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Abstract. Data warehouses (DWs) can become inconsistent when some dimen-
sional constraints are not satisfied by the dimension instances. In this paper, we
present preliminary results about the effects of the violation of partitioning con-
straints in homogeneous dimension instances over aggregation queries, and in par-
ticular over the summarizability property (SUMM) of the DWs. We are interested
in finding ways to retrieve consistent answers even when the DW is inconsistent.
We give a notion of repair for inconsistent instances based on a notion of prioritized
minimization. We also describe a notion of consistent answer in DWs.

1 Introduction

Data warehouses (DWs) are data repositories that integrate data from different sources
and also keep historical data. They can be queried by OLAP (On-Line Analytical Pro-
cessing) systems, which in particular, require aggregation of data stored in the DW [4].

The DWs consist mainly of dimensions and facts. Dimensions reflect the way in which
the data is organized. Some some typical dimensions are time, location, customers, etc.
The facts correspond to quantitative data related with (a finite number of) dimensions, for
example facts related with sales may be associated to the dimensions time, and location,
and should be understood as the sales done by the locations in certain periods of time.

DWs can be modelled and implemented by using a relational (ROLAP) or a mul-
tidimensional (MOLAP) approach. The multidimensional approach is better than the
relational one to support data aggregation, because aggregations can be computed in
a straightforward way from the multidimensional structure. We base our work on the
multidimensional model proposed in [7], where dimensions are modelled by hierarchy
schemas together with a set of constraints, while the facts are represented by tables that
refer to the dimensions. In this paper we only consider basic dimension schemas, called
strictly homogeneous dimension schemas (cf. section 2).

Usually, dimensions are considered the static part of the DW, whereas the facts are
considered the dynamic part, in the sense that the update operations affect mainly the
fact tables. However, in [8, 9] the need to update dimensions is analyzed. They argue that
dimensions have to be adapted to changes in data sources or in the business structure.
They define a set of update operators for homogeneous dimension schemas and instances.

In the presence of such update operations, DWs may become inconsistent with re-
spect to dimension constraints. We are interested in studying the effects of violations
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of a specific class of dimension constraints, the so-called partitioning constraints in
homogeneous dimension instances (from now on, homogeneous instances) on aggrega-
tion queries. These constraints are fundamental for enforcing navigability properties in
dimension schemas. One of the effects we will analyze in detail is how the violation
of constraints affects the SUMM property of the DWs. The latter is the capability of
correctly computing queries (cube views) using others pre-computed aggregate views.
We will concentrate on queries with aggregation functions, which perform grouping of
attributes and return a value for each group.

This analysis has been done on the basis of examples and theoretical work. We will
use DB2 data warehousing technology to implement our concepts and mechanisms for
CQA.

We also intent to retrieve consistent answers to queries even when the DW is in-
consistent. Of course, a characterization of such answers becomes necessary. In order
to do this, we use the concept of repair of a DW that is inconsistent wrt the dimension
constraints. A concept of repair was first introduced in [1] in the context of relational
databases and first order integrity constraints. In that framework, a repair is another
database instance that minimally differs from the original instance (wrt inclusion of sets
of tuples inserted or deleted into/from the original database) and satisfies the given set
of integrity constraints. In [2] it is defined the set of consistent answers to aggregation
queries with scalar functions (that return a single value for an entire relation). That set is
defined as an optimal interval [a, b] such that the evaluation of the query on every repair
of the database returns a value v such that a < v < b.

We will show that these previous notions of repair are not suitable for the DW
framework. In consequence, we give a new definition of repair and consistent answer for
multidimensional DWs subject to a set of partitioning constraints and for queries with
aggregation functions. DW repairs are used as an auxiliary concept to characterize the
consistent answers.

We get dimension instances repairs wrt partitioning constraints by introducing mini-
mal changes over the original inconsistent dimension instances. In order to achieve this,
and given that we are considering hierarchical representations with multiple levels, we
explore the notion of prioritized minimization (as given in [12]). After that, we give a
preliminary definition of consistent answer for such kind of queries. Intuitively, a con-
sistent answer to a query with aggregation function is a set of attributes grouped together
with an interval, as defined in [2], for each aggregation function.

