
Incremental Read-Aheads

A. Soydan Bilgin�

Department of Computer Science,
North Carolina State University,

Raleigh, NC 27695, USA
asbilgin@unity.ncsu.edu

Abstract. In spite of the advances in caching, query optimization, and object
persistence techniques in the past few years, the cost of interactions of large-
scale data-intensive applications with a relational database where the persistent
objects are implemented remains a performance bottleneck. To reduce the cost of
such interactions, we present a read-ahead scheme, which allows the application
to reduce the number of database roundtrips by retrieving the data before it is
actually needed by the transactions in the applications.

We focus on designing generic rules for determining the efficient sequences of
SQL statements for read-ahead queries on relational databases, such that the rules
would be useful across application domains and data-access patterns. This paper
explains our research methodology for generating generic access patterns and
studying the parameters that influence the costs of various combinations of read-
ahead SQL statements that implement the generic access patterns of applications.

1 Introduction

The objective of this project is to develop new methods for improving a range of per-
formance metrics in modern relational databases. The main direction of the project is to
design efficient scalable techniques for increasing the throughput of database accesses
and minimizing the cost of database interactions, by reading ahead of time the data
before it is actually needed by the transactions in the data-intensive applications.

Relational databases are the most popular and commonly used DBMSs in the en-
terprise, so minimizing the cost of interactions between large-scale data-intensive ap-
plications and relational databases will result in considerable gains in performance of
applications. Each data access operation results in one or several relatively expensive
physical disk accesses and network overhead that reduce the total throughput in terms
of business transactions performed in a unit of time.

Traditional caching and prefetching techniques are heavily used to efficiently handle
database queries, which process large number of data objects or Web documents [1, 8].
The technique of prefetching refers to the process of guessing an application’s future
requests for data and getting those data into the cache before they are actually referenced.
Caching is used to store the actively referenced data objects, thereby avoids unnecessary
requests to the database. However, even with caching, if an access to a non-cached data

� Doctoral student under the guidance of Rada Chirkova and Munindar P. Singh.

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 144–153, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Incremental Read-Aheads 145

item (e.g., uncacheable data, compulsory misses) occurs that entails a round-trip to the
database, performance will suffer. [2] provides a feeling for the performance penalty
of relational databases with and without the technique of prefetching. According to the
experiments described in [2], the retrieval time of data is up to 5.5 times faster to get rows
in a batch of 100 rows than a row at a time. Simple prefetch mechanisms, which create
read-ahead threads for certain queries that return large quantities of data sequentially
from a single table, are already used in commercial data servers or application servers.

The prefetching technique of reading ahead of time, which we refer to as read-aheads
in the rest of the paper, is used to reduce the number of database roundtrips either by
augmenting the current query to include the answer to the next queries or to gener-
ate additional queries that are likely to come next. In current application servers, some
read-ahead techniques are already used by object managers or containers. However,
these techniques should be used systematically, because incorrect guessing reduces the
throughput of the server, and the overhead examining the query for possible concatena-
tions increases the latency. Current object managers that are responsible for accessing
the database cannot efficiently benefit from the application’s context descriptions. In this
respect, we want to help such object managers to maximize the probability of correct
guessing and to have efficient database interactions by finding the rules of thumb re-
garding what strategies to use to determine efficient sequences of SQL statements. We
want to provide a systematic vision for state-of-the-art read-ahead techniques.

2 Motivation and Problem Formulation

Our goal is to bring the potentially accessible data to application’s environment in the
most efficient way in terms of maximal throughput and minimal database interaction cost.
We use relational structure of data such as table relationships and data dependencies,
and access patterns of the applications to predict the potentially accesssible data that has
the lowest retrieval cost. We separate this original problem into two parts.

1. Design generic rules for determining the efficient sequences of SQL statements for
read-ahead queries on relational databases, such that the rules would be useful across
application domains and data-access patterns.

2. Develop efficient and scalable algorithms for fine-tuning the read-ahead access rules
in each particular application.

We seek rules of thumb that would be applicable accross application domains and
data-access patterns. To derive such generic domain-independent rules, we need to study
the parameters that influence the costs of various combinations of read-ahead SQL state-
ments that implement the generic access patterns. These generic domain-independent
rules are then fine-tuned according to the data-access patterns of particular applications.

