
3 Johnson-Type Bounds and Applications to

List Decoding

This chapter, as well as the next one, explore the relation between the list
decoding radius and minimum distance of a code. Understanding the relation
between these parameters is useful for two reasons: (a) for several important
families of codes like Reed-Solomon codes, we have precise bounds on the
distance, and one can use the relation between list decoding radius and dis-
tance to understand the list decoding potential of these codes; and (b) this
shows that one approach to construct good list decodable codes is to con-
struct large distance codes, and the latter is a relatively well-studied and
better understood problem. Also, historically the most significant algorith-
mic results on list decoding have been fueled by an attempt to decode codes
whose good minimum distance highlighted their good combinatorial list de-
codability properties.

3.1 Introduction

In order to perform list decoding up to a certain number, say e, errors ef-
ficiently, we need the guarantee that every Hamming ball of radius e has a
“small” number of codewords. This is because the list decoding algorithm
will have a runtime that is at least the size of the list it outputs, and we want
the algorithm to be efficient even for the worst-case error pattern. The exact
size of the list can be either set to a suitably large constant (independent of
the blocklength), or to a fixed polynomial function of the blocklength.

Unique decoding is based upon the fact that in a code of minimum dis-
tance d any Hamming ball of radius less than d/2 can have at most one
codeword. For list decoding we would like upper bounds on the number of
codewords in a ball of radius e for e larger than d/2. A classical bound in
coding theory, called the Johnson bound [108, 109] (see also [132]), proves
an upper bound on the number of codewords at a Hamming distance exactly
e from an arbitrary word, as long as e is less than a certain function of the
distance and blocklength of the code. Such a bound is of direct interest to
constant-weight codes (which are codes all of whose codewords have the same
Hamming weight), and is also used in the Elias-Bassalygo upper bound on
the dimension of codes with certain minimum distance.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 33-44, 2004.
 Springer-Verlag Berlin Heidelberg 2004

34 3 Johnson-Type Bounds and Applications to List Decoding

For purposes of list decoding, we need a Johnson-style bound for the
number of codewords at a distance of at most e (not exactly e) from a received
word. In this chapter, we present a very general version of such a bound.
Owing to their strong resemblance to the Johnson bound, we call our bounds
Johnson-type (or simply, Johnson) bounds. The main result of this chapter
is the fact any q-ary code of blocklength n and distance d is list decodable
with “small” lists for up to eJ(n, d, q) errors, where eJ(n, d, q) is a function
only of n, d, q (and not the structure of the code). We call this quantity
eJ(n, d, q) the “Johnson bound on list decoding radius” or “Johnson radius”
of the code, and it is always greater than d/2.

Proofs of the Johnson bound seem to come in one of two flavors. The
original proof and some of its derivatives follow a linear algebra based argu-
ment [108, 109, 50, 73, 89], while more recent proofs, most notably [128, 53, 1]
are more geometric. Our proof follows the latter spirit, extending these proofs
to the case of general alphabets.

Moreover, our techniques easily allow us to extend our results and also
prove a weighted version of the Johnson bound which is of interest to some
questions raised by the investigations on “soft” list decoding algorithms (more
details on this and the connection to soft decoding will be discussed in later
chapters in Part II of the book).

3.2 Definitions and Notation

We first recall some notation. For x,y ∈ [q]n the Hamming distance between
x and y is denoted ∆(x,y). For r ∈ [q]n and 0 ≤ e ≤ n, the Hamming ball
of radius e around r is defined by Bq(r, e) = {x ∈ [q]n : ∆(r,x) ≤ e}.

