
2 Preliminaries and Monograph Structure

In Galois Fields, full of flowers
primitive elements dance for hours
climbing sequentially through the trees
and shouting occasional parities.

- S.B. Weinstein (IEEE Transactions on Information Theory,
March 1971)

In this chapter, we review the basic definitions relating to error-correcting
codes and standardize some notation. We then give a brief description of the
fundamental code families and constructions that will be dealt with and used
in this book. Finally, we discuss the structure of this work and the main
results which are established in the technical chapters that follow, explaining
in greater detail how the results of the various chapters fit together.

2.1 Preliminaries and Definitions

In order to avoid introducing too much formalism and notation this early
on, we only discuss the most fundamental definitions and will defer a formal
treatment of further definitions until they are needed.

2.1.1 Basic Definitions for Codes

Code, Blocklength, Alphabet size:

Let q ≥ 2 be an integer, and let [q] = {1, 2, . . . , q}.
– An error-correcting code (or simply, code) C is a subset of [q]n for some

positive integers q, n. The elements of C are called the codewords in C.
– The number q is referred to as the alphabet size of the code, or alternatively

we say that C is a q-ary code. When q = 2, we say that C is a binary code.
– The integer n is referred to as the blocklength of the code C.
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Dimension and Rate:

– The dimension of a q-ary code C of size M = |C|, is defined to be logq M .
(The reason for the term “dimension” will be clear once we discuss linear
codes shortly.)

– The rate of a q-ary code C of size M , denoted R(C), is defined to be the
normalized quantity logq M

n .

It is often convenient to view a code C ⊆ [q]n of size M as a function C :
[M ] → [q]n. Under this view the elements of [M ] are called messages, and
for a message x ∈ [M ], its associated codeword is the element C(x) ∈ [q]n.
Often we will take M to be a perfect power of q, say M = qk, where k
is the dimension of the code (this will always be the case, for example, for
linear codes which will be discussed shortly). In such a case it is convenient
to identify the message space [M ] with [q]k, and view messages as strings of
length k over [q]. Viewed this way, a q-ary error-correcting code provides a
systematic way to add redundancy to a string of length k over [q] and encode
it into a longer string of n symbols over [q].

(Minimum) Distance and Relative Distance: For strings x,y ∈ [q]n

where x = 〈x1, x2, . . . , xn〉 and y = 〈y1, y2, . . . , yn〉, the Hamming distance
between them, denoted ∆(x,y), is defined to be the number of coordinates
where they differ, that is, the number of i’s, 1 ≤ i ≤ n, for which xi �= yi.

– The minimum distance (or simply distance) of a code C, denoted dist(C),
is the minimum Hamming distance between two distinct codewords of C.
Formally,

dist(C) = min
c1,c2∈C

c1 �=c2

∆(c1, c2) .

– The relative distance of a code C, denoted δ(C), is defined to be the nor-
malized quantity dist(C)

n , where n is the blocklength of C.

Notation: We refer to a general q-ary code of blocklength n, dimension k, and
minimum distance d, as an (n, k, d)q-code. Note that for general, non-linear
codes, the dimension is simply the logarithm to the base q of the number
of codewords, and therefore need not be an integer. We will often omit the
distance parameter and refer to a q-ary code of blocklength n and dimension
k as an (n, k)q code. When the alphabet size is clear from the context we will
omit the subscript q.1

1This might appear non-standard to readers already familiar with coding theory
who are probably used to the notation [n, k, d]q-code. But this is normally used
only for linear codes, and we use (n, k, d)q-code to refer to a general, non-linear
code with these parameters. For linear codes, which we define next, we will stick
to the standard notation. Also, in some texts, non-linear codes with M codewords
are referred to as (n, M, d)q-codes.
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2.1.2 Code Families

Since the main thrust of this paper is the asymptotic performance of the
codes, we define analogs of the quantities above for infinite families of codes.
An infinite family of q-ary codes is a family C = {Ci|i ∈ Z} where Ci is an
(ni, ki)q code with ni > ni−1. We define the rate of an infinite family of codes
C to be

R(C) = lim inf
i

{
ki

ni

}
.

We define the (relative) distance of an infinite family of codes C to be

δ(C) = lim inf
i

{
dist(Ci)
ni

}
.

