
8 List Decoding of Concatenated Codes

8.1 Introduction

The decoding algorithms for Reed-Solomon and AG-codes provide the first
results which algorithmically exploit the potential of list decoding well be-
yond half the minimum distance. In addition, these codes are widely studied
and used, and thus these algorithms are not only theoretically interesting,
but could also have a lot of practical impact. In this chapter, we are inter-
ested in polynomial time constructible linear codes over Fq for a small, fixed
q, which can be efficiently list decoded from a large, and essentially “maxi-
mum” possible, fraction of errors, and which have good rate. Codes over small
alphabets are desirable for several applications. Of particular interest to us
will be binary codes. Such small alphabet codes with high list decodability
cannot be directly obtained from Reed-Solomon or algebraic-geometric codes.
Recall that Reed-Solomon codes require the alphabet size to be at least as
large as the blocklength of the code. While AG-codes can be defined over
an alphabet of fixed size q, their performance is limited by certain algebraic
barriers. In particular these rule out the existence of good binary AG-codes,
and even for larger q limit their list decodability to much less than what is
in general possible for q-ary codes.

The reader will recall that in Chapter 5 we had investigated trade-offs
between list decodability and rate for q-ary codes. The results of this chapter
can be viewed as an attempt to constructivize, to whatever extent possible,
the existential bounds established in Chapter 5.

While Reed-Solomon and AG-codes do not yield good list decodable q-ary
codes for small q, we show in this chapter that concatenated codes that use
them as outer codes along with appropriate inner codes do achieve small al-
phabet size together with good algorithmic list decodability properties. The
concatenated codes are decoded in two steps: in the first step, a decoding
of the portions of the received word corresponding to the various inner en-
codings is performed. The inner code, owing to its small dimension, can be
decoded by brute-force in the allowed runtime (which is polynomial in the
entire blocklength). The inner decoding passes to the outer decoder, infor-
mation concerning the possible symbols at each position, together with ap-
propriate weights or confidence information. The decoding is then completed
by running the soft (list) decoding algorithms for the outer Reed-Solomon

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 177-207, 2004.
 Springer-Verlag Berlin Heidelberg 2004

178 8 List Decoding of Concatenated Codes

or AG-code from Chapter 6. This represents a novel use of the soft decoding
algorithm, and is one of the few such uses where a simple worst-case analytic
bound on the number of errors corrected by the algorithm can be proved.
(In contrast, a large body of literature on soft decoding applies it to proba-
bilistic channels and obtains either analytic or experimental estimates of the
decoding error probability under the specific error model (cf. [59, 60, 121]).)

8.2 Context and Motivation of Results

We are interested in families of q-ary codes that can be efficiently list decoded
from a large fraction of errors. Decoding from a fraction of errors beyond
(1 − 1/q) is information-theoretically impossible for q-ary codes (of positive
rate). This is because a random received word will differ from any particular
codeword in a expected fraction (1−1/q) of positions. Therefore, list decoding
beyond a fraction (1 − 1/q) of errors will require a list size proportional to
the total number of codewords, and hence an exponential list size for code
families with positive rate.

Therefore, we are interested in families of q-ary codes that can be list
decoded from a fraction p of errors, for 0 < p < (1 − 1/q). Having fixed
the desired level of error-resilience, the quantity we would like to optimize is
the rate of the code family. This is exactly in the spirit of the results from
Chapter 5, except that we are now interested in both explicit specifications
or polynomial time constructions of the code, and efficient list decoding
algorithms (and not just a good combinatorial list decodability property).

The main tools used for the above pursuit are concatenated codes with
outer Reed-Solomon or AG-codes and inner codes with good combinatorial
list decodability and/or distance properties. This gives a polynomial time
construction of, say, a binary code with good combinatorial list decodability.
We enhance the nice combinatorial properties of concatenated codes with
algorithmic ones, by presenting fairly general schemes to efficiently decode
these codes to close to their Johnson radius (which is the a priori “list
decoding capacity” of any code).

In order to present the above constructive results, we focus on the “high-
noise regime”, i.e., list decoding up to a fraction (1 − 1/q − ε) of errors for
q-ary codes (where q is thought of as small and fixed). For such codes, the
results of Chapter 5 imply that the best rate achievable is Θ(ε2). Our goal will
be to approach this performance with explicit codes and efficient decoding
algorithms. We loosely refer to codes that can correct such a large fraction
(approaching (1 − 1/q)) of errors as highly list decodable.

We focus on the high-noise regime since it brings out the asymptotics
very well. Even optimizing the exponent of ε in the rate is a non-trivial
problem to begin with in this context. Hence, working in the high-noise regime
implies that (at least for current results) we need not be very careful with
the constant factors in the rate that are independent of ε (since the εO(1)

8.3 Overview of Results 179

term is the dominant one in the rate). Moreover, there is a natural and well-
posed goal of approaching the “optimal” rate, i.e., obtaining the best possible
exponent of ε in the rate. We note here that this is a very asymptotic and
computer science style perspective, and indeed the motivation comes partly
from applications of list decoding to complexity theory, to be discussed in
Chapter 12, where the high-noise regime is the most interesting and useful
one to focus on. Coding theorists are sometimes disturbed by the low rate
in the way we state some of our results. But we would like to stress that
the low rate is unavoidable since we are targeting decoding from a very large
fraction of errors. Moreover, we believe that optimizing our techniques for
the high-noise (and consequently low-rate) regime is a good first step, and
that the techniques can eventually be applied to a more careful, thorough
investigation of the situation where we do not wish to correct such a large
fraction of errors. The results of the next two chapters will also be motivated
by and stated for the high-noise regime – these chapters will deal with codes
over large (but constant-sized) alphabets and erasure codes, respectively.

8.3 Overview of Results

We present list decoding algorithms for several families of concatenated codes.
Recall that the distance of a concatenated code whose outer code has distance
D and inner code has distance d is at least Dd (and this quantity is referred
to as the designed distance of the concatenated code). Unique decoding al-
gorithms to decode up to the product bound, namely to correct fewer than
Dd/2 errors, are known based on Generalized Minimum Distance decoding
of the outer code [60, 110] (this is also discussed in detail in Appendix A).
The focus of this chapter is on list decoding algorithms that permit recovery
well beyond the product bound for certain families of concatenated codes. A
discussion of the specific results follows.

In Section 8.4, we give list decoding algorithms for codes where the outer
code is a Reed-Solomon or Algebraic-geometric code and the inner code is
a Hadamard code. Our algorithms decode these codes up to the Johnson
bound on list decoding radius. These algorithms also serve as a beautiful
illustration of the power of our soft decoding algorithms for list decoding
Reed-Solomon and AG-codes from Chapter 6. The construction with an ap-
propriate algebraic-geometric outer code, upon picking parameters suitably,
gives us a construction of q-ary codes of rate Ω(ε6) list decodable up to a
fraction (1 − 1/q − ε) of errors.

In Section 8.5, we present a decoding algorithm for concatenated codes
with outer Reed-Solomon or AG-code and an arbitrary inner code. The al-
gorithm falls short of decoding up to the Johnson radius, but decodes well
beyond half the distance when the rate of the outer code is small. In particu-
lar, it gives an alternative construction of q-ary codes of rate Ω(ε6) decodable
up to a fraction (1 − 1/q − ε) of errors. The advantage of this construction

180 8 List Decoding of Concatenated Codes

is that one can use Reed-Solomon codes as opposed to the more complicated
AG-codes necessary for the earlier result using Hadamard codes. The con-
struction and decoding algorithms are consequently also easier and faster.

Finally, in Section 8.6, we use special purpose codes as inner codes in a
concatenated construction to obtain binary linear codes of rate Ω(ε4) effi-
ciently list decodable from a fraction (1/2 − ε) of errors. The inner codes
are a more general variant of the ones guaranteed by Theorem 5.8 of Chap-
ter 5. We should remark that we are able to obtain this result only for binary
codes.1

We stress here that our construction that has rate Ω(ε4) is not obtained
by constructing a large distance binary code and then appealing to the John-
son bound to argue that the list decoding radius is at least (1/2− ε). Indeed,
this will require the relative distance to be at least (1/2 − O(ε2)) and the
best known polynomial time constructions of such codes yield a rate of only
about Ω(ε6). In fact, a polynomial time construction of binary code families
of relative distance (1/2 − O(ε2)) and rate Ω(ε4) will asymptotically match
the Gilbert-Varshamov bound at low rates, and will be a major breakthrough
in coding theory.

The results of this chapter focus exclusively on linear codes. Some results
in the next two chapters will resort to a certain “limited” amount of non-
linearity.

8.4 Decoding Concatenated Codes with Inner
Hadamard Code

We present list decoding algorithms for concatenated codes with an outer
algebraic code and inner Hadamard code. The motivation of considering the
Hadamard code is its nice properties which we exploit to decode the concate-
nated codes up to their Johnson radius. Concatenated codes with algebraic-
geometric outer code and inner Hadamard code are among the best explicitly
known codes in terms of the rate vs. distance trade-offs. By decoding such
codes up to the Johnson radius, we will get codes of good rate and very high
list decodability. This is our primary motivation for considering decoding
algorithms for such concatenated codes.

Recall the definition of Hadamard codes from Chapter 2. The q-ary
Hadamard code of dimension m encodes an x ∈ Fm

q by 〈x · z〉z∈Fm
q

(i.e.

1We know how to achieve a similar performance for general alphabets if we
relax the requirement of linearity. The next chapter will discuss several non-linear
code constructions with good list decodability. The codes, though not linear, will
be based on “pseudolinear” codes, and will possess succinct representation and be
efficiently encodable/decodable. Using random q-ary pseudolinear codes as inner
codes will permit us to obtain codes of rate Ω(ε4) list decodable up to a fraction
(1 − 1/q − ε) of errors, for every prime power q. We, however, do not elaborate on
this point further.