The key quantity to study in our context is the following. Let A′
q(n, d, e)

denote the maximum number of points that may be placed in some ball
Bq(r, e) such that all pairwise distances between the points are at least d.
More formally,

A′
q(n, d, e) = max{|S| : S ⊆ Bq(r, e) for some r ∈ [q]n and ∀x,y ∈ S,

∆(x,y) ≥ d} . (3.1)

(We use the notation A′
q(n, d, e) instead of the apparently more natural choice

Aq(n, d, e) because the notation Aq(n, d, e) in coding theory literature nor-
mally refers to the maximum number of points (with pairwise distances at
least d) that may be placed on the surface of (instead of within) the ball
Bq(r, e). To avoid confusion with this standard terminology, we use A′

q(n, d, e)
instead. We clearly have Aq(n, d, e) ≤ A′

q(n, d, e), and thus any upper bound
we derive on A′

q(n, d, e) also applies to Aq(n, d, e).)
Clearly for any code C ⊆ [q]n of minimum distance d, A′

q(n, d, e) is an
upper bound on the number of codewords of C that can lie in a Hamming

3.3 The Johnson Bound on List Decoding Radius 35

ball of radius e. Hence, our objective in this chapter is to obtain an upper
bound on the function A′

q(n, d, e).
It is common practice to denote these functions asA(n, d, e) andA′(n, d, e)

for the binary (q = 2) case.

3.3 The Johnson Bound on List Decoding Radius

Theorem 3.1 ([91, 1]). Let C be any q-ary code of blocklength n and
minimum distance d = (1 − 1/q)(1 − δ)n for some 0 < δ < 1. Let
e = (1 − 1/q)(1 − γ)n for some 0 < γ < 1 and let r ∈ [q]n be arbitrary.
Then, provided γ >

√
δ, we have

|Bq(r, e) ∩ C| ≤ min
{
n(q − 1),

1 − δ

γ2 − δ

}
. (3.2)

Furthermore, for the case when γ =
√
δ, we have |Bq(r, e)∩C| ≤ 2n(q−1)−1.

The theorem below is merely a restatement of the above result in different no-
tation, and follows immediately from the above result (it is a straightforward
calculation to check this).

Theorem 3.2. Let q, n, d be arbitrary positive integers with d < (1−1/q)n.

(i) Let e ≥ 1 be any integer that satisfies the condition

e < eJ(n, d, q) def=
(
1 − 1

q

)(
1 −

√
1 − q

q − 1
· d
n

)
n . (3.3)

Then we have

A′
q(n, d, e) ≤ min{n(q − 1),

nd

nd− 2e
(
n− qe

2(q−1)

)} . (3.4)

In other words, for an integer L ≥ 1, if

e ≤ eJ(n, d, q, L) def= n
(
1 − 1

q

)(
1 −

√
1 − q

q − 1
L− 1
L

d

n

)
, (3.5)

then A′
q(n, d, e) ≤ L.

(ii) Furthermore, if e = eJ(n, d, q), then A′
q(n, d, e) ≤ 2n(q − 1) − 1.

The above theorem says that a q-ary code of blocklength n and distance
d can be list decoded with small lists for up to eJ(n, d, q) errors. For purposes
of easy future reference, we give the quantity eJ(n, d, q) the label “Johnson
bound on list decoding radius” , or simply the “Johnson radius” of a code.

36 3 Johnson-Type Bounds and Applications to List Decoding

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
A

D
IU

S
 (

=
 e

/n
)

RELATIVE DISTANCE (= d/n)

Johnson Radius
Half the distance

Fig. 3.1. Plot of Johnson radius as a function of relative distance for binary codes.
This shows that list decoding always permits decoding beyond half the distance.

When we want to make the alphabet size explicit, we will refer to eJ(n, d, q)
as the “q-ary Johnson radius”. For decoding with lists of size L, we give the
quantity eJ(n, d, q, L) the label “Johnson radius for list-of-L decoding”.

It is easy to verify that the Johnson radius eJ(n, d, q) defined in Equation
(3.3) satisfies

eJ(n, d, q) > d/2

for every n, d, q with 1 ≤ d ≤ (1 − 1/q)n. This captures the claim that list
decoding with polynomial-sized lists always permits one to decode beyond half
the distance. As an illustration, we plot the Johnson radius for binary codes
in Figure 3.1, normalized by blocklength, as a function of the relative distance
of the code. Note for any every value of the relative distance δ in the range
0 < δ < 1/2, the Johnson radius is strictly greater than half the minimum
distance.

Before moving on to the proof of Theorem 3.1, we state the following
corollary to the above statement. This gives a (weaker) version of the above
bounds that ignores the alphabet size q of the code. But it has a simpler,
easily stated form, and for large q approaches the above bounds.

