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Abstract. In this paper, we aim to develop a framework for continuous query
processing in spatio-temporal databases. The proposed framework distinguishes
itself from other query processors by employing two main paradigms: (1) Scal-
ability in terms of the number of concurrent continuous spatio-temporal queries.
(2) Incremental evaluation of continuous spatio-temporal queries. Scalability is
achieved thorough employing a shared execution paradigm. Incremental evalua-
tion is achieved through computing only the updates to the previously reported
answer. We distinguish between two types of updates; positive updates and neg-
ative updates. Positive or negative updates indicate that a certain object should
be added to or removed from the previously reported answer, respectively. The
proposed framework is applicable to a wide variety of continuous spatio-temporal
queries where we do not have any constraints about the mutability of objects and
queries (i.e., both objects and queries can be either stationary or moving) or the
movement representation (i.e., movement can be represented either by sampling
or trajectory).

1 Introduction

The rapid increase of spatio-temporal applications calls for new query processing tech-
niques to deal with both the spatial and temporal domains. Examples of spatio-temporal
applications include location-aware services, traffic monitoring, enhanced 911 service,
and multimedia databases. Unlike traditional databases, spatio-temporal databases have
the following distinguishing characteristics: (1) Most of spatio-temporal queries are
continuous in nature. Unlike snapshot queries that are evaluated only once, continu-
ous queries require continuous evaluation as the query result becomes invalid with the
change of information [33]. (2) A large number of mobile and stationary objects, and
consequently a large number of mobile and stationary concurrent continuous queries.
(3) Any delay of the query response results in an obsolete answer. For example, consider
a query that asks about the moving objects that lie in a certain region. If the query answer
is delayed, the answer may be outdated where objects are continuously changing their
locations.

Spatio-temporal databases need to support a wide variety of continuous spatio-
temporal queries. For example, a continuous spatio-temporal range query may have
various forms depending on the mutability of objects and queries. In addition, a range
query may ask about the past, present, or the future. A naive way to process continuous
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spatio-temporal queries is to abstract the continuous queries into a series of snapshot
spatio-temporal queries. Snapshot queries are issued to the server (e.g., a location-aware
server) every T seconds. The naive approach incurs redundant processing where there
may be only a slight change in the query answer between any two consecutive evalua-
tions.

1.1 Motivation

The main objective in my PhD is to build a location-aware server [1, 18, 21] that has
the ability to efficiently process a large number of stationary and moving objects and
queries. In our attempt to build the location-aware server [1], we face the following
challenges:

– Most of the existing query processing techniques focus on solving special cases of
continuous spatio-temporal queries, e.g., [28, 30, 35, 36] are valid only for moving
queries on stationary objects, [4, 8, 10, 23] are valid only for stationary range queries.
Also, [15, 17, 23, 28] are valid only for sampling while [2, 25, 30, 31] require a tra-
jectory representation. Trying to support a wide variety of spatio-temporal queries in
a location-aware server results in implementing a variety of specific algorithms with
different access structures. Maintaining different access structures and algorithms
degrades the performance of the location-aware server.

– Most of the existing spatio-temporal algorithms focus on evaluating only one spatio-
temporal query (e.g., [2, 14, 16, 28, 30, 32, 35, 36]). In a typical location-aware server
[1, 18], there is a huge number of concurrently outstanding continuous spatio-temporal
queries. Handling each query as an individual entity dramatically degrades the per-
formance of the location-aware server.

– Most of the existing algorithms for continuous spatio-temporal queries model the
continuous queries as a series of snapshot queries. Different approaches (e.g., valid
time [36], valid region [35], safe region [23], safe period [8], No-Action region [34],
and trajectory model [30]) are employed to allow for longer time intervals T be-
tween any two consecutive evaluations of spatio-temporal queries. Reissuing the
spatio-temporal queries, even with longer time intervals, incurs redundant process-
ing between each two consecutive executions, hence degrading the performance of a
location-aware server.

