
5 List Decodability Vs. Rate

Once you eliminate the impossible, whatever remains,
no matter how improbable, must be the truth.

Sherlock Holmes (by Sir Arthur Conan Doyle)

5.1 Introduction

In the previous two chapters, we have seen on the one hand that any code
of distance d can be list decoded up to its Johnson radius (which is always
greater than d/2). On the other hand, we have seen that, in general, the
list decoding radius (for polynomial-sized lists), purely as a function of the
distance of the code, cannot be larger than the Johnson radius. Together
these pose limitations to the performance of list decodable codes if one only
appeals to the distance-LDR relation of the code in order to bound its list
decoding radius. To present a concrete example, these imply that one can
use a binary code family of relative distance δ to list decode a fraction (1 −√

1 − 2δ)/2 of errors, but no better (in general). Hence, to list decode a
fraction (1/2−ε) of errors, one needs binary codes of relative distance (1/2−
O(ε2)). The best known explicit constructions of code families of such high
relative distance achieve a rate of only O(ε6) [6, 164], and there is an upper
bound of O(ε4 log(1/ε)) for the rate of such code families [139].

This raises several natural questions. Can one achieve rate better than
Ω(ε4) for binary codes that have list decoding radius (1/2−ε)? Note that the
limitation discussed above comes in part from the rate vs. distance trade-off of
codes, and in part from bounding the list decoding radius purely as a function
of the distance of the code (via the Johnson bound). If one is interested in
list-of-L decoding for some large constant L, the parameters that are directly
relevant to the problem are list-of-L decoding radius and the rate of the
code. Note that the distance of the code does not (at least directly) appear
to be relevant to the problem at all. Since we are only interested in list-of-L
decoding, why should one use codes optimized for the minimum distance (i.e.,
the list-of-1 decoding radius)? A closer examination of this question suggests
the possibility that by “directly” optimizing the rate as a function of the list
decoding radius, one might be able to do better than the two-step method
that goes via the distance of the code.
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This indeed turns out to be the case, as results in this chapter demon-
strate. We will exhibit codes that achieve trade-offs between list decodability
and rate which are provably beyond what can be achieved by going via the
distance of the code. While the rate vs. distance trade-off is one of the central
problems in coding theory and has received lots of attention, the list decoding
radius vs. rate question has received much less attention. This chapter stud-
ies this trade-off and proves non-trivial lower bounds on the rate of certain
list decodable codes. The basic approach is to use the probabilistic method
to show the existence of certain codes. The results of this chapter highlight
the potential and limits of list decoding, which in turn sets up the stage for
the algorithmic results of Part II by indicating the kind of parameters one
can hope for in efficiently list decodable codes. Furthermore, some of the
results provide “good” inner codes for some of our later concatenated code
constructions.

5.2 Definitions

The aim of this chapter is to study the trade-offs between list decoding radius
and the rate of code families. In order to undertake such a study systemati-
cally, we first develop some definitions and notation. It might be of help to
the reader to recall the definition of list decoding radius from Section 2.1.4.

Definition 5.1. For an integer q, real p with 0 ≤ p ≤ (1 − 1/q), and list
size function � : Z+ → Z+, the rate function for q-ary codes with list-of-�
decoding radius p, denoted R�,q(p), is defined to be

R�,q(p) = sup
C:LDR�(C)≥p

R(C) . (5.1)

where the supremum is taken over all q-ary code families C with LDR�(C) ≥ p.
When � is the constant function which takes on the value L for some integer
L ≥ 1, we denote the above quantity as simple RL,q(p).
For a family of integer-valued functions F , one defines the quantity

RF ,q(p) = sup
�∈F

R�,q(p) .

Remark: We have the restriction p ≤ (1−1/q) in the above definition, since
it is easy to see that a q-ary code family of non-vanishing rate can never be
list decoded from beyond a fraction (1− 1/q) of errors with polynomial-sized
lists. We will often omit the subscript q when the alphabet size is clear from
context, or when referring to the binary case. Whether the list size subscript is
a constant, an integer-valued function, or a family of integer-valued functions
will be clear from the context.

Note that RL,q(p) is the best (largest) rate of a q-ary code family which
can list decoded up to a fraction p of errors using lists of size L. We next
define the rate function for list decoding with arbitrary constant-sized lists.
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Definition 5.2. For an integer q and real p, 0 ≤ p ≤ (1 − 1/q), the rate
function for list decoding by constant-sized lists, denoted Rconst

q (p), is defined
to be

Rconst
q (p) = lim sup

L→∞
{RL,q(p)} .