8.4 Decoding Concatenated Codes with Inner Hadamard Code 181

by its dot product over Fq with every vector z ∈ Fm
q). It has blocklength qm

and minimum distance (1 − 1/q) · qm; in fact all non-zero codewords in the
code have Hamming weight (1 − 1/q) · qm.

1

RS

Hadamard
Encodingn <= q

EncodingGF(q))m

m

over

p(x) p(x) p(x)1 2

Had[p(x)]nHad[p(x)]

n
Message

(polynomial p

Fig. 8.1. Reed-Solomon concatenated with a Hadamard code

The codes considered in this section will be the concatenation of a Reed-
Solomon or AG-code over GF(qm) with the q-ary Hadamard code of dimen-
sion m. Note the number of outer codeword symbols (i.e., qm) exactly equals
the number of Hadamard codewords, so concatenation of these codes is well-
defined. Figure 8.1 depicts the structure of a Reed-Solomon concatenated
with a Hadamard code. The encoding of a message (a polynomial) p will be
Had(p(x1))Had(p(x2)) · · ·Had(p(xn)), where x1, . . . , xn are distinct elements
in GF(qm) that are used in defining the Reed-Solomon code. (To encode an
element α ∈ GF(qm) using the Hadamard code, one views α as a string
of length m over GF(q) using some fixed representation of GF(qm) as vec-
tors of length m over GF(q).) The reader might recall that we already used
Reed-Solomon codes concatenated with Hadamard codes in Section 4.6 (with
q = 2).

Jumping ahead to how our decoding will proceed, the inner decoder will
“decode” the Hadamard code and pass information concerning the possible
symbols at each position, together with appropriate weights. Suppose the
i’th block (corresponding to the inner encoding of the i’th outer codeword
symbol) of the received word is ri. It is natural that the weight that the inner
decoder gives to a symbol α ∈ GF(qm) for position i should be a decreasing
function of ∆(Had(α), ri) (where ∆(x, y) measures the Hamming distance
between x and y). This is because, intuitively, the larger this distance, the
smaller is the likelihood that the i’th symbol of the outer codeword was α.
In fact, the inner decoder will set weights to be a decreasing linear function
of this distance (the linearity makes possible a precise analysis of the number
of errors corrected). Specifically, the weight for symbol α for the i’th block
ri of received word will be set to

182 8 List Decoding of Concatenated Codes

r1 r 2 r nr i

z1 zqzj
wi,1 wi,j w i,q (for every position i)

in outer alphabet F
Weights for all q elements

List of Messages

 { (i , z ,w) }Soft Decoder for outer code on: j i,j

Inner Decoding

word broken
Received

positions

into n blocks

outer codeword
corres. to n

Fig. 8.2. The basic idea behind our decoding algorithms for concatenated codes.
For each position of the outer code, the inner decoding passes a weight or confidence
rating for every element of the field F = GF(q). These are then used by a soft list
decoding algorithm for the outer code to finish the decoding.

(
1 − q

q − 1
∆(ri,Had(α))

qm

)
.

The decoding is then completed by running the soft (list) decoding algo-
rithms for the outer Reed-Solomon or AG-code from Chapter 6 with these
choice of weights. This is in fact the procedure used for decoding all of the
concatenated codes in this chapter. Figure 8.2 illustrates the basic structure
of our decoding schemes for concatenated codes.

Recalling the statements of Theorems 6.26 and 6.41, the sum of the
squares of the weights is an important quantity that governs the performance
of the decoding algorithm. Good upper bounds on this sum will permit a good
analysis of the error-correction performance of the algorithm. Below, we pro-
vide such an upper bound for the choice of weights made by the inner decoder
in decoding the Hadamard code.

Proposition 8.1. Let q be a prime power and let m be a positive integer.
Let Had : Fqm → Fqm

q be the q-ary Hadamard code of dimension m and
blocklength qm. Let f ∈ Fqm

q be an arbitrary vector of length qm over Fq.
Then ∑

α∈GF(qm)

(
1 − q

q − 1
· ∆(f,Had(α))

qm

)2

≤ 1 . (8.1)

Remark: For the case q = 2,
(
1 − 2∆(f,Had(α))/2m

)
equals the Fourier

coefficient f̂α of f with respect to Had(α), viewed as a linear function mapping
Fm

q to Fq. In this case, the statement of the Proposition in fact holds with

8.4 Decoding Concatenated Codes with Inner Hadamard Code 183

equality, and is simply the standard Plancherel’s identity
∑

α f̂
2
α = 1. The

result for the non-binary case appears in [120], and the proof there is based on
the MacWilliams-Sloane identities for the weight distribution of dual codes;
we give a more elementary proof below.

Proof: The proof works by embedding any string f ∈ Fqm

q as a qm+1-
dimensional real unit vector. The embedding will be such that for every
α �= β ∈ GF(qm), the vectors associated with the Hadamard codewords
Had(α) and Had(β) will be orthogonal (in the usual real dot product over
Rqm·q). Furthermore, the embedding will be such that the quantity

(
1 − q

q − 1
· ∆(f, g)

qm

)

for every two functions f, g ∈ Fqm

q will simply be the dot product of the
vectors associated with f, g. The result will then follow since the sum of the
squares of the projections of a unit vector along pairwise orthogonal vectors
can be at most 1.

Suppose the q elements of Fq are γ1, γ2, . . . , γq. Associate a q-dimensional
vector ei with γi as follows (eil denotes the l’th component of ei): eii =√

(q − 1)/q and eil = −1/
√
q(q − 1) for l �= i. Note that this definition

satisfies 〈ei, ei〉 = 1 and 〈ei, ej〉 = −1/(q− 1) for i �= j. For a string f ∈ Fqm

q ,
we view f as the qm+1-dimensional vector obtained in the obvious way by
juxtaposing the q-dimensional vectors for each of the qm values which f takes
on its domain, and then normalizing it to a unit vector (by dividing every
component by

√
qm). By abuse of notation, we will denote the real vector

associated with f also by f .
Note that when we take the inner product 〈f, g〉, we get a contribution of

1/qm corresponding to the positions where f, g agree, and a contribution of
−1

(q−1) · q−m corresponding to places where f, g differ. Hence we have

〈f, g〉 = (qm −∆(f, g)) · q−m +∆(f, g) ·
(−1
q − 1

)
· q−m

= 1 − q

q − 1
· ∆(f, g)

qm
.

Now, for α �= β ∈ GF(qm), ∆(Had(α),Had(β)) = (1 − 1/q) · qm (recall that
two distinct codewords in the Hadamard code corresponding to Fm

q agree on
exactly qm−1 places and differ at qm−1(q−1) places). Thus, for α �= β, we have
〈Had(α),Had(β)〉 = 0. Also by our choice of vectors, 〈Had(α),Had(α)〉 = 1.
Hence the qm vectors associated with the Hadamard codewords are pairwise
orthogonal unit vectors. Using this fact the result follows since

∑
α∈Fm

q

(
1 − q

q − 1
∆(f,Had(α))

qm

)2

=
∑

α

〈f,Had(α)〉2 ≤ 〈f, f〉 = 1 . �

184 8 List Decoding of Concatenated Codes

8.4.1 Reed-Solomon Concatenated with Hadamard Code

We now use the above result to analyze the error-correction capability of
Reed-Solomon codes concatenated with Hadamard code, when using the soft
decoding algorithm for Reed-Solomon together with the weights passed by
the Hadamard decoding.

Theorem 8.2. Let C be q-ary code of blocklength n and relative distance δ,
that is obtained by concatenation of a Reed-Solomon code over GF(qm) with
the Hadamard code of dimension m, for some m. Then, there is a polynomial
time list decoding algorithm for C that decodes up to E errors where

E = n
(
1 − 1

q

)(
1 −

√
1 − qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary
Johnson bound on list decoding radius.)

Proof: The relative distance of a q-ary Hadamard code is (1 − 1/q), and in
fact all non-zero codewords have the same Hamming weight. Hence, it follows
that in order for the relative distance of the concatenated code C to be δ,
the relative distance of the outer Reed-Solomon code, call it CRS, must be
qδ/(q − 1). Let the blocklength of CRS be n0 ≤ qm, and its dimension be
(k0 + 1), where

k0 = n0

(
1 − qδ

q − 1

)
. (8.2)

Let x1, x2, . . . , xn0 be distinct elements of GF(qm) that are used to de-
fine CRS. Thus, the messages of CRS (and hence C, too) are degree k0

polynomials over GF(qm), and a polynomial p is encoded under CRS as
〈p(x1), p(x2), . . . , p(xn0)〉. The blocklength n of the overall concatenated code
C satisfies n = n0q

m, and its dimension equals (k0 + 1)m.
Let y ∈ Fn

q be a “received word”; the task of list decoding that we wish
to solve is to obtain a list of all codewords of C within a Hamming distance
of E from y. For 1 ≤ i ≤ n0, denote by yi the portion of y in block i of the
codeword (i.e., the portion corresponding to the Hadamard encoding of the
ith symbol of the outer code).

We now perform the “decoding” of each of the n0 blocks yi as follows. For
1 ≤ i ≤ n0 and α ∈ GF(qm), compute the Hamming distance ei,α between
yi and Had(α), and then compute the weight wi,α as:

wi,α
def= max

{(
1 − q

q − 1
· ei,α

qm

)
, 0
}
. (8.3)

Note the computation of all these weights can be done by a straightforward
brute-force computation in O(n0(qm)2) = O(n2/n0) time. Thus all the inner
decodings can be performed efficiently in at most quadratic time.

