
Planning Experiments
in the DALI Logic Programming Language�

Stefania Costantini and Arianna Tocchio

Università degli Studi di L’Aquila,
Dipartimento di Informatica,

Via Vetoio, Loc. Coppito, I-67010 L’Aquila - Italy
{stefcost, tocchio}@di.univaq.it

Abstract. We discuss some features of the new logic programming language
DALI for agents and multi-agent systems, also in connection to the issues raised
in [12]. We focus in particular on the treatment of proactivity, which is based
on the novel mechanism of the internal events and goals. As a case-study, we
discuss the design and implementation of an agent capable to perform simple
forms of planning. We demonstrate how it is possible in DALI to perform STRIPS-
like planning without implementing a meta-interpreter. In fact a DALI agent,
which is capable of complex proactive behavior, can build step-by-step her plan
by proactively checking for goals and possible actions.

1 Introduction

The new logic programming language DALI [2], [4], [3] has been designed for modeling
Agents and Multi-Agent systems in computational logic. Syntactically, DALI is close
to the Horn clause language and to Prolog. In fact, DALI can be seen as a “Prolog for
agents” in the sense that it is a general-purpose language, without prior commitment
to a specific agent architecture. Rather, DALI provides a number of mechanisms that
enhance the basic Horn-clause language to support the “agent-oriented” paradigm.

The definition of DALI has been meant to be a contribution to the understanding of
what the agent-oriented paradigm may mean in computational logic. In fact, in the context
of a purely logic semantics and of a resolution-based interpreter, some new features have
been introduced: namely, events can be considered under different perspectives, and there
is a careful treatment of proactivity and memory. In his new book [12], R. A. Kowalski
discusses at length, based on significant examples, the principles and techniques an
intelligent logical agent should be based upon. In this paper we will argue that DALI,
although developed independently, is able to cope with many of the issues raised in [12].

DALI programs may contain a special kind of rules, reactive rules, aimed at interact-
ing with an external environment. The environment is perceived in the form of external

� We acknowledge the support by MIUR 40% project Aggregate- and number-reasoning for
computing: from decision algorithms to constraint programming with multisets, sets, and maps
and by the Information Society Technologies programme of the European Commission, Future
and Emerging Technologies under the IST-2001-37004 WASP project.

J. Dix and J. Leite (Eds.): CLIMA IV, LNAI 3259, pp. 89–107, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



90 S. Costantini and A. Tocchio

events, that can be exogenous events, observations, or messages from other agents. In
response, a DALI agent can either perform actions or send messages. This is pretty usual
in agent formalisms aimed at modeling reactive agents (see among the main approaches
[10], [6], [7] [21], [20], [24]).

There are however in DALI some aspects that can hardly be found in the above-
mentioned approaches. First, the same external event can be considered under different
points of view: the event is first perceived, and the agent may reason about this perception;
then a reaction can take place; finally, the event and the (possible) actions that have been
performed are recorded as past events and past actions. The language has advanced
proactive features, on which we particularly focus in this paper.

The new approach proposed by DALI is compared to other existing logic program-
ming languages and agent architectures such as ConGolog, 3APL, IMPACT, METATEM,
AgentSpeak in [4]. It is useful to remark that DALI is meant to be a general-purpose
language, and thus does not commit to any specific agent architecture. Differently from
other significant approaches, e.g., DESIRE [9], DALI agents do not have pre-defined
submodules. Thus, different possible functionalities (problem-solving, cooperation, ne-
gotiation, etc.) and their interactions must be implemented specifically for the particular
application. DALI is not directly related to the BDI approach, although its proactive
mechanisms allow BDI agents to be implemented.

The declarative semantics of DALI, briefly summarized in Section 4, is an evolu-
tionary semantics, where the meaning of a given DALI program P is defined in terms of
a modified program Ps, where reactive and proactive rules are reinterpreted in terms of
standard Horn Clauses. The agent receiving an event/making an action is formalized as a
program transformation step. The evolutionary semantics consists of a sequence of logic
programs, resulting from these subsequent transformations, together with the sequence
of the models of these programs. Therefore, this makes it possible to reason about the
“state ”of an agent, without introducing explicitly such a notion, and to reason about the
conclusions reached and the actions performed at a certain stage. Procedurally, the in-
terpreter simulates the program transformation steps, and applies an extended resolution
which is correct with respect to the model of the program at each stage.

The proactive capabilities of DALI agents, on which we concentrate in this paper,
are based on considering (some distinguished) internal conclusions as events, called
“internal events”: this means, a DALI agent can “think” about some topic, the conclusions
she takes can determine a behavior, and, finally, she is able to remember the conclusion,
and what she did in reaction. Whatever the agent remembers is kept or “forgotten”
according to suitable conditions (that can be set by directives). Then, a DALI agent
is not a purely reactive agent based on condition-action rules: rather, it is a reactive,
proactive and rational agent that performs inference within an evolving context.

An agent must be able to act in a goal-oriented way, to solve simple planning problems
(regardless to optimality) and to perform tasks. To this aim, we have introduced a subclass
of internal events, namely the class of “goals”, that once invoked are attempted until they
succeed, and then expire. For complex planning tasks however, from DALI rules it is
possible to invoke anAnswer Set Solver [23]. In fact,Answer Set Programming [17] [16]
(based on the Answer Set Semantics of [13] [14]) is a new logic programming paradigm
particularly well-suited for planning. In particular, given (in a file) a knowledge base



Planning Experiments in the DALI Logic Programming Language 91

describing actions, constraints and the goal to be reached, the solver returns possible
plans in the form of Answer Sets, each of them containing the composing steps of a
single plan. The DALI agent can then choose among the Answer Sets according to her
criteria.

