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Abstract. Due to the increasing usage of small and low footprinted devices like
mobile phones as clients of mobile information systems a new problem arises:
“How to determine the relevance of updates for a large number of mobile clients?”
In this paper we present an indexing scheme that represents conjunctive queries
posed by the mobile clients in a trie. So, IDs of the clients are referenced by their
queries and checking the relevance of an update can be efficiently done by a trie
lookup.

1 Introduction and Motivation

Most mobile information system are designed as an add-on to existing classical, fixed
network based information systems. The mobile clients have to connect to the fixed
network via a base station. But, normally such systems do not consider the extremely
increasing number of mobile devices that are usable for accessing the data. In fact, mobile
phones, smart phones and networked PDAs will be used as information system clients.
So, a new central challenge for supporting mobile devices on the server site arises: How
to handle interest of a large number of mobile clients efficiently?

The light-weightiness of the mobile clients and the classical problem of incrementally
updating materialized views prohibit to transfer all updates directly to the mobile clients.
So, client queries have to be stored and evaluated on the server. Now, if an update occurs
it is obviously inefficient to check all stored queries sequentially.

An alternative, which is presented in this paper, is a query index based update evalua-
tion approach that allows to look up such mobile devices which are potentially interested
in updated information. At this, queries are represented as paths in a trie [2] whereby
each path references a set of mobile client IDs.

The remainder of the paper is structured as follows. In Section 2 we discuss related
work and point out the differences between our work and overlapping research areas.
Section 3 describes the query index and how it is used to look up mobile clients efficiently.
The evaluation of our approach can be found in Section 4. Finally, the paper closes with
conclusions and an outlook on ongoing research in Section 5.
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2 Related Work

Our work is embedded into the context of mobile databases and information systems.
We do not support completely wireless systems but systems that allow mobile clients to
connect via a base station to a fixed network as discussed in [11]. Furthermore, several
works regarding the replication and synchronization of data between a static server and
mobile clients has been done. But these approaches, that can be classified as data centric
(e.g. [9]) and transaction centric (e.g. [3, 10]), consider the integration of offline executed
update operations from the mobile clients to the server. However, we currently do not
take into account the synchronization of such updates but focus on performance aspects
of notifying mobile clients about updates on the server.

Beside this, our research can be interpreted as profile handling. That means, that
the stored queries describe the profiles of mobile users as it is done in [1] or [14]. But
profiles are based on a semantic based selection of needed data. We plan to support also
semantic queries regarding user contexts in our future work.

Another related research area concerns the query containment problem that is consid-
ered in many publications, e.g. [4, 12]. [13] comprises the complexity issues of various
kinds of queries that are represented as conjunctively connected predicates. However, we
have to deal with query containment only when we use semantic information for query
indexing. Here, we focus on an approach using syntactical information which could be
extended to use semantic information.

Last but not least we have to point out, that there exist relationships between the
problems that are focused in our work and the common problem of incrementially
updating materialized views [8]. If we consider stored queries as view definitions we
have also to decide which “view” is affected by an update. But we do not have to
materialize the update on the mobile clients as yet.

3 Indexing Mobile Clients Using a Trie

As already mentioned, a sequential check of all registered queries is inefficient. There-
fore, we introduced in [6] first ideas on a trie-based indexing of mobile clients. Database
queries are represented as conjunctively connected predicates that are ordered in an
alpha-numerical predicate order. We currently support three1 different kinds of pred-
icates relation predicates, join predicates, and selection predicates. A relation predi-
cate r is comparable to the projection operator of the relational algebra. A projection
πX(r(R)) with X ⊆ R can be written as the relation predicate r(R)(x1, . . . , xn) with
{x1, . . . , xn} = X . In a similar manner, join predicates jn are comparable to the equijoin
operator of the relational algebra. That means that a equijoin r(R1) �a=b r(R2) with
R1, R2 ⊆ R, a ∈ R1 and b ∈ R2 can be written as the join predicate r(R1).a = r(R2).b.
Finally, a selection predicate pl represents the selection operator of the relational algebra.
A selection σF (r(R)) with the selection condition F is written as the selection predicate

1 The context predicates that where introduced in [6] are not considered in this paper but will be
included in our approach in the future.
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r(R).F . The selection condition F is restricted to comparisons with constants of the
form attribute γ constant with γ ∈ {≤, <, =, �=,≥, >}.