– Most of the existing algorithms for continuous spatio-temporal queries require that
the location-aware server sends a complete answer to the client with each reevalua-
tion. In a typical location-aware server, query results are sent to clients via satellite
servers [11]. Sending the whole answer each time consumes the network bandwidth
and results in network congestion at the server side, thus degrading the ability of the
server to process more queries.

Based on these challenges, we specify our goal as not to propose another spatio-
temporal algorithm for very specific spatio-temporal queries. Instead, we aim to develop
a general framework for spatio-temporal query processing that is scalable, incremental,
and applicable to a wide variety of spatio-temporal queries.



102 M.F. Mokbel

1.2 The PhD Contribution

Although my PhD contributions are geared towards building scalable location-aware
servers [1, 18], the main ideas and concepts can be utilized individually or together
for any other spatio-temporal application. In general, the PhD contributions can be
summarized as follows:

1. We go beyond the idea of reevaluating continuous spatio-temporal queries for every
change of information. Instead, we employ an incremental evaluation paradigm that
updates the query answer rather than evaluating it. By employing the incremental
evaluation paradigm, we achieve two goals: (a) Reducing the required computations
to evaluate continuous spatio-temporal queries. (b) Better utilization of the network
bandwidth where we limit the data sent to queries to only the updates rather than the
whole query answer.

2. We distinguish between two types of updates; positive updates and negative updates.
Positive or negative updates indicate that a certain object should be added to or
removed from the previously reported answer, respectively.

3. We support a wide variety of continuous spatio-temporal queries through a general
framework. The proposed framework does not make any assumptions about the mu-
tability of objects and queries or the movement representation.

4. We employ the shared execution paradigm as a means of achieving scalability in
terms of the number of concurrently executed continuous queries.

5. We employ a recovery algorithm for out-of-sync clients; clients that are disconnected
from the server for a short period of time. The recovery algorithm aims to keep
out-of-sync clients updated with their results whenever they reconnect to the system.

6. We aim to realize our spatio-temporal query processor inside the Predator [27]
database management system. In addition, we use a storage manager that is based on
Shore [5] to store information and access structures for moving objects and moving
queries.

1.3 Environment

This PhD work is part of the Pervasive Location-Aware Computing Environments project
(PLACE, for short) [1], developed at Purdue University. The PLACE server receives
information from moving objects and moving queries through GPS-like devices. In
addition, the PLACE server keeps track of the locations of stationary objects (e.g., gas
stations, hospitals, etc.). Once a moving object or query sends new information, the old
information becomes persistent and is stored in a repository server.

The PLACE server [21] is implemented on top of the NILE query processor [13]; an
extended version of the PREDATOR database management system [27] to handle con-
tinuously incoming data. For more details about the architecture and the query processor
of the PLACE server, the reader is referred to [18, 20, 21].

2 Related Work

Most of the recent research in spatio-temporal query processing (e.g., [2, 16, 28, 30, 35,
36]) focus on continuously evaluating one spatio-temporal query at a time. Issues of
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scalability, incremental evaluation, mutability of both objects and queries, and client
overhead are examples of challenges that either are overlooked wholly or partially by
these approaches. Mainly, three different approaches are investigated: (1) The validity
of the results. With each query answer, the server returns a valid time [36] or a valid
region [35] of the answer. Once the valid time is expired or the client goes out of the
valid region, the client resubmits the continuous query for reevaluation. The time T
between each two consecutive evaluations relies on the accuracy of the valid time and
the valid region. (2) Caching the results. The main idea is to cache the previous result
either in the client side [28] or in the server side [16]. Previously cached results are used
to prune the search for the new results of k-nearest-neighbor queries [28] and range
queries [16]. (3) Precomputing the result. If the trajectory of the query movement is
known apriori, then by using computational geometry for stationary objects [30] or
velocity information for moving objects [16], we can identify which objects will be
nearest-neighbors [2, 30] to or within a range [16, 25] from the query trajectory. If the
trajectory information is changed, then the query needs to be reevaluated. The time T
between each two consecutive evaluations relies on the accuracy of determining the
future trajectory.