8.4 Decoding Concatenated Codes with Inner Hadamard Code 185

The key combinatorial property of these weights, that follows from Propo-
sition 8.1 above, is that ∑

α

w2
i,α ≤ 1 , (8.4)

for every i, 1 ≤ i ≤ n0. These weights will now be “passed” to the outer Reed-
Solomon decoder as the confidence information about the various symbols of
the Reed-Solomon codeword. For the outer decoder, we will use the soft
decoding algorithm from Chapter 6. Specifically, we will use the result of
Theorem 6.26. Applied to this context, the result implies that, for any desired
tolerance parameter ε > 0, we can find in time polynomial in n0 and 1/ε, a
list of all polynomials p over GF(qm) of degree at most k0 that satisfy

n0∑
i=1

wi,p(xi) ≥
(
k0 ·

∑
1≤i≤n0

α∈GF(qm)

w2
i,α

)1/2

+ εmax
i,α

wi,α . (8.5)

Applied to the choice of weights (8.3) and using Equation (8.4), the decoding
algorithm can thus retrieve all codewords corresponding to degree k0 poly-
nomials p for which

n0∑
i=1

(
1 − q

q − 1
· ei,p(xi)

qm

)
≥
√
k0n0 + ε . (8.6)

Note that wi,p(xi) ≥ (1 − q
q−1 · ei,p(xi)

qm), and hence if the above condition is
satisfied then so is Condition (8.5).

Now, recall that ei,p(xi) = ∆(yi,Had(p(xi))). Hence, (8.6) above implies
that we can find all codewords at a distance E from the received word y
provided

n0 − qE

(q − 1) · qm
≥
√
k0n0 + ε or

qE

q − 1
≤ n

(
1 −

√
k0

n0
− ε√

n

)
(since n = n0q

m)

⇐= E ≤ n
(q − 1

q

)(
1 −

√
1 − qδ

q − 1

)
− εqm ,

where in the last step we use the value of k0 from Equation (8.2). If we pick
ε ≤ 1/n, this implies we can list decode up to

E = n
(q − 1

q

)(
1 −

√
1 − qδ

q − 1

)
−O(1)

errors, as desired. �

186 8 List Decoding of Concatenated Codes

8.4.2 AG-code Concatenated with Hadamard Code

The result of Theorem 8.2 decodes the concatenated code up to the Johnson
radius, and thus has very good error-correction performance for the concerned
code. However, while interesting for a variety of reasons, from a coding stand-
point, the Reed-Solomon concatenated with Hadamard codes are not very at-
tractive. This is because they have very low rate, since the inner Hadamard
code maps m symbols into qm symbols, and thus has very poor, vanishing,
rate for largem. In particular, the family of codes is not asymptotically good,
and has rate rapidly tending to 0 in the limit of large blocklengths. It is thus
way off our pursuit of codes list decodable to a fraction (1−1/q−ε) of errors
with rate somewhat close to Θ(ε2).

In this section, we will adapt the result of Theorem 8.2 to concatenated
codes with outer AG-code (instead of Reed-Solomon code). The inner code
will be the Hadamard code as before. The rate of the overall code will once
again not be great, since it will inherit the poor rate of the Hadamard code.
But since AG-codes with good parameters exist over a fixed alphabet of
size independent of the blocklength, the inner Hadamard code will now be a
constant-sized code, and thus will have some fixed, albeit small, rate. Thus,
we will be able to achieve positive rate (i.e. rate which is at least r for some
fixed constant r > 0 that is independent of the blocklength) for the overall
code. As a corollary, in the next section, we will plug in the best-known
AG-codes (those discussed in Section 6.3.9) to obtain constructions of codes
which are list decodable up to a fraction (1− 1/q− ε) of errors and have rate
Ω(ε6).

The formal result concerning list decoding AG-codes concatenated with
Hadamard codes is stated below. The hypothesis about a suitable represen-
tation of the code is necessary in the statement of the theorem, since the
decoding algorithms of Chapter 6 also made this assumption.

Theorem 8.3. Let CAG−Had be q-ary code of blocklength n and relative dis-
tance at least δ, that is obtained by concatenation of an algebraic-geometric
code over GF(qm) of relative designed distance qδ/(q − 1) with the q-ary
Hadamard code of dimension m, for some m. Then, there exists a represen-
tation of the code of size polynomial in n under which a polynomial time list
decoding algorithm exists to list decode CAG−Had up to E errors, where

E = n
(
1 − 1

q

)(
1 −

√
1 − qδ

q − 1

)
−O(1) .

(In other words, one can decode such a code up to, essentially, the q-ary
Johnson bound on list decoding radius.)

Proof: The proof parallels that of the earlier result (Theorem 8.2) where
the outer code was a Reed-Solomon code. The inner decodings of the various
Hadamard codes proceeds exactly as before, passing weights to the outer

8.5 Decoding a General Concatenated Code 187

decoder. Now, for the outer decoder we can make use of the soft list decoding
algorithm for AG-codes developed in Theorem 6.41, instead of the Reed-
Solomon soft decoder. This is really the only change necessary to the proof of
Theorem 8.2, and the claimed bound on the number of errors corrected follows
as before. We omit the details. The soft decoding algorithm for AG-codes
from Theorem 6.41 works in polynomial time only assuming a specific (non-
standard) representation of the AG-code, which necessitates the hypothesis
about the representation of the code in the statement of the theorem. �

8.4.3 Consequence for Highly List Decodable Codes

We now apply Theorem 6.41 with AG-codes that achieve the best known
trade-off between rate and distance (from Section 6.3.9 of Chapter 6). This
gives us codes list decodable up to a fraction (1−1/q−ε) of errors and which
have reasonably good rate.

Corollary 8.4. For every fixed prime power q, the following holds: For ev-
ery ε > 0, there exists a family of linear codes over Fq with the following
properties:

(i) The family is polynomial time constructible in that the generator matrix
of a code of blocklength n in the family can be computed in time a fixed
polynomial in n.

(ii) Its rate is Ω(ε6 · log(1/ε)).
(iii) For each code in the family, there exists a polynomial amount of ad-

vice information given which there is a polynomial time list decoding
algorithm that decodes the code up to a fraction (1 − 1/q − ε) of errors.

Proof: We will employ the concatenated code construction of Theorem 8.3
applied with the outer code being AG-codes that meet the Drinfeld-Vlădut
bound (as guaranteed by Fact 6.43). By picking m even, we know there
exist AG-codes over GF(qm) of relative designed distance δ′ and rate R ≥
1 − 1/(qm/2 − 1) − δ′. The fraction of errors corrected by the algorithm of
Theorem 8.3 is (1 − 1/q)(1 −√

1 − δ′). Picking δ′ = 1 −O(ε2), we can get a
list decoding radius of (1− 1/q− ε). For such a value of δ′, the rate R of the
AG-code can be Ω(ε2), provided qm/2 = Ω(ε−2). This can be achieved with
m = Θ(log(1/ε)) (since q is fixed, we absorb constant terms that depend
on q into the Θ-notation). The rate of the concatenated code is the rate
of the AG-code multiplied by the rate of the Hadamard code, and is thus
R · (m/qm). Since R = Ω(ε2), m = Θ(log(1/ε)) and qm = O(ε−4), the rate
is Ω(ε6 log(1/ε)). �

8.5 Decoding a General Concatenated Code with Outer
Reed-Solomon or AG-code

The concatenated codes in the previous section used the Hadamard code as
inner code. This permitted an elegant analysis of the decoding algorithms

188 8 List Decoding of Concatenated Codes

based on the combinatorial identity of Proposition 8.1 and the soft decoding
algorithms from Chapter 6. However, the Hadamard code has very poor rate
which makes these codes not so attractive from a coding theory viewpoint.

In this section, we present an algorithm to decode concatenated codes with
outer Reed-Solomon or AG-codes when the inner code is an arbitrary q-ary
code. The idea behind the decoding will remain the same (recall Figure 8.2)
— in the first step, the inner decoding will pass weights which are linear
functions of the distance between the received word and the concerned inner
codeword. These weights will then be used in a soft decoding of the outer
code. The key technical step in making this work when the inner code is not
Hadamard but arbitrary is to prove an analog of the combinatorial bound of
Proposition 8.1 for a general q-ary code. We do so next.

8.5.1 A Relevant Combinatorial Result

To motivate the exact statement of the combinatorial result, we jump ahead
to give a hint of how the decoding will exactly proceed. When presented
a received word r, the inner decoder will simply search for and output all
codewords which lie in a Hamming ball of a certain radius R around r. The
weight associated with a codeword c at a distance ec = ∆(r, c) ≤ R from r
will be set to be (R − ec). These weights will be used in a soft decoding of
the outer code as before. We now state and prove a combinatorial result that
gives an upper bound on the sum of squares of the weights (R − ec). Some
readers may prefer to take the result below on faith and jump right ahead to
the decoding algorithm and its analysis in Section 8.5.2.

