
9 New, Expander-Based List Decodable Codes

9.1 Introduction

In the previous chapters, we have already seen constructions of asymptotically
good codes of good rate over both large alphabets (the AG-codes from Chap-
ter 6) and the binary alphabet (the concatenated codes from Chapter 8), that
are efficiently list decodable up to a “maximum” possible radius. By “max-
imum” possible radius we mean list decoding up to a fraction (1 − 1/q − ε)
of errors for q-ary codes. This translates into a fraction (1 − ε) of errors for
codes over large enough alphabets, and a fraction (1/2−ε) of errors for binary
codes. For codes with such large list decodability, which we called “highly list
decodable codes”, the goal is to find efficient constructions that achieve good
rate (typically of the form Ω(εa) for some reasonably small a), together with
efficient list decoding algorithms.

The earlier results achieve fairly non-trivial trade-offs in this regard. The
list decoding algorithm for AG-codes from Chapter 6 implies highly list de-
codable codes over an alphabet of size O(1/ε4) that have rate Ω(ε2). The
results of the previous chapter on concatenated codes give constructions of
highly list decodable binary codes of rate Ω(ε4).

One shortcoming of the former result is that the necessary AG-codes are
very complicated to construct and the known decoding algorithms need a non-
standard representation of the code for the claim of polynomial runtime to
hold. Families of Reed-Solomon codes also offer similar list decodability with
a rate of Ω(ε2), but their alphabet size is at least as large as the blocklength
and hence they do not achieve a alphabet size that is a constant dependent
only on ε. In fact, other than AG-codes, there were no other known families
of codes that are list decodable to a fraction (1−ε) of errors, have reasonably
large rate, and are defined over a constant-sized alphabet.

The other shortcomings of the above mentioned results are that there is
potential for improvement in the rate. The existential results (Chapter 5)
show that a rate Ω(ε) is possible for highly list decodable codes over large
alphabets, and a rateΩ(ε2) is possible for binary codes. Thus the constructive
results are not optimal with respect to the rate (though they are not off by
very much).

In this chapter, we present novel constructions of list decodable codes
that address the above shortcomings. Our codes are simple to construct and
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decode, and share the common thread of using expander-like bipartite graphs
as a component (the specific graphs that we use are referred to as dispersers
in the literature). The bipartite graphs redistribute the symbols in such a
way that information from a small fraction (say, ε) of correct nodes on the
right is “dispersed” to a large fraction (say, 1/2) of nodes on the left. They
thereby enable the design of efficient decoding algorithms that correct a large
number of errors through various forms of “voting” procedures.

The basic idea behind the constructions of this chapter will also find
use later in Chapter 11, where we will present codes of good (in fact, near-
optimal) rate that are uniquely decodable up to a large fraction of errors in
linear time. This indicates the quite general applicability and power of the
techniques used in this chapter.

An important combinatorial tool used in our constructions are “pseudo-
linear codes”. We view the construction and use of pseudolinear codes as
being of independent interest, and hope that it will find several applications
in the future.1 Pseudolinear codes possess the useful properties of efficient en-
coding and succinct representation which all linear codes automatically have,
but they have the additional nice property that random pseudolinear codes
(with suitable parameters) inherit the same list-of-L decoding properties as
completely general random codes.

We next present a detailed statement of the results of this chapter, fol-
lowed by an overview of the main techniques used.

9.2 Overview of Results and Techniques

9.2.1 Main Results

Our constructions of highly list decodable codes give the following:

(1) Codes of rate Ω(ε2) over an alphabet of size 2O(ε−1 log(1/ε)), list decod-
able up to a fraction (1 − ε) of errors in near-quadratic time.

(2a) Codes of rate Ω(ε) over an alphabet of size 2O(ε−1 log(1/ε)), list decod-
able up to a fraction (1 − ε) of errors in sub-exponential time.

(2b) Binary codes of rate Ω(ε3) list decodable up to a fraction (1/2 − ε) of
errors in sub-exponential time.

(3) Codes of rate Ω(t−3ε2+2/t) over an alphabet of size O(1/εb), list de-
codable up to a fraction (1 − ε) of errors. Here t ≥ 1 is an arbitrary
integer and b > t an arbitrary real.

The first three constructions (1, 2a, 2b) use the expander-based approach
mentioned in the introduction. The last construction does not use ex-
panders/dispersers and is based on multiple concatenated codes combined

1Pseudolinear codes are also used in the next chapter on list decoding from
erasures.
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together by juxtaposing symbols together — we call such codes juxtaposed
codes.2 We discuss these codes also in this chapter since their construction
has much the same motivation as that of (1). Moreover, they also use some
of same machinery that construction (1) uses; specifically they too use pseu-
dolinear codes as inner codes in a concatenated scheme. The main advantage
of the juxtaposed code construction is that they can achieve better alphabet
size than the construction (1), at the expense of a slight worsening of the
rate.

The detailed specification of all parameters of our constructions are listed
in Figure 9.1. We next present a discussion of the individual results and
compare them with previously known constructions.

No Alphabet Decoding Rate Encoding Decoding Const. time
radius time time (probabilistic)*

1 2ε−1 log(1/ε) 1 − ε ε2 n log n n2 log n log2 n/ε

2a 2ε−1 log(1/ε) 1 − ε ε n2(1−γ) log2 n 2nγ log(1/ε) n2(1−γ)/ε

2b 2 1/2 − ε ε3 n2(1−γ) log2 n 2nγ log(1/ε) n2(1−γ)/ε

3 2log2(1/ε) 1 − ε ε2 log−3(1/ε) n log2 n n1/ε log2 n/ε2

Fig. 9.1. The parameters of our codes. n stands for the length of the code. For
readability, the O(·) and Ω(·) notation, and certain logO(1)(1/ε) factors have been
omitted. The value of γ is in the interval (0, 1]; its value influences the rate by a
constant factor. The decoding radius shows the fraction of errors which the decoding
algorithms can correct. .
∗A detailed discussion on the construction times is presented later in this Section.

Our first code (1) enables efficient list decodability from up to a fraction
(1− ε) of errors, for an arbitrary constant ε > 0. Its distinguishing feature is
the near-quadratic decoding time and fairly high (namely Ω(ε2)) rate, while
maintaining a constant alphabet size. The only other known constructible
codes with comparable parameters are certain families of algebraic-geometric
codes [190, 65]. As discussed in Chapter 6 (specifically in Theorem 6.45),
such AG-codes can achieve Ω(ε2) rate and O(1/ε4) alphabet size. While
they yield a much better alphabet size, AG-codes suffer from the drawback
of complicated construction and decoding algorithms. It is only known how
to list decode them in polynomial time using certain auxiliary advice (of
polynomial size), and it not known how to compute this information in sub-
exponential (randomized or deterministic) time (the reader might recall the

2Juxtaposed codes will be used again in the next chapter to obtain constructions
of good codes with very high list decodability from erasures. Codes similar to our
juxtaposition based constructions are also called multilevel concatenated codes in
the literature [46], but we believe the term juxtaposed codes is more natural and
we use this terminology.



212 9 New, Expander-Based List Decodable Codes

discussion about this in Chapter 6, Section 6.3.9). Even regarding construc-
tion complexity, only very recently [167] showed how to construct the gen-
erator matrix of the necessary AG-codes in near-cubic time. In comparison,
our construction time, although probabilistic, is essentially negligible.

The second code (2a) also enables list decodability up to a fraction (1 −
ε) of errors. Its distinguishing feature is the optimal Ω(ε) rate. The only
previously known codes with such rate were purely random codes (even Reed-
Solomon codes that have super-constant alphabet size only guarantee Ω(ε2)
rate). However, the best known decoding time for random codes is 2O(n), and
it is likely that no significantly better algorithm exists. Our codes also have
significant random components; however, they can be decoded substantially
faster in sub-exponential time. The binary version (2b) of the aforementioned
codes, which correct up to a fraction (1/2− ε) of errors, also beat the Ω(ε4)
rate of best constructive codes from the previous chapter (specifically, the
result of Theorem 8.11). They are only off by a factor of O(ε) from the
optimal Ω(ε2) rate implied by the existential results of Chapter 5.

For the codes (3), the rate is not as good as the construction (1), but
one can get substantial improvements in alphabet size for a relatively small
worsening of the rate. For example, as listed in Figure 9.1, it can achieve a
rate of Ω(ε2 log−3(1/ε)) for an alphabet size of 2O(log2(1/ε)). By worsening
the rate further, it is even possible to achieve an alphabet size better than
O(1/ε4), which is the alphabet size of the best known AG-codes that are list
decodable up to a fraction (1 − ε) of errors (see Theorem 9.25).

Construction times. All of our constructions use the probabilistic method
to obtain certain “gadgets” which are then used together with explicitly spec-
ified objects. The probabilistic method generates such building blocks with
high probability. Therefore, our probabilistic construction algorithms are ran-
domized Monte Carlo, and the claimed list decodability property holds with
high probability over the choice of the random components. We note, however,
that our probabilistic algorithms using R random bits can be derandomized
and converted into deterministic algorithms using O(R) space and running in
2O(R) time in a straightforward manner. (The resulting code will be guaran-
teed to have the claimed list decodability property, i.e., the derandomization
includes “verification” as well.) For the codes (1), a naive derandomization
would only give a quasi-polynomial time construction. Nevertheless, by using
the method of conditional expectations for derandomization, we will show the
code can be constructed deterministically in time nO(ε−1 log(1/ε)). Similarly,
for our constructions (2a,2b), a conditional expectations based derandom-
ization enables a deterministic construction in (roughly) 2O(n1−γ) time. Note
that the both the probabilistic and deterministic construction times of (2a,2b)
get worse as the decoding time gets better and better.

We stress that modulo the gadget construction, generating each symbol
of a codeword can be done in polylogarithmic time.
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9.2.2 Our Techniques

Expander-Based Constructions At a high level, the codes (1), (2a,2b)
are all constructed using a similar scheme. The basic components of the con-
structions are: a “left” code (say, C) and a “dispersing” bipartite graph G,
and in the case of binary codes, a “right” binary code C′. The left code C
is typically a concatenation of efficient list decodable codes, namely Reed-
Solomon codes and certain good list decodable “pseudolinear” codes whose
existence we prove in Section 9.3. Such pseudolinear codes can either be
found by brute-force or, one can pick a code at random and thus get a much
faster probabilistic construction that works with high probability. The bi-
partite graph G has a weak form of expansion property, namely that the
neighborhood of every reasonable sized subset of the left side (say, consisting
of a fraction 1/2 of the left nodes) misses at most a fraction ε of the nodes
on the right. The technical term in the literature for such a graph is usually
disperser, though we find it convenient to use the umbrella term expander to
loosely refer to such graphs in the sequel.3
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Fig. 9.2. Basic structure of our code constructions. To get binary code construc-
tions, each symbol of C1 is further concatenated with a good, constant-sized binary
code.

3In Chapter 11, where we will also make use of expanders, we will use stronger
“pseudorandom” properties of expander graphs, and not just their dispersion prop-
erty.
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Given the above components, the codes are constructed as follows. For
each codeword x of C, we construct a new codeword y by distributing the
symbols of x from left to right according to the edges in G. The juxtaposition
of symbols “sent” to each right node of G forms a symbol of the codeword y
of the final code C1. The code C1 will thus be defined over a large alphabet.
See Figure 9.2 for a sketch of the basic construction scheme. For construction
(2b), in order to get a binary code, we add a final level of concatenation
with an appropriate binary code C′. This is similar to the construction due
to Alon et al in [6]. Our contribution is in the design of efficient decoding
algorithms to correct a large fraction of errors for such code constructions.

The role of the dispersing graph G is, roughly speaking, to convert an
arbitrary distribution of errors that could exist between the various blocks of
the (concatenated) left code C into a near-uniform distribution. This permits
recovery of a (somewhat corrupted) received word x for C from a heavily
corrupted received word y for the code C1, using a certain “voting” scheme.
The voting scheme we use is very simple: each position of y votes for all
positions of x which are connected to it by an edge of G. This allows us to
collect a list of potential symbols for each position of x. These lists are then
used by a suitable decoding algorithm for C to finish the decoding.

The specifics of the implementation of the above ideas depend on the
actual code construction. For the code (1), we take the left code C to be a
concatenation of a Reed-Solomon code and a suitable pseudolinear code. Such
a code can be list decoded in near-quadratic time using the Reed-Solomon de-
coding algorithms discussed in Chapter 6. The codes (2a,2b) are constructed
by picking C to be a concatenation of a constant number of levels of “pseu-
dolinear” codes with an outermost Reed-Solomon code (we call such codes
multi-concatenated codes). The pseudolinear codes can perform list decoding
when given as input a vector of lists, one per codeword position, such that at
least half of the lists contain the correct symbol. The important fact is that
such pseudolinear codes exist with a fixed constant rate that is independent
of the length of the lists that are involved. This allows the decoding algorithm
to propagate the candidate symbols through the concatenation levels while
decreasing the rate only by a small factor at each level. The parameters are
so picked that the decoding of each of these pseudolinear codes as well as the
overall code can be done in sub-exponential time.

