that are a
posteriori justified by P in the context of the initial database I and a putative revised
database R.

Given a database I and a coherent set of revision literals L, we define

I ⊕ L = (I \ {a ∈ U : out(a) ∈ L}) ∪ {a ∈ U : in(a) ∈ L}.

Definition 1 ([16]). A database R is a P -justified revision of database I if the necessary
change of PI,R is coherent and if R = I ⊕NC(PI,R).

Basic properties of justified revisions include the following [16]:

1. If a database R is a P -justified revision of I , then R is a model of P .
2. If a database B satisfies a revision program P then B is a unique P -justified revision

of itself.
3. If R is a P -justified revision of I , then R ÷ I is minimal in the family {B ÷ I :

B is a model of P}—where R÷ I denotes the symmetric difference of R and I . In
other words, justified revisions of a database differ minimally from the database.

Another important property of revision programs is that certain transformations
(shifts) preserve justified revisions [14]. For each set W ⊆ U , a W -transformation
is defined as follows ([14]). If α is a literal of the form in(a) or out(a), then

TW (α) =
{

αD, when a ∈W
α, when a /∈W .

Given a set L of literals, TW (L) = {TW (α): α ∈ L}. For example, if W = {a, b},
then TW ({in(a), out(b), in(c)}) = {out(a), in(b), in(c)}. Given a set A of atoms,
TW (A) = {a: in(a) ∈ TW (Ac)}. In particular, for any database I , TI(I) = ∅. Given
a revision program P , TW (P ) is obtained from P by applying TW to every literal in



138 I. Pivkina, E. Pontelli, and T.C. Son

P . The Shifting Theorem [14] states that for any databases I and J , database R is a
P -justified revision of I if and only if TI÷J(R) is a TI÷J(P )-justified revision of J .
The Shifting Theorem provides a practical way [14] to compute justified revisions using
answer set programming engines (e.g., smodels [17]). It can be done by executing the
following steps.

1. Given a revision programP and an initial database I , we can apply the transformation
TI to obtain the revision program TI(P ) and the empty initial database.

2. TI(P ) can be converted into a logic program with constraints by replacing revision
rules of the type (1) by

a← a1, . . . , am, not b1, . . . , not bn (3)

and replacing revision rules of the type (2) by constraints

← a, a1, . . . , am, not b1, . . . , not bn. (4)

We denote the logic program with constraints obtained from a revision program Q
via the above conversion by lp(Q).

3. Given lp(TI(P )) we can compute its answer sets.
4. Finally, the transformation TI can be applied to the answer sets to obtain the P -

justified revisions of I .

3 Revision Programs with Preferences

In this section, we introduce revision programs with preferences, that can be used to
deal with preferences between rules of a revision program. We begin with an example
to motivate the introduction of preferences between revision rules. We then present the
syntax and semantics and discuss some properties of revision programs with preferences.

3.1 Motivational Example

Assume that we have a number of agents a1, a2, . . . , an. The environment is encoded
through a set of parameters p1, p2, . . . , pk. The agents perceive parameters of the envi-
ronment, and provide perceived data (observations) to a controller. The observations are
represented using atoms of the form: observ(Par, V alue, Agent), where Par is the
name of the observed parameter, V alue is the value for the parameter, and Agent is the
name of the agent providing the observation.

The controller combines the data received from agents to update its view of the
world, which includes exactly one value for each parameter. The views of the world are
described by atoms: world(Par, V alue, Agent), where V alue is the current value for
the parameter Par, and Agent is the name of the agent that provided the last accepted
value for the parameter. The initial database contains a view of the world before the new
observations arrive. A revision program, denoted by P , is used to update the view of the
world, and is composed of rules of the type:



Revising Knowledge in Multi-agent Systems 139

in(observ(Par, V alue, Agent))←
which describe all new observations; and rules of the following two types:

in(world(Par,Value,Agent))← in(observ(Par,Value,Agent)) (a)

out(world(Par,Value,Agent))← in(world(Par,Value1,Agent1)), (b)
(where Agent �= Agent1 or Value �= Value1).

Rules of type (a) allow to generate a new value for a parameter of a world view from a
new observation. Rules of type (b) are used to enforce the fact that only one observation
per parameter can be used to update the view.

It is easy to see that if the value of each parameter is perceived by exactly one agent
and the initial world view of the controller is coherent, then each P -justified revision
reflects the controller’s world view that integrates its agent observations whenever they
arrive. However, P does not allow any justified revisions when there are two agents
which perceive different data for the same parameter at the same time. We illustrate this
problem in the following scenario. Let us assume we have two agents a1 and a2, both
provide observations for the parameter named temperature denoting the temperature in
the room. Initially, the controller knows that world(temperature, 76, s2). At a later time,
it receives two new observations

in(observ(temperature, 74, a1))←
in(observ(temperature, 72, a2)) ←

There is no P -justified revision for this set of observations as the necessary change
with respect to it is incoherent, it includes in(world(temperature, 74, a1)) (because of
(a) and the first observation) and out(world(temperature, 74, a1)) (because of (a), (b),
and the second observation).

The above situation can be resolved by placing a preference between the values pro-
vided by the agents. For example, if we know that agent a2 has a better temperature sensor
than agent a1, then we should tell the controller that observations of a2 are preferred
to those of a1. This can be described by adding preferences of the form: prefer(r2, r1),
where r1 and r2 are names of rules of type (a) containing a1 and a2, respectively. With
the above preference, the controller should be able to derive a justified revision which
would contain world(temperature, 72, a2). If the agent a2 has a broken temperature
sensor and does not provide temperature observations, the value of temperature will be
determined by a1 and the world view will be updated correctly by P .

The above preference represents a fixed order of rule’s application in creating re-
visions. Sometimes, preferences might be dynamic. As an example, we may prefer the
controller to keep using temperature observations from the same agent if available. This
can be described by preferences of the form:

prefer(r1,r2)← world(temperature,Value,a1) ∈ I , in(observ(temperature,NewValue,a1));

prefer(r2,r1)← world(temperature,Value,a2) ∈ I , in(observ(temperature,NewValue,a2));



140 I. Pivkina, E. Pontelli, and T.C. Son

where r1 and r2 are names of rules of type (a) containing a1 and a2 respectively, and I
is an initial database (a view of the world before the new observations arrive).

3.2 Syntax and Semantics

A labeled revision program is a pair (P,L) where P is a revision program and L is
a function which assigns to each revision rule in P a unique name (label). The label
of a rule r ∈ P is denoted L(r). The rule with a label l is denoted r(l). We will use
head(l), body(l) to denote head(r(l)) and body(r(l)) respectively. The set of labels
of all revision rules from P is denoted L(P ). That is, L(P ) = {L(r) : r ∈ P}. For
simplicity, for each rule α0 ← α1, . . . , αn of P , we will write:

l : α0 ← α1, . . . , αn

to indicate that l is the value assigned to the rule by the function L.
A preference on rules in (P,L) is an expression of the following form

prefer(l1, l2)← initially(α1, . . . , αk), αk+1, . . . , αn, (5)

where l1, l2 are labels of rules in P , α1 . . . , αn are revision literals, k ≥ 0, n ≥ k.
Informally, the preference (5) mean that if revision literals α1 . . . , αk are satisfied by

the initial database and literals αk+1, . . . , αn are satisfied by a revision, then we prefer
to use rule r(l1) over rule r(l2). More precisely, if the body of rule r(l1) is satisfied then
rule r(l2) is defeated and ignored. If body(l1) is not satisfied then rule r(l2) is used.