We will also be interested in the analogous rate function RL,q when the
codes in consideration are restricted to be linear. This is an interesting case
to consider both combinatorially and because linear codes are much easier to
represent, encode and operate with.

Definition 5.3. We define the analogous rate functions R�,q, RL,q and RF ,q

when restricted to linear codes by Rlin
�,q, R

lin
L,q and Rlin

F ,q, respectively. Likewise
the function Rconst

q , when restricted to linear codes, is denoted by Rconst,lin
q .

5.3 Main Results

With the definitions of the previous section in place, we now move on to
studying the properties of the rate functions RL,q and the like. Firstly, note
that R1,q(p) is precisely the best asymptotic rate of a q-ary code family of
relative distance 2p, and its study is one of the most important and still widely
open problems in coding theory. Similarly, while a precise understanding of
RL,q seems hopeless at this point, we can nevertheless focus on obtaining good
upper and lower bounds on this function. And, as the result of Theorem 5.4
below states, the function Rconst

q is in fact precisely known.

5.3.1 Basic Lower Bounds

We remark here that the results in this section are proved by analyzing the
performance of random codes and showing that a random code of a certain
rate has the desired list decodability properties with very high probability. In
other words, “most” codes have the rate vs. list decodability trade-off claimed
in this section. The following result was implicit in [203] and was explicitly
stated and proved in [50].

Theorem 5.4 ([203, 50]). For every q and every p, 0 ≤ p ≤ (1 − 1/q), we
have

Rconst,lin
q (p) = Rconst

q (p) = 1 −Hq(p) (5.2)

(recall that Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1 − x) is the q-ary
entropy function).

We will defer the proof of the above result to later in this section. It is
easy to verify that Hq(1 − 1/q − ε) � 1 − O(ε2) for small ε > 0, and hence
the above result implies, in particular, that for each fixed q, the best rate for
families of linear q-ary codes list decodable up to a fraction (1 − 1/q − ε) of
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errors is Θ(ε2). Recall that the best rate one could hope for via the “distance
and Johnson bound” based approach was about ε4. The conclusion therefore
is that there exist codes which are list decodable well beyond their Johnson
radius with small lists, and in fact most codes have this property!

“Capacity-Theoretic” Interpretation of Theorem 5.4 There is a very
nice interpretation of the result of Theorem 5.4 by comparing it with Shan-
non’s theorem on capacity of noisy channels, when applied to the specific
case of the q-ary symmetric channel, call it qSCp. The channel qSCp trans-
mits a q-ary symbol without distortion with probability (1 − p), and with
the remaining probability, distorts it to one of the other (q − 1) symbols,
picked uniformly at random. In other words, the probability that symbol α
is distorted to symbol β equals p

q−1 if α �= β, and equals (1 − p) if α = β.
The Shannon capacity of such a channel equals 1−Hq(p). Therefore, one can
communicate reliably over this channel at a rate as close to 1−Hq(p) as one
seeks, but not at any rate greater than 1 −Hq(p).

The channel qSCp makes an expected fraction p of errors, and in fact
for all sufficiently large blocklengths, the fraction of errors will be close to p
with overwhelming probability (by the Chernoff-Hoeffding bounds for i.i.d.
events). However, Shannon’s theorem relies on the fact the (close to) p frac-
tion of errors will be randomly distributed. The result of Theorem 5.4 states
that by using list decoding with list size a sufficiently large constant, we can
communicate at a rate arbitrarily close to the “capacity” 1 − Hq(p), even
if the channel corrupts an arbitrary p fraction of symbols in an adversarial
manner.

Thus, list decoding allows us to approach the Shannon capacity even if
the errors are adversarially effected, provided we use lists of large enough
size in the decoding. This view indicates that list decoding can achieve the
best performance one can hope for under a standard probabilistic error model
even under the much stronger adversarial error model.

Proof of Theorem 5.4 In order to prove Theorem 5.4, we first focus on
results that obtain lower bounds on the rate function for list decoding with
a fixed list size L. We will then apply these results in the limit of large L
to deduce Theorem 5.4. We first prove a lower bound on RL,q(p) for general
codes, and will then prove a result for linear codes.