To demonstrate the usefulness of the “internal event” and “goal” mechanisms, we
consider as a case-study the implementation of STRIPS-like planning. We will show
that it is possible to design and implement this kind of planning without defining a
meta-interpreter like is done in [18] (Ch. 8, section on Planning as Resolution). Rather,
each feasible action is managed by the agent’s proactive behavior: the agent checks
whether there is a goal requiring that action, sets up the possible subgoals, waits for the
preconditions to be verified, performs the actions (or records the actions to be done if
the plan is to be executed later), and finally arranges the postconditions.

The paper is organized as follows. In Section 2 we summarize how we have un-
derstood the discussion in [12]; in Section 3 the language syntax, main constructs and
their use are illustrated; in Section 4 the evolutionary semantics is briefly recalled; in
Section 5 we present the case-study, and finally in Section 6 we conclude.

2 How to be Artificially Intelligent, the Logical Way

This is the topic treated at length by R. A. Kowalski in his new book [12], which is
aimed at understanding which principles an intelligent logical agent should be based
upon. According to our understanding of the interesting and deep discussion reported
there, there are some important features and functionalities that any approach to agents
in computational logic should include, mainly the following:

– Being able of forward reasoning, for interacting with the external world: on the one
hand, for going from perceptions to goals; on the other hand, for going from goals
or candidate actions to actions.

– Making a distinction between high-level maintenance goals and achievement goals
Maintenance goals constitute the “consciousness ” of what the agent has to fulfill
in order to stay alive, keep herself in an acceptable state, be able to perform her
main tasks. Achievement goals are needed in order to reach maintenance goals, and
can in turn leave to low-level subgoals. The step between a maintenance goal and
the achievement goals that are needed in order to make it done is in principle a step
of forward reasoning. Instead, achievement goals can be coped with by means of
backward reasoning, unless they are low-level, and thus require a forward reasoning
step for making actions that affect the world.

– Combining different levels of consciousness. An agent is computationally conscious
when she is aware of what she is doing and why she is doing it, which means that
her behaviour is described by means of an high-level program, which manipulates
symbols that have meaningful interpretations in the environment. Equivalently, an
agent is logically conscious when her behaviour is generated by reasoning with
goals and beliefs. Consciousness must be suitably combined with lower-level input-
output associations or condition-action rules, which can also be represented as goals
in logical form. Wishfully, it should be possible to compile and de-compile between
high-level and low-level representations.



92 S. Costantini and A. Tocchio

– Keeping track of time, both to timestamp externally observed events and to compare
the current time with the deadlines of any internally derived future actions.

– Keeping memory of past observations, so as to be able to generate hypothetical
beliefs, to explain the past and predict the future.

– Coping with a changing world, possibly by an approach focused on the occurrence
of events and on the effect of events on local states of affairs, such as the Event
Calculus [11].

In the rest of this paper we will argue that DALI, although developed independently,
is able to cope with many of the issues raised in [12].

3 DALI

DALI is a logic programming agent-oriented language, aimed at a declarative specifica-
tion of agents and multi-agent systems. While describing the main features of DALI, we
will try to focus where these features find a convergence with the points raised in [12]
that we have reported above.

A DALI program is syntactically very close to a traditional Horn-clause program.
In fact, a Horn-clause program is a special case of a DALI program. Specific syntactic
features have been introduced to deal with the agent-oriented capabilities of the language,
and in particular to deal with events, actions and goals.

Having been designed for defining agents and multi-agent systems, DALI has been
equipped with a communication architecture [5]. For the sake of interoperability, the
DALI communication protocol is FIPA compliant, where FIPA (Foundation for Intelli-
gent Physical Agents) is the most widely acknowledged standard for Agent Communi-
cation Languages. We have implemented the relevant FIPA primitives, plus others which
we believe to be suitable in a logic setting. We have designed a meta-level where: on
the one hand the user can specify, via two distinguished primitives tell/told, constraints
on communication and/or a communication protocol; on the other hand, meta-rules
can be defined for filtering and/or understanding messages via applying ontologies and
forms of commonsense and case-based reasoning. These forms of meta-reasoning are
automatically applied when needed by form of reflection [1].

3.1 Events

Let us consider an event arriving to the agent from its “external world”, like for instance
bell ringsE (postfix E standing for “external”). From the agent’s perspective, this event
can be seen in different ways.

Initially, the agent has perceived the event, but she still has not reacted to it. The
event is now seen as a present event bell ringsN (postfix N standing for “now”). She
can at this point reason about the event: for instance, she concludes that a visitor has
arrived, and from this she realizes to be happy.

visitor arrived :- bell ringsN.

happy :- visitor arrived.



Planning Experiments in the DALI Logic Programming Language 93

Then, the reaction to the external event bell ringsE consists in going to open the
door. This is specified by the following reactive rule. The new token :> used instead
of :- emphasizes that this rule performs forward reasoning, and is activated by the
occurrence of the event which is in the head.

bell ringsE :> go to open.

About opening the door, there are two possibilities: one is that the agent is dressed
already, and thus can perform the action directly (open the doorA, postfix A standing for
“action”). The other one is that the agent is not dressed, and thus she has to get dressed
before going. The action get dressedA has a defining rule. This is just a plain horn rule,
but in order to emphasize that it has the role of specifying the preconditions of an action,
the new token :< is used instead of :- .

go to open :- dressed, open the doorA.

go to open :- not dressed,

get dressedA, open the doorA.

get dressed :< grab clothes.

DALI makes a distinction between low level reaction to the external events, and high-
level thinking about these events. Since thinking and reacting are in principle different
activities, we have introduced the two different points of view of the same event: as an
external event to be reacted to, and as a present event to be conscious of. Then, when
coping with external events DALI is able to combine, as advocated in [12], different
“levels of consciousness”: high-level reasoning performed on present events, that may
lead the agent to revise or augment her beliefs; low-level forward reasoning for reaction.