A revision program with preferences is a triple (P,L, S), where (P,L) is a labeled
revision program and S is a set of preferences on rules in (P,L). We refer to S as the
control program since it plays an important role on what rules can be used in constructing
the revisions.

A revision program with preferences (P,L, S) can be translated into an ordinary
revision program as follows. Let UL(P ) be the universe obtained from U by adding new
atoms of the form ok(l), defeated(l), prefer(l1, l2) for all l, l1, l2 ∈ L(P ). Given an
initial database I , we define a new revision program PS,I over UL(P ) as the revision
program consisting of the following revision rules:

• for each l ∈ L(P ), the revision program PS,I contains the two rules

head(l)← body(l), in(ok(l)) (6)

in(ok(l))← out(defeated(l)) (7)

• for each preference prefer(l1, l2)← initially(α1, . . . , αk), αk+1, . . . , αn in S such
that α1 . . . , αk are satisfied by I , PS,I contains the rules

in(prefer(l1, l2))← αk+1, . . . , αn (8)

in(defeated(l2))← body(l1), in(prefer(l1, l2)) (9)

Following the compilation approach in dealing with preferences, we define the notion
of (P,L, S)-justified revisions of an initial database I as follows.



Revising Knowledge in Multi-agent Systems 141

Definition 2. A database R is a (P,L, S)-justified revision of I if there exists R′ ⊆
UL(P ) such that R′ is a PS,I -justified revision of I , and R = R′ ∩ U .

The next example illustrates the definition of justified revisions with respect to revi-
sion programs with preferences.

Example 1. Let P be the program containing the rules

r1 : in(world(temperature, 76, a1))← in(observ(temperature, 76, a1)).
r2 : in(world(temperature, 77, a2))← in(observ(temperature, 77, a2)).

and the set S of preferences consists of a single preference prefer(r1, r2). Let I1 =
{observ(temperature, 76, a1), observ(temperature, 77, a2)} be the initial database. The
revision program PS,I1 is the following:

in(world(temperature, 76, a1))← in(observ(temperature, 76, a1)), in(ok(r1))
in(world(temperature, 77, a2))← in(observ(temperature, 77, a2)), in(ok(r2))

in(ok(r1))← out(defeated(r1))
in(ok(r2))← out(defeated(r2))

in(prefer(r1, r2))←
in(defeated(r2))← in(observ(temperature, 76, a1)),

in(prefer(r1, r2))

Since I1 has only one PS,I1-justified revision,

R1 =
{

observ(temperature, 76, a1), observ(temperature, 77, a2),
world(temperature, 76, a1), prefer(r1, r2), ok(r1), defeated(r2)

}
,

then I1 has only one (P,L, S)-justified revision, {world(temperature, 76, a1)}1.
Now, consider the case where the initial database is

I2 = {observ(temperature, 77, a2)}.

The revision program PS,I2 = PS,I1 . Since I2 has only one PS,I2-justified revision,

R2 =
{

world(temperature, 77, a2), observ(temperature, 77, a2),
prefer(r1, r2), ok(r1), ok(r2)

}
,

we can conclude that I2 has only one (P,L, S)-justified revision,

{world(temperature, 77, a2)}1.

Notice the difference in the two cases: in the first case, rule r2 is defeated and cannot
be used in generating the justified revision. In the second case both rules can be used.

1 We omit the observations from the revised database.



142 I. Pivkina, E. Pontelli, and T.C. Son

3.3 Properties

Justified revision semantics for revision programs with preferences extends justified
revision semantics for ordinary revision programs. More precisely:

Theorem 1. A database R is a (P,L, ∅)-justified revision of I if and only if R is a
P -justified revision of I .

Proof. (⇒) Let R be a (P,L, ∅)-justified revision of I . By definition, there exists R′ ⊆
UL(P ) such that R′ is a P ∅,I -justified revision of I , and R = R′ ∩ U . By definition
of a justified revision, NC((P ∅,I)I,R′) is coherent, and R′ = I ⊕ NC((P ∅,I)I,R′).
Revision program P ∅,I consists of the rules of the form (6) and (7) only. Therefore, R′

does not contain atoms of the form defeated(l) (l ∈ L(P )). Thus, (P ∅,I)I,R′ consists of
rules

head(l′)← body(l′), in(ok(l′)) (for all l′ ∈ PI,R)

in(ok(l))← (for all l ∈ L(P ))

Hence, NC((P ∅,I)I,R′) =NC(PI,R)∪{ok(l) : l ∈ L(P )}. Since NC((P ∅,I)I,R′)
is coherent, NC(PI,R) is coherent, too. If we take intersection with U of left- and right-
hand sides of equation R′ = I ⊕ NC((P ∅,I)I,R′), we get R = I ⊕ NC(PI,R). By
definition, R is a P -justified revision of I .

(⇐) Let R be a P -justified revision of I . Consider R′ = R ∪ {ok(l) : l ∈ L(P )}.
Let us show that R′ is a P ∅,I -justified revision of I . Indeed, Inertia(I,R′) contains all
revision literals of the form out(defeated(l)). Therefore, (P ∅,I)I,R′ consists of rules

head(l′)← body(l′), in(ok(l′)) (for all l′ ∈ PI,R)

in(ok(l))← (for all l ∈ L(P ))

Thus, NC((P ∅,I)I,R′) = NC(PI,R) ∪ {in(ok(l)) : l ∈ L(P )}. Consequently,
I ⊕ NC((P ∅,I)I,R′) = (I ⊕ NC(PI,R)) ∪ {ok(l) : l ∈ L(P )} = R ∪ {ok(l) :
l ∈ L(P )} = R′. By definition, R′ is a P ∅,I -justified revision of I . Hence, R is a
(P,L, ∅)-justified revision of I . �

We will now investigate other properties of revision programs with preferences.
Because of the presence of preferences, it is expected that not every (P,L, S)-justified
revision of I is a model of P . This can be seen in the next example.

Example 2. Let P be the program

r1 : in(a)← out(b) r2 : in(b)← out(a)

and the set S consists of two preferences: prefer(r1, r2) and prefer(r2, r1). Then, ∅ is
(P,L, S)-justified revision of ∅ (both rules are defeated) but not a model of P .

The above example also shows that circular preferences among rules whose bodies
can be satisfied simultaneously, may lead to a situation when all such rules will defeat
each other, and therefore, none of the rules involved will be used in computing justified
revisions. This situation corresponds to a conflict among preferences. For instance, in the



Revising Knowledge in Multi-agent Systems 143

above example a conflict is between a preference to use r1 instead of r2 and a preference
to use r2 instead of r1. In order to satisfy the preferences both rules need to be removed.

The next theorem shows that for each (P,L, S)-justified revision R of I , the subset
of rules in P that are satisfied by R, is uniquely determined. To formulate the theorem,
we need some more notation. Let J be a subset of UL(P ). By P |J we denote the program
consisting of the rules r in P such that

• ok(L(r)) ∈ J , or
• ok(L(r)) �∈ J and body(r) \ Jc �= ∅.

Theorem 2. For every PS,I -justified revision R of I , the corresponding (P,L, S)-
justified revision R ∩ U of I is a model of program P |R.

