
An Access Structure for Similarity Search
in Metric Spaces

Vlastislav Dohnal

Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic

xdohnal@fi.muni.cz

Abstract. Similarity retrieval is an important paradigm for searching in environ-
ments where exact match has little meaning. Moreover, in order to enlarge the
set of data types for which the similarity search can efficiently be performed, the
mathematical notion of metric space provides a useful abstraction of similarity.
In this paper, we present a novel access structure for similarity search in arbitrary
metric spaces, called D-Index. D-Index supports easy insertions and deletions and
bounded search costs for range queries with radius up to ρ. D-Index also supports
disk memories, thus, it is able to deal with large archives. However, the partition-
ing principles employed in the D-Index are not very optimal since they produce
high number of empty partitions. We propose several strategies of partitioning
and, finally, compare them.

1 Introduction

Searching has always been one of the most prominent data processing operations because
of its useful purpose of delivering required information efficiently. However, exact match
retrieval, typical for traditional databases, is not sufficient or feasible for present appli-
cations, such as multimedia information retrieval, data mining, machine learning, and
genome databases. What seems to be more useful, if not necessary, is to base the search
paradigm on a form of proximity, or dissimilarity of a query and data objects. Roughly
speaking, objects that are near a given query object form the query response set. In this
place, the notion of mathematical metric space provides a useful abstraction of nearness.

Several storage structures, such as [2, 3, 6, 9], have been designed to support efficient
similarity search execution over large collections of metric data where only a distance
measure of pairs of objects is possible to quantify. However, the performance is still
not satisfactory. Though all of the indexes are trees, many tree branches have to be
traversed to solve a query, because similarity queries are basically range queries that
typically cover data from several tree nodes or some other content-specific partitions.
In principle, if many data partitions need to be accessed for a query region, they are
not contrasted enough and such partitioning is not useful from the search point of view.
Recently, the excluded middle vantage point strategy for partitioning of metric data has
been proposed to develop an index structure [12] called Excluded Middle Vantage Point
Forest, which creates a forest of one path search trees.

In this article, we describe recently proposed similarity search structure, called D-
Index [8], which uses this strategy. The organization stores data objects in buckets with

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 133–143, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

134 V. Dohnal

direct access to avoid hierarchical bucket dependencies. Such organization also results
in a very efficient insertion and deletion of objects. Though similarity constraints of
queries can be defined arbitrarily, the structure is extremely efficient for queries searching
for very close objects. We point out issues related to the design of the D-Index. In
particular, we propose three strategies to combine partitioning principles which lead to
better behavior of D-Index.

2 Related Work

The urgent need of indexing techniques that support execution of similarity queries led
to the application of spatial access methods (SAMs) such as R-Tree. Unsatisfactory
performance of R-Trees on high dimensional vector spaces lead to the further develop-
ment. New access structures for searching high dimensional spaces, e.g. iDistance [13]
or Pyramid [1] were proposed and analyzed. They both outperform R-Trees and demon-
strate significant speedup. However, SAMs are limited by the following assumptions
on which they rely: i) objects are represented by vectors in a multidimensional vector
space, ii) the similarity between a pair of objects is often based on an Lp metric, e.g.
Euclidean distance, which does not introduce any kind of correlation. Moreover, SAMs
assume that the distance function can be trivially evaluated by means of time, which is
not always the case of multimedia data, e.g. the distance of strings is measured by the
edit distance, which has the complexity O(n2). Finally, SAMs usually optimize only
the number of access to disk memories, not the number of distance evaluations.

A more general approach to the similarity based searching is an index structure that
operates in metric spaces. Note that in metric spaces we can only state the distance
between two objects and a metric function is often considered as a CPU demanding
operation. Uhlmann [10] proposes metric tree that partitions the metric space using
the relative distances of objects. This technique is improved in [11] and vantage point
tree is proposed. A further improvement of this concept has recently been presented by
Yianilos [12]. This approach is based on the excluded middle vantage point strategy and
creates a forest of vantage point trees. This principle is also exploited in the D-Index.
The main contribution of indexing methods based on metric spaces is that they are not
limited to the usage on vector spaces, thus, they can be applied on other domains, such
as text strings or XML documents, without any additional nontrivial transformation to
a vector space.