Theorem 5.5 ([50]). For every q and every p, 0 ≤ p ≤ (1 − 1/q), we have

RL,q(p) ≥ 1 −Hq(p)
(
1 +

1
L

)
. (5.3)

Proof: Fix a large enough blocklength n and set e = �np�. The idea is to
pick a random code consisting of 2M codewords, where M is a parameter
that will be fixed later in the proof. We will show that with high probability
by removing at most M of the codewords the resulting code will be (e, L)-list
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decodable. This is a fairly standard method in coding theory and is called
“random coding with expurgation”.

The probability that a fixed set of (L + 1) codewords all lie in a fixed
Hamming sphere (in the space [q]n) of radius e equals (Vq(n, e)/qn)L+1 where
Vq(n, e) is the volume of a Hamming sphere of radius e in [q]n. It is well-known
that Vq(n, e) ≤ qHq(e/n)n ≤ qHq(p)n (see for example [193, Chapter 1]). Hence
this probability is at most q−(L+1)(1−Hq(p))n.

Therefore, the expected number Nbad of sets of (L+ 1) codewords which
all lie in some Hamming sphere of radius e is at most

(
2M
L+ 1

)
· qn · q−(L+1)(1−Hq(p))n ≤ (2M)L+1 · q−Ln+(L+1)Hq(p)n . (5.4)

Let us pick M so that it is at least the upper bound in (5.4). For example,
we can pick

M = 	q(1−(1+1/L)Hq(p))n21+1/L
 ≥ q(1−(1+1/L)Hq(p))n . (5.5)

Then the expected value of Nbad is at most M , and therefore there exists a
code with 2M codewords that has at most M sets of (L+ 1) codewords that
lie in a Hamming ball of radius e. Now, we can remove one codeword from
each of these (at most M) subsets of (L+ 1) codewords that lies in a ball of
radius e. This process reduces the size of the code by at most M codewords.
After this expurgation, we have a code with at least M codewords which is
(e, L)-list decodable. Since e = �pn�, using (5.5) we get the desired lower
bound on RL,q(p). �

We next prove the analog of the above result when restricted to linear
codes; the lower bound is much weaker than that for general codes in that one
needs very large lists to get close to the limiting rate Rconst

q (p) = 1 −Hq(p).
The result first appeared implicitly in the work of Zyablov and Pinsker [203].

Theorem 5.6. For every q and every p, 0 ≤ p ≤ (1 − 1/q), we have

Rlin
L,q(p) ≥ 1 −Hq(p)

(
1 +

1
logq(L + 1)

)
. (5.6)

Proof: The idea is to once again pick a random code (specifically a linear code
of blocklength n and dimension k) and then argue that with high probability
it will have the required (e, L)-list decodability property (as before we set
e = �pn�).

The main problem in applying the argument from the proof of Theo-
rem 5.5 is that a subset of L codewords of a random linear code are no longer
mutually independent. A random [n, k]q linear code C is picked by picking
a random n × k matrix A over Fq, and the code is given by {Ax : x ∈ Fk

q}.
Define J = 	logq(L+1)
. Now every set of L distinct non-zero messages in Fk

q

contain a subset of at least J messages which are linearly independent over
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Fq. It is easily verified that such linearly independent J-tuples are mapped
to J mutually independent codewords by a random linear code. We can then
apply estimates similar to the proof of Theorem 5.5 applied to this subset of
J codewords.

We now bound from above the probability that a random linear code C
is not (e, L)-list decodable. We first make the following useful observation:
A linear code C is (e, L)-list decodable iff no one of the Hamming balls of
radius e around points in Bq(0, e) contain L or more non-zero codewords. The
condition is clearly necessary; its also sufficient by linearity. Indeed, suppose
there is some y ∈ Fk

q with |Bq(y, e) ∩ C| ≥ L + 1. Let c ∈ Bq(y, e) ∩ C. By
linearity, we have |Bq(y − c, e) ∩ C| ≥ L + 1 as well. But w = y − c has
Hamming weight at most e, and Bq(w, e) has at least L non-zero codewords.