Proof. Consider a rule r in P |R. Let us prove that R ∩ U is a model of r. If body(r)
is not satisfied by R ∩ U , then r is trivially satisfied by R ∩ U . Assume that body(r)
is satisfied by R ∩ U . Since all revision literals in body(r) belong to U c, body(r) is
satisfied by R, and body(r) \Rc = ∅. By definition of PS,I , rule r′

r′ = head(r)← body(r), in(ok(L(r)))

belongs to PS,I . By definition of P |R, ok(L(r)) ∈ R. Hence, body(r′) is satisfied
by R. By definition of a (P, L, S)-justified revision, R is a model of PS,I . Therefore,
head(r′) = head(r) is satisfied by R. Since head(r) ∈ U c, it is satisfied by R ∩ U .
Thus, R ∩ U is a model r. Consequently, R ∩ U is a model of P |R. �

In the rest of this subsection, we discuss some properties that guarantee that each
(P, L, S)-justified revision of I is a model of the program P . We concentrate on con-
ditions on the set of preferences S. Obviously, Example 2 suggests that S should not
contain a cycle between rules. The next example shows that if preferences are placed on
a pair of rules such that the body of one of them is satisfied when the other rule is fired,
then this may result in revisions that are not models of the program.

Example 3. Let P be the program

r1 : in(a)← in(b) r2 : in(d)← out(a)

and the set of preferences S consists of prefer(r2, r1). Then, {b, d} is (P,L, S)-justified
revision of {b} but is not a model of P .

We now define precisely the conditions that guarantee that justified revisions of
revision programs with preferences are models of the revision programs as well. First,
we define when two rules are disjoint, i.e., when two rules cannot be used at the same
time in creating revisions.

Definition 3. Let (P,L, S) be a revision program with preferences. Two rules r, r′ of P
are disjoint if one of the following conditions is satisfied:

1. (head(r))D ∈ body(r′) and (head(r′))D ∈ body(r); or
2. body(r) ∪ body(r′) is incoherent.



144 I. Pivkina, E. Pontelli, and T.C. Son

We say that a set of preferences is selecting if it contains only preferences between
disjoint rules.

Definition 4. Let (P,L, S) be a revision program with preferences. S is said to be a set
of selecting preferences if for every preference

prefer(r, r′)← l1, . . . , lk

in S, rules r and r′ are disjoint.

Finally, we say that a set of preferences is cycle-free if the transitive closure of the
preference relation prefer does not contain a cycle.

Definition 5. Let (P,L, S) be a revision program with preferences and <S= {(r1, r2) |
prefer(r1, r2)occurs as head of a preference in S and (body(r1)∪body(r2)) is coherent}.
S is said to be cycle-free if for every rule r of P , (r, r) does not belong to the transitive
closure <∗

S of <S .

Lemma 1. Let (P,L, S) be a revision program with preferences where S is a set of
selecting preferences. Let R be a (P,L, S)-justified revision of I . For every rule r in P
such that head(r) �∈ Rc and body(r) ⊆ Rc there exists a rule r′ such that (r′, r) ∈<S ,
head(r′) �∈ Rc, and body(r′) ⊆ Rc.

Proof. Let R′ ⊆ UL(P ) be a PS,I -justified revision of I such that R = R′ ∩ U
(it exists by definition of a (P,L, S)-justified revision). Because head(r) �∈ Rc and
body(r) ⊆ Rc, we have that defeated(r) ∈ R′. Hence, there exists a rule r′ in P and a
preference

prefer(r′, r)← l1, . . . , lk

in S such that {l1, . . . , lk} ⊆ Rc and body(r′) ⊆ Rc. Since body(r) ⊆ Rc and
body(r′) ⊆ Rc, the set (body(r′)∪ body(r)) is coherent. Therefore, (r′, r) ∈<S . Rules
r and r′ are disjoint because S is a set of selecting preferences. Condition 2 in the
definition of disjoint rules for r and r′ is not satisfied because (body(r′) ∪ body(r)) is
coherent. Hence, condition 1 must be satisfied. Namely, (head(r))D ∈ body(r′) and
(head(r′))D ∈ body(r). Because body(r) ⊆ Rc and Rc does not contain a pair of dual
literals, we conclude that head(r′) �∈ Rc. This proves the lemma. �

The next theorem shows that the conditions on the set of preferences S guarantee
that preferred justified revisions are models of the original revision program.

Theorem 3. Let (P,L, S) be a revision program with preferences where S is a set of
selecting preferences and is cycle-free. For every (P,L, S)-justified revision R of I , R
is a model of P .

Proof. Let r be a rule in P . If body(r) is not satisfied by R then rule r is trivially
satisfied by R. Assume that body(r) is satisfied by R. That is, body(r) ⊆ Rc. We need
to prove that in this case head(r) ∈ Rc. Assume the contrary, head(r) �∈ Rc. By
Lemma 1, we know that there exists a rule r1 such that (r1, r) ∈<S , body(r1) ⊆ Rc,
and head(r1) �∈ Rc. Applying Lemma 1 one more time, we conclude that there exists a



Revising Knowledge in Multi-agent Systems 145

rule r2 such that (r2, r1) ∈<S , body(r2) ⊆ Rc, and head(r2) �∈ Rc, etc. In other words,
this implies that there exists an infinite sequence r0 = r, r1, . . . , rk, rk+1, . . . such that
(rj+1, rj) ∈<S . Since P is finite, we can conclude that there exists some t > s such
that rt = rs. This implies that (rt, rt) ∈<∗

S , i.e., S is not cycle-free. This contradicts
the assumption that S is cycle-free. In other words, our assumption that head(r) �∈ Rc

is wrong. This proves the theorem. �

The next theorem discusses the shifting property of revision programs with prefer-
ences. We extend the definition of W -transformation to a set of preferences on rules.
Given a preference on rules p of the form (5), its W -transformation is the preference

TW (p) = prefer(l1, l2)← initially(TW (α1), . . . , TW (αk)), TW (αk+1), . . . , TW (αn).

Given a set of preferences S, its W -transformation is TW (S) = {TW (p) : p ∈ S}.
Theorem 4. Let (P,L, S) be a revision program with preferences. For every two data-
bases I1 and I2, a database R1 is a (P,L, S)-justified revision of I1 if and only if
TI1÷I2(R1) is a (TI1÷I2(P ),L, TI1÷I2(S))-justified revision of I2.

Proof. Let W = I1 ÷ I2.
(⇒) Let R1 be a (P,L, S)-justified revision of I1. By definition, there exists R′

1 such
that R′

1 is a PS,I1-justified revision of I and R1 = R′
1 ∩ U . It is straightforward to

see that TW (PS,I1) = TW (P )TW (S),I2 . This together with the Shifting Theorem [14]
implies that TW (R′

1) is a TW (P )TW (S),I2-justified revision of TW (I1) = I2. Notice
that TW (R′

1) ∩ U = TW (R1). Therefore, TW (R1) is a (TW (P ),L, TW (S))-justified
revision of I2.
(⇐) The proof in the other direction is similar. �

4 Soft Revision Rules with Weights

Preferences between rules (Section 3) can be useful in at least two ways. They can
be used to recover from incoherency when agents provide inconsistent data, as in the
example from Section 3.1. They can also be used to eliminate some revisions. The next
example shows that in some situations, this type of preferences is rather weak.