Corollary 3.3. Let q, n, d, e be arbitrary positive integers with e ≤ d ≤ n.

(i) If e < n− √
n(n− d), then A′

q(n, d, e) ≤ n(q − 1).
(ii) if e ≤ n− √

n(n− d+ d/L), then A′
q(n, d, e) ≤ L.

3.3 The Johnson Bound on List Decoding Radius 37

Proof: The proof follows from Theorem 3.2 and the fact that

(1 −√
1 − x) ≤ (1 − 1/q)

(
1 −

√
1 − qx

q − 1
)

for every integer q and every x, 0 ≤ x ≤ (1 − 1/q). The above inequality can
be proved using a straightforward calculation. Using the above inequality
with x = d/n and x = L−1

L
d
n implies that the conditions on e stated in the

corollary imply the Conditions (3.3) and (3.5) respectively. �

3.3.1 Proof of Theorem 3.1

Proof Idea: The proof follows a “geometric” approach. We identify elements
of [q]n with vectors in Rnq by replacing the symbol i (1 ≤ i ≤ q) by the unit
vector of length q with a 1 in position i. This allows us to embed the codewords
and the “received” word r into Rnq. Next, by appropriately shifting the set
of vectors corresponding to the codewords that are close to r, we get a set
of vectors such that the inner product of any two distinct vectors from this
set is non-positive. By a standard geometric upper bound on the cardinality
of such a set of vectors, we get the required upper bound on the number of
codewords that are “close” to r.

Our idea extends proofs for the binary case, given by [53, 128, 1]. These
works used an appropriate embedding of the binary codewords in Rn and
an appropriate shifting of vectors to establish “Johnson-style” bounds by
appealing to bounds on spherical codes, i.e., bounds on the cardinality of a
set of unit vectors in real space with a specified minimum angle between any
pair of vectors. It may be noted that the generalization to arbitrary alphabets
is not automatic. (Of the several potential approaches, our proof hits upon
the right path.)

Proof of Theorem 3.1: Assume without loss of generality that r =
〈q, q, . . . , q〉, i.e is the symbol q repeated n times. Let C1, C2, . . . , Cm be all
the codewords of C that lie within Bq(r, e) where e = (1− 1/q)(1− γ)n. Our
goal is to get an upper bound on m provided γ is large enough.

We associate a vector in Rnq with r and with each codeword Ci. Each
vector is to be viewed as having n blocks each having q components (the n
blocks correspond to the n codeword positions). For 1 ≤ l ≤ q, denote by êl

the q-dimensional unit vector with 1 in the lth position and 0 elsewhere. For
1 ≤ i ≤ m, the vector ci associated with the codeword Ci has in its jth block
the components of the vector êCi[j] (Ci[j] is the jth symbol of Ci, treated as
an integer between 1 and q). The vector associated with the received word r,
which we also denote r by abuse of notation, is defined similarly. Let 1 ∈ Rnq

be the all 1’s vector. Now define v = αr + (1−α)
q 1 for a parameter 0 ≤ α ≤ 1

to be specified later in the proof. Note that the ci’s and v all lie in the space
defined by the intersection of the n “hyperplanes” { H′

j :
∑q

�=1 xj,� = 1 } for

38 3 Johnson-Type Bounds and Applications to List Decoding

large

small

small

O O’

c_1

c_2

r

>90

v

Fig. 3.2. Geometric picture behind proof of Theorem 3.1

1 ≤ j ≤ n. Hence the vectors (ci − v), for 1 ≤ i ≤ m, all lie in H =
⋂n

j=1 Hj

where Hj = {x ∈ Rnq :
∑q

�=1 xj,� = 0}. It is easy to see that H is an
n(q − 1)-dimensional subspace of Rnq. We thus conclude that the vectors
(ci − v), 1 ≤ i ≤ m, all lie in an n(q − 1)-dimensional space.

