
Implementation of XPath Axes in the Multi-dimensional
Approach to Indexing XML Data�

Michal Krátký1, Jaroslav Pokorný2, and Václav Snášel1

1 Department of Computer Science, VŠB – Technical University of Ostrava,
{michal.kratky,vaclav.snasel}@vsb.cz

2 Department of Software Engineering, Charles University in Prague,
pokorny@ksi.ms.mff.cuni.cz

Czech Republic

Abstract. XML (Extensible Mark-up Language) has been recently understood
as a new approach to data modelling. An implementation of a system enabling
us to store and query XML documents efficiently requires the development of
new techniques which make it possible to index an XML document in a way that
provides an efficient evaluation of a user query. Most XML query languages are
based on the language XPath and use a form of path expressions for composing
more general queries. XPath defines a family of 13 axes, i.e. relationship types
in which an actual element can be associated to other elements in the XML tree.
Previously published multi-dimensional approaches to indexing XML data use
paged and balanced multi-dimensional data structures like UB-trees and R∗-trees.
In this paper we revise the approaches and introduce a novel approach to the
implementation of an XPath subset.

Keywords: indexing XML data, XPath axes, multi-dimensional data structures,
UB-tree, R∗-tree, BUB-forest, Signature R∗-tree.

1 Introduction

XML [18] has been recently understood as a new approach to data modelling.A collection
of well-formed XML documents is an XML database and the associated DTD or XML
Schema is its database schema. An implementation of a system enabling us to store
and query XML documents efficiently (so called native XML databases) requires the
development of new techniques.

An XML document is usually modelled as a graph the nodes of which correspond
to XML elements and attributes. The graph is mostly a tree (we suppose that none
of the attributes is of IDREF/IDREFS type). To obtain specified data from an XML
database, a number of special query languages have been developed, e.g. XPath [17]
and XQuery [16]. A common feature of these languages is the possibility to formulate
paths in the XML graph. In fact, most XML query languages are based on the XPath
language that uses a form of path expressions for composing more general queries. The

� Work is partially supported by Grant of GACR No. 201/03/0912.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 219–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

220 M. Krátký, J. Pokorný, and V. Snášel

XPath defines a family of 13 axes, i.e. relationship types in which an actual element
(context node) can be associated with other elements in the XML tree. The family of
axes is designed to allow a set of graph traversal operations which are seen to be atomic
in XML document trees.

In the past, there were many considerations about the straightforward use of existing
relational or object-relational DBMSs for storing and querying XML data. Since a tree
is accessed during the evaluation of a query, conventional approaches through the con-
ventional database languages SQL or OQL fail or they are not enough efficient. Recently
there have been several approaches to indexing XML data. Some of them are based on
a traditional relational technology (e.g. XISS [12]), other use special data structures for
the representation of XML data as a trie (e.g. Index Fabric [4] and DataGuide [14]) or
multi-dimensional data structures (e.g. XPath Accelerator [6]). The latter approach uses
R-trees but also B-trees as database indices in the environment of a relational DBMS.
As expected, R-trees outperform B-trees in that proposal. The work [4] presents an in-
dex over the prefix-encoding of the paths in an XML document tree. A more complete
summary of various approaches to indexing XML data is e.g. [3].

Previously published multi-dimensional approaches (e.g. [8, 9]) to indexing XML
data use paged and balanced multi-dimensional data structures like UB-trees [1], R-
trees [7], R∗-trees [2], and BUB-trees [5]. In this paper we revise these approaches and
combine them in such a way that an implementation of an XPath subset is possible. Our
proposal is more general and enables an efficient accomplishment of querying text con-
tent of an element or attribute value as well as queries based on regular path expressions
and axes of the XPath specification. We compared BUB-trees with R∗-trees and their
respective signature variants. The results confirm that our signature extension of multidi-
mensional data structures is significantly better than the R∗-tree. As these structures are
paged and balanced, they are appropriate for indexing a huge amount of large XML doc-
uments and can serve as an alternative to the implementation of a native XML database.