DALI keeps track of time, since all events are timestamped. As we will see later,
DALI also keeps track of events and actions that occurred in the past. The timestamp
can be explicitly indicated when needed, and omitted when not needed. I.e., for any
timestamped expression Expr, one can either write simply Expr, or Expr : T . External
events and actions are used also for sending and receiving messages [5].

3.2 Proactivity in DALI

The basic mechanism for providing proactivity in DALI is that of the internal events.
Namely, the mechanism is the following: an atom A is indicated to the interpreter as
an internal event by means of a suitable directive. If A succeeds, it is interpreted as an
event, thus determining the corresponding reaction. By means of another directive, it is
possible to tell the interpreter that A should be attempted from time to time: the directive
also specifies the frequency for attempting A, and the terminating condition (when this
condition becomes true, A will be not attempted any more).

Thus, internal events are events that do not come from the environment. Rather, they
are predicates defined in the program, that allow the agent to introspect about the state of
her own knowledge, and to undertake a behavior in consequence. This mechanism has
many uses, and also provides a mean for gracefully integrating object-level and meta-
level reasoning. It is also possible to define priorities among different internal events,
and/or constraints stating for instance that a certain internal event is incompatible with



94 S. Costantini and A. Tocchio

another one. Internal events start to be attempted when the agent is activated, or upon
a certain condition, and keep being attempted (at the specified frequency) until the
terminating condition occurs. The syntax of a directive concerning an internal event p is
the following:

try p [since SCond] [frequency f ] [until TCond].

It states that: p should be attempted at a frequency f ; the attempts should start
whenever the initiating condition SCond becomes true; the attempts should stop as soon
as the terminating condition TCond becomes true. All fields are optional. If all of them
are omitted, then p is attempted at a default frequency, as long as the agent stays alive.

Whenever p succeeds, it is interpreted as an event to which the agent may react, by
means of a reactive rule:

pI :> R1, . . . , Rn.

The postfix I added to p in the head of the reactive rule stands for “internal”, and the
new connective :> stands for determines. The rule reads: “if the internal event pI has
happened, pI will determine a reaction that will consist in attempting R1, . . . , Rn”. The
reaction may involve making actions, or simply reasoning on the event.

Internal events are the DALI way of implementing maintenance goals. The relevant
aspects of the agent’s state are continuously kept under control. In fact, repeatedly
attempting an internal event A means checking whether a condition that must be taken
care of has become true. Success of A triggers a reaction: by means of a step of forward
reasoning, the DALI agent goes from the internal event to whatever needs to be done in
order to cope with it.

Frequency and priorities are related to the fact that there are conditions that are more
critical then others, and or that evolve differently with time.

The reasons why A may fail in the first place and succeed later may be several. As a
possible reason, the agent’s internal state may change with time:

time to go home :- time(T), T >= 17:00pm.

time to go homeI :> stop work, go to bus stopA, take busA.

Or, the agent’s internal state may change with time, given her internal rules of func-
tioning (below, she gets hungry after some time from last meal), which may imply setting
achievement goals (get food) and making actions (eat food):

hungry :- time(T), time last meal(T1), finished energy(T,T1).

hungryI :> get food, eat foodA.

Notice that the reaction to an internal event corresponding to a maintenance goal
resembles what in the BDI approach is called an “intention” , i.e., the act of taking
measures in order to reach a desirable state.

Another reason why an internal event may initially fail and then succeed is that the
state of the external world changes with time. In the example below, a meal is ready as
soon as the cooking time has elapsed. The definition uses timestamps: the agent knows
when the soup was previously (postfix P ) put on fire from the enclosed timestamp, and
can thus estimate whether the cooking time has elapsed:



Planning Experiments in the DALI Logic Programming Language 95

soup ready :- soup on fireP:T,

cooking time(soup,K), time elapsed(T,K).

soup readyI :> take off pan from stoveA, turn off the fireA.

Or also, there may be new observations that make the internal event true:

ready(cake) :- in the oven(cake), color(cake,golden), smell(cake,good).

readyI(cake) :> take from oven(cake), switch off the oven, eat(cake).

Or, the reasoning about a present event may lead to a conclusion or to a new belief,
that may trigger further activity. In a previous example, we have the conclusion happy,
drawn from the present event bell rings (but in general, this conclusion will be possibly
drawn from several other conditions). It may be reasonable to consider “happiness” as
a relevant aspect of the agent’s state, and thus interpret predicate happy as an internal
event, that causes a reaction (e.g., a smile) whenever true.

visitor arrived :- bell ringsN.

happy :- visitor arrived.

happyI :> smileA.

This shows that internal events not only can model maintenance goals, but can also
model a kind of “consciusness” or “introspection” of the agent about her private state of
affairs. When internal events are used in this way, the definition of the reaction specifies
a sort of “individuality” of the agent, i.e., a kind of peculiar behaviour not strictly related
to a need.

3.3 Past Events

The agent remembers events and actions, thus enriching her reasoning context. An event
(either external or internal) that has happened in the past will be called past event, and
written bell ringsP , happyP , etc., postfix P standing for “past”. Similarly for an action
that has been performed. It is also possible to indicate to the interpreter plain conclusions
that should be recorded as past conclusions (which, from a declarative point of view,
are just lemmas). Past events are time-stamped, i.e., they are actually stored in the form:
predP : timestamp.

Then, past events can remind the agent of:

– An external event that has happened; in this case, the time-stamp refers to the moment
in time when the agent has reacted to the event.

– An internal event that has taken place; also in this case, the time-stamp refers to
reaction.

– An action that has been performed; the time-stamp refers to when the action has
been done.

– A conclusion that has been reached; the time-stamp records when.