Proposition 8.5. Let C ⊆ [q]n be a q-ary code (not necessarily linear), and
let d be the minimum distance of C, and δ = d/n its relative distance. Let
r ∈ [q]n be arbitrary, and let

R = n
(
1 − 1

q

)(
1 −

√
1 − δ

(1 − 1/q)

)
(8.7)

be the q-ary Johnson radius of the code. Then we have

∑
c∈C

(
max{(R−∆(r, c)), 0 }

)2

≤ δn2 (8.8)

Proof: The proof follows essentially the same approach as in the proof of the
Johnson bound (Theorems 3.1 and 3.2) from Chapter 3. Instead of bounding
the number of codewords within a distance R from r, we now require an
upper bound on the sum of squares of linear functions of the distance over
all such codewords. The proof will be identical to that of Theorem 3.1 for the
most part, with a change towards the end. For purposes of readability, we
give the full proof here. The reader familiar with the proof of Theorem 3.1

8.5 Decoding a General Concatenated Code 189

can jump to just past Equation (8.14) since the proof is identical till that
stage.2

We identify elements of [q] with vectors in Rq by replacing the symbol i
(1 ≤ i ≤ q) by the unit vector of length q with a 1 in position i. We then
associate elements in [q]n with vectors in Rnq by writing down the vectors for
each of the n symbols in sequence. This allows us to embed the codewords
of C as well as the received word r into Rnq. Let c1, c2, . . . , cM be all the
codewords that satisfy ∆(r, ci) ≤ R, where R is a parameter that will be set
shortly (it will end up being set to the Johnson radius as in Equation (8.7)).
By abuse of notation, let us denote by ci also the nq-dimensional real vector
associated with the codeword ci, for 1 ≤ i ≤ M (using the above mentioned
identification), and by r the vector corresponding to r ∈ [q]n. Let 1 ∈ Rnq be
the all 1’s vector. Now define v = αr + (1−α)

q 1 for a parameter 0 ≤ α ≤ 1 to
be specified later in the proof.

The idea behind the rest of the proof is the following. We will pick α so
that the nq-dimensional vectors di = (ci−v), for 1 ≤ i ≤M , have all pairwise
dot products less than 0. Geometrically speaking, we shift the origin O to
O′ where OO′ = v, and require that relative to the new origin the vectors
corresponding to the codewords have pairwise angles which are greater than
90 degrees. We will then exploit the geometric fact that for such vectors di,
for any vector w, the sum of the squares of its projections along the di’s
is at most 〈w,w〉 (this is proved in Lemma 8.6). This will then give us the
required bound (8.8).

For 1 ≤ i ≤ M , let ei = ∆(r, ci) be the Hamming distance between ci

and r. Note by the way we associate vectors with elements of [q]n, we have
〈ci, r〉 = n− ei. Now

〈ci,v〉 = α〈ci, r〉 +
(1 − α)

q
〈ci,1〉 = α(n− ei) + (1 − α)

n

q
(8.9)

〈v,v〉 = α2n+ 2(1 − α)α
n

q
+ (1 − α)2

n

q
=
n

q
+ α2

(
1 − 1

q

)
n (8.10)

〈ci, cj〉 = n−∆(ci, cj) ≤ n− d . (8.11)

Using (8.9), (8.10) and (8.11), we get for i �= j

〈di,dj〉 = 〈ci − v, cj − v〉 ≤ αei + αej − d+
(
1 − 1

q

)
(1 − α)2n

≤ 2αR− d+
(
1 − 1

q

)
(1 − α)2n (8.12)

Hence we have 〈di,dj〉 ≤ 0 as long as

R ≤ (1 − 1/q)n−
(
(1 − 1/q)

αn

2
+

(1 − 1/q)n− d

2α

)
.

2We prove this result here and not in Chapter 3 due to the local nature of its
context and use.

190 8 List Decoding of Concatenated Codes

Picking α =
√

1 − d/n
(1−1/q) =

√
1 − δ

(1−1/q) maximizes the “radius” R for
which our bound will apply. Hence we pick

α =
(
1 − δ

(1 − 1/q)

)1/2

. (8.13)

and

R = n
(
1 − 1

q

)(
1 −

√
1 − δ

(1 − 1/q)

)
= n

(
1 − 1

q

)
(1 − α) . (8.14)

For this choice of α,R, we have 〈di,dj〉 ≤ 0 for every 1 ≤ i < j ≤M . Now a
simple geometric fact, proved in Lemma 8.6 at the end of this proof, implies
that for any vector x ∈ Rnq that satisfies 〈x,di〉 ≥ 0 for i = 1, 2, . . . ,M , we
have

M∑
i=1

〈x,di〉2
〈di,di〉 ≤ 〈x,x〉 . (8.15)

We will apply this to the choice x = r. Straightforward computations show
that

〈r, r〉 = n (8.16)

〈di,di〉 = 〈ci − v, ci − v〉 = 2αei + (1 − α)2(1 − 1
q
)n (8.17)

〈r,di〉 = (1 − α)
(
1 − 1

q

)
n− ei = R− ei . (8.18)

Since each ei ≤ R, we have 〈r,di〉 ≥ 0 for each i, 1 ≤ i ≤ M , and therefore
we can apply Equation (8.15) above. For 1 ≤ i ≤M , define

Wi =
〈r,di〉√〈di,di〉

=
R − ei√

2αei + (1 − α)R
(8.19)

(the second step follows using (8.14), (8.17) and (8.18)). Since each ei ≤ R,
we have

Wi =
R− ei√

2αei + (1 − α)R
≥ R− ei√

(1 + α)R
=
R− ei√
δn

, (8.20)

where the last equality follows by substituting the values of α and R from
(8.13) and (8.14). Now combining (8.16), (8.17) and (8.18), and applying
Equation (8.15) to the choice x = r, we get

M∑
i=1

W 2
i ≤ n . (8.21)

Now from (8.20) and (8.21) it follows that
M∑
i=1

(R −∆(r, ci))2 ≤ δn2 . (8.22)

8.5 Decoding a General Concatenated Code 191

This clearly implies the bound (8.8) claimed in the statement of the proposi-
tion, since the codewords ci, 1 ≤ i ≤M , include all codewords c that satisfy
∆(r, c) ≤ R, and the remaining codewords contribute zeroes to the left hand
side of Equation (8.8). �
We now prove the geometric fact that was used in the above proof. Once
again the reader should feel to skip its proof and move on to the decoding
algorithm in the next section, since there is no harm taking its statement on
faith.

Lemma 8.6. Let v1,v2, . . . ,vM be distinct unit vectors in RN such that
〈vi,vj〉 ≤ 0 for 1 ≤ i < j ≤ M . Further, suppose x ∈ RN is a vector such
that 〈x,vi〉 ≥ 0 for each i, 1 ≤ i ≤M . Then

m∑
i=1

〈x,vi〉2 ≤ 〈x,x〉 (8.23)

Proof: Note that if 〈vi,vj〉 = 0 for every i �= j, then the vi’s form a linearly
independent set of pairwise orthogonal unit vectors. They may thus be ex-
tended to an orthonormal basis. The bound (8.23) then holds since the sum
of squares of projection of a vector on vectors in an orthonormal basis equals
the square of its norm, and hence the sum of squares when restricted to the
vi’s cannot be larger than 〈x,x〉. We need to show this holds even if the vi’s
are more than 90 degrees apart.

Firstly, we can assume 〈x,vi〉 > 0 for i = 1, 2, . . . ,M . This is because
if 〈x,vi〉 = 0, then it does not contribute to the left hand side of Equation
(8.23) and may therefore be discarded. In particular, this implies that we
may assume (vi �= −vj) for any 1 ≤ i, j ≤M . Since the vi’s are distinct unit
vectors, this means that |〈vi,vj〉| < 1 for all i �= j.

We will prove the claimed bound (8.23) by induction on M . When M = 1
the result is obvious. For M > 1, we will project the vectors v1, . . . ,vM−1,
and also x, onto the space orthogonal to vM. We will then apply the induction
hypothesis to the projected vectors and conclude our final bound using the
analog of (8.23) for the set of projected vectors. The formal details follow.

For 1 ≤ i ≤ M − 1, define v′
i = vi − 〈vi,vM〉vM. Since vi is different

from vM and −vM, each v′
i is a non-zero vector. Let ui be the unit vector

associated with v′
i. Let us also define x′ = x−〈x,vM〉vM. We wish to apply

the induction hypothesis to the vectors u1, . . . ,uM−1 and x′.
Now, for 1 ≤ i < j ≤ M − 1, we have 〈v′

i,v
′
j〉 = 〈vi,vj〉 −

〈vi,vM〉〈vj,vM〉 ≤ 〈vi,vj〉 ≤ 0, since all pairwise dot products between
the vi’s are non-positive. Hence the pairwise dot products 〈ui,uj〉, 1 ≤ i <
j ≤M −1, are all non-positive. To apply the induction hypothesis we should
also verify that 〈x′,ui〉 > 0 for i = 1, 2, . . . , (M − 1). It will be enough to
verify that 〈x′,v′

i〉 > 0 for each i. But this is easy to check since

192 8 List Decoding of Concatenated Codes

〈x′,v′
i〉 = 〈x,vi〉 − 〈x,vM〉 · 〈vi,vM〉
≥ 〈x,vi〉 (8.24)
> 0

where (8.24) follows since 〈x,vM〉 > 0 and 〈vi,vM〉 ≤ 0.
We can therefore apply the induction hypothesis to the (M − 1) unit

vectors u1,u2, . . . ,uM−1 and the vector x′. This gives

M−1∑
i=1

〈x′,ui〉2 ≤ 〈x′,x′〉 . (8.25)

Now, ‖v′
i‖2 = 〈v′

i,v
′
i〉 = 〈vi,vi〉 − 〈vi,vM〉2 ≤ ‖vi‖2 = 1 = ‖ui‖2. This

implies that 〈x′,v′
i〉 ≤ 〈x′,ui〉, for 1 ≤ i ≤ M − 1. Also, by (8.24) 〈x′,v′

i〉 ≥
〈x,vi〉, and therefore

〈x,vi〉 ≤ 〈x′,ui〉 , (8.26)

for i = 1, 2, . . . , (M − 1). Also, we have

〈x′,x′〉 = 〈x,x〉 − 〈x,vM〉2 . (8.27)

The claimed result now follows by using (8.26) and (8.27) together with the
inequality (8.25). �

8.5.2 The Formal Decoding Algorithm and Its Analysis

We are now ready to state and prove our result about decoding concatenated
codes with a general inner code.