Asymptotically Good Code Families

Definition 2.1. A family C of codes is said to be asymptotically good if both
its rate and relative distance are positive, i.e., if R(C) > 0 and δ(C) > 0.

By abuse of notation, we will use the phrase “asymptotically good codes”
when referring to codes which belong to an asymptotically good code fam-
ily. The study of the trade-off between the rate and relative distance for
asymptotically good codes is one of the main objectives of (asymptotic) com-
binatorial coding theory.

2.1.3 Linear Codes

Let q be a prime power. Throughout, we denote a finite field with q elements
by Fq or GF(q) interchangeably. We assume when necessary that the field Fq

can be identified with [q] in some canonical way.

– A linear code C of blocklength n is a linear subspace (over some field Fq)
of Fn

q .

Clearly, a linear code over Fq has qk elements, where k is the dimension
of the code as a vector space over Fq. The dimension of a q-ary linear code
C is thus the same as its dimension when considered as a vector space over
Fq (hence the terminology “dimension” for the quantity logq |C|).

As is standard notation, we refer to a q-ary linear code of blocklength n,
dimension k and distance d, as an [n, k, d]q code. We will omit the distance
parameter when we do not need to refer to it, and omit the subscript when
the alphabet size is clear from the context.

For linear codes, the all-zeroes string is always a codeword. Hence the
distance of a linear code equals the minimum Hamming weight of a non-zero
codeword, where the Hamming weight of a string is defined as the number of
coordinates in which it has a non-zero symbol.

An [n, k]q linear code can be specified in one of two equivalent ways: using
the generator matrix or the parity check matrix.
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– An [n, k]q linear code C can always be described as the set {Gx : x ∈ Fk
q}

for an n× k matrix G; such a G is called a generator matrix of C.
– An [n, k]q linear code C can also be specified as the subspace {y : y ∈

Fn
q and Hy = 0} for an (n− k)×n matrix H ; such an H is called a parity

check matrix of C.

The above representations of a linear code immediately imply the following
for any [n, k]q linear code:

- (Representation:) It can be succinctly represented using O(n2) space (by
storing either the generator or parity check matrices).

- (Encoding:) A message x ∈ Fk
q can be encoded into its corresponding

codeword usingO(nk) field operations (by multiplying it with the generator
matrix of the code).

The weight distribution of a linear code C of blocklength n is defined to
be the vector (A0, A1, . . . , An), where Ai is the number of codewords of C of
Hamming weight i, for 0 ≤ i ≤ n. Note that A0 = 1, and if d is the distance
of C, then A1, A2, . . . , Ad−1 = 0.

Given a linear code C ⊆ Fn
q , one can define a relation, say ∼, between

elements of Fn
q as follows: y ∼ z iff y − z ∈ C. Since the code is linear,

it is easy to check that this defines an equivalence relation. Consequently, it
defines a partition of the space Fn

q into equivalence classes. These equivalence
classes are called the cosets of the code C.2 One of these cosets will be the
code C itself. The weight distribution of cosets of a linear code in fact provide
detailed information about the combinatorial list decodability properties of a
code. For sake of simplicity though, we state and prove all our combinatorial
results using only the language of list decoding (which we shortly develop in
Section 2.1.4).

Additive Codes: A class of codes that lie in between linear and general non-
linear codes in terms of “structure” are additive codes. These are codes over
Fq which are closed under codeword addition; i.e., if x and y are codewords
then so is x+ y. (For linear codes, we will have the additional property that
if x is a codeword then so is αx for every α ∈ Fq — here αx stands for the
string obtained by coordinate-wise multiplication of x by α.) Note that for
binary codes, additive codes define the same class as linear codes.

2.1.4 Definitions Relating to List Decoding

Recall that under list decoding, the aim, given a received word, is to output a
list of all codewords that lie within a Hamming ball of certain radius around
the received word. The radius of the ball corresponds to the number of errors

2This terminology is borrowed from group theory, and the cosets of C defined
above are precisely the group-theoretic cosets of C when it is viewed as an additive
subgroup of Fn

q .
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corrected by the list decoding procedure. Hence it is of interest to quantify
the maximum number of codewords in a ball of certain radius, or equivalently,
to quantify the largest number of errors that can be list decoded with lists
of a certain size. We do this by defining the “list decoding radius” of a code
below.