The probability that codewords corresponding to a fixed J-tuple of lin-
early independent messages all lie in a fixed Hamming ball Bq(w, e) is at most(
q(Hq(p)−1)n

)J . Multiplying this by the number of such linearly independent
J-tuples of messages and the number of choices for the center w ∈ Bq(0, e),
we get that the probability that some J-tuple of linearly independent mes-
sages all lie in some Hamming ball of radius e is at most

qkJ · qHq(p)n · q(Hq(p)−1)Jn = q−nJ
(
1−(1+1/J)Hq(p)−k/n

)
. (5.7)

Since every set of L non-zero codewords has a subset of J codewords corre-
sponding to the encodings of linearly independent messages, the above also
gives an upper bound on the probability that C is not (e, L)-list decodable.
Picking the dimension to be, say, k = �(1 − (1 + 1/J)Hq(p))n − √

n�, we
get exponentially small failure probability for random linear codes with rates
approaching 1 − (1 + 1/J)Hq(p). Hence there exists a linear code family of
rate 1 − (1 + 1/J)Hq(p) and LDRL,q ≥ p, as desired. �

Proof of Theorem 5.4: The lower bounds in both Theorems 5.5 and 5.6 ap-
proach 1−Hq(p) as the list size L→ ∞. It remains to prove the upper bounds.
Clearly Rconst,lin

q (p) ≤ Rconst(p), so it suffices to prove Rconst(p) ≤ 1−Hq(p).
This is quite straightforward. Let C be a q-ary code of blocklength n and
rate r > 1−Hq(p). Pick a random x ∈ [q]n and consider the random variable
X = |Bq(x, pn) ∩ C|. The expected value of X is clearly |C| · |Bq(0, pn)|/qn

which is at least q(r+Hq(p)−1)n−o(n). If r > 1 − Hq(p), this quantity is of
the form qΩ(n). Hence a random ball of radius pn has exponentially many
codewords. We must therefore have Rconst(p) ≤ 1 −Hq(p). �

We also record the following result which is obtained by combining the
Gilbert-Varshamov bound (for rate vs. distance trade-off) with the John-
son bound on list decoding radius (which gives a certain LDR vs. distance
trade-off). Such a result was made explicit for binary codes in [50] — below
we state it for general alphabets.
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Theorem 5.7. For every prime power q and every p, 0 ≤ p ≤ (1− 1/q), and
every integer L ≥ 1, we have

Rlin
L,q(p) ≥ 1 −Hq

((
1 − 1

q

) L

L− 1

(
1 −

(
1 − qp

q − 1

)2))
. (5.8)

Proof (Sketch): The Gilbert-Varshamov bound (see, for instance, [193,
Chapter 5]) implies that there exist q-ary linear code families of relative
distance δ and rate R where

R ≥ 1 −Hq(δ) . (5.9)

(In fact a random linear code achieves this trade-off with high probability.)
The result of Theorem 3.1 on the Johnson radius for list decodability im-
plies that a q-ary code of relative distance δ and blocklength n is (pn, L)-list
decodable for

p =
(
1 − 1

q

)(
1 −

(
1 − q

q − 1
L− 1
L

δ
)1/2)

. (5.10)

Combining (5.9) and (5.10) gives us the desired result. �

5.3.2 An Improved Lower Bound for Binary Linear Codes

Consider the result of Theorem 5.6 for the case of binary linear codes and
when p = 1/2 − ε (i.e. we wish to correct close to the “maximum” possible
fraction of errors). For this case it implies that there exist rate Θ(ε2) families
which are list decodable to a fraction (1/2 − ε) of errors with lists of size
2O(ε−2). While the list size is a constant, it is exponential in 1/ε and it is
desirable to reduce it to polynomial in 1/ε. By appealing to the Johnson
radius based bound of Theorem 5.7, one can achieve a list size of O(1/ε2)
for decoding up to a fraction (1/2 − ε) of errors, but the rate goes down to
O(ε4).

Next, we present an improved result for binary linear codes which com-
bines the optimal Ω(ε2) rate with O(1/ε2) list size. Recall that the result of
Theorem 5.5 already implies this for general, non-linear codes, and the follow-
ing result closes the gap between linear and non-linear codes for list decoding
up to a fraction (1/2− ε) of errors (closing this disparity was highlighted by
Elias [50] as an open question).

As we shall show in Section 5.3.4, a list size of Ω(1/ε2) is really necessary
(even for general, non-linear codes), and thus this result is optimal up to
constant factors for the case p = (1/2 − ε).

Theorem 5.8. For each fixed integer L ≥ 1, and 0 ≤ p ≤ 1/2, we have

Rlin
L (p) ≥ 1 −H(p) − 1

L
, (5.11)

where H(x) = −x lg x− (1−x) lg(1−x) denotes the binary entropy function.
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Proof: For each fixed integer L ≥ 1 and 0 ≤ p < 1/2 and for all large enough
n, we use the probabilistic method to guarantee the existence of a binary
linear code C of blocklength n that is (e, L)-list decodable for e = pn, and
whose dimension is k = �(1 −H(p) − 1/L)n�. This clearly implies the lower
bound on the rate function for binary linear codes claimed in (5.11).