Theorem 8.7. Consider a family of linear q-ary concatenated codes where
the outer codes belong to a family of Reed-Solomon codes of relative distance
∆ over a field of size at most polynomial in the blocklength, and the inner
codes belong to any family of q-ary linear codes of relative distance δ. There is
a polynomial time decoding procedure to list decode codes from such a family
up to a fractional radius of

(
1 − 1

q

)(
1 −

√
1 − qδ

q − 1

)
−
√
δ(1 −∆) . (8.28)

Proof: (Sketch) Consider a concatenated code C with outer code a Reed-
Solomon code over GF(qm) of blocklength n0, relative distance ∆ and di-
mension (1 −∆)n0 + 1. We assume qm ≤ n

O(1)
0 , so that the field over which

the Reed-Solomon code is defined is of size polynomial in the blocklength.
Let the inner code Cin be any q-ary linear code of dimension m, blocklength
n1 and relative distance δ. Messages of C correspond to polynomials of de-
gree at most k0 = (1 − ∆)n0 over GF(qm), and a polynomial p is encoded

8.5 Decoding a General Concatenated Code 193

as 〈Cin(p(x1)), . . . , Cin(p(xn0)〉 where x1, x2, . . . , xn0 are distinct elements of
GF(qm) that are used to define the Reed-Solomon encoding.

The proof parallels that of the earlier result (Theorem 8.2) where the
inner code was the Hadamard code. Let y ∈ Fn

q be a received word. For
1 ≤ i ≤ n0, denote by yi the portion of y in block i of the codeword (namely,
the portion corresponding to the encoding by Cin of the ith symbol of the
outer Reed-Solomon code).

We now perform the “decoding” of each of the n0 blocks yi as follows.
Let

R = n1(1 − 1/q)
(
1 −

√
1 − qδ

q − 1

)
(8.29)

be the Johnson radius of the inner code Cin. For 1 ≤ i ≤ n0 and α ∈ GF(qm),
compute the Hamming distance ei,α between yi and the codeword Cin(α), and
then compute the weight wi,α as:

wi,α
def= max{(R− ei,α), 0} . (8.30)

Note the computation of all these weights can be done by a straightforward
brute-force computation in O(n0n1q

m) = O(n1n
O(1)
0) = poly(n) time. Thus

all the inner decodings can be performed efficiently in polynomial time.
By Proposition 8.5 applied to the yi’s, for 1 ≤ i ≤ n0, we know that the

above weights have the crucial combinatorial property
∑
α

w2
i,α ≤ δn2

1 , (8.31)

for i = 1, 2, . . . , n0. We will then run the soft decoding algorithm for Reed-
Solomon codes from Theorem 6.26 for this choice of weights. Now, arguing
exactly as in the proof of Theorem 8.2 that and using (8.31) above, we con-
clude that we can find in time polynomial in n and 1/ε, a list of all polynomials
p over GF(qm) of degree at most k0 for which the condition

n0∑
i=1

(R− ei,p(xi)) ≥
√
k0n0δn2

1 + εn1 (8.32)

holds. Recalling the definition of R (Equation (8.29)) and using k0 = (1 −
∆)n0, we conclude that we can find a list of all codewords that are at a
Hamming distance of at most

n
(
1 − 1

q

)(
1 −

√
1 − qδ

q − 1

)
− n

√
δ(1 −∆) − εn1 ,

from y. Picking ε < 1/n1, we get decoding up to the claimed fraction of
errors. �

194 8 List Decoding of Concatenated Codes

Comment on the error-correction performance of above: The bound
of (8.28) is attractive only for very large values of ∆, or in other words when
the rate of the outer Reed-Solomon code is rather small. For example, for the
binary case q = 2, even for ∆ = 3/4, the bound does not even achieve the
product bound (namely, ∆δ/2), for any value of δ in the range 0 < δ < 1/2
(in fact, the bound as stated in (8.28) is negative unless ∆ is quite large).
However, the merit of the bound is that as ∆ gets very close to 1, the bound
(8.28) approaches the quantity (1−1/q)(1−

√
1 − qδ

q−1), and since the relative
designed distance of the concatenated code is ∆ · δ → δ, it approaches the
Johnson bound on list decoding radius. Therefore for ∆ → 1, the result of
Theorem 8.7 performs very well and decodes almost up to the Johnson bound,
and hence beyond the product bound, for almost the entire range of the inner
code distances 0 < δ < 1/2. In particular, for ∆ → 1 and δ → (1 − 1/q),
the bound tends to (1 − 1/q), permitting us to list decode up to close to the
maximum possible fraction (1 − 1/q) of errors.

Alternative Decoding Bound By slightly modifying the analysis used
in proving the combinatorial bound of Proposition 8.5, one can prove the
following alternative bound instead of (8.8).

∑
c∈C

(
max

{(
1 − ∆(r, c)

R̃
), 0

})2

≤ q

q − 1
, (8.33)

where we use the same notation as in the statement of Proposition 8.5 and
R̃ is defined as

R̃
def=

(
1 −

√
1 − qδ

q − 1

)2 (
1 − 1

q

)
n .

(The only change required in the proof is to replace the lower bound on
Wi from Equation (8.20) with the alternative lower bound Wi ≥ (

1 −
ei

R̃

)√
n(q − 1)/q, which follows easily from the definition of Wi in Equation

(8.19).)
Now, replacing the choice of weights in Equation (8.30) in the proof of

Theorem 8.7 by
wi,α

def= max
{(

1 − ei,α

R̃

)
, 0
}
,

and then using (8.33), we obtain a decoding algorithm to decode up to a
fraction

(
1 − 1

q

)(
1 −

√
1 − qδ

q − 1

)2(
1 −

√
1 −∆

(1 − 1/q)

)
(8.34)

of errors. This bound is positive whenever ∆ > 1/q, and in general appears
incomparable to that of (8.28). However, note that even for ∆ very close to
1, the bound (8.34) does not approach the Johnson bound, except for δ very

8.5 Decoding a General Concatenated Code 195

close to (1−1/q). But as with the bound (8.28), for ∆→ 1 and δ → (1−1/q),
the above tends to a fraction (1− 1/q) of errors. In particular, it can also be
used, instead of (8.28), to obtain the results outlined in the next section for
highly list decodable codes.

8.5.3 Consequence for Highly List Decodable Codes

We now apply Theorem 8.7 with a suitable choice of parameters to obtain
an alternative construction of codes list decodable to a fraction (1− 1/q− ε)
of errors and which have rate Ω(ε6). Compared to the construction of Corol-
lary 8.4 that was based on a concatenation of AG-codes with Hadamard
codes, the rate is slightly worse – namely by a factor of O(log(1/ε)). But the
following construction offers several advantages compared to that of Corol-
lary 8.4. Firstly, it is based on outer Reed-Solomon codes, and hence does not
suffer from the high construction and decoding complexity of AG-codes. In
particular, the claim of polynomial time decoding is unconditional and does
not depend on having access to precomputed advice information about the
outer code. Secondly, the inner code can be any linear code of large minimum
distance, and not necessarily the Hadamard code. In fact, picking a random
code as inner code will give a highly efficient probabilistic construction of the
code that has the desired list decodability properties with high probability.

In the next section (Section 8.6) we will present a construction of highly
list decodable codes of rate Ω(ε4). Even with this substantial improvement,
the bound proved in this section is not strictly subsumed. This is for two rea-
sons. Firstly, the results of Section 8.6 apply only to binary linear codes, where
as the result below applies to linear codes over any finite field Fq. Secondly,
while the deterministic construction complexity of both the constructions in
this section and the one with rate Ω(ε4) are almost similar (both of them
being fairly high), the codes of this section have very efficient probabilistic
constructions, where as we do not know a faster probabilistic construction
for the codes of Section 8.6. In conclusion, despite the improvement in rate
that will be obtained in Section 8.6, the construction presented next remains
interesting.

Theorem 8.8. For every fixed prime power q, the following holds: For ev-
ery ε > 0, there exists a family of linear codes over Fq with the following
properties:

(i) A description of a code of blocklength, say n, in the family can be con-
structed deterministically in nO(1/ε4) time. For probabilistic construc-
tions, a Las Vegas construction can be obtained in time which with
high probability will be O(n log n/ε4), or a Monte Carlo construction
that has the claimed properties with high probability can be obtained in
O(log n/ε4) time.

(ii) Its rate is Ω(ε6) and its relative minimum distance is (1−1/q−O(ε2)).

196 8 List Decoding of Concatenated Codes

(iii) There is a polynomial time list decoding algorithm for every code in the
family to perform list decoding up to a fraction (1 − 1/q − ε) of errors.

Proof: We will use Theorem 8.7 with the choice of parameters ∆ = 1−O(ε2)
and δ = 1−1/q−O(ε2). Substituting in the bound (8.28), the fraction of errors
corrected by the decoding algorithm from Section 8.5.2 will be (1− 1/q− ε),
which handles Property (iii) claimed above. Also, the relative distance of the
code is at least ∆ · δ, and is thus (1 − 1/q − O(ε2)), verifying the distance
claim in (ii) above. The outer Reed-Solomon code has rate 1 − ∆ = Ω(ε2).
For the inner code, if we pick a random linear code, then it will meet the
Gilbert-Varshamov bound (R = 1 − Hq(δ)) with high probability (cf. [193,
Chapter 5]). Therefore, a random inner code of rate Ω(ε4) will have relative
distance δ = 1 − 1/q − O(ε2), exactly as we desire. The overall rate of the
concatenated code is just the product of the rates of the Reed-Solomon code
and the inner code, and is thus Ω(ε2 · ε4) = Ω(ε6), proving Property (ii).