The idea behind the rest of the proof is the following. We will pick α so
that the vectors (ci − v), for 1 ≤ i ≤ m, have all pairwise dot products less
than 0. Geometrically speaking, we shift the origin O to O′ where OO′ =
v, and require that relative to the new origin the vectors corresponding to
the codewords have pairwise angles which are greater than 90 degrees (see
Figure 3.2). By a simple geometric fact (stated in Lemma 3.4 below), it will
then follow that the number of codewordsm is at most the dimension n(q−1)
of the space in which all these vectors lie.

For 1 ≤ i ≤ m, let ei = ∆(r, Ci). Note that ei ≤ e for every i. Now

〈ci,v〉 = α〈ci, r〉 +
(1 − α)

q
〈ci,1〉 = α(n− ei) + (1 − α)

n

q
(3.6)

〈v,v〉 = α2n+ 2(1 − α)α
n

q
+ (1 − α)2

n

q
=
n

q
+ α2

(
1 − 1

q
)n (3.7)

〈ci, cj〉 = n−∆(Ci, Cj) ≤ n− d . (3.8)

Using (3.6), (3.7) and (3.8), and the fact that each ei ≤ e, we get, for i
= j,

〈ci − v, cj − v〉 ≤ 2αe− d+
(
1 − 1

q

)
(1 − α)2n . (3.9)

3.3 The Johnson Bound on List Decoding Radius 39

Using e = (1− 1/q)(1− γ)n and d = (1− 1/q)(1− δ)n the above simplifies to

〈ci − v, cj − v〉 ≤
(
1 − 1

q

)
n
(
δ + α2 − 2αγ

)
(3.10)

Thus as long as γ > 1
2

(
δ
α + α

)
we will have all pairwise dot products to be

negative just as we wanted. We pick α to minimize
(

δ
α +α

)
, or in other words

we set α =
√
δ. Now as long as γ >

√
δ, we will have 〈ci − v, cj − v〉 < 0

for all 1 ≤ i < j ≤ m. To complete the proof, we note that (for the choice
α =

√
δ), for every 1 ≤ i ≤ m, 〈ci − v,v〉 ≥ (1 − 1/q)n

√
δ(γ − √

δ) > 0
(this is easily checked using (3.6) and (3.7)). Thus provided γ >

√
δ, we have

〈ci − v,v〉 > 0 for 1 ≤ i ≤ m. Now applying Part (iii) of Lemma 3.4, with
the setting vi = ci − v and u = v|H, the projection of v onto the subspace
H, implies that m ≤ n(q− 1) (recall that the vectors (ci − v), 1 ≤ i ≤ m, all
lie in H and dim(H) = n(q − 1)).

We now prove that if γ >
√
δ, then m ≤ 1−δ

γ2−δ . For this we set α = γ.
Now from Equation (3.10) we have

〈ci − v, cj − v〉 ≤ (1 − 1/q)n(δ − γ2) . (3.11)

Thus if γ >
√
δ, we have 〈ci − v, cj − v〉 < 0. Now for the choice α = γ, we

have for each i, 1 ≤ i ≤ m,

‖ci−v‖2 = 〈ci − v, ci − v〉 ≤ 2αe+(1−1/q)(1−α)2n = n(1−1/q)(1−γ2) .

Denote by wi the unit vector − ci−v
‖ci−v‖ . We then have

〈wi,wj〉 ≤ −γ
2 − δ

1 − γ2
(3.12)

for 1 ≤ i < j ≤ m (this follows from (3.11) and (3.12)). By a well-known
geometric fact (see Lemma 3.5 for the simple proof), it follows that the
number of such vectors, m, is at most

(
1 + 1−γ2

γ2−δ

)
= 1−δ

γ2−δ , as desired.
To handle the case when γ =

√
δ, we can choose α =

√
δ, and we then have

〈ci − v, cj − v〉 ≤ 0 for all 1 ≤ i < j ≤ m, and also 〈ci − v,v〉 ≥ 0 for each
i = 1, 2, . . . ,m. Now applying Part (ii) of Lemma 3.4, we getm ≤ 2n(q−1)−1.
�

3.3.2 Geometric Lemmas

We now state and prove the geometric facts that were used in the above
proof.