For future research we leave the development of a methodology for computing repairs
(if necessary, because this should be avoided whenever possible due to its complexity)
and consistent answers. In addition, we will extend this study to heterogeneous dimension
schemas [7].

2 Preliminaries

A hierarchy schema is a directed acyclic graph (C,↗), where C is a set of categories, and
↗ is a child/parent relation between categories (edges in the graph), ↗∗ is the transitive
and reflexive closure of ↗. For simplicity, categories do not have any attributes, and
there is a distinguished top category named All, whose only element is {all}, that is
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reachable from all other categories. The category at the lowest level is named the bottom
category.

Example 1. The figure 1(a) shows the National Parks hierarchy schema, with:

– C = {Park, Type, Location, Country, All},
– ↗ consists of the edges {(Park, Type), (Park, Location), (Type, Country), (Location,

Country),(Country, All)}; and
– ↗∗=↗ ∪ {(Park,Park), (Type, Type), (Park, Country), ...}. �

   a)                                    b) c )
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Fig. 1. a) Hierarchy schema b),c) Dimension Instances

The hierarchy schema has a domain D that can be infinite, whose elements have a
unique name. An instance over a hierarchy schema is defined as a first order logic (FOL)
structure of the form 1.

D = 〈D, CD
i , ..., CD

m , AllD, allD, AD, <D, <∗D 〉, (1)

where D is the domain of the herbrand structure [13], whose elements k must be inter-
preted with their own values. CD

i , ..., CD
m , AllD ⊆ D, are unary predicates that repre-

sent categories, and AllD is the top category, with element {allD}. AD ⊆ {pij | i, j =
1, ..., m}, where each pij represents an edge between the categories i and j on the hier-
archy schema. <D⊆ D ×D is the child/parent relation between elements of categories.
<∗D⊆ D × D is the reflexive and transitive closure of <D. In this sense, <∗D

can be
seen as an interpreted relation name, which has a fixed interpretation depending on the
interpretation of <D. A dimension instance D indicates relationships between elements
of categories which must be connected in the hierarchy schema. This is achieved through
the set of the pij , in the sense that: D |= pij ⇔ pij ∈ AD.

Example 2. D=〈D,Park(·)D,Type(·)D,Location(·)D,Country(·)D,All(·)D, allD,

AD, <D, <∗D 〉 is an instance for the hierarchy schema (a) in Figure 1, where D is
composed by names for parks, types, locations, countries, and:
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– ParkD = {Banff , Jasper ,CraterLake}, TypeD = {P ,S},
– LocationD = {Alberta,Oregon}, CountryD = {Canada,USA}, AllD = {allD}
– AD = {pparktype , pparklocation , ptypecounty , plocationcountry , pcountryAll}
– <D = {(Banff, P), (Banff, Alberta), (Jasper, P), (Jasper, Alberta),

(CraterLake, S), (CraterLake, Oregon), (P, Canada), (S,USA),
(Alberta, Canada), (Oregon, USA), (Canada, All), (USA, All)}.
Figure 1(b) illustrates this instance.

– <∗D

=<D ∪ {(Banff, Banff), (Banff,Canada)... } �

A roll-up function is the mapping of the relation <∗ between elements of Ci, Cj

categories. It is expressed by:

RCj

Ci
(D) := {(x, y)|Ci(x) ∧ Cj(y) ∧ x <∗ y} (2)

This function is fundamental for computing aggregation of data.
Dimension instances must satisfy a set of conditions [7]. The partitioning property

is one of them. It is defined by:

∀ (x, y, z)(Ci(x) ∧ Cj(y) ∧ Cj(z) ∧ x <∗ y ∧ x <∗ z → y = z) (3)

It enforces that roll-up functions are functional, and so they allow for the correct
computation of aggregations. The SUMM property says that a category C can be com-
puted from other category C ′ in a dimension instance D if and only if: RC

Cbottom(D) =
RC′

Cbottom(D) �� RC
C′(D) [7].

We call specific dimensions constraints those constraints that model hierarchy
schemas [7]. Those constraints are used to specify paths and the existence of distin-
guished elements in the categories. Homogeneous schemas are those modelled by the
into constraints, which establish all the paths as mandatory. In those schemas, roll-up
functions are expected to be total between elements of categories. A schema is called
strictly homogeneous when it has one bottom category.

Finally, we concentrate on queries with aggregation functions of the form 4.