It is important to notice that an agent cannot keep track of every event and action
for an unlimited period of time, and that, sometimes, subsequent events/actions can
make former ones no more valid. Then, we must equip an agent with the possibility to
remember, but also to forget things.



96 S. Costantini and A. Tocchio

According to the specific item of knowledge, the agent may want:

– To remember it forever.
– To forget it after a certain time.
– To forget it as as soon as subsequent knowledge makes it no more valid.

Moreover, if the recorded item concerns an event that may happen several time (i.e.,
rain) the agent may want:

– To remember all the occurrences.
– To remember only some of them, according to some conditions (the simplest one is

a time-interval).
– To remember only the last occurrence.

In essence, there is a need to express forms of meta-information about the way in
which the agent manages her knowledge base. Modifying this meta-information makes
the behavior of the agent different. However, these aspects cannot be expressed in the
agent logic program, which is a first-order Horn theory. Nor we want to hardwire them
in the implementation.

Then, we have introduced the possibility of defining directives, that are by all means
part of the specification of an agent, but are not part of the logic program. They are an
input to the interpreter, and can be modified without altering (and even without looking
at) the logic program, in order to “tune ” the agent behavior.

Then, all the above-mentioned conditions can be specified via directives. Examples
of directives are the following:

keep predP until Time.

where PredP is removed at the time Time,

keep predP until Condition.

where PredP is removed when Condition becomed true,

keep predP forever.

where PredP is never removed (think as an example to the birth-date of people, as a
kind of information that never expires).

As a default, just the last occurrence of PredP is kept, with its time-stamp, thus
overriding previous ones. A directive can however alter this behavior, and the agent can
look for various versions (for the sake of simplicity, we do not detail this point here).
In the agent program, when referring to PredP the agent implicitly refers to the last
version.

If the directives for keeping/removing past events/actions/conclusions are specified
carefully, we can say that the set of the last versions of past events/actions/conclusions
constitutes an implicit representation of the frame axiom. This because this set represents
what has happened/has been concluded, and has not been affected yet by what has
happened later in the agent evolution.

Past events, past conclusions and past actions, which constitute the “memory” of the
agent, are an important part of the (evolving) context of an agent. Memories make the
agent aware of what has happened, and allow her to make predictions about the future.



Planning Experiments in the DALI Logic Programming Language 97

It is interesting to notice that DALI management of past events allows the program-
mer to easily define Event Calculus expressions. The Event Calculus (EC) has been
proposed by Kowalski and Sergot [11] as a system for reasoning about time and ac-
tions in the framework of Logic Programming. The essential idea is to have terms,
called fluents, which are names of time-dependent relations. Kowalski and Sergot write
holds(r(x, y), t) which is understood as “fluent r(x, y) is true at time t”.

Take for instance the default inertia law formulated in the event calculus as follows:

holds(f,t)← happens(e),

initiates(e,f),

date(e,t s),

t s < t,

not clipped(t s,f,t)

where clipped(ts, f, t) is true when there is record of an event happening between ts
and t that terminates the validity of f . In other words, holds(f, t) is derivable whenever
in the interval between the initiation of the fluent and the time the query is about, no
terminating events has happened.

In DALI, assuming that the program contains suitable assertion for initiates as well
as the definition of clipped, this law could be immediately reformulated as follows.
We just reinterpret Happens(e), date(e, ts) as a lookup in the knowledge base of past
events, where evp finds an event E with its timestamp Ts (where, in this case, Ts initiates
fluent f ):

holds(f,T) :- evp(E,T s),

initiates(E,T),

T s < t,

not Clipped(T s,f,T)

The representation can be enhanced by defining holds as an internal event. This
means, the interpreter repeatedly attempts to prove holds(f, T ). Upon success, a reactive
rule can state what to do in consequence of this conclusion. Then, holds(f, T ) will be
recorded as a past event holdsP (f, T ), thus creating a temporal database where holds
atoms are kept, and possibly removed according to the associated directives.

3.4 Goals

A special kind of internal event is a goal. Differently from the other internal events,
goals start being attempted either when encountered during the inference process, or
when invoked by an external event. Each goal G will be automatically attempted until it
succeeds, and then expires. Moreover, if multiple definitions of G are available, they are
(as usual) applied one by one by backtracking, but success of one alternative prevents
any further attempt. attempt. DALI goals are a way of implementing [12] achievement
goals, that must be attempted whenever needed, and possibly decomposed into subgoals.

We have implemented goals (postfix G) on top of internal events, by exploiting a
practically useful role of past conclusions: i.e., that of allowing one to eliminate subse-
quent alternatives of a predicate definition upon success of one of them. Assume that



98 S. Costantini and A. Tocchio

the user has designated predicate q as a conclusion to be recorded (it will be recorded
with syntax qP ). Then, she can state that only one successful alternative for q must be
considered (if any), by means of the following definition:

q :- not qP, 〈def1〉.
. . .

q :- not qP, 〈defn〉.
Coming back to goals, whenever goalG becomes true, a reaction may be triggered,

by means of an (optional) reactive rule:

goalGI :> R1, . . . , Rk

A slightly different postfix, namely GI , is used to distinguish the head of the reactive
rule, so as to visually remark that this internal event is in particular a goal. After reaction,
the goal is recorded as a past event goalP , so as the agent is aware that it has been
achieved. If there is no reactive rule, the past event is recorded as soon as goalG becomes
true. This past event may in turn allow other internal events or goals to succeed, and so
on. Then, a DALI agent is in constant evolution.

Goals can be used in a planning or problem-solving mechanism, for instance by
employing the following schema.

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk(1)
subgoalG1, . . . , subgoalGn(2)
subgoalP1, . . . , subgoalPn(3)

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

where:

part (1) of Rule 1 verifies the preconditions of the goal;
part (2) of Rule 1 represents the invocation of the subgoals;
part (3) of Rule 1 verifies that previously invoked subgoals have been achieved (they

have become past conclusions);
Rule 2 (optional) performs the actions which are needed to achieve the present goal,

and to set its postconditions.

