
A Mobile Agents Based Architecture for the Distributed
Processing of Continuous Location Queries in a Wireless

Environment: Performance Evaluation�

Sergio Ilarri1��, Eduardo Mena1, and Arantza Illarramendi2

1 IIS Dept, Univ. of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
{silarri,emena}@unizar.es

2 LSI Dept, Univ. of the Basque Country, Apdo. 649, 20080 Donostia, Spain
jipileca@si.ehu.es

Abstract. With the current advances of mobile computing technology, we are
witnessing an explosion in the development of applications that provide mobile
users with a wide range of services. Of special interest are those applications that
exploit the particular features of mobile environments to provide the user with
context-aware information. In particular, we focus on location-dependent queries,
which are still a subject of research mainly due to the lack of an architecture that
is well-adapted to deal with continuous location queries in an efficient way.

In this paper we present the distributed architecture, based on mobile agents,
that we propose to process continuous location-dependent queries in mobile en-
vironments. We then evaluate our proposal, showing that the system achieves a
good precision and scales up well.

Keywords: location-dependent querying, tracking moving objects, continuous
querying, mobile agents.

1 Introduction

With the current advances of mobile computing technology, we are witnessing an ex-
plosion in the development of applications that provide mobile users with a wide range
of services. While most of these services are the counterpart of those available in desk-
top computers, there exist other applications that exploit the special features of mo-
bile environments to supply more relevant information. For example, the answer to a
location-dependent query depends on the locations of moving objects.A sample location-
dependent query is “show me the available taxi cabs within three miles of my current
location”, which could be very useful, for example, for a user looking for an available
taxi cab while walking home in a rainy day [14].

Nowadays there exist commercial applications that deal with location-dependent
aspects. However, they present many disadvantages, among which we would like to

� This work was supported by the CICYT project TIC2001-0660, the DGA project P084/2001,
and the research institute I3A.

�� Work supported by the Aragón Government and the European Social Fund (ref. B132/2002).

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 355–364, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



356 S. Ilarri, E. Mena, and A. Illarramendi

point out the lack of a general architecture that is well adapted to deal with continuous
queries in an efficient way. This implies that current solutions are only suitable for
the specific context for which they were developed and they do not work in a global,
large-scale and heterogeneous environment.

In this paper we present and evaluate an architecture for the processing of location-
dependent queries [6] that is based on mobile agents. Mobile agents are autonomous
software entities that can stop its execution and resume it at a different computer, car-
rying their state information [11]. Thus, they execute in certain contexts (places) within
a computer, and can travel from one place to another. They are very useful to build
mobile computing applications [5], as they offer great advantages over the traditional
client/server approach in environments with limited or unreliable bandwidth, and also
allow disconnected operations.

In our approach, we use mobile agents to support our distributed query processing,
track interesting moving objects, and optimize the wireless communications without the
need of installing servers specialized in different tasks. Mobile agents are very convenient
for this context, not only from a design and implementation point of view: it also has
been proved that the overall performance of a system based on mobile agents is, at worst,
similar to that of the equivalent system based on remote communications, as shown, for
example in [10].

The rest of the paper is as follows. In Section 2 we describe the underlying infras-
tructure that we consider for the processing of location-dependent queries, approach
that we describe in Section 3. The empirical evaluation of our query system appears in
Section 4. In Section 5 we present some related works. Finally, conclusions and future
work are included in Section 6.

2 Underlying Infrastructure

As framework of our work, we consider an infrastructure composed of moving objects
and proxy computers that provide location information.

Moving objects are entities provided with a wireless device (e.g., a car or a person
with a wireless communication device) and a mechanism that obtains their location.
Several positioning methods with different precision [3] can be used to get the loca-
tion of a moving object (e.g., methods based on GPS or methods that require network
assistance). In our work, we do not make any assumption about the specific technique
used.

Proxies are computers that provide location information about objects located within
a certain area, that we call proxy area. In a cellular network [2, 12], a proxy area is
obtained as the union of the coverage areas of one or more base stations. Although our
concept of proxy is similar to that of Location Server [9], we decided to use a different
term to fit it to the specifics of our decentralized query processing approach: 1) proxies
provide the software infrastructure needed for the execution of mobile agents, and 2)
there is a module called Data Management System (DMS) at the proxy.