In the first phase of our project, we look for break-even points for efficient sequences
of SQL statements by discovering new parameters and by exploring known parameters
such as the size of data in the tables (number of rows and columns), the complexity of SQL
calls (e.g., number of joins, presence of subqueries), presence of indexed columns, shape
of the graph we are trying to retrieve (in a depth-first manner or breadth-first manner),

146 A.S. Bilgin

and network latency (in later stages of the project). Break-even points correspond to
parameter values that are used in constructing efficient sequences of SQL statements,
which give maximal throughput with minimal database interaction cost including data-
retrieval time.As an outcome of this phase, we will have rules of thumb applicable across
applications regarding what strategies to use for efficient sequences of SQL statements.
At present, we don’t consider the caching aspects of the problem to answer subsequent
queries from the results that were prefetched. In addition to this, we don’t consider read-
aheads for batch queries. For example, instead of focusing on queries such as find the
name of all customers, we focus on queries such as find the name of the customer with
given ID .

Example 2.1 We consider a simple financial services data model for our examples [10].
According to this model, there can be many banks, and each customer can have multiple
accounts in different banks. Relations Person and Organization store detailed informa-
tion about customers of the banks. The relation Customer stores the common attributes
of persons and organizations. The relation Account stores account information for cus-
tomers in various banks. In the first and second transactions, we consider a customer
representative who issues three and two data-access requests, respectively for the same
customer from the database (The data-access requests are abbreviated with uppercase
letters).

Transaction 1:

A Find the city and SSN of (person) customer ‘0011111’.
B Find the total amount of money that customer ‘0011111’ has in all his accounts.
C Find the routing numbers of the banks where customer ‘0011111’ has accounts.

Transaction 2:

D Find the name of customer ‘0011111’.
C Find the routing numbers of the banks where customer ‘0011111’ has accounts.

For Transaction 1, request A requires two joins on tables for Customer, Person and
Address without any read-aheads as in Figure 1. With read-aheads, it will be a smart
choice to also bring data from Account table as in Figure 2, because request B that comes
after A, requires data in the Account table. So using just one SQL statement with three
joins as in Figure 2, we answer the first two requests A and B. For request C, we need to
access the Bank Customers table, so we need another SQL statement to fetch the data.
As a result, with two SQL statements as in Figure 2 (three joins for the first statement and
no joins for the second statement), we are able to answer the requests in Transaction 1.
As another option, we can bring all the graph data in just one SQL statement by joining
all the required tables at once; but in this case we will have a more complex query shown
in Figure 3. This example shows the trade off between some of the parameters, such as
the cost of the join operation versus the number of database roundtrips. Although the
SQL statement in Figure 3 requires one database roundtrip, we may choose to use two
SQL statements as in Figure 2 because these statements need fewer join operations in
total and thus may result in lower total roundtrip time for large databases.

Incremental Read-Aheads 147

select Address.city, Person.ssn
from Customer, Person, Address
where Person.customerId=Customer.customerId
and Customer.addressId=Address.addressId
and Customer.customerId= ‘0011111’

Fig. 1. SQL statement for Transaction 1: A

AB: C:
select Person.ssn, Address.city, sum(amount) select routingNumber
from Customer, Account, Person, Address from Bank_Customers
where Person.customerId=Customer.customerId where customerId=‘0011111’
and Customer.addressId=Address.addressId
and Customer.customerId=Account.customerId
and Customer.customerId= ‘0011111’
group by Person.ssn, Address.city

Fig. 2. SQL statements for Transaction 1: AB and C

select Address.city, Person.ssn, Bank_Customers.routingNumber, sum(amount)
from Customer, Account, Person, Address, Bank_Customers
where Person.customerId=Customer.customerId and Customer.addressId=Address.addressId
and Customer.customerId=Account.customerId and Customer.customerId= ‘0011111’
and Customer.customerId=Bank_Customers.customerId
group by Person.ssn, Address.city, Bank_Customers .routingNumber

Fig. 3. SQL statement for Transaction 1: ABC

As the above example illustrates, our goal is not to find the minimal number of data-
access statements, but to find the efficient number of simplest data-access statements. For
example, one very complex data-access statement can bring all the data by reading ahead
of time at one roundtrip, but this statement may not result in the maximal throughput
due to the cost of the join operations. Also this data-access statement can bring the data
that may never be needed by the application.