The reason why goalG must be attempted repeatedly by Rule 1 is that, presumably,
in the first place either some of the preconditions will not hold, or some of the subgoals
will not succeed. The reason why part 3 of Rule 1 is needed is that each of the subgoals
has the same structure as the overall goal. I.e., first its prerequisites have to succeed by
Rule 1, and then it is actually achieved by the reaction in Rule 2 (if present), and finally
becomes a past event. Then, by looking for past events part 3 checks that the subgoals
have been properly achieved.

If the given goal is part of a problem-solving activity, or if it is part of a task, then the
reaction may consist in directly making actions. In planning, the reaction may consist in



Planning Experiments in the DALI Logic Programming Language 99

updating the plan (by adding to it the actions that will have to be performed whenever
the plan will be executed).

For convenience, a conjunction goalG,goalP that attempts a goal and waits for it to
be achieved is denoted by the shorthand goalD, D standing for “done”. Then, the above
rules can be rewritten more shortly as:

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk

subgoalD1, . . . , subgoalDn.

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

Also, it is possible to associate a timeout to the goal: by writing goalD:T we say that
if the goal has not been achieved within the given time period T , then it fails.

Notice that the mechanism of DALI goals fulfills the structure advocated in [12] for
achievement goals: there is a backward reasoning part in Rule 1, that possibly splits the
goal into subgoals; there is (if needed) a forward reasoning part in Rule 2, for performing
actions.

An easy improvement, demonstrated below, copes with situation where there are
goals, and the agent may want to achieve as many of them as possible, regardless to the
others.

many goals :- condition1, . . . , conditionk, goalsG.

goalsG :- goalD1:T1 :: . . . :: goalDn:Tn.

On the invocation of goalsG, the interpreter invokes all goals in the body of the rule.
The body succeeds if at least one of them succeeds. This mechanism is composable, in
the sense that any of the goalGi’s can in turn be defined in this way.

Conceptually, there is a declarative rewriting of the above rule, taking profit of the
fact that if there are alternative definitions for goalG, then the first successful alternative
is taken. One should then specify as many rules as the possible combinations.

The examples that we propose in the ongoing for STRIPS-like planning are aimed
at showing the power, generality and usability of DALI internal events and goals.

3.5 Coordinating Actions Based on Context

A DALI agent builds her own context, as suggested in [12], by keeping track of the events
that have happened in the past, and of the actions that she has performed. As discussed
above, whenever an event (either internal or external) is reacted to, whenever an action
subgoal succeeds (and then the action is performed), and whenever a distinguished
conclusion is reached, this is recorded in the agent knowledge base.

Past events and past conclusions are indicated by the postfix P , and past actions by
the postfix PA. The following rule for instance says that Susan is arriving, since we
know her to have left home.

is arriving(susan) :- left homeP(susan).

The following example illustrates how to exploit past actions. We consider an agent
who opens and closes a switch upon a condition. For the sake of simplicity we assume



100 S. Costantini and A. Tocchio

that no exogenous events influence the switch. The action of opening (resp. closing) the
switch can be performed only if the switch is closed (resp. open). The agent knows that
the switch is closed if she remembers to have closed it previously. The agent knows that
the switch is open if she remembers to have opened it. Predicates open and close are
internal events, that periodically check the opening/closing condition, and, whenever
true, perform the action (if feasible). previously.

open :- opening cond.

openI :> open switchA.

open switchA :< switch closed.

switch closed :- close switchPA.

close :- closing cond.

closeI :> close switchA.

close switchA :< switch open.

switch open :- open switchPA.

In the example, the agent will remember to have opened the switch. However, as soon
as she closes the switch this record becomes no longer valid and should be removed: the
agent in this case is interested to remember only the last action of a sequence. As soon
as the until condition is fulfilled, i.e., the corresponding subgoal has been proved, the
past action is removed. Then, the suitable directives for past actions will be in this case
the following:

keep open switchPA until close switchA.

keep close switchPA until open switchA.

The following example illustrates the use of actions with preconditions. The agent
emits an order for a product Prod of which she needs a supply. The order can be done
either by phone or by fax, in the latter case if a fax machine is available. We want to
express that the order can be done either by phone or by fax, but not both, and we do
that by exploiting past actions, and say that an action cannot take place if the other one
has already been performed. Here, not is understood as default negation.

need supplyE(Prod) :> emit order(Prod).

emit order(Prod) :- phone orderA(Prod),

not fax orderPA(Prod).

emit order(P) :- fax orderA(Prod),

not phone orderPA(Prod).

This can be reformulated in a more elaboration-tolerant way by the constraints:

:- fax orderA(Prod), phone orderPA(Prod)
:- fax orderPA(Prod), phone orderA(Prod)

thus eliminating negations from the body of the action rules.



Planning Experiments in the DALI Logic Programming Language 101

4 Semantics

The DALI interpreter can answer user queries like the standard Prolog interpreter, but in
general it manages a disjunction of goals. In fact, from time to time external and internal
event will be added (as new disjuncts) to the current goal. The interpreter extracts the
events from queues where they occur in the order in which they have been generated.

All the features of DALI that we have previously discussed are modeled in a declara-
tive way. For a full definition of the semantics the reader may refer to [4]. We summarize
the approach here, in order to make the reader understand how the examples actually
work.

Some language features do not affect at all the logical nature of the language. In
fact, attempting the goal corresponding to an internal event just means trying to prove
something. Also, storing a past event just means storing a lemma.

Reaction and actions are modeled by suitably modifying the program. This means,
inference is performed not in the given program, but in a modified version where language
features are reformulated in terms of plain Horn clauses.