The DMS handles location data about moving objects within its proxy area in order
to answer SQL queries about them. We do not focus here on the problem of how the
DMS is aware of the location of moving objects, but we would like to highlight some



Distributed Processing of Continuous Location Queries in a Wireless Environment 357

interesting alternatives: 1) it could receive GPS data from moving objects and use a
DOMINO database [15] to update efficiently these data, 2) it could use data stream
technology [1] to process the incoming location data regarding the queries currently
submitted to the proxy, 3) it could obtain the location data by using a network-based
positioning method, 4) it could query the moving object themselves about their location,
or 5) any hybrid approach is also possible.

3 Distributed Query Processing Approach

We first explain our approach for the processing of location-dependent queries [6]. For
that purpose, we first introduce some terminology related to location-dependent queries,
and then describe the (mobile) agent-based architecture that we use to process the queries
in a distributed way.

Location queries are composed of location constraints that express location-dependent
conditions that moving objects must satisfy to be included in the answer to the query;
e.g., the constraint “Inside(5 miles, ‘car38’, policeCar)” selects the police cars (the target
class, whose instances are termed target objects) within five miles around the moving
object identified as “car38” (the reference object).

1: location-dependent query ⇒ parameterized SQL queries
2: while (not cancel) do
3: Obtain the locations of the reference objects
4: Update the SQL queries with the locations of the reference objects
5: for each SQL query do
6: execute the query
7: if there are several SQL queries about the same target class then
8: Join the result of such queries
9: end if

10: end for
11: Present the answer to the user
12: end while

Fig. 1. Basic algorithm for location query processing

In Figure 1 we present the basic algorithm to obtain an answer to a location query.
The query is transformed into standard SQL queries about the locations of target objects.
These queries are parameterized with the location of the reference objects, that must be
consequently obtained before executing the queries. We will explain in the following
how this algorithm is executed in a distributed way; thus, for example, the line 6 in
Figure 1 involves several proxy computers. The steps performed in our distributed query
processing approach are:

1. Analysis of the user query and translation into SQL queries (line 1 in Figure 1). The
Query Processor is the application executed on the user device (that we call mon-
itor) that allows the user to issue queries. It first transforms the user query into an
intermediate specification. Specifically, it obtains, for each constraint in the query,



358 S. Ilarri, E. Mena, and A. Illarramendi

its reference object, its target class, and an area of interest. Then, from this repre-
sentation, one SQL query is obtained for each constraint, which is parameterized
with the location of the reference object.

2. Deployment of a network of agents, that consists of three steps (see Figure 2):

Fig. 2. Deployment of the network of agents

– The Query Processor sends a MonitorTracker agent to the proxy in charge of the
monitor’s location (step 1 in Figure 2). This agent performs three main tasks:
a) to follow the monitor wherever it goes (moving from proxy to proxy), b) to
store the data requested by the user in case of disconnection of the monitor, and
c) to refresh the data presented to the user in an efficient manner, minimizing
the wireless communications with the monitor (it will send only the necessary
information).

– For its last task, the MonitorTracker sends a Tracker agent to the proxy that
manages the location information of each reference object, initialized with the
SQL queries related to such a reference object (step 2 in Figure 2). A Tracker
agent performs three main tasks: a) to keep itself “close” to the proxy that
manages the location of its reference object, traveling from proxy to proxy
when needed in order to minimize the communication costs of tracking the
reference object, b) to detect and process new locations of its reference object
by querying the corresponding DMS at its proxy (line 3 in Figure 1), and c)
to detect and process the location of target objects inside the area of interest
around its tracked reference object.

– For its third task, a Tracker agent obtains for each SQL query in which its
reference object appears, the proxies whose area intersects the area of interest
of such an SQL query. Then, it creates one Updater agent on each of these
proxies (step 3 in Figure 2). The Updaters are static agents whose goal is to
retrieve relevant target objects from the DMS at their proxy. They are initialized



Distributed Processing of Continuous Location Queries in a Wireless Environment 359

with the SQL query that they must execute; such query is based on the current
location of the reference object1.

3. Execution of standard queries (line 6 in Figure 1). Each Updater agent executes its
SQL query over the DMS of the proxy where it resides, with the goal of retrieving
the location of relevant target objects and communicate the necessary data to its
Tracker agent.