In subsequent phases of the project, we will explore the effect of object-to-relational
mapping technique on our generic domain-independent rules and will develop and test
learning algorithms to increase the efficieny of our generic rules for the data-access
patterns of particular applications.

3 Related Work

In [11], various types of prefetching are characterized according to its short-term and
long-term benefits. In short-term prefetching, future accesses to data are predicted ac-
cording to the cache’s recent access history. In long-term prefetching, global object
access patterns are used to identify valuable objects that are worth prefetching (i.e., if
an object is accessed by one client, it is likely that it will be accessed by other clients) [11].

148 A.S. Bilgin

Both prefetching techniques are mainly used in reducing the latency used in loading web
pages [4]. In our work, we use long-term prefetching that also uses data-access costs to
identify cheap and valuable prefething sequences.

Prefetching is used to either pre-load the data needed for the subsequent queries for
the given workload or load a specific collection of objects related to the requested object.
The former case requires a more complex mechanism to track the cache contents and
an analysis of which parts of the previous query is contained in the subsequent query,
is required. [5] addresses the former case as an optimization for computing overlapping
queries that generate Web pages (e.g., online shopping, where users narrow down their
search space as they navigate through a sequence of pages). Predicate-based caching
also serves the same idea where current cache content is used to answer future queries
[7]. The approach in [12] uses the transition probabilities for each query to find the
most probable query that can appear after the current query. So while executing the
current query, they also execute the most probable subsequent query by using probable
parameters and query pattern. In our approach, we take into account the cost of the
data-access statements and parameters that affect this cost, to find the efficient sequence
SQL statements.

[9] proposes to use a predictive cache to recognize and exploit access patterns for
applications by incorporating prefetching mechanism with cache replacement mecha-
nism to eliminate erroneous or least-likely prefetches. [6] also aims to ‘pre-cache’ the
objects that are likely to be subsequently accessed by the application. Haas et al. pro-
pose a heuristic approach to cache and prefetch the objects whose object identifiers were
returned as part of the query, so they make prefetching decisions according to the object
identifiers found in the result set of the query. However, instead of focusing on finding
the most beneficial prefetches, their goal is to find the cost of caching the prefetched
objects. They incorporate the prefetching process into query processing to find the best
execution plan by considering the cost of caching the prefetched tuples.

[2] specifically addresses the prefetching technique on relational databases where
persistent objects are implemented. They use the context of an object as a predictor
for future accesses in navigational applications. This context describes the structure in
which the object was fetched. Main prefetching methods are listed (e.g., prefetching all
the attributes of the requested object(s)). The results are applicable accross application
domains, because they use generic access patterns that are applicable across a wide range
of applications. However, they only make one-level prefetching for referenced objects,
so they don’t actually answer the ‘how deep’question for read-aheads. Their overall goal
is to minimize database latency for future data-access statements, so they don’t explore
the cost of efficient sequence of data-access statements.

We explore the cost of data-access statements to find efficient generic data-access
patterns. None of the previous work consider the prefetching problem both with query op-
timization parameters and navigational access patterns, such as following a relationship,
at the same time. Also by providing a mechanism for merging simple data-access state-
ments to find an efficient sequence of data-access statement, we actually use a different
aspect for multi-query optimization [3] where dependencies or common subexpressions
between the queries in a sequence are explored and computed.

Incremental Read-Aheads 149

4 Proposed Approach

Applications use objects, but these objects are mapped to tuples of the appropriate tables.
In relational databases, the objects accessed by the applications are always associated
with each other. Most of the time, the data in the database is accessed according to these
associations, and again most of the time these associations are intuitive and work just as
you would expect. This is an important observation for the first phase of our project in
which we don’t specifically use data-access patterns of particular applications. Instead,
for the first phase of the project, our goal is to come up with generic read-ahead rules
that are applicable across applications.An important property of applications for systems
such as health-care, financial, or human resources is repetitive usage of the same query
templates. For example, an application can request the due date of a credit card payment
after requesting the balance, or it can request the transactions of the same card in the last
billing period. The similar associations and dependencies that can be found in different
domains form a basis for guessing the useful generic access patterns in our project.

