
7 A Unified Framework for List Decoding of

Algebraic Codes

Be wise! Generalize!
Piccayune [sic] Sentinel

7.1 Introduction

In the previous chapter we presented list decoding algorithms for two widely-
studied families of algebraic codes: Reed-Solomon codes and AG-codes. Ow-
ing to the importance of these codes, these results can be viewed as providing
strong evidence to the general utility of list decoding as an algorithmic no-
tion. Indeed, as we shall see in future chapters, they set the stage for a whole
body of results about list decoding.

The reader might have already noticed a great deal of similarity between
the general structure of the decoding algorithms for Reed-Solomon codes and
AG-codes. Since Reed-Solomon codes are a special instance of AG-codes, the
decoding algorithm for AG-codes is just a generalization of the Reed-Solomon
decoding algorithm, and this should explain the great deal of similarity be-
tween the algorithms. In this chapter, we will present a further generalization
of the decoding algorithm by presenting a unified algorithm for soft decod-
ing a general family of algebraic codes (which we call ideal-based codes). The
decoding algorithms for Reed-Solomon and AG-codes are then just special
cases of this general paradigm. Such a unified framework for list decoding is
important for two reasons. Firstly, such unifications are elegant and highlight
the essence of the idea without any vagaries that might result from a specific
situation. Secondly, it reduces the list decoding problem for specific instan-
tiations of ideal-based codes, including the Reed-Solomon and AG-codes we
studied in the previous chapter, to the efficient implementation of certain
core algorithmic steps when applied to the specific context in question. To
illustrate this point, after developing the general list decoding algorithm, we
will apply it to a “new” situation, namely to list decoding Chinese Remainder
codes (henceforth, CRT codes).

Recall that CRT codes, also called Redundant Residue codes, are the
number-theoretic analog of Reed-Solomon codes. They are defined by picking
n relatively prime integers p1 < p2 < · · · < pn. The messages m of the code

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 147-175, 2004.
 Springer-Verlag Berlin Heidelberg 2004

148 7 A Unified Framework for List Decoding of Algebraic Codes

are integers in the range 0 ≤ m <
∏k

i=1 pi for some k, 1 ≤ k < n. A messagem
is encoded by its residues modulo all the pi’s, i.e., m �→ 〈m mod p1,m mod
p2, . . . ,m mod pn〉. By the Chinese Remainder theorem, the message m is
uniquely specified by any k of its residues modulo p1, p2, . . . , pn, and hence the
above forms a redundant encoding of the message m. Indeed, this argument
shows that two codewords (corresponding to encodings of m1,m2 with m1 �=
m2) differ in at least (n − k + 1) positions. Hence, the distance of the code
can be shown to equal (n− k + 1).

There has been a lot of interest in decoding CRT codes [133, 134, 72, 31],
but all these works fall short of list decoding CRT codes up to the Johnson
radius, and in fact even fall short of decoding to half the minimum distance
in general.1

Our general weighted list decoding algorithm for ideal-based codes, when
applied to the case of CRT codes with a specific choice of weights (the ex-
act choice ends up being a non-trivial guess), almost immediately gives an
improvement to the prior results and decodes up to close to the Johnson
bound. In fact, by choosing the parameters in the algorithm appropriately,
the algorithm can decode up to the corresponding “weighted” Johnson bound
(see Theorem 7.10) for every choice of weights. We also give a more efficient
algorithm based on the Generalized Minimum Distance (GMD) decoding, to
decode CRT codes up to half the minimum distance. GMD decoding was
first discovered by Forney [60], who applied it to the soft decoding of Reed-
Solomon codes.

We should mention here that by the very nature of the topic, the contents
of this chapter are somewhat heavy on algebra. The results of this chapter
put the algorithms from the previous chapter in a unified context and thus
elucidate them better, but they are not necessary to the understanding of
the results in the following chapters.

7.1.1 Overview

We begin in the next section by discussing the necessary preliminaries and
terminology from commutative algebra concerning rings and ideals. These
will be necessary for the definition of ideal-based codes and in the develop-
ment of the list decoding algorithm for ideal-based codes. In Section 7.3 we
give a formal definition of ideal-based codes and explain how Reed-Solomon
codes, AG-codes and CRT codes can all be obtained as specific examples
of ideal-based codes. In Section 7.4 we enlist some basic assumptions about
the underlying rings and ideals, and prove the basic distance property of
ideal-based codes. We add some further assumptions and develop a general

1This limitation is for the Hamming metric of measuring distance between the
received word and the codewords. Indeed, the result of [72] provides a list decoding
algorithm to decode up to the Johnson bound for a certain “natural” weighting of
codeword positions of the CRT code.

7.2 Preliminaries 149

weighted (soft) list decoding algorithm for ideal-based codes in Section 7.5.
We then apply the results to the specific context of CRT codes in Section 7.6
and obtain a polynomial time soft decoding algorithm for CRT codes. We
then apply it to specific interesting choices of weights to deduce results for
CRT codes that decode up to the Johnson bound. Finally, in Section 7.7, we
discuss the GMD decoding algorithm to decode CRT codes up to half the
minimum distance.

7.2 Preliminaries

We quickly recall the basic algebraic definitions necessary for this chapter.
If necessary, the reader can find further details and examples in any of the
standard algebra texts (eg. [14]).

Rings: A ring is an algebraic structure (R,+, ·) consisting of a set R together
with two binary operations (+, ·), normally called addition and multiplication
respectively, which satisfy the following axioms:

– R is an abelian group under the operation +, with identity denoted by 0.
This abelian group is denoted by R+.

– R is closed under the operation ·, and ∀ x, y, z ∈ R we have
– x · y = y · x (Commutativity)
– x · (y · z) = (x · y) · z (Associativity)
– x · (y + z) = x · y + x · z (Distributive property of · over +)

– There exists an identity element for multiplication, denoted by 1, which
satisfies 1 · x = x · 1 = x for every x ∈ R.

The terminology relating to rings is not completely standardized. In some
texts, rings are defined without the requirement of the commutativity of
multiplication and/or the existence of the multiplicative identity 1. In their
terminology, the above definition will correspond to a subclass of rings called
commutative rings with identity. We will work exclusively with commutative
rings with identity, and hence we included these axioms in our definition of
rings.

A ring is said to be an integral domain if a ·b = 0 implies that either a = 0
or b = 0 or both. All rings we deal with will be integral domains.

A field is a ring together with the additional property that for every
non-zero element x ∈ R, there exists a unique inverse x−1 ∈ R such that
x ·x−1 = x−1 ·x = 1. In other words, a field is a ring whose non-zero elements
form an abelian group under the multiplication operation.

Ideals:
An ideal I of a ring R is, by definition, a subset of R with the following

properties:

(i) I is a subgroup of R+.
(ii) If a ∈ I and r ∈ R, then r · a ∈ I.

150 7 A Unified Framework for List Decoding of Algebraic Codes

In any ring, the set of multiples of a particular element a forms an ideal called
the principal ideal generated by a, and is denoted (a). The set consisting of
0 alone is always an ideal called the zero ideal, and is denoted (0). Likewise,
the whole ring R is also an ideal (generated by the element 1), called the unit
ideal, and is denoted (1).

One can define sum, product and intersection operations on ideals as
follows. The intersection of ideals I, J is simply their intersection as subsets
of R. The sum of I, J is defined as I + J = {a + b : a ∈ I and b ∈ J}. The
product of I and J , denoted I · J (or, IJ), is defined to be all finite linear
combinations of the form a1b1+a2b2+ . . .+ambm where each ai ∈ I and each
bi ∈ J . In other words, IJ is the smallest ideal which contains all elements of
the form ab where a ∈ I and b ∈ J . It is easily checked that if I, J are ideals
of R, then so are I ∩ J , I + J and IJ . Note that for every pair of ideals I
and J , IJ ⊆ I ∩ J . For an ideal I, the power ideal In, for n ≥ 1, is defined
in the obvious way as: In = I if n = 1, and In = I · In−1 if n > 1.

Quotient rings: Let I be an ideal of a ring R. Consider the relation on R
defined by a ∼ b if a − b ∈ I. It is easily checked that ∼ is an equivalence
relation, and therefore it partitions R into equivalence classes. These equiv-
alence classes are called the cosets of the ideal I. For a ∈ R, we denote by
a/I the coset to which a belongs. The set of cosets of I themselves form a
ring, denoted R/I, by inheriting the addition and multiplication operations
from R. Specifically, one defines (+, ·) for R/I by: a/I+ b/I

def= (a+ b)/I and
a/I ·b/I def= (a ·b)/I. It is easy to check that these operations are well-defined
and that R/I forms a ring under these operations. The ideals of R/I are in
one-one correspondence with the ideals of R that contain I.

As an example, if R = Z and I = (n) is the ideal generated by n, then
R/I = Z/(n) is the ring of integers modulo n.

Prime and Maximal Ideals:

An ideal I of a ring R is a prime ideal if a · b ∈ I implies that at least
one of a, b belongs to I. This is equivalent to the condition that the quotient
ring R/I is an integral domain. The terminology “prime ideal” comes from
the fact that if R is the ring of integers Z and I = (m) is the ideal generated
by an integer m, then I is a prime ideal if and only if m is a prime number.