4. Obtaining an answer. Data obtained by Updater agents are sent to its corresponding
Tracker agent. The Tracker agent performs the union of the results obtained by its
Updater agents. Each Tracker agent sends its results to its MonitorTracker, which
combines the results coming from the different Trackers (lines 7-9 in Figure 1) and
sends the final answer to the monitor. Finally, the monitor presents the answer to
the user (line 11 in Figure 1).

5. Keeping the answer up-to-date. The proposed architecture have been designed with
the goal of processing continuous location-dependent queries efficiently. The answer
to a continuous query must be refreshed with a certain refreshment frequency [7],
specified by the user according to his/her needs and the allowed cost of wireless
communications2.
While a continuous query is executing, the deployed network of agents must adapt
to changes in the locations of moving objects. For example, as a reference object
moves, its associated area of interest moves too. Therefore, the related Tracker agent
must rearrange its network of Updater agents and update their SQL queries with the
new location of the reference object (line 4 in Figure 1). Similarly, if a reference
object disappears from its current proxy3, the Tracker agent needs to identify the
new proxy in charge of the location of the reference object. Besides, the Tracker
will also travel there, with two purposes: 1) remote requests about the location of
the reference object are avoided, and 2) when the reference object changes of proxy
it will be easier for the Tracker to locate its new proxy, as most location databases
schemes are more efficient when the searches imply nearby proxies[12]. It is not
the purpose of this paper to describe how the agents synchronize in order to provide
timely answers (see [7] for more details of our approach).

Notice in Figure 2 that the only wireless data transfer occurs when the Query Proces-
sor sends the MonitorTracker to the proxy of the monitor and when the MonitorTracker
sends a new answer to the Query Processor: any other communication occurs among
proxies using a fixed network.

4 Experiments

In this section, we describe some tests that we have performed to evaluate experimen-
tally4 the reliability, accuracy and scalability of our prototype. The prototype has been

1 Such location parameters will be updated by the Tracker whenever necessary.
2 Alternatively, the system could adjust itself to the maximum frequency that it can achieve [8].
3 This is detected by the Tracker agent because the current proxy cannot provide the location of

the reference object anymore.
4 We have also modeled our system with Petri nets, which is out of the scope of this paper.



360 S. Ilarri, E. Mena, and A. Illarramendi

developed using Java as programming language and Grasshopper [13] as mobile agent
system. We consider a scenario composed of six proxies; six Pentium IV 1.7 GHz with
Linux have been used to play the role of such proxies. DMSs have been implemented
as MySql databases, one on each proxy.

4.1 Tracking the Location of a Single Moving Object

We evaluate here our system with a query that tracks the location of a single object that
moves at 5 du/sec (distance units per second; e.g., 1 du = 1 mile or 1 du = 1 meter).

(a) (b)

Fig. 3. (a) Monitoring an object at 5 du/sec ); (b) using an estimator

In Figure 3.a we show the imprecision (error in distance) committed by the Query
Processor for a query that simply tracks the location of such an object with a frequency
of 1 answer refreshment every five seconds. We show the error in distance, i.e., the
difference between the real location of the object and the location shown to the user
at each time instant. Notice that the minimum imprecision occur every five seconds,
corresponding to refreshments of the query answer, where the error is only due to the
time elapsed since a location is queried until that information is presented to the user5.
Figure 3.b was obtained by using a simple location estimator based on the last known
orientation and speed of the moving object. This estimator allows us to increase the
frequency of answers while keeping the same frequency of accesses to proxies and
wireless communications; in this case, we estimate one answer every second instead of
refreshing the answer every five seconds. The increase in the location error committed
by the query processor between seconds 35-45 in Figure 3.b is due to a wrong estimation
of locations caused by unexpected changes of the direction of the moving object. We
have tested the system with different speeds for the moving object and observed, in all
the cases, an improvement in the results when using an estimator.