Generic access patterns aren’t enough to determine the most beneficial and efficient
read-ahead scheme configuration. These patterns are helpful to determine the useful
sequence of SQL statements. On the other hand, we need to find efficient sequences
of (merged) SQL statements. Finding such efficient sequences includes answering the
following questions:

1. How much to read ahead? This question requires figuring out which tables and
table columns may be subsequently accessed, and how the structure of data (e.g.,
existence of an indexed attribute) and relational constraints affect the structure of a
read-ahead query.

2. How deep to read ahead? This question requires figuring out the levels of the object
hierarchy that may be subsequently accessed. How does the number of joins affect
the efficiency of sequence of SQL statements?

3. In what direction to read ahead? In each level of the object hierarchy, each object can
be associated with many different objects. This question requires figuring out the
trade-off of typical directions of the traversal on the object hierarchy that is stored
in the relational database.

5 Research Methodology

We construct a testbed to experiment with the parameters that affect the cost of SQL
statements used while reading ahead of time. The focus of our case study is to discover
and experiment with the data-access patterns of financial applications with parameters
that are related to the structure of the data in the database. For this case study, we use a
slightly modified version of the standard data model for financial services (e.g., banking
and investment services) as described in [10]. Some of the main entities of this model
are shown in Figure 4. We use Oracle 9i as our data server to implement the entire data
model which has 55 tables and maximum fan-out of 7 relationships. After creating a
sample database for this model, we list possible query templates for the model. Here,
we list some query templates.

150 A.S. Bilgin

– Find the attributes of a given customer
– Find the accounts for a given customer
– Find the agreements to which a given financial product(s) is related
– Find the assets of a given customer that are used for loan agreements
– Find the account transactions of a given account
– Find the names of the customers that have more than a given number of accounts

The above list can be easily extended. By using these potential query templates, we
can come up with meaningful generic access sequences for the database.

Party

Organization Person
AccountRoleAssetRole

Address

Asset Account

10..*

*

1

*

1

*
1

*
1

Agreement

Account
Transactions

Agreement Asset
Usage

1

*

*
1

1

*

*

1

Account Product

Financial Products

1 *

*
1

Fig. 4. Some entities in the financial services model

We generate SQL statements that implement access patterns, which are part of the
given access sequence. To generate various combinations of SQL statements for the
given access sequence with read-ahead functionality, we can use the following prefetch
methods:

– Prefetch only primary keys of the associated objects
– Prefetch primary and non-primary foreign keys
– Prefetch key and non-key attributes, or only non-key attributes
– Prefetch via traversing the inheritance-extension, one-to-many association (i.e., ag-

gregation), or many-to-many type of relationships

We model the data accesses as a directed graph. In this directed graph, vertices corre-
spond to simple data-access statements and edges correspond to transition probabilities
between the statements. These probabilities can be calculated and updated using access

Incremental Read-Aheads 151

log files of the database server. For example, if we consider each data-access request
used in Example 2.1 as simple data-access statement,we obtain the simple data-access
statement transition graph in Figure 5. Based on this simple hypothetical transition
graph, whenever A is accessed there is a 40% chance that B will be accessed next. We
assume an acylic graph that can have multiple sources and sinks for the first phase of
the project.

To initialize large transition graphs for financial services applications, we generate
vertices by using above query templates and generate edges with random probabilities by
above prefetch methods that use generic associations and dependencies among relations.

We need to merge simple data-access statements to find optimal sequences of SQL
statements for the given access sequence. There are two principle ways to combine two
or more SQL statements. Either the statements are executed at the same time or they
are executed one after the other. We call the first combination merged execution and
denote it by operator *; the second combination represents sequential execution and
is denoted by operator +. We can apply * repeatedly to describe access patterns, and
apply + repeatedly to combine patterns to form the access sequence. By definition, * is
commutative, while + is not, and * has precedence over +. For example, if we have an
access sequence ADEF for a larger graph in Figure 6, we can come up with compound
statements such as A*D*E+F, A*D*E*F, A*C*D+E*F, A*B*D+E*F, A+D*E*F and
so on. By using large acyclic graphs, we can consider more complex access patterns. To
find efficient compound statements, we derive a benefit formula, which takes into account
the processing cost and the probabilities of each simple and compound statements that
can generate the given access sequence. This formula also includes a risk factor, which
aims to balance the cost and usefullness of the generated sequence. According to the
query workload or even type of applications, the risk factor can change.