SELECTA1, . . . Am, af

FROMT, R1, . . . Rm

WHERE {joins conditions and others conditions}
GROUPBY A1, . . . Am, (4)

where A1, . . . Am are attributes of the facts table T or of roll-up functions Ri, . . . Rm

(they will be treated as tables), and af is one of: MIN, MAX, COUNT,SUM, AVG, COUNT,
applied to one attribute Ai �= A1, . . . Am.

3 The Need for DW Repairs and Consistent Answers

In general, DWs are conceived as collections of materialized views whose main sources
are operational databases. As consequence, much effort has been centered in keeping
consistency between the sources and the DW [5, 6, 15, 17]. To the best of our knowledge,
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the first work related to consistency in dimension schemas in the sense of [7] is presented
in [11]. They argue that a dimension schema is consistent if their instances satisfy the
partitioning condition. That notion of consistency is used to guide the update operations
on dimension schemas that keep that property satisfied. However, there has been no work
so far that tackles the problem of already having an inconsistent dimension instance with
respect to a specific class of constraints, but still being able to provide consistent answers,
in a sense similar to the notion of consistent answer introduced in [1–3] for relational
databases. In this regard, the work presented here is the first attempt to handle the problem
of consistent query answering (CQA) in DWs.

The concept of repair was already defined in [1] in the context of relational
databases. However, that notion does not capture the minimality required by the
natural process of repairing multidimensional DWs. This is the case even if we
represent the DW as an instance of a relational DB (the ROLAP approach). We
show this with an example.

Example 3. Figure 2 shows a snowflake schema [4] for the National Parks dimension.
“PK” indicates the primary key for each table, and the following first order integrity
constraint enforce the partitioning property:

IC : ∀xyzwv Park(x , y , z ) ∧ Type(y ,w) ∧ Country(w)∧
Location(z , v) ∧ Country(v) → w = v

Assume we have the following dimension instance r:

– Park ={(Banff, P, Alberta), (Jasper, P, Alberta), (CraterLake, P, Oregon)},
– Type = {(P, Canada)},
– Location = {(Alberta, Canada), (Oregon, USA)},
– Country = {Canada, USA}.

PARK

PK ID_Park

ID_Type

ID_Location

LOCATION

PK ID_Location

ID_Country

TYPE

PK ID_Type

ID_Country

COUNTRY

PK ID_Country

Fig. 2. Snowflake schema

Instance r does not satisfy the IC because Canada �= USA, and:

r |=Park(CraterLake,P ,Oregon) ∧ Type(P ,Canada) ∧ Country(Canada)∧
Location(Oregon,USA) ∧ Country(USA)
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The only possible repair in the relational sense of [1] is obtained by deleting Park
(CraterLake, P, Oregon). However, if we apply this change in the multidimensional
representation it implies to delete the pairs (CraterLake, P) of the roll-up function RType

Park

and (CraterLake,Oregon) of RLocation
Park , which is not a minimal repair since it is enough

to reestablish consistence to delete just one of them. In section 4 we show that to delete
both pairs is not a minimal change. �

We will show that good repairs for DWs are obtained by doing minimal deletion of
pairs in the roll-up functions involved in the violations of constraints. The problem in the
relational model is that a tuple can contain many pairs of those functions (in example 3
a tuple contains two pairs). In that sense, relational model does not allow us to work on
a granularity lower than a tuple. Our definition of repair (section 4.1) captures exactly
the minimality of changes desired for DWs. We achieve this by identifying the roll-up
functions involved in the violations of partitioning constraints, defining a prioritized
set of roll-up functions (inspired by the notion of prioritized minimization given in
[12]), then those set of functions are manipulated (deletion of pairs) in order to achieve
consistence. The repairs are those that reestablish the consistence by doing minimal
changes over the prioritized roll-up functions.

On the other side, the importance of the summarizability property of DWs has been
analyzed [10, 14]. In [14] a particular class of heterogeneous hierarchies is transformed
into homogeneous hierarchies to support summarizability. This is achieved by inserting
null values, fusioning other values, and introducing new categories when partitioning
constraints are violated. Although these operations, which allow us to get summarizabil-
ity, could be used for repairing inconsistent DWs, they do not produce minimal repairs.
In addition, the fusion of values may produce undesired changes in the semantic of the
dimension instances.