An ideal I is a maximal ideal if I �= R and I �⊆ J for any ideal J �= I, R.
An equivalent definition is that I is maximal iff the quotient ring R/I is a
field.

Two ideals I, J of R are said to be coprime if I+J = R (i.e., if 1 ∈ I+J).
The terminology comes from the fact that if the ring R = Z and I = (m)
and J = (n) for integers m,n, then I, J are coprime ideals if and only if m,n
are coprime integers. For coprime ideals I, J , we have IJ = I ∩ J .2

2The easy proof of this fact goes as follows. Since IJ ⊆ I ∩ J , we only have to
prove that if f ∈ I ∩ J and I + J = R, then f ∈ IJ . Let a ∈ I and b ∈ J be such

7.3 Ideal-Based Codes 151

7.3 Ideal-Based Codes

We now describe the basic principle that underlies the construction of several
families of algebraic error-correcting codes, including Reed-Solomon codes,
Algebraic-geometric codes, Chinese Remainder codes (and also Number field
codes [127, 77]).

An algebraic error-correcting code is defined based on an underlying ring
R (assume it is an integral domain), whose elements r come equipped with an
appropriate notion of “size”, denoted size(r). For example, for Reed-Solomon
codes, the ring is the polynomial ring F[X] over a (large enough) finite field
F, and the “size” of f ∈ F[X] is related to its degree as a polynomial in X .
Similarly, for the CRT code, the ring is Z, and the “size” is the usual absolute
value.

The messages of the code are the elements of the ring R whose size is
at most a parameter B (this parameter governs the rate of the code). The
encoding of a message m ∈ R is given by

m �→ Enc(m) = 〈m/I1,m/I2, · · · ,m/In〉 ,

where Ij , 1 ≤ j ≤ n are n pairwise coprime ideals of R (we will assume that
each of the quotient rings R/Ij is finite). Here m/Ij denotes the residue of
m modulo the ideal Ij , and will belong to a finite alphabet whose size equals
|R/Ij |. The formal definition follows:

Definition 7.1. Let R be an integral domain; let I1, I2, . . . , In be n pairwise
coprime ideals in R such that each R/Ij is finite, and let B be an arbitrary
positive real. Further assume that there is a non-negative function size : R →
R+ that associates a non-negative size with each element of the ring R. Then,
the “ideal-based” code C[R; I1, I2, . . . , In; size, B] is defined to be the set of
codewords

{〈m/I1,m/I2, . . . ,m/In〉 : m ∈ R ∧ size(m) ≤ B} (7.1)

7.3.1 Examples of Ideal-Based Codes

Chinese Remainder codes (CRT codes): Taking R = Z; Ij = (pj), the
principal ideal generated by the n mutually coprime integers p1, p2, . . . , pn;
and size(m) = |m|, the absolute value of m, we get the definition of CRT
codes from the above definition.

Reed-Solomon codes: We get the Reed-Solomon code from the above def-
inition by taking R = Fq[X] where Fq is a finite field with at least n elements
(i.e. q ≥ n), and Ij = (X − αj) — the ideal generated by the polynomial

that a + b = 1. Now, f = f · (a + b) = f · a + f · b. Now, clearly both f · a and f · b
belong to IJ . Hence f ∈ IJ , as desired.

152 7 A Unified Framework for List Decoding of Algebraic Codes

(X −αj) — for 1 ≤ j ≤ n, where α1, . . . , αn are distinct elements of Fq. The
notion of size is defined by size(p) = qdeg(p). In other words, the messages are
polynomials in Fq[X] of degree at most k, for some parameter k.

Algebraic-geometric codes: We now describe how the AG-codes from the
previous chapter can also be obtained as a special case of ideal-based codes.
Let K/Fq be a function field and P0 be any fixed place of K/Fq. For i ≥ 0, let
L(iP0) be the set of functions in K which have no poles outside P0 and have
at most i poles at P0. To specify an AG-code in the above ideal-theoretic
language, we take the ring R =

⋃
i≥0 L(iP0), and the ideal Ij to be a place

Pj such that P1, P2, . . . , Pn and P0 are all distinct places. (Recall from the
previous chapter that a place P is by definition the unique maximal ideal of
the ring OP of regular functions at P , and since clearly OP ⊆ R if P �= P0,
such a place can also be viewed as an ideal of R.) The notion of size we use is
related to the pole order at the place P0; specifically we set size(x) = q−vP0 (x).
Hence the set {x ∈ R : size(x) ≤ qα} equals L(αP0), as with the usual
definition of AG-codes.

7.4 Properties of Ideal-Based Codes

We now develop a set of axioms/assumptions about the ring R which will
allow us to quantify the distance properties of the ideal-based code defined
in Equation (7.1) above. We will later add a few further assumptions which
will allow us to specify a unified list decoding algorithm for ideal-based codes
and perform a quantitative analysis of its error-correction capabilities.

7.4.1 Axioms and Assumptions

Let R be an integral domain (a commutative ring where a · b = 0 implies
either a = 0 or b = 0). We assume the following properties for the ring R:

1. [Size of Elements]: There exists a function size : R → R such that for all
x, y ∈ R:
(S1) size(x) ≥ 0, and size(x) = 0 ⇔ x = 0, and size(1) = size(−1) = 1.
(S2) There exists an integer 1 ≤ a ≤ 2 such that size(x + y) ≤ a ·

max{size(x), size(y)}; in other words, size satisfies a certain kind of
“triangle” inequality.3

(S3) size(xy) ≤ size(x)size(y)
2. [Size of Ideals]: There exists a function ∆ that maps each non-zero ideal
I of R to a positive real number ∆(I) such that
(I1) If x is a non-zero element of an ideal I, then ∆(I) ≤ size(x).
(I2) For every pair of coprime ideals I, J , ∆(IJ) ≥ ∆(I)∆(J).

3We point out that it is a well-known fact that if the stated inequality holds
for some a ≤ 2, then the “regular” archimedean triangle inequality size(x + y) ≤
size(x) + size(y) also holds. Hence the name “triangle inequality” for this property.

7.5 List Decoding Ideal-Based Codes 153

The above axioms suffice to define a code and state the distance property
that the code will satisfy.

7.4.2 Distance Property of Ideal-Based Codes

Lemma 7.2. Assume that the assumptions (S1-S3) and (I1, I2) hold. Con-
sider the code C[R; I1, . . . , In; size, B] where the ring R satisfies the above
assumptions (S1-S3) and (I1, I2). Assume further that the ideals Ij are or-
dered so that ∆(I1) ≤ ∆(I2) ≤ · · · ≤ ∆(In). Then the minimum (Hamming)
distance of this code is at least (n − t + 1) where t is the smallest integer
satisfying:

t∏

i=1

∆(Ii) > a · B .

Proof: Let two distinct codewords in C corresponding to messages x, y agree
on s residues, and let t be as in the statement of the lemma. We will show
that s < t. Since size(x) ≤ B and size(y) ≤ B, we have size(x − y) ≤ a · B
by axiom (S2). On the other hand, (x − y) belongs to at least s ideals, and
since the Ij ’s are pairwise coprime, (x− y) belongs to the product of at least
s ideals, say that of Ij1 , . . . , Ijs . Then, using axioms (I1) and (I2), we have

size(x− y) ≥ ∆
(s∏

i=1

Iji

) ≥
s∏

i=1

∆(Iji) ≥
s∏

i=1

∆(Ii) .

Together with size(x− y) ≤ aB, this implies that

s∏

i=1

∆(Ii) ≤ aB <

t∏

i=1

∆(Ii) ,

which shows that s < t and completes the proof. �
To quantify the rate of these codes, we need a lower bound on the number

of elements of R that have size at most B. We will later add axioms that
guarantee this and further properties about the size of ideals that we will
need to argue about the performance of our list decoding algorithm. We now
turn to the specification of our list decoding algorithm.

7.5 List Decoding Ideal-Based Codes

We directly tackle the general “weighted” list decoding problem which is de-
scribed below. We use the notation from the previous section and focus on
list decoding an ideal-based code C[R; I1. . . . , In; size, B] with message space
M = {x ∈ R : size(x) ≤ B}.

154 7 A Unified Framework for List Decoding of Algebraic Codes

Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative
real weights w1, w2, . . . , wn, and agreement parameter W .

Required Output: A list of all m ∈ M such that
∑n

i=1 wiai > W where ai is
defined to be equal to 1 if m/Ii = ri and 0 otherwise.

To describe our list decoding algorithm, we assume the weights are some ap-
propriate integers z1, z2, . . . , zn. Our algorithm will then output all codewords
that satisfy a certain weighted condition in terms of the zi’s. The descrip-
tion of how to pick the zi’s to get useful results for specific input weights
w1, w2, . . . , wn will be described later when we apply the general algorithm
to the case of the CRT code.

7.5.1 High Level Structure of the Decoding Algorithm

Before formally describing the algorithm, we first give some intuition on how
it is designed based on the earlier Reed-Solomon decoding algorithm. Recall
that our goal is to efficiently find a list of all m ∈ R with size(m) ≤ B such
that C(m) and the received word r have sufficient weighted agreement.