Example 4. Consider again the example from Section 3.1, with two agents a1 and a2
whose observations are used to determine the value of the parameter temperature. Let
us assume now that a1 and a2 are of the same quality, i.e., temperature can be updated
by one of the observations yielded by a1 and a2. This means that there is no preference
between the rule of type (a) (for a1) and the rule of type (a) (for a2) and vice versa. Yet,
as we can see, allowing both rules to be used in computing the revisions will not allow
the controller to update its world view when the observations are inconsistent.

The problem in the above example could be resolved by grouping the rules of the
type (a) into a set and allowing only one rule from this set to be used in creating revisions
if the presence of all the rules does not allow justified revisions.

Inspired by the research in constraint programming, we propose to address the sit-
uation when there are no justified revisions by dividing a revision program P in two



146 I. Pivkina, E. Pontelli, and T.C. Son

parts, HR and SR, i.e., P = HR ∪ SR. Rules from HR and SR are called hard rules
and soft rules, respectively. The intuition is that rules in HR must be satisfied by each
revision, while revisions may satisfy only a subset of SR if it is impossible to satisfy all
of them. The subset of soft rules that is satisfied, say S, should be optimal with respect
to some comparison criteria. In this section, we investigate several criteria—each one is
discussed in a separate subsection.

4.1 Maximal Number of Rules

Let P = HR ∪ SR. Our goal is to find revisions that satisfy all rules from HR and
the most number of rules from SR. Example 4 motivates the search for this type of
revisions. In the next definition, we make this precise.

Definition 6. R is a (HR,SR)-preferred justified revision of I if R is a (HR ∪ S) -
justified revision of I for some S ⊆ SR, and for all S′ ⊆ SR such that S′ has more
rules than S, there are no (HR ∪ S′)-justified revisions of I .

Preferred justified revision can be computed, under the maximal number of rules
criteria, by extending the translation of revision programs to answer set programming,
to handle the distinction between hard and soft rules. The objective is to determine
(HR ∪ S)-justified revisions of an initial database I , where S is a subset of SR of
maximal size such that (HR ∪ S)-justified revisions exist.

The idea is to make use of two language extensions proposed by the smodels
system: choice rules and maximize statements. Intuitively, each soft rule can be either
accepted or rejected in the program used to determine revisions. Let us assume that
the rules in TI(SR) have been uniquely numbered. For each initial database I , we
translate P = HR∪SR into an smodels program lp(TI(HR))∪ lp′(TI(SR)) where
lp′(TI(SR)) is defined as follows. If the rule number i in TI(SR) is

in(a)← in(p1), . . . , in(pm), out(s1), . . . , out(sn)

then the following rules are added to lp′(TI(SR))

{rulei} : − p1, . . . , pm, not s1, . . . , not sn.
a : − rulei

where rulei is a distinct new atom. Similarly, if

out(a)← in(p1), . . . , in(pm), out(s1), . . . , out(sn)

is the rule number i in TI(SR), then the following rules are added to lp′(TI(SR))

{rulei} : − p1, . . . , pm, not s1, . . . , not sn.
: − rulei, a.

where rulei is a distinct new atom. Finally, we need to enforce the fact that we desire to
maximize the number of SR rules that are satisfied. This corresponds to maximizing the
number of rulei that are true in the computed answer sets. This can be directly expressed
by the following statement:

maximize{rule1, . . . , rulek}. (10)



Revising Knowledge in Multi-agent Systems 147

where k is the number of rules in SR. The way how smodels system processes
maximize statement is as follows. It first searches a single model and prints it. Af-
ter that, smodels prints only "better" models. The last model that smodels prints
will correspond to a (HR,SR)-preferred justified revision of I . Notice that this is the
only occurrence of maximize in the translation which is a requirement for the correct
handling of this construct in smodels.

4.2 Maximal Subset of Rules

A variation of definition from Section 4.1 can be obtained when instead of satisfying
maximal number of soft rules it is desired to satisfy a maximal subset of soft rules. In
other words, given P = HR∪SR, the goal is to find revisions that satisfy all rules from
HR and a maximal subset (with respect to set inclusion) of rules from SR. The precise
definition follows.

Definition 7. R is a (HR,SR)-preferred⊆ justified revision of I if R is a (HR ∪ S) -
justified revision of I for some S ⊆ SR, and for all S′ if S ⊂ S′ ⊆ SR, then there are
no (HR ∪ S′)-justified revisions of I .

The procedure described in Section 4.1 allows to compute only one of (HR,SR)-
preferred⊆ justified revisions which has maximal number of soft rules satisfied.

4.3 Weights

An alternative to the maximal subset of soft rules is to assign weights to the revisions
and then select those with the maximal (or minimal) weight. In this section, we consider
two different ways of assigning weights to revisions. First, we assign weight to rule.
Next, we assign weight to atoms. In both cases, the goal is to find a subset S of SR such
that the program HR ∪ S has revisions whose weight is maximal.

Weighted Rules. Each rule r in SR is assigned a weight (a number), w(r). Intuitively,
w(r) represents the importance of r, i.e., the more the weight of a rule the more important
it is to satisfy it.

Example 5. Let us reconsider the example from Section 3.1. Rules of the type (a) are
treated as soft rules, while the rules of type (b) are treated as hard rules. We can make
use of rule weights to select desired revisions. For example, if an observed parameter
value falls outside expected value range for the parameter, it may suggest that an agent
that provided the observation has a faulty sensor. Thus, we may prefer observations that
are closer to the expected range. This can be expressed by associating to each rule r of
the type (a) the weight

w(r) = min{0, MaxEV − V alue}+ min{0, V alue−MinEV },
where MaxEV and MinEV are maximum and minimum expected values for Par.

Let us define the rule-weighted justified revision of a program with weights for rules.

Definition 8. R is called a rule-weighted (HR,SR)-justified revision of I if the fol-
lowing two conditions are satisfied:



148 I. Pivkina, E. Pontelli, and T.C. Son

1. there exists a set of rules S ⊆ SR s.t. R is a (HR ∪ S)-justified revision of I , and
2. for any set of rules S′ ⊆ SR, if R′ is a (HR ∪ S′)-justified revision of I , then the

sum of weights of rules in S′ is less or equal than the sum of weights of rules in S.

Let us generalize the implementation in the previous sections to consider weighted
rules. The underlying principle is similar, with the difference that the selection of soft
rules to include is driven by the goal of maximizing the total weight of the soft rules
that are satisfied by the justified revision. The only change we need to introduce w.r.t.
the implementation is in the maximize statement. Let us assume that w(i) denotes
the weight associated to the ith SR rule. Then, instead of the rule (10) the following
maximize statement is generated:

maximize[rule1 = w(1), rule2 = w(2), . . . , rulek = w(k)].

Weighted Atoms. Instead of assigning weights to rules, we can also assign weights to
atoms in the universe U . Each atom a in the universe U is assigned a weight w(a) which
represented the degree we would like to keep it unchanged, i.e., the more the weight of
an atom the less we want to change its status in a database. The next example presents
a situation where this type of preferences is desirable.

Example 6. Let us return to the example from Section 3.1 with the same partition of
rules in hard and soft rules as in Example 5. Let us assume that the choice of which
observation to use to update the view of the world is based on the principle that stronger
values for the parameters are preferable, as they denote a stronger signal. This can be
encoded by associating weights of the form

w(world(Param, V alue, Sensor)) = −V alue

and minimizing the total weight of the revision.