In Section 2 we describe and revise a multi-dimensional approach to indexing XML
data. This approach enables an efficient implementation of XPath axes (Subsection 2.3).
We mainly focus on a class of queries employing exact matching for an element content or
an attribute value. Section 3 describes multi-dimensional data structures BUB-forest [10]
and Signature R∗-tree [11], which are employed for indexing XML data. Section 4 pro-
vides some information about the complexity of query evaluation with multi-dimensional
indexing. Section 5 reports on experimental results for selected XPath queries. In con-
clusion we summarize the results and outline future research directions.

2 Multi-dimensional Approach to Indexing XML Data

In [8, 9] a multi-dimensional approach to indexing XML data was introduced. We re-
vise this approach in a way, which allows an efficient implementation of XML query
languages based on the XPath.

2.1 Model of XML Documents

As far as an XML document modelled by a tree is concerned, we can view it as a set
of paths from the root node to all leaf nodes. Suppose the unique number idN (ui) of a

Implementation of XPath Axes in the Multi-dimensional Approach 221

<!DOCTYPE books [
<!ELEMENT books(book)>
<!ELEMENT book(title,author)>
<!ATTLIST book id CDATA #REQUIRED>
<!ELEMENT title(#PCDATA)>
<!ELEMENT author(#PCDATA)>

]>

<?xml version="1.0" ?>
<books><book id="003-04312">

<title>The Two Towers</title>
<author>J.R.R. Tolkien</author></book>

<book id="001-00863">
<title>The Return of the King</title>
<author>J.R.R. Tolkien</author></book>

<book id="045-00012">
<title>Catch 22</title>
<author>Joseph Heller</author></book>

</books>

Fig. 1. (a) DTD of documents which contain information about books and authors. (b) Well-formed
XML document valid w.r.t. DTD

node ui (element or attribute) which is obtained by counter increments according to the
document order [6].

Let P be a set of all paths in a XML tree. A path p ∈ P in an XML tree is a sequence
idN (u0), idN (u1), . . . , idN (uτP (p)−1), s, where τP (p) is the length of p, s is PCDATA
or CDATA string, idN (ui) ∈ D = {0, 1, . . . , 2τD −1}, τD is the chosen length of binary
representation of numbers from the domain D. Node u0 is always the root node of the
XML tree. Since each attribute is modelled as a super-leaf node with CDATA value,
nodes u0, u1, . . . , uτP (p)−2 always represent elements. A labelled path lp for a path p is
a sequence s0, s1, . . . , sτLP (lp) of names of elements or attributes, where τLP (lp) is the
length of lp, and si is the name of the element or attribute belonging to the node ui. Let
us denote the set of all labelled paths by LP . A single labelled path belongs to a path,
one or more paths belong to a single labelled path. If the element or attribute is empty,
then τP (p) = τLP (lp), else τP (p) = τLP (lp) + 1.

Signatures for coding of all strings, path and path content were used in the ap-
proach [8, 9]. Here, we use path, labelled path and term index.

Definition 1 (Point of n-dimensional Space Representing a Labelled Path).
Let ΩLP = Dn be an n-dimensional space of labelled paths, |D| = 2τD , and lp ∈ LP
be a labelled path s0, s1, . . . , sτLP (lp), where n = max(τLP (lp), lp ∈ LP) + 1. Point
tlp of n-dimensional space ΩLP representing labelled path is defined as (idT (s0),
idT (s1), . . . , idT (sτLP (lp))), where idT (si) is a unique number of term si, idT (si) ∈ D.
A unique number idLP (lp) is assigned to lp.

Definition 2 (Point of n-dimensional Space Representing a Path).
Let ΩP = Dn be an n-dimensional space of paths, |D| = 2τD , p ∈ P be a path
idN (u0), idN (u1), . . . , idN (uτLP (lp)), s, and lp a relevant labelled path with the unique
number idLP (lp), where n = max(τP (p), p ∈ P)+2. Point tp of n-dimensional space
ΩP representing path is defined as (idLP (lp), idN (u0), . . . , idN (uτLP (lp)), idT (s)).