Reception of an event is modeled as a program transformation step. I.e., each event
that arrives determines a new version of the program to be generated, and then we have
a sequence of programs, starting from the initial one. In this way, we do not introduce
a concept of state which is incompatible with a purely logic programming language.
Rather, we prefer the concept of program (and model) evolution.

More precisely, we define the declarative semantics of a given DALI program P in
terms of the declarative semantics of a modified program Ps, obtained from P by means
of syntactic transformations that specify how the different classes of events/conclusions/
actions are coped with. For the declarative semantics of Ps we take the Well-founded
Model, that coincides with the the Least Herbrand Model if there is no negation in the
program (see [19] for a discussion). In the following, for short we will just say “Model”.
It is important to notice that Ps is aimed at modeling the declarative semantics, which is
computed by a bottom-up immediate-consequence operator. The declarative semantics
will then correspond to the top-down procedural behavior of the interpreter.

We assume that events which have happened are recorded as facts. We have to
formalize the fact that a reactive rule is allowed to be applied only if the corresponding
event has happened. We reach our aim by adding, for each event atom p(Args)E , the
event atom itself in the body of its own reactive rule. The meaning is that this rule can
be applied by the immediate-consequence operator only if p(Args)E is available as a
fact. Precisely, we transform each reactive rule for external events:

p(Args)E :> R1, . . . , Rq.

into the standard rule:

p(Args)E :- p(Args)E, R1, . . . , Rq.

In a similar way we specify that the reactive rule corresponding to an internal event
q(Args)I is allowed to be applied only if the subgoal q(Args) has been proved.



102 S. Costantini and A. Tocchio

Then, we have to declaratively model actions, without or with an action rule. An
action is performed as soon as its preconditions are true and it is invoked in the body of
a rule, such as:

B :< D1, . . . , Dh, aA1, . . . , aAk. h ≥ 1, k ≥ 1

where the aAi’s are actions and the Dj’s are not actions. Then, for every action atom
aA, with action rule

aA :- C1, . . . , Cs. s ≥ 1

we modify this rule into:

aA :- D1, . . . , Dh, C1, . . . , Cs.

If aA has no defining clause, we instead add clause:

aA :- D1, . . . , Dh.

We repeat this for every rule in which aA is invoked.
In order to obtain the evolutionary declarative semantics of P , we explicitly associate

to Ps the list of the external events that we assume to have arrived up to a certain point,
in the order in which they are supposed to have been received. We let P0 = 〈Ps, []〉 to
indicate that initially no event has happened.

Later on, we have Pn = 〈Progn, Event listn〉, where Event listn is the list of the
n events that have happened, and Progn is the current program, that has been obtained
from Ps step by step by means of a transition function Σ. In particular, Σ specifies that,
at the n-th step, the current external event En (the first one in the event list) is added to
the program as a fact. En is also added as a present event. Instead, the previous event
En−1 is removed as an external and present event, and is added as a past event.

Formally we have:

Σ(Pn−1, En) = 〈ΣP (Pn−1, En), [En|Event listn−1]〉
where

ΣP (P0, E1) = ΣP (〈Ps, []〉, E1) = Ps ∪ E1 ∪ E1N

ΣP (〈Progn−1, [En−1|T ]〉, En) =
{{Progn−1 ∪ En ∪ EnN ∪ En−1P } \ En−1N} \ En−1

It is possible to extend ΣP so as to deal with internal events, add as facts past actions
and conclusions, and remove the past events that have expired.

Definition 1. Let Ps be a DALI program, and L = [En, . . . , E1] be a list of events. Let
P0 = 〈Ps, []〉 and Pi = Σ(Pi−1, Ei) (we say that event Ei determines the transition
from Pi−1 to Pi). The list P(Ps, L) = [P0, . . . , Pn] is the program evolution of Ps with
respect to L.

Notice that Pi = 〈Progi, [Ei, . . . , E1]〉, where Progi is the program as it has been
transformed after the ith application of Σ.



Planning Experiments in the DALI Logic Programming Language 103

Definition 2. Let Ps be a DALI program, L be a list of events, and PL be the program
evolution of Ps with respect to L. Let Mi be the Model of Progi. Then, the sequence
M(Ps, L) = [M0, . . . , Mn] is the model evolution of Ps with respect to L, and Mi the
instant model at step i .

The evolutionary semantics of an agent represents the history of the events received
by the agents, and of the effect they have produced on it, without introducing a concept of
a “state”. It is easy to see that, given event list [En, . . . , E1], DALI resolution simulates
standard SLD-Resolution on Progn.

Definition 3. LetPs be a DALI program, Lbe a list of events. The evolutionary semantics
EPs of Ps with respect to L is the couple 〈P(Ps, L),M(Ps, L)〉.

The behaviour of DALI interpreter has been modeled and checked with respect to
the evoltionary semantics by using the Murφ model checker [8].

5 A Sample Application: STRIPS-Like Planning

In this section we show that the DALI language allows one to define an agent that is able to
perform planning (or problem-solving) in a STRIPS-like fashion, without implementing
a metainterpreter.

For the sake of simplicity, the planning capabilities that we consider are really basic,
e.g., we do not consider here the famous STRIPS anomaly, and we do not have any
pretense of optimality.

We consider the sample task of putting on socks and shoes. Of course, the agent
should put her shoes on her socks, and she should put both socks and both shoes on.

We suppose that some other agent sends a message to ask our agent to wear the shoes.
This message is an external event, which is the head of a reactive rule: the body of the rule
specifies the reaction, which in this case consists in invoking the goal put your shoesG.

goE :> put your shoesG.

This goal will be attempted repeatedly, until it will be achieved.
It is important to recall the mechanism of DALI goals:

– For a goal g to be achieved, first of all the predicate gG must become true, by means
of a rule gG :- Conds, where Conds specify preconditions and subgoals.