A

B

D

C

0.5

0.4

0.4

0.2

0.8

0.5

0.2

Fig. 5. Query transition graph for
Example 2.1

A

C

B

D

F

E

0.5

0.4

0.4

0.5
0.2

0.5

1.0

0.2

0.8

0.5

Fig. 6. A sample query transition
graph

By using the results of the benefit formula and the computed cost of an access se-
quence, e.g., processing cost for A+D+E+F, we will determine rules of thumb regarding
what strategies to use for efficient sequences of SQL statements for the financial services
domain. Then, we will test and fine-tune the rules on other application domains.

152 A.S. Bilgin

6 Discussion

The results of our work can be used to effectively preload associated dataset of a requested
object that may be subsequently accessed. Our work can also be integrated with query
optimizers to find the efficient execution plans for compound SQL statements. This
integration provides us another aspect for multi-query optimization.

This work can also be integrated with Container Managed Persistence containers or
Java Data Object drivers as a performance tuning technique. Using this technique, we
will be able to get ahead of time the working set of objects for the current transaction
in very concurrent environments. Also this work can be helpful in determining the right
cache size for systems that use prefetching.

One of the important implementation challenges is to merge simple SQL statements
on-the-fly to experiment with the compound SQL statements. This isn’t a trivial task,
because it requires the detailed knowledge of the relational structure of data. Even for the
statements that are syntactically similar, we can have different merged SQL statements.

We use applications’ common behaviours and the cost of database interactions to
generate read-ahead rules that can provide a significant performance gain for systems
where many concurrent data-intensive read-only applications access huge databases.

Acknowledgements

I would like to thank Rada Chirkova and Munindar P. Singh for their guidance and
suggestions. I would also like to thank Timo Salo for his helpful comments. This research
is supported under NCSU CACC Grant 11019.

References

1. Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S. Subrahmanian. Query
caching and optimization in distributed mediator systems. In Proc. 1996 ACM SIGMOD
Conf. on Management of Data, pages 137–148, 1996.

2. Philip A. Bernstein, Shankar Pal, and David Shutt. Context-based prefetch – An optimization
for implementing objects on relations. VLDB Journal, 9(3):177–189, 2000.

3. Sunil Choenni, Martin Kersten, Amani Saad, and Johan van den Akker. A framework for
multi-query optimization. In Proc. 8th Int. Conf. on Management of Data (COMAD’97),
pages 165–82, 1997.

4. Brian D. Davison. The Design And Evaluation Of Web Prefetching and Caching Techniques.
PhD thesis, Department of Computer Science, Rutgers University, October 2002.

5. Daniela Florescu, Alon Levy, Dan Suciu, and KhaledYagoub. Optimization of run-time man-
agement of data intensive Web sites. In Proc. 25th VLDB Conf., pages 627–638, September
1999.

6. Laura M. Haas, Donald Kossmann, and Ioana Ursu. Loading a cache with query results. In
Proc. 25th VLDB Conf., pages 351–362, 1999.

7. Arthur M. Keller and Julie Basu. A predicate-based caching scheme for client-server database
architectures. VLDB Journal, 5(1):35–47, 1996.

8. Tom M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the bounds of Web
latency reduction from caching and prefetching. In USENIX Symposium on Internet Tech-
nologies and Systems, 1997.

Incremental Read-Aheads 153

9. Mark Palmer and Stanley B. Zdonik. FIDO: A cache that learns to fetch. In Proc. 17th VLDB
Conf., pages 255–264, Barcelona, Spain, 1991.

10. Len Silverston. The Data Model Resource Book, volume 2. John Wiley and Sons, New York,
2001.

11. Arun Venkataramani, Praveen Yalagandula, Ravindranath Kokku, Sadia Sharif, and Mike
Dahlin. The potential costs and benefits of long term prefetching for content distribution. In
Proc. of Web Content Caching and Distribution Workshop, 2001.

12. Dazhi Wang and Junyi Xie. An approach toward Web caching and prefetching for database
management systems. Technical report, Department of Computer Science, Duke University,
2001. http://www.cs.duke.edu/˜junyi/cps216/report.pdf.

http://www.cs.duke.edu/~junyi/cps216/report.pdf

	Introduction
	Motivation and Problem Formulation
	Related Work
	Proposed Approach
	Research Methodology
	Discussion