Let us define preferred justified revision for programs with weight atoms.

Definition 9. R is called an atom-weighted (HR,SR)-justified revision of I if the
following two conditions are satisfied:

1. there exists a set of rules S ⊆ SR s.t. R is a (HR ∪ S)-justified revision of I , and
2. for any set of rules S′ ⊆ SR, if Q is a (HR ∪ S′)-justified revision of I , then the

sum of weights of atoms in I ÷ Q is greater than or equal to the sum of weights of
atoms in I ÷R.

Atom-weighted revisions can be computed usingsmodels. In this case the selection
of the SR rules to be included is indirectly driven by the goal of minimizing the total
weight of the atoms in I ÷ R, if I is the initial database and R is the justified revision.
We make use of the following observation: given a revision program P and an initial
database I , if TI(R) is a TI(P )-justified revision of ∅, then TI(R) = I ÷R. Thanks to
this observation, the computation of the weight of the difference between the original
database and a P -justified revision can be computed by determining the total weight of
the true atoms obtained from the answer set generated for the TI(P ) program.



Revising Knowledge in Multi-agent Systems 149

The program used to compute preferred revisions is encoded similarly to what is
done for the case of maximal number of rules or weighted rules, i.e., each soft rule is
encoded using smodels’s’ choice rules. The only difference is that instead of making
use of a maximize statement, we make use of a minimize statement of the form:

minimize[a1 = w(a1), a2 = w(a2), . . . , an = w(an)] (11)

where a1, . . . , an are all the atoms in U .

4.4 Minimal Size Difference

In this subsection, we consider justified revisions that have minimal size difference with
initial database. The next example shows that this is desirable in different situations.

Example 7. Assume that a department needs to form a committee to work on some
problem. Each of the department faculty members has his or her own conditions on the
committee members which need to be satisfied. The head of the department provided an
initial proposal for members of the committee. The task is to form a committee which
will satisfy all conditions imposed by the faculty members and will differ the least from
the initial proposal — the size of the symmetric difference between the initial proposal
and its revision is minimal.

In this problem we have a set of agents (faculty members) each of which provides
its set of requirements (revision rules). The goal is to satisfy all agent’s requirements in
such a way that the least number of changes is made to the initial database (proposal).

Assume that faculty members are Ann, Bob, Chris, David, Emily and Frank. Condi-
tions that they impose on the committee are the following:

Ann : in(Bob) ← out(Chris)
in(Chris) ← out(Bob)

Bob : out(David)← in(Bob)
Chris : out(Ann) ← out(David)
David : in(David) ← in(Chris), out(Ann)

The initial proposal is I = {Ann, David}. Then, there is one minimal size difference
P -justified revisions of I , which is R1 = {Ann, David, Bob}. The size of the difference
R1 ÷ I is 1.

Ordinary P -justified revisions of I also include R2 = {Bob} with size of the differ-
ence R2 ÷ I equal to 3.

The next definition captures what is a minimal size different justified revision.

Definition 10. R is called a minimal size difference P -justified revision of I if the
following two conditions are satisfied:

1. R is a P -justified revision of I , and
2. for any P -justified revision R′, the number of atoms in R÷ I is less than or equal
to the number of atoms in R′ ÷ I .

Minimal size difference justified revision can be computed in almost the same way
as for atom-weighted justified revisions. The intuition is that instead of minimizing the



150 I. Pivkina, E. Pontelli, and T.C. Son

total weight of I ÷ R (where I is the initial database and R is a P -justified revision),
we would like to minimize the size of I÷R. This can be accomplished by replacing the
minimize statement (11) with the following minimize statement:

minimize{a1, a2, . . . , an}
where a1, . . . , an are all the atoms in U .

5 Related Work

Since revision programming is strongly related to the logic programming formalisms
[15, 14, 19], our work is related to several works on reasoning with preferences in logic
programming. In this section, we discuss the differences and similarities between our
approach and some of the research in this area. In logic programming, preferences
have been an important source for “correct reasoning”. Intuitively, a logic program is
developed to represent a problem, with the intention that its semantics (e.g., answer set
or well-founded semantics) will yield correct answers to the specific problem instances.
Adding preferences between rules is one way to eliminate counter-intuitive (or unwanted)
results. Often, this also makes the program easier to understand and more elaboration
tolerant. In the literature on logic programming with preferences, we can find at least
two distinct ways to handle preferences. The first approach is to compile the preferences
into the program (e.g., [10, 6]): given a program P with a set of preferences pref, a new
program Ppref is defined whose answer set semantics is used as the preferred semantics
of P with respect to pref. The second approach deals with preferences between rules
by defining a new semantics for logic programs with preferences (e.g., [5, 21]). The
advantage of the first approach is that it does not require the introduction of a new
semantics — thus, answer set solvers can be used to compute the preferred semantics.
The second approach, on the other hand, provides a more direct treatment of preferences.

Section 3 of this paper follows the first approach. We define a notion of revision
program with preferences, which is a labeled revision program with preferences between
the rules. Given a revision program with preferences, we translate it into an ordinary
revision program, and we define justified revisions w.r.t. the revision program with
preferences as justified revisions w.r.t. the revision program obtained by translation. Our
treatment of preferences is similar to that in [10, 6, 1]. In section 4, we introduce different
types of preferences that can be dealt with more appropriately by following the second
approach.

We will now discuss the relationship between our approach and others in greater
detail. We will compare revision programs with preferences with ordered choice logic
programs [21] and preferred answer sets [5]. Both frameworks allow preferences between
rules — similar to our prefer relation — to be added to programs (choice logic programs
[21], and extended logic programs [5]). The main difference between our approach and
the approaches in [5, 21] lies in that we adopt the compilation approach while preferences
in [5, 21] are dealt with using the second approach.

Ordered choice logic programs are introduced in [21] for modeling decision making
with dynamic preferences. An ordered choice logic program (OCLP) P is a pair (C,�)
where C is a set of choice logic programs whose rules are of the form A ← B where



Revising Knowledge in Multi-agent Systems 151

A and B are finite sets of atoms and � is a partial order on C. Intuitively, atoms in
A represent alternatives and are assumed to be xor’ed together. Each member of C is
called a component of P . Intuitively,� specifies an order in which the components of P
are preferred. This ordering is used to select rules that can be applied to generate stable
models of P . Given an interpretation I , a rule r is defeated with respect to I if there
exist(s) some not less preferred rule(s) that can be applied in I whose head(s) contain(s)
alternatives to the literals in the head of r. The stable model semantics of OCLP is defined
in the same fashion of the original stable model semantics, i.e., given an interpretation M
of P , a reduction of P with respect to M – which is a positive logic program – is defined;
and, M is a stable model of P iff M is the stable model of the reduction of P with respect
to M . It is worth noticing that in the first step of the reduction, defeated rules with respect
to M are removed from P . The syntax difference between OCLP and revision program
with preferences does not allow a detailed comparison between the two approaches.
However, we note that OCLP follows the second approach to deal with preferences
while our revision program with preferences uses the compilation approach. It is also
interesting to notice that when the head of every rule in a OCLP program P has exactly
one element then the preference order does not make any difference in computing stable
models of P since there are no defeated rules. This could lead to a situation where P has
a stable model M and P contains two rules, r and r′, which belong to two components
Pi and Pj , respectively, Pj is more specific than Pi, bodies of both r and r′ are satisfied
in M , and both r and r′ are fired. Our formalization makes sure that this situation never
happens (due to (6) and (7)). For example, consider the program P = (C,�) with

C = {P1, P2}, P1 = {p←}, P2 = {q ←}, and �= {P1 ≺ P2}.