We now turn to Property (i) about the complexity of constructing
the code. We may pick the outer Reed-Solomon code over a field of size
at most O(n). Hence, the inner code has at most O(n) codewords and
thus dimension at most O(logq n). The inner code can be specified by its
O(logq n) × O(logq n/ε

4) generator matrix G. To construct an inner code
that has relative distance (1 − 1/q − O(ε2)), we can pick such a generator
matrix G at random, and then check, by a brute-force search over the at most
O(n) codewords, that the code has the desired distance. Since the distance
property holds with high probability, we conclude that the generator matrix
an inner code with the required rate and distance property can be found in
O(n log2 n/ε4) time with high probability. Allowing for a small probability
for error, a Monte Carlo construction can be obtained in O(log2 n/ε4) prob-
abilistic time by picking a random linear code as inner code (the claimed
distance and list decodability properties (ii), (iii) will then hold with high
probability). As the outer Reed-Solomon code is explicitly specified, this im-
plies that the description of the concatenated code can be found within the
same time bound.

A naive derandomization of the above procedure will require time which is
quasi-polynomial in n. But the construction time can be made polynomial by
reducing the size of the sample space from which the inner codes is picked. For
this, we note that, for every prime power q, there is a small sample space of
q-ary linear codes of any desired rate, called a “Wozencraft ensemble” in the
literature, with the properties that: (a) a random code can be drawn from this
family using a linear (in the blocklength) number of random elements from
Fq, and (b) such a code will meet the Gilbert-Varshamov bound with high
probability. We record this fact together with a proof as Proposition 8.10 at
the end of this section. Applying Proposition 8.10 for the choice of parameters
b = O(ε−4), k = O(logq n), and using the fact that for small γ, H−1

q (1 −
O(γ2)) is approximately (1− 1/q−O(γ)), we obtain a sample space of linear
codes of size qO(logq n/ε4) = nO(1/ε4) which includes a code of rate Ω(ε4)

8.5 Decoding a General Concatenated Code 197

and relative distance (1−1/q−O(ε2)). One can simply perform a brute-force
search for the desired code in such a sample space. Thus one can find an inner
code of rate Ω(ε4) and relative distance (1 − 1/q − O(ε2)) deterministically
in nO(1/ε4) time. Moreover, picking a random code from this sample space,
which works just as well as picking a general random linear code, takes only
O(log n/ε4) time. This reduces the probabilistic construction times claimed
earlier by a factor of logn. Hence a description of the overall concatenated
code can be obtained within the claimed time bounds. This completes the
verification of Property (i) as well. �
Obtaining an explicit construction: The high deterministic construction
complexity or the probabilistic nature of construction in Theorem 8.8 can be
removed at the expense of a slight worsening of the rate of the code. One
can pick for inner code an explicitly specified q-ary code of relative distance
(1−1/q−O(ε2)) and rate Ω(ε6). A fairly simple explicit construction of such
codes is known [6] (see also [164]). This will give an explicit construction of
the overall concatenated code with rate Ω(ε8). We record this below.

Theorem 8.9. For every fixed prime power q, the following holds: For every
ε > 0, there exists a family of explicitly specified linear codes over Fq with
the following properties:

(i)Its rate is Ω(ε8) and its relative minimum distance is (1 − 1/q −O(ε2)).
(ii)There is a polynomial time list decoding algorithm for every code in the

family to perform list decoding up to a fraction (1 − 1/q − ε) of errors.

A Small Space of Linear Codes Meeting the Gilbert-Varshamov
Bound We now turn to the result about a small space of linear codes meeting
the Gilbert-Varshamov bound. Such an ensemble of codes is referred to as a
“Wozencraft ensemble” in the literature. Recall that we made use of such a
result in the proof of Theorem 8.8.

Proposition 8.10 (cf. [197]). For every prime power q, and every integer
b ≥ 1, the following holds. For all large enough k, there exists a sample space,
denoted Sq(b, n) where n def= (b+ 1)k, consisting of [n, k]q linear codes of rate
1/(b+ 1) such that:

(i) There are at most qbn/(b+1) codes in Sq(b, n). In particular, one can pick
a code at random from Sq(b, n) using at most O(n log q) random bits.

(ii) A random code drawn from Sq(b, n) meets the Gilbert-Varshamov bound,
i.e. has minimum distance n ·H−1

q

(
b

b+1 − o(1)
)
, with overwhelming (i.e.

1 − o(1)) probability.

Proof: The fact that a code that meets the Gilbert-Varshamov bound can be
picked by investing a linear amount of randomness is by now a folklore result.
The proof we present here follows the construction due to Weldon [197], which
in turn was a generalization of a construction for the rate 1/2 case that

198 8 List Decoding of Concatenated Codes

Justesen used in the first explicit construction of a family of asymptotically
good binary codes [110].

Let α be a primitive element of the finite field GF(qk), so that {αi : 0 ≤
i < qk − 1} are all the non-zero elements of GF(qk). A code in Sq(b, n) will
be specified by a b-tuple Ib = (i0, i1, . . . , ib−1) where each is, 0 ≤ s ≤ b−1, is
an integer that satisfies 0 ≤ is ≤ qk − 1. Note that there are qkb = qbn/(b+1)

codes in the sample space Sq(b, n), since there are exactly so many b-tuples.
A random code in Sq(b, n) can be picked by choosing a random b-tuple Ib.
Hence the sample space Sq(b, n) meets the requirement (i).

A message a ∈ Fk
q , will be encoded by a code indexed by a b-tuple

(i0, i1, . . . , ib−1) as follows: view a as a field element γ ∈ GF(qk) (us-
ing some fixed representation of GF(qk) over GF(q)), then encode it as
〈γ, γαi0 , γαi1 , . . . , γαib−1 〉. This gives a (b + 1)-tuple over GF(qk) or equiva-
lently a word of length (b+ 1)k = n over GF(q), as desired.

The crucial observation used to prove (ii) is the following. Any non-zero
vector v ∈ Fn

q can belong to at most one of the codes in Sq(b, n). Indeed, it
is easily checked that the b-tuple associated with a code containing v can be
uniquely reconstructed from v. Property (ii) is now a simple consequence of
this fact. Indeed, the number of vectors v ∈ Fn

q of Hamming weight at most
w is at most qHq(w/n)n (see for example [193, Chapter 1]). Applying this to
w = d

def= n ·H−1
q

(
b

b+1 − ζ
)
, the number of vectors of Hamming weight less

than or equal to d is at most q(
b

b+1−ζ)n. Since a non-zero vector belongs to at
most one code among those in Sq(b, n), this implies that the fraction of codes
in Sq(b, n) that have some non-zero codeword of weight less than or equal to
d is at most q−ζn. Picking ζ = o(1), say 1/

√
n, we conclude that a random

code from Sq(b, n) has minimum distance greater than n ·H−1
q

(
b

b+1 − o(1)
)

with very high (i.e., (1 − o(1)) probability. �

8.6 Improved Rate Using Tailor-Made Concatenated
Code

We now proceed to a construction of highly list decodable codes that im-
proves over the rate of ε6 that was achieved by Theorem 8.8 (and also by
Corollary 8.4). The results of this section apply only to binary linear codes.
Recall that binary codes that can be list decoded from (1/2− ε) errors using
polynomial sized lists can have rate at best Ω(ε2). We will be able to attain
a rate of Ω(ε4). The formal result is stated below.

Theorem 8.11. There exist absolute constants b, d > 0 such that for each
fixed ε > 0, there exists a polynomial time constructible binary linear code
family C with the following properties:

1. A code of blocklength N from the family C can be constructed in NO(1/ε2)

time deterministically.

8.6 Improved Rate Using Tailor-Made Concatenated Code 199

2. The rate R(C) of C is at least ε4

b , and its relative distance δ(C) is at least
(1/2 − ε).

3. There is a polynomial time list decoding algorithm that can list decode
codes in C from up to a fraction (1/2− ε) of errors, using lists of size at
most d/ε2. �

The above theorem will follow from Theorem 8.14, which is stated and proved
in Section 8.6.2. The basic idea is to use a concatenated code with the outer
code being a Reed-Solomon code and the inner code being a “tailor-made”
one. The inner code will be chosen so that it possesses a rather peculiar
looking combinatorial property, which is formalized in Lemma 8.12. This
property will be very useful when it is used in conjunction with the soft
decoding algorithm for Reed-Solomon codes (Theorem 6.26). We first turn
to the existence and construction of the necessary inner code.

8.6.1 The Inner Code Construction

Existence of a “Good” Code We now prove the existence of codes that
will serve as excellent inner codes in our later concatenated code construction.
The proof is an adaptation of that of Theorem 5.8. We will then show how
such a code can be constructed in 2O(n) time (where n is the blocklength)
using an iterative greedy procedure.

Lemma 8.12. There exist absolute constants σ,A > 0 such that for any
ε > 0 there exists a binary linear code family C with the following properties:

1. The rate of the family satisfies R(C) = σε2

2. For every code C ∈ C and every x ∈ {0, 1}n where n is the blocklength of
C, we have ∑

c∈C
∆(x,c)≤(1/2−ε)n

(
1 − 2∆(x, c)

n

)2

≤ A . (8.35)

Proof: For every large enough n, we will prove the existence of a binary linear
code Ck of blocklength n and dimension k ≥ σε2n which satisfies Condition
(8.35) for every x ∈ {0, 1}n.