Example 1 (Decomposition of the XML Tree to Paths and Labelled Paths).
In Figure 2 we see an XML tree modelling the XML document in Figure 1(b). This
XML document contains paths:
–0,1,2,’003-04312’;0,5,6,’001-00863’; and 0,9,10,’045-00012’
belong to the labelled path books,book,id,

222 M. Krátký, J. Pokorný, and V. Snášel

–0,1,3,’The Two Towers’;
0,5,7,’The Return of
the King’; and 0,9,
11,’Catch 22’ belong to
the labelled path books,
book,title,

–0,1,4,’J.R.R. Tolkien’;
0,5,8, ’J.R.R. Tolkien’;
and 0,9,12,’Joseph
Heller’ belong to the labelled
path books, book,author.

books

book book book

title author title author id author

J.R.R.
Tolkien

(7)

J.R.R.
Tolkien

(7)

Joseph
Heller
(12)

The Two
Towers

(5)

The Return
of the King

(9)

045-
00012

(10)

1
(1)

2
(2)

4
(6)

11
(4)

0
(0)

5
(1)

9
(1)

3
(4)

7
(4)

8
(6)

10
(2)

12
(6)

id

003-
04312

(3)

id 6
(2)

title

001-
00863

(8)

Catch 22

(11)

Fig. 2. Example of an XML tree with the unique numbers
idN (ui) of elements and attributes ui and the unique
numbers idT (si) of names of elements and attributes
and their values si (values in parenthesis)

We define three indexes:

1. Term Index. This index contains a unique number idT (si) for each term si (names
and text values of elements and attributes). Unique numbers can be generated by counter
increments according to the document order. We want to get a unique number for a
term and a term for a unique number as well. This index can be implemented by the
B-tree.

In Figure 2 we see the XML tree with unique numbers of terms in parenthesis.

2. Labelled Path Index. Points representing labelled paths together with labelled paths’
unique numbers (also generated by incrementing a counter) are stored in the labelled
path index.

For three labelled paths in Figure 2 we create three points (0,1,2); (0,1,4);
and (0,1,6) using idT of element’s and attribute’s names. These points are in-
serted into a multi-dimensional data structure with idLP equal to 0, 1, and 2, respec-
tively.

3. Path Index. Points representing paths are stored in the path index.
In Figure 2 we see unique numbers of elements. Let us take the path to the value

The Two Towers. The relevant labelled path book,book,title has got idLP 1
(see above). We get the point (1,0,1,3,5) after inserting a unique number of the
labelled path idLP , unique numbers of elements idN and the term The Two Towers.
This point is stored in a multi-dimensional data structure.

An XML document is transformed to points of vector spaces and XML queries are
implemented using queries of multi-dimensional data structure. The multi-dimensional
data structures provide a nature processing of point or range queries [1]. The point
query probes if the vector is or is not present in the data structure. The range query
searches all points in a query box T1 : T2 defined by two points T1, T2. Consequently,
we can create the queries in the same way as the XML tree is decomposed to vectors of
multi-dimensional spaces.

2.2 Queries for Values of Elements and Attributes
Now, we describe an implementation of a query for values of elements and attributes
as well as a query defined by a simple path based on an ancestor-descendent relation.
Query processing is performed in three phases which are connected:

Implementation of XPath Axes in the Multi-dimensional Approach 223

1. Find unique numbers idT of the query’s terms in the term index.
2. Find labelled paths’ idLP of the query in the labelled path index. We search the
unique numbers in a multi-dimensional data structure using point or range queries.
3. Find points in the path index. We find points representing paths in this index using
range queries. Now, the result is formatted using unique numbers idN (ui) of nodes ui

from these points.

Example 2 (Evaluation Plan of the XPath Query/books/book[author="Joseph
Heller"]).

1. Find idT of terms books,book,author, and Joseph Heller in the term index.
2. Find a unique number idLP of the labelled path books,book,author in the la-
belled path index, which was transformed to the point representing the labelled path. We
retrieve idLP = 2 of labelled path by the point query (0,1,6).
3. Create two points defining a query box, which searches points relevant to this query.
The query box is defined by the points(2,0,0,0,12) and(2,maxD,maxD,maxD,
12), where maxD is the maximal value of the domain D of space ΩP . idLP of the
labelled path retrieved during the last phase is located in the first points’coordinates. idT

of term Joseph Heller is located in the last points’ coordinates. Since, we search
points with arbitrary values of 2nd–4th coordinates, the first point contains the minimal
values of a multi-dimensional space’s domain and the second point contains the maximal
values of the domain.

