Keeping Pace with Evolving XML-Based Specifications

Marvin Tan and Angela Goh

School of Computer Engineering,
Nanyang Technological University, Singapore
{ps7726426d,asesgoh}@ntu.edu.sg

Abstract. Standards and specifications are essential to organizations that require
exchange of information with other parties. XML is poised to be the definitive
language of choice in Internet and Intranet applications and IT specifications
are increasingly adopting XML schema. However, many specifications are still
evolving. In order to cope with such rapid changes, extensions to the XML Schema
Language are proposed. The objective is to ensure compatibility between different
versions of standards. A framework which utilizes the XML Schema Language
extensions is further proposed.

1 Introduction

In the past, standards and specifications for exchange of information between infor-
mation systems were defined in proprietary languages and formats. The advent of the
Internet has changed this trend. Today, specifications and standards used in information
systems, within domains ranging from the financial sector to automobile industries, are
increasingly formatted as XML documents. More significantly, many of these standards
are described by XML schemas[10]. In the ideal world, commercial partnerships and
alliances remain unchanged and final specifications of standards are indeed “final”. In
reality, commercial alliances grow and change; partnerships evolve and “final” specifi-
cations of a standard often have different versions.

With the ready availability of parsers and XML’s extensible nature, XML is arguably
the most popular data interchange language today. With the increasing adoption of XML
Schema, it will be viewed as a natural way to resolve versioning issues for XML-
based specifications. Examples of specifications that utilise XML Schema include W3C
(World Wide Web Consortium) standards and OASIS’s ebXML[7] for Supply Chain
B2B transactions and WfMC’s standards[8]] in workflow systems. It was estimated in
February 2000 that already more than 200 XML-based specifications exists [9l]. Many
new specifications would have been created since then.

The main problem with standards and interoperability today is the presence of mul-
tiple versions and variants of the same standard. In many domains, a universal common
standard will never be possible. Hence, it is necessary to cope with changing standards
as well as provide some means for similar standards to interoperate. To resolve the need
to modify existing systems due to evolving standards, we propose to extend the XML
Schema language to include elements and functionalities. Firstly, these extensions will
provide a means to highlight the changes and differences between a preceding version
or a variant and the original standard. Secondly, the new functionalities will establish

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 280-288] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Keeping Pace with Evolving XML-Based Specifications 281

a common version management definition so that frameworks or middleware may be
developed to bridge the differences between different versions and variants of the stan-
dards/specifications.

In this paper, a common framework is proposed that allows objects or ‘data ex-
changes’ to be converted to a supported version based on the extensions found in them.
The proposed extensions and framework will help manage compatibility issues with
XML-based standards. The objectives of the work are fundamentally different from
the version management solutions, proposed in document management[2] in system
specification[3]] and in documentation and software management[6]]. These version man-
agement approaches focuses on the content while this work addresses changes in the
meta-data, namely, schema evolution.

The organization of this paper is as follows. The next section will provide an example
that highlights the benefits of the proposed extensions. Section 3 contains a description
of the proposed extensions while Section 4 will present the proposed framework to aid
and enforce the implementation of the proposed extensions. Section 5 discusses the
possible issues arising from the use of the extensions. The last section concludes this
paper and highlights possible future work.

2 An Example of Evolving Specifications and Standards

2.1 IMS Content Packaging Specifications

Chosen as example due to the rapid evolution and the availability of comprehensive
revision history, eLearning standards have undergone tremendous change over the recent
years. Take the example of the IMS Content Packaging (IMS CPS) Specifications version
1.1.3 and 1.1.2 [3]]. The IMS CPS allows development of eLearning content in any
format and to package it up with accompanying metadata so that other compliant systems
may reuse the learning content.

As seen in Table 1, the Content Packaging Specifications contain numerous minor
changes, such as ‘renaming of an element’, ‘removal of an element’ or ‘shifting of a sub-
element from one element to another’. These might not have a major effect on the logical
definition of the Schema document. However, implementation-wise, it would mean that
the developer has to recode portions of the module, which handle the standards. Some
systems may even need to maintain separate modules to ensure backward compatibility
with the previous versions. This is a major problem with most standards. Systems ad-
hering to previous versions of standards will not be able to read objects created using
the later versions. A software upgrade is required.