There is lot of research in optimizing the execution of multiple queries in traditional
databases [26], continuous web queries [7], and continuous streaming queries [6, 12].
Optimization techniques for evaluating a set of continuous spatio-temporal queries are
recently addressed for centralized [23] and distributed environments [4, 8]. Distributed
environments assume that clients have computational and storage capabilities to share
query processing with the server. The main idea of [4, 8] is to ship some part of the
query processing down to the moving objects, while the server mainly acts as a mediator
among moving objects. This assumption is not always realistic. In many cases, clients
use cheap, low battery, and passive devices that do not have any computational or storage
capabilities. For centralized environments, the Q-Index [23] does not assume any client
overhead. The main idea of the Q-index is to build an R-tree-like [9] index structure on
the queries instead of the objects. Then, at each time interval T , moving objects probe
the Q-index to find the queries they belong to. The Q-index is limited in two aspects:
(1) It performs reevaluation of all the queries every T time units. (2) It is applicable only
for stationary queries.

In general, spatio-temporal queries can be evaluated using a spatio-temporal access
method [19]. The TPR-tree [25] and its variants (e.g., the REXP -tree [24] and the TPR*-
tree [31]) are used to index objects with future trajectories. However, there are no special
mechanisms to support the continuous spatio-temporal queries in any of these access
methods.

Our proposed framework distinguishes itself from other approaches, where we go
beyond the idea of reevaluating continuous queries. Instead, we use incremental eval-
uation to compute only the updates of the previously reported result. In addition, un-
like [4, 8], we do not assume any computational capabilities on the client side. Moreover,
our framework is scalable to support a large number of concurrently outstanding
continuous queries and can deal with many variations of continuous spatio-temporal
queries.
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3 Scalable Incremental Processing of Continuous Spatio-Temporal
Queries

In this section, we present a scalable and incremental framework for continuously eval-
uating continuous spatio-temporal queries. The scalability is achieved by employing a
shared execution paradigm for continuous spatio-temporal queries [18, 20]. With the
shared execution, queries are indexed in the same way as data. Thus, evaluating a set
of concurrent continuous spatio-temporal queries is reduced to a join between a set of
moving objects and a set of moving queries [34]. Figure 1 gives an example of having a

Fig. 1. Shared execution of continuous queries

shared plan (Figure 1b) for two concurrent continuous queries (Figure 1a). Incremental
evaluation is achieved through computing only the updates to the previously reported
answer. We distinguish between two types of updates; positive updates and negative
updates. A positive update of the form (Q, +A) indicates that object A needs to be
added to the answer set of query Q. Similarly, a negative update of the form (Q,−A)
indicates that object A is no longer part of the answer set of query Q. In general, we
distinguish between three types of objects: Stationary objects, moving objects, and pre-
dictive objects. Moving objects can send only their current locations, while predictive
objects have the ability to report their velocity vector. Thus, their future location can be
predicted. Similarly, we have the same classification of queries, i.e., stationary, moving,
and predictive queries.

3.1 Algorithms and Data Structures

The main idea of the continuous query processor is to treat both objects and queries
similarly. Thus, we store both objects and queries in the same data structure. We use a
simple grid structure that divides the space evenly into N × N equal sized grid cells.
We utilize one grid structure that holds both objects and queries. Stationary and moving
objects are mapped to specific grid cells using their locations. Predictive objects and all
query types are clipped to multiple grid cells that overlap with the movement trajectory
or query region, respectively.

An object entry O has the form (OID, loc, t, QList), where OID is the object
identifier, loc is the recent location of the object, t is the timestamp of the recently
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reported location loc, and QList is the list of the queries that O is satisfying. A query
Q is clipped to all grid cells that Q overlaps with. For any grid cell C, a query entry
has the form (QID, region, t, OList), where QID is the query identifier, region is the
recent rectangular region of Q that intersects with C, t is the timestamp of the recently
reported region, and OList is the list of objects in C that satisfy Q.region. k-nearest-
neighbor queries are stored in the grid structure by considering the query region as the
smallest circular region that contains the k nearest objects. Simple grid structures are
commonly used to support different spatio-temporal queries (e.g., range queries [8],
future queries [29], and aggregate queries [10]). In addition to the grid structure, we
keep track of two auxiliary data structures; the object index and the query index. The
object and query indexes are indexed on the OID and QID, respectively, and are used
to provide the ability for searching the old locations of moving objects and queries given
their identifiers. Using auxiliary data structures to keep track of the old locations is
utilized in the LUR-tree [15] as a linked list and in the frequently updated R-tree [17]
as a hash table.