Juxtaposed Code Constructions The second approach behind our code
constructions, which is used in Section 9.6, is aimed at obtaining similar (or
slightly worse) rates using smaller alphabet size, and is the basis of the con-
structions described in Section 9.6. In this approach, multiple Reed-Solomon
codes (of varying rates) are concatenated with several different inner codes
(of varying rate and list decodability). Corresponding to each Reed-Solomon
and inner code pair, we get one concatenated codeword, and the final encod-
ing of a message is obtained by “juxtaposing together” the symbols from the
various individual concatenated codewords.
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The purpose of using multiple concatenated codes is that depending on the
distribution of errors in the received word, the portions of it corresponding
to a significant fraction of a certain inner encoding (that depends on the
level of non-uniformity in the distribution of errors) will have relatively few
errors. These can then be decoded to provide useful information about a
large fraction of symbols to the decoder of the corresponding outer Reed-
Solomon code. Essentially, depending on how (non)-uniformly the errors are
distributed, a certain concatenated code “kicks in” and enables recovery of
the message. A conceptually similar idea was used by Albanese et al in their
work on Priority encoding transmission (PET) [3].

The use of multiple concatenated codes reduces the rate compared to the
expander-based constructions, but we gain in the alphabet size. For example,
for a near-quadratic (namely, Ω(ε2 log−O(1)(1/ε))) rate, the alphabet size can
be quasi-polynomial as opposed to exponential in 1/ε.

9.2.3 A Useful Definition

For our results, the following (more general) notion of good list decodability
proves extremely useful — for purposes of disambiguation from (e, �)-list
decodability, we call this notion “list recoverability”.

Definition 9.1. For α, 0 < α < 1, and integers L ≥ � ≥ 2, a q-ary code C
of blocklength n is said to be (α, �, L)-list recoverable if given arbitrary “lists”
Li ⊆ Fq of size at most � for each i, 1 ≤ i ≤ n, the number of codewords
c = 〈c1, . . . , cn〉 ∈ C such that ci ∈ Li for at least αn values of i, is at most L.

We will loosely refer to the task of decoding a code under the above model
as “list recovering” the code.

Remark: A code of blocklength n is (α, 1, L)-list recoverable if and only if
it is ((1 − α)n,L)-list decodable.

9.3 Pseudolinear Codes: Existence Results and
Properties

In this section, we prove existence results using the probabilistic method for
codes which serve as inner codes in our concatenated code constructions.
The inner codes will be “pseudolinear codes” with appropriate parameters.
We now formally define the notion of “pseudolinear” code families and prove
some of the basic list decodability properties offered by random pseudolinear
codes. An informal description of pseudolinear codes was given in Chapter 2,
where we had put off a more detailed treatment to later when the machinery
is really used (which is in this chapter).
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The notion of pseudolinear codes plays a crucial role in translating list
decodability results for general, non-linear codes into similar results for codes,
which albeit not linear, still have a succinct description, and allow for efficient
encoding. In our applications, these pseudolinear codes, which are typically
used as inner codes in suitable concatenated schemes, are critical in getting
efficient constructions for our codes.

9.3.1 Pseudolinear (Code) Families

Informally, an L-wise independent code family is a sample space of codes such
that the encodings of any L non-zero messages are completely independent
for a random code drawn from the family. The formal definition follows.

Definition 9.2. An L-wise independent (n, k)q-code family F is a sample
space of codes that map k symbols over Fq to n symbols over Fq such that for
every set of L non-zero messages x1,x2, . . . ,xL ∈ Fk

q , the random variables
C(x1), C(x2), . . . , C(xL) are completely independent, for a code C picked uni-
formly at random from the family F .

A random code picked from an L-wise independent family often tends to
have very good list decoding properties for decoding with list size L, owing to
the mutual independence of any set of L (non-zero) codewords. An example
of an L-wise independent code family is the space of all general, non-linear
q-ary codes of blocklength n and dimension k, which is clearly L-wise inde-
pendent, for all L, 1 ≤ L < qk. While a random, non-linear code has excellent
randomness properties, it comes from a very large sample space and there
is no succinct representation of a general code from the family.4 We now
define a family of codes which we call pseudolinear that has the desired L-
wise independence property and in addition is succinct. Thus a random code
drawn this family has the desired randomness properties, can be succinctly
represented, and has an efficient encoding procedure.

Definition 9.3 (Pseudolinear Codes). For a prime power q, integer L ≥
1, and positive integers k, n with k ≤ n, an (n, k, L, q)-pseudolinear family
F(n, k, L, q) of codes is defined as follows. Let H be the parity check matrix
of any q-ary linear code of blocklength (qk − 1), minimum distance at least
(L+1) and dimension qk −1−O(kL) (for example, one can use parity check
matrices of q-ary BCH codes of designed distance (L + 1), cf. [10, Chap.
15]). A random code CA in the pseudolinear family F(n, k, L, q) is specified
by a random n × O(kL) matrix A over Fq. Under the code CA, a message
x ∈ Fk

q \ {0} is mapped to A ·Hx ∈ Fn
q where Hx ∈ F

O(kL)
q is the column of

4The space of random [n, k]q linear codes has the desired succinctness properties,
but however is in general not even 3-wise independent (it is 2-wise (or pairwise)
independent, though). This is because for any linear map E : [q]k → [q]n, we have
E(x + y) = E(x) + E(y) for every x, y ∈ [q]k.
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H indexed by x (viewed as an integer in the range [1, qk)). (We also define
H0 = 0 to be the all-zeroes vector.)

Given 1 ≤ x < qk, a description of the column Hx can be obtained in time
polynomial in k and log q, since there are explicit descriptions of the parity
check matrices of BCH codes of distance at least (L + 1) and blocklength
(qk − 1), in terms of the powers of the generating element of GF(qk) over
GF(q) (see, for example, [132, Chap. 9]). Hence encoding as per these codes
is an efficient operation. In addition to these complexity issues, the crucial
combinatorial property about these pseudolinear codes that we exploit is
that every set of L fixed non-zero codewords of the code CA, for a random
A, are completely independent. This is formalized in Lemma 9.4 below. Note
also that, unlike general non-linear codes, codes from a pseudolinear family
have a succinct representation, since they can be specified using the n ×
O(kL) “generator” matrix A and poly(k, log q) sized information about the
generating element of GF(qk) over GF(q).

Lemma 9.4. For every n, k, L, q, an (n, k, L, q)-pseudolinear family is an L-
wise independent (n, k)q family of codes.

Proof: Since H defines the parity check matrix of a code, say C, that has
distance at least (L+1), every set of L columns of H are linearly independent.
Indeed, suppose this were not the case. Then there must exist a linear de-
pendence α1Ha1 + . . .+αLHaL = 0 for integers 1 ≤ a1 < a2 < · · · < aL < qk

and αi ∈ Fq with not all αi = 0. This implies that the non-zero vector y
which has symbol αi at location ai for i = 1, 2, . . . , L and zeroes at all other
locations satisfies H · y = 0 and hence belongs to the code C. But the Ham-
ming weight of y is at most L, a contradiction to the fact that the distance
of C is at least (L+ 1).

Now consider any L non-zero codewords corresponding to messages
a1, a2, . . . , aL where each ai ∈ [1, qk). They are encoded into the codewords
ci = A · Hai . Since the various Hai are linearly independent, for a random
matrix A, the various ci’s are completely independent. This follows from the
general fact that the images of a set S = {v1, . . . ,vL} of linearly indepen-
dent vectors in Fm

q , under a linear transformation defined by a random n×m
matrix A, are completely independent. This fact is easy to prove since the
vi’s, being linearly independent, can be mapped by an invertible linear map
into the standard basis vectors e1, e2, . . . , eL, and the mutual independence
of A · e1, A · e2, . . . , A · eL for a completely random A is obvious. �

Remark: We note here that one of the standard constructions of d-wise
independent binary random variables (say, X1, X2, . . . , Xn) uses arguments
similar to the above (cf. [10, Chap. 15], [107]). It also proceeds by the con-
struction of a set S ⊆ {0, 1}a, where a = O(d log n), consisting of n vectors
with the property that any subset of d vectors in S are linearly independent.
The set S is picked to be the columns of a parity check matrix of a binary
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code of blocklength n, dimension (n − a), and minimum distance at least
(d + 1). The random variable Xi is defined by picking a random vector in
{0, 1}a and taking its dot product with the i’th vector in S. The fact that
any d of the vectors in S are linearly independent translates into the d-wise
independence of the Xi’s. Using parity check matrices of appropriate BCH
codes, gives d-wise independent sample spaces of O(n�d/2�) size. This size is
in fact optimal, up to a constant factor, cf. [10, Chap. 15].

We next define the notion of an infinite family of (L, q)-pseudolinear codes
of increasing blocklength. Since we are interested in the asymptotic perfor-
mance of codes, we will be interested in such code families of a certain rate.

Definition 9.5. An infinite family of (L, q)-pseudolinear codes CL,q is ob-
tained by picking codes {CAi}i≥1 of blocklengths ni (with ni → ∞ as i→ ∞)
where CAi belongs to the (ni, ki, L, q)-pseudolinear family.

9.3.2 Probabilistic Constructions of Good, List Decodable
Pseudolinear Codes

We now analyze the list decodability properties of random pseudolinear codes
and use it to prove the existence of pseudolinear codes with a certain trade-
off between rate and list decodability. We stress that all existential results of
this section are in fact “high probability results”; in other words, a random
pseudolinear code with appropriate parameters achieves the claimed rate and
list decodability properties with (1 − o(1)) probability. We will use this fact
implicitly when we use the codes guaranteed by this section in later (proba-
bilistic) code constructions.

Lemma 9.6. For every prime power q ≥ 2, every integer �, 1 ≤ � ≤ q and
L ≥ �, and every α, 0 < α ≤ 1, there exists an infinite family of (L + 1, q)-
pseudolinear codes of rate r given by

r ≥ 1
lg q

min
{
α lg(q/�) −H(α) −H(�/q) · q

L+ 1
, (9.1)

(
α lg(q/�) −H(α)

) · L+ 1
L

−H(�/q) · q
L

}
− o(1) ,

such that every code in the family is (α, �, L)-list recoverable. (Recall that for
0 ≤ x ≤ 1, H(x) = −x lg x − (1 − x) lg(1 − x) denotes the binary entropy
function of x).

Proof: The proof follows by employing the probabilistic method. Let n be
large enough and r be as in the statement of the lemma. We will show that
a code C picked at random from an (n, rn, L + 1, q)-pseudolinear family is
(α, �, L)-list recoverable with high probability.

Let us estimate the probability that the code C is not (α, �, L)-list recov-
erable. Fix a choice of Li, 1 ≤ i ≤ n, where each Li is a subset of [q] of size
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�. We wish to bound from above the probability that for some set S ⊆ C of
size L+ 1, the event ES that each codeword in S has some element from Li

in its i’th coordinate for at least αn values of i, occurs. We divide this event
into two cases: (i) when the set S does not contain the zero codeword, and
(ii) when the zero codeword belongs to S. In case (i), the probability of ES

is clearly at most ((
n

αn

)( �
q

)αn
)L+1

. (9.2)

For case (ii), the probability is 0 unless at least αn of the Li’s include 0, in
which case the probability is at most

((
n

αn

)( �
q

)αn
)L

. (9.3)

By a union bound, the probability that for some choice of Li’s, some bad
event ES happens is at most

(
q

�

)n

qrn(L+1)

((
n

αn

)( �

q

)αn
)L+1

+

(
n

αn

)(
q − 1

� − 1

)αn(
q

�

)n−αn

qrnL

((
n

αn

)( �

q

)αn
)L

which is at most
(
q

�

)n(
qrn·2H(α)n2− lg(q/�)αn

)L+1

+
(
q

�

)n

·qrnL·2H(α)n(L+1)·2− lg(q/�)αn(L+1) .

The above quantity is easily seen to be o(1) for r as in Equation (9.1). Hence
there is a (1− o(1)) probability that the code C has the claimed list recover-
ability properties. �

Corollary 9.7. Let α > 1 be an arbitrary constant. Then there exist positive
constants aα, bα such that for every ε > 0, there exist q = O(1/ε2), L = aα/ε
and a family of (L, q)-pseudolinear codes of rate bα which is (α, 1/ε, L)-list
recoverable.

Proof: Follows by a straightforward substitution of � = 1/ε and q = O(1/ε2)
in the bound of Equation (9.1). �

We now obtain the following results for the “usual” notion of list decodability.

Lemma 9.8. For every prime power q ≥ 2, every p, 0 < p < 1, and every
integer L ≥ 2, there exists an infinite family CL,q of (L, q)-pseudolinear codes
of rate r given by

r ≥ 1 −Hq(p) − 1
L

− o(1) ,

such that LDRL(CL,q) ≥ p.
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Proof: The proof follows by an application of the probabilistic method simi-
lar to that of Lemma 9.6. Let us pick a code C at random from an (n, rn, L, q)-
pseudolinear family where n is large enough and r is as in the statement of
the lemma. Let us estimate the probability that C is not (pn, L)-list decod-
able. In this case there must be some L non-zero codewords of C all of which
lie within a Hamming ball of radius pn. Since any L non-zero codewords of
C are mutually independent, the probability of this happening for a fixed
Hamming ball Bq(x, pn) is at most

(
qrn − 1
L

)
·
(qHq(p)n

qn

)L

since |Bq(x, pn)| ≤ qHq(p)n. The probability that this happens for some x ∈
[q]n is thus at most

qnqrnLq(Hq(p)−1)Ln

which is o(1) for r as in the statement of the lemma. Hence a random pseu-
dolinear code of rate r is (pn, L)-list decodable with high probability. �
Remark: It is possible to state a more complicated bound, similar to that of
Lemma 9.6, by analyzing separately the cases when the “bad” set of (L+ 1)
codewords contains the zero codeword and when it doesn’t. For simplicity,
and since the above bound is all that we will need, we just stated and proved
that above. For Lemma 9.6, the more careful argument has the advantage of
showing that positive rate is possible even when L = � for large enough α,
which is why we stated the more complicated bound.