Thus, database queries are given in a standardized calculus notation, i.e. in conjunc-
tive form. Predicates are ordered in a lexicographic manner: at first relation predicates
ri, then the join predicates jk and the selection predicates pl.

Definition 1. A database query Q = {r1 ∧ . . .∧ rm ∧ j1 ∧ . . .∧ jn ∧ p1 ∧ . . .∧ po} can
be represented as a sequence of predicates 〈r1, . . . , rm, j1, . . . , jn, p1, . . . , po〉, where
∀i, k ∈ 1 . . . m, i < k ⇒ ri � rk and ∀i, k ∈ 1 . . . n, i < k ⇒ ji � jk as well as
∀i, k ∈ 1 . . . o, i < k ⇒ pi � pk holds. Here, � means “lexicographically smaller”.

Obviously, this query language is not strong relational complete, but is restricted to
a subset of calculi which is sufficient for the realization of typical applications of mobile
information systems.

Now, the trie can be described as follows: Each query predicate is represented as
an edge and leaves represent links to mobile device ID-lists. Thus a database query
QP = {r1 ∧ r2 ∧ . . . ∧ rm ∧ j1 ∧ j2 ∧ . . . ∧ jn ∧ p1 ∧ p2 ∧ . . . ∧ po} is included in the
trie in form of the complete path P = r1r2 · · · rmj1j2 · · · jnp1p2 · · · po from the root of
the trie. A mobile device ID-list contains all IDs of mobile devices having registered the
query represented by the corresponding path.

3.1 Physical Transformation of Database Queries into Trie-Paths

Due to optimization issues regarding the implementation of this index approach, we
have to refine the theoretical description given above. Relation predicates ri consist of
the name of considered relation r(Ri) and a set of projected attributes (x1, . . . , xn).
As the relation name can be used by various queries that project different sets of at-
tributes, we store the relation name and the attribute set separated as kri

=̂r(R) and
kpi=̂(x1, . . . , xn), respectively.

Join predicates ji are stored undivided as kji
=̂r(R1).a = r(R2).b, but we have

to add relation nodes for relations, that are used in the join predicates but not in the
projection predicates.

Selection predicates pi consist of an attribute name attribute, a comparison
operator γ ∈ {≤, <, =, �=,≥, >} and a comparative value constant. Obviously, an
attribute name can be used in different selection predicates with various comparison
operators and various comparative values. So, we represent selection predicates as two
separated parts kai=̂attributeγ and kvi=̂constant.

Furthermore, implementing a trie requires to encapsulate the information logically
represented by the edges into the nodes2. So we have six different kinds of nodes: the root
of the trie, relation nodes kr, projection nodes kp, join nodes kj , attribute nodes ka and
attribute value nodes kv . Figure 2 illustrates the physical implementation of the example
shown in Figure 1. Furthermore, the last join node contains a list of all attributes that
are used in selection predicates. This is necessary for minimizing the space consumption
while checking their relevance (see Section 3.2). In order to minimize the number of
nodes that are checked per update, the node order is based on the following restrictions:

2 Nodes are implemented in form of Java classes.
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Fig. 1. Logical trie representation of queries

Fig. 2. Physical trie representation of queries

– Most of all relation nodes restrict the search space for an incoming update. If an
update is based on relation R1 we do not have to check queries that do not use R1.
So, relation nodes are stored directly below the root.
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– As mentioned above, join predicates are used similar to the equijoin operator. So, if a
registered query uses join predicates it is inevitable to compute the join. Surely, this
operation is quite expensive but without executing the join, a correct check of selec-
tion predicates is impossible. So, the join nodes follow the relation nodes in a path.