Since a typical location-aware server receives a massive amount of updates from
moving objects and queries, it becomes a huge overhead to handle each update indi-
vidually. Thus, we buffer a set of updates from moving objects and queries for bulk
processing. Basically the bulk processing is reduced to a spatial join between a set of
objects (either stationary or moving) and a set of queries (either stationary or moving).
Since, we are utilizing a grid structure, we use a spatial join algorithm similar to the one
proposed in [22]. For each moving query Q, we keep track of the old (Aold) and new
(Anew) query regions. A set of negative updates are produced for all objects that are
in Q.OList and lie in the area Aold − Anew. Then, we need only to evaluate the area
Anew − Aold to produce a set of positive updates. The area Anew ∩ Aold does not need
to be reevaluated where the query result of this area is already reported to Q before. The
efficiency of this incremental approach comes from the fact that the area Anew ∩Aold is
much larger than Anew − Aold. For any moving object O, we check the set of candidate
queries that can intersect with the new location of O. Candidate queries are the queries
that are stored in the same grid cell with O. The queries that are joined with O are
compared with O.QList to determine the set of positive and negative updates to be sent
to the clients.

3.2 Examples

Example 1 (Spatio-Temporal Range-Queries). Figure 2a gives a snapshot of the database
at time T0 with nine moving objects, p1 to p9, and five continuous range queries, Q1 to
Q5. At time T1 (Figure 2b), only the objects p1, p2, p3, and p4 and the queries Q1, Q3,
and Q5 change their locations. The old query locations are plotted with dotted borders.
Black objects are stationary, while white objects are moving. As a result of the change of
database status from T0 to T1, the location-aware server reports the following updates:
(Q1, −p5), (Q2, −p1), (Q3, +p2), (Q3, −p7), (Q3, −p6), (Q3, +p8), and (Q4, −p4).

Example 2 (Spatio-Temporal k-NN Queries). Figure 3a gives an example of two kNN
queries where k = 3 issued at points Q1 and Q2. Assuming that both queries are issued
at time T0, we compute the first-time answer using any of the traditional algorithms of
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kNN queries. For Q1, the answer would be Q1 = p1, p2, p3 while for Q2, the answer
would be Q2 = p5, p6, p7. In this case, we present Q1 and Q2 as circular range queries
with radius equal to the distance of the kth neighbor. Later, at time T1 (Figure 3b), objects
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p4 and p7 are moved. For Q1, object p4 intersects with the query region. This results
in invalidating the furthest neighbor of Q1, which is p1. Thus, two update tuples are
reported (Q1, −p1) and (Q1, +p4). For Q2, the object p7 was part of the answer at time
T0. However, after p7 moves, we find that p8 becomes more near to Q2 than p7. Thus,
two updates are reported, (Q2, −p7) and (Q2, +p8). Notice that unlike range queries,
k-NN queries can change their location and size over time.

Example 3 (Predictive Spatio-Temporal Range-Queries). Figure 4a gives an example of
querying the future. Five moving objects p1 to p5, have the ability to report their current
locations at time T0 and a velocity vector that is used to predict their future locations
at times T1 and T2. The range query Q is interested in objects that will intersect with
its region at time T2 > T0. At time T0 the rectangular query region is joined with the
lines representation of the moving objects. The returned answer set of Q is (p1, p3). At
T1 (Figure 4b), only the objects p2, p3, and p4 change their locations. Based on the new
information, we report only the positive update (Q, +p2) and negative update (Q,−p3)
that indicate that p2 is considered now as part of the answer set of Q while p3 is no
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longer in the answer set of Q. Notice that no tuples are produced for object p1 where it
does not change its information from the previously reported result at time T0.