3 Proposed Extensions to XML Schema

Most “changes” to standards specifications may be captured formally using a modeling
language. However, some changes are either too complex to be modeled clearly or are
unimportant. Examples of the former include the ‘overhaul’ of existing documents and
the expression of these elements in a different manner. An example of unimportant
changes is the inclusion of comments, which have no technical implications to the

282 M. Tan and A. Goh

Table 1. Revision History Excerpt- IMS Content Packaging Specifications Ver 1.1.2 [4]

Version No. Release Date Comments

0.92 20 March 2000 Format updated with following changes:
a) Move “isvisible” attribute from <resource> element to <item>> element
b) Add <title> to <tableofcontents>
¢) Revert back to the <resource type="“webcontent” > approach introduced in the v0.9 document
d) Rename < organization™> to < organizations>

Public
Draft 1.1~ 8 Dec. 2000 Made minor text changes and updated document to address the following issues:
a) Replaced <tableofcontents> element with the <organization> element.
b) Made <title> a sub-element of <item>> rather than an attribute of it.
¢) Changed resource <item> element attribute “identifieref” to “resourceref”.
d) Made sub-level <manifest> a sub-element of <manifestref>>, rather than <manifest>.
e) Changed references from URL Base to XML Base.
f) Reworded parts of section 2.1 in clarifying the definition of <organizations> and package.
g) Added <dependency> element as a sub-element of <resource>.
h) Updated XML samples.

Final 1.1 19 April 2001 Updated document to address the following open issues:
a) Clarified the use of the <organization> and <item>> elements.
b) Added statement of recommendation to use PKZip v2.04g as the default Package Interchange
File format in Section 1.2.
c) Extended meta-data functionality to <organization>, <item>>, and <file>.
d) Changed the type attribute on <organization>> to structure with a default value of hierarchical.
e) Changed the href attribute on the <resource> element from Mandatory to Optional.

processing of the XML document. The updates or changes are formally declared through
a language like XML Schema. These annotations are incorporated manually within the
schema to reflect changes that have taken place. In other words, the revision history as
illustrated in Table 1 are embedded in the schema.

3.1 Categorization of Changes

The possible changes that may occur between revisions of standards are categorized in
Table 2.

Table 2. Three categories of version-to-version changes

Migratory Changes Structural Changes Sedentary Changes

e Morphing of an element to anat- e Addition of new elements, sub- e Renaming of elements.

tribute. elements and attributes. e Renaming of attributes

e Migration of a sub-element from e Removal of elements, sub- e Change of simple data type.
one element to another. elements and attributes.

e Modification of an attribute or el-
ement.

Migratory changes deal with the movement of elements or attributes to some other
part of the document. This means that the elements or attributes existed in the pre-
vious version and are physically relocated within the current version. These changes
also include the transformation of elements to attributes and vice versa. Such changes
could require considerable modifications to be made to the original program reading the
document, since the retrieval of attributes is fundamentally different from that of the
elements.

Keeping Pace with Evolving XML-Based Specifications 283

Structural changes affect the document through the addition or removal of attributes
or elements. Such changes mean that implementation of existing systems will have to
be modified to support the new elements or developers must ensure that the removed
elements will not have an impact on their system.

Sedentary changes, as the name suggests, involve no movement and have no effect
on the structure of the XML standards document. It refers to the possible renaming of
elements and attributes. Such changes can also be semantic in nature as the change in
the attribute or element name might alter the original meaning completely.

One category of change that is difficult to model is “‘semantic change’. This category
may not affect the structure of the schema at all. Such changes involve the change in
the interpretation or the meaning of a term or terms used within the specification. For
example, in a preceding version, the term “‘entity” in a “legal markup specification”
may refer to businesses and companies and the recent version could expand the scope of
“entity” to include people. Sometimes, semantic changes affect the transition between
two versions of a specification or standard and sometimes they do not. There is no
foolproof method of representing semantic changes convincingly with the aid of XML
and XML Schema. However, the evolution of the Semantic Web [[1]] will greatly improve
the representation of semantically-enriched information and provide possible means to
indicate semantic changes within specifications. Section 5 highlights various means to
alleviate the problem of representing semantic changes.

It is assumed that the original XML Schema avoids duplicate element names ap-
pearing in different local segments of element definition. As “duplicate names under
different parent elements” is permitted in the declaration of an XML Schema, it makes
the referencing of elements by their names impossible since they are sharing the same
namespace. To work around this, the qualified path of the element may have to be used
when referencing any particular element to avoid conflicts.