Lemma 3.4. Let v1, . . . ,vm be non-zero vectors in RN such that 〈vi,vj〉 ≤ 0
for all 1 ≤ i < j ≤ m. Then the following hold:

40 3 Johnson-Type Bounds and Applications to List Decoding

(i) m ≤ 2N .
(ii) Suppose that there exists a non-zero u ∈ RN such that 〈u,vi〉 ≥ 0 for

i = 1, 2, . . . ,m. Then m ≤ 2N − 1.
(iii) Suppose there exists an u ∈ RN such that 〈u,vi〉 > 0 for i = 1, 2, . . . ,m.

Then m ≤ N .

A proof of Part (i) of the above lemma can be found, for instance, in
[30, Chapter 10, page 71]. The proofs of the other two parts are similar. For
completeness, we present a self-contained proof below.

Proof of Lemma 3.4: We first prove (iii). Suppose for contradiction that
m ≥ N + 1. Then since the vectors v1, . . . ,vm all lie in RN , they must be
linearly dependent. Let S ⊆ [m] be a non-empty set of minimum size for which
a relation of the form

∑
i∈S aivi = 0 holds with each ai
= 0. We claim that

the ai’s must all be positive or all be negative. Indeed, if not, by collecting
terms with positive ai’s on one side and those with negative ai’s on the
other, we will have an equation of the form

∑
i∈T+ aivi =

∑
j∈T− bjvj = w

(for some vector w) where T+ and T− are disjoint non-empty sets with
T+ ∪ T− = S, and all ai, bj > 0. By the minimality of S, w
= 0 and
hence 〈w,w〉 > 0. On the other hand 〈w,w〉 = 〈∑i∈T+ aivi,

∑
j∈T− bjvj〉 =∑

i,j aibj〈vi,vj〉 ≤ 0 since aibj > 0 and 〈vi,vj〉 ≤ 0 for each i ∈ T+ and
j ∈ T−. This contradiction shows that we may assume that ai > 0 for all
i ∈ S.

Now
∑

i∈S aivi = 0, so that
∑s

i=1 ai〈u,vi〉 = 0. But this is impossible
since for each i we have ai > 0 and 〈u,vi〉 > 0. We have thus arrived at a
contradiction, and therefore such a linear dependence

∑
i∈S aivi = 0 does

not exist. Thus the vectors v1,v2, . . . ,vm are linearly independent and we
must have m ≤ N .

To prove (ii), we use induction on N . The statement clearly holds for
N = 1. For N > 1, we proceed exactly as above. If m ≤ N , we have nothing
to prove, so assume m > N so that v1, . . . ,vm are linearly independent,
and as above, let S ⊆ [m] be a non-empty set of minimum size for which a
relation of the form

∑
i∈S aivi = 0 holds with each ai
= 0. Arguing as above,

we may assume that ai > 0 for every i ∈ S. Assume for definiteness that
S = {1, 2, . . . , s}. We thus have the linear dependence

∑s
i=1 aivi = 0 with

each ai > 0, and since this is a minimum sized linear dependence, v1, . . . ,vs

must span a subspace W of RN of dimension (s− 1).
Since

∑s
i=1 aivi = 0, we have

∑s
i=1 ai〈vi,v�〉 = 0 for each � = s +

1, . . . ,m. Since ai > 0 for 1 ≤ i ≤ s and 〈vi,v�〉 ≤ 0, it must be therefore be
the case that vi is orthogonal to v� for all i, � with 1 ≤ i ≤ s and s < � ≤ m.
A similar argument shows u is orthogonal to vi for each i = 1, 2, . . . , s. Thus
the vectors vs+1, . . . ,vm and u all lie in W⊥ which has dimension equal to
(N − s + 1). Since s > 1, the induction hypothesis applied to these vectors
implies thatm−s ≤ 2(N−s+1)−1, or in other wordsm ≤ 2N−s+1 ≤ 2N−1,
as desired.

3.4 Generalization in Presence of Weights 41

Finally (i) follows immediately from (ii). Indeed, apply (ii) with vectors
v1, . . . ,vm−1 and −vm playing the role of u. This implies m− 1 ≤ 2N − 1,
or in other words m ≤ 2N . �
Lemma 3.5. Let ε > 0 be a positive real and let w1,w2, . . . ,wm be m unit
vectors such that 〈wi,wj〉 ≤ −ε for all 1 ≤ i < j ≤ m. Then m ≤ 1 + 1

ε .