Although the number of access structures for metric spaces is impressive, see a recent
survey [5] most of them suffer from being intrinsically static, which limits their applica-
bility in dynamic environments. Contrary to SAM, presented metric trees optimize only
the number of distance computations. Zezula et al proposed M-Tree [6] that optimizes
both CPU and I/O costs.

3 Searching in Metric Spaces

A convenient way to assess similarity between two objects is to apply metric functions
to decide the closeness of objects as a distance, that is the objects’ dissimilarity. A
metric space M = (D, d) is defined by a domain of objects (elements, points) D

An Access Structure for Similarity Search in Metric Spaces 135

and a total (distance) function d – a non-negative (d(x, y) ≥ 0 with d(x, y) = 0 iff
x = y) and symmetric (d(x, y) = d(y, x)) function that satisfies the triangle inequality
(d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ D). We assume that the maximum distance
never exceeds d+, thus we consider a bounded metric space.

In general, the problem of indexing in metric spaces can be defined as follows:
given a set X ⊆ D in the metric space M, preprocess or structure the elements of
X so that similarity queries can be answered efficiently. For a query object q ∈ D,
two fundamental similarity queries can be defined. A range query retrieves all elements
within distance r to q, that is, the set {x ∈ X, d(q, x) ≤ r}. A nearest neighbor query
retrieves the h closest elements to q, that is a set R ⊆ X such that |R| = h and
∀x ∈ R, y ∈ X − R, d(q, x) ≤ d(q, y).

For the space constraints of this article, we consider only the similarity range search
operations here. In the following, we first define partitioning principles and then outline
the ideas of the D-index. Next, we provide the range search algorithms. Finally, we
present a sketch of comparison with M-Tree.

3.1 General Approach: Separable Partitioning

To achieve the objectives, the partitioning principle of D-Index is based on a mapping
function, which is called the ρ-split function, where ρ is a real number constrained as
0 ≤ ρ < d+. In order to gradually explain the concept of ρ-split functions, we first
define a first order ρ-split function and its properties.

Definition 1. Given a metric space (D, d), a first order ρ-split function s1,ρ is the
mapping s1,ρ : D → {0, 1, −}, such that for arbitrary different objects x, y ∈ D,
s1,ρ(x) = 0 ∧ s1,ρ(y) = 1 ⇒ d(x, y) > 2ρ (separable property) and ρ2 ≥
ρ1 ∧ s1,ρ2(x) 	= − ∧ s1,ρ1(y) = − ⇒ d(x, y) > ρ2 − ρ1 (symmetry property).

In other words, the ρ-split function assigns to each object of the space D one of the
symbols 0, 1, or −.

The concept of ρ-split functions can, of course, be generalized by concatenating n
first order ρ-split functions with the purpose of obtaining a split function of order n.

Definition 2. Given n first order ρ-split functions s1,ρ
1 , . . . , s1,ρ

n in the metric space
(D, d), a ρ-split function of order n sn,ρ = (s1,ρ

1 , s1,ρ
2 , . . . , s1,ρ

n) : D → {0, 1, −}n

is the mapping, such that for arbitrary different objects x, y ∈ D, ∀i s1,ρ
i (x) 	= − ∧

s1,ρ
i (y) 	= − ∧ sn,ρ

i (x) 	= sn,ρ
i (y) ⇒ d(x, y) > 2ρ (separable property) and

ρ2 ≥ ρ1 ∧ ∀i s1,ρ2
i (x) 	= − ∧ ∃j s1,ρ1

j (y) = − ⇒ d(x, y) > ρ2 − ρ1 (symmetry
property).