3.3 Out-of-Sync Clients

Mobile objects tend to be disconnected and reconnected several times from the server for
some reasons beyond their control, i.e., being out of battery, losing communication sig-
nals, being in a congested network, etc. This out-of-sync behavior may lead to erroneous
query results in any incremental approach. Figure 5 gives an example of erroneous query
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result. The answer of query Q that is stored at both the client and server at time T1 is
(p1, p2) .At time T2, the client is disconnected from the server. However, the server keeps
computing the answer of Q, and sends the negative update (Q,−p2). Since the client is
disconnected, the client could not receive this negative update. Notice the inconsistency
of the stored result at the server side (p2) and the client side (p1, p2). Similarly, at time
T3, the client is still disconnected. The client is connected again at time T4. The server
computes the incremental result from T3 and sends only the positive update (Q, +p4).
At this time, the client is able to update its result to be (p1, p2, p4). However, this is a
wrong answer, where the correct answer is kept at the server (p1, p3, p4).

A naive solution for the out-of-sync problem is once the client wakes up, it empties its
previous result and sends a wakeup message to the server. The server replies by the query
answer stored at the server side. For example, in Figure 5, at time T4, the location-aware
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server will send the whole answer (p1, p3, p4). This approach is simple to implement
and process in the server side. However, it may result in significant delay due to the
network cost in sending the whole answer. Consider a moving query with hundreds of
objects in its result that gets disconnected for a short period of time. Although, the query
has missed a couple of points during its disconnected time, the server would send the
complete answer to the query.

To deal with out-of-sync clients, we maintain a repository of committed query an-
swers. An answer is considered committed if it is guaranteed that the client has received
it. Once the client wakes up from the disconnected mode, it sends a wakeup message to
the server. Then, the server compares the latest answer for the query with the committed
answer, and sends the difference of the answer in the form of positive and negative up-
dates. For example, in Figure 5, the server stores the committed answer of Q at time T1
as (p1, p2). Then, at time T4, the server compares the current answer with the committed
one, and send the updates (Q,−p2, +p3, +p4). Once the server receives any information
from a moving query, it considers its latest answer as a committed one. However, sta-
tionary queries are required to send explicit commit message to the location-aware server
to enable committing the latest result. Commit messages can be sent at the convenient
times of the clients.

4 Experimental Performance

In this section, we present a preliminary experiment that shows the promising perfor-
mance of the continuous query processor. Figure 6 compares between the size incremen-
tal answer returned by utilizing the incremental approach and the size of the complete
answer. We use the Network-based Generator of Moving Objects [3] to generate a set of
100K moving objects and 100K moving queries. The output of the generator is a set of
moving objects that move on the road network of a given city. We choose some points
randomly and consider them as centers of square queries.

The location-aware server buffers the received updates from moving objects and
queries and evaluates them every 5 seconds. Figure 6a gives the effect of the number of
moving objects that reported a change of location within the last 5 seconds. The size of
the complete answer is constant and is orders of magnitude of the size of the worst-case
incremental answer. In Figure 6b, the query side length varies from 0.01 to 0.02. The size
of the complete answer increases dramatically to up to seven times that of the incremental
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result. The saving in the size of the answer directly affects the communication cost from
the server to the clients.

5 Conclusion

In this paper, we presented a scalable and incremental framework for continuous query
processing in location-aware servers as an application of spatio-temporal databases.
Mainly, we emphasize on the scalability and incremental evaluation of continuous spatio-
temporal queries. The applicability of the proposed framework to a wide variety of
continuous spatio-temporal queries is discussed. A recovery mechanism for updating
the results of clients that are disconnected from the server for a short period of time
is presented. Preliminary results show that the size of the result of the incremental
approach is around 10% of the size of a complete result. Thus, the proposed scalable
and incremental framework has promising savings in both computational processing and
network bandwidth.
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