Corollary 9.9. Let a > 1 be an arbitrary constant. Then there exist con-
stants ba, ca > 1 such that for every ε > 0 the following holds: let q = O(1/εa)
and L = ba/ε. Then there exists a rate ε/ca family of (L, q)-pseudolinear
codes PLε which satisfies LDRL(PLε) ≥ 1 − ε.

List Recoverability of Random Linear Codes We now state the ver-
sion of Lemma 9.6 that applies to random linear codes. This can be viewed
as the generalization of Theorem 5.6 (from Chapter 5), which analyzed the
list decodability of random linear codes, to the list recoverability situation.
The result for linear codes will be used in the multi-concatenated code con-
struction in Section 9.5 (specifically in the proof of Lemma 9.21).

Lemma 9.10. For every prime power q ≥ 2, every integer �, 1 ≤ � ≤ q and
L > �, and every α, 0 < α ≤ 1, there exists an infinite family of linear codes
of rate r given by

r ≥ 1
lg q

(
α lg(q/�) −H(α) −H(�/q) · q

logq(L+ 1)

)
− o(1) , (9.4)

such that every code in the family is (α, �, L)-list recoverable.
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Proof: The proof follows along the lines of Lemma 9.6 by analyzing the per-
formance of a linear code defined by a random (n×rn) generator matrix over
Fq. If some set of (L + 1) codewords violate the (α, �, L)-list recoverability
property, then there must be at least logq(L+ 1) non-zero codewords among
them that correspond to encodings of linearly independent messages in Frn

q .
It therefore suffices to prove an upper bound on the probability that some set
of logq(L+1) linearly independent messages are mapped into codewords that
violate the (α, �, logq(L+1))-list recoverability property. Since, for a random
linear code the codewords associated with a set of linearly independent mes-
sages are all mutually independent (cf. Lemma 9.4), the analysis of Lemma 9.6
goes through with logq(L + 1) taking the place of L + 1 in Equation (9.2).
The claimed bound then follows. �

Corollary 9.11. Let α ≤ 1 be an arbitrary constant. Then there exist positive
constants aα, cα such that for every ε > 0, there exist q = O(1/ε2), L =
qcα/ε and a family of q-ary linear codes of rate aα which is (α, 1/ε, L)-list
recoverable.

9.3.3 Derandomizing Constructions of Pseudolinear Codes

One straightforward way to “constructivize” or “derandomize” the probabilis-
tic result of Lemmas 9.6 and 9.8 is by a brute-force search over all codes in
an (n, k, L, q)-pseudolinear family. Note that checking whether a fixed (n, k)q

pseudolinear code has the necessary (α, �, L)-list recoverability or (pn, L)-list
decodability properties can be done by a search over all “received words” and
over all codewords in qO(�n+k) and qO(n) time, respectively. However, going
over all possible (n, k)q pseudolinear codes involves going over all n×O(kL)
“generator” matrices and this requires qO(knL) time. Hence a naive deran-
domization of the probabilistic constructions of (n, k)q pseudolinear codes
from the previous section will take qO(knL) time. This is prohibitive even for
the blocklengths for inner codes. For example, if we wish to use a pseudolin-
ear code as an inner code in a concatenation scheme with outer code being a
Reed-Solomon code over a polynomially large field, then the dimension of the
pseudolinear code will be logarithmic in the overall blocklength. The naive
derandomization will take quasi-polynomial time in such a case, while we
would clearly prefer a polynomial time deterministic construction. We next
demonstrate how one can find codes in a (n, k, L, q)-pseudolinear family with
the properties claimed in Lemmas 9.6 and 9.8 in qO(kL+n�) time. Applied to
the above-mentioned concatenated code setting, this will enable polynomial
time construction of the concatenated code, since �, L, q will be constants and
n, k will be logarithmic in the overall blocklength.

The basic idea is to derandomize the probabilistic constructions using
the method of conditional expectations. Since the method is quite standard,
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we only discuss informally how to apply it to our context.5 We focus on
Lemma 9.6, and the result for Lemma 9.8 is similar. To derandomize the
result of Lemma 9.6, we will successively find the n rows of a “good” n ×
O(kL) matrix A such that the associated code CA in the pseudolinear family
F(n, k, L, q) is (α, �, L)-list recoverable. (Here and in what follows k = rn is
the dimension of the code.)

Assume that for some 1 ≤ s ≤ n, the first (s − 1) rows of A have been
picked to be a1, . . . ,as−1 where each ai ∈ F

O(kL)
q . We pick as so that it

minimizes a certain conditional expectation by searching among all the qO(kL)

possible choices for as.
The relevant expectation that we bound is the following. For each (or-

dered) collection D of n “lists” Li ⊆ Fq with |Li| = � for each i, 1 ≤ i ≤ n,
each set of L (non-zero) codewords (given by a subset T = {x1, . . . , xL} ⊆ Fk

q

of size L) of the pseudolinear code, and each (ordered) collection S of L
subsets S1, . . . , SL ⊆ [n] with each |Sj | = αn, define an indicator random
variable I(S,D, T ) as follows. I(S,D, T ) equals 1 if, for each j, 1 ≤ j ≤ L,
the codeword corresponding to xj ∈ T agrees with an element of Li for each
of the αn values of i ∈ Sj . Otherwise, I(S,D, T ) = 0. In words, I(S,D, T ) = 1
iff the setting S, D, T shows a “counterexample” to the code that we con-
struct being (α, �, L)-list recoverable (and is thus a “bad” event that we wish
to avoid).

The random variable we consider in order to apply the method of condi-
tional expectations is

X(α, �, L) =
∑

S,D,T

I(S,D, T ) . (9.5)

We will exploit linearity of expectation to compute the conditional expec-
tations of X(α, �, L). The initial expectation of each I(S,D, T ) (taken over
the random choice of all rows ri of A, where 1 ≤ i ≤ n) clearly equals

(
�
q

)αnL

since the events for the various codewords in T are independent (by the L-
wise independence property of the code). Multiplying this by the number of
choices of S,D, T , we get (as in the proof of Lemma 9.6) that the initial ex-
pectation of X(α, �, L) is exponentially small (and in particular there exists a
code with X(α, �, L) = 0, or in other words which is (α, �, L)-list recoverable).

Once we condition on the first s rows of A being fixed to, say, a1, . . . ,as,
the expected value of I(S,D, T ) taken over the random choices of the re-
maining (n− s) rows r1, . . . , rn−s can still be exactly computed. Indeed, the
first s coordinates of each of the codewords corresponding to each xj ∈ T , for
1 ≤ j ≤ L, are now fixed, and one can compute for each of them the number
of coordinates in Sj ∩ {1, 2, . . . , s} for which the codeword agrees with an
element from the associate list Li. Thus, for each xj , we can exactly compute

5The reader can find a discussion of the method of conditional expectations, for
example, in [10, Chap. 15].
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the probability that the associated codeword will agree with an element from
Li for each i ∈ Sj when the remaining rows are picked at random. By the
L-wise independence property, we can then simply multiply the probabilities
for the various xj ’s to estimate the conditional expectation of I(S,D, T ).
We can do so for each of

(
n

αn

)L · (q
�

)n · (qk−1
L

)
choices of (S,D, T ), and then

add up all these expectations to exactly compute the conditional expectation
of X . This is of course sufficient to make the best choice for as, given that
a1, . . . ,as−1 have already been picked. Once we pick ai, for 1 ≤ i ≤ n, we
have the required pseudolinear code that satisfies the property of Lemma 9.6.

Applying the above to the case q = O(1/ε2), � = 1/ε and L = O(1/ε), one
can thus prove the following lemma, which is one of the main results we need
for our later constructions. This is the “constructive” version of Corollary 9.7.
The alphabet size q can actually be made O(1/εc) for any c > 1, but since this
will not be important to us, we state the result for an alphabet size which is at
least Ω(1/ε2). The claims about the representation size and encoding follow
since any member of an (n, k, L, q)-pseudolinear family can be represented by
an n × O(kL) matrix over Fq and encoding involves multiplying a vector in
F

O(kL)
q with this matrix. The lower bound claimed on the rate follows from

Equation (9.1) after a simple calculation.

Lemma 9.12. For every α, 0 < α < 1, and for all large enough constants
c > 1, there exists a positive constant aα ≥ 1

3 (α− 1/c) such that for all small
enough ε > 0 the following holds. For all prime powers q = Ω(1/ε2), there
exist L = c/ε and a family PL(1)

ε of (L, q)-pseudolinear codes of rate aα, such
that a code of blocklength n in the family has the following properties:

(a) it is (α, 1/ε, L)-list recoverable,
(b) it is constructible in deterministic time qO(nε−1) = 2O(nε−1 log q) or with

high probability in randomized O(n2ε−1 log q) time (i.e., the constructed
code will have the list recoverability property claimed in (a) with high
probability), and

(c) it can can be represented in O(n2ε−1 log q) space, and encoded using
O(n2ε−2) operations over Fq.

We also get the following constructive version of Corollary 9.9 by applying
the same derandomization procedure.

Lemma 9.13. Let a > 1 be an arbitrary constant. Then there exist constants
ba, ca > 1 such that for every ε > 0 the following holds. For all prime powers
q = Ω(1/εa), there exist L = ba/ε and a family PL(2)

ε of (L, q)-pseudolinear
codes of rate at least ε/ca, such that a code of blocklength n in the family has
the following properties:
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(a) it is ((1 − ε)n,L)-list decodable.
(b) it is constructible in deterministic time qO(n) = 2O(n log q), or with high

probability in randomized O(n2 log q) time, and
(c) it can can be represented in O(n2ε−1 log q) space, and encoded using

O(n2ε−2) field operations over Fq.

A similar result for linear codes. We now state a result analogous to
Lemma 9.12 for the case of linear codes.

Lemma 9.14. For every constant α, 0 < α < 1, and for all large enough
constants c > 1, there exists a positive constant aα ≥ 1

3 (α−1/c) such that for
all small enough ε > 0 the following holds. For all prime powers q = Ω(1/ε2),
there exists a family of q-ary linear codes of rate aα, such that a code of
blocklength n in the family has the following properties:

(a) it is (α, 1/ε, qc/ε)-list recoverable,
(b) it is constructible in deterministic time qO(nε−1), or with high probability

in randomized O(n2 log q) time, and
(c) it can can be represented in O(n2 log q) space, and encoded using in

O(n2) operations over Fq.

Proof: The claimed parameters follow by substituting � = 1/ε, q = Ω(1/ε2),
and L = qc/ε in Lemma 9.10. Note that since the code is linear, it can be
represented using its generator matrix, which takes O(n2) entries in Fq. The
only non-trivial thing to check is the claimed deterministic construction time.
A naive derandomization will involve trying out all (n× aαn) generator ma-
trices, and this will take qO(n2) time (the verification of the list recoverability
property can be done in qO(nε−1) time). However, as in the case of pseudo-
linear codes, one can use the method of conditional expectations to get a
faster derandomization of the probabilistic construction of Lemma 9.10. This
will involve picking the n rows of the generator matrix in sequence, each time
searching for the best row from Faαn

q that minimizes a certain conditional ex-
pectation. The relevant conditional expectations can be computed in qO(nε−1)

time. Hence, the total time required to find a generator matrix that defines a
code with the required properties is qO(nε−1). We omit the details which are
very similar to the derandomization of the pseudolinear case. �

Remark concerning alphabet size. Even though the above results are
stated for code families over a fixed constant-sized alphabet, a variant of it
holds equally well also for alphabet size that grows with the length of the code
(in some sense the large alphabet only “helps” these results; note also that
the statements of Lemmas 9.12, 9.13, and 9.14 only pose lower bounds on
q). This fact is later exploited in our multi-concatenated code constructions
from Section 9.5, where we shall make use of such codes for q which is of
the form 2np

for some integer p (n being the blocklength of the code). It
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is also used in the next section where we show how pseudolinear codes over
such large alphabets can be decoded in time significantly better than a brute-
force search over all codewords. It is in fact this construction that is used in
Section 9.5.

Remark concerning “density” of the codes in the families. Since
the existence results claimed in the previous several lemmas are proved by a
straightforward application of the probabilistic method, it follows that there
exist such codes with any (large enough) dimension one seeks (and the prop-
erties such as rate and list decodability stay as claimed in the lemmas). We
do not explicitly state this fact in the results, but the result of the next sec-
tion is conveniently stated by fixing the dimension, and hence we explicitly
state that it achieves any desired dimension for the codes it constructs. In
its proof, as well as in other proofs, we will implicitly use that this fact also
holds for the codes from the several previous lemmas.

9.3.4 Faster Decoding of Pseudolinear Codes over Large
Alphabets

The naive algorithm to (α, 1/ε,O(1/ε))-list recover the pseudolinear codes
from Lemma 9.12 is to simply run over all the qO(n) codewords and output
only those which satisfy the list recoverability requirement. This takes qΩ(n)

time. In Section 9.5, we will use pseudolinear codes over large alphabets
(exponential in the blocklength) in a multi-concatenated scheme, in a hope
of getting sub-exponential decoding algorithms for the final code that we
construct. But the qΩ(n) runtime for the decoding is prohibitive for such an
application due to the huge value of q.