3.2 Identifying XML Schemas for Specifications

One of the key concepts in the use of these proposed extensions is the identity of the
schema. The version and namespaces of the same family of specifications must be clearly
specified along with information on the previous versions. There are many ways to do
this. One way is to use attributes within the XSD tag. Parsers may easily access these
attributes in order to determine the information. Subsequently, all new attributes or tags
added will carry the ‘vm’ or ‘version-management’ namespace. Another namespace,
‘pv’, must also be declared for the previous version XSD.

3.3 Migratory Changes

In the version 1.1 (public draft) of the IMS Content Packaging Specifications, the el-
ement, ‘<manifest>" was moved out from the ‘<manifestref>’ element to become a
sub-element under the ‘<manifest>’ element (nested self reference). This update should
be reflected in the manner shown in Fig. 1. The original location in the previous version is
stated with the type of the moved item in the previous version. This is to avoid confusion
since attributes and elements may be given the same name. This category of changes
could also involve modifications to attributes or elements and are more complex. Not

284 M. Tan and A. Goh

<xsd:complexType name="manifestType" >
<xsd:sequence >
<xsd:element ref="metadata" minOccurs="0" />
<xsd:element ref="manifest" minOccurs="0" maxOccurs="unbounded"
vm:movedFrom="pv:manifestreftype" vm:type="sub-element"/>

</xsd:sequence>
</xsd:complexType >

Fig. 1. An Example of the Migration of a Sub-element from One Element to Another

only may the name be altered but the structure and composition of the object in question
may change including element occurrences and their use (optional or required).

Other changes in this category involve the transformation from an element to an
attribute and vice versa. This entails the ‘transformation’ of the basic type of a tag (from
an element to an attribute or vice versa). While the name of the tag may remain the
same, the fundamental properties of the tag have changed. These changes should only
involve elements of ‘simple’ type since the transformation of ‘complex’ elements or
‘mixed content’ elements to attributes is complicated and cannot be performed without
excessive loss of information. Instead, they may be modeled as a series of removal and
modification changes. In addition, during the change from a simple element to an at-
tribute, the data type defined for the element will be lost as attributes may only contain
literal string values. These changes may result in incompatibility problems or informa-
tion loss as the information expressed in one version may not be relevant in another
version.

3.4 Structural Changes

Structural changes add to or remove from the overall structure of the Schema. Additions
are simply represented with “vm:newAddition="‘true” tags. Removal of elements and
attributes will be reflected differently since the removed items will not exist in the new
specifications. To cater for this, a new segment of XML elements must be declared in
the XML Schema. The definition in Fig. 2 highlights the removal of both elements as

<vm:nonVisibleChanges >
<vm:change type="removal" >
<vm:object type="element" name="pv:InLineBlock"/>
</vm:change>
<vm:change type="removal">
<vm:object type="inner attribute" name="maxOccurs" from="pv:Activities"/>
</vm:change>
</vm:nonVisibleChanges >

Fig. 2. An Example of the Removal of Elements

well as attributes. In this case, the attribute being a standard attribute is identified as an
‘inner_attribute’ and the parent element is stated. The namespace for the previous version
is adopted to distinguish the elements.

Keeping Pace with Evolving XML-Based Specifications 285

3.5 Sedentary Changes

In the transition from IMS CPS Public Draft 0.91 to 0.92 (as seen in Table 1), the
element ‘<organization>" was renamed to ‘<organizations>’. To reflect the renaming,
the declaration will be updated as shown in Fig. 3.

[<xsd:elemenl name="organizations" type="organizationsType" vm:renamedFrom:"pv:0rganizati0n”/>]

Fig. 3. An Example of the Renaming of an Element

How can these extensions be used in the real world? There are two possible scenarios.
Firstly, there may be a wish to upgrade existing specifications and incorporate these
extensions to enable version compatibility. One may start with the most recent version
of the XML Schema document and insert the relevant extensions. Previous versions
may be updated in an iterative manner. These extensions will not affect the existing
data exchanges and applications. The existing compliant systems will simply ignore the
extensions. The second scenario deals with the fairly straightforward establishment of
new specifications from scratch. When a later version is created, the developers of the
standards Schema ‘translate’ these changes from the previous version into the relevant
extensions. Table 3 summarizes the proposed XML extensions.

