
Index-Based Keyword Search
in Mediator Systems

Ingolf Geist

Department of Technical and Business Information Systems,
School of Computer Science,

University of Magdeburg, Germany
geist@iti.cs.uni-magdeburg.de

Abstract. Many users and applications require the integration of semi-structured
data from autonomous, heterogeneous Web sources. Over the last years mediator
systems have emerged that use domain knowledge to overcome the problem of
structural heterogeneity. However, many users of these systems do not have a
thorough knowledge of the complex global schemas and of the comprehensive
query languages. Consequently, easy-to-use query interfaces like keyword search
and browsing have to be supported. The aim of the proposed PhD project is the
index-based realization of keyword searches in concept-based mediator systems.
In order to avoid unnecessary source queries an index structure is maintained on
the global level and used during query planning and processing.

1 Research Problem

Nowadays, many search requests require the usage of information from different, dis-
tributed, and autonomous (Web) sources. Applications can be found in scientific as well
as e-commerce environments. Prominent examples are the integration of biological data
sources, digital libraries, but also the search for stolen cultural assets is distributed over
many sources1, which drives this work. Many of these sources provide structured query
interfaces, but cannot be indexed by Web search engines. Furthermore, most of them are
not cooperative and provide semantically similar data in different structural representa-
tion. Consequently, there is still a need for systems, that integrate these semi-structured
data sources into a global, integrated, not materialized view.

In the last years mediator systems have been proposed that use domain knowledge
as an integration anchor to overcome the problems of structural heterogeneity (e.g [20]).
These systems allow querying the sources with complex query languages and use com-
plex integration models. During using the concept-based mediator prototype Yacob [23],
which integrates several sources about stolen cultural assets, the experiences showed,
normal users have difficulties to handle the concept schema, even if a graphical query
interface based on browsing the global concept schema is provided. In fact, a simple
keyword search was required, that comprises the meta data, here called concept level, as

1 For instance, data about stolen cultural assets during World War II is distributed over at least
15 sites (http://www.lostart.de/links).

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 24–33, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

http://www.lostart.de/links

Index-Based Keyword Search in Mediator Systems 25

well as the data, called instance level. This requirement led to the problem, how to map
efficiently the keywords to structured source queries (in our case XPath). The proposed
idea of this work is the usage of a global keyword index, which maps keywords to global
query expressions that are decomposed by the mediator system to source queries, subse-
quently. Summarizing, the tasks of the PhD project are the identification of an effective
keyword index structure, to provide an index-based query planning and processing, and
to develop techniques to maintain the index structure in the context of autonomous,
uncooperative Web sources.

2 State of the Art

The mediator architecture was introduced by Wiederhold [26] and has been utilized for
integrating semi-structured data sources over the last years. Most prominent examples are
TSIMMIS [13] and Information Manifold [19]. The MIX mediator system [6] represents
a successor of TSIMMIS, which integrates XML data sources. All mentioned mediator
systems integrate the local sources on structural level.

Integration systems using domain knowledge are e.g. KIND [20], SIMS [4], Context
mediator [14] and the XML mediator STYX [3]. The systems uses different models
to represent domain knowledge, e.g. subset of F-Logic, LOOM or ontologies. The in-
tegration approaches range from modeling local and global data in semantic concepts
to mapping local XML fragments to global concepts. All systems support only simple
“like”-queries on attribute level. Another direction in querying and using semantic
data is the Semantic Web. Several languages are provided in this context (an overview is
given in [21]).

Abiteboul requests for semi-structured query languages IR-style keyword query op-
erators comprising schema data as well as instance data [1]. Several approaches follow
this requirement [11, 25]. Furthermore, relevant to our research are keyword queries
over structured databases, like relational systems [2, 8, 16, 22]. However, all systems
deal only with centralized databases systems.

Data has to be obtained from the sources in order to build and maintain indexes on
the global level. The standard crawling architecture [5] has to be refined for reducing
costs and supporting sources, that cannot be crawled. Index update costs can be reduced
by concentrating only on interesting parts of index and data. That leads to focused
crawling [10, 24]. Some sources do not allow the complete crawling, but the provide
limited query interfaces for accessing the data. They build the so called “Hidden Web”
or “Deep Web” [7]. In order to index these sources special protocols were developed
(e.g. [15]) or techniques like query-based sampling [9, 17] are used.