– The position of the projection nodes at the bottom is motivated by the fact, that
the relevance of a projection can be reduced to update operations. If we first check
join predicates and selection predicates we can fully check the relevance of insert
and delete operations, at this. Now, projection predicates are only relevant if the
projected attribute is neither used as join attribute nor is included in the selection
predicates. But, to check this we first need to look at the join nodes as well as at the
attribute and attribute value nodes.

Definition 2. The node order in a trie path is given as kr1 , . . . , krm
, kj1 , . . . , kjn

, ka1 ,
kv1 , . . . , kao

, kvo
, kp1 , . . . , kpq

, where ∀i, l ∈ 1 . . . m, i < l ⇒ kri
� krl

, ∀i, l ∈
1 . . . n, i < l ⇒ kji

� kjl
, ∀i, l ∈ 1 . . . o, i < l ⇒ kai

� kal
and ∀i, l ∈ 1 . . . q, i < l ⇒

kpi � kpl
holds. At this, � means lexicographically smaller.

3.2 Looking up the Trie

A trie look-up is performed for each incoming update before this update is performed
on the database. The aim is to compute a list of client IDs of the mobile clients that
had registered a query which is affected by this update. We distinguish between three
different kinds of updates: (1) insert, (2) update and (3) delete operations. All these can
only be relevant for registered queries that use the same relation as the update. So, we
first compare the relation nodes with the given relation name (see Algorithm 1). At this,
we benefit from the lexicographical order of the relation nodes (see line 10). The result
is a set of pointers to the found relation nodes. These pointers are used as starting points
for the following steps. Because of the physical structure of the trie, this step also checks
the “hidden” relations that are used for join-predicates only.

Algorithm 1: Checking relation predicates

01 OUTPUT: RN // a set of pointers to the found relation nodes in the path
02 INPUT: r // name of the relation affected by this update
03 trie with root node
04
05 RN = {}
06 checking relation predicates(node, r, RN )
07 for each child ci of node do
08 if ci.value = r and ci.type = kr then RN = RN ∪ {ci}; return
09 else
10 if ci.type �= kr or r � ci.value then return
11 else call checking relation predicates(ci, r, RN )

Relation predicates can be followed in a path by a join node, by an attribute node or
by a projection node. After calling Algorithm 1 we have to find out the kind of the next
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node. Because of the space limitations we skip a detailed description of this here but
assume that the algorithm returns the following three sets: (1) FJ is a set of the first join
nodes in paths that are represented in RN , (2) FA is a set of the first attribute nodes in
paths that are represented in RN but not in FJ and (3) FP is a set of the first predicate
nodes in paths that are represented in RN but not in FJ and not in FA.

Unfortunately, checking the join predicates in a uniform way, similar to the relation
predicates, is not efficiently possible because updates, deletes and inserts modify join
results in various ways. Furthermore, we have to compute the joins on the database
because the relevance of the selection predicates, that is checked later on, depends on
the join results. But, we do not have to consider all attributes. In fact, the temporary join
result contains only the join attributes and the attributes used in the selection predicates.

Checking Join Nodes. Checking the relevance of an update operation regarding join
nodes is done for each element of the set FJ . The return value of each call is a set AJi of
pointers to the nodes below the join nodes and PRi a set of temporary join results, that are
needed for checking selection predicates.All paths that are not represented in the union of
all AJi are not considered in the following steps. As mentioned above join nodes contain
join predicates of the form r(R1) �a=b r(R2) with R1, R2 ⊆ R, a ∈ R1 and b ∈ R2.
The algorithm first collects all join nodes of a path. So, we get a join-statement for each
path of the form r(R1) �a1=a2 r(R2) �a3=a4 r(R3) · · · r(Rj) �a2j−1=a2j r(Rj+1)
with j ∈ N and a2j−1 ∈ Rj . Checking the relevance of such a statement for the update
is done in the following way:

Insert Operation: We assume inserts in standard SQL-notation: INSERT INTO
table name (column list) VALUES (value[,...]).