Let q ≥ 2 be the alphabet size of a code C of blocklength n. For a non-
negative integer r and x ∈ [q]n, let Bq(x, r) denote the Hamming ball of
radius r around x, i.e.,

Bq(x, r) = {y ∈ Fn
q | ∆(x,y) ≤ r} .

For the case q = 2, we will usually omit the subscript and refer to such a ball
as simply B(x, r).

Definition 2.2 ((e, L)-list decodability). For positive integers e, L, a code
C ⊆ Fn

q is said to be (e, L)-list decodable if every Hamming ball of radius e
has at most L codewords, i.e. ∀ x ∈ Fn

q , |Bq(x, e) ∩ C| ≤ L.

Definition 2.3 (List Decoding Radius). For a code C of blocklength n
and an integer L ≥ 1, the list of L decoding radius of C, denoted radius(C,L)
is defined to be the maximum value of e for which C is (e, L)-list decodable.
We also define the normalized list-of-L decoding radius, denoted LDRL(C),
as

LDRL(C) =
radius(C,L)

n
.

As before we would like to extend this definition for families of codes, since
our aim is to study the asymptotic performance of codes. To do this, it makes
sense to allow the list size to be a function of the blocklength. Accordingly
we have the following definition.

Definition 2.4. [List Decoding Radius for code families] For an infinite
family of codes C = {Ci}i≥1 where Ci has blocklength ni, and a function
� : Z+ → Z+, define the list of � decoding radius of C, denoted LDR�(C), to
be

LDR�(C) = lim inf
i

{
radius(Ci, �(ni))

ni

}
.

When � is the constant function that takes on the value L on every input
blocklength, we denote LDR�(C) as simply LDRL(C).

Remark: It will be clear from the context whether the LDR function is
being applied to a code or to a code family, and also whether it is applied
to a constant list size or to a list size which is a growing function of the
blocklength.
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Some “informal” usages:

Sometimes we also refer to the phrase “list decoding radius” without
an explicit mention of the list size. In such cases we imply the list decoding
radius for a list size which is some polynomially growing function of the
blocklength, i.e., for �(n) = nc for some constant c (in fact, in almost every
such reference in this book setting c = 2 will suffice).

We will also use the adjectives “list decodable up to a fraction α of errors”
or “list decodable up to (relative) radius α” to refer to codes or code families
whose list decoding radius is at least α. We will say a list decoding algorithm
can “correct” a fraction α of errors (or e errors), if it can perform list decoding
up to a fraction α of errors (or up to a radius of e).

2.1.5 Commonly Used Notation

Much of the notation we use is standard. Throughout the book both logx
and lg x will denote the logarithm of x to the base 2. We denote the natural
logarithm of x by lnx. For bases other than 2 and e, we explicitly include
the base in the notation; for example logarithm of x to the base q will be
denoted by logq x.

For a real number x, �x
 will denote the largest integer which is at most
x, and �x� will denote the smallest integer which is at least x.

For x in the range 0 ≤ x ≤ 1, and an integer q ≥ 2, we denote byHq(x) the
q-ary entropy function, i.e.,Hq(x) = x logq(q−1)−x logq x−(1−x) logq(1−x).
When q = 2, we denote the binary entropy function H2(x) as simply H(x).

For a finite set S, we denote the number of elements that belong to S
by |S|.

2.2 Basic Code Families

In this section, we describe the central code families which will be studied in
this book. Several of these will also be used as building blocks for the new
code constructions that we present.

2.2.1 Reed-Solomon Codes

Reed-Solomon codes are an extremely important and well-studied family of
linear codes. They are based on the properties of univariate polynomials over
finite fields. Formally, an [n, k + 1]q Reed-Solomon code, with k < n and
q ≥ n, is defined as follows. Let α1, α2, . . . , αn be n distinct field elements in
Fq (since q ≥ n, it is possible to pick such αi’s). The message space consists
of polynomials p ∈ Fq[x] with degree at most k, and a “message” p is encoded
as:

p �→ 〈p(α1), p(α2), . . . , p(αn)〉 .
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Note the message space can be identified with Fk+1
q in the obvious way:

view 〈m0,m1, . . . ,mk〉 as the polynomial m0 +m1x+ . . .+mkx
k.

The following basic proposition follows from the well-known fact from
algebra that two degree k polynomials over a field can agree on at most k
places.