We need to distinguish between labelled paths and paths belonging to an element or
attribute. We deal with this using flags added to points. Similarly, we can deal with the
indexing of more XML documents, which can be valid w.r.t. different schemas.

2.3 Implementation of XPath Axes

The basic XPath query expression in non-reduced notation is axis::tag[filter],
which provides by evaluation on the context node u a set of nodes u′, where the relation
given by the axis contains (u, u′), tag for u′ istag, the condition assigned by filter
assumes the value TRUE on u′.

Let us denote the context node by u, the level of a node ui in the XML tree by l(ui).
Obviously, l(u0) = 0. Without loss of the generality we denote l as l(u). The query
result in the path index contains points representing paths from the root to leafs. These
points contain the unique numbers of all ancestors u0, . . . , ul−1 of the current node u,
i.e. idN (u0), . . . , idN (ul−1).

Implementation of Axes:
– ancestor – nodes lie on the path from u to the root node. So far as we want to
retrieve the ancestors of a node from the point representing path, we retrieve relevant
idN from this point. Unique numbers idN (u0), . . . , idN (ul−1) are obtained for the
axis ancestor, idN (u0), . . . , idN (ul−1), idN (u) for ancestor-or-self (u and
nodes lie on the path from u to the root node), and idN (ul−1) for parent (first node
on the path from u to the root node).
– descendant – all nodes, which the node u is the parent for. Now, we use unique
numbers of u node’s ancestors: idN (u0), . . . , idN (ul−1), as well as idN (u) and l(u).
During the range query’s points creation we use the knowledge that all descendants have

224 M. Krátký, J. Pokorný, and V. Snášel

got the same ancestors as the node u and their parent is the node u. We search all descen-
dants of the node u by the range query in the path index: (0, idN (u0), . . . , idN (ul−1),
idN (u), 0, . . . , 0) : (maxD, idN (u0), . . . , idN (ul−1), idN (u), maxD, . . . , maxD).
– child – direct descendants of the node u. A naive approach is to perform axis
descendant and idN of children to obtain in (l(u)+3)th coordinates of the result’s
points. Let us imagine inefficient searching of the root node’s children for example. A
more efficient implementation is based upon finding one point, which contains idN of a
child, redefinition of the range query and processing of this query.

Algorithm:
1. Perform range query (0, idN (u0), . . . , idN (ul−1), idN (u), 0, . . . , 0) : (maxD,
idN (u0), . . . , idN (ul−1), idN (u), maxD, . . . , maxD). Processing of this query will
be finished after the acquisition of one or no relevant point. The identified point contains
idN of a child in (l(u)+3)th coordinate.
2. Since we do not know which child was retrieved (from document order point of view)
we must define two queries for the acquisition of both preceding and following children.

Denote the acquired child as uc (idN (uc) = idN (ul+1)), the child with the highest
identified idN , but smaller than idN (uc) as upc, the child with the lowest identified idN ,
but greater than idN (uc) as ufc. Definition of two range queries (idN (upc) = −1 and
idN (ufc) = maxD + 1 after finding the first child):

a) (0, idN (u0), . . . , idN (ul−1), idN (u), idN (upc) + 1, 0, . . . , 0) : (maxD, idN (u0),
. . . , idN (ul−1), idN (u), idN (uc) − 1, maxD, . . . , maxD)

b) (0, idN (u0), . . . , idN (ul−1), idN (u), idN (uc) + 1, 0, . . . , 0) : (maxD, idN (u0),
. . . , idN (ul−1), idN (u), idN (ufc) − 1, maxD, . . . , maxD)

Processing the simple queries will be finished after the acquisition of one or no
relevant point. In the case that the first/second query retrieves no point, the first/last
child was identified in the former query.
3. We continue with step 2 until these range queries retrieve some points.