Following the Reed-Solomon and AG-codes case, the basic idea will be
to “interpolate” a polynomial c ∈ R[y] (based on the received word r) with
the property that every m for which C(m) has sufficient weighted agreement
with the received word must be a root of the polynomial c(y) (this polynomial
c was called Q in the algorithms of the previous chapter). Then, by finding
the roots of c(y) and pruning out the spurious roots, we can recover all the
codewords with sufficient weighted agreement with r.

We are able to construct such a polynomial c by pursuing two objectives,
which are in turn adaptations of the objectives from the case of decoding
Reed-Solomon and AG-codes:

1. To ensure that the polynomial c has the property that for any m ∈ R
that satisfies m/Ii = ri, we have c(m) ∈ Mi, for some suitable sequence
of coprime ideals Mi, i = 1, 2, . . . , n. This in turn implies that for any
m ∈ R we have c(m) ∈ ∏

i M
ai

i , where ai = 1 if m/Ii = ri, and ai = 0
otherwise.

2. To ensure that the coefficients cj of c(y) =
∑�

j=0 cjy
j are small, i.e.,

each size(cj) is sufficiently small. The aim of this step is to ensure that
size(c(m)) is small, say size(c(m)) < F , for every m with size(m) ≤ B.

By combining Objectives 1 and 2, we see that for any m ∈ R with
size(m) ≤ B, c(m) on the one hand has size less than F , and on the other
hand belongs to

∏
i M

ai

i . Hence if, c(m) �= 0, we must have

F > size(c(m)) ≥ |R/Mi|ai , (7.2)

where the second step uses axioms (I1), (I5). Therefore, if the boolean “agree-
ment” vector a = 〈a1, a2, . . . , an〉 between C(m) and r satisfies the weighted
condition

7.5 List Decoding Ideal-Based Codes 155

∑

i

ai log |R/Mi| > logF ,

then Condition (7.2) cannot hold, and hence we must have c(m) = 0. Natu-
rally, the performance of the algorithm depends on the choices of the ideals
Mi and the parameter F . Our algorithm will pick Mi = Izi

i (where zi’s are
the input integer weights), and F to be a sufficiently large integer for which a
polynomial c ∈ R[y] meeting Objectives 1 and 2 exists. Precise details follow
in the next section.

7.5.2 Formal Description of the Decoding Algorithm

Before describing the algorithm we need some auxiliary definitions and no-
tation.

– Let R[y] be the ring of polynomials in y with coefficients from R.
– For 1 ≤ i ≤ n, let Ji be the ideal in R[y] defined as {a(y)(y − ri) + b(y) ·
p|a, b ∈ R[y] and p ∈ Ii}. It is readily checked that Ji is an ideal in R[y]
and further that if m ∈ R satisfies m/Ii = ri, then c(m) ∈ Ii for every
c ∈ Ji.

The algorithm is formally described in Figure 7.1. We stress that we do not
know efficient implementations of all the steps in the algorithm for a general
ideal-based code, but for specific codes like Reed-Solomon codes and AG-
codes these do have efficient implementations. We will later show how with a
moderate “slack” they can also be implemented in polynomial time for CRT
codes.

(Weighted) List-decoding algorithm:

Input: A vector r = 〈r1, . . . , rn〉 where ri ∈ R/Ii for 1 ≤ i ≤ n, non-negative
integers z1, z2, . . . , zn and parameter Z.

Required Output: A list of all m ∈ M such that
∑n

i=1 ziai > Z (where ai is defined
to be equal to 1 if m/Ii = ri and 0 otherwise).

1. Pick parameters �, F appropriately.
2. Find a non-zero polynomial c ∈ ∏n

i=1 Jzi
i of degree at most � with the prop-

erty that size(c(m)) ≤ F for every m ∈ R with size(m) ≤ B.
3. Find all roots of c that lie in R and report those roots ζ such that size(ζ) ≤ B

and the condition
∑n

i=1 ziai > Z is satisfied (where ai is defined to be equal
to 1 if ζ/Ii = ri and 0 otherwise).

Fig. 7.1. A general list decoding algorithm for ideal-based codes

156 7 A Unified Framework for List Decoding of Algebraic Codes

7.5.3 Further Assumptions on the Underlying Ring and Ideals

In order to analyze the error-correction capability of the algorithm above, we
add some further axiomatic assumptions. The following assumptions need to
apply only to the ideals I1, . . . , In specified in the construction of the code.

(I3) For each i, we have ∆(Ik
i) ≥ ∆(Ii)k for all positive integers k.

(I4) For each i, we have that |R/Ik
i | ≤ |R/Ii|k for all positive integers k.

(I5) For each i, we have that ∆(Ii) ≥ |R/Ii|.
We also add the following assumption on the number of elements in R

with bounded size. This is not only critical in order to quantify the rate of
the code, but is also used in the analysis of the list decoding algorithm.

(S4) There exists a positive constant α depending only on the ring R such
that for all positive integers F , the number of elements x of R with
size(x) < F is at least αF .

Note that for the CRT code (R = Z), we have α � 2, while for Reed-
Solomon and AG-codes we have α = 1.

7.5.4 Analysis of the List Decoding Algorithm

We now specify the parameter choices in the above algorithm for it to output
all the “relevant” codewords, and determine the exact condition (specifically
the value of the agreement parameter Z) for which the algorithm will succeed
in finding all codewords that satisfy

∑
i aizi > Z.

The following sequence of lemmas will be used in the analysis.

Lemma 7.3. If c ∈ Jzi

i , then for every m ∈ R with m/Ii = ri, we have
c(m) ∈ Izi

i .

Proof: Every c ∈ Jzi

i is the sum of a finite number of terms each of the form

zi∏

s=1

(as(y)(y − ri) + bs(y)ps) ,

where as, bs ∈ R[y] and ps ∈ Ii for 1 ≤ s ≤ zi. Substituting y = m where
m/Ii = ri, we have each of the s terms in the product belongs to Ii, and
hence the entire term belongs to Izi

i . Since this is true for each term of c(m),
it follows that c(m) itself is in Izi

i , as desired. �

Lemma 7.4. For each i, 1 ≤ i ≤ n, |R[y]/Jzi

i | ≤ |R/Ii|(
zi+1

2).

7.5 List Decoding Ideal-Based Codes 157

Proof: We need to estimate the number of different residues that polynomials
in R[y] can have modulo Jzi

i . Let c ∈ R[y] be any polynomial. Expand c(y) in
terms of sums of powers of (y−ri) (i.e., use the change of variable y′ = y−ri,
and write down c(y′ + ri)). Since (y− ri)m ∈ Jzi

i for m ≥ zi, to compute the
residue of c modulo Jzi

i , we can ignore all terms of degree at least zi. Thus
we can assume that

c/Jzi

i =
zi−1∑

s=0

αs(y − ri)s , (7.3)

for suitable coefficients αs. Now since αs(y − ri)s ∈ Jzi

i if αs ∈ Izi−s
i , it

follows that we may assume that αs is reduced modulo Izi−s
i in the above,

or in other words that αs ∈ R/Izi−s
i . Hence the number of possibilities for

αs is at most |R/Izi−s
i | ≤ |R/Ii|zi−s using assumption (I4). Combining with

Equation (7.3), we obtain that the total number of possible residues modulo
Jzi

i , in other words |R[y]/Jzi

i |, is at most

zi−1∏

s=0

|R/Ii|zi−s = |R/Ii|(
zi+1

2) ,

as claimed. �

Corollary 7.5. We have

∣
∣R[y]/

n∏

i=1

Jzi

i

∣
∣ ≤

n∏

i=1

|R/Ii|(
zi+1

2) .

Proof: First of all, note that since the Ii’s are all coprime (i.e., Ii + Ij = R
for i �= j), we also have the Ji’s to be pairwise coprime. This in turn implies
that the ideals Jzi

i are all pairwise coprime. Therefore,

∣
∣R[y]/

n∏

i=1

Jzi

i

∣
∣ =

n∏

i=1

|R[y]/Jzi

i | ≤
n∏

i=1

|R/Ii|(
zi+1

2)

where the second step follows from Lemma 7.4. �

Before stating the next lemma, we need the following notation. Let bk be the
least integer such that for all x1, x2, . . . xk ∈ R, we have size(x1 + x2 + · · · +
xk) ≤ bk max{size(x1), . . . , size(xk)}. We clearly have b1 = 1, b2 ≤ a (recall
that a was the parameter used in the “triangle” inequality (S2)). Of course
if a = 1, then each bk = 1, and one can show that as long as a ≤ 2, bk ≤ k.
(This follows because it is a standard exercise to show that a ≤ 2 implies
size satisfies the “familiar” triangle inequality size(x+ y) ≤ size(x) + size(y),
from which of course bk ≤ k follows easily.) Thus, for Reed-Solomon and
algebraic-geometric codes, we have bk = 1 for all k ≥ 1, while for CRT codes
we have bk = k for all k ≥ 1.

158 7 A Unified Framework for List Decoding of Algebraic Codes

Lemma 7.6. For positive integers B,F ′, the number of polynomials c ∈ R[y]
of degree at most � with the property that size(c(m)) < F ′ whenever size(m) ≤
B is at least (

αF ′

b�+1B�/2

)�+1

.