An obvious consequence of the ρ-split function definitions is that by combining n
first order ρ-split functions s1,ρ

1 , . . . , s1,ρ
n , which satisfy the separable and symmetric

properties, we obtain a ρ-split function of order n sn,ρ which also demonstrates the
separable and symmetric properties. We often refer to the number of symbols generated
by sn,ρ, that is the parameter n, as the order of the ρ-split function. In order to obtain
an addressing scheme with direct access, another function that transforms the ρ-split
strings into integers is defined as follows.

136 V. Dohnal

(a)
2ρ

x
v

x
0

x
1

d
m

x
2

1)(
1

=xbps

−=)(
2
xbps

0)(
0

=xbps

d
m 2ρ

Separable

set 4

Separable

set 1

Separable

set 2

Separable

set 3

Exclusion

Set

(b)

Fig. 1. The bps split function (a) and the combination of two bps functions (b)

Definition 3. Given a string b =(b1, . . . , bn) of n elements 0, 1, or −, the function
〈·〉 : {0, 1, −}n → [0..2n] is specified as:

〈b〉 =
{

[b1, b2, . . . , bn]2 =
∑n

j=1 2n−jbj , if ∀j bj 	= −
2n, otherwise

When all the elements are different from ‘−’, the function 〈b〉 simply translates the
string b into an integer by interpreting it as a binary number (which is always < 2n),
otherwise the function returns 2n.

By means of the ρ-split function and the 〈·〉 operator, we can assign an integer number
i (0 ≤ i ≤ 2n) to each object x ∈ D, i.e., the function can group objects from X ⊂ D
in 2n + 1 disjoint subsets.

Though several different types of first order ρ-split functions are proposed, analyzed,
and evaluated in [7], the ball partitioning split (bps) originally proposed in [12] under the
name excluded middle partitioning, provided the smallest exclusion set. For this reason,
this approach is also applied in the D-Index and can be characterized as follows.

The ball partitioning ρ-split function bps uses one reference object (pivot) xv and the
medium distance dm to partition a data set into three subsets, see Figure 1a. The result of
the bps function gives the unique identification of the set to which the object x belongs:

bps(x) =

⎧⎨
⎩

0 if d(x, xv) ≤ dm − ρ
1 if d(x, xv) > dm + ρ
− otherwise

The subset of objects characterized by the symbol ’−’ is called the exclusion set,
while the subsets of objects characterized by the symbols 0 and 1 are the separable sets,
because any range query with radius not larger than ρ cannot find qualifying objects in
both the subsets.

To obtain more separable sets we define higher order ρ-split function as a combination
of several bps functions, where the resulting exclusion set is the union of the exclusion
sets of the original split functions. Furthermore, the new separable sets are obtained as
the intersection of all possible pairs of separable sets of the original functions. Figure 1b
gives an illustration of this idea for the case of two split functions. Several strategies of
combining ρ-split functions are discussed in Section 4.

An Access Structure for Similarity Search in Metric Spaces 137

3.2 D-Index

The basic idea of the D-Index is to create a multilevel storage and retrieval structure that
uses several ρ-split functions, one for each level, to create an array of buckets for storing
objects. On the first level, we use a ρ-split function for separating objects of the whole
data set. For any other level, objects mapped to the exclusion bucket of the previous level
are the candidates for storage in separable buckets of this level. Finally, the exclusion
bucket of the last level forms the exclusion bucket of the whole D-Index structure. It is
worth noting that the ρ-split functions of individual levels use the same ρ. Moreover,
split functions can have different order, typically decreasing with the level, allowing the
D-Index structure to have levels with a different number of buckets. In particular, from
the structure point of view you can observe the buckets organized as the following two
dimensional array consisting of 1 +

∑h
i=1 2mi elements.

B1,0, B1,1, . . . , B1,2m1−1
B2,0, B2,1, . . . , B2,2m2−1
...
Bh,0, Bh,1, . . . , Bh,2mh −1, Eh

All separable buckets are included, but only the Eh exclusion bucket is present –
exclusion buckets Ei<h are recursively re-partitioned on level i + 1. Then, for each row
i (i.e. the D-Index level), 2mi buckets are defined and are separable up to 2ρ, thus we
are sure that there do not exist two buckets at the same level i both containing relevant
objects for any similarity range query with radius r ≤ ρ.