The proof will follow very closely the proof of Theorem 5.8 and in par-
ticular we will again build the code Ck iteratively in k steps by randomly
picking the k linearly independent basis vectors b1, b2, . . . , bk in turn. De-
fine Ci = span(b1, . . . , bi) for 1 ≤ i ≤ k (and define C0 = {0}). The key
to our proof is the following potential function WC defined for a code C of
blocklength n (compare with the potential function (5.12) from the proof of
Theorem 5.8):

WC =
1
2n

∑
x∈{0,1}n

exp2

 n

A
·

∑
c∈C:∆(x,c)≤(1/2−ε)n

(
1 − 2∆(x, c)

n

)2

 , (8.36)

200 8 List Decoding of Concatenated Codes

where, for readability, we used exp2(z) to denote 2z. (The constant A will be
fixed later in the proof, and we assume that A > ln 4.) Denote the random
variable WCi by the shorthand Wi. For x ∈ {0, 1}n, define

Ri
x =

∑
c∈Ci

∆(x,c)≤(1/2−ε)n

(
1 − 2∆(x, c)

n

)2

, (8.37)

so that
Wi = 2−n

∑
x

exp2

(n
A

· Ri
x

)
.

Now, exactly as in the proof of Theorem 5.8, we have Ri+1
x = Ri

x+Ri
x+bi+1

when bi+1 is picked outside the span of {b1, b2, . . . , bi}. Now, arguing as in
the proof of Theorem 5.8, one can deduce that

E[Wi+1|Wi = Ŵi] ≤ Ŵ 2
i

1 − 2i−n
. (8.38)

when the expectation is taken over a random choice of bi+1 outside
span(b1, . . . , bi).

Applying (8.38) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there
exists an [n, k]2 binary linear code C = Ck with

WC = Wk ≤ W 2k

0

1 − k2k−n
. (8.39)

If we could prove, for example, that WC = O(1), then this would imply, using
(8.36), that Rk

x ≤ A for every x ∈ {0, 1}n and thus C would satisfy Condition
(8.35), as desired. To show this, we need an estimate of (upper bound on)
W0, to which we turn next.

Define a = (1/2 − ε)n. Since C0 consists of only the all-zeroes codeword,
we have R0

x = (1 − 2wt(x)/n)2 if wt(x) ≤ a and R0
x = 0 otherwise (here we

use wt(x) = ∆(x,0) to denote the Hamming weight of x). We now have

W0 = 2−n
∑

x∈{0,1}n

exp2

(n
A
R0

x

)

≤ 1 + 2−n
a∑

i=0

(
n

i

)
exp2

(n
A

(
1 − 2i

n

)2)

≤ 1 + n2−n exp2

(
max
0≤i≤a

{
H
(i
n

)
n+

4n
A

(1
2
− i

n

)2})

≤ 1 + n2un (8.40)

where u def= max0≤y≤(1/2−ε)

{
H(y) − 1 + 4

A (1
2 − y)2

}
. We now claim that for

every y, 0 ≤ y ≤ 1/2, we have H(y) ≤ 1 − 2
ln 2 (1

2 − y)2. One way to prove
this is to consider the Taylor expansion around 1/2 of H(y), which is valid

8.6 Improved Rate Using Tailor-Made Concatenated Code 201

for the range 0 ≤ y ≤ 1/2. We have H ′(1/2) = 0 and H ′′(1/2) = −4/ ln 2.
Also it is easy to check that all odd derivatives of H(y) at y = 1/2 are non-
negative while the even derivatives are non-positive. Thus H(y) ≤ H(1/2)−
H ′′(1/2) (1/2−y)2

2 = 1 − 2
ln 2 (1

2 − y)2. Therefore

u ≤ max
0≤y≤(1/2−ε)

(4
A

− 2
ln 2

)(1
2
− y
)2

= −4
(1

ln 4
− 1
A

)
ε2 , (8.41)

since A > ln 4. Combining (8.39), (8.40) and (8.41), it is now easy to argue
that we will have WC = Wk = O(1) as long as k < −un, which will be
satisfied if k < 4(1

ln 4 − 1
A)ε2n. Thus the statement of the lemma holds, for

example, with A = 2 and σ = 0.85. � (Lemma 8.12)

Remark: Arguing exactly as in the remark following the proof of Theo-
rem 5.8, one can also add the condition δ(C) ≥ (1/2 − ε) to the claim of
Lemma 8.12. The proof will then pick bi+1 randomly from among all choices
such that span(b1, b2, . . . , bi+1) ∩B(0, (1

2 − ε)n) = ∅.

A Greedy Construction of the “Inner” Code We now discuss how a
code guaranteed by Lemma 8.12 can be constructed in a greedy fashion. We
will refer to some notation that was used in the proof of Lemma 8.12. The
algorithm works as follows:

Algorithm Greedy-Inner:

Parameters: Dimension k; ε,A > 0 (where A is the absolute constant from
Lemma 8.12)

Output: A binary linear code C = Greedy(k, ε) with dimension k, block-
length n = O(k/ε2) and minimum distance at least (1/2 − ε)n such that for
every x ∈ {0, 1}n, Condition (8.35) holds.

1. Start with b0 = 0.
2. For i = 1, 2, . . . , k:

– Let Ui = {x ∈ {0, 1}n : span(b1, b2, . . . , bi−1, x)∩B(0, (1/2−ε)n) = ∅ }.
– Pick bi ∈ Ui that minimizes the potential functionWi = 2−n

∑
x 2

n
A ·Ri

x ,
where Ri

x is as defined in Equation (8.37) (break ties arbitrarily)
3. Output C = span(b1, b2, . . . , bk).

The following result easily follows from the proof of Lemma 8.12 since each
of the k iterations of the for loop above can be implemented to run in 2O(n)

time.

Lemma 8.13. Algorithm Greedy-Inner constructs a code Greedy(k, ε)
with the desired properties in k · 2O(n) time.

202 8 List Decoding of Concatenated Codes

8.6.2 The Concatenated Code and the Decoding Algorithm

The statement of Theorem 8.11 that we set out to prove, follows immedi-
ately from the concatenated code construction guaranteed by the following
theorem.

Theorem 8.14. There exist absolute constants b, d > 0 such that for every
integer K and every ε > 0, there exists a concatenated code CK

def= RS⊕
Greedy(m, ε/2) (for a suitable parameter m) that has the following proper-
ties:

1. CK is a linear code of dimension K, blocklength N ≤ bK
ε4 , and minimum

distance at least (1
2 − ε)N .

2. The generator matrix of CK can be constructed in NO(ε−2) time.
3. CK is ((1

2 − ε)N, d/ε2)-list decodable; i.e. any Hamming ball of radius
(1/2 − ε)N has at most O(ε−2) codewords of CK .

4. There exists a polynomial time list decoding algorithm for CK that can
correct up to (1/2 − ε)N errors.

Proof: The code CK is constructed by concatenating an outer Reed-Solomon
code CRS over GF(2m) of blocklength n0 = 2m and dimension k0 = K/m
(for some integer m which will be specified later in the proof) with an inner
code Cinner = Greedy(m, ε/2) (as guaranteed by Lemma 8.13). Since the
blocklength of Cinner is n1 = O(m

ε2), the concatenated code CK has dimension
K and blocklength

N = n0n1 = O
(n0m

ε2

)
. (8.42)

and minimum distance D at least

D ≥ N
(
1 − K

mn0

)(1
2
− ε

2

)
. (8.43)

For ease of notation, we often hide constants using the big-Oh notation in
what follows, but in all these cases the hidden constants will be absolute
constants that do not depend upon ε. By Lemma 8.13, Cinner is constructible
in 2O(n1) = 2O(m/ε2) time, and since m = lgn0, the generator matrix for CK

can be constructed in NO(ε−2) time. This proves Property 2 claimed in the
theorem.

We will now present a polynomial time list decoding algorithm for CK

to correct a fraction (1/2 − ε) of errors using lists of size O(1/ε2). This will
clearly establish both Properties 3 and 4 claimed in the theorem.

The decoding algorithm will follow the same approach as that of Theo-
rems 8.2 and 8.7. Let y ∈ {0, 1}N be any received word. We wish to find a
list of all codewords c ∈ CK such that ∆(y, c) ≤ (1/2− ε)N . For 1 ≤ i ≤ n0,
denote by yi the portion of y in block i of the codeword (i.e. the portion
corresponding to the encoding by Cinner of the ith Reed-Solomon symbol).

8.6 Improved Rate Using Tailor-Made Concatenated Code 203

Now, consider the following decoding algorithm for CK . First, the inner
codes are decoded by a brute force procedure that goes over all codewords.
Specifically, for each position i, 1 ≤ i ≤ n0, of the outer Reed-Solomon code,
and for each α ∈ GF(2m), the inner decoder computes a set of weights wi,α

defined by:

wi,α = max
{(1

2
− ε

2
−∆

(
yi, Cinner(α)

))
, 0
}

(8.44)

Once again all the n0 inner decodings can be performed in O(n0 ·2m ·m/ε2) =
O(n2

0m/ε
2) time, and thus certainly in O(N2) time.

These weights are then passed to the soft decoding algorithm for Reed-
Solomon codes from Theorem 6.26. To analyze the performance of the soft
decoding algorithm, we will make use of the crucial combinatorial property
of Cinner which is guaranteed by Lemmas 8.12 and 8.13. Using this property
of Cinner, we have, for each i, 1 ≤ i ≤ n0,

∑
α∈GF(2m)

w2
i,α ≤ B′ , (8.45)

for some absolute constant B′.
Using the soft decoding algorithm to complete the decoding implies that

one can find, in time polynomial in n0 and 1/γ, a list of all codewords c ∈ CK

that satisfy

n0∑
i=1

wi,ci ≥
√√√√
(
n0 − n0 −K/m+ 1

1 + γ

)
·
∑
i,α

w2
i,α . (8.46)

In the above, γ > 0 is a parameter to be set later, and we have abused notation
to denote wi,ci = wi,αi where αi ∈ GF(2m) is such that Cinner(αi) = ci.