Proof: We have

0 ≤ 〈
m∑

i=1

wi,

m∑
i=1

wi〉 =
m∑

i=1

〈wi,wi〉 + 2
∑

1≤i<j≤m

〈wi,wj〉 ≤ m−m(m− 1)ε ,

which gives m ≤ 1 + 1/ε. �

3.4 Generalization in Presence of Weights

For applications to “soft” list decoding algorithms which will be discussed
in Part II of the book, it is of interest to prove a version of the Johnson
bound in the presence of weights on codeword symbols. Such a bound is also
of independent interest, since it covers the case of decoding under errors-
and-erasures and the case when for each position one receives a small list
of candidate symbols one of which is the correct one, all under a uniformly
applicable bound.

We next state the weighted version of the Johnson bound that follows
from our proof technique. The bound in Part (i) of the theorem generalizes
the result of Theorem 3.2. The result from Part (ii) applies under a more
general condition than Condition (3.3) (or even Condition (3.13)), but the
upper bound itself is slightly weaker (since it is (nq− 1) instead of n(q− 1)).
The result of Part (iii) generalizes the result of Theorem 3.2, Condition 3.5.

Theorem 3.6. Let C ⊆ [q]n be a code of blocklength n and minimum distance
d. Let {wi,j : 1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real
weights. Define Wi =

∑q
j=1 wi,j and W

(2)
i =

∑q
j=1 w

2
i,j , Wtot =

∑
i,j wi,j,

and W (2)
tot =

∑
i,j w

2
i,j. Then:

(i) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci

Wi
>
n

q
+

√√√√
(
n
(
1 − 1

q

)
− d

)(n∑
i=1

W
(2)
i

W 2
i

− n

q

)
. (3.13)

is at most n(q − 1).
(ii) The number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci >
Wtot

q
+

√(
n
(
1 − 1

q

)
− d

)(
W

(2)
tot − (Wtot)2

nq

)
(3.14)

is at most (nq − 1).

42 3 Johnson-Type Bounds and Applications to List Decoding

(iii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
Wtot

q
+

√(
n
(
1 − 1

q

)
− d+

d

L

)(
W

(2)
tot − (Wtot)2

nq

)
(3.15)

is at most L.

Proof: We do not give a full proof here, rather we indicate the only changes
that must be made to the proof of Theorem 3.1 in order to prove our claim.
For Part (i), the only modification required in the proof of Theorem 3.1 is to
pick r so that its (i, j)’th component, for 1 ≤ i ≤ n and 1 ≤ j ≤ q, equals
wi,j

Wi
. The vector v is defined as before to be αr + (1−α)

q 1 for

α =

√√√√n(1 − 1/q) − d
∑

i
W

(2)
i

W 2
i

− n/q
.

Once once again all the vectors (ci−v) lie in an n(q−1)-dimensional subspace
of Rnq. It can be proved as in the proof of Theorem 3.1 that these vectors
have pairwise non-positive dot products, which gives the desired n(q − 1)
upper bound on the number of codewords.

For Parts (ii) and (iii), we pick r so that its (i, j)’th component for 1 ≤
i ≤ n and 1 ≤ j ≤ q, equals nwi,j

Wtot
, and the rest of the proof follows that of

Theorem 3.1. Note that Wtot/q is the expected value of
∑

i wi,ri for a random
vector r ∈ [q]n, and

(
W

(2)
tot − (Wtot)

2

nq

)
is proportional to the variance of the

wi,j ’s. Thus, the above theorem states that the number of codewords which
have weighted agreement bounded away from the expectation by a certain
number of standard deviations is small. The upper bound of (nq−1) (instead
of n(q−1)) in Part (ii) of above theorem arises since we are only able to ensure
that the vectors (ci − v) all lie in an (nq − 1)-dimensional subspace (namely
that defined by

∑
i,j xi,j = 0), and not an n(q − 1)-dimensional subspace as

in Part (i). �

We now state a corollary similar to Corollary 3.3 that ignores the alpha-
bet size in the decoding condition. The proof again follows because it can
be verified (after a straightforward but tedious calculation) that the stated
conditions in fact imply the Conditions (3.14) and (3.15) above.