We now present a code construction that combines pseudolinear codes
along with a “parallel” encoding by a linear code to improve the decoding
time for codes over very large alphabets. For want of a better term, we refer
to these codes as “large alphabet pseudolinear codes”. Each symbol of the
final encoding will be the “juxtaposition” of the symbols corresponding to the
linear and pseudolinear encodings. The linear component of the encoding will
be list recoverable in much faster time than the pseudolinear code. The exact
details appear in Lemma 9.15 below. The codes constructed below will be the
ones that are used in Section 9.5. The technique of symbol juxtaposition used
here will be again used in Section 9.6 of this chapter, and in the next chapter
on list decodable erasure codes. We believe that just like pseudolinear codes,
it is also an important code design tool to take home from this chapter.

Lemma 9.15. For every constant α, 0 < α < 1, and all sufficiently large
constants c > 1, there exists a constant bα ≤ 6

(
α− 1/c

)−1 such that ∀ ε > 0
there exists q = O(1/ε2) for which the following holds. For all integers m, s,
there exists a code of dimension m and blocklength at most bαm over GF(q2s)
with the following properties:
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(i) It is (α, 1/ε, c/ε)-list recoverable in O(s3(1/ε)O(m)) time.
(ii) It is constructible deterministically in qO(smε−1) = 2O(smε−1 log q) time. A

probabilistic construction that has the claimed list recoverability property
with high probability can be found in O(m2(sε−1 + s2) log q) time. The
code can be encoded in O(m2s2 log2 q) time.

Proof: Let ε > 0 be given, and let q = O(1/ε2) be a power of two. By
Lemma 9.12, we know that for every α and all large enough c, there ex-
ists a pseudolinear code over GF(qs), say C1, of dimension 2m, blocklength
bαm such that C1 is (α, 1/ε, c/ε)-list recoverable and is constructible in
2O(msε−1 log q) deterministic time or in O(m2sε−1 log q) probabilistic time.
Note that we may assume that bα ≤ 6(α− 1/c)−1 since the rate of the codes
guaranteed by Lemma 9.12 is at least 1

3 (α− 1/c).
The only known list recovering algorithm for such a pseudolinear code

is to perform a brute-force search over all (qs)2m possible codewords, which
takes (1/ε)O(ms) time. In order to speed up the algorithm, we perform an
encoding with a suitable random linear code in parallel — each symbol of
the final encoding will be the “juxtaposition” of the symbols corresponding
to the linear and pseudolinear encodings. The linear code, say Clin, will be
a q-ary code of dimension 2ms and blocklength bαms which is (α, 1/ε, qc/ε)-
list recoverable. By the result of Lemma 9.14, such a linear code exists and
can be constructed deterministically in qO(msε−1) time, or probabilistically
in O(m2s2 log q) time.

By “aggregating” each set of successive s symbols in both the message
and its encoding by Clin, we can view Clin as a code over GF(qs). Viewed this
way, Clin will map 2m symbols over GF(qs) into bαm symbols over GF(qs).
To avoid confusion, let us denote the code Clin viewed as a code over GF(qs)
by C̃lin.6

We now claim that the resulting code C̃lin is (α, 1/ε, qc/ε)-list recoverable
in

O((1/ε)O(m)m3s3 logO(1) q) = O(s3(1/ε)O(m))

time. The combinatorial list recoverability property itself follows since Clin is
(α, 1/ε, qc/ε)-list recoverable as a code over GF(q), and the property therefore
definitely holds for the code C̃lin obtained by viewing Clin as a code over
GF(qs). To prove the claim about the time complexity for list recovering
C̃lin, we present the following algorithm. The algorithm is simply to try out
all possible subsets S of αbαm positions and for each such choice go over all
possible sets T of (1/ε)O(m) symbols from the input lists. For each such choice
of S and T , we find if any codeword of Clin is consistent with these symbols
(this is simply an erasure decoding of the linear code). This can be done by
solving a linear system over GF(q) and takes at most O((2ms)3 logO(1) q)

6The code C̃lin will not in general be linear over GF(qs), but we will only use
linearity of Clin over GF(q).
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time since the blocklength of Clin equals 2ms. Since Clin is (α, 1/ε, qc/ε)-
list recoverable, it is definitely true that the number of codewords of Clin

consistent with a certain choice of symbols in a fraction α of the positions is
at most qc/ε. Finally, we will have to check which of the codewords of Clin

actually yield codewords of C̃lin that meet the required list recoverability
condition. Since each erasure decoding yields at most qc/ε solutions to check,
the total runtime will be the number of choices of S, T multiplied by the time
for each erasure decoding of Clin, plus an additional time of roughly O(qc/ε)
to prune the list returned by the erasure decoding of Clin . This gives the
claimed O((1/ε)O(m)s3) runtime.

We now define our final code C∗ to be the juxtaposition of C1 and C̃lin;
i.e. to encode a message according to C∗, we encode it using C1 and C̃lin in-
dependently to get two strings, say, 〈a1, a2, . . . , at〉 and 〈b1, b2, . . . , bt〉, where
t = bαm and each ai, bi ∈ GF(qs). The encoding of that message as per C∗

will then be 〈c1, . . . , ct〉, where each ci = (ai, bi) is viewed as an element of
GF(q2s). Note that C∗ defined this way encodes 2m symbols over GF(qs)
into bαm symbols over GF(q2s). We may equivalently view C∗ as mapping
m symbols over GF(q2s) into bαm symbols over GF(q2s). In other words C∗

has dimension m and blocklength bαm as a q2s-ary code.
Since C1 is (α, 1/ε, c/ε)-list recoverable, so is C∗ (as would any juxta-

posed code that involves C1). This gives the combinatorial list recoverability
property of C∗. To obtain the claim about the algorithmic list recoverabil-
ity, we will use the “linear” component C̃lin of C∗. By the above argument,
C̃lin can be (α, 1/ε, qc/ε)-list recovered within the claimed runtime. One can
then run through the at most qO(1/ε) messages output by this algorithm and
“cross-check” if its encoding by the pseudolinear code C1 agrees with the
respective component of the symbols in the input lists on a fraction α of the
positions. By the combinatorial list recoverability property of C1, at most
c/ε of the messages will pass this check. These will be the messages output
by the algorithm. The running time of this procedure is dominated by that
of the list recovering algorithm for C̃lin, and is thus O((1/ε)O(m)s3).

The encoding time for C∗ is dominated by the time to encode the “lin-
ear” component. Since the code Clin has both dimension and blocklength at
most O(ms), the encoding of Clin takes at most O((ms)2 log2 q) time. This
completes the proof of the lemma. �

9.4 The Basic Expander-Based Construction of List
Decodable Codes

For the construction in this section, we will use families of graphs with a
small bounded degree which nevertheless have strong connectivity properties.
Specifically, they will have the “dispersing” property that the neighborhood
of any large enough subset of vertices misses a very small fraction of vertices.
We mention here that code constructions in Chapter 11 are obtained using
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similar techniques and also use expander graphs, but there we will make use
of stronger properties than the above dispersion property — namely we will
use certain isoperimetric properties offered by expander graphs (which will
be discussed in 11.2). We next define the specific expansion property we need
for the results of this chapter.

9.4.1 Definition of Required “Expanders”

Definition 9.16. For integers N, d ≥ 1 and 0 < ε, α < 1, an (N, d, α, ε)-
disperser is a d-regular N × N bipartite graph H = (A,B,E) (where A,B
with |A| = |B| = N are the two sets in the bipartition and E is the edge set),
with the property that given any subset X ⊆ B with |X | ≥ ε|B|, the number
of vertices in A with some neighbor in X is at least α|A|.

Disperser graphs were first defined by Sipser [170] and since then there
has been a wide body of work on the properties and explicit constructions
of dispersers (cf. the survey by Nisan [148]). The following result on the
existence of disperser graphs is well known, see for instance [10, Chap. 9]
(and also Section 11.2 of this book) where an explicit construction using the
Ramanujan graphs of [131] is discussed.

Fact 9.17 There is a constant c such that for every ε > 0 and for infinitely
many n, there exists an explicitly constructible (n, c/ε, 1/2, ε)-disperser.

Of course the 1/2 in the above claim can be changed to any fixed constant
α < 1. In such a case, the constant c in the degree will depend on α.

9.4.2 Reduction of List Decoding to List Recoverability Using
Dispersers

We now present an elegant and simple reduction of the problem of construct-
ing codes which are efficiently ((1 − ε)n,L)-list decodable to the problem of
constructing codes with efficient (α,O(1/ε), L)-list recoverability, for some
fixed constant α, say α = 1/2. This idea is at the heart of all our expander-
based code constructions that we present in this chapter. It is instructive to
point out that the use of the expanders in our constructions is confined to
this reduction, and the construction of good list recoverable codes itself is
accomplished using other techniques.

The reduction is accomplished by redistributing the symbols of the code-
words of a list recoverable code, say C1, using a expander H , and thus define
the codewords of a new code C2 over a larger alphabet. The list recoverability
property of C1, together with the dispersion property of H , will imply the
good list decodability of C2. Given a corrupted received word r of C2, one
can push the symbols of r along the edges of the bipartite graph H to obtain
a list of possible symbols for each position of C1. The dispersion property
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of H will imply that at least a fraction 1/2 of these lists contain the correct
symbol of the codeword of C1. Now, the list recoverability property of C1

can be used to complete the decoding. The formal statement of the reduction
and the proof follow.

Proposition 9.18. There exists an absolute constant c such that for every
ε > 0 the following holds. Suppose there exists a q-ary code C1 of blocklength n
and rate r that is (1/2, c/ε, L)-list recoverable by an algorithm running in time
O(T (n)). Further assume that n is such that there exists an (n, c/ε, 1/2, ε)-
disperser. Then there exists a code C2, which is explicitly specified given C1,
and which has the following properties:

(i) It has blocklength n and rate εr/c.
(ii) It is defined over an alphabet of size qc/ε.
(iii) It is ((1−ε)n,L)-list decodable, and moreover there is an algorithm to list

decode C2 up to a fraction (1− ε) of errors in time O(T (n)+n log q/ε).

Proof: The code C2 is obtained by distributing the symbols of codewords in
C1 using the edges of an (n,∆, 1/2, ε)-disperser where ∆ = c/ε. This is in a
manner similar to Alon et al [6], who used such a symbol redistribution for the
purpose of getting codes with a large (viz., (1−ε)) relative distance. Formally,
let H = ([n], [n], E) be an (n,∆, 1/2, ε)-disperser. For 1 ≤ j ≤ ∆ and 1 ≤ i ≤
n, denote by Γj(i) the j’th neighbor (on the left side) of the i’th vertex on the
right side ofH (we assume some fixed ordering of the neighbors of each node).
A codeword (c1, c2, . . . , cn) of C1 is mapped into a codeword (c̃1, . . . , c̃n) of
C2, where each c̃i ∈ [q]∆ is given by c̃i = 〈cΓ1(i), . . . , cΓ∆(i)〉. The claim about
the blocklength, rate and alphabet size of C2 follow immediately.

The algorithm for list decoding C2 up to a radius of (1− ε)n proceeds in
two steps. Assume r is a received word and the goal is to find all codewords
of C2 that are within a Hamming distance of (1−ε)n from r. In other words,
the goal is to find every message x that satisfies ∆(C2(x), r) ≤ (1 − ε)n. In
the first step of the decoding, each position of the received word r “votes”
on those positions of the corresponding codeword in C1 which are adjacent
to it in the disperser H . This gives for each i, 1 ≤ i ≤ n, a list Li of at
most ∆ = c/ε elements from [q] for each position of the code C1. See the
illustration in Figure 9.3. In the second step, the (1/2, c/ε, L)-list recovering
algorithm for C1 is run with these lists Li, 1 ≤ i ≤ n, as input. Finally, for
each message output by the list decoder for C1, we check if its encoding under
C2 agrees with r in at least εn positions, and if so, we output it.

The time required for the above algorithm is the time for the first “voting”
stage, which takes O(n log q/ε) time, followed by the time for list recovering
C1, which takes O(T (n)) time by hypothesis.

It remains to prove the correctness of the algorithm. Let x be any message
such that ∆(C2(x), r) ≤ (1 − ε)n. Let X ⊆ [n] be the set of positions where
C2(x) and r agree. By hypothesis |X | ≥ εn. Define Y ⊆ [n] to be the set of
vertices on the left side of H which have a neighbor in X on the right. By
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a

b

c

Expander graph

a, e, c

e

Received word

for C
2

Each position of  C
receives list of symbols
from its neighboring
positions of C 2

1

Fig. 9.3. Illustration of the decoding algorithm. Each position on the left collects
a list of symbols from all its neighbors on the right. These lists are then used as
input to the list recovering algorithm for the left code C1. The dispersion property
implies that even if the received word for C2 had several errors, a good fraction of
the lists obtained for C1 contain the correct symbol.

the dispersion property of H , |Y | ≥ n/2. Now, clearly for each i ∈ Y , the i’th
symbol of C1(x) is included in the list Li (since all votes coming from the
positions in X are correct, and the symbols in Y are precisely those which
receive at least one vote from the positions in X). Therefore, the message x
will be included in the list output by the (1/2, c/ε, L)-list recovering algorithm
for C1, when it is run with the lists Li as input. Hence, the above algorithm
will successfully include x in the final list it outputs. �

The following states a more general form of the above proposition which
states a stronger list recoverability property for C2 using that of C1. The
proof is identical to the above — at the voting stage of decoding, instead
of each position of C2 passing one vote to each of its neighbors, it passes
� votes where � is the number of possible symbols listed for that position.
Proposition 9.18 follows with the setting � = 1.