The code C = Ck will be built iteratively in k steps by randomly picking
the k basis vectors in turn. Initially the code C0 will just consist of the all-
zeroes codeword b0 = 0n. The code Ci, 1 ≤ i ≤ k, will be successively built
by picking a random (non-zero) basis vector bi that is linearly independent
of b1, . . . , bi−1, and setting Ci = span(b1, . . . , bi). Thus C = Ck is an [n, k]2
linear code. We will now analyze the list of L decoding radius of the codes Ci,
and the goal is to prove that the list of L decoding radius of C is at least e.

The key to analyzing the list of L decoding radius is the following potential
function SC defined for a code C of blocklength n:

SC =
1
2n

∑
x∈{0,1}n

2
n
L ·|B(x,e)∩C| . (5.12)

For notational convenience, we denote SCi be Si. Also denote by T i
x the

quantity |B(x, e) ∩ Ci|, so that Si = 2−n
∑

x 2nT i
x/L.

Let B = |B(0, e)| = |B(0, pn)|; then B ≤ 2H(p)n (see for example Theo-
rem (1.4.5) in [193, Chapter 1]). Clearly

S0 =
(2n −B) +B · 2n/L

2n
≤ 1+B ·2−n(1−1/L) ≤ 1+2n(H(p)−1+1/L) . (5.13)

Now once Ci has been picked with the potential function Si taking on some
value, say Ŝi, the potential function Si+1 for Ci+1 = span(Ci ∪ {bi+1}) is a
random variable depending upon the choice of bi+1. We consider the expecta-
tion E[Si+1|Si = Ŝi] taken over the random choice of bi+1 chosen uniformly
from outside span(b1, . . . , bi). For better readability, below we sometimes use
exp2(z) to denote 2z.

E[Si+1|Si = Ŝi]

= 2−n
∑

x

E[exp2(n/L · T i+1
x )]

= 2−n
∑

x

E[exp2(n/L · (|B(x, e) ∩ Ci| + |B(x, e) ∩ (Ci + bi+1)|
)
)]

= 2−n
∑

x

(
exp2(n/L · T i

x) E
bi+1

[exp2(n/L · T i
x+bi+1

)]
)

(5.14)

where in the second and third steps we used the fact that if z ∈ B(x, e)∩Ci+1,
then either z ∈ B(x, e) ∩ Ci, or z + bi+1 ∈ B(x, e) ∩ Ci. To estimate the
quantity (5.14), we use the fact that the expectation of a positive random
variable taken over bi+1 chosen randomly from outside span(b1, . . . , bi) is at
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most (1− 2i−n)−1 times the expectation taken over bi+1 chosen uniformly at
random from {0, 1}n. Using (5.14) we therefore get:

E[Si+1|Si = Ŝi] ≤ (1 − 2i−n)−12−n
∑

x

(
2n/L ·T i

x ·
( 1

2n

∑
y∈{0,1}n

2n/L ·T i
x+y

) )

= (1 − 2i−n)−1Ŝi · 2−n
∑

x

2n/L ·T i
x

=
Ŝ2

i

(1 − 2i−n)
. (5.15)

Applying (5.15) repeatedly for i = 0, 1, . . . , k − 1, we conclude that there
exists an [n, k] binary linear code C with

SC = Sk ≤ S2k

0∏k−1
i=0 (1 − 2i−n)2k−i

≤ S2k

0

(1 − 2k−n)k
≤ S2k

0

1 − k2k−n
(5.16)

since (1 − x)a ≥ 1 − ax for x, a ≥ 0. Combining (5.16) with (5.13), we have

Sk ≤ (1 − k2k−n)−1
(
1 + 2n(H(p)−1+1/L)

)2k

and using (1 + x)a ≤ (1 + 2ax) for ax� 1, this gives

Sk ≤ 2 · (1 + 2 · 2k+(H(p)−1+1/L)n) ≤ 6 (5.17)

(the last inequality follows since k = �(1−H(p)− 1/L)n�). By the definition
of the potential Sk from Equation (5.12), this implies that 2n/L·|B(x,e)∩C| ≤
6 · 2n < 2n+3, or |B(x, e) ∩ C| ≤ (1 + 3

n )L for every x ∈ {0, 1}n. If n > 3L,
this implies |B(x, e) ∩ C| < L + 1 for every x, implying that C is (e, L)-list
decodable, as desired. � (Theorem 5.8)

Remark: One can also prove Theorem 5.8 with the additional property that
the relative distance δ(C) of the code (in addition to its list -of-L decoding
radius) also satisfies δ(C) ≥ p. This can be done, for example, by condition-
ing the choice of the random basis vector bi+1 in the above proof so that
span(b1, b2, . . . , bi+1) does not contain any vector of weight less than pn. It is
easy to see that with this modification, Equation (5.15) becomes

E[Si+1|Ŝi] ≤ Ŝ2
i

(1 − 2i+H(p)n−n)
.