Proof: Consider polynomial c(y) = c0+c1y+ . . .+c�y� where each cj ∈ R for
0 ≤ j ≤ �. We will pick coefficients so that for any m with size(m) ≤ B, we
will have size(cjmj) < F ′/b�+1. Note that this will imply that size(c(m)) < F ′

whenever size(m) ≤ B. This requirement on cj will be satisfied if size(cj) <
F ′ ·B−j/b�+1 (here we are using (S3)). Also, by assumption (S4) there at least

αF ′
Bjb�+1

such choices for cj. Hence the total number of polynomials c ∈ R[y]
with the required property is at least

(
αF ′

b�+1

)�+1

·
�∏

j=0

B−j =
(

αF ′

b�+1B�/2

)�+1

,

as claimed. �
We are now ready to prove that for suitable choices of �, F a non-zero

polynomial with the desired properties as in Step 2 of the list decoding algo-
rithm exists in

∏n
i=1 J

zi

i .

Lemma 7.7. Let �, B, F be positive integers which satisfy the following con-
dition:

F ≥ B�/2 ·
(a · b�+1

α

)
(

n∏

i=1

|R/Ii|(
zi+1

2)
)1/(�+1)

. (7.4)

Then there exists a non-zero c ∈ ∏n
i=1 J

zi

i which satisfies the property that
size(c(m)) < F for every m ∈ R with size(m) ≤ B.

Proof: The proof follows from Corollary 7.5, Lemma 7.6, and the pigeonhole
principle. Specifically, if Condition (7.4) is satisfied, then we have

(
α · F/a
b�+1B�/2

)�+1

>

n∏

i=1

|R/Ii|(
zi+1

2) ,

and thus the number of degree � polynomials c ∈ R[y] with size(c(m)) <
F/a whenever size(m) ≤ B is greater than the total number of residues of
polynomials modulo

∏n
i=1 J

zi

i . Hence, by the pigeonhole principle there must
exist two distinct polynomials c1, c2 ∈ R[y] of degree at most � such that
(c1−c2) ∈

∏n
i=1 J

zi

i . Since size(c1(m)) < F/a and size(c2(m)) < F/a for every
m with size(m) ≤ B, we have by assumption (S2) that size((c1−c2)(m)) < F

for each such m. Thus the claim of the lemma is satisfied with c def= (c1 − c2).
�

7.5 List Decoding Ideal-Based Codes 159

Lemma 7.8. Let c ∈ ∏zi

i=1 J
zi

i be such that size(c(x)) < F for every x ∈ R
with size(x) ≤ B. Then, any m ∈ R that satisfies size(m) ≤ B and

∏

i:m/Ii=ri

|R/Ii|zi ≥ F (7.5)

must be a root of c, i.e., must satisfy c(m) = 0.

Proof: Let m be any such element of R. Since size(m) ≤ B, by the property
of c, we have

size(c(m)) < F . (7.6)

Since c ∈ Jzi

i for each i, 1 ≤ i ≤ n, by Lemma 7.3, we have c(m) ∈ Izi

i for
each i such that m/Ii = ri. Hence

c(m) ∈
∏

i:m/Ii=ri

Izi

i .

Now, using assumptions (I1), (I2), (I3) and (I5), we have that if c(m) �= 0,
then

size(c(m)) ≥
∏

i:m/Ii=ri

∆(Izi

i) ≥
∏

i:m/Ii=ri

∆(Ii)zi ≥
∏

i:m/Ii=ri

|R/Ii|zi . (7.7)

From (7.7) and (7.6) it follows that if Condition (7.5) is satisfied, we have a
contradiction and therefore must have c(m) = 0, as desired. �

7.5.5 Performance of the List Decoding Algorithm

We are now ready to state and prove the main result of this section on the
performance of our list decoding algorithm from Section 7.5.1.

Theorem 7.9. For every set of non-negative integers z1, z2, . . . , zn, for a
suitable choice of parameters �, F , the list decoding algorithm on receiving as
input a word r = 〈r1, . . . , rn〉 with ri ∈ R/Ii, can find a list of size at most �
which includes all messages m ∈ R with size(m) ≤ B that satisfy

n∑

i=1

aizi log qi >
1

�+ 1

n∑

i=1

(
zi + 1

2

)

log qi + log(a/α) + (7.8)

+
�

2
logB + log b�+1 .

where we use the shorthand qi = |R/Ii|, and ai is an indicator variable defined
to be 1 if m/Ii = ri and 0 otherwise.

160 7 A Unified Framework for List Decoding of Algebraic Codes

Proof: The proof follows easily from the statements of Lemma 7.7 and
Lemma 7.8. Indeed, one can choose

F =

⌈

B�/2 ·
(a · b�+1

α

)(n∏

i=1

|R/Ii|(
zi+1

2)
)1/(�+1)

⌉

, (7.9)

and for this choice of F , the algorithm can find a non-zero c ∈ ∏n
i=1 J

zi

i with
size(c(m)) < F whenever size(m) ≤ B (since by Lemma 7.7 such a c exists).
By Lemma 7.8, the algorithm will output a list of all m ∈ R with size(m) ≤ B
such that

n∏

i=1

qaizi

i ≥ F .

Note that the number of solutions the algorithm outputs is at most �, since it
only outputs a subset of the roots of a degree � polynomial over the integers.
Also, since both the terms on the right and left hand sides of the above
condition are integers, taking logarithms we note that the above condition is
implied by the decoding Condition (7.8) stated in the theorem. �

Remark: There is a natural notion of an “approximate solution” for Step 2 in
the list decoding algorithm. We know that for F defined as in Equation (7.9),
there exists a non-zero polynomial c ∈ ∏n

i=1 J
zi

i that satisfies size(c(m)) < F
whenever size(m) ≤ B. It is conceivable that, in certain contexts, finding
such a c for this “optimum” choice of F might be difficult to accomplish
efficiently. In such a case, suppose the algorithm only manages to find a non-
zero polynomial c ∈ ∏n

i=1 J
zi

i with a factor β slack in the size guarantee,
namely a polynomial c such that size(c(m)) < F ′ for every m with size(m) ≤
B, where F ′ = βF . Then, it is easy to check that such an algorithm can
decode under a condition similar to (7.8) with an additional logβ term on
the right hand side. We will make use of this fact when considering an efficient
implementation of the decoding algorithm for the specific context of decoding
CRT codes in Section 7.6.2.

7.5.6 Obtaining Algorithms for Reed-Solomon and AG-codes

We now briefly indicate how the Reed-Solomon and AG-code list decoding al-
gorithms from the previous chapter can be obtained from Theorem 7.9 above.
Note that the list decoding algorithm of Figure 7.1 is really only a general
algorithmic schema, and one needs to implement each of its steps efficiently
in order to apply it and get polynomial time list decoding algorithms for
specific families of ideal-based codes. Hence, our aim below is only to show
that this algorithm gives (more or less) the same parameters as the specific
polynomial time algorithms discussed in the previous chapter.

For Reed-Solomon codes over a field Fq, each qi = q, α = 1, and a = 1
in assumption (S2) (and hence b�+1 = 1 as well). If the code is defined by

7.6 Decoding Algorithms for CRT Codes 161

evaluations of polynomials of degree at most k, then since size(p) = qdeg(p),
we have B = qk. Substituting these we get the algorithm finds all codewords
that have “z-weighted” agreement with r more than

1
�+ 1

n∑

i=1

(
zi + 1

2

)

+
�

2
k

which for large �, is approximately
√
k

∑
i zi(zi + 1) which approaches the

performance of the soft decoding algorithm for Reed-Solomon codes from
Section 6.2.10 (by taking the zi’s to be large multiples of the weights wi).

For AG-codes over Fq, once again each qi = q, a = 1 and b�+1 = 1. If the
underlying function field has genus g, then α = q−g. Also, B = qα∗

if the
message space of the AG-code is L(α∗P0). Hence Theorem 7.9 implies that
one can find all codewords that have “z-weighted” agreement with r more
than

1
�+ 1

n∑

i=1

(
zi + 1

2

)

+
�

2
α∗ + g

which for large � again approaches the performance of the soft decoding
algorithms for AG-codes from Chapter 6.

We already knew the decoding algorithms for Reed-Solomon codes and
AG-codes from the previous chapter, but the above indicates the general-
ity of our decoding algorithm for ideal-based codes. In the next section, we
will exploit the generality of our algorithm from Figure 7.1 to devise a list
decoding algorithm for Chinese Remainder (CRT) codes. Indeed, it was the
design of a good decoding algorithm for CRT codes that motivated us to dig
deeper into the algebra underlying the list decoding algorithms and unveil
the unified decoding algorithm for ideal-based codes described in Figure 7.1.

7.6 Decoding Algorithms for CRT Codes

In this section, we discuss efficient decoding algorithms for the CRT code.
Recall that a CRT code is specified by a sequence p1 < p2 < . . . < pn of rel-
atively prime integers and an integer k < n. Let K =

∏k
i=1 pi; N =

∏n
i=1 pi.