3 Proposed Approach

The PhD project is based on the Yacob mediator [23], a concept-based integration
system. The system uses a two-level integration model: the concept model describes the
domain knowledge using concept hierarchies and their associated properties. Special
data values are expressed as category hierarchies.

26 I. Geist

Formally, the model is summarized as follows. A set of classes is defined as T =
URI × Name with URI the set of uniform resource identifier and Name the set of valid
names. The set of classes is distinguished into two disjoint subsets: concepts (C ⊂ T)
describe kinds of instances, and categories (V ⊂ T and V ∩C = ∅) describe sets of data
values, so called synonyms.

Properties are assigned to categories. The set of properties is defined as P =
Name × C × (C ∪ V ∪ {L}) with one property consisting of a name, a concept it is
assigned to, and either a concept, category, or the set of literals (L) as instance domain.
Moreover, concepts and categories are organized in disjoint specialization hierarchies.
The subClassOf relationship is defined as is a ⊆ T × T with: if t2 is a t1 : t1 ∈
C ∧ t2 ∈ C ∨ t1 ∈ V ∧ t2 ∈ V . Furthermore, properties are “inherited” by subconcepts,
i.e. if c2 is a c1 ∧ c1, c2 ∈ C : ∀(p, c1, x) ∈ P : ∃(p, c2, x) ∈ P). A concept schema
CS = (C,P,V) consists of a set of concepts C, a set of properties P, and a set of
categories V.

As the local sources export their data in XML, the instance model follows the semi-
structured model OEM [13]. The extension of a concept c is denoted as ext(c) = {o =
(id, elem, val) | c.name = elem ∧ ∀(p, c, x) ∈ P : ∃i ∈ val : i.elem = p}. The local
sources are integrated by specifying mappings, which describe how a local source sup-
ports a global concept. The mappings realize the GLaV approach [12] and are expressed
in RDF, too. In detail, concept mappings, property, and category mappings define how
one source supports the concept schema. Join mappings define intra-source relationships
as joins over the global concept schema. Besides conventional join operations, similarity
join operations can be specified, whose index support is discussed in the further work
(Sec. 3.2).

The query language – CQuery – is concept-based and uses the known FLWR nota-
tion. CQuery comprises (i) selection of concepts using selection predicates, path expres-
sions, and set operations between concept sets (FOR clause), (ii) obtaining and filtering
instances (LET and WHERE clauses), and (iii) combining and projecting the results
(RETURN clause). The following example returns information of all instances that are
associated to the concept painting (or to one of the subconcepts) and contain “van
Gogh” in the property artist.

FOR $c IN concept[name=’painting’]/*
LET $e := extension($c)
WHERE $e/artist = ’van Gogh’
RETURN
<painting>$e</painting>

The complete description of the query planning/processing is not possible here be-
cause of given space limitation The interested reader is referred to [23]. The processing
starts with translating the query into an algebraic expression. The necessary concepts
are determined, and subsequently for each concept the instance expression (WHERE and
RETURN clause) is evaluated and the results are combined. Using some heuristics the
number of concepts is limited, and by applying the different mappings the global query
is decomposed into source XPath queries. Finally, the results are combined using the
outer union operation (�).

Index-Based Keyword Search in Mediator Systems 27

3.1 Keyword Search

A keyword query consists of a set of keywords KW , and returns a set of global, integrated
instances, that contain each of the keywords at least once in an associated meta data object
(concept name, property name) or in a property value (category name or literal). Formally,
the keyword search can be defined as: Given a set of keywords KW = {kw1, . . . , kwn}
and a concept schema CS = {C,P,V}, the result set OKW of global instances is
defined as:

OKW = {o = (id, elem, x)|∃c ∈ C : o ∈ ext(c)∧∧n
i=1

(
contains(c.name, kwi) ∨ ∃c′ ∈ Φ+

is a(c) : contains(c′.name, kwi) ∨∨
(p,c,v)∈P contains(p, kwi)∨

∃v ∈V : v.name = x ∧ contains(v, kwi) ∨ ∃v′ ∈ Φ+
is a(v) : contains(v′, kwi)∨

ocontains(o, kwi))} .