In order to deal with overflow problems and growing files, buckets are implemented
as elastic buckets and consist of the necessary number of fixed-size blocks (pages) –
basic disk access units.

Range Search. Given a range query Q = R(q, r), we define a simple search algorithm.
This algorithm, however, evaluates only limited queries with r ≤ ρ.

Algorithm 1. Search

for i = 1 to h
return all objects x such that x ∈ Q ∩ B

i,〈smi,0
i

(q)〉;
end for
return all objects x such that x ∈ Q ∩ Eh;

During the elaboration of the algorithm we manipulate the value of parameter ρ of
split functions. When we use ρ = 0 the function 〈smi,0

i (q)〉 always gives a value smaller
than 2mi . Consequently, one separable bucket on each level i is determined. Finally,
the algorithm also accesses the exclusion bucket of the whole structure. The algorithm
requires h + 1 bucket accesses, which forms the upper bound on the search.

Generic Range Search. Algorithm 1 requires to access one bucket at each level of the D-
Index, plus the exclusion bucket. In the following two situations, however, the number
of accesses can even be reduced: i) if the query region is contained in the exclusion

138 V. Dohnal

partition of the level i, then the query cannot have objects in the separable buckets of this
level and only the next level must be considered, ii) if the query region is contained in
a separable partition of the level i the following levels, as well as, the exclusion bucket
need not be accessed, thus the search terminates on this level.

Another drawback of the simple algorithm is that it works only for search radii up
to ρ. However, with additional computational effort queries with r > ρ can also be
executed. Indeed, such queries can be executed by evaluating the split function srq−ρ. In
case srq−ρ returns a string without any ‘−’, the result is contained in the single bucket
B〈srq−ρ〉 plus, possibly, the exclusion bucket.

Let us now consider that the string returned contains at least one ‘−’. We indicate
this string as b = (b1, . . . , bn) with bi = {0, 1, −}. In case there is only one bi = ‘−’,
we must access all buckets B, whose index is obtained by substituting‘−’ with 0 and 1.
For this purpose, we define the function G that returns all identifications of buckets that
must be accessed. For example, G returns the set {〈001〉, 〈011〉} for the string ‘0–1’. In
the most general case, we must substitute in the string b all the ‘−’ with zeros and ones
and generate all possible combinations.

Given a query region Q = R(q, rq) with q ∈ D and rq ≤ d+.An advanced algorithm
can execute the similarity range query as follows.

Algorithm 2. Range Search

01. for i=1 to h
02. if 〈smi,ρ+rq

i (q)〉 < 2mi then (exclusively in a separable bucket)
03. return all objects x such that x ∈ Q ∩ B

i,〈smi,ρ+rq
i

(q)〉; exit;

04. end if
05. if rq ≤ ρ then (search radius up to ρ)
06. if 〈smi,ρ−rq

i (q)〉 < 2mi then(not exclusively in an exclusion b.)
07. return all objects x such that x ∈ Q ∩ B

i,〈smi,ρ−rq
i

(q)〉;

08. end if
09. else (search radius greater than ρ)
10. let{l1, l2, . . . , lk} = G(smi,rq−ρ

i (q))
11. return all objects x such that x ∈ Q ∩ Bi,l1 , . . . , x ∈ Q ∩ Bi,lk ;
12. end if
13. end for
14. return all objects x such that x ∈ Q ∩ Eh;

In general, Algorithm 2 considers all D-Index levels and eventually also accesses
the global exclusion bucket. However, the test on the line 02 can discover the exclusive
containment of the query region in a separable bucket and terminate the search earlier.
Otherwise, the algorithm proceeds according to the size of the query radius. If r ≤ ρ
there are two possibilities. If the test on line 06 is satisfied one separable bucket is
accessed. Otherwise no separable bucket is accessed on this level because the query
region is from this level point of view exclusively in the exclusion zone. Provided the
search radius is greater than ρ, more separable buckets are accessed on a specific level.
Unless terminated earlier, the algorithm accesses the exclusion bucket at line 14.