4.2 Real Answer vs. Obtained Answer

In Figure 4 we evaluate the query processor in terms of expected answers for a continuous
query (refreshment period of five seconds) that retrieves a set of objects moving at

5 Moving objects are moving in the meanwhile!



Distributed Processing of Continuous Location Queries in a Wireless Environment 361

Fig. 4. Accuracy in the answer presented to the user

three du/sec. The X-axis shows several time instants (continuous vertical lines represent
refreshments of the answer) and theY-axis indicates a number of objects. The continuous
dark line indicates the number of objects in the ideal answer at each moment (we measure
the errors in the answer every second). Short vertical lines mean how many extra objects
(lines above the continuous line) and missing objects (lines below the continuous line)
were obtained by the query processor as answer to the issued query. For instance, between
0:35 and 0:40 there is one missing object in the answer presented to the user, and between
1:00 and 1:03 the answer shown by the query processor is presenting one extra object.
Thus, short vertical lines represent temporal imprecision of the query processor, due to
the time that it needs to detect a relevant change in the information provided by proxies.
This error becomes bigger due to the movement of moving objects.

Notice that several objects can move at the same time in a way that the query pro-
cessing mechanism can incur in imprecision. Please see the interval 0:45-0:50, when
imprecision arises because one object exited the area of interest at 0:44 (which was
detected by Updaters) and another object entered the area of interest at the same time
(the number of objects in the ideal answer is still the same). However, the exiting object
was not immediately detected by the system as one Tracker agent was traveling between
BSs at that moment.

4.3 Scalability

We show in this section how the reliability of the query processor decreases when the
number of (users issuing) continuous queries increases. The more queries, the more
agents on the system (see Figure 5.a). However, notice that the environment is highly
distributed, and therefore many queries are needed to overload a single proxy6, as shown
in Figure 5.b.

6 Unfortunately, the communication mechanism in the agent platform used (Grasshopper) be-
comes unreliable as the number of mobile agents increases, so we are currently evaluating other
alternatives.



362 S. Ilarri, E. Mena, and A. Illarramendi

(a) (b)

Fig. 5. Scalability of the Query Processor

Notice that increasing the number of moving objects does not affect the performance
of our system because of two reasons: 1) The query processor is not interested in all the
moving objects of the system, only in those belonging to a target class inside a certain
area, 2) if the number of target objects increases, more objects could belong to the
answer and therefore Updaters will retrieve more objects, but this issue does not affect
the performance. Moreover, if the number of proxies increases, the system becomes
more distributed but this does not negatively affect our system either (the overload at
each proxy could decrease!). The real bottleneck of the system is the number of agents
deployed, and this parameter only depends on the number of concurrent queries.

Apparently, we could improve the performance of the system by sharing agents
among queries. For example, the same Updater could execute SQL queries concerning
different location queries. However, we would need several threads, since the answers
for such location queries could need to be refreshed at different time instants (e.g.,
the refreshment frequencies could be different). As the performance of several agents
performing a single task is comparable to that of a single agent with several threads (one
for each task), we do not advocate this solution.

5 Related Work

The DOMINO project [15] proposes a model to represent moving objects in a database.
They focus on the problem of how to store location information about moving objects in
a database with the goal of processing spatial and temporal queries in an efficient way.
However, they consider a centralized architecture (the location data of moving objects
are available at a single data repository).

In MobiEyes [4] a distributed approach for the processing of location queries is also
proposed. However, in contrast to our proposal, the query processing is performed on the
moving objects themselves, with the following main disadvantages: 1) moving objects
must have certain “intelligence” as they must be aware of a geographic grid and be
able to process queries, 2) the processing and communication load of a moving object
depends on the number and type of queries issued into the system, 3) the approach is



Distributed Processing of Continuous Location Queries in a Wireless Environment 363

not completely distributed, as all the moving objects must communicate with a single
centralized computer (the mediator), and 4) they assume that the user is not interested
in a precise location of target objects.

In [16] the main concern is how to provide an up-to-date answer to the user while
minimizing communications, by deciding when to transmit results to a mobile host.
However, it is not well-adapted to deal with continuous queries that ask for locations of
moving objects (e.g., monitoring a truck fleet). It is based on predicted paths and also
considers a centralized architecture.

6 Conclusions and Future Work

In this paper we have presented an architecture for the processing of continuous location-
dependent queries in wireless environments. We have then evaluated experimentally the
performance of our prototype, showing the precision and scalability of the system. The
main features of our approach are:

– We consider queries whose answer can depend on the movement of any relevant
object.

– We propose a distributed architecture based on mobile agents that obtain the answer
for a query by getting information from a distributed collection of DMSs with the
goal of tracking relevant moving objects in an efficient way.