The soft decoding algorithm, used as stated in Theorem 6.26, can decode
even with the choice γ = 0 in the above Condition (8.46). However, with
a positive value of γ, we can appeal to the weighted Johnson bounds from
Chapter 3, specifically the result stated in Part (ii) of Corollary 3.7, to con-
clude that there will be at most (1+1/γ) codewords c that satisfy Condition
(8.46) for any choice of weights wi,α. Hence, our decoding algorithm, too, will
output only a list of at most O(1/γ) codewords.

We now analyze the number of errors corrected by the algorithm. Using
(8.44) and (8.45), we notice that Condition (8.46) will be satisfied if

n0∑
i=1

(1
2
− ε

2
− ∆(yi, ci)

n1

)
≥
√(

γn0 +
K

m

)
· n0B′

⇐= ∆(y, c) ≤ N

(
1
2
− ε

2
−
√
B′
(
γ +

K

mn0

))

⇐= ∆(y, c) ≤
(1

2
− ε
)
N ,

204 8 List Decoding of Concatenated Codes

where the last step holds as long as we pick γ ≤ ε2

8B′ and m such that

K

mn0
=

K

m2m
≤ ε2

8B′ . (8.47)

Thus we have a decoding algorithm that outputs a list of all O(1/γ) = O(ε−2)
codewords that differ from y in at most (1/2−ε)N positions. This establishes
Properties 3 and 4 claimed in the theorem.

Also, by (8.47), we have mn0 = O(K/ε2). Plugging this into (8.42) and
(8.43), we have that the blocklength N of CK satisfies N = O(K/ε4) and the
distance D satisfies D ≥ (1/2−ε)N . This establishes Property 1 as well, and
completes the proof of the theorem. �

Discussion: The time required to construct a code with the properties
claimed in Theorem 8.14, though polynomial for every fixed ε, grows as
NO(ε−2). It is desirable to obtain a construction time of the form O(f(ε)nc)
where c is a fixed constant independent of ε, for some arbitrary function f .
A family whose codes can be constructed within such time bounds is often
referred to as being uniformly constructive (see [6] for a formal definition).

If one uses the best known algebraic-geometric codes (namely those dis-
cussed in Section 6.3.9) as the outer code instead of Reed-Solomon codes, one
can carry out the code construction of Theorem 8.14 in 2O(ε−2 log(1/ε))N c time
for a fixed constant c (the constant c will depend upon the time required to
construct the outer algebraic-geometric code). This is not entirely satisfying
since the construction complexity of the necessary algebraic-geometric codes
is still quite high. A further drawback is that the promise of a polynomial time
decoding algorithm will hinge on assumptions about specific representations
of the AG-code.

The construction of Theorem 8.8 had a similar drawback in terms of high
deterministic construction time. Nevertheless, it had a highly efficient proba-
bilistic construction that had the claimed properties with high probability. A
similar probabilistic construction for the codes of Theorem 8.11 is not known.
The reason for this is that the existence result of Lemma 8.12 is not known
to hold with high probability for a random code (unlike the situation in The-
orem 8.8 where it is known that the rate vs. distance trade-off of a random
linear code meets the Gilbert-Varshamov bound with high probability). Thus
the following is an interesting open question:

Question 8.15. 1. Is there a randomized (Monte Carlo) construction of a
family of binary linear codes of rate Ω(ε4) list decodable up to a fraction
(1/2 − ε) of errors, that runs in, say, quadratic time in the blocklength?

2. Is there a uniformly constructive family of binary linear codes which can
be list decoded efficiently from a fraction (1/2− ε) errors and which have
rate Ω(ε4) or better?

8.7 Open Questions 205

8.7 Open Questions

In addition to the above, there are two central open questions regarding the
contents of this chapter. These are listed below.

Question 8.16. Let C be a q-ary concatenated code of designed distance ∆ · δ
with the outer code being a Reed-Solomon code of relative distance ∆, and
the inner code being an arbitrary q-ary code of relative distance δ. Is there
a polynomial time list decoding algorithm for C to decode up to its Johnson
radius? In other words, is there a polynomial time algorithm to list decode
up to a fraction (1 − 1/q)

(
1 −

√
1 − ∆·δ

(1−1/q)

)
of errors?

In fact the following “easier” question is also open. As mentioned earlier,
the GMD algorithm can be used to unique decode such codes up to the
product bound (i.e. a fraction ∆δ/2 of errors) in polynomial time [59, 110].
The question below simply asks if one can always, for every concatenated code
with an outer Reed-Solomon code, perform efficient list decoding beyond the
product bound.

Question 8.17. Let C be a q-ary concatenated code of designed distance ∆ · δ
with the outer code being a Reed-Solomon code of relative distance ∆, and
the inner code being an arbitrary q-ary code of relative distance δ. Is there
a polynomial time list decoding algorithm for C to decode up to a fraction
f(∆, δ) of errors, where f is a real-valued function that takes values in [0, 1−
1/q) and which satisfies f(∆, δ) > ∆δ

2 in the entire range 0 < ∆ < 1 and
0 < δ < 1 − 1/q ? In other words, is there a polynomial time algorithm to
always list decode such concatenated codes beyond the product bound ?

Finally, we state the open question concerning the best rate of a construc-
tive family of binary codes with very high list decodability.

Question 8.18. Is there a polynomial time constructible family of binary codes
which have rate Ω(εa) for some a < 4 and which have a polynomial time list
decoding algorithm to decode up to a fraction (1/2 − ε) of errors ?

We know that existentially a = 2 is achievable and that this is the best
possible.

We note that even if Question 8.16 is answered in the affirmative, the rate
achievable for a list decoding radius of (1 − 1/q − ε) is only O(ε6 log(1/ε)).
This is because we need to have ∆ = 1 − O(ε2) and δ = (1 − 1/q − O(ε2))
in order for the Johnson radius to be (1 − 1/q − ε). The former implies that
the rate of the Reed-Solomon code is O(ε2) and the latter, by appealing to
the linear programming bounds [139], implies that the rate of the inner code
is O(ε4 log(1/ε)). The overall rate is thus at most O(ε6 log(1/ε)). An answer
in the affirmative to Question 8.18, therefore, has to either not be based on
concatenation at all, or must use a special purpose construction, akin to the

206 8 List Decoding of Concatenated Codes

one in Section 8.6, which can be list decoded beyond its Johnson radius. In
the next chapter, we will present a probabilistic construction with Ω(ε3) rate,
but the decoding time will be sub-exponential as opposed to polynomial.

8.8 Bibliographic Notes

Concatenated codes were defined and studied extensively in the seminal
Ph.D. work of Forney [59], and by now have deservedly become standard
textbook material. Forney [60] developed a Generalized Minimum Distance
(GMD) decoding algorithm for Reed-Solomon codes, and used it as a soft de-
coding algorithm to decode concatenated schemes with outer Reed-Solomon
code. He presented a detailed estimation of the probability of decoding er-
ror for such a scheme. Justesen [110] used a concatenated scheme to give
the first explicit construction of an asymptotically good binary code family,
thereby refuting the popular myth existing at that time that explicitly spec-
ified codes would probably never be asymptotically good. Justesen also gave
an algorithm using GMD decoding to decode his concatenated codes up to
the product bound (i.e. half the designed distance). In fact, his result im-
plicitly shows that any concatenated code whose outer code has an efficient
errors-and-erasures decoding algorithm (which in turn implies a GMD algo-
rithm by results of Forney [60]) can be uniquely decoded up to the product
bound. The GMD based algorithm for unique decoding concatenated codes
up to the product bound is also described in detail in Appendix A of this
book.

The inner decoding stage in all these algorithms passed to the outer Reed-
Solomon decoder at most one field element together with an associated weight
(confidence information) for each outer codeword position. This was also the
case in a recent work of Nielsen [145] who investigated in detail decoding
algorithms for concatenated codes where the inner code is decoded uniquely
but instead of the GMD algorithm, the weighted list decoding algorithm
(from Chapter 6) is used for decoding the outer Reed-Solomon code. In con-
trast, in the algorithms discussed in this chapter, the inner decoders pass
to the outer Reed-Solomon decoder not one, but several field elements, each
with an associated weight, as candidate symbols for each position. We should
mention that Nielsen [145] also considers a decoding algorithm where the in-
ner codes are list decoded beyond half the minimum distance, but does not
present a quantitative analysis of such an algorithm. Indeed to perform such
an analysis one needs at least a partial knowledge of the weight distribution
of cosets of the inner code, which is a highly non-trivial task in itself. The
result of Proposition 8.5 from this chapter provides a non-trivial, and appar-
ently new, bound on the weight distribution of cosets given the knowledge
of only the minimum distance of the code. We believe, though, that to really
reap the benefits of the soft Reed-Solomon decoder in concatenated code con-
structions, one must use special purpose inner codes for which we have good

8.8 Bibliographic Notes 207

bounds on the weight distributions of cosets. In fact, our results in Section 8.6
follow this approach, but we believe there is still lots of improvements to be
made.

The decoding algorithms from Section 8.4 when the inner code is the
Hadamard code appear in [89]. The results of Section 8.5 appear in [90]. The
code construction and decoding algorithm of Section 8.6 appear in [80].

	8.1 Introduction
	8.2 Context and Motivation of Results
	8.3 Overview of Results
	8.4 Decoding Concatenated Codes with Inner Hadamard Code
	8.5 Decoding a General Concatenated Code with Outer Reed-Solomon or AG-code
	8.6 Improved Rate Using Tailor-Made Concatenated Code
	8.7 Open Questions
	8.8 Bibliographic Notes