For easy reference, we say such a CRT codes as being specified by parame-
ters (p1, p2, . . . , pn;K). We associate to each integer m ∈ {0, 1, . . . ,K−1} the
codeword 〈m1,m2, . . . ,mn〉, where mi = m mod pi. We will abuse notation
and refer to both this sequence and m as a codeword. We consider a received
word to be a sequence r = 〈r1, r2, . . . , rn〉 of integers with 0 ≤ ri < pi for each
i ∈ [n]. For a given sequence of weights w = 〈w1, . . . , wn〉, the w-weighted
agreement (or simply weighted agreement, when the weighting we are refer-
ring to is clear) between a codeword m < K and a received word r is the
defined to be the quantity

∑
i aiwi, where ai = 1 if mi = ri, and ai = 0

otherwise.

162 7 A Unified Framework for List Decoding of Algebraic Codes

Our goal in this section is to efficiently find a list of all non-negative
integers m < K such that the encoding of m and the received word r have
sufficient weighted agreement. We note that a simple transformation makes
it equivalent for us to find integers m where |m| ≤ K/2, whose encodings
have sufficient agreement with r. It is this version of the problem that we
focus on for describing our decoding algorithms.

In this section, we present two efficient decoding algorithms for the CRT
code. In the first (which is our main) decoding algorithm, the goal is to ef-
ficiently find a list of all codewords m such that m and the received word r
have sufficient weighted agreement. In particular, we are able to give an effi-
cient list decoding algorithm which outputs all m with |m| ≤ K/2 such that
m mod pi = ri for at least

√
k(n+ ε) values of i (for any ε, with the running

time of the algorithm depending polynomially on 1/ε). Thus, we are able to
efficiently list decode the CRT code up to (essentially) the Johnson bound
on list decoding radius (from Corollary 3.3 with distance d = n−k+1). This
improves the earlier works of [72, 31] which could only find the codewords
which agreed with the received word in at least Ω(

√
kn log pn/ log p1) posi-

tions. Our algorithm is obtained by efficient implementations of the steps of
the general decoding algorithm of Figure 7.1, specialized for the case of the
CRT code. This gives a general weighted decoding algorithm which success-
fully list decodes as long as a certain “weighted” condition is satisfied. The
above claimed bound is then obtained by an appropriate choice of weights
in the weighted algorithm (the exact setting of weights turns out to be a
non-trivial guess).

For any sequence of positive weights β, our second decoding algorithm effi-
ciently (in near-quadratic time) recovers the unique codeword m with highest
β-weighted agreement with a received word r, as long as there is a codeword
whose β-weighted distance from r is less than half the β-weighted minimum
distance of the code. This is accomplished by adapting the GMD decoding
algorithm due to Forney, introduced for Reed-Solomon codes in [60], to CRT
codes in Section 7.7. Note that in particular this result gives the first polyno-
mial time algorithm to correct up to (n− k)/2 errors (i.e., decode up to half
the minimum distance) for the CRT code. In view of our more powerful list
decoding algorithm, the main role of this result can be viewed as highlight-
ing the role of GMD decoding in the task of decoding the CRT code, plus
achieving a simpler, faster algorithm for unique decoding of CRT codes.

7.6.1 Combinatorial Bounds on List Decoding

Before delving into the decoding algorithms, we first state a generalized
Johnson-type bound which specifies a fairly general condition under which list
decoding using “small” lists can be performed. This result will indicate the
kind of performance that we can hope for from our list decoding algorithms
for the CRT codes, since in order to efficiently output a list of codewords

7.6 Decoding Algorithms for CRT Codes 163

as possible answers, we need an a priori guarantee that the list size will be
small.

The result below gives a generalization of the weighted Johnson bound
from Chapter 3 (specifically the result of Corollary 3.7) to the case when the
various codeword positions have different contributions towards the distance
of the code.

Theorem 7.10. Let C be a code of blocklength n with the i’th symbol com-
ing from an alphabet of size qi, for 1 ≤ i ≤ n. Let the distance Dα of the
code be measured according to a weighting vector α = 〈α1, . . . , αn〉. In other
words, for any two distinct codewords c1, c2 ∈ C, we have

∑
i:c1i �=c2i

αi ≥ Dα

(assume each αi ≥ 1 without loss of generality). For a weighting vector
β = 〈β1, . . . , βn〉 and a received word r = 〈r1, . . . , rn〉 ∈ [q1]×· · ·× [qn], define
the set Sβ(r,W) to consist of all strings z (in the space [q1]× [q2]×· · ·× [qn])
with weighted β-weighted agreement with r at least W , i.e., which satisfy∑

i:ri=zi
βi ≥ W . Then, for all r, the set Sβ(r,Wβ) has at most

(
2

∑n
i=1 qi

)

codewords from C, provided that:

Wβ ≥
[
(n∑

i=1

αi −Dα

) n∑

i=1

β2
i

αi

]1/2

, (7.10)

and has at most L codewords from C, provided that

Wβ ≥
[
(n∑

i=1

αi −Dα +
Dα

L

) n∑

i=1

β2
i

αi

]1/2

. (7.11)

Remark: A more complicated and stronger bound than the above theorem
can be proved by taking into account the size of the alphabets qi’s (akin
to the weighted Johnson bound of Theorem 3.6 that took into account the
alphabet size). This is, however, not very important for us since we want
to use the above bound to only informally indicate the “near-tightness” of
the error-correction performance of our list decoding algorithms for the CRT
code, and the above bound suffices for this purpose. Moreover, for the CRT
code the qi’s are typically large primes, and for large alphabets the difference
between the stronger bound and the above bound becomes negligible.

Proof of Theorem 7.10: The proof follows along the lines of Theorem 3.1.
Let β be a weighting vector and W an agreement parameter. Let c1, . . . , cm

be all the codewords in Sβ(r,Wβ), where r ∈ [q1]× · · · × [qn] is the “received
word”.

We will embed elements of [q1] × · · · × [qn] as vectors in RQ where Q =∑n
i=1 qi, with the i’th block being a vector of length qi corresponding to the

i’th symbol. For the received word r, we will let the i’th block (which is of
length qi) have a value of βi/

√
αi at position number ri, and 0’s elsewhere.

By abuse of notation, we denote the resulting vector in RQ also by r. For

164 7 A Unified Framework for List Decoding of Algebraic Codes

each of the codewords cj, 1 ≤ j ≤ m, we will let the i’th block have a value of√
αi at position number cj,i (i.e., the i’th symbol of the codeword cj), and 0’s

elsewhere. Once again, since it is convenient to do so, we denote the resulting
vectors in RQ also by c1, . . . , cm.

It is easy to see from the above choices that 〈cj, r〉 equals the β-weighted
agreement between cj and r (i.e., 〈cj, r〉 =

∑
i:cj,i=ri

βi), and that 〈cj, ck〉
equals the α-weighted agreement between cj and ck. Therefore, we have, for
every 1 ≤ j < k ≤ m,

〈cj, r〉 ≥ Wβ (7.12)

〈cj, ck〉 ≤ Aα
def=

(n∑

i=1

αi −Dα

)
(7.13)

The idea now is to pick a suitable parameter γ > 0 such that the pairwise
dot products between the vectors (cj−γr) are all non-positive. This is similar
to the idea used in the proof of Theorem 3.1, and the details are in fact simpler
in this case (since the conditions under which we want to show a small list
size do not depend on the alphabet sizes qi).

Equations (7.12) and (7.13) together with the facts that 〈r, r〉 =∑n
i=1 β

2
i /αi, implies, for j �= k,

〈cj − γr, ck − γr〉 ≤ Aα − 2γWβ + γ2
n∑

i=1

β2
i

αi
. (7.14)

We will therefore have 〈cj − γr, ck − γr〉 ≤ 0, provided

Wβ ≥ γ

2

n∑

i=1

β2
i

αi
+
Aα

2γ
. (7.15)

The right hand side is minimized for γ = (Aα)1/2 · (∑i
β2

i

αi

)−1/2, and for this
choice of γ, Condition (7.15) becomes

Wβ ≥
[

Aα

n∑

i=1

β2
i

αi

]1/2

. (7.16)

Now appealing to the geometric Lemma 3.4, Part (i), we get that the number
of codewords m is at most 2Q (since the pairwise dot products of the Q-
dimensional real vectors (cj − γr) are all non-positive). Thus, the number
of codewords which lie in Sβ(r,Wβ) if Condition (7.16) holds is at most
2Q, which proves the first assertion of the theorem. The second assertion
also follows similarly, by picking the parameter γ such that the pairwise dot
products of the unit vectors along (cj − γr) is at most −1/(L− 1), and then
appealing to geometric Lemma 3.5. We omit the details. �
We now apply the result of Theorem 7.10 to specific choices of α and β for the
CRT code. For a CRT code we have, in the ideal-based language, R = Z and

7.6 Decoding Algorithms for CRT Codes 165

Ii = (pi) for relatively prime integers p1 < p2 < · · · < pn. Hence qi = pi for
1 ≤ i ≤ n. Furthermore the “size” of the ideals satisfy ∆(Ii) = |R/Ii| = pi.
If we consider messages to be integers m in the range −K/2 < m ≤ K/2
where K =

∏k
i=1 pi, then it is easy to prove using ideas in Lemma 7.2 that

the α-weighted distance of the CRT code is

- at least (n− k+1) for the all-ones weight vector (the case when αi = 1 for
every i), and

- at least log(N/K) for case when αi = log pi.