– No assumptions are made regarding how the locations of moving objects are ob-
tained. Thus, our system works for different granularities of location information
(e.g., GPS locations). Similarly, we do not overload moving objects with query
processing tasks.

As future work, we plan to research the advantages that data stream technology
can provide in this context. Another important issue is to extend our query language
(management of new spatio-temporal constraints).

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream
systems. In Proceedings of 21st ACM Symposium on Principles of Database Systems (PODS
2002), 2002.

2. D. Barbará. Mobile computing and databases - a survey. IEEE Transactions on Knowledge
and Data Engineering, 11(1):108–117, Jan-Feb 1999.

3. Harvey M. Deitel, Paul J. Deitel, Tem R. Nieto, and Kate Steinbuhler. Wireless Internet and
Mobile Business -How to Program-. Prentice Hall, 2001.

4. Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of continuously moving queries
on moving objects in a mobile system. In 9th Conference on Extended Database Technology
(EDBT 2004), Heraklion-Crete (Greece), March 2004.

5. Robert S. Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko. Mobile agents
for mobile computing. Technical Report TR96-285, Dartmouth College. Hanover, NH, USA,
1996.



364 S. Ilarri, E. Mena, and A. Illarramendi

6. S. Ilarri, E. Mena, and A. Illarramendi. A system based on mobile agents for tracking objects
in a location-dependent query processing environment. In Twelfth International Workshop
on Database and Expert Systems Applications (DEXA’2001), Fourth International Workshop
Mobility in Databases and Distributed Systems (MDSS’2001), Munich (Germany), pages
577–581. IEEE Computer Society, ISBN 0-7695-1230-5, September 2001.

7. S. Ilarri, E. Mena, and A. Illarramendi. Monitoring continuous location queries using mobile
agents. In Sixth East-European Conference on Advances in Databases and Information
Systems (ADBIS’2002), Bratislava (Slovakia), pages 92–105. Springer Verlag LNCS, ISBN
3-540-44138-7, September 2002.

8. S. Ilarri, E. Mena, and A. Illarramendi. Dealing with continuous location-dependent queries:
Just-in-time data refreshment. In First IEEE Annual Conference on Pervasive Computing
and Communications (PerCom), Dallas Fort-Worth (Texas), pages 279–286. IEEE Computer
Society, ISBN 0-7695-1895, March 2003.

9. Location Interoperability Forum (LIF). Mobile location protocol specification.
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html, [Accessed: May 19,
2004].

10. E. Mena, J.A. Royo, A. Illarramendi, and A. Goñi. Adaptable software retrieval service for
wireless environments based on mobile agents. In 2002 International Conference on Wireless
Networks (ICWN’02), Las Vegas, USA, pages 116–124. CSREA Press, ISBN 1-892512-30-0,
June 2002.

11. D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka, D. Lange,
K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF, the OMG mobile
agent system interoperability facility. In Proceedings of Mobile Agents ’98, September 1998.

12. E. Pitoura and G. Samaras. Locating objects in mobile computing. IEEE Transactions on
Knowledge and Data Engineering, 13(4):571–592, July/August 2001.

13. IKV++ technologies. Grasshopper - a platform for mobile software agents.
http://www.grasshopper.de/download/doc/GrasshopperIntroduction.pdf, , [Accessed: May
19, 2004].

14. Jari Veijalainen and Mathias Weske. Modeling Static Aspects of Mobile Electronic Commerce
Environments, Chapter 7 in Advances in Mobile Commerce Technologies. IDEA Group
Publishing, 2002.

15. O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha, and N. Rishe. Tracking
moving objects using database technology in DOMINO. In Fourth International Workshop
Next Generation Information Technologies and Systems (NGITS’99), Zikhron-Yaakov, Israel.
Lecture Notes in Computer Science, Vol. 1649, Springer, ISBN 3-540-66225-1, pages 112–
119, July 1999.

16. Kam yiu Lam, Özgür Ulusoy, Tony S. H. Lee, Edward Chan, and Guohui Li. An effi-
cient method for generating location updates for processing of location-dependent continuous
queries. In Database Systems for Advanced Applications, pages 218–225, 2001.


	Introduction
	Underlying Infrastructure
	Distributed Query Processing Approach
	Experiments
	Tracking the Location of a Single Moving Object
	Real Answer vs. Obtained Answer
	Scalability

	Related Work
	Conclusions and Future Work