4 Repairs and Semantically Correct Answers in DWs

Let us show by means of an example how the unsatisfied partitioning constraints (PC)
may affect query answering.

Example 4. Let D be the instance in figure 1(c), and PC : ∀ (x, y, z)(Park(x) ∧
Country(y) ∧ Country(z) ∧ x <∗ y ∧ x <∗ z → y = z). Here, D � PC. As a
consequence, the roll-up function: RCountry

Park = {(Banff ,Canada), (Jasper ,Canada),
(CraterLake,Canada), (CraterLake,USA)} is not functional.

Suppose the facts table Sales= {(Banff, 5000), (Jasper, 5000), (CraterLake, 10000)}
stores sales for national parks, and consider the aggregation query Q: “Give the SUM
(sales) group by country”. The answer for Q is: {(Canada, 20000), (USA, 10000)}. �

Clearly, this result presents an anomaly, the sales of the park Crater Lake are added
twice, as sales of Canada and also as sales of USA. Now, let us explore how that violation
affects the summarization property.
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Example 5. Consider the following materialized views and roll-up functions:

– Sales-Type = {(P, 20000)}, Sales-Loc = {(Alberta, 10000), (Oregon, 10000)}
– RCountry

Type = {(P, Canada)}, RCountry
Location = {(Alberta, Canada),(Oregon, USA)}

The answers to Q: “Give the SUM(sales) group by country” are {(Canada, 20000)}
and {(Canada, 10000), (USA, 10000)}, using the respective views and roll-up functions.
However, by the summarizability property, the answers must be similar, specially in
homogeneous instances, where a category is summarizable from any of the categories
below it [7]. �

Given an homogeneous instance D satisfying the basic properties of the graph struc-
ture [7], and a set of partitioning constraints PC, we claim:

Theorem 1. D |= PC if and only if D |= SUMM . �

This result is important because we can verify summarizability by testing satisfiability
of partitioning constraints. This test could be easily performed by using views. In that
way, we could identify the elements participating in violations and use that information
to fix the dimension instance.

4.1 Dimension Instances Repairs

Partitioning constraints can be seen as functional dependencies (FD) in relational databases.
The general way to repair inconsistent databases wrt to FDs is by deleting the tuples
participating in the violations [2]. However, in dimension instances, there are no tuples
in the sense of relational databases, but there exist dimension tuples [7], so we could
consider as tuples the pairs in the roll-up functions between elements.

Dimension instances form a hierarchy of roll-up functions. In consequence, we
should identify from which roll-up functions pairs are to be deleted in order to get a
good repair. Inspired by the notion of prioritized minimization given in [12], we propose
to minimize changes, but assigning higher priority to lower categories. For this purpose,
we define first levels of categories on a dimension instance, and to each level we asso-
ciate a set of roll-up functions. Specifically, given a dimension instance D of the form
(1) with maximum distance n among the categories of the graph, we define

Definition 1. A level Li with 0 ≤ i ≤ n is a set of elements belonging to categories
with distance i (in the hierarchy schema) to the bottom category. For each level Li there
exists a set Ri ⊆<1 defined by: Ri := {(a, b)|a < b ∧ Cj(a) ∈ Li ∧ Ck(b) ∈ Li+1},
where {Cj , Ck} are categories of D. �

Example 6. For the instances of the figure 3(a):

– L0 = {Banff, Jasper, CraterLake},
– R0 = {(Banff, P), (Banff, Alberta), (Jasper, P), (Jasper, Alberta),

(CraterLake, Oregon)}. �

1 The child/parent relation among categories elements.



Handling Inconsistencies in Data Warehouses 173

Definition 2. The distance ∆ between two dimension instances D1,D2 on the set Ri

with 0 ≤ i ≤ n is defined by: ∆i(D1,D2) = {(a, b)|(((a, b) ∈ Ri,D1) ∧ ((a, b) �∈
Ri,D2)) ∨ (((a, b) ∈ Ri,D2) ∧ ((a, b) �∈ Ri,D1))}.