The predicate contains(string, kw) evaluates to true, if the keyword kw is contained
in string. The predicate ocontains(object, kw) evaluates to true, if the keyword kw is
contained in a value of the object or in the value of one of the subobjects, i.e. the keyword
is contained as a value of a property. The expression Φ+

is a returns all super-concepts or
super-categories, i.e. it computes the transitive closure over the is a relationship.

Consider the example keyword query {painting, gogh, flowers}. Possible matching
objects are a painting object with artist “Gogh” and a title containing “flower”, a book
object with a title “Van Gogh’s work” written by an author “Flowers”, or another painting
object with artist “Gogh” and the motif category “Flowers”. The keyword search as
defined here assumes no additional structural information are given, which rises the
following problems addressed in the PhD project:

Extension of the Query Language. The query language as well as the correspond-
ing algebra was extended by two constructs: the ∼= operator and a refinement of the
extension function. The ∼= operator evaluates to true, if a keyword is contained
in the compared object. It can be used for selecting concepts, properties and categories
on the concept level as well as for filtering instance values. The extension function
is used to return instances for a given list of concepts. The general keyword search is
realized by passing keywords to the extension function, which returns instances that
satisfy the above given keyword condition. The following example searches instances
that contain the keywords “painting flowers gogh”.

FOR $c IN concept/* # select all concepts
LET $e := extension($c,’painting flowers gogh’)
RETURN
<painting>$e</painting>

This query is translated into the expression⊎
qe∈getQExpr(C,{panting,flowers,gogh})

πproj(qe)

28 I. Geist

Query Planner

Heuristics/Rules

Keyword Index

Keyword Index

//painting/author[@name~="gogh"]

//finearts/drawings[name~="flowers"]

//paintings[@artist~="gogh" and @name~="flowers"]

//painting[title ~="flowers" and author~="gogh"]

FOR $c IN concept/*

title~=’flowers’

...

RETURN
 <paintings>$e</paintings>

query
decomposition

σartist~=’gogh’ and ext(

keyword query

)
structured queries

(paintings)

source queries

query
reformulation

LET $e := extension($c,’gogh flowers painting’)

Fig. 1. Keyword query processing

with C all concepts existent in the schema and getQExpr(C, KW) a function returning
a set of query expression of the form σcond(ext(c)), which are explained below. The
operation

⊎
is the outer union operation.

Index-Based Keyword Query Processing. A general keyword query without structural
information is processed in two steps:

(i) reformulating the unstructured keyword query in structured global algebra expres-
sion, and

(ii) decomposing these expressions into source queries, which are sent to the sources.

Step (i) is executed in the function getQExpr. The returned set comprises expressions
of the form σcond(ext(c)). A predicate is defined as

predij =

{
c/property = k if k ∈ V ∧ k.name ∼= kw

c/property ∼= kw otherwise

and the conjunctions as conji = predi1 ∧ . . .∧predik. Then cond is defined as cond =
conj1 ∨ . . . ∨ conjm. Using, the provided mappings the result query expressions are
decomposed into XPath expressions in step (ii), which are executed by the sources. Fig. 1
illustrates the evaluation showing an example query.

The naive implementation of step (i) results in a combinatorial explosion. Therefore,
we need information about the existence of the keywords and their different contexts.
A context of a keyword is identified by the associated concept, a property as well as
a category or an instance value and the type of the keyword. The kind of the string,
where the keyword was extracted from, specifies the type of the keyword. In detail, the
type is either a concept keyword, category keyword, a property keyword, or an instance
value keyword. Fig. 2 shows extracted keywords from a small example. The keywords

Index-Based Keyword Search in Mediator Systems 29

title

associated

concept

property

extracted keyword

is_a relationship

instance level
keywords from

concept level
keywords from

fine
paintings

vincent
gogh
flowers
pantings
...

r

r
r
r
r
...

r
r

c

c

p

v

v

v

v

finearts

paintings
paintings
paintings
paintings

paintings
paintings

...