Lemma 9.19. There exists an absolute constant c such that for every ε > 0
the following holds. Suppose there exists a q-ary code C1 of blocklength n and
rate r that is (1/2, c�/ε, L)-list recoverable by an algorithm running in time
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O(T (n)). Further assume that n is such that there exists an (n, c/ε, 1/2, ε)-
disperser. Then there is a code C2, which is explicitly specified given C1, with
the following properties:

(i) It has blocklength n and rate εr/c.
(ii) It is defined over an alphabet of size qc/ε.
(iii) It is (ε, �, L)-list recoverable, and moreover there is an algorithm to

(ε, �, L)-list recover C2 in time O(T (n) + n� log q/ε).

9.4.3 Codes of Rate Ω(ε2) List Decodable to a Fraction (1 − ε) of
Errors

We now present our code construction (number 1) which has rate ε2 and is
list decodable in near-quadratic time from up to a fraction (1 − ε) of errors.
The formal result is stated in Theorem 9.20.

Before we state and prove this result, we would like to point out one
technical point concerning the constructions. Recall the overall structure of
all our constructions (Figure 9.2): they use a certain “left code” C and then
redistribute symbols of a codeword of C using an expander. There is an
implicit assumption here that each side of the bipartite expander has the same
number of vertices, say n, as the blocklength of C. The known constructions
of Ramanujan graphs (eg. [131, 136]) work for infinitely many values of n,
but not for all sufficiently large n (as would be ideal for our application).
However, as discussed in [175, Section 2.4.1], these constructions give a dense
sequence of graphs, i.e., the sequence of number of vertices {nl}l≥1 for which
the constructions work satisfies ni+1−ni = o(ni) for sufficiently large i. As a
consequence, Spielman [175] proves that it is possible to get expander graphs
of every size with only a moderate loss in expansion, and uses this fact in
his constructions of expander codes. The same argument will also work for
us. Alternatively, since the sequence of graphs is dense, we can pad each
codeword of the left code with a small number of additional 0’s so that its
blocklength exactly matches the number of vertices in an explicit Ramanujan
graph construction, and then apply our construction. This “padding” will
affect the relative distance, rate and list decoding radius of the left code
only by a negligible amount, and will essentially have no impact on any of
the bounds we claim for the overall code construction. Therefore, in order
to keep things simple, in our constructions of this chapter, as well as those
in Chapter 11, we will ignore the above issue and simply assume that the
blocklength of our “left code” and the number of vertices in the “expander”
graph match exactly.

Theorem 9.20. For all ε > 0, there exists a code family with the following
properties:

(i) (Rate and alphabet size) It has rate Ω(ε2) and is defined over an alphabet
of size 2O(ε−1 log(1/ε)).
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(ii) (Constructibility) A description of a code of blocklength N in the family
can be constructed in deterministic NO(ε−1) time. A randomized Monte
Carlo construction that has the list decodability claimed in (iii) with high
probability can be obtained in probabilistic O(log2Nε−1 log(1/ε)) time.

(iii) (List decodability) A code of blocklength N in the family can be list de-
coded from up to (1− ε)N errors in O(N2ε−O(1) logN) time using lists
of size O(1/ε).

Proof: The basic idea is to first construct a code C with good list recover-
ability properties by concatenating a Reed-Solomon code CRS of rate Ω(ε)
with a constant rate inner code Cin as guaranteed in Lemma 9.12. We will
then apply the construction of Proposition 9.18 to obtain a code list decod-
able up to a fraction (1−ε) of errors. Since the rate of the concatenated code
is Θ(ε), and applying Proposition 9.18 incurs a further ε factor loss in the
rate, we will get an overall rate of Ω(ε2). The formal details follow. The basic
structure of the construction is depicted in Figure 9.4.

RS

Message

(rate eps)

encoding

Pseudolinear
encodings

(constant rate)

Expander
(degree 1/eps)

(Reed−Solomon concatenated

with pseudolinear codes)

List recoverable code

C         of rate epsRS−in

Final encoding

large alphabet)

(rate eps^2 over 

Fig. 9.4. Basic structure of code construction that achieves rate Ω(ε2) and list
decoding radius (1 − ε). The list recoverability of the concatenated code CRS−in,
together with the expander, implies list decodability of the final code from a fraction
(1 − ε) of errors.

Let m be any sufficiently large integer. Let q0 = O(1/ε2) be a power of 2,
and let F be a field of cardinality qm

0 . Let n0 be in the range qm−1
0 ≤ n0 ≤ qm

0 ,
k0 = Θ(εn0), and CRS be the Reed-Solomon code over F of blocklength n0

and dimension k0 (so CRS has rate Θ(ε)). Let Cin be a pseudolinear code
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over Fq0 that maps m symbols over Fq0 (or, alternatively, a symbol of F )
into n1 = O(m) symbols over Fq0 , and further is (1/4, O(1/ε), O(1/ε))-list
recoverable. Such a code Cin exists by Lemma 9.12.

Define CRS−in to be the code obtained by concatenating CRS as outer code
with Cin as inner code. CRS−in is a code of blocklengthN = n0 ·n1 = O(mqm

0 )
and rate Ω(ε) over Fq0 . The codewords in CRS−in can be divided into n0

blocks of n1 symbols each, corresponding to the encodings of the n0 outer
Reed-Solomon codeword symbols.

The final code C∗ will be obtained from CRS−in using the construction of
Proposition 9.18 (i.e., by redistributing the symbols of a codeword of CRS−in

using an (N,O(1/ε), 1/2, ε)-disperser). It is readily checked that C∗, thus
defined, is a code of blocklength N and rate Ω(ε2) over an alphabet of size
q

O(1/ε)
0 = 2O(ε−1 log(1/ε)), proving Part (i) of the claim of the theorem.

The significant component in constructing C∗ is finding the inner code
Cin with the properties guaranteed in Lemma 9.12. Thus C∗ can be con-
structed deterministically in O(qO(mε−1)

0 ) = NO(ε−1) time, or probabilisti-
cally in O(m2ε−1 log q0) = O(log2Nε−1 log(1/ε)) time, as claimed in Part
(ii) of the theorem statement.

It remains to prove the claim about the list decodability of C∗. For this,
it suffices to prove that CRS−in is (1/2, O(1/ε), O(1/ε))-list recoverable in
O(N2) time, since then the claim about list decoding C∗ from a fraction (1−ε)
of errors will follow from the properties of C∗ guaranteed by Proposition 9.18.

Suppose we are given lists Li each consisting of at most O(1/ε) elements
of Fq0 , for 1 ≤ i ≤ N . We will present an O(N2ε−O(1) logN) time algorithm
to find all codewords 〈d1, d2, . . . , dN 〉 of CRS−in which satisfy di ∈ Li for
at least N/2 values of i, 1 ≤ i ≤ N . Recalling that a codeword in CRS−in

comprises of n0 blocks of n1 symbols each, the lists Li can be viewed as
lists L′

j,s for the possible symbols in position s of the codeword of Cin that
encodes the j’th symbol of the Reed-Solomon codeword, for 1 ≤ s ≤ n1 and
1 ≤ j ≤ n0. Now consider the following list recovering procedure for CRS−in.
In the first step, the n0 inner codes are decoded by brute-force by going over
all codewords — namely, for each j, 1 ≤ j ≤ n0, one produces a list L̂j of all
elements of F whose encoding as per Cin contains an element from L′

j,s for
at least a fraction 1/4 of the values of s. By the list recoverability property
of Cin we have |L̂j | = O(1/ε) for each j, 1 ≤ j ≤ n0. Note that all the inner
decodings can be performed in O(n2

0/ε) time.
In the second step of the decoding, we run the list recovering algorithm

for Reed-Solomon codes implied by the result of Theorem 6.21, to find a
list L consisting of all messages x whose Reed-Solomon encoding contains
an element of L̂j for at least n0/4 values of j, 1 ≤ j ≤ n0. Specifically, we
apply the result of Theorem 6.21 with the choice n = n0, k = k0 = O(εn0),
� ≤ maxj |L̂j | = O(1/ε), and α = 1/4 (one can check that the condition
α >

√
2k�/n can be met for these values, with suitable constants in the big-
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Oh notation). The decoding returns lists of size O(
√

n0
εk0

) = O(1/ε), and can

certainly be performed in O(n2
0ε

−O(1) log3(qm
0 )) = O(n2

0ε
−O(1) log3 n0) time.

Since n0 = O(N/ logq0
N), the time for list recovering the Reed-Solomon code

is O(N2ε−O(1) logN).
The final step prunes the list output by the Reed-Solomon decoder to in-

clude only those messages whose encodings as per CRS−in contain an element
of Li for at least N/2 values of i, and then outputs this pruned list. The
overall decoding time is dominated by the Reed-Solomon decoding time and
is O(N2ε−O(1) logN).

We now argue the correctness of the list recovering procedure. Let x be a
message whose encoding C∗(x) = 〈d1, d2, . . . , dN 〉, where di ∈ Li for at least
N/2 values of i. The codeword 〈d1, d2, . . . , dN 〉 can also be viewed as consist-
ing of symbols bj,s for 1 ≤ j ≤ n0 and 1 ≤ s ≤ n1, where 〈bj,1, bj,2, . . . , bj,s〉
is the block of the codeword corresponding to the inner encoding of the j’th
symbol of CRS(x). Let J ⊆ [n0] be the set of all j, 1 ≤ j ≤ n0, for which
bj,s belongs to the corresponding list L′

j,s for at least a fraction 1/4 of val-
ues of s in the range 1 ≤ s ≤ n1. If di ∈ Li for at least n0n1/2 values
of i, by a simple averaging argument we get that |J | ≥ n0/4. Now, by the
(1/4, O(1/ε), O(1/ε))-list recoverability property of Cin, for each j ∈ J , the
list L̂j contains the correct symbol of the Reed-Solomon encoding of the
concerned message x. Since |J | ≥ n0/4, the condition under which the Reed-
Solomon list decoder outputs a message is satisfied by x, and therefore it
will output x. Hence the message x will be included in the list output by the
algorithm, as we desired to show. �

9.4.4 Better Rate with Sub-exponential Decoding

In the proof of Theorem 9.20, we used an outer Reed-Solomon code over
a field of size linear in the blocklength. This implied that the dimension
of the inner pseudolinear code was at most logN , enabling a deterministic
polynomial time algorithm to find the necessary pseudolinear code. We now
indicate how at the cost of sub-exponential (about 2O(

√
N)) construction and

decoding time, we can improve the rate of the construction of Theorem 9.20
from Ω(ε2) to Ω(ε), which is optimal up to constant factors. We will keep
the discussion informal since in the next section we will generalize this result
and state formal theorems anyway.

The idea is to perform the same construction as in Theorem 9.20, except
we use Reed-Solomon codes of constant (independent of ε) rate, blocklength√
n, over an alphabet of size q

√
n

0 where q0 = O(1/ε2). For the inner code, we
use a constant rate (1/4, O(1/ε), O(1/ε))-list recoverable pseudolinear code of
dimension

√
n (i.e., same as in Theorem 9.20, except with larger dimension).

Note that the concatenated code also has constant rate, and the dominant
component in its construction is once again the pseudolinear code construc-
tion, which takes 2Oε(

√
n) time to perform deterministically, and Oε(n) time
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to perform probabilistically (here by the Oε notation we are hiding also con-
stant factors that depend on ε). We claim that the concatenated code can be
(1/2, O(1/ε), L)-list recovered in 2Oε(

√
n) time (for L = 2Oε(

√
n)). At the first

step, all the inner codes are (1/4, O(1/ε), O(1/ε))-list recovered by a brute-
force search over all codewords in qO(

√
n)

0 time. This passes lists of size O(1/ε)
for the possible symbol at each position of the Reed-Solomon codeword. The
decoding is completed by going over every set of a fraction 1/4 of these lists
and every choice of symbols from each of these lists, and for each of them
checking if there is a Reed-Solomon codeword consistent with those sym-
bols. This brute-force procedure takes about (1/ε)O(

√
n) time and succeeds

in (1/4, O(1/ε), L)-list recovering the Reed-Solomon code. The correctness of
this procedure follows using arguments similar to those of Theorem 9.20.

We thus have a constant rate code which is (1/2, O(1/ε), L)-list recov-
erable in 2Oε(

√
n) time. Using this in the construction of Proposition 9.18,

we can get a rate Ω(ε) code C∗ list decodable in 2Oε(
√

n) time from up to a
fraction (1 − ε) of errors, as we desired to show.

To get binary codes, we can concatenate C∗ with a binary code of rate
Ω(ε2) which has list decoding radius (1/2 − O(ε)) for a list size of O(1/ε2).
Such codes exist by the result of Theorem 5.8 (from Chapter 5). This gives
binary codes of rate Ω(ε3) that are list decodable in 2Oε(

√
n) time from up to

a fraction (1/2 − ε) of errors. Note that the rate is better than the result of
Theorem 8.11 that achieved a rate of Ω(ε4). However, the construction and
decoding time are no longer polynomial in the blocklength.

In the next section, we present a more complicated scheme to improve the
decoding time to 2O(Nγ) for any desired γ > 0. The spirit of the construction
is the same as in this section; the details are however more complicated.