An Access Structure for Similarity Search in Metric Spaces 139

3.3 Comparison

We have compared the D-Index with other index structures, particularly, we considered
M-Tree1 [6] and a sequential organization (SEQ). According to [5], these are the only
types of index structures for metric data that use disk memories to store objects. We
have conducted the experiments on 45-dimensional vectors of image color features
compared by the quadratic distance measure. The data set consisted of 11,000 objects
and had practically normal distribution. We have measured average performance over
50 different query objects considering numerous similarity range queries. The results
are shown in Figure 2.

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20

Search radius (x100)

Distance Computations (a)

D-Index
M-Tree

SEQ

0
100
200
300
400
500
600
700
800
900

1000

0 5 10 15 20

Search radius (x100)

Block Accesses (b)

D-Index
M-Tree

SEQ

Fig. 2. Comparison of the range search efficiency in the number of distance computations (a) and
the number of block accesses (b)

For all tested queries, i.e. retrieving subsets up to 20% of the database, the D-Index
always needed less distance computations than the M-tree and the number of block
accesses of the M-tree was significantly higher than for the D-Index. This is obvious
since the M-Tree has nodes with fixed capacity2 while the bucket in D-Index consists
of necessary number of blocks (the size of blocks is fixed). The superior performance
in the terms of distance computations can be attributed to the fact that the D-Index also
applies the pivot-based filtering techniques, which significantly reduce the number of
distance computation, for details see [8]. Moreover, the D-Index uses the same pivots in
the partitioning, i.e. ρ-split functions, and in the filtering technique to further reduce the
number of distance evaluations. Figure 2b demonstrates another interesting observation:
to run the exact match query, i.e. range search with r = 0, the D-Index only needs to
access one block. As a comparison, the M-Tree needs one half of the SEQ. Notice that
the exact match search is used to locate an object to be deleted and forms the main cost
of delete operations. In this respect, the D-Index is able to manage deletions much more
efficiently than the M-tree. In this case, the advantage of the D-Index over the M-Tree is
caused by its structure. The M-Tree must traverse the tree and access all internal nodes
along the search path. However, the D-Index computes ρ-split functions, which does

1 The software is available at http://www-db.deis.unibo.it/research/Mtree/
2 Overflow problems are solved with node splits. Thus, after a split there is approximately 50%

of space wasted in the new nodes, which need not be filled anymore.

140 V. Dohnal

not require any disk accesses and directly determines the bucket to access. Due to the
applied pivot-based algorithm, all object in blocks of buckets are sorted according to
the distance to a pivot. Consequently, the D-Index is able to locate a block in the bucket
where the object to delete resides without any additional block accesses.

We have also performed scalability tests over the same data collection but ranging
from 100,000 to 600,000 objects. For these experiments, the D-Index structure was
defined by 37 pivots and 74 buckets.The D-Index was strictly linear, that is, the costs to
evaluate a query grow linearly with the data size. The M-Tree was slightly better than
the D-Index but this is attributed to the fact that M-Tree is incrementally reorganizing
its structure while the D-Index structure is using a constant structure. The development
of a dynamic structure of D-Index is our main research issue. This problem is partially
discussed in the next section.

4 Improved Partitioning Strategies

In this stage, we emphasize the main drawback of the D-Index access structure and sketch
some possible solutions. The experiments revealed that the D-Index is very efficient and
outperforms the others nearly in all situations. However, its partitioning principles are not
very optimal and produce unbalanced partitions. In particular, we concern the problem
of selecting reference objects (pivots). Next, we deal with the issue of combining several
rho-split functions into a single mapping function.