– For a goal g to be achieved, as soon as gG becomes true the (optional) reactive
rule gGI :> PostAndActions is activated, that performs the actions and/or sets
the postconditions related to the goal.

– as soon as a goal gG is achieved (or, in short, we say that gG succeeds, even though
this involves the above two steps), it is recorded as a past event, in the form gP .

– the conjunction gG, gP that invokes a goal and waits for it to be achieved is denoted
by gD.

This explains the structure of the rule below:

put your shoesG :- put right shoeD, put left shoeD.



104 S. Costantini and A. Tocchio

In particular, it is required that the agent puts both the right and left shoe on. This
means, put your shoesG will become true as soon as both of its subgoals will have been
achieved. In practice, after the invocation of the subgoals, the overall goal is suspended
until the subgoals become past events.

In the meantime, the subgoals put right shoeG and put left shoeG will be attempted.

put right shoeG :- have right shoe, put right sockD.

This rule verifies a precondition, i.e., that of having the shoe to put on. Then it
attempts the subgoal put right sockG and waits for its success, i.e., waits for the subgoal
to become a past event. The rule for the subgoal is:

put right sockG :- have right sock.

This rule doesn’t invoke subgoals, but it just checks the precondition, i.e., to have
the right sock. Upon success, the corresponding reactive rule is triggered:

put right sockGI :> right sock on.

Now we have two possibilities: in a problem-solving activity, we will have the rule:

right sock on :- wear right sockA.

that actually executes the action of wearing the sock.
In a planning activity, we will have instead the rule:

right sock on :- update plan(wear right sock).

that adds to the plan that is being built the step of wearing the sock. In any case, the goal
put right sockG has been achieved, and will be now recorded as past event, and thus
put right sockD becomes true. Consequently, also put right shoeG becomes true, thus
triggering the reactive rule:

put right shoeGI :> right shoe on.

After having made (or recorded) the action of wearing the shoe, put right shoeP will
become true, thus obtaining put right shoeD.

Analogously, the agent will eventually record the past event put left shoeP, thus
obtaining put left shoeD. Since the subgoals of wearing the right and the left shoe are
unrelated, no order is enforced on their execution. Only, the overall goal becomes true
whenever both of them have been achieved.

At this point, the reactive rule related to the overall goal will be activated:

put your shoesGI :> message(tell shoes onA).

which means that the goal has succeeded, and in particular the agent declares to have
the shoes on.

The planning mechanism that we have outlined consists of a descendant process
that invokes the subgoals, and of an ascending process that executes (or records) the
corresponding actions.



Planning Experiments in the DALI Logic Programming Language 105

This methodology allows an agent to construct plans dynamically. In fact, a change
of the context, i.e., new information received from the outside, can determine success
of subgoals that could not succeed before.

A future direction of this experimental activity is that of writing a meta-planner with
general meta-definitions for root, intermediate and leaf goals. This meta-planner would
accept a list of goals, with the specification of their kind, and for each of them the list
of preconditions, subgoals and actions.

Below we show an example of use of conditional goal rules, where

gG :- Conds, gD1 :: , . . . , , :: gDn

means, as previously discussed, that if Conds are true, then the body of the rule succeeds
provided that at least one of the gDi’s succeeds (though the interpreter invokes them
all, and tries to achieve as many as possible). The point is that the failure of non-critical
partial objectives does not determine the failure of the overall goal. The example consists
in an agent that has to go to the supermarket in order to buy milk and bananas, and to
the hardware shop in order to buy a drill. He tries to go both to the supermarket and
to the hardware shop. However, if one of them is closed he just goes to the other one.
In each shop, he tries to buy what he needs, without making a tragedy if something is
missing. There is a failure (and then the agent is disappointed) only if either both shops
are closed, or all items are missing.

buy :- buy allD.

disappointed :- not buy.

buyI :> go homeA.

disappointedI :> some reaction.

buy allG :- buy at supermarketD :: buy at hardware shopD.

buy at supermarketG :- supermarket open,

buy bananasD :: buy milkD.

buy at hardware shopG :- hardware shop open,

buy drillG.

6 Conclusions

We have presented how to implement a naive version of STRIPS-like planning in DALI,
mainly by using the mechanism of internal events and goals. However, the ability of
DALI agents to behave in a “sensible” way comes from the fact that DALI agents have
several classes of events, that are coped with and recorded in suitable ways, so as to form
a context in which the agent performs her reasoning. In fact, we have argued that DALI
fulfills many of the points raised in [12] about which features any logical formalism
aimed at defining intelligent agents should possess.

A simple form of knowledge update and “belief revision” is provided by the con-
ditional storing of past events, past conclusions and past actions. They constitute the
“memory” of the agent, and are an important part of her evolving context: memories
make the agent aware of what has happened, and allow her to make predictions about the



106 S. Costantini and A. Tocchio

future. The ability of specifying how long and under which conditions memories should
be kept allows the agent behavior to be specified in a more sophisticated and flexible
way. For the sake of flexibility and of conceptual clarity, the directives that cope with
the knowledge base of the agent memories are distinct from the agent logic program. In
the future however, more sophisticated belief revision strategies will be integrated into
the formalism.

DALI is fully implemented in Sicstus Prolog [22]. The implementation, together with
a set of examples, is available at the URL http://gentile.dm.univaq.it/
dali/dali.htm.

Acknowledgments

Many thanks to Stefano Gentile, who joined the DALI project, cooperates to the imple-
mentation of DALI, has designed the language web site, and has supported the authors
in many ways. We also gratefully acknowledge Prof. Eugenio Omodeo for useful dis-
cussions and for his support to this research.