Using exactly similar calculations as in the above proof, we can then guar-
antee that there exists a code C of dimension k = �(1 −H(p) − 1/L)n� and
minimum distance at least pn that satisfies SC = O(1), and consequently
satisfies LDRL(C) ≥ p.
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Note that Theorem 5.8, as with the results from the previous section,
is a non-constructive result, in that it only proves the existence of a code
with the desired properties, and does not give an explicit or polynomial time
construction. In fact, unlike the results of Theorems 5.4, 5.5 or 5.6, it does
not even give a high probability result. (For those who might be aware of
such terminology on the probabilistic method, the technique used to prove
Theorem 5.8 is called the semirandom method.) Also the proof seems to work
for the binary case and does not generalize, at least in any obvious fashion,
to the q-ary case for q > 2. The following specific questions, therefore, remain
open:

Question 5.9. Does a random binary linear code have the property claimed
in Theorem 5.8 with high probability ?

Question 5.10. Does an analogous result to Theorem 5.8 hold for q-ary linear
codes for q > 2 ? Specifically, does Rlin

L,q ≥ 1−Hq(p)− 1
L hold for every prime

power q ?

We believe that the answer to both of the questions above is yes. Finally,
we note the following capacity-theoretic consequence of Theorem 5.8: there
exist binary linear codes of rate within ε of the Shannon capacity of the
binary symmetric channel with cross-over probability p, namely within ε of
1 − H(p), even when the fraction p of errors are effected adversarially as
opposed to randomly, provided we use list decoding with lists of size 1/ε.

5.3.3 Upper Bounds on the Rate Function

So far, all of our results concerning the rate functions RL and Rlin
L established

lower bounds on these functions. In other words they proved that codes with
a certain list-of-L decoding radius and certain rate exist. We now turn to the
questions of upper bounds on these functions, namely results which demon-
strate that codes of certain rate and list decodability do not exist. We focus
on binary codes for this section.

The result of Theorem 5.4 shows that one can achieve a rate arbitrarily
close to the optimum rate 1 − H(p) for codes with list decoding radius p,
provided one allows the list size L to grow beyond any finite bound (i.e. by
letting L→ ∞). This raises the question whether one can attain the rate 1−
H(p) with any finite list size L. The following result, due to Blinovsky [27, 28],
proves that the unbounded list size is in fact necessary to approach a rate of
1−H(p); in other words, it proves that RL(p) is strictly smaller than 1−H(p)
for any finite L and 0 < p < 1/2. The proof of the result is quite complicated
and we refer the interested reader to [27, Theorem 3] (see also [28, Chapter 2]).

Theorem 5.11 ([27]). For every integer L ≥ 1, and each p, 0 ≤ p ≤ 1/2,
we have

RL(p) ≤ 1 −H(λ) , (5.18)
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where λ, 0 ≤ λ ≤ 1/2, is related to p by

p =
�L/2�∑
i=1

(
2i− 2
i− 1

)
(λ(1 − λ))i

i
. (5.19)

Corollary 5.12. For every L ≥ 1 and every p, 0 < p < 1/2, we have
RL(p) < 1 −H(p).

Proof: It is not difficult to see that, for 0 ≤ y ≤ 1/2,

∞∑
i=1

(
2i− 2
i− 1

)
(y(1 − y))i

i
= y . (5.20)

Indeed, this follows from the fact that the generating function C(x) =∑
n≥0 cnx

n for Catalan numbers, defined by cn = 1
n+1

(
2n
n

)
for n ≥ 0, equals

C(x) = (1 − √
1 − 4x)/2. Equation (5.20) above follows with the setting

x = y(1 − y) in the generating function for Catalan numbers. We therefore
have that the λ which satisfies Condition (5.19) is strictly greater than p.
Hence, H(λ) > H(p), and thus RL(p) ≤ 1 −H(λ) < 1 −H(p). �

5.3.4 “Optimality” of Theorem 5.8

Consider the case of list decoding radius close to 1/2, i.e., the case when
p = 1/2 − ε. In this case, Theorem 5.8 implies the existence of binary linear
code families C of rate Ω(ε2) and LDRL(C) ≥ 1/2−ε for list size L = O(1/ε2)
(Theorem 5.5 showed the same result for general, non-linear codes). We now
argue that in light of Theorem 5.11, this result for binary codes for the case
p = 1/2 − ε is in fact asymptotically optimal. That is, the rate and list size
guaranteed by Theorems 5.5 and 5.8 are the best possible up to a constant
factor.