The problem of choosing pivots is important for any search technique in the general
metric space, because all such algorithms need, directly or indirectly, some "anchors"
for partitioning and search pruning. It is well known that the way in which pivots are
selected affects the performance of proper algorithms. This has been recognized and
demonstrated by several researchers [2, 11]. Recently, the problem was systematically
studied in [4], and several strategies for selecting pivots have been proposed and tested.
The generic conclusion is that good pivots are i) far away from the remaining objects of
the metric space and ii) far away from each other pivot. In the D-Index, we also use this
technique to select pivots.

The design of D-Index structure requires specification of several ρ-split functions
which are usually combinations of bps functions. In general, the idealized split function
should produce balanced buckets each containing nearly the same number of objects and
minimize the size of the exclusion bucket. Figure 3 presents three possible strategies to
combine two bps functions. The first technique, depicted in (a) is utilized in the D-Index
and uses the pivot p1 and dm = r1 to divide the space into two separable partitions.
Next, these two partitions are repartitioned using a different bps function which applies
a different pivot p2 and dm = r2, however, the same for both the partitions. As a result,
we obtain four separable buckets. We refer to this method as the strict strategy.

The second strategy in (b) differs from the first one in one aspect. It makes use of
the pivot p2 in the second function as well, but two different values of dm, r1

2 and r2
2

are applied for the left and the right partition, respectively. The hypothesis behind is
that by manipulations with the parameter dm we can achieve better balanced buckets,
diminish empty buckets and decrease the occupation of exclusion sets. We refer to this
as the variable dm strategy.

An Access Structure for Similarity Search in Metric Spaces 141

Fig. 3. Different strategies of combining two bps split functions

To complete the list of split policies, we introduce the third strategy which modifies
also the pivot. In details, this technique can be viewed as the application of three in-
dependent bps functions instead of two in the previous methods. The first bps function
specified with the pivot p1 and radius r1 produces two separable partitions. These two
parts are separately divided using the next two bps functions, that is, the left one uses bps
function with p2 and r2 while the right set is split using p3 and r3. In this way, we get four
separable buckets. However, the major disadvantage of this approach is enormous mem-
ory requirements, e.g. for 128 separable buckets we need 127 different pivots, which is
in a sharp contrast with the other strategies that need log(128) = 7 pivots only to define
the same number of buckets. The memory requirements are not the only issue: the more
pivots we have the more distance computations we must evaluate during both insert and
search operations. Since we optimize the costs in terms of distance computations, such
the behavior is not desired. For this reason, we neglect this strategy. In the following,
we compare the first two approaches, strict and variable dm strategies.

4.1 Experimental Evaluation

In order to test properties of strict and variable dm strategies, we have considered the
collection of 45-dimensional vectors consisting of 11,000 objects again. We created two
one-level D-Index structures one for each strategy and organized the dataset. At this
point, it is important to remark that buckets are fixed in size, specifically, each bucket is
able to store 500 objects at maximum. Table 1 shows the results for both methods. We
have examined several properties: the number of needed pivots – |P |, the symbol |E|
denotes the percentage of exclusion bucket occupation, |B| is the average occupation of
separable buckets, the number of empty buckets is denoted by |{}|, and the number of
non-empty buckets is 2|P | − |{}|.

Table 1. Results for different strategies of combining split functions

strategy |P | |E| |B| |{}| 2|P | − |{}|
strict 9 36.40% 27.16% 463 49

variable dm 5 33.76% 48.23% 0 32

142 V. Dohnal

The strict strategy applied 9 pivots and produced the structure consisting of 512 buck-
ets. The average bucket occupation |E| was 27.16%, that is, about 136 objects accommo-
dated in a bucket. The remaining objects fell into the exclusion set, thus, the occupation of
exclusion bucket was 36.40%. The worst parameter observed was that the strict strategy
produced 463 empty buckets, which is 90.40% of all buckets. This is in a sharp contrast
with the requirements for a good split function which should produce balanced split.