Then, {p, q} is a stable model of this program. On the other hand, the corresponding
revision program with preferences (P ′,L, S) with

P ′ = {r1 : in(p)←, r2 : in(q)←}, and S = {prefer(r1, r2)}

has only {p} as its unique (P ′,L, S)-justified revision of ∅.
In [5], preferred answer sets for prioritized logic programs with preferences between

rules are defined. A new semantics is introduced that satisfies the two principles for
priorities: one represents a meaning postulate for the term “preference” and the other is
related to relevance. A detailed discussion on the differences and similarities between
preferred answer sets for prioritized logic programs and other approaches to preferences
handling in logic programming can be found in [5]. For a prioritized logic programs
(P, <), where P is an extended logic program and < is a preference ordering between
rules of P , the semantics in [5] requires that if A is a preferred answer set of (P, <)
then A is an answer set of P . Furthermore, A is generated by applying the rules in
the order specified by <. Because this is not a requirement in compilation approach,
it is not surprising to see that the approach we have taken to deal with preferences in
labeled revision programs yield different results comparing to preferred answer sets. For
example, consider the program (P, <) with

P = {r1 : p← not q, r2 : q ←}, and <= {r1 < r2}.



152 I. Pivkina, E. Pontelli, and T.C. Son

Then, (P, <) does not have a preferred answer set because its only answer set {q}
cannot be generated by first applying the rule r1 and then the rule r2. On the other hand,
the corresponding labeled program (P ′,L, S) with

P ′ = {r1 : in(p)← out(q), r2 : in(q)←}, and S = {prefer(r1, r2)}
will have only {p} as its unique (P ′,L, S)-justified revision of ∅ because rule r2 is
defeated.

We notice that the preferences in the above examples, viewed under the revision
program framework, are non-selecting preferences (Definition 4), and justified revisions
are not models of the program. Theorem 3 discusses a condition under which (P,L, S)-
justified revisions are models of the original program P . We show next that under this
condition and when only preferences with empty bodies are used, our framework coin-
cides with preferred answer sets for prioritized logic programs [5].

Before we introduce the theorem about the relationship between revision program
with preferences and preferred answer sets for prioritized logic programs, we need
some more notation. First, we will assume that for every revision program with pref-
erences (P,L, S), S is a set of selecting preferences, cycle-free, and the body in each
preference of the form (5) in S is empty. We will refer to such programs as static
revision programs with preferences. For such a program, we define a corresponding pri-
oritized logic program Q(P ) = (lp(P ), <) where lp(P ) is defined as in Section 2 and
<= {(l1, l2) : prefer(l1, l2) ∈ S}.
Theorem 5. Let (P,L, S) be a static revision program with preferences. Then, R is a
(P,L, S)-justified revision of the empty database iff R is a preferred answer set of Q(P )
as defined in [5].

The proof of this property can be found in the appendix.
Our work in this paper is also strongly related to dynamic logic programming (DLP)

[4]. DLP is introduced as a mean to update knowledge bases that might contain gener-
alized logic programming rules. Roughly, a DLP is an ordered list of generalized logic
programs, where each represents the properties of the knowledge base at a time moment.
The semantics of a DLP – taking into consideration a sequence of programs up to a time
point t – specifies which rules should be applied to derive the state of the knowledge
base at t. It has been shown that DLP generalizes revision programming [4]. DLP has
been extended to deal with preferences [3, 1]. A DLP with preferences, or a prioritized
DLP, is a pair (P, R) of two DLPs; P is a labeled DLP whose language does not contain
the binary predicate < and R is a DLP whose language contains the binary predicate <
and whose set of constants includes all the rule labels from both programs. Intuitively,
(P, R) represents a knowledge at different time moments – the same way a DLP does
– with the exception that there are preferences between rules in (P, R). An atom of the
form r1 < r2 represents the fact that rule r1 is preferred to rule r2. The semantics of
prioritized DLP makes sure that the preference order between rules is reflected in the set
of consequences derivable from the knowledge base. More precisely, for two conflicting
rules r1 and r2, if r1 < r2 is derived, then the consequence of the rule r1 should be
preferred over the consequence of r2. Prioritized DLP deals with preferences using the
compilation approach. In fact, the approach coincides with that of preferred answer sets



Revising Knowledge in Multi-agent Systems 153

for extended logic programs [5] when the DLP consists of a single program as shown in
[3]. In this sense, the prioritized DLP approach is similar to the approach described in
Section 3, in which we add to a revision program a preference relation between its rules
and define the semantics of a revision program with preferences following the compi-
lation approach. It follows from our discussion in the previous paragraph that revision
programming with preferences and DLP with preferences will yield different results in
certain situations. Other difference between our work and prioritized DLP lies in that we
consider other types of preferences (e.g., maximal number of applicable rules, weighted
rules, weighted atoms, or minimal size difference) and prioritized DLP does not. We
plan to investigate the use of these types of preferences in DLP in the future.

Finally, DLP is also used as the main representation language for a multi-agent
architecture in [12]. In this paper, we take the first step towards this direction by using
revision programming with preferences to represent and reason about beliefs of multi-
agents in a coordinated environment. A detailed comparison with MINERVA is planned
in the near future.

6 Conclusions

The notion of preference has found pervasive applications in the context of knowl-
edge representation and commonsense reasoning in MAS. Indeed a large number of
approaches have been proposed to improve the knowledge representation capabilities
of logic programming by introducing different forms of preferences. In this paper, we
presented a novel extension of the revision programming framework which provides the
foundations for expressing very general types of preferences. Preferences provide the
ability to “defeat” the use of certain revision rules in the computation of the revisions;
this allows us to either reduce the number of revisions generated (eventually leading to
a single revision), or to generate revisions even in the presence of conflicting revision
rules.

We proposed different preference schemes, starting from a relatively dynamic partial
order between revision rules (revision programs with preferences), and then moving to
a more general notion of weights, associated to revision rules and/or database atoms.
Soft revision rules can be dynamically included or excluded from the generation of
revisions depending on optimization criteria based on the weights of the revision (e.g.,
minimization of the total weight associated to the revision). We provided motivating
examples for the different preference schemes, along with a precise description of how
preferred revisions can be computed using the smodels answer set inference engine.

7 Appendix

In this section we give a proof of Theorem 5, that under certain conditions, the justified
revisions of labeled revision programs with preferences coincide with the preferred
answer sets of prioritized logic programs introduced in [5].



154 I. Pivkina, E. Pontelli, and T.C. Son

A prioritized logic program2 is a pair (P, <) where P is a logic program and < is a
preference relation among rules of P . The semantics of (P, <) is defined by its preferred
answer set - answer sets of P satisfying some conditions determined by <. We will first
recall the notion of preferred answer sets from [5]. A binary relation R on a set S is
called strict partial order (or order) if R is irreflexive and transitive. An order R is total
if for every pair a, b ∈ S, either (a, b) ∈ R or (b, a) ∈ R; R is well-founded if every set
X ⊆ S has a minimal element; R is well-ordered if it is total and well-founded.