Given a dimension instance D, we define: D1 ≤D,i D2 ↔ ∆i(D,D1) ⊆ ∆i(D,D2).
�

Example 7. Let D, D1, D2 be the instances in figures 1(c), 3(a), and 3(c), respectively.
It holds:

– ∆0(D,D1) = {(CraterLake, P)},
– ∆0(D,D2) = {(CraterLake, P), (CraterLake, Oregon)},
– D1 ≤D,0 D2, because ∆0(D,D1) ⊆ ∆0(D,D2). �

Definition 3. Let D,D1,D2 be dimension instances over the hierarchy schema H with
domain D. It holds: D1 ≤D D2 iff: ∃i ((∆k(D,D1) = ∆k(D,D2), k < i) ∧ (D1 ≤D,i

D2)). �

Definition 4. Given a dimension instance D, and a set of partitioning constraints PC,
a repair of D wrt PC is a dimension instance D′, such that D′ |= PC, and D′ is ≤D-
minimal in the class of dimension instances that satisfy PC. The set of repairs of D is
denoted by RepairsPC(D). �

Example 8. Figures 3(a),(b) show the repairs for the instances in figure 1(c). �
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Fig. 3. Dimension Instances

4.2 Consistent Answers

Definition 5. Given a dimension instance D, a set of partitioning constraints PC, and
a set of repairs RepairsPC(D), the execution of the aggregation query Q over each
D′ ∈ RepairsPC(D) generates a set of pre-answers for each D′, PreQ

PCD′ := {Q(D′) |
D′ ∈ RepairsPC(D)}. �
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The pre-answers are a set of tuples: < A1, . . . , An, Aggr >, where A1, . . . , An are
attributes of the group-by clause of Q, and Aggr is the value for the aggregation function
af on D′.

Example 9. Consider the repairs in example 8, the sets of pre-answers for Q in example
4 are: {(Canada, 10000), (USA,10000)} and {(Canada,20000)}, respectively. �

Definition 6. A consistent answer to an aggregation query Q, over a
dimension instance D wrt to a set of partitioning constraints PC, is a set of tuples
< A1, . . . , An, r(Aggr) >, where < A1, . . . , An > are the attributes of the group-by
clause of Q, and r(Aggr) is a range [a, b] of values, a is the greatest-lower-bound (glb),
and b is the least-upper-bound (lub) for Aggr in PreQ

PC(D′) for all D′ ∈ RepairsPC(D).
�

Example 10. A consistent answer in example 4 is: {(Canada, {10000,20000}),
(USA, {0,10000}). �

5 Future Work

A repair is a minimal consistent dimension instance wrt to partitioning constraints. How-
ever, a repair is not an homogeneous instance (see figures 3(a), (b)), because some roll-up
functions are modified and they are not total anymore. Furthermore, the summarizability
property cannot be reestablished in the repairs. However, we could obtain total functions
and also summarizability by introducing “dummy” elements in some categories in the
repairs, as in [14]. We are analyzing the possible advantages of implementing this idea
in the query answering process for DWs. We are also studying the method proposed in
[14] to repair DWs and compute consistent answers. We want to see if we get the same
consistent answers even when the concept of repair is different.

We could also improve the definition of repairs by using knowledge from equality
atoms constraints [7], which impose the existence of certain distinguished elements in
the categories. We could require those repairs to satisfy those constraints to get more
accurate repairs.

We are developing a methodology for computing consistent answers. We have con-
sidered to use the knowledge from partitioning constraints and roll-up functions to com-
pute them, avoiding the computation of all the possible repairs, which is known to be
inefficient [1–3].

This is a preliminary study that we will extend to heterogeneous dimension schemas
[7], where the situation could be a bit different; mainly because those schemas relax
some conditions, becoming more vulnerable to inconsistencies. We already explored
update operations over heterogeneous schemas, finding some differences wrt updating
homogeneous schemas. Those results will be included in a future publication.

The problem of retrieving consistent answers to aggregation queries is not a new
issue, it was already studied for scalar aggregation functions in [2] for relational databases
under functional dependencies. We are working on the extension of this work to handle
referential constraints in addition to the FDs. We think that future results for this kind
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of databases will be useful in the context of DWs, in particular, in the case where OLAP
operators and DWs are implemented on top of relational databases (ROLAP).

On other side, we are interested in optimizing the query answering process in DWs
by taking advantage of aggregation constraints [16]. Also the issue of CQA wrt to
aggregation constraints is open. Experiments and implementations will be done on the
DB2 platform.
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