Using these in the bound of Theorem 7.10 we get (roughly) the following
conditions under which CRT list decoding is feasible (combinatorially):

∑

i

ai log pi >
√

(logK + ε) logN (7.17)

∑

i

ai >
√

(k + ε)n (7.18)

∑

i

aiβi >
(
(logK + ε)

∑

i

β2
i

log pi

)1/2

(7.19)

(Note that the third condition above implies the first with the choice of
weights βi = log pi.) In fact, the algorithm of Goldreich, Ron, and Sudan [72]
could list decode under the first condition (7.17). In some sense the case αi =
βi is the most natural one for the CRT code. However, neither the algorithm
of [72] nor the improvement due to Boneh [31], could work as well for other
weightings (including the case βi = αi = 1 from the second condition above).
In the next section, we apply our general decoding algorithm for ideal-based
codes to the case of CRT codes to remedy this defect of earlier algorithms,
and give a weighted list decoding algorithm which, by appropriately choosing
the weights, can decode under each of the above conditions.

7.6.2 Weighted List Decoding Algorithm

We now apply Theorem 7.9 to the case of CRT codes and get the following.

Theorem 7.11. For a CRT code with parameters (p1, p2, . . . , pn;K), given a
received word r = (r1, r2, . . . , rn) with 0 ≤ ri < pi, and non-negative integers
� and zi for 1 ≤ i ≤ n, we can find in time polynomial in n, �,

∑
i log pi and∑

i zi, a list of size at most � which includes all codewords m that satisfy

n∑

i=1

aizi log pi > log(�+ 1) +
�

2
logK +

1
�+ 1

n∑

i=1

(
zi + 1

2

)

log pi , (7.20)

where as usual we define ai = 1 if mi = ri and ai = 0 otherwise.

166 7 A Unified Framework for List Decoding of Algebraic Codes

Proof: We will show that the above condition implies the condition under
which the decoding algorithm of Figure 7.1, when applied to the CRT case,
successfully list decodes the received word. It will then remain to argue that
for the CRT code each of the steps of the algorithm can be implemented in
polynomial time.

For the CRT code, we have |R/Ii| = |Z/(pi)| = pi for 1 ≤ i ≤ n, a = 2,
and b�+1 = �+1 (since the integers satisfy the “familiar” archimedean triangle
inequality). Furthermore, since there are (2F − 1) integers of absolute value
less than F for any positive integer F , we can assume that α ≥ (2 − γ) for
some small γ > 0 (in fact we can take γ = o(1) in the parameters involved).
Also since the messages are integers of absolute value at most K/2, we have
B = K/2. Plugging these parameters into the general bound of Equation
(7.8) we get the condition

n∑

i=1

aizi log pi > log(�+ 1) +
�

2
log(K/2) + (7.21)

+
1

�+ 1

n∑

i=1

(
zi + 1

2

)

log pi + log(2/(2 − γ)) .

Note that in fact the above condition poses a weaker requirement than that
of Condition 7.20 stated in the theorem, since we have an �

2 log(K/2) term
on the right hand side instead of �

2 logK as stated in the theorem — the
additional log(2/(2−γ)) term is of course negligible in comparison. Hence the
general algorithm can also decode under the condition stated in the theorem.
The reason for the slack in Condition (7.20) is that we now also want a
polynomial time implementation of its various steps, and hence can only
find an “approximation” to the best polynomial c ∈ Z[y] in Step 2 of the
algorithm. As discussed in the remark following Theorem 7.9, this necessitates
a slight weakening of the error-correction performance. We discuss the details
next.

The two non-trivial steps in the algorithm of Figure 7.1, when applied to
the CRT code, are (i) finding a non-zero degree � polynomial c with integer
coefficients in the ideal

∏
i J

zi

i such that |c(m)| < F for allm with |m| ≤ K/2,
and (ii) finding the roots of c and looking for candidate codewords among its
roots. The second task can be done in polynomial time using, for instance, the
algorithm for factoring polynomials with integer coefficients due to Lenstra,
Lenstra and Lovász [126].4 For the first task, Lemma 7.7 applied to the CRT
case implies that for

F = �F ∗� where F ∗ def= (�+ 1)(K/2)�/2
(∏

i

p
(zi+1

2)
i

)1/(�+1)

,

4Since the root finding task is easier than a general factorization task, there are
faster ways to solve the root finding problem. A brief discussion about this appears
in [72].

7.6 Decoding Algorithms for CRT Codes 167

there exists a non-zero c ∈ ∏
i J

zi

i with |c(m)| < F whenever |m| ≤ K/2
(in fact the coefficients cj of c will satisfy |cj | < F

(�+1)(K/2)j for 0 ≤ j ≤ �).
We will now prove that for F ′ which 2�/2 times larger than F , we can find,
in polynomial time, a c ∈ Z[y] that satisfies |c(m)| < F ′ for every m with
|m| ≤ K/2. We do this by reducing this problem to that of finding a short
lattice vector in a suitably defined lattice, and then appealing to the well-
known approximate shortest lattice vector algorithms due to [126].

We can view degree � polynomials as vectors in Z�+1 in the obvious way.
Note that the ideal J =

∏
i J

zi

i , when restricted to polynomials of degree
at most �, can be viewed as an integer lattice, say L, of dimension (� + 1).
Therefore, finding a suitable non-zero polynomial c ∈ J with small coeffi-
cients amounts to finding a short non-zero lattice vector in L. This can be
accomplished using the LLL algorithm, provided we can compute a basis for
the lattice L. We now demonstrate how this can be done efficiently.

Note that L = ∩iLi where Li is the lattice corresponding to degree � poly-
nomials in Jzi

i , for 1 ≤ i ≤ n. Explicit bases for the individual lattices Li are
easily obtained by considering the generating polynomials for Jzi

i restricted to
polynomials of degree at most �. Let z̃i = min{zi, �}. The first z̃i+1 vectors in
our basis correspond to the generating polynomials {p(zi−a)

i (y−ri)a : 0 ≤ a ≤
z̃i} from the ideal Izi

i . For example, corresponding to pzi−2
i (y − ri)2, we add

the vector (r2i · pzi−2
i , − 2ri · pzi−2

i , pzi−2
i , 0, . . . , 0). If � > zi, then

we also add vectors corresponding to the polynomials {ya · (y − ri)zi}�−zi

a=1 .
Let M (i) be the (�+1) by (�+1) matrix whose rows are the vectors from this
basis. It is straightforward to check that the integer linear combinations of
these vectors correspond exactly to the set of polynomials of degree at most
� in the ideal Jzi

i .
Thus bases for each Li can be computed efficiently. Using standard tech-

niques (see the discussion immediately following this proof), given bases
for the (full-dimensional) lattices Li, a basis B for the intersection lattice
L = ∩iLi can be computed in polynomial time.

With this basis in hand, our goal is to find a short vector in L (intuitively,
short vectors in the lattice L correspond to polynomials in

∏
i J

zi

i with small
coefficients). We argued earlier that there exists a vector c = (c0, c1, . . . , c�) ∈
L with |cj | ≤ F

(�+1)(K/2)j , and we would like to find a vector in L with
components not much bigger than this. To do so, it is convenient to work with
a re-scaled version L′ of the lattice L where (v0, v1, . . . , v�) ∈ L iff (v0, v1 ·
(K/2), . . . , v� ·(K/2)�) ∈ L′. The vector corresponding to c in L′ has L2-norm
less than F/

√
�+ 1. Applying the LLL algorithm to the (�+ 1)-dimensional

lattice L′, we can therefore find a non-zero vector w = (w0, . . . , w�) ∈ L′ with
L2-norm ‖w‖2 < 2�/2F/

√
�+ 1 in polynomial time. By Cauchy-Schwartz, we

have that the L1-norm of w satisfies ‖w‖1 ≤ √
�+ 1 · ‖w‖2 < 2�/2F . Clearly

this implies that the polynomial w(y) = w0 + w1y + . . . + w�y
� satisfies

|w(m)| < 2�/2F whenever |m| ≤ K/2.

168 7 A Unified Framework for List Decoding of Algebraic Codes

Thus one can apply Lemma 7.8 with F replaced by 2�/2F . Hence the
decoding Condition (7.21) must be modified by adding a log(2�/2) = �/2 term
to the right hand side, and then we will have a polynomial time list decoding
algorithm working under the modified condition. We therefore conclude that
one can list decode in polynomial time and output every m with |m| ≤ K/2
that satisfies

n∑

i=1

aizi log pi > log(�+ 1) +
�

2
logK +

1
�+ 1

n∑

i=1

(
zi + 1

2

)

log pi ,

as claimed in the theorem.5 For easy reference, the CRT list decoding algo-
rithm is described in Figure 7.6.2. �

List Decode(r, �, z1, z2, . . . , zn)

1. Let Izi
1 be the set of polynomials that are integer linear combinations of

{pa
i (x − ri)

(zi−a)}zi
a=0.