Let P be a collection of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where li’s are ground literals. Literals l1, . . . , lm are called the prerequisites of r. If
m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal l if l = li for
some i ∈ {m + 1, . . . , n}; r is defeated by a set of literals X if X contains a literal that
defeats r. A program P is prerequisite free if every rule in P is prerequisite free. For a
program P and a set of literals X , the reduct of P with respect to X , denoted by XP , is
the program obtained from P by

– deleting all rules with prerequisite l such that l �∈ X; and
– deleting all prerequisites of the remaining rules.

Definition 11. [5] Let (P, <) be a prioritized logic program where P is prerequisite
free and < is a total order among rules of P . An answer set S of P is a preferred answer
set of (P, <) if C<(A) = A where (i) C<(A) is the smallest set of ground literals that
is logically closed (wrt. P ); (ii)

⋃∞
i=0 Si ⊆ C<(A); and (iii) the sequence Si is defined

as follows:

S0 = ∅

Sn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋃n−1
i=0 Si if rn is defeated by

⋃n−1
i=0 Si

or rn is defeated by A and head(rn) ∈ A

⋃n−1
i=0 Si ∪ {head(rn)} otherwise

and rn is the nth rule in the order <.
For an arbitrary prioritized logic program (P, <), a set of literals A is called a

preferred answer set of (P, <) if it is a preferred answer set of (AP, <′)) for some total
order <′ that extends A< which inherits from < by the map: f : AP → P , i.e., r′

1
A<r′

2
if and only if f(r′

1) < f(r′
2) where f(r′) is the first rule in P with respect to < such that

r′ is obtained from r through the reduction A.

Now we are ready to give the proof of Theorem 5.

2 In this appendix, by a logic program we mean a propositional logic program. This is because
we only work with propositional revision programs.



Revising Knowledge in Multi-agent Systems 155

Theorem 5. Let (P,L, S) be a static revision program with preferences. Then, R is a
(P,L, S)-justified revision of the empty database if and only if R is a preferred answer
set of Q(P ).

Proof. Let U be the set of all atoms that appear in the program P .
(⇒) Let R be a (P,L, S)-justified revision of the empty database. We have that R

is a model of P (Theorem 3). Hence, R satisfies the rules of lp(P ). Furthermore, there
exist a PS,∅-justified revision R′ such that R′ ∩ U = R.

We will first show that R is a minimal set of literals satisfying the rules of lp(P ).
Assume the contrary, that there exists M ⊂ R such that M satisfies the rules of lp(P ).
Considera ∈ R\M . Sincea ∈ R, there exists a rule r ofPS,∅ such thathead(r) = in(a),
in(a) ∈ NC(PS,∅

∅,R′), and body(r) is satisfied by R′. Because r ∈ P , we have that
ok(r) ∈ R′. Hence, lp(r) ∈ lp(P ) and the body of r is satisfied by R. This contradicts
the fact that M is closed under lp(P ). This allows us to conclude that R is an answer
set of P .

It remains to be shown that R is a preferred answer set of (lp(P ), <). Consider the
prioritized program (R(lp(P )), <′) where R(lp(P )) is the reduct of lp(P ) with respect
to R and <′ inherits from < (as defined in Definition 11). It follows from the definition
of the reduct that if r ∈R (lp(P )) and r is not defeated by R then head(r) ∈ R.

We need to show that R is a preferred answer set of (R(lp(P )), <′). Let <∗ be the
transitive closure of <′, RN = {r | r ∈ (R(lp(P )), r is not defeated by R and r does
not occur in <∗}, and RD = {r | r ∈ (R(lp(P )), r is defeated by R and r does not
occur in <∗}. Let rn1, . . . , rnn1 be an enumeration of RN and rd1, . . . , rdn2 be an
enumeration of RD. We define an ordering <′′ on the rules of (R(lp(P )) as follows.

– r <′′ r′ if r <∗ r′;
– rni <′′ rnj for 1 ≤ i < j ≤ n1;
– rnn1 <′′ r for r occurs in <∗;
– rdi <′′ rdj for 1 ≤ i < j ≤ n2; and
– r <′′ rdi for r occurs in <∗ and 1 ≤ i ≤ n2;

We have that <′′ is a total order on the set of rules of R(lp(P )). Let r1, . . . , rm be
the sequence of rules of R(lp(P )), ordered by <′′. Let S0, . . . , Sm be the sequence of
sets of literals defined for R(lp(P )) with respect to <′′. It is easy to see that because R
is an answer set of P ,

⋃m
i=0 Si ⊆ R. Thus, we only need to show that for every a ∈ R,

there exists 0 ≤ j ≤ m such that a ∈ Sj .
Consider an arbitrary a ∈ R. It follows from the definition of answer set that there

exists some rule r of lp(P ) such that head(r) = a and body(r) is satisfied by R. This
implies that the reduct r′ of r belongs to R(lp(P )). Clearly, r′ is not defeated by R.
Without the lost of generality, we can assume that r′ = rl is the first rule in the sequence
of the rules of R(lp(P )) whose head is a. Together with the fact that

⋃l−1
i=0 Si ⊆ R,

we can conclude that head(r) ∈ Sl. Thus, we have that R ⊆ ⋃m
i=0 Si. This, together

with the fact that R is an answer set of lp(P ), shows that R is a preferred answer set of
(lp(P ), <).

(⇐) Let R be a preferred answer set of Q(P ), i.e., R is a preferred answer set of
(lp(P ), <′) for some total order <′ that extends <.



156 I. Pivkina, E. Pontelli, and T.C. Son

First, because R is an answer set of lp(P ) we have that R is a P -justified revision
of ∅. Let IN ′ = Inertia(∅, R) = {out(a) : a �∈ R}. We have that

R = {a ∈ U : in(a) ∈ NC(P∅,R)}
where P∅,R consists of rules of the form

head(r)← body(r) \ IN ′

where r ∈ P and where, by definition, NC(P∅,R) is the least model of P∅,R, when
treated as a Horn program built of independent propositional atoms of the form in(a)
and out(b). Let

d(R) = {defeated(r) | r ∈ P,∃r′.[r′ < r, R satisfies body(r′)]},
ok(R) = {ok(r) | r ∈ P, defeated(r) �∈ d(R)},

and
R′ = R ∪ d(R) ∪ ok(R) ∪ S.

We will show that R′ is a PS,∅-justified revision of ∅. Because the initial database is
empty, we have that

Inertia(∅, R′) = {out(a) : a ∈ UL(P ) �∈ R′}.
To simplify the presentation, let us denote Inertia(∅, R′) by IN . From the construc-

tion of R′, we have that IN ′ = IN ∩ {out(a) : a ∈ U}.
We will now construct the program P ′ = PS,∅

∅,R′ . We have that P ′ consists of the
following rules:

(a) head(r)← body(r) \ IN, in(ok(r)) where r is a rule in P , body(r) \ IN is the set
of literals occurring in body(r) which do not occur in IN .

(b) in(ok(r))← out(defeated(r)) \ IN ;
(c) in(prefer(r, r′))← if prefer(r, r′) ∈ S;
(d) in(defeated(r))← body(r′) \ IN, in(prefer(r′, r)) if prefer(r′, r)) ∈ S.