9.5 Constructions with Better Rate Using
Multi-concatenated Codes

We now introduce a code construction where an outer Reed-Solomon code is
concatenated with multiple levels of inner codes (as guaranteed by Lemma 9.6,
albeit over large, growing sized alphabets which decrease in size from the
outermost to innermost levels). We call such codes multi-concatenated codes,
which are discussed in Section 9.5.1. We will then, in Section 9.5.2, use these
codes to prove Theorem 9.22 which allows us improve the rate (from The-
orem 9.20) by an ε factor at the expense of the decoding time becoming
sub-exponential in the blocklength. This gives our construction (2a), and
yields codes of the optimal Ω(ε) rate that have list decoding algorithms of
“reasonable” complexity for correcting a fraction (1 − ε) of errors. Following
this, in Section 9.5.3, we will concatenate these codes with appropriate bi-
nary codes to get our construction (2b), i.e., binary codes of rate Ω(ε3) list
decodable in sub-exponential time from up to a fraction (1/2 − ε) of errors.
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9.5.1 The Basic Multi-concatenated Code

We now describe the construction of multi-concatenated codes and their prop-
erties. This is stated formally in the lemma below. The result is similar to
Lemma 9.12 in terms of the parameters of the codes it guarantees. In fact,
for the case p = 1, the result is in fact just that of Lemma 9.12 (with the
claimed decoding time being that of the naive decoding algorithm that does
a brute-force search over all possible codewords).

For larger values of p, the construction is somewhat messy. The result
for larger values of p is necessary only to improve the decoding time from
the 2O(

√
N) bound that was presented in Section 9.4.4 to 2O(Nγ). The reader

might want to take the result of the lemma below as a black-box in the first
reading and come back to its proof if interested after seeing its applications in
Sections 9.5.2 and 9.5.3 (the case p = 1 for those applications gives precisely
the constructions outlined in Section 9.4.4).

Lemma 9.21. For every p ≥ 1 and all sufficiently small ε > 0, there exist a
code family with the following properties:

(i) (Rate and alphabet size) The family has rate 2−O(p2) and is defined over
an alphabet of size O(1/ε2).

(ii) (List decodability property) Each member of the code family is

(1
2 ,

1
ε ,

2O(p2)

ε )-list recoverable. Furthermore such list decoding can be ac-
complished in 2O(N1/p log(1/ε)) time, where N is the blocklength of the
concerned code.

(iii) (Constructibility) A code of blocklength N in the family can be con-
structed in probabilistic O(N2 log(1/ε)) time (the code will have the list
decodability claimed in (ii) with high probability). A deterministic con-
struction can be obtained in 2O(Nε−1 log(1/ε)) time. Also, encoding can be
performed in O(N2 logO(1)(1/ε)) time.

Proof Idea. The basic idea is to use p levels of large alphabet pseudolinear
codes as guaranteed by Lemma 9.15 in a suitable concatenation scheme.
These codes will be defined over progressively decreasing alphabet size. The
outermost code will be a constant-rate code of blocklength O(N1/p) defined
over an alphabet of size q2·N

(p−1)/p

(where q = O(1/ε2)). Each symbol of this
codeword will then be encoded by another code guaranteed by Lemma 9.15,
this time over a smaller alphabet GF(q2·N

(p−2)/p

), but again of blocklength
O(N1/p) and constant rate. Each symbol of this encoding will be further
encoded by a similar constant rate code of blocklength O(N1/p), but over
an even smaller alphabet GF(q2·N

(p−3)/p

), and so on. This will continue for
several more levels till the alphabet size is down to GF(q2·N

1/p

). Finally each
of the field symbols is encoded by one final constant rate pseudolinear code
over GF(q) of dimension 2N1/p.
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The big plus of using p levels is that the code at each level has dimension
and blocklengthO(N1/p). Since the decoding time guaranteed by Lemma 9.15
was about (1/ε)O(m) where m was the dimension, we can exploit the “fast”
decoding of the codes at each level to give a decoding algorithm for the
overall multi-concatenated code with runtime exponential in N1/p, or sub-
exponential in N .

All in all, given a list Li of O(1/ε) symbols of GF(q) for each of the N
positions of the final codeword, the successive decodings pass up a list of
O(1/ε) symbols (with larger and larger constants in the big-Oh notation)
for each position of each pseudolinear codeword. Finally, after p levels of
decoding, we will recover a list of at most O(1/ε) codewords which includes
all codewords that agree with an element of Li for at least N/2 values of i.

The formal proof given below just follows the above idea, though it nec-
essarily involves a somewhat careful choice of parameters to ensure that the
decodings all work together to give the claimed list recoverability property.
The reader satisfied with the above proof idea should feel free to skip it.

Proof: Let q be a power of 2 with q = O(1/ε2) – we will define a code over
Fq. We will describe the code family by describing a code Cp that encodes

x ∈ Fn
q into Cp(x) ∈ Fn·2O(p2)

q , for any large enough n which is of the form
n = 2 ·mp for some integer m. The code Cp is described below inductively
for increasing values of p.
Code Description. For p = 1, the code C1 will be a q-ary (α1, 1/ε, c/ε)-list
recoverable code that encodes a string of length 2m over Fq into a codeword
of length a1m (for suitable constants a1, c > 1 and α1 < 1). Such a code is
guaranteed to exist by Lemma 9.12.

For p > 1, the code Cp will be a q-ary code of dimension 2mp. We defined
the code Cp inductively using Cp−1 and a p’th level codeGp defined as follows.
Gp will be a code defined over an alphabet Σp of size q2mp−1

as guaranteed
by Lemma 9.15 (using the choice s = mp−1 in that lemma). Specifically, Gp

has dimension m and blocklength apm, where ap is a constant that depends
only on p but is independent of ε. Moreover, Gp is (αp, c

p−1/ε, cp/ε)-list
recoverable, for a suitable constant αp > 1 (the details on how to pick the
constants will be clarified shortly).

We now give an inductive definition of Cp in terms of Cp−1 and the above
code Gp. To encode x ∈ Fn

q using the code Cp, where n = 2mp, we view x
as a string of length m over GF(q2mp−1

) , and first encode it using Gp. This
gives us a string x1 of apm symbols over GF(q2mp−1

). We now view each of
these apm symbols as a string of length 2mp−1 over Fq and independently
encode them using Cp−1. This completes the inductive specification of the
code Cp.

The list recoverability requirement on Cp will let us fix the constants
αj ’s above. This will in turn fix the rates of the codes (or in other words the
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constant aj ’s). We sketch this next, followed by an analysis of the construction
complexity (both probabilistic and deterministic) of the code Cp.

Rate of the Construction. For every p ≥ 1, and each fixed α < 1, for
a large enough constant c = cp,α, we now wish to pick parameters (specif-
ically αj ’s) that allow us to show that the code Cp constructed above is
(α, 1/ε, cp/ε)-list recoverable in 2O(N1/p log(1/ε)) time where N is the block-
length of Cp. This can be achieved for p = 1 by a choice of C1 with α1 = α
and the rate of the code is an absolute constant (that depends on α). For
p > 1, let us by induction pick Cp−1 so that it is (α/2, 1/ε, cp−1/ε)-list re-
coverable. We will pick the “outermost” code Gp in the construction of Cp so
that it is (α/2, cp−1/ε, cp/ε)-list recoverable. By Lemma 9.15 we have such a
Gp with rate

R(Gp) ≥ 1
6
(α/2 − 1/c) . (9.6)

Now, applying a standard averaging argument one can combine the facts that
Cp−1 is (α/2, 1/ε, cp−1/ε)-list recoverable and Gp is (α/2, cp−1/ε, cp/ε)-list
recoverable to conclude that Cp is (α, 1/ε, cp/ε)-list recoverable. It remains
to estimate the rate R(Cp) of the code Cp (as a function f of α, p). By the
above construction, we have

f(α, p) = R(Gp)f(α/2, p− 1) ≥ 1
6

(α
2
− 1
c

)
f(α/2, p− 1) (using (9.6)) .

Unwinding the recurrence, for α a fixed constant, like α = 1/2 say, we can get
Cp that is (1/2, 1/ε, cp/ε)-list recoverable with c � O(2p) and rate R(Cp) =
2−O(p2). We have thus verified Property (i) for our code construction.

Decoding Complexity. The decoding of the code Cp proceeds inductively
from the lowermost levels of the concatenation upwards. This is also best de-
scribed inductively. For p = 1, as mentioned earlier, the decoding of C1 pro-
ceeds by running over all qO(m) = qO(N) codewords. For p > 1, given lists of
size 1/ε at each position of the code, each of O(m) codes Cp−1 used to encode
the symbols of Gp can be list recovered by induction in 2O(m log(1/ε)) time.
This passes a list of cp−1/ε possible symbols for each of the apm positions of
the code Gp. The code Gp is then list recovered to produce a final set of cp/ε
messages as the answers. Since Gp is picked as guaranteed by Lemma 9.15,
the list recovering of Gp can be performed in (cp−1/ε)O(m) = 2O(m log(1/ε))

time as well (absorbing factors which depend on cp−1 into the big-Oh no-
tation, since we treat c, p as fixed constants). The overall decoding time is
the sum of the decoding times for Cp−1 and Gp, and is thus 2O(m log(1/ε)).
Since n = 2mp is the length of the message and the rate of Cp is 2−O(p2), we
have the overall blocklength N = 2O(p2)n = O(mp). Therefore, the overall
decoding complexity equals 2O(N1/p log(1/ε)), as claimed in Part (ii) of the
lemma.
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Construction Complexity. We finally verify the claimed construction
complexity bounds for the code Cp. For p = 1, we appeal to Lemma 9.12
to conclude that C1 can be constructed in O(N2ε−1 log(1/ε)) probabilistic
time, or 2O(Nε−1 log(1/ε)) deterministic time. For p > 1, the dominant com-
ponent is the time to construct the outermost code Gp. Lemma 9.15 implies
that Gp can be constructed in Ep can be constructed in O(m2p log(1/ε))
time probabilistically, and in 2O(mpε−1 log(1/ε)) time deterministically. Since
m = O(N1/p), the construction time is O(N2 log(1/ε)) probabilistically, and
2O(Nε−1 log(1/ε)) deterministically. The encoding time is again dominated by
the time to perform the outermost encoding according to Gp, and is therefore
O(m2p log2 q) = O(N2 log2(1/ε)). This completes the proof of Property (iii)
in the statement of the lemma. �

9.5.2 Codes of Rate Ω(ε) with Sub-exponential List Decoding for
a Fraction (1 − ε) of Errors

We now use the multi-concatenated codes from the previous section to attain
rate Ω(ε) for codes list decodable up to a fraction (1 − ε) of errors in sub-
exponential time. Note that such a result was also discussed in Section 9.4.4,
but we will now improve the decoding time from 2O(

√
N) to 2O(Nγ) for each

fixed γ > 0. Setting γ = 1/2 in the below theorem gives the result claimed
in Section 9.4.4.

Theorem 9.22. For every constant γ > 0 the following holds: for all suffi-
ciently small ε > 0, there exists a code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined
over an alphabet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in
the family can be constructed in probabilistic O(N2−2γ log(1/ε)) time,
or deterministically in time 2O(N1−γε−1 log(1/ε)). Moreover the code can
be encoded in O(N2(1−γ) log2N logO(1)(1/ε)) time.

(iii) (List decodability) The code can be list decoded in 2O(Nγ log(1/ε)) time
from up to a fraction (1 − ε) of errors.

Proof: We use a construction quite similar to that of Theorem 9.20. Let
p′ = 1/γ� and q0 = O(1/ε2) be a prime power. At the outermost level, we use

a Reed-Solomon code CRS of blocklength n0 over a field of size qnp′−1
0

0 (instead
of a field of size n0 that we used in earlier constructions). Furthermore, the
rate of the Reed-Solomon code will now be an absolute constant, say 1/4 (as
opposed to O(ε) earlier). Each of the n0 field elements (viewed as a string of
length np′−1

0 over GF(q0)) is encoded using a multi-concatenated inner code
C′

in that encodes np′−1
0 symbols into 2O(p2)np′−1

0 symbols (over GF(q0)) and
which has the properties guaranteed by Lemma 9.21 for p = p′ − 1. Denote
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by CRS−in the resulting concatenated code. The rest of the construction (i.e.
obtaining the final code C∗ from CRS−in using a disperser) is the same as
Theorem 9.20, and the claims about the rate and alphabet size follow similarly
to Theorem 9.20. See Figure 9.5 for a sketch of the basic components in the
construction.

RS

Message

(constant

encoding

rate)

encoding

Multi−

concatenated

(constant rate)

Final codeword

(rate eps over large alphabet)

Expander
(degree 1/eps)

recoverable code C’

Constant rate list 

Fig. 9.5. Basic structure of code construction that achieves rate Ω(ε) and list
decoding radius (1− ε). The list recoverability property of C′ enables list decoding
of the final code from a fraction (1 − ε) of errors.

About construction complexity, the significant component is finding the
inner code C′

in, which can be done in 2O(np′−1
0 ε−1 log(1/ε)) time by Lemma 9.21,

or in probabilistic O
(
(np′−1

0 )2 log(1/ε)
)

time. Since the overall blocklength of
the code equals N = n02O(p2)np′−1

0 = 2O(p2)np′
0 , we have n0 = O(N1/p′

) and
hence the claimed bounds on the construction time follow.

About list decoding complexity, we claim that CRS−in is (1/2, O(1/ε), L)-
list recoverable in 2O(N1/p′

log(1/ε)) time, for L = 2O(N1/p′
log(1/ε)). Now,

appealing to Proposition 9.18 implies that our final code C∗ will then be
((1− ε)N,L)-list decodable in 2O(N1/p′

log(1/ε)) time, which is what we would
like to show.