– preceding-sibling – siblings of node u preceding in the document order. We
search all points representing paths pertaining to elements with the same ancestors as
node u and (l(u)+2)th coordinate < idN (u). A naive approach to finding the preceding-
siblings of node u is to perform the range query: (0, idN (u0), . . . , idN (ul−1), 0, 0, . . . ,
0) : (maxD, idN (u0), . . . , idN (ul−1), idN (u) − 1, maxD, . . . , maxD). An efficient
implementation is similar to the implementation of the child axis.
– following-sibling – siblings of node u following in the document order. We
search all points representing paths pertaining to elements with the same ancestors as
node u and (l(u)+2)th coordinate > idN (u). A naive approach to finding the following-
siblings of node u is to perform the range query: (0, idN (u0), . . . , idN (ul−1), idN (u)+
1, 0, . . . , 0) : (maxD, idN (u0), . . . , idN (ul−1), maxD, . . . , maxD). An efficient im-
plementation is similar to the implementation of the child axis.
– preceding – nodes preceding to node u (except ancestors) in the document order.
We search the nodes preceding the node u by the range query: (0, 0, . . . , 0) : (maxD,
idN (u0) − 1, . . . , idN (ul−1) − 1, idN (u) − 1, maxD, . . . , maxD).

Implementation of XPath Axes in the Multi-dimensional Approach 225

– following – nodes following to node u (except descendants) in the document
order. We search the nodes following the node u by the range query: (0, idN (u0) +
1, . . . , idN (ul−1) + 1, idN (u) + 1, 0, . . . , 0) : (maxD, . . . , maxD).

In the above described range queries no restrictions were given to the unique numbers
of labelled paths. In practice, the first coordinates of range query’s points contain a
particular idLP instead of an interval 〈0; maxD〉.

3 Index Data Structures

Due to the fact that an XML document is represented as a set of points in the multi-
dimensional approach, we use multi-dimensional data structures like UB-tree, BUB-tree,
R-tree, and R∗-tree for their indexing. (B)UB-tree data structure uses Z-addresses (Z-
ordering) [1] for mapping a multi-dimensional space into a single-dimensional one.
Intervals on Z-curve (which is defined by this ordering) are called Z-regions. (B)UB-tree
stores points of each Z-region on one disk page (tree’s leaf) and a hierarchy of Z-regions
forms an index (inner nodes of tree). In the case of indexing point data, an R-tree and
its variants cluster points into minimal bounding boxes (MBBs). Leafs contain indexed
points, super-leaf nodes include definition of MBBs and remaining inner nodes contain
a hierarchy of MBBs. (B)UB-tree and R-tree support point and range queries [1], which
are used in the multi-dimensional approach to indexing XML data. The range query is
processed by iterating through the tree and filtering of irrelevant tree’s parts (i.e., regions)
which do not intersect a query box.

One more important problem of the multi-dimensional approach is the unclear di-
mension of spaces of paths and labelled paths. Documents with the maximal length of
path being 10 exist, but documents with the maximal path length 36 may appear as well
(see [13]). A naive approach is to align the dimension of space to the maximal length of
path. For example, points of dimension 5 will be aligned to dimension 36 using a blank
value (often zero number) in 6th–36th coordinates. This technique increases the size of
the index and the overhead of data structure as well. In [10] BUB-forest data structure
was published. This data structure deals with the problem of indexing points of different
dimensions. BUB-forest contains several BUB-trees, each of them indexes a space of
different dimension. We can index points representing paths and labelled paths regard-
less of worsening efficiency by indexing XML documents with very different length of
paths. We can use the same approach for other data structures, e.g. R-trees.

The range query used in the multi-dimensional approach is called the narrow range
query. Points defining a query box have got coordinates for some dimensions the same,
whereas the size of interval defined by the coordinates of the first and second point
for other dimensions nears to the size of space’s domain. Notice, regions intersecting a
query box during processing of a range query are called inter-sect regions and regions
containing at least one point of the query box are called relevant regions. We denote
their number by NI and NR, respectively. Many irrelevant regions are searched during
processing of the narrow range query in multi-dimensional data structures. Consequently,
a ratio of relevant and intersect regions, so called relevance ratio cR, becomes much
lower than 1 with an increasing dimension of indexed space. In [11] the Signature R-
tree data structure was depicted. This data structure enables the efficient processing

226 M. Krátký, J. Pokorný, and V. Snášel

of the narrow range query. Items of inner nodes contain a definition of (super)region
and n-dimensional signature of tuples included in the (super)region (see Figure 2).
A superposition of tuples’ coordinates by operation OR creates the signature. Operation
AND is used for better filtering of irrelevant regions during processing of the narrow
range query. Other multi-dimensional data structures, e.g. (B)UB-tree, are possible to
extend in the same way.