...

keyword role concept property
...
−
−
title
artist
artist
artist
title
...

Keyword index

... ...

... ...

70

artist

122
12
87

7

s2
s2
s2
s3
s2

s1 2
40
90

7
3
4

...

van
Gogh
albrecht
dürer
vincent
flowers

Tarascon
sun

cultual asset cultural
asset

fine arts fine
arts

paintings drawingspaintings drawings

title title

flowers
gras
vincent
paintings

artist

...

s1
s1
s2
s2
s1
s3

215

Fig. 2. Keyword index

are stored in an inverted index which comprises the keywords and their corresponding
contexts. For instance, the keyword “flowers” occurs in an instance value and its context
is specified by (concept: paintings, property: title). Based on this information a
global query expression can be deduced to extract all instances supporting the keyword.
For the given example, the query is σtitle∼=flowers(ext(paintings)). That approach allows
the easy implementation of the index within a relational database system.

The complete keyword query evaluation starts with the selection of the desired con-
cepts. Then, the necessary query expressions are generated by function getQExpr for
a set of keywords and the preselected concepts. For each query expression a possible
further instance expression is added and the final expression is evaluated by the query
processor of the mediator.

In detail, the function getQExpr works as illustrated in Fig. 3. Given are a set of
concepts C and a set of keywords KW . Initially, all index entries (Ecand) containing
one of the keywords in KW are selected. Keywords found in meta objects (concept and
category names) correspond also to sub-concepts and sub-categories, respectively. For
example, the keyword “cultural” of the concept “cultural asset” applies to all direct and
indirect subconcepts, e.g. “painting”.

The next steps are executed separately for each found concept. If the current concept
does not comprise entries for each keyword in KW it will be not processed, because
no object can be found in the extension containing all keywords. Otherwise, we build
all combinations of entries, i.e. of queries, that each given keyword occurs at least once.
That is achieved by grouping the entries into sets Ekwi

for each keyword kwi ∈ KW ,
i = 1, . . . , n. Subsequently, the Cartesian product is computed. As each index entry
corresponds to a predicate, one can interpret the result Cond as Disjunctive Normal Form.
That means, each entry in Cond is a set of entries, which is translated to a conjunction
of predicates, which are disjunctively connected in turn (function translateToQExpr).
As parts of the global instances can originate from different sources, the index stores
also the source of a instance value keyword supporting the creation of source queries.

30 I. Geist

Input:
C – set of concepts
KW = {kw1, . . . , kwn} – set of keywords

Output:
QE – query expression of the form σcond(ext(c))

Given:
I – set of index entries e = 〈kw, role, concept, property, category〉

function getQExpr(C,KW)
QE := ∅
/* including entries for sub-concepts and sub-categories */
Ecand := selectIndexEntries(KW ,I)
/* Assume CEcand the set of concepts occurring in Ecand */
for each c ∈ CEcand do

if Ecand comprises for concept c entries for each kwi ∈ KW do
Cond := ∅
/* build sets of entries for each keyword*/
Ekwi := {e : e ∈ Ecand , e.kw = kwi ∧ e.concept = c}, i = 1, . . . , n
/* compute Cartesian product of entries */
Cond := Ekw1 × . . . × Ekwn

/* build query expressions */
QE := QE ∪ translateToQExpr(Cond)

od
od

Fig. 3. getQExpr function evaluation

Evaluation. A first implementation within the Yacob prototype was used to evaluate
the proposed approach. We evaluated the effectiveness of the index according to the
reduction of source queries using real data sets. Using real2 and generated query mixes
showed a significant reduction of the number of source queries, e.g. the average number
of source queries decreased from original 63 to 2.8 for queries comprising two keywords.
That behavior is due to the distribution of the keywords over the different concepts. The
distribution is normally not uniform but rather similar to a Zipf distribution [27], i.e. most
keywords occur in one concept extension and only few occur in almost all concepts. As
we cannot assume the index is complete in a real scenario, we tested partial indexes,
which showed also a good performance according to the reduction of source queries as
well as in order to provide a good recall.