A = (ai
1, . . . , a

i
n) is the attribute list of relation used for inserting data. V =

(xi
1, . . . , x

i
n) is the tuple of inserted values. Furthermore, r(Rj+1) is the relation that is

used for inserting the data, ai
1 = a2j is the according join attribute and xi

1 is the inserted
value of ai

1. So the join predicates are affected by the update if πa1(r(R1)) �a1=a2

πa2,a3(r(R2)) . . . (σa2j−1=xi
1
(r(Rj)) is not empty.

Delete Operation: Delete operation affect a join predicate if the tuples that have to be
deleted are included in the join result. We assume delete operations in SQL-notation3

as DELETE FROM table name WHERE clause. Because this can affect more
than one tuple in the database we first have to look up the according values of the join
predicate. With the updated relation r(Rj+1), we can use the clause that was given
by the statement: r(RT ) = π2j(σclause(r(Rj+1)). Now, the join is affected by the
update if πa1(r(R1)) �a1=a2 πa2,a3(r(R2)) · · · πa2j−2 , πa2j−1(r(Rj)) ∩ r(RT ) is not
empty.

Update Operation: Currently we handle update operations as combination of delete
and insert operations.

As aforementioned, we need the result of the joins to check the selection predicates.
Therefore, attributes that are not used as join attributes may be required. So, we have to
guarantee that these attributes are included into the temporary result. In fact, we do not

3 Currently we forbid the usage of cascading delete operations.
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use the minimal join presented above but add all attributes of selection predicates, that
are included in the last join node, to the projections.

Checking Attribute Nodes and Attribute Value Nodes. First we look up the selection
predicates with a recursive algorithm. It returns for each relevant path a set of selection
predicates PQ. An insert operation affects a query Q if it satisfies at least one selection
predicate. Formally, that means for an inserted tuple A = (ai

1, . . . , a
i
n) with the values

V = (xi
1, . . . , x

i
n) that ∃p ∈ PQ|σp(r(RA)) �= ∅ must hold. In order to check the

relevance of delete operations we have to distinguish between queries, that use join
nodes and queries without join nodes. In the first case, we have to check whether the
delete affects the part of the according temporary join result that is covered by the
selection predicates. Therefore, with an SQL-notated delete, the temporary join result
TJ ∈ PRi and the disjunction D = p1 ∨ p2 ∨ . . . ∨ po with o = |PQ| that means, that
σclause(σD(TJ)) �= ∅ must hold. In the second case we have to use the base relation
instead of TJ . Therewith, the selection predicates of queries without join predicates
are affected by a deletion operation if σclause(σD(r(Rtable name))) �= ∅ holds.
Updates are handled as combination of delete and select operation, again.

Checking Projection Nodes. We do not have to check projection nodes or projection
attributes, respectively, if the update operation is an insert or an delete because these
operation increase or decrease the cardinality of the query result. So, the relevance
of such updates is already recognized by checking the selection predicates and/or join
predicates. But, in the case of updates it can occure, that the update modifies join attribute
values and a selection attribute values but not the projected attributes. Such updates are
not relevant for a registered query if the projected attributes are not contained in the list
of updated attributes.

Fetching the IDs of the Mobile Clients. If all checks result in a relevance of an update
operation we fetch the IDs of the mobile clients and notify them about the update.
However, we do not consider the update of the data that is managed on the mobile
clients but will do this in future work.