By Theorem 5.4, RL(p) ≤ 1 − H(p) for any finite L, and hence for p =
1/2 − ε, we get that the rate can be at most O(ε2). It remains to show that
in order to have list-of-L decoding radius (1/2 − ε) and a positive rate, one
needs L = Ω(ε−2). To do this we make use of the result of Theorem 5.11.

The λ that satisfies Condition (5.19) must be at least p. Hence if p =
(1/2 − ε), we have 1/2 ≥ λ ≥ (1/2 − ε). Therefore λ(1 − λ) ≥ 1/4 − ε2.

Now for any integer � ≥ 0 we have
∞∑

i=�+1

(
2i− 2
i− 1

)
(λ(1 − λ))i

i

≥
(

2�
�

)
(λ(1 − λ))�+1

�+ 1

∞∑
j=0

(λ(1 − λ))j
(2(2�+ 1)

�+ 2

)j

=
�+ 2
�+ 1

(
2�
�

)
(λ(1 − λ))�+1

(�+ 2) − 2(2�+ 1)λ(1 − λ)
(5.21)
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where in the first step we use the fact that if i = �+ 1 + j,

(
2i−2
i−1

)
1
i(

2�
�

)
1

�+1

= 2j

�+j∏
s=�+1

2s− 1
s+ 1

≥
(2(2�+ 1)

�+ 2

)j

.

Together with Condition (5.19) and Equation (5.20) applied with the choice
y = λ, Equation (5.21) above implies

λ ≥ p+
�+ 2
�+ 1

(
2�
�

)
(λ(1 − λ))�+1

(�+ 2) − 2(2�+ 1)λ(1 − λ)
,

where � = 	L/2
. Plugging in the above into the bound of Theorem 5.11
and using λ(1 − λ) ≥ 1/4 − ε2, we get, after some straightforward algebraic
manipulations,

λ ≥ p+Ω
((1 − 4ε2)�+1

�3/2ε2

)
.

Since RL(p) ≤ 1 −H(λ) by Theorem 5.11, we get

RL(p) ≤ 1 −H
(
p+Ω

( (1 − 4ε2)�+1

�3/2ε2

))
. (5.22)

In order to have positive rate, the argument to the entropy function H(·)
in the above bound must be at most 1/2. When p = 1/2 − ε, this requires
1/(�3/2ε2) = O(ε), or � = Ω(ε−2). Since � = 	L/2
, we needs list size L =
Ω(ε−2), as we desired to show. We record this fact in the following result:

Theorem 5.13. Let ε > 0 be a sufficiently small constant and let C be a
binary code family of rate r that satisfies LDRL(C) ≥ (1/2 − ε). Then we
must have r = O(ε2) and L = Ω(1/ε2).

5.4 Prelude to Pseudolinear Codes

For q > 2, the lower bound on rate we know for list decodable q-ary codes
is much weaker for linear codes (Theorem 5.6) than for general codes (The-
orem 5.5). We conjecture that there exists an answer to open question 5.10
in the affirmative, however a proof of this fact has been elusive.

Linear codes have the advantage of succinct representation and efficient
encoding (for example, using the generator matrix). Thus, they are very at-
tractive from a complexity view-point. This is particularly important for us
later on when we will use the codes guaranteed by the results of the pre-
vious two sections as inner codes in concatenated schemes. In light of the
fact that the existential results are weaker for linear codes, we introduce the
notion of “pseudolinear” codes, which albeit non-linear, still have succinct
representations and admit efficient encoding.
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The basic idea behind pseudolinear codes is the following: to encode a
message x ∈ Fk

q , first “map” it into a longer string hx ∈ Fk′
q and then

encode hx using a suitable n× k′ “generator” matrix A into Ahx. The name
pseudolinear comes from the fact that the non-linear part of the mapping is
confined to the first step which maps x to hx. Of course, to make this useful
the mapping x �→ hx must be easy to specify and compute – this will be the
case; in fact the mapping will be explicitly specified.