Corollary 3.7. Let C ⊆ [q]n be a code of blocklength n and minimum distance
d. Let {wi,j : 1 ≤ i ≤ n; 1 ≤ j ≤ q} be an arbitrary set of non-negative real
weights.

(i) The number of codewords C ∈ C that satisfy
n∑

i=1

wi,Ci >
(
(n− d)

∑
i,j

w2
i,j

)1/2

(3.16)

is at most (nq − 1).

3.5 Notes 43

(ii) For any integer L ≥ 2, the number of codewords C ∈ C that satisfy

n∑
i=1

wi,Ci ≥
((

n− d+
d

L

) ∑
i,j

w2
i,j

)1/2

(3.17)

is at most L.

A bound similar to Corollary 3.7 above can also be worked out for the case
when the different codeword positions have different contributions towards
the minimum distance. Such a bound is of interest for certain codes like the
Chinese Remainder Code and will be stated and formally proved in the form
of Theorem 7.10 in Section 7.6.1 of the book. We refer the reader interested
in seeing a full proof of Corollary 3.7 above to the proof of Theorem 7.10.

3.5 Notes

The quantity A(n, d, w) for constant-weight binary codes has a rich history
and has been studied for almost four decades, and its study remains one of the
most basic questions in coding theory. The first upper bounds on the quantity
A(n, d, w) for constant-weight codes appear in the work of Johnson [108,
109]. Since then several proofs have appeared in the literature, including
generalizations of the bound to the case of q-ary alphabets for q > 2 (cf. [34]
for a discussion and detailed bibliography).

The quantity A′(n, d, e), which is of more direct interest to list decoding,
seems to have received much less explicit attention. It must be said that
several proofs that provide upper bounds on A(n, d, e) work with little or
no modification to yield upper bounds on A′(n, d, e) as well. This was made
explicit for example in [50, 22]. Upper bounds on A′

q(n, d, e) identical to the
second upper bound in (3.4) of this chapter are stated in [34]. Proofs of such
bounds that follow a linear algebra based argument appear, for instance, in
[73, 89].

The contribution of the results in this chapter is that we extend the more
recent upper bounds for the binary case from [1] (which are based on geo-
metric arguments) to bounds on A′

q(n, d, e), and furthermore we obtain some
elegant weighted generalizations of the Johnson bound. In particular, the
upper bound A′

q(n, d, e) ≤ n(q − 1) for e < eJ (n, d, q) that we proved in
Theorem 3.2 appears to be new. For the case q = 2, this result was known.
Specifically, Elias [48] proved that if d is odd, then A′(n, d, e) ≤ n as long
as e is at most the binary Johnson radius eJ(n, d, 2). For even d, however,
A′(n, d, e) = O(n2) was the best known bound that was made explicit till the
recent work of Agrell, Vardy and Zeger [1], who showed that A′(n, d, e) ≤ n
whenever e < eJ(n, d, 2). (Actually, Agrell et al claim their result only for
A(n, d, e), but their proof works for the case of A′(n, d, e) as well.)

44 3 Johnson-Type Bounds and Applications to List Decoding

Combinatorial results of a flavor similar to this chapter appear in two
other parts of the book: (a) in Section 7.6.1 where a bound similar to Corol-
lary 3.7 is proved for the case when the minimum distance is measured with a
non-uniform weight on the codeword positions, and (b) in Section 8.5.1 where
we prove a result along the lines of Theorem 3.2, but instead of bounding
the number of codewords in a Hamming ball of certain radius, we establish a
more general result concerning the coset weight distribution of a code, purely
as a function of its minimum distance.

The material in this chapter appears in [91].

	3.1 Introduction
	3.2 Definitions and Notation
	3.3 The Johnson Bound on List Decoding Radius
	3.4 Generalization in Presence of Weights
	3.5 Notes