2. Compute a basis for the lattice L of all degree � polynomials belonging to⋂n
i=1 Izi

i .
3. Scale this lattice by multiplying the i’th coordinate by (K/2)i−1 to produce

the lattice L′.
4. Run LLL to find a short vector v′ in L′; let it correspond to a degree �

polynomial c(x) ∈ Z[x].
5. Find all integer roots m of c(x) (for example, by factoring c(x) over Z[x]

using [126]).
6. For each root m with |m| ≤ K/2, define the vector a = (a1, a2, . . . , an) by

ai = 1 if m ≡ ri(modpi), and ai = 0 otherwise. Output m if a satisfies
Condition (7.20).

Fig. 7.2. The list decoding algorithm for Chinese Remainder codes

Discussion of the assumed lattice algorithm: In the above proof we
assumed a subroutine to compute the basis for an intersection lattice given
the basis of the individual lattices. We now discuss how this may be done —
further details and a more formal treatment may be found in [41, 140].

Let L be any full-dimensional lattice of dimension d, with basis given
by the rows of the matrix M . We define the dual L∗ of the lattice L to be

5The astute reader might have noticed and be slightly bothered by the fact that
we have ignored the log(2/(2−γ)) term from Equation (7.21). This would cause an
o(1) difference to the result stated. Nevertheless, the result of Theorem 7.11 is itself
accurate in its stated form. This is because, instead of the LLL algorithm, one can
use Schnorr’s improvement to the LLL algorithm, which finds an 2ε� approximation
to the shortest lattice vector in polynomial time, for any desired constant ε > 0. In
this way, we can in fact weaken the requirement of Condition (7.20) by subtracting
(1/2 − ε)� from the right hand side.

7.6 Decoding Algorithms for CRT Codes 169

{u ∈ Rd : u · v ∈ Z for all v ∈ L}. Note that the rows of
(
M−1

)T give a
basis for L∗.

Note also that given bases for two lattices L1 and L2, a basis for (the
closure of) the union of the two lattices, denoted L1 ∪ L2, can be found
efficiently using algorithms for computing the Hermite Normal Form of a
generating set of vectors. Now, to compute a basis for the intersection of
two lattices L1 and L2, observe that L1 ∩ L2 = (L∗

1 ∪ L∗
2)

∗. Therefore, by
combining the facts above, one obtains an efficient algorithm for computing
a basis for the intersection of full-dimensional lattices given bases for the
individual lattices.

7.6.3 Applications to “Interesting” Weight Settings

The result of Theorem 7.11 gives a general list decoding algorithm that works
as long as a certain “weighted” condition is satisfied. We now get specific re-
sults for the CRT code for interesting choices of weights on the coordinate
positions, through an appropriate choice of parameters (like �, zi) in The-
orem 7.11. We begin by proving a version of Theorem 7.11 with arbitrary
(not necessarily integer) values of zi. The proof is somewhat technical but
the main idea is simple: approximate the zi’s by large integers z∗i , and pick
a large enough “list size” parameter �.

Theorem 7.12. For list decoding of CRT codes, for any tolerance parameter
ε > 0, and non-negative reals zi, when given as input a received word r, we
can in time polynomial in n, logN and 1/ε, find a list of all codewords such
that

n∑

i=1

aizi log pi ≥
√
√
√
√logK

(n∑

i=1

z2
i log pi + εz2

max

)
, (7.22)

where the ai’s are defined as earlier.

Proof: We may assume that zmax = 1 (note that the condition of (7.22)
is invariant under scaling of the zi’s, so this can be ensured by dividing
out all weights by zmax). We will prove the claimed result by appealing to
Theorem 7.11 on a suitably chosen set of integer weights z∗i .

Let A be a large integer to be specified later in the proof. Set z∗i = �Azi�.
By Theorem 7.11, for any positive integer � we can successfully list decode
(in poly(n, logN,A, �) time) provided

n∑

i=1

aiz
∗
i log pi > log(�+ 1) +

�

2
logK +

1
�+ 1

n∑

i=1

(
z∗i + 1

2

)

log pi.

We would like to pick a good choice for �. Since Azi ≤ z∗i < Azi + 1, the
above condition is met whenever

170 7 A Unified Framework for List Decoding of Algebraic Codes

n∑

i=1

aizi log pi ≥ log(�+ 1)
A

+
�

2A
logK + (7.23)

+
A

2(�+ 1)

n∑

i=1

(
z2

i +
3
A
zi +

2
A2

)
log pi .

Define Zi = z2
i + 3

Azi + 2
A2 for 1 ≤ i ≤ n. Let us pick

� =
⌈

A

√∑n
i=1 Zi log pi

logK

⌉

− 1. (7.24)

It is not difficult to see that for this choice of �, Condition (7.23) is met
whenever

n∑

i=1

aizi log pi ≥ 1
A

log
(

A

√∑n
i=1 Zi log pi

logK
+ 1

)

+ (7.25)

+

√
√
√
√logK

(n∑

i=1

Zi log pi

)
.

For A ≥ 10 log N
ε , the right side of Equation (7.25) above is at most

O(
log logN

logN
) +

√
√
√
√logK

(n∑

i=1

z2
i log pi +

ε

2

)
≤

√
√
√
√logK

(n∑

i=1

z2
i log pi + ε

)

for large N . Thus, Condition (7.25) is met provided

∑

i=1

aizi log pi ≥
√
√
√
√logK

(n∑

i=1

z2
i log pi + ε

)
,

and the proof is complete by noting that A = O(log N
ε) and � =

O(ε−1 log3/2N), and so the overall runtime is polynomial in n, logN and
ε−1. �

Corollary 7.13. For list decoding of CRT codes, for any tolerance parameter
ε > 0, and non-negative real weights βi, when given as input a received word
r, we can, in time polynomial in n, logN and 1/ε, find a list of all codewords
whose β-weighted agreement with r satisfies:

n∑

i=1

aiβi ≥
√
√
√
√logK

(
n∑

i=1

β2
i

log pi
+ εmax

j

β2
j

log pj

)

.

7.7 GMD Decoding for CRT Codes 171

Proof: Follows by setting zi = βi/ log pi in the result of the above theorem.
�

Note that the above corollary implies that we can essentially “match” the
combinatorial bound of Condition (7.19). Let us now collect further results
for the “usual” uniform weighting of the codeword positions, namely βi = 1
for each i.

Theorem 7.14. For list decoding of CRT codes with parameters
(p1, p2, . . . , pn;K), for any ε > 0, we can in time polynomial in n,

∑
i log pi

and 1/ε, find a list of all codewords which agree with a received word in t
places provided t ≥ √

k(n+ ε).

Proof: Let us apply Theorem 7.12 with zi = 1/ log pk+1 for 1 ≤ i ≤ k,
zi = 1/ log pi for k < i ≤ n, and ε′ = ε log pk+1. This gives that we can
decode whenever the number of agreements t is at least

k − logK
log pk+1

+

√
√
√
√ logK

log pk+1

(
logK

log pk+1
+

n∑

i=k+1

log pk+1

log pi
+ ε′

)

.

Define ∆ def= k − log K
log pk+1

; clearly ∆ ≥ 0. Since log pk+1 ≤ log pi for i = k +

1, · · · , n, the above condition is met whenever t ≥ ∆+
√

(k −∆)(n−∆+ ε).
Now, a simple application of the Cauchy-Schwartz inequality shows that ∆+√

(k −∆)(n−∆+ ε) ≤ √
k(n+ ε), and thus our decoding algorithm works

whenever t ≥ √
k(n+ ε). �

Theorem 7.15. For list decoding of CRT codes with parameters
(p1, p2, . . . , pn;K), for any ε > 0, we can in time polynomial in n,

∑
i log pi

and 1/ε, find a list of all codewords which agree with a received word in t
places provided

t ≥
√
√
√
√logK

(
n∑

i=1

1
log pi

+ ε

)

.

Proof: This follows from Corollary 7.13 with βi = 1 for 1 ≤ i ≤ n. �
Note that the result of Theorem 7.14 matches the combinatorial bound of
Condition (7.18). The bounds in Theorem 7.14 and Theorem 7.15 are incom-
parable in general.

7.7 GMD Decoding for CRT Codes

For integers k, n, relatively prime integers p1 < p2 < · · · < pn, K =
∏k

i=1 pi,
and any integer j, 1 ≤ j ≤ n, Goldreich, Ron, and Sudan [72] gave a near-
linear time algorithm to compute the unique integer m in the range −K/2 <
m ≤ K/2, if any, that satisfies

172 7 A Unified Framework for List Decoding of Algebraic Codes

j∑

i=1

ai log pi >
1
2

(
j∑

i=1

log pi +
k∑

i=1

log pi

)

(7.26)

where ai is defined in the usual way: ai = 1 if m = ri(mod pi) and ai = 0
otherwise. Note that the above algorithm decodes up to half the minimum
w-weighted distance (1

2 · log(N/K)) for the “natural” weighting wi = log pi

of the CRT code. Using this algorithm as the basic subroutine and running
a GMD style algorithm similar to Forney [60] (see also Appendix A), we are
able to perform such a decoding for any “user-specified” choice of weights
β = 〈β1, β2, . . . , βn〉. In other words, we give a soft decoding algorithm for
CRT codes for the case of unambiguous decoding (the result of Theorem 7.11
being for the case of soft decoding with lists of size �). While the list decoding
algorithm decodes under a more general condition than the soft decoding
algorithm to be discussed here, the advantage of this GMD based decoding
algorithm is its simplicity and faster runtime (we will get a near-quadratic
time algorithm).