We will now show that R′ is P ′-justified revision of the empty database. It follows
from Definition 1 that we need to show that R′ = {a : in(a) ∈ NC(P ′)}. Let a ∈ R′.
We consider four cases:

– a = ok(r) for some r. By construction of R′, we have that a ∈ R′ iff defeated(r) �∈
d(R) iff defeated(r) �∈ R′ iff out(defeated(r)) ∈ IN iff in(ok(r)) ∈ NC(P ′);

– a = prefer(r, r′). From the construction of R′, a ∈ R′ iff prefer(r, r′) ∈ S iff
in(prefer(r, r′)← belongs to P ′ iff in(prefer(r, r′)) ∈ NC(P ′).

– a ∈ U . We will show that for every a ∈ U , in(a) ∈ NC(P ′) iff a ∈ R′ and
out(a) ∈ NC(P ′) iff a �∈ R′. Observe that for every rule of the type (a) we have
that head(r) ← body(r) \ IN ′ belongs to the program P∅,R. Therefore, a ∈ R
(resp. a �∈ R) implies that in(a) ∈ NC(P∅,R) (resp. out(a) ∈ NC(P∅,R)). Let T
be the fix point operator that is used in computing the least fix point of the program
P∅,R. We have that a ∈ R (resp. a �∈ R) if and only if there exists a minimal
number k such that in(a) ∈ T k(P∅,R) and in(a) �∈ T i(P∅,R) for i < k (resp.
out(a) ∈ T k(P∅,R) and out(a) �∈ T i(P∅,R) for i < k). We can prove by induction
over k that in(a) ∈ NC(P ′) (resp. out(a) ∈ NC(P ′)):



Revising Knowledge in Multi-agent Systems 157

• Base: k = 0 implies that in(a) = head(r) is a fact in P∅,R. Hence, in(a) ←
in(ok(r)) is a rule in P ′. We would like to show that ok(r) ∈ R′. Assume the
contrary, ok(r) �∈ R′. This implies that there exists a rule r′ in P such that
prefer(r′, r) ∈ S and R satisfies body(r′). Because (P,L, S) is static, we have
that (i) body(r′) ∪ body(r) is incoherent; or (ii) (head(r))D ∈ body(r′) and
(head(r′))D ∈ body(r). Since the body of r is empty, (i) cannot happen. If (ii)
happens, we have that R cannot satisfy the body of r′ due to the fact that R is
a P -justified revision of ∅. This implies that our assumption is incorrect, i.e.,
ok(r) ∈ R′. From the first item, we have that ok(r) is a fact in P ′. Thus, in(a) ∈
NC(P ′). Similar argument allows us to conclude that if out(a) ∈ T 0(∅) then
out(a) ∈ NC(P ′).

• Step: Assume that we have proved the conclusion for k. We need to show that
if in(a) ∈ T k+1(P∅,R), then in(a) ∈ NC(P ′). Similar to the base case, we can
show that there exists a rule r or P such that head(r) = in(a),
body(r)\IN ⊆ NC(P ′) and in(ok(r)) ∈ NC(P ′). This allows us to conclude
that in(a) ∈ NC(P ′). The same argument holds for out(a) ∈ T k+1(P∅,R).
This proves the inductive step.

– a = defeated(r) for some r. Then, a ∈ R′ if and only if there exists a rule r′,
prefer(r′, r) ∈ S such that the body of r′ is satisfied by R. Thus, body(r′) \ IN is
satisfied by R′, i.e., in(defeated(r)) ∈ NC(P ′).

The above items show that a ∈ R′ if and only if {a | in(a) ∈ NC(P ′)}. This implies
that R′ is a PS,∅-justified revision of ∅, i.e. R is a (P,L, S)-justified revision of ∅. ��

References

1. J.J. Alferes, P. Dell’Acqua, and L.M. Pereira. A compilation of updates plus references. In
Logics in Artificial Intelligence, European Conference, pages 62–73. Springer, 2002.

2. J.J. Alferes, F. Banti, A. Brogi, J.A. Leite. Semantics for Dynamic Logic Programming: A
Principle-Based Approach. In LPNMR, pages 8–20. Springer Verlag, 2004.

3. J.J. Alferes and L.M. Pereira. Updates plus preferences. In Logics in Artificial Intelligence,
European Workshop (JELIA), pages 345–360. Springer, 2000.

4. J.J. Alferes, J.A. Leite, L.M. Pereira, H. Przymusinska, and T.C. Przymusinski. Dynamic
Updates of Non-monotonic Knowledge Bases. JLP, 45, 2000.

5. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial Intelli-
gence, 109(1–2):297–356, 1999.

6. E. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic
programs. Theory and Practice of Logic Programming, 3(2):129–187, March 2003.

7. H.E. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Press, 1988.
8. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Using Methods of Declarative Logic Pro-

gramming for Intelligent Information Agents. TPLP, 2(6), 2002.
9. P. Faratin and B. Van de Walle. Agent Preference Relations: Strict, Indifferent, and Incompa-

rable. In AAMAS. ACM, 2002.
10. M. Gelfond and T.C. Son. Prioritized default theory. In Selected Papers from the Workshop on

Logic Programming and Knowledge Representation 1997, pages 164–223, Springer Verlag,
LNAI 1471, 1998.

11. P. La Mura andY. Shoham. Conditional, Hierarchical, Multi-agent Preferences. In TARK VII,
1998.



158 I. Pivkina, E. Pontelli, and T.C. Son

12. J.A. Leite, J.J. Alferes, and L.M. Pereira. MINERVA: a Dynamic Logic Programming Agent
Architecture. In Intelligent Agents VIII, pages 141–157. Springer Verlag, 2002.

13. J. Liu and Y. Ye. E-Commerce Agents. Lecture Notes in AI, Springer Verlag, 2001.
14. W. Marek, I. Pivkina, and M. Truszczyński. Revision programming = logic programming +

integrity constraints. In Computer Science Logic, Springer Verlag, 1999.
15. W. Marek and M. Truszczyński. Revision programming, database updates and integrity

constraints. In ICDT, pages 368–382. Springer Verlag, 1995.
16. W. Marek and M. Truszczyński. Revision programming. Theoretical Computer Science,

190(2):241–277, 1998.
17. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable model

semantics. In JICSLP, pages 289–303. MIT Press, 1996.
18. H. Prakken. Logical Tools for Modeling Legal Arguments. Kluwer Publishers, 1997.
19. T. Przymusinski and H. Turner. Update by means of Inference rules. In LPNMR, pages

156–174. Springer Verlag, 1995.
20. C. Sakama and K. Inoue. Updating Extended Logic Programs throughAbduction. In LPNMR,

pages 147–161. Springer Verlag, 1999.
21. M. De Voss and D. Vermeir. A Logic for Modeling Decision Making with Dynamic Pref-

erences, In Logics in Artificial Intelligence, European Workshop (JELIA), pages 391–406.
Springer, 2000.


	Introduction
	Preliminaries: Revision Programming
	Revision Programs with Preferences
	Motivational Example
	Syntax and Semantics
	Properties

	Soft Revision Rules with Weights
	Maximal Number of Rules
	Maximal Subset of Rules
	Weights
	Minimal Size Difference

	Related Work
	Conclusions
	Appendix