4 Evaluation

To evaluate our approach we implemented a small driver support systems that provides
traffic information about road works, traffic jams as well as additional information about
public utilities in a location depended manner. Here, we do not consider updating the trie
by fast moving cars but approximate journeys by locating cars on a street. That means,
that streets are implemented as a line between two coordinates. In fact, the benefit of our
approach is not the complete realization of such a system but we use it for evaluating the
update notification. Typical queries are: “Where is the next parking block with available
parking lots?”, “Is there a road block on my current road?” or “Where is the next garage?”.
The corresponding database4 is realized using PostgreSQL and contains three cities and

4 See [7] for details.
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about 200 fictitious streets. Some streets cross cities. Furthermore we inserted about
9000 public utilities distributed among the cities. We assume 20 permanent traffic jams
and five border crossings that hamper the traffic.

Queries are generated automatically and contain 1-3 projection predicates, 0-2 join
predicates and 0-3 selection predicates. Two examples for such queries are:

– 〈border crossing(*), border crossing.street id = street.id, street.id = 32〉
– 〈institution(id), institution.street id = street.id, street.name =′ A4′〉

As mentioned in Section 3.2 we use updates in standard SQL notation, like:

– DELETE FROM R WORKS T JAMS WHERE street id=22 AND
gps start y=1700

– UPDATE BORDER CROSSING SET w t freight vehicles=’03:54’
WHERE name=’Mittenwald’

Figure 3(a) illustrates height and width of an example trie that represents 15,000
queries whereby 12,766 queries are different from each other. At this, we also included
the values for a compressed representation that utilizes the fact, that values of nodes
with only one child node can be stored in one node. While processing our algorithms
that only means, that checks regarding this two values use the same node pointer but the
space consumption is much lower.

(a) Number of trie-nodes per trie-level (15,000
queries; 12,766 different queries)

(b) Comparison between naı̈ve approach and
the trie based approach

Fig. 3. Space consumption and performance evaluation

At first we compare our approach to the naı̈ve approach that represents the queries
in a list. That means, the naı̈ve algorithm sequentially scans the registered queries. The
result of this comparison is shown in Figure 3(b). The predictable large number of nodes
checked in the naı̈ve approach depends on the fact, that such approaches typically do
not consider predicate overlapping between the queries of different users. The result of
our approach for this test depends on the trie representation used for storing the queries.
So, we can point out that - in this test - our approach performs better than the naı̈ve
approach.
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(a) up to 12,000 registered queries (b) up to 120,000 registered queries

Fig. 4. Correlation between duration of updates and number of registered queries

The trie and its algorithms are implemented under Windows XP in Java. The
communication between Java and PostgreSQL is realized with the standard
PostgreSQL-JDBC-driver. For the experiments we used a standard PC with an AMD
AthlonTMXP 2100+ processor and 768 MB Ram. The duration of handling an up-
date on this configuration is illustrated in Figure 4. At this, Figure 4(a) shows,
that insert and delete operations are not as expensive as update operations. But in
Figure 4(b) we see that the curves of insert and update operations converge with
an increasing number of registered queries.

5 Conclusions and Outlook

In this paper we presented an indexing scheme for update notification in large mobile
information systems. Queries posed by mobile clients are represented as paths in a
trie at the server. We first discussed the used query representation that uses queries in
form of conjunctively connected relation, selection and join predicates. Afterwards, the
implementation and the physical representation of the trie was introduced. We illustrated
how nodes are fetched and how the relevance of an update is checked regarding the
different predicates. Finally, we presented and evaluated our approach and pointed out
its benefit.

In spite of the acquired good results, there is a lot of future work. First of all, the
used query language is not relational complete. We currently do not support unions. In
addition to this, aggregation functions are not supported because of the used calculus. We
also skipped the context predicates that are mentioned in [6]. In fact, first steps to support
large context based mobile information are done. In [5] we introduced a general model
that is not limited to location based queries but allows to specify more context elements
like time relevance, task dependency, et cetera. Moreover, we plan to optimize the query
index. For example, selection predicates are currently represented in a redundant manner,
so we hopefully benefit from storing them in a clustered way or as intervals similar to
1-dimensional R-Trees.
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