To obtain the claimed decoding algorithm, we prove a more general result
that applies to any code, and then apply it to the CRT code. Suppose we
have an arbitrary code C of blocklength n. We show how to use a decoding
algorithm designed for any weighting α to produce one that works for the
desired weighting β. Define Aα =

∑n
i=1 αi − Dα where Dα is α-weighted

distance of the code, so that Aα is the maximum α-weighted agreement
between two distinct codewords of C. Aβ for the weight vector β is defined
similarly. We are now ready to state and prove the main result of this section:

Proposition 7.16. Let C be an arbitrary code of blocklength n. Let α,β ∈
Rn

+ be positive real vectors such that β1
α1

≥ β2
α2

≥ · · · ≥ βn

αn
, and let Aα, Aβ for

the code C defined as described above. Suppose we have a polynomial time
algorithm Algα that when given as input a received word r = 〈r1, . . . , rn〉 and
an index j (1 ≤ j ≤ n), can find the unique codeword c ∈ C, if any, whose
α-weighted agreement with r in the first j codeword positions is more than
1
2

(∑j
i=1 αi + Aα

)
. Then, for any vector of positive reals β = 〈β1, . . . , βn〉,

there is a polynomial time algorithm Algβ that when given as input a received
word r, outputs the unique codeword, if any, whose β-weighted agreement
with r is at least

1
2

(n∑

i=1

βi +Aβ + βmax

)
.

Moreover, the run-time of Algβ is at most O(n) times that of Algα.

Proof: Recall that the codeword positions i are ordered so that β1
α1

≥ β2
α2

≥
· · · ≥ βn

αn
. Define

Ãβ
def= max

x∈[0,1]n∑
αixi≤Aα

{
n∑

i=1

βixi

}

. (7.27)

7.7 GMD Decoding for CRT Codes 173

Note that under the condition x ∈ {0, 1}n, the above would just define Aβ ; we
relax the condition to x ∈ [0, 1]n in the above to define Ãβ . Clearly Ãβ ≥ Aβ .
It is also easy to verify that Ãβ < Aβ + βmax. We will present an algorithm
to find the unique codeword c = 〈c1, c2, . . . , cn〉 ∈ C, if any, that satisfies

n∑

i=1

aiβi >
1
2
(n∑

i=1

βi + Ãβ

)
(7.28)

(where ai = 1 if ci = ri and 0 otherwise), and this will imply the claimed
result (since Ãβ < Aβ + βmax). We now assume such a codeword c exists, as
otherwise there is nothing to prove.

The algorithm Algβ will simply run Algα for all values of j, 1 ≤ j ≤ n,
and pick the closest codeword among the (at most n) codewords which the
runs of Algα returns. If this algorithm fails to find the codeword c that satis-
fies Condition (7.28), then, by the hypothesis of the Theorem, the following
condition must hold for every j, 1 ≤ j ≤ n:

2
j∑

i=1

aiαi ≤
j∑

i=1

αi +Aα . (7.29)

Let x̃ = 〈1 1 · · · 1 ε 0 · · · 0〉 be a vector such that
∑n

i=1 αix̃i = Aα (here
0 ≤ ε < 1). Denote by � the last position where x̃i = 1 (so that x̃� = 1 and
x̃�+1 = ε). By our definition (7.27) Ãβ ≥ ∑

i βix̃i (in fact by the ordering
of the codeword positions it is also true that Ãβ =

∑
βix̃i, though we will

not need this). Now for j ≥ � + 1, Aα =
∑n

i=1 αix̃i =
∑j

i=1 αix̃i. Also, for
1 ≤ j ≤ �, we have the obvious inequality

∑j
i=1 aiαi ≤

∑j
i=1 αi =

∑j
i=1 αix̃i,

which implies

2
j∑

i=1

aiαi ≤
j∑

i=1

αi +
j∑

i=1

αix̃i .

Combining the above with Equation (7.29) we obtain that the following uni-
form condition that holds for all j, 1 ≤ j ≤ n:

2
j∑

i=1

aiαi ≤
j∑

i=1

αi +
j∑

i=1

αix̃i . (7.30)

Multiplying the jth inequality above by the non-negative quantity
(βj

αj
−

βj+1
αj+1

)
for 1 ≤ j ≤ n (define βn+1 = 0 and αn+1 = 1), and adding the resulting

inequalities, we get

2
n∑

i=1

aiβi ≤
n∑

i=1

βi +
n∑

i=1

βix̃i ≤
n∑

i=1

βi + Ãβ ,

which contradicts Condition (7.28). Thus the codeword c that satisfies (7.28),
if any, will indeed be output by the algorithm Algβ. �

174 7 A Unified Framework for List Decoding of Algebraic Codes

Theorem 7.17. For the CRT code with parameters (n, k; p1, p2, . . . , pn), for
any received word r = 〈r1, r2, . . . , rn〉, there is a polynomial time (in fact
near-quadratic time) algorithm to find the unique codeword m = (m1,m2,
. . . ,mn), if any, that agrees with r in at least n+k

2 positions.

Proof: By the result of [72], we have a near-linear time decoding algorithm
for the weighting αi = log pi and Aα = logK (where K = p1p2 · · · pk). For
β equal to the all-ones vector, we have Aβ = k − 1. Therefore, by Proposi-
tion 7.16, we can find the unique codeword m that agrees with r in at least
(n+ k)/2 places, as claimed. �

7.8 Bibliographic Notes

The redundancy property of the Chinese Remainder representation has been
exploited often in theoretical computer science. For example, the Karp-Rabin
pattern matching algorithm is based on this redundancy [118]. The CRT
representation of an integer allows one to reduce computation over large
integers to that over small integers. This is also useful in certain complexity-
theoretic settings, a notable example being its use in showing the hardness
of computing the permanent of 0/1 matrices [191].

The natural error-correcting code (the CRT code) that results from the
Chinese Remainder representation has also been studied often in the litera-
ture (see [174, 122] and the references there in). The CRT code was proposed
as an alternate method for implementing secret sharing [42, 17]. Mandel-
baum [133, 134] was the first to consider the basic algorithmic question of
decoding the CRT code up to half the minimum distance. He succeeded in
giving such a decoding algorithm; however, the runtime of his algorithm was
polynomial only when the pi’s are very close to one another, and could be
exponential in n otherwise. Goldreich, Ron and Sudan [72] present and an-
alyze a variant of Mandelbaum’s algorithm, which can be implemented in
near-linear time, and can unique decode the CRT code up to (n−k) log p1

log p1+log pn
er-

rors. This is a close approximation to half the distance when the primes are
reasonably close to one another.

Inspired by the success of list decoding algorithms for Reed-Solomon and
AG-codes, Goldreich et al [72] considered the list decoding problem for CRT
codes. They presented a polynomial time algorithm to list decode CRT codes
up to (about)

(
n −

√
2kn log pn

log p1

)
errors. For primes which are close to one

another and for small values of k/n, this decodes well beyond half the dis-
tance of the code. However, this is not the case when the primes vary widely
in size and/or the “rate” k/n is large. One of the motivations of the list de-
coding algorithm in [72] was an application to the average-case hardness of
the permanent on certain random matrices — a discussion of this connection
appears in the conference version [71] of the same paper. H̊astad and Näslund

7.8 Bibliographic Notes 175

[100] used the algorithm of [72] to construct new hardcore predicates based
on one-way functions.

Subsequent to this, Boneh [31] improved the list decoding algorithm of

[72]. His algorithm could correct up to about
(
n −

√
kn log pn

log p1

)
errors. One

weakness common to all the above results on CRT decoding is their poor(er)
performance if the primes vary significantly in size. This can cause the algo-
rithm of Mandelbaum [133] to take exponential time, while it degrades the
number of errors that the algorithms of Goldreich et al [72], or Boneh [31] can
correct. This weakness is due to an eccentricity of the CRT code: its alphabet
size is not uniform, and so the “contribution” of an error is not independent
of its location (knowing a residue modulo a larger pi correctly gives more
information than knowing a residue modulo a smaller pi). Hence one needs
to suitably “reweight” the coordinate positions in order to compensate for
this inherent disparity between the various positions. This is exactly what the
weighted decoding algorithm we discussed in this chapter allows us to do. It
thereby permits efficient decoding up to about (n − √

kn) errors, and thus
completely removes the dependence of the number of correctable errors on
the size of the pi’s. It was the development of this soft decoding algorithm for
CRT codes that caused us to examine in greater detail the algebra underly-
ing the various list decoding algorithms and unveil the unified ideal-theoretic
view of decoding presented in this chapter.

The CRT decoding algorithms discussed in this chapter appear in [86].
The general “ideal-theoretic” approach to list decoding algebraic codes was
sketched in [86] as an appendix, and it has been further developed and ex-
panded for presentation in this chapter.

	7.1 Introduction
	7.2 Preliminaries
	7.3 Ideal-Based Codes
	7.4 Properties of Ideal-Based Codes
	7.5 List Decoding Ideal-Based Codes
	7.6 Decoding Algorithms for CRT Codes
	7.7 GMD Decoding for CRT Codes
	7.8 Bibliographic Notes