Table 3. Extensions to XML Schema

Version identification | vm:familyld

vm:version

vm:previous VersionCompatible
vm:previous VersionURI
Migratory Changes |vm:movedFrom

Structural Changes |vm:newAddition
vm:nonVisibleChanges
vm:changetype

Sedentary Changes |vm:renamedFrom

However, these extensions alone are insufficient unless some form of implementation
is provided to support their use. Hence, Section 5 proposes a framework to employ these
extensions.

4 Proposed Framework to Utilise Compatibility Extensions

Since these extensions do not employ the standard XML Schema namespace, applica-
tions will be unable to read these extensions. Hence, it is necessary to ensure that existing
systems make use of the proposed extensions to achieve effective compatibility between
versions and variants of standards specifications.

With reference to the elearning example, most learning content is packaged in XML
documents (known as learning objects). These learning objects may be available over
the Internet or even via electronic mail. As shown in Fig. 4, this proposed framework
has the following functions:

286 M. Tan and A. Goh

e Reads the incoming XML documents and retrieves the relevant schemas (may be
a iterative process depending on the number of versions elapsed between the two
versions: stated in the XML document and the referenced Schema)

e Reads all the schemas and consolidates the ‘compatible’ segments of the documents
based on the presented extensions.

world Wide
Web

%ML Document
{Compliant to IMS

Max Supported
Wersion=1.1.2
CPS v1.1.3)

Learning Systemn

{May only handle learning
objects cornpliant to IMS CPS
up ta version 1.1.2)

A

schemnas Accesses the registry using the
IP address and port provided
and sends the XML docurnent
1. Reads in the learning object and retrieves all relevant across _(Can also be uploaded at
Schemas fram their LRI, g3 website)

Process
aborted and
requesting
systemn
notified of
the errors

2. Determine if both versions are compatible

I

3. Retreve all cornpatibility attributes from the relevant
schernas for the two versions (recurse into earlier versions if
necassary) and convert the incoming learning object into the

desired version.
Converted XML
Docurnent

(Compliant to IMS

CPSv1.1.2) [ersion=112

Reqistry sends converted object
badk to requesting systern.,

Fig. 4. Overview of Proposed Framework to provide Compatibility in the eLearning Domain

Based on the ‘compatibility report’ produced in the previous step, convert the doc-
ument to the desired version and send it back to requesting system. The most feasible
way is to provide a generic online registry (preferably by a standards body) that receives
standards-based XML documents and instructions on the particular version desired. The
registry may then retrieve the relevant schemas, do a check on the extension tags found
in both versions and based on the compatibility instructions, convert the received XML
document to a version desired by the initiating system. The document is then sent back
to the system. This centralized solution may not be feasible in the long run because
distributing APIs (Application Programming Interfaces) is a slow and tedious process.
However, it is a necessary overhead. It is also necessary to avoid additional implementa-
tion work before existing systems can use the framework. With the aid of this framework
and the proposed extensions, different versions of standards specifications will be more
easily managed at a machine level.

Keeping Pace with Evolving XML-Based Specifications 287

5 Possible Problems and Issues

5.1 Representing Semantic Changes

As mentioned in Section 3.1, ‘Semantic changes’ cannot be represented in the proposed
extensions using XML and XML Schema. However, some effects produced by ‘Semantic
Changes’ may be simulated using the existing extensions. For example, if the meaning
of a particular element has completely changed and there is no mapping between that
element in a preceding version and the current one (even though the name is unchanged),
we could model this effect by using the “removal change” as demonstrated in Fig. 2 and
“addition” extension. This series of changes has the effect of removing the element from
the current version and adding back an element with the same name. In that way, that
particular element will not be treated the same way across the two versions.

5.2 Incompatibility Issues

As mentioned in Section 3.3, there will be problems if segments of different versions are
incompatible, resulting in information loss. One scenario is as follows: a given document
contains an element of a complex type. However, the number of components within
the element has been reduced from 10 to 3. Therefore, there is redundant information
provided in the original version. The conversion process will completely remove traces
of such information.

Another scenario is the reverse. A later version can contain elements, which are not
present in an earlier one. Therefore, the conversion of a document from a later to earlier
version will result in the loss of information.