To (1/2, O(1/ε), L)-list recover the concatenated code CRS−in, we first use
the decoding strategy guaranteed by Lemma 9.21 to (1/4, O(1/ε), O(1/ε))-
list recover each of the n0 inner codes. This takes a total of
n02O((np′−1

0 )1/p log(1/ε)) = 2O(n0 log(1/ε)) time (since p = p′ − 1), and passes
lists of size O(2O(p2)/ε) corresponding to each position of the Reed-Solomon
code. Since we are thinking of p as a constant and ε as sufficiently small,
we can assume that lists of size O(1/ε) are passed for each position of the
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Reed-Solomon code. For any message x that is a solution to the list recov-
ering instance, at least a fraction 1/4 of these lists contain the “correct”
symbol of CRS(x). We now finish the decoding by a brute-force decoding of
the outermost Reed-Solomon code as follows. Given lists of size O(1/ε) for
each of the n0 codeword positions (these lists are the ones obtained after the
independent decoding of the n0 inner codes), for each subset of n0/4 code-
word positions and each possible choice of field element from the respective
list (this involves considering

(
n0

n0/4

) · (O(1/ε))n0/4 = 2O(n0 log(1/ε)) possibil-
ities), we do the following. Determine if there is a Reed-Solomon codeword
consistent with the n0/4 field elements at the chosen positions (this can be
performed using a straightforward polynomial interpolation since the rate of
the Reed-Solomon code is 1/4), and, if so, include that codeword in the list.
Recalling that n0 = O(N1/p′

), it is clear that the Reed-Solomon decoding
can be performed in 2O(N1/p′

log(1/ε)) time. Since 1/p′ ≤ γ, this is consistent
with our claimed runtime. �

Improvement to List Size Note that the size of the list returned in de-
coding the above codes up to a fraction (1 − ε) of errors is 2O(Nγ log(1/ε)).
It might be of interest to keep this list size small, ideally a constant, even
if the decoding algorithm itself runs in sub-exponential time. This can be
achieved by skipping the use of the outermost Reed-Solomon code in the
above construction and just using the (1/2, O(1/ε), O(1/ε))-list recoverable
multi-concatenated code C′

in in the construction of Proposition 9.18. This will
also give a code that is ((1−ε)N,O(1/ε))-list decodable in time 2O(Nγ log(1/ε)),
at the expense of the construction times being slightly worse than those
claimed in Theorem 9.22. Specifically, the probabilistic construction time
will now be O(N2 log(1/ε)) and the deterministic construction time will be
2O(Nε−1 log(1/ε)).

A Version of Theorem 9.22 for List Recoverability We now state a
variant of Theorem 9.22 that will be useful in getting binary codes in the
next section.

Lemma 9.23. For every constant γ > 0 the following holds: for all ε > 0,
there exists a code family with the following properties:

(i) (Rate and alphabet size) The code has rate Ω(ε2−O(γ−2)) and is defined
over an alphabet of size 2O(ε−1 log(1/ε)).

(ii) (Construction complexity) A description of a code of blocklength N in
the family can be constructed in probabilistic O(N2−2γ log(1/ε)) time,
or deterministically in time 2O(N1−γε−3 log(1/ε)).

(iii) (List decodability) The code can be (ε/2, O(1/ε2), L)-list recovered in
2O(Nγ log(1/ε)) time (for L = 2O(Nγ log(1/ε))).

Proof (Sketch): The above result really follows using the same proof as
that of Theorem 9.22. The point is that we we assume the code CRS−in to
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be (1/2, O(1/ε3), L)-list recoverable (instead of (1/2, O(1/ε), L)-list recover-
able). Accordingly we will have to change its parameters and replace each ε
by ε3. But this will still keep its alphabet size q0 = 1/εO(1) and its rate will be
2−O(γ−2) which is a constant independent of ε. We will get our final code C∗

from the code CRS−in by applying Lemma 9.19 (instead of Proposition 9.18),
with the choice � = O(1/ε2). Thus we can get a code C∗ of rate Ω(ε) over
an alphabet of size qO(1/ε)

0 = 2O(ε−1 log(1/ε)) which is (ε/2, O(1/ε2), L)-list
recoverable. �

9.5.3 Binary Codes of Rate Ω(ε3) with Sub-exponential List
Decoding Up to a Fraction (1/2 − ε) of Errors

We now use the code construction from Lemma 9.23 as outer codes in a con-
catenated scheme with a suitable binary inner code and obtain constructions
of good list decodable binary codes. Our result is stated formally below.

Theorem 9.24. For every constant γ > 0 the following holds: for all suf-
ficiently small ε > 0, there exists a binary code family with the following
properties:

(i) (Rate) It has rate Ω(ε32−O(γ−2)).
(ii) (Construction Complexity) A description of a code of block-

length N from the family can be constructed with high probabil-
ity in randomized O

(
(N2(1−γ) + ε−6) log(1/ε)

)
time or determin-

istically in time 2O(N1−γε−3 log(1/ε)). The code can be encoded in
O(N2(1−γ) log2N logO(1)(1/ε)) time.

(iii) (List decodability) A code of blocklength N from the family can be list
decoded from up to (1/2 − ε)N errors in 2O(Nγ log(1/ε)) time.

Proof: The code will be obtained by concatenation of an outer code Cout

over a large alphabet with a binary code Cinner. The code Cout will be picked
as guaranteed by Lemma 9.23 and will be over an alphabet Σout of size
2O(ε−1 log(1/ε)). Let m denote the blocklength of Cout. The code Cinner will
be a binary code of rate Ω(ε2), dimension lg |Σout| = O(ε−1 log(1/ε)), block-
length t = O(ε−3 log(1/ε)) which is ((1

2 − ε
2 )t, O(1/ε2))-list decodable. Such

codes Cinner (in fact, linear codes) exist and can be found deterministically
in 2O(t) time (cf. Section 5.3.2 and Section 8.6.1). Alternatively, one can also
pick a random rate Ω(ε2) pseudolinear code by investing O(ε−6 log2(1/ε))
randomness. The fact that this such a code will be ((1/2 − ε)t, O(1/ε2))-list
decodable with high probability can be seen using Lemma 9.8 with the choice
q = 2, p = (1 − ε)/2 and L = O(1/ε2).

Let us call the entire concatenated binary code Cbin and let its blocklength
be N = m · t. A codeword in Cbin is comprised of m blocks (of t bits each)
corresponding to the m codeword positions of the outer code Cout. Note
that Cbin clearly has the claimed rate since Cout has rate Ω(ε · 2−O(γ−2))



9.6 Improving the Alphabet Size: Juxtaposed Codes 243

and Cinner has rate Ω(ε2). The construction complexity of Cbin is the time
required to construct Cout plus that required to construct the binary code
Cinner. Therefore, using Lemma 9.23 and the above discussion concerning the
construction of Cinner, the claimed bound on the construction complexity of
Cbin follows. This proves Properties (i) and (ii) claimed in the theorem.

It remains to prove Property (iii) concerning the list decodability of Cbin.
By the list decodability property of Cout guaranteed by Lemma 9.23, we may
assume that there is an efficient algorithm Aout with runtime exponential in
mγ that, given as input lists Li of size O(1/ε2) for 1 ≤ i ≤ m, can find a
list of all codewords of 〈c1, . . . , cm〉 ∈ Cout such that ci ∈ Li for at least a
fraction ε/2 of the i’s.

The list decoding algorithm for Cbin works as follows. Given a received
word r ∈ {0, 1}N , the algorithm finds, for each i, 1 ≤ i ≤ m, a list Li of all
symbols β of Σout such that Cinner(β) differs from the i’th block ri of r in at
most t(1−ε)

2 positions. Since Cinner is ((1−ε)t/2, O(1/ε2))-list decodable, each
Li has at most O(1/ε2) elements. Now we run the decoding algorithm Aout

with input these m lists Li. The runtime of the algorithm is dominated by
that of Aout, which is 2O(mγ log(1/ε)), and is thus within the claimed bound.

To prove correctness of the algorithm, let c ∈ Cbin be any codeword which
differs from r in at most (1/2 − ε)N positions (the list decoding algorithm
must output every such c). Let βi, 1 ≤ i ≤ m, be the i’th symbol of the
codeword of Cout which upon concatenation with Cinner gives c. By a simple
averaging argument, one can show that for at least an εm/2 values of i,
1 ≤ i ≤ m, βi ∈ Li. By its claimed property, the decoding algorithm Aout

will hence place c on the list it outputs. This completes the proof of Property
(iii) claimed in the theorem as well. �

9.6 Improving the Alphabet Size: Juxtaposed Codes

One drawback of the result of Theorem 9.20 (as well as that of Theorem 9.22)
is that these give codes over an alphabet which is exponentially large in 1/ε. In
this section, we indicate how one can improve the alphabet size significantly
at the expense of a moderate worsening of the rate, by using an entirely
different technique (the technique is also somewhat simpler, as it avoids the
use of expanders). The basic idea is use to several concatenated codes, each
one of which is “good” for some error distribution, and then “juxtapose”
symbols from these codes together to obtain a new code over a larger alphabet
which has nice list decodability properties. The idea of juxtaposed codes is
already used in this chapter in the proof of Lemma 9.21, where we juxtaposed
a pseudolinear code with a linear code. But the use of juxtaposition there
was for a largely “technical” reason. On the other hand, juxtaposition is
fairly natural for the codes we construct in this section. The discussion in
Section 9.2.2 already presented a high level discussion of the rationale behind
juxtaposed codes; we further elaborate on this aspect below.
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9.6.1 Intuition

The basic intuition for considering juxtaposed codes can be understood by
considering the following very natural way of constructing a code list de-
codable up to a fraction (1 − ε) of errors. Namely, concatenate an outer
Reed-Solomon code (call its blocklength n0) with an inner code over an al-
phabet of size O(1/ε2) as guaranteed by Corollary 9.9. Each inner encoding
by itself can tolerate a fraction (1 − O(ε)) of errors via list decoding with
lists of size O(1/ε). Now consider a received word r and a codeword c of the
concatenated code which agree on a fraction ε of symbols. If this agreement
is evenly distributed among the n0 blocks that correspond to the various
inner encodings, then each of the n0 inner codes can be decoded (by a sim-
ple brute-force search over all inner codewords) and return a list of O(1/ε)
Reed-Solomon symbols that includes the “correct” symbol. If the rate of the
Reed-Solomon code is O(ε), list recovering the Reed-Solomon using these lists
is guaranteed to include the codeword c (cf. Chapter 6). The overall rate of
the concatenated code can thus be Ω(ε2), since both the Reed-Solomon and
inner codes can have rate Ω(ε).

This seems to give us the desired construction with rate Ω(ε2). There is
a (big) problem, however. There is no guarantee that errors will be evenly
distributed among the n0 blocks. In fact, on the other extreme, it is possible
that c and r agree completely on a fraction ε of the blocks, and differ com-
pletely on the remaining fraction (1 − ε) of the blocks. To tackle this case,
the natural inner decoding to perform is to, for each block, simply return the
symbol whose inner encoding is closest to that block of r. Now the “correct”
symbol (corresponding to c) will be thus passed to the outer Reed-Solomon
decoder for a fraction ε of the positions. To finish the decoding, we would
need to be able to list decode the Reed-Solomon code for a (1−ε) errors, and
it is only known how to do so efficiently if the rate is O(ε2) (cf. Chapter 6,
Theorem 6.16).

Thus the two widely differing (i.e. completely uniform and highly non-
uniform) distributions of errors between the various inner codeword blocks
require the rate of the Reed-Solomon code to be O(ε) and O(ε2) respectively.
Thus one has to conservatively pick the rate of the Reed-Solomon code to
be O(ε2) to handle the highly non-uniform distribution of errors. The rate of
the inner code has to be O(ε) to handle the uniform distribution of errors.
Therefore the overall rate has to be at most O(ε3).

A closer inspection of the question reveals that this limitation is due to
our using a single outer code and single inner code, which can only be opti-
mized for one error distribution, and suffers for a different error distribution.
This suggests the use of several concatenated codes in parallel, each with its
own outer and inner code rates that are optimized for a certain distribution of
errors between the various inner codeword blocks. These concatenated codes
can then be “put together” by juxtaposing their symbols together. Now, de-
pending on how uniformly the errors are distributed, a certain concatenated
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code “kicks in” and enables recovery of the message. The use of multiple con-
catenated codes reduces the rate compared to the expander based construc-
tions, and also increases the alphabet size compared to a single concatenated
code. It turns out, however, that we can still do much better on alphabet size
than the bound of 2O(ε−1 log(1/ε)) that was achieved by the construction of
Theorem 9.20.

9.6.2 The Actual Construction

We first discuss the basic code construction scheme, and then formally state
the theorems we obtain for appropriate setting of parameters. Let ε > 0 be
given; the goal being to construct a code family of good rate (as close to Ω(ε2)
as possible) that can be efficiently decoded from up to a fraction (1 − ε) of
errors. Let t ≥ 1 be an integer parameter (t will be the number of codes that
will be juxtaposed together).

Let δ0, δ1, . . . , δt be a sequence in geometric progression with δ0 = ε/2,
δt = 1, and δi/δi−1 = ∆ for 1 ≤ i ≤ t. Note that these parameters must
satisfy ∆t = 2/ε.

Fix c > 1 and let q0 = O(1/εc) be a prime power. Let m be a large enough
integer. The juxtaposed code construction, say C∗, that we now give, will be
parameterized by (q0,m, ε, t,∆).