Fig. 3. A structure of the Signature R-Tree

4 Cost Analysis

A point query is often used for searching in the term and the labelled path index. The
complexity of the point query is O(log(m)), where m is the number of the indexed
objects. The efficiency of the multi-dimensional approach mainly depends on the effi-
ciency of range query processing in the path index. Complexity of the general range
query algorithm is O(NI × logc m), where c is the node’s capacity. It holds cR � 1 (see
previous section) for the narrow range query, particularly for increasing dimension of
indexed space. In the case of the Signature R-tree (and (B)UB-tree as well) is the com-
plexity O(NRQ × logc m), where NRQ is the number of searched regions (leaf nodes).
Our experiments show NI � NRQ ≥ NR. In other words, the space complexity of
the algorithm is enhanced for the reduction of the time complexity. Some XML queries
are implemented by a sequence of q range queries. The complexity of the sequence is
O(

∑q
i=1 NRQ × logc(m)).

Conventional approaches, like XISS [12] and XPath Accelerator [6], index partic-
ular elements (and attributes). Simple query for values of elements as well as a query
defined by a simple path based on an ancestor-descendent relation is processed using a
consecutive filtering of elements which are not in relation ancestor-descendent as long
as the result is retrieved. In Section 2.2 we can see that, in our approach, such a query
is processed using one query in a data structure and the filtering of a large number of
irrelevant elements does not approach.

Implementation of XPath Axes in the Multi-dimensional Approach 227

5 Experimental Results

In our experiments1, we used Protein Sequence Database XML document [15]. The
document size is 683 MB. It includes 21,305,818 elements and 1,290,647 attributes.
Approximately 17 mil. paths were obtained from this document. With respect to the fre-
quency of the path lengths, the multi-dimensional forests with two trees indexing spaces
of dimension n = 7 and n = 9 were created for indexing XML data. We used BUB-tree,
R∗-tree, and their signature variants with the length of n-dimensional signature n × 64.
The underlying table summarizes the index characteristics, square brackets indicate an
increase of index volume for signature multi-dimensional trees. The average utilisation
62% was reached.

Dimen- Number Index size Number of
sion of [MB] inner leaf
n points BUB-tree Sig. BUB-tree R∗-tree Sig. R∗-tree nodes (BUB-tree)

7 8,268,357 440.9 471 [+7%] 478.6 512.2 [+7%] 10,917 214,842
9 8,739,522 562.1 635.2 [+13%] 603.1 680.7 [+13%] 17,751 270,065

First, queries for values of elements and attributes as well as a query defined by a
simple path based on an ancestor-descendent relation similar to ProteinDatabase/

ProteinEntry[reference/refinfo/authors/author =’Smith, E.L.’]were
tested. For each space, queries with smaller (bellow 10) and larger (103–104) size of
results were selected. In all cases, the ratio of number of searched leaf nodes and number
of all leaf nodes, disk access cost (DAC), and query processing time were measured.
The results of query processing are presented in Table 1. Evidently, the R∗-tree proves
to have better properties than BUB-trees during the narrow range processing. Signature
variants of these data structures provide better efficiency than classical data structures.
In the case of Signature R∗-tree only 0.14% of all leaf nodes were searched and the
average time of query processing turns out to be 70 ms.

Table 1. Results of queries for values of elements and attributes as well as a query defined by a
simple path based on an ancestor-descendent relation in the path index

Searched leaf nodes [%] DAC Time [s]
BUB Sign. R∗ Sign. BUB Sign. R∗ Sign. BUB Sign. R∗ Sign.
tree BUB-tree tree R∗-tree tree BUB-tree tree R∗-tree tree BUB-tree tree R∗-tree

Avg. 1.15 0.22 0.29 0.14 7,566 794 917 445 2.9 0.5 0.12 0.07

Second, the efficiency of XPath axes implementation was tested. In all cases, DAC
and query processing time for the Signature R∗-tree were measured. The results of query
processing are presented in Table 2. Ancestors axes are processed by no disk access.