3.2 Further Work

In the previous section we described the index-based keyword search. However, the
present solution uses a static index, therefore the following issues are still in progress or
planned for the future:

2 Extracted from an access-log file of the Web database http://www.lostart.de.

http://www.lostart.de

Index-Based Keyword Search in Mediator Systems 31

Maintenance. The local sources are assumed to be autonomous and uncooperative,
i.e. neither do they allow a complete access to the data, nor do they provide the required
information. Therefore, different maintenance methods are proposed: (i) a query-based
sampling approach is used to (re-)build the indexes periodically. (ii) Extracting frequency
information during query processing, that means, results of user queries are analyzed
during runtime to improve the current index. The expected overhead can be reduced by
using periodically the content of the semantic cache of the system [18] instead analyzing
every query result. (iii) Using a focused crawling approach: that is, an overview about
the frequency distribution of queries is maintained.

Based on this model, the index is periodically built and updated. All approaches
showed in experiments advantages and disadvantages, therefore a hybrid approach is
desired.

Ranked Queries. The present approach supports boolean keyword search in combi-
nation of browsing the concept hierarchies. The combination allows a fast restriction of
the result set sizes. Furthermore, the result set is subdivided into parts defined by the
concept level.

However, there is still a need for ranking. The ranking should be based on the place-
ment in the global concept hierarchy, i.e. an instance found in a sibling concept is less
relevant, and the ranking of the instances returned by the sources. The approach requires
the combination and the weighting of different ranks, but also offers new optimizations,
like e.g. top-N operators.

Similarity Queries. A second kind of text search includes similarity queries, i.e. to
a given string all strings within a given distance are considered as similar. One popular
measure is the edit or Levenshtein distance. Similarity queries can be used by the user
directly or by integration operations which have to find duplicates. Unfortunately, most
local sources do not support similarity queries directly, but substring or keyword queries.
Hence, one has to map similarity queries to substring queries.

The filtering technique is one well-known approach to do this mapping. Assuming k
errors are allowed between two strings, one can decompose the comparison string k +1
substrings. The union of the results of these k+1 substring queries contains all matching
strings. To minimize the size of this preselection result, the most selective combination of
substring queries has to be found. Therefore, one has to maintain frequency information
on global level to make selectivity estimations.

Depending on the kind of substrings, possible structures are count-suffix trees, q-
gram tables, or again keyword tables. In first tests, q-gram seemed to be most promising
according to maintenance costs and query costs. Similar to the keyword search building
and maintenance issues arise. Thus, the proposed methods of the keyword search can be
generalized to this and possibly to other problems.

Further Evaluation. The additional techniques and algorithms are to be evaluated us-
ing the prototype implementation. Especially, we want to test the adaptability to changing
sources and workloads. Furthermore, the maintenance overhead has to be evaluated for
different strategies.

32 I. Geist

4 Conclusion

The proposed work investigates the problem of index-supported keyword search over vir-
tually integrated data. The integration system is an ontology-based mediator, as described
before in the literature. A keyword search strategy has been developed. This integration
allows a more efficient usage of the integrated data than browsing and structured queries
alone. Furthermore, it does not require to materialize the data of the different sources
into one site. Tests with a prototype in a static scenario showed promising results. Ideas
for maintaining the global index based on techniques known from search engines have
to be adopted to the proposed approach.

In order to complement the keyword search we pointed out the support of similarity
queries. Here, global string similarity queries can be supported even if the source does
not support them. Frequencies of occurrences of substrings have to maintained on the
global site, which rises similar problems as for the keyword search. Hence, we can
generalize our approach to more problems.

References

1. S. Abiteboul. Querying Semi-Structured Data. In ICDT 1997, volume 1186 of LNCS, pages
1–18. Springer, 1997.

2. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-Based Search
over Relational Databases. In ICDE 2002, pages 5–16, 2002.

3. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration of XML Web
Resources. In ISWC’2002, volume 2342 of LNCS, pages 117–131. Springer, 2002.

4. Y. Arens, C.Y. Chee, C.-N. Hsu, and C.A. Knoblock. Retrieving and Integrating Data from
Multiple Information Sources. International Journal on Intelligent and Cooperative Infor-
mation Systems, 2(2):127–158, 1993.

5. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.
6. C.K. Baru,A. Gupta, B. Ludäscher, R. Marciano,Y. Papakonstantinou, P.Velikhov, andV. Chu.

XML-Based Information Mediation with MIX. In SIGMOD 1999, pages 597–599, 1999.
7. M.K. Bergmann. The deep web: Surfacing hidden value, 2003.

http://www.brightplanet.com/deepcontent/tutorials/DeepWeb/.
8. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword Searching

and Browsing in Databases using Banks. In ICDE 2002, pages 431–440, 2002.
9. J.P. Callan and M.E. Connell. Query-based sampling of text databases. Information Systems,

19(2):97–130, 2001.
10. S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: a new approach to topic

specfic Web resource discovery. WWW8 / Computer Networks, 31(11-16):1623–1640, 1999.
11. D. Florescu, D. Kossmann, and I. Manolescu. Integrating Keyword Search into XML Query

Processing. WWW9 / Computer Networks, 33(1-6):119–135, 2000.
12. A. Friedmann,A. Levy, andT. Millstein. Navigational Plans for Data Integration. InAAAI/IAAI

1999, pages 67–73, 1999.
13. H. Garcia-Molina,Y. Papakonstantinou, D. Quass,A. Rajaraman,Y. Sagiv, J.D. Ullman,V.Vas-

salos, and J. Widom. The TSIMMIS Approach to Mediation: Data Models and Languages.
Journal of Intelligent Information Systems, 8(2):117–132, 1997.

14. C.H. Goh, S. Bressan, S.E. Madnick, and M.D. Siegel. Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information. ACM Transactions on Information
Systems, 17(3):270–293, 1999.

http://www.brightplanet.com/deepcontent/tutorials/DeepWeb/

Index-Based Keyword Search in Mediator Systems 33

15. N. Green, P.G. Ipeirotis, and L. Gravano. SDLIP + STARTS = SDARTS a protocol and
toolkit for metasearching. In ACM/IEEE Joint Conference on Digital Libraries, pages 207–
214, 2001.

16. V. Hristidis and Y. Papakonstantinou. Discover: Keyword Search in Relational Databases. In
VLDB 2002, pages 670–681, 2002.

17. P.G. Ipeirotis and L. Gravano. Distributed Search over the Hidden Web: Hirarchical Database
Sampling and Selection. In VLDB 2002, 2002.

18. M. Karnstedt, K.-U. Sattler, I. Geist, and H. Höpfner. Semantic Caching in Ontology-based
Mediator Systems. In Berliner XML Tage 2003, 3rd Int. Workshop “Web und Datenbanken”,
pages 155–169, October 2003.

19. A.Y. Levy, A. Rajaraman, and J.J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. In VLDB 1996, pages 251–262, 1996.

20. B. Ludäscher, A. Gupta, and M.E. Martone. Model-based Mediation with Domain Maps. In
ICDE 2001, pages 82–90, 2001.

21. A. Magkanaraki, G. Karvounarakis, Ta Tuan Anh, V. Christophides, and D. Plexousakis. On-
tology Storage and Querying. Technical Report 308, Foundation for Research and Technology
Hellas, Institute of Computer Science, April 2002.

22. U. Masermann and G. Vossen. Design and Implementation of a Novel Approach to Keyword
Searching in Relational Databases. In ADBIS-DASFAA 2000, pages 171–184, 2000.

23. K.-U. Sattler, I. Geist, and E. Schallehn. Concept-based Querying in Mediator Systems. The
VLDB Journal, 2004. To appear.

24. S. Sizov, M. Theobald, S. Siersdorfer, G. Weikum, J. Graupmann, M. Biwer, and P. Zimmer.
The BINGO! System for Information Portal Generation and Expert Web Search. In CIDR
2003, 2003.

25. A. Theobald and G. Weikum. The Index-Based XXL Search Engine for Querying XML Data
with Relevance Ranking. In EDBT 2002, pages 477–495, 2002.

26. G.Wiederhold. Mediators in theArchitecture of Future Information Systems. IEEE Computer,
25(3):38–49, 1992.

27. G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.

	Research Problem
	State of the Art
	Proposed Approach
	Keyword Search
	Further Work

	Conclusion