The crucial property of pseudolinear codes for purposes of list decodabil-
ity will be that by taking k′ = O(kL), we can ensure that under the mapping
x �→ hx, every set of L distinct non-zero x’s are mapped into a set of L
linearly independent vectors in Fk′

q . Then if we pick a “random” pseudolinear
code by picking a random n × k′ matrix A, we will have the property that
the codewords corresponding to any set of L non-zero messages will be mu-
tually independent. This “L-wise independence property” can then be used
to analyze the list-of-L decoding properties of the random code, in a manner
similar to the analysis of a general, random code.

In a nutshell, the above allows us to translate the list-of-L decoding per-
formance of general codes into similar bounds for L-wise independent pseu-
dolinear codes. The big advantage of pseudolinear codes over general codes is
their succinct representation (since one only needs to store the “generator”
matrix A) and their efficient encoding. They are thus attractive for use as
inner codes in concatenated schemes.

To avoid burdening the reader at this stage, the formal definitions relating
to pseudolinear codes and the analog of Theorem 5.5 and related results for
pseudolinear codes are deferred to Chapter 9 (pseudolinear codes will not be
used in the book until that point). For now, the reader can take comfort in
the fact there is a way to achieve the list decoding performance of general
codes with the more structured pseudolinear codes.

5.5 Notes

Initial works [48, 199, 162, 2] on list decoding investigated the notion on
probabilistic channels, and used random coding arguments to explore the
average decoding error probability of block codes for the binary symmetric
and more general discrete memoryless channels. Combinatorial questions of
the nature investigated in this chapter (and in this book in general), on
the other hand, are motivated by worst-case, not average, error-correcting
behavior.

The study of the maximum rate of (e, L)-list decodable codes in the limit
of large blocklength n with e/n and L fixed originated in the work of Zyablov
and Pinsker [203] who were interested mainly in the use of such codes as in-
ner codes in concatenated schemes. The study of the relation between rate
and list decodability was undertaken systematically for the first time by Bli-
novsky [27] (see also [28]), where non-trivial upper and lower bounds onRL(p)
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are obtained. The paper of Elias [50] is a very useful resource on this topic
as it presents a nice, limpid survey of the relevant results together with some
new results.

The result of Theorem 5.4 was first implicitly observed in [203]. The result
of Theorem 5.5 and its proof are from [50]. Theorem 5.6 was first observed
in [203]; the proof in this chapter follows the presentation in [50]. The result
of Theorem 5.7 is the generalization to the q-ary case of a similar result for
binary codes that was observed in [50].

Elias [50] was the first to note the disparity between the results for linear
and non-linear codes, and posed the open question whether the requirement
of very large lists in Theorem 5.6 for linear codes was inherent or, as he
correctly suspected, was an artifact of the proof techniques. The result of
Theorem 5.8 for binary linear codes can be viewed as a positive resolution of
this question. This result appears in a joint paper of the author with H̊astad,
Sudan and Zuckerman [80].

Recently, Wei and Feng [195] obtained rather complicated lower bounds
for the function RL(p) as well as its linear counterpart Rlin

L (p). Their bounds
are hard to state and do not have simple closed forms. They conjecture that
their lower bounds for the linear and non-linear case are identical for every
value of the list size. However, they are able to prove this only for list size at
most 3.

Upper bounds on the rate function RL(p) have been studied by Bli-
novsky [27], and he obtained some non-trivial bounds which were mentioned
in Section 5.3.3. For the case of list size L = 2, an improvement to the upper
bound from Theorem 5.11 appears in [16]. A recent paper by Blinovsky [29]
revisits the bounds for the linear and non-linear case from [27], and shows
that the lower bound proved for linear codes is weaker than the one for non-
linear codes for a list size as small as 5.

The notion of pseudolinear codes was defined and basic combinatorial
results concerning them were proven by the author in joint work with In-
dyk [81].

Combinatorial results of a similar flavor to those discussed in this chapter
appear in three other places in this book: in Chapter 8 where a generaliza-
tion of Theorem 5.8 is proven, in Chapter 9 where pseudolinear codes are
discussed, and in Chapter 10 where we discuss analogous questions for the
case of erasures (instead of the errors case discussed in this chapter). Due to
the local nature of the use of these results, we chose not to present them in
this chapter, but instead postpone them to the relevant chapters where they
are needed.
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