1 The experiments were executed on an Intel Pentium�4 2.4Ghz, 512MB DDR333, under Win-
dows XP.

228 M. Krátký, J. Pokorný, and V. Snášel

Table 2. Results of XPath axes queries in the path index

Number of Searched DAC for Time
Axis resultant leaf DAC simple [s]

elements points nodes [%] range query

descendant 1,121 982 0.20 621 - 0.06
child 9 9 0.05 225 25 0.1

descendant-or-self 1,245 1,015 0.23 648 - 0.05
parent 1 - - - - -

following 2,487 2,017 0.45 1,387 - 0.1
preceding 2,312 1,803 0.39 1,124 - 0.09

following-sibling 5 5 0.04 187 27 0.09
preceding-sibling 7 7 0.03 165 24 0.09

Avg. 1,026.6 585 0.20 622.4 25.3 0.08

Since some axes (child, following-sibling, and preceding-sibling) are
implemented by a sequence of range queries, DAC for one range query are presented in
Table 2 as well. The volume of searched leaf nodes is again very low.

6 Conclusion

In this paper the multi-dimensional approach to indexing XML data and an efficient
implementation of XPath axes were described. The BUB-forest was employed for in-
dexing heterogeneous XML data with the root to leaf paths of widely differing lengths.
Our experiments prove that the approach can serve as an alternative to implementing
native XML databases. In our future work, we would like to further improve the abilities
and the efficiency of the multi-dimensional approach. In particular we will develop an
implementation of another complex XML queries which are defined by XML query
languages such as XPath and XQuery.

References

1. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts. In Pro-
ceedings of WWCA’97, Tsukuba, Japan, 1997.

2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient and
robust access method for points and rectangles. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, pages 322–331.

3. A. B. Chaudhri, A. Rashid, and R. Zicari. XML Data Management: Native XML and XML-
Enabled Database Systems. Addison Wesley Professional, 2003.

4. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A Fast Index for
Semistructured Data. In Proceedings of the 27th VLDB Conference, 2001.

5. R. Fenk. The BUB-Tree. In Proceedings of 28th VLDB Conference, 2002.
6. T. Grust. Accelerating XPath Location Steps. In Proceedings of ACM SIGMOD 2002,

Madison, USA, June 4-6, 2002.

Implementation of XPath Axes in the Multi-dimensional Approach 229

7. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of
ACM SIGMOD 1984, Boston, USA, pages 47–57, June 1984.

8. M. Krátký, J. Pokorný, T. Skopal, and V. Snášel. The Geometric Framework for Exact and
Similarity Querying XML Data. In Proceedings of First EurAsian Conferences, EurAsia-ICT
2002, Shiraz, Iran. Springer–Verlag, LNCS 2510, 2002.

9. M. Krátký, J. Pokorný, and V. Snášel. Indexing XML data with UB-trees. In Proceedings of
ADBIS 2002, volume Research Commmunications, pages 155–164.

10. M. Krátký, T. Skopal, andV. Snášel. Multidimensional Term Indexing for Efficient Processing
of Complex Queries. Kybernetika, Journal of the ACR, accepted, 2004.

11. M. Krátký,V. Snášel, J. Pokorný, and P. Zezula. Efficient Processing of Narrow Range Queries
in the R-Tree. Technical Report ARG-TR-01-2004, http://www.cs.vsb.cz/arg, 2004.

12. Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expressions. In
Proceedings of 27th VLDB International Conference, 2001.

13. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In Proceedings of Twelfth
International World Wide Web Conference, WWW 2003. ACM, 2003.

14. J. W. R. Goldman. DataGuides: enabling query formulation and optimization in semistruc-
tured databases. In Proceedings of 23rd VLDB Conference, 1997.

15. University of Washington’s database group. The XML Data Repository, 2002,
http://www.cs.washington.edu/research/xmldatasets/.

16. W3 Consortium. XQuery 1.0: An XML Query Language, W3C Working Draft, 15 November
2002, http://www.w3.org/TR/xpath/.

17. W3 Consortium. XML Path Language (XPath) Version 2.0, W3C Working Draft, 15 Novem-
ber 2002, http://www.w3.org/TR/xpath20/.

18. W3 Consortium. Extensible Markup Language (XML) 1.0, 1998,
http://www.w3.org/TR/REC-xml.

	Introduction
	Multi-dimensional Approach to Indexing XML Data
	Model of XML Documents

	Index Data Structures
	Cost Analysis
	Experimental Results
	Conclusion