The variable dm technique performed much better. The number of pivots used to
partition the dataset was only 5, which leads to 32 buckets in total. The average bucket
occupation was 48.23% that is much higher than that for the strict strategy. The occu-
pation of exclusion bucket decreased to 33.76%. Finally, the most promising fact is that
the variable dm diminished all empty buckets.

All in all, the results confirm our hypothesis that the variable dm strategy leads to
a better balanced partitioning. It also reduces the occupation of the exclusion bucket,
moreover, it diminishes all empty buckets. To sum up, the variable dm strategy outper-
forms the strict strategy and uses much less pivots to achieve the same partitioning. On
the other hand, the variable dm strategy introduces additional computational overhead,
however, these costs do not include any supplementary distance computations and can
be neglected. To conclude, the variable dm strategy is promising and we will implement
it to create a dynamic structure of the D-Index.

5 Concluding Remarks

Metric spaces have recently become an important paradigm for similarity search and
many index structures supporting execution of similarity queries have been proposed.
However, most of the existing structures are limited to operate in main memory only,
so they do not scale up to high volumes of data. We have concentrated on the case
where indexed data are stored on disks and we have compared a novel index structure
for similarity range and nearest neighbor queries called D-Index with other disk-based
approaches. Contrary to other index structures, such as the M-tree, the D-Index stores and
deletes any object with one block access cost, so it is particularly suitable for dynamic
data environments. Compared to the M-tree, it typically needs less distance computations
and much less disk accesses to execute a query. We have also discussed the design issues
of the D-Index and proposed several partitioning strategies. The experiments revealed
that the variable dm strategy provides the best partitioning.

We will concentrate on possibilities of implementing a dynamic structure of the
D-Index that would allow automatic updates of split functions to achieve an optimal
design of structure for various applications. We will report results in the near future. The
multilevel hashing structure of the D-Index inherently offers parallel and distributed
implementations. This is our next research direction.

References

1. Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel. The pyramid-technique: Towards
breaking the curse of dimensionality. In ACM SIGMOD 1998, pages 142–153, 1998.

An Access Structure for Similarity Search in Metric Spaces 143

2. Tolga Bozkaya and Z. Meral Özsoyoglu. Indexing large metric spaces for similarity search
queries. ACM TODS, 24(3):361–404, 1999.

3. Sergey Brin. Near neighbor search in large metric spaces. In VLDB 1995, pages 574–584,
1995.

4. Benjamin Bustos, Gonzalo Navarro, and Edgar Chávez. Pivot selection techniques for prox-
imity searching in metric spaces. In SCCC 2001, Proceedings of the XXI Conference of the
Chilean Computer Science Society, pages 33–40. IEEE CS Press, 2001.

5. Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquin. Searching
in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

6. Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In VLDB 1997, pages 426–435, 1997.

7. Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. Separable splits in
metric data sets. In Proceedings of 9-th Italian Symposium on Advanced Database Systems,
SEBD 2001, pages 45–62, 2001.

8. Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. D-Index: Distance
searching index for metric data sets. Multimedia Tools and Applications, 21(1):9–33, 2003.

9. Caetano Traina Jr., Agma J. M. Traina, Bernhard Seeger, and Christos Faloutsos. Slim-Trees:
High performance metric trees minimizing overlap between nodes. In EDBT 2000, volume
1777, pages 51–65, 2000.

10. Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Infor-
mation Processing Letters, 40(4):175–179, 1991.

11. Peter N.Yianilos. Data structures and algorithms for nearest neighbor search in general metric
spaces. In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms,
pages 311–321, 1993.

12. Peter N. Yianilos. Excluded middle vantage point forests for nearest neighbor search. In 6th
DIMACS Implementation Challenge, ALENEX’99, 1999.

13. CuiYu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the distance: An efficient
method to KNN processing. In VLDB 2001, pages 421–430, 2001.

	Introduction
	Related Work
	Searching in Metric Spaces
	General Approach: Separable Partitioning
	D-Index
	Comparison

	Improved Partitioning Strategies
	Experimental Evaluation

	Concluding Remarks