References

1. J. Barklund, S. Costantini, P. Dell’Acqua e G. A. Lanzarone, Reflection Principles in
Computational Logic, Journal of Logic and Computation, Vol. 10, N. 6, December 2000,
Oxford University Press, UK.

2. S. Costantini, Towards active logic programming, In A. Brogi and P. Hill,
(eds.), Proc. of 2nd International Works. on Component-based Software Develop-
ment in Computational Logic (COCL’99), PLI’99, Paris, France, September 1999,
http://www.di.unipi.it/˜brogi/ResearchActivity/COCL99/ proceed-
ings/index.html.

3. S. Costantini, S. Gentile and A. Tocchio, DALI home page:
http://gentile.dm.univaq.it/dali/dali.htm.

4. S. Costantini and A. Tocchio, A Logic Programming Language for Multi-agent Systems, In
S. Flesca, S. Greco, N. Leone, G. Ianni (eds.), Logics in Artificial Intelligence, Proc. of the 8th
Europ. Conf., JELIA 2002, Cosenza, Italy, September 2002, LNAI 2424: Springer-Verlag,
Berlin, 2002.

5. S. Costantini, A. Tocchio (submitted). Communication in the DALI Agent-Oriented Logic
Programming Language. submitted to ICLP’04, International Conference on Logic Program-
ming.

6. P. Dell’Acqua, F. Sadri, and F. Toni, Communicating agents, In Proc. International Works. on
Multi-Agent Systems in Logic Progr., in conjunction with ICLP’99, Las Cruces, New Mexico,
1999.

7. M. Fisher, A survey of concurrent METATEM – the language and its applications, In Proc.
of First International Conf. on Temporal Logic (ICTL), LNCS 827, Springer Verlag, Berlin,
1994.

8. B. Intrigila, I. Melatti, A. Tocchio, Model-checking DALI with Murφ, Tech. Rep., Univ. of
L’Aquila, 2004.

9. C. M. Jonker, R. A. Lam and J. Treur, A Reusable Multi-Agent Architecture for Active
Intelligent Websites. Journal of Applied Intelligence, vol. 15, 2001, pp. 7-24.

http://gentile.dm.univaq.it/
dali/dali.htm
http://www.di.unipi.it/~brogi/ ResearchActivity/COCL99/
http://gentile.dm.univaq.it/dali/dali.htm


Planning Experiments in the DALI Logic Programming Language 107

10. R. A. Kowalski and F. Sadri, Towards a unified agent architecture that combines rationality
with reactivity, In Proc. International Works. on Logic in Databases, LNCS 1154,Springer-
Verlag, Berlin, 1996.

11. R. A. Kowalski and M. A. Sergot, A logic-based calculus of events, New Generation Com-
puting 4, 1986.

12. R. A. Kowalski, How to be Artificially Intelligent - the Logical Way, Draft, revised February
2004, Available on line, URL
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html.

13. M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Programming, In: R.
Kowalski and K. Bowen (eds.), Logic Programming: Proc. of 5th International Conference
and Symposium, The MIT Press, 1988.

14. M. Gelfond and V. Lifschitz, Classical Negation in Logic Programming and Disjunctive
Databases, New Generation Computing 9, 1991: 365–385.

15. How to be Artificially Intelligent – the Logical Way, book drafta (revised February 2004),
Available on-line at the URL:
http://www-lp.doc.ic.ac.uk/UserPages/staff/rak/rak.html

16. V. Lifschitz, Answer Set Planning, in: D. De Schreye (ed.) Proc. of the 1999 International
Conference on Logic Programming (invited talk), The MIT Press, 1999: 23–37.

17. W. Marek and M. Truszczyński, Stable Models and an Alternative Logic Programming
Paradigm, In: The Logic Programming Paradigm: a 25-Year Perspective, Springer-Verlag,
Berlin, 1999: 375–398.

18. D. Poole, A. Mackworth, R. Goebel, Computational Intelligence: ISBN 0-19-510270-3,
Oxford University Press, New York, 1998.

19. H. Przymusinska and T. C. Przymusinski, Semantic Issues in Deductive Databases and Logic
Programs, R.B. Banerji (ed.) Formal Techniques in Artificial Intelligence, a Sourcebook:
Elsevier Sc. Publ. B.V. (North Holland), 1990.

20. A. S. Rao, AgentSpeak(L): BDI Agents speak out in a logical computable language, In W. Van
De Velde and J. W. Perram, editors, Agents Breaking Away: Proc. of the Seventh European
Works. on Modelling Autonomous Agents in a Multi-Agent World, LNAI: Springer Verlag,
Berlin, 1996.

21. A. S. Rao and M. P. Georgeff, Modeling rational agents within a BDI-architecture, In R. Fikes
and E. Sandewall (eds.), Proc. of Knowledge Representation and Reasoning (KR&R-91):
Morgan Kaufmann Publishers: San Mateo, CA, April 1991.

22. SICStus home page: http://www.sics.se/sicstus/.
23. Web location of the most known ASP solvers:

aspps: http://www.cs.uky.edu/ai/aspps/
CCalc: http://www.cs.utexas.edu/users/tag/cc/
Cmodels: http://www.cs.utexas.edu/users/tag/cmodels.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-potsdam.de/˜linke/nomore/
SMODELS: http://www.tcs.hut.fi/Software/smodels/

24. V. S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Özcan, and R. Ross, Heterogenous
Active Agents: The MIT Press, 2000.

http://www.sics.se/sicstus/
http://www.cs.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://www.tcs.hut.fi/Software/smodels/

	Introduction
	How to be Artificially Intelligent, the Logical Way
	DALI
	Events
	Proactivity in DALI
	Past Events
	Goals
	Coordinating Actions Based on Context

	Semantics
	A Sample Application: STRIPS-Like Planning
	Conclusions