For each i, 1 ≤ i ≤ t, we will have one q0-ary concatenated code Ci with
outer code a Reed-Solomon code CRS

i and inner code an appropriate q0-ary
pseudolinear code Cin

i . The parameters of these codes will be as follows.

The Reed-Solomon Codes. The blocklength of each of the Reed-Solomon
codes will be the same, n0 = qm

0 . The code CRS
i will be defined over the alpha-

bet GF(qmi) wheremi = mδi/δ0. The rate of CRS
i will be Ri = Θ(ε2/(t2δi∆))

and its dimension will be ki = Rin0 (the reason for this choice of rate will be
become clear once we specify the decoding algorithm in the proof of Theo-
rem 9.25 below). Note that each message that is encoded by CRS

i consists of
ki symbols over GF(qmi

0 ), or equivalently, kimi = Rin0mi = Θ( εmn0
t2∆ ) sym-

bols over GF(q0). This quantity is independent of i, and hence the number
of q0-ary symbols in the message of each CRS

i can made equal. This is very
useful for juxtaposing the codes together, as it makes sure that the dimension
of each of the concatenated codes Ci will be the same.

The Inner Codes. The blocklength of each inner code Cin
i will be the same,

say n1. Note that this ensures that each one of the concatenated codes Ci

has identical blocklength N
def= n0n1. The dimension of C in

i will be mi, so
that it can be concatenated with the Reed-Solomon code CRS

i (that was
defined over GF(qmi

0 )). The code C in
i will have the properties guaranteed by

Corollary 9.9 – specifically, it will have rate ri = mi/n1 = Ω(δi−1) and will be
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((1 − δi−1)n1, O(1/δi−1))-list decodable.7 This implies that the blocklength
n1 equals

n1 = O
( mi

δi−1

)
= O

( mδi
δ0δi−1

)
= O

(m∆
ε

)
,

which is independent of i and can thus be made identical for each of the inner
codes C in

i .
The construction time of Ci is dominated by the construction time for

the inner code Cin
i . Now, using Lemma 9.13, we know that a Cin

i with the

required properties can be constructed in deterministic q
O(n1)
0 = q

O( m∆
ε )

0

time. Alternatively, a construction that works with high probability can be
obtained in O(n2

1 log q0) = O(m2∆2ε−2 log(1/ε)) time.

a e f

d a c

abb

Message 

C 1 C 3C 2

< a, e, f >

< d, a, c >

juxtaposed code
Encoding as per the

< b, b, a >

Codewords from 3 codes
(all have same length  n)  (also has same length  n)

Codeword of juxtaposed code

Fig. 9.6. Illustration of juxtaposition of three codes C1, C2, C3.

The Juxtaposed Code. The final code, call it C∗, will be the juxtaposition
of the codes C1,C2, . . . ,Ct. Formally, by this we mean that to encode a
message according to C∗, we will encode it according to each Ci to give a

7The result of Corollary 9.9 will give such codes over an alphabet of size
O(1/δa

i−1) for any a > 1, but it can be checked that it will equally work over
the larger alphabet GF(q0) — essentially the larger alphabet only helps that result.
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codeword, say 〈ci1, . . . , ciN 〉 ∈ GF(q0)N . The associated codeword of C∗ will
then be 〈d1, . . . , dN 〉 ∈ GF(qt

0)
N where dj = 〈c1j , c2j , . . . , ctj〉 is interpreted

as an element of GF(qt
0). Figure 9.6 illustrates the juxtaposition operator

applied to three codes.
We now pick parameters δi’s appropriately in the above scheme and obtain

the following theorem. (We use the notation developed above freely in the
proof of the theorem.)

Theorem 9.25. For every ε > 0, every integer t ≥ 1 and each b > t, there
exists a code family with the following properties:

(i) It has rate Ω(t−3ε2+2/t) and is defined over an alphabet of size O(1/εb).
(ii) A code of blocklength N in the family can be constructed in NO(1/ε1+1/t)

time deterministically, and a construction that has the list decodability
property (iii) below with high probability can be obtained in probabilistic
O(ε−(2+2/t) log2N) time.

(iii) A code of blocklength N belonging to the family can be list decoded from
up to a fraction (1 − ε) of errors in NO(1/ε) time using lists of size
O(t2/ε1+1/t).

Proof: Let ε > 0 be given. Pick q0 = O(1/εc) to be a power of 2 where
c = b/t > 1. Let us pick the δi’s in geometric progression with δ0 = ε/2,
δt = 1, and δi/δi−1 = ∆ for 1 ≤ i ≤ t. Note that this implies ∆ = (2/ε)1/t.

For every large enough integer m, we now apply the construction C∗

discussed above with parameters (q0,m, ε, t,∆).
The code C∗ is then clearly defined over an alphabet of size qt

0 =
O((1/ε)ct) = O(1/εb) Recall that C∗ is the juxtaposition of t codes Ci,
1 ≤ i ≤ t, each of which is obtained by the concatenation of a rate Ri Reed-
Solomon code CRS

i with a rate ri inner code C in
i , where Ri = Θ( ε2

t2δi∆
) and

ri = Θ(δi−1). Therefore the rate of each Ci equals

Riri = Ω
( ε2

t2δi∆
· δi−1

)
= Ω

( ε2

t2∆2

)
. (9.7)

Let K,N be the common dimension and blocklength respectively of the Ci’s.
The rate of the juxtaposed code C∗ is 1/t times the rate of each Ci because
of the juxtaposition operator and hence

R(C∗) = Ω
( ε2

t3∆2

)
= Ω

(
t−3ε2+2/t

)
,

as claimed in Part (i) of the theorem.
The dominant component in the construction of C∗ is once again the

construction of the inner codes Cin
i used in the concatenated codes Ci.

By the argument from the discussion preceding this theorem, we have
that each Cin

i can be constructed in q
O(m∆/ε)
0 time deterministically, and
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O(m2∆2ε−2 log(1/ε)) time probabilistically. Since the overall blocklength
N = n0n1 = qm

0 n1, we have m ≤ logN/ log q0. Therefore the construc-
tions times are NO(∆/ε) = NO(1/ε1+1/t) for a deterministic construction, and
O(∆2ε−2 log2N) = O(ε−(2+2/t) log2N) for a probabilistic construction (that
works with high probability). This proves Property (ii) claimed in the theo-
rem.

It remains to prove the list decodability property of C∗. Specifically, we
wish to prove that given a received word r ∈ GF(qt

0)
N , we can output a list

of all codewords of C∗ that differ from r in at most (1 − ε)N positions, in
NO(1/ε) time. Indeed let c = C∗(x) be a codeword of C∗ that differs from r in
at most a fraction (1− ε) of places. Note that both r and c can be broken up
into n0 blocks of n1 symbols each, corresponding to the n0 inner encodings
at the n0 positions of the outer Reed-Solomon codes. (Here we are using the
fact that all the Reed-Solomon codes CRS

i and the inner codes C in
i have the

same blocklength, namely n0 and n1, respectively.)
Now comes the crucial part. Since the overall agreement between c and

r is at least a fraction ε of symbols, a standard averaging argument implies
that there exists a set B consisting of at least εn0/2 inner blocks, such that c
and r agree on more than a fraction ε/2 = δ0 of symbols within each block in
B. Now imagine partitioning the blocks in B into t parts Pi, 1 ≤ i ≤ t, in the
following way. The part Pi consists of all blocks in B for which the fractional
agreement between the portions of c and r corresponding to that block lies
in the interval (δi−1, δi]. One of these parts must have at least |B|/t blocks.
Let this part be Pi∗ . Hence we conclude that there exists some i∗, 1 ≤ i∗ ≤ t,
such that for at least a fraction ε

2tδi∗
of the n0 blocks, c and r agree on at

least a fraction δi∗−1 of positions within that block.
Now consider decoding the n0 inner codes C in

i∗ corresponding to this i∗

up to a radius of (1 − δi∗−1) errors (here we focus attention on and use only
the i∗’th symbol from each of the N “juxtaposed” symbols from the received
word r). This can be accomplished by brute-force in a total of n0q

mδi∗/δ0
0 =

q
O(m/ε)
0 = n

O(1/ε)
0 time. By the property of Cin

i∗ , this decoding only outputs a
list L(i∗)

j of O(1/δi∗−1) codewords (or in other words Reed-Solomon symbols
for the code CRS

i∗ ) for each of the blocks j, 1 ≤ j ≤ n0. By our choice of i∗,
at least εn0

2tδi∗
of these lists have the “correct” symbol of CRS

i∗ (x).
To finish the decoding, it suffices to be able to list decode CRS

i∗ with
these lists L(i∗)

j , 1 ≤ j ≤ n0, as input, and find all messages x such that

L
(i∗)
j contains the j’th symbol of CRS

i∗ (x) for at least εn0
2tδi∗

values of j. We
can now apply the list recovering algorithm for Reed-Solomon codes from
Chapter 6 (specifically Theorem 6.21) to accomplish this decoding task in
near-quadratic time. Specifically, this follows by applying Theorem 6.21 with
the choice n = n0, k = ki∗−1 = O(n0

ε2

t2∆δi∗
) = O(n0

ε2δi∗−1
t2δ2

i∗
), � = O(1/δi∗−1)

and α = ε
2tδi∗

. It can be verified that the condition α >
√

2k�/n can be
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satisfied with these setting of parameters. Moreover, by Theorem 6.21, the
number of codewords output by the decoding algorithm will be O(

√
n�/k),

which is O(t∆/ε) for our choice of parameters.
Of course, the algorithm cannot know the value of i∗ in the above de-

scription, but running the above decoding procedure for each Ci, 1 ≤ i ≤ t,
will output a list of size at most O(t2∆/ε) = O(t2ε−(1+1/t)) that includes all
codewords that differ from the received word r in at most a fraction (1 − ε)
of the positions. The decoding time is dominated by the time to decode the
inner codes, which, as discussed earlier, takes nO(1/ε)

0 = NO(1/ε) time. This
completes the proof of Property (iii) of the theorem as well. �

Comparison with Algebraic-geometric codes: Note that for t ≤ 3, the
result of Theorem 9.25 is incomparable to AG-codes, since it gets a better
alphabet size than AG-codes (which work over alphabet size of O(1/ε4)), but
the rate is worse than ε2. Thus the above codes give some new, interesting
trade-offs for codes that can be list decoded in polynomial time from a fraction
(1 − ε) of errors.

By picking a fine “bucketing” with ∆ = 2 and t = lg(2/ε)� in the above
theorem, we can achieve a rate very close to ε2 though the alphabet size
becomes quasi-polynomial in 1/ε. This gives us the following result.

Corollary 9.26. For every ε > 0, there is a code family with the following
properties:

(i) (Rate and alphabet size) It has rate Ω(ε2 log−3(1/ε)) and is defined over
an alphabet of size 2O(log2(1/ε)).

(ii) (Construction complexity) A code of blocklength N in the family can be
constructed in NO(1/ε) time deterministically, and a construction that
has the list decodability property (iii) below with high probability can be
obtained in probabilistic O(log2N/ε2) time.

(iii) (List decodability) A code of blocklength N in the family can be list de-
coded from up to a fraction (1 − ε) of errors in NO(1/ε) time using lists
of size O(ε−1 log2(1/ε)).

9.7 Notes

The concept of good list recoverable codes, which was crucial to most of our
results in this chapter, also appears in the work on extractor codes by Ta-
Shma and Zuckerman [184]. The terminology “list recoverable codes” itself
was introduced for the first time by the author and Indyk in [81]. Ta-Shma
and Zuckerman also analyze the list recoverability of random codes. However,
their results are for general random codes and their proof makes use of the
complete independence of all the codewords. The result of Lemma 9.6, which
appears in [81], works for random pseudolinear codes and also gives bounds
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for list recovering with constant-sized lists. The result from [184], as stated
there, works for list size that depends on the blocklength of the code, since
their target is a more general decoding situation when the input lists at each
position could be of widely varying and potentially very large sizes. We, on
the other hand, place a uniform upper bound on the size of each input list,
and moreover are mainly interested in situations where this upper bound is
a small fraction of the alphabet size of the code.

In recent years, there have been several papers which construct codes
using expander-like graphs. Broadly, these use such graphs in two ways: either
to construct the parity check matrix [171, 176, 201] or to redistribute symbols
around in the encoding process [6]. Our codes constructions follow the spirit
of the second approach, in the sense that we also use expander-like graphs
(specifically dispersers) to distribute the symbols of the message. However,
our constructions are more involved than the construction of [6], since we
want to make the codes efficiently decodable. In particular there is a lot
more algorithmic focus in our work than in [6].

There has also been work on sub-exponential time unique decoding algo-
rithms. In particular, the algorithm of [203] can unique decode certain large
distance binary codes in 2O(

√
n) time. In fact it was this algorithm that mo-

tivated our discussion in Section 9.4.4. The quest for an improved decoding
time led us to the constructions using multi-concatenated codes that were
discussed in Section 9.5. The use of a sequence of inner codes in order to
decrease the decoding time by paying only a constant factor in the rate at
each level appears to be novel to the constructions in Section 9.5. Subsequent
work (using certain extractors) by Guruswami [79] achieves results similar to
those of Section 9.5.2 with an explicit construction: specifically, explicit codes
of rate ε/ logO(1)(1/ε) are constructed in [79] that have sub-exponential time
list decoding algorithms for a fraction (1 − ε) of errors.

Except for the results of Section 9.6, the rest of the material discussed in
this chapter appears in [81]. The results of Section 9.6 appear in [82].
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