Additional extension tags for such information mismatch are required. To retain
information from the preceding version that were removed in the current one, a new
element must be included within XML Schema and a new attribute is placed within the
element to indicate it as an element to store the incompatible information. The list of
incompatible elements can be obtained from the “removal” change information (shown
in Fig. 2). The incompatible information will be stored as a block of string type (inclusive
of the name tags).

Often it is the lack of information that will cause immediate problems, since the
missing information may be critical to the system functions. Though uncommon, this
situation may occur during the conversion of an earlier version to a later one. The
lack of information may not be resolved at a machine level until full-fledged semantics
are available. In addition, backward compatibility is frequently not supported in most
upgrades of applications and systems.

5.3 Effects of a Version Management Mechanism

Even though changes to standards and specifications are occurring rapidly, there is
still a lapse between two versions of a specification. Changes usually arise from the
continual research and analysis performed by the standards working groups. Feedback
from usage within a specific domain is also extremely important in improving standards
and specifications. With the proposed mechanism, changes can be more easily applied
to specifications, leading to a higher adoption of specifications and standards. The time

288 M. Tan and A. Goh

required to formulate the next version through feedback and analysis is significantly
higher than the time required to incorporate the specifications to the application domain.

6 Conclusion

XML-based specifications may evolve relatively quickly over a short period of time.
Even though some changes may be minor, systems which exchange information based
on these specifications will still have to be modified. These systems may have to carry
multiple legacy modules for backward compatibility. Hence, a proper version manage-
ment framework is necessary to reduce the efforts required to ensure compatibility. Since
an increasing number of standards are drafted in the form of XML Schemas, it would
be natural to extend the XML Schema to provide constructs for compatibility between
different versions of standards documents. The proposed extensions and framework will
help to ease compatibility problems as standards and specifications evolve. Future work
involves the building of a prototype to prove this concept of version management. The
scalability and feasibility of such a solution will also be evaluated.

References

1. T. Berners-Lee. Semantic web road map, 1998. Internal note, World Wide Web Consortium,
http://www.w3.org/Designlssues/Semantic.html.

2. S. Chien, V. Tsotras, and C. Zaniolo. A comparative study of version management schemes
for xml documents, 2000.

3. Franz Huber, Bernhard Schatz, Alexander Schmidt, and Katharina Spies. Autofocus: A tool
for distributed systems specification. In FTRTFT, pages 467-470, 1996.

4. IMS Global. IMS Content Packaging Specification Version 1.1.2 (Final Specification).
IMS Global, http://www.imsglobal.org/content/packaging/cpvlplp2/
imscp_infovlplp2.html, 2001.

5. IMS Global. IMS Content Packaging Specifications. IMS Global, http: //www.
imsglobal.org/content/packaging/index.cfm, 2002.

6. S. Mauw, M.A. Reniers, and T.A.C. Willemse. Message Sequence Charts in the software en-
gineering process. In S.K. Chang, editor, Handbook of Software Engineering and Knowledge
Engineering. World Scientific, 2000.

7. OASIS. ebxml. http://www.ebxml.org/.

. WEMC. Workflow standards. http://www.wfmc.org/standards/docs.htm.

9. Mike Willis. Vertical industry standards: Legal xml and xfrml. In The DIXON Conference
2000, 2000.
10. World Wide Web Consortium (W3C), http://www.w3.org/TR/xmlschema-0/,
XML Schema part 0: Primer, 2000.

[e e}

http://www.w3.org/Designlssues/Semantic.html
http://www.imsglobal.org/content/packaging/cpv1p1p2/
imscp_infov1p1p2.html
http://www.
imsglobal.org/content/packaging/index.cfm
http://www.ebxml.org/
http://www.wfmc.org/standards/docs.htm
http://www.w3.org/TR/xmlschema-0/

	Introduction
	An Example of Evolving Specifications and Standards
	IMS Content Packaging Specifications

	Proposed Extensions to XML Schema
	Categorization of Changes
	Identifying XML Schemas for Specifications
	Migratory Changes
	Structural Changes
	Sedentary Changes

	Proposed Framework to Utilise Compatibility Extensions
	Possible Problems and Issues
	Representing Semantic Changes
	Incompatibility Issues
	Effects of a Version Management Mechanism

	Conclusion