Proposition 2.5. The above code is an [n, k + 1, d = n− k]q code.

The Singleton bound in coding theory says that the sum of the distance
and dimension of a code can be at most n + 1, where n is the blocklength
of the code (cf. [193, Section 5.2]). Hence, Reed-Solomon codes “match” the
singleton bound. Such codes are called Maximum Distance Separable (MDS),
since they have the maximum possible distance for a given blocklength and
dimension. The MDS property together with the nice algebraic structure
of Reed-Solomon codes that facilitates the design of efficient decoding al-
gorithms, have made it one of the most fundamental code families. Reed-
Solomon codes have found a wide variety of applications in coding theory
and computer science, as well as several applications in the “real world” –
examples include compact disc players, disk drives, satellite communications,
and high-speed modems such as ADSL, to name a few (see [198] for detailed
information on the various applications of Reed-Solomon codes).

2.2.2 Reed-Muller Codes

Reed-Muller codes are a generalization of Reed-Solomon codes obtained by
taking for message space all �-variate polynomials over some finite field Fq

with total degree at most m, subject to the condition that no variable takes
on a degree of q or more. A polynomial is again encoded by evaluating it at
n distinct elements of F�

q, where n is the blocklength of the code (note that
this requires n ≤ q�). Setting � = 1 we get the construction of Reed-Solomon
codes. The degree parameter m is often referred to as the order of the Reed-
Muller code. Reed-Muller codes are clearly linear codes. When m < q, their
dimension equals

(
m+�

m

)
, and using what is now famous as the Schwartz-Zippel

Lemma, it follows that their relative distance is at least (1 −m/q).3

Hadamard Codes Of special interest are Reed-Muller codes of order 1, i.e.,
codes based on multilinear polynomials, also known as simplex codes (a de-
tailed discussion of these codes appears in [132, Chap. 14]). A variant of these,
based on homogeneous polynomials with no constant term, are commonly re-
ferred to as Hadamard codes. Formally, a Hadamard code of dimension � over
Fq is defined as follows. A message x ∈ F�

q is mapped to the string 〈x · z〉z∈F�
q

of length q� (here by x · z we mean the dot product of the vectors x and z
over the field Fq). The Hadamard code thus has very poor rate since it maps

3When m ≥ q, in general there is no simple closed form for the dimension, and
the relative distance is at least q−�m/q�.
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� symbols over Fq into q� symbols. But it has very good distance properties
— its relative distance equals (1−1/q), and in fact every non-zero codeword
has Hamming weight equal to (q� − q�−1). Despite its poor rate, its highly
structured distance properties makes it an attractive code for use at the inner
level in certain concatenation schemes. Indeed, several of our concatenated
code constructions in later chapters use a suitable Hadamard code as an inner
code.

2.2.3 Algebraic-Geometric Codes

Algebraic-geometric codes (or AG-codes, for short) are also a generalization
of Reed-Solomon codes. Reed-Solomon codes may be viewed as evaluations
of certain functions at a subset S of points on the projective line over Fq —
the functions are those that have a bounded number of “poles” at a certain
point that is designated as the “point at infinity” and no poles elsewhere
(this corresponds precisely to low-degree polynomials), and the code can be
defined based on any subset S of points that does not include the point at
infinity. AG-codes are a generalization based on any “nice” algebraic curve
playing the role of the projective line. Let Γ be such a curve. Every such
curve has an associated function field which, roughly, is the set of all “valid”
functions that can be evaluated at points on Γ . To construct an AG-code
based on Γ , one picks a point P∞ on the curve and a set S of points on Γ
disjoint from {P∞}. The message space of the code will be all functions in
the function field of Γ that have a bounded number of poles at P∞ and no
poles elsewhere, and such a function will be encoded by evaluating it at each
of the points in S. The precise definition of AG-codes requires a reasonable
amount of background in the theory of algebraic function fields and curves,
and this will be developed in Chapter 6 where we will give a list decoding
algorithm for AG-codes.

2.2.4 Concatenated Codes

Concatenated coding gives a way to combine two codes, an outer code Cout

over a large alphabet (say [Q]), and an inner code Cin with Q codewords over
a small(er) alphabet (say, [q]), to get a combined q-ary code that, loosely
speaking, inherits the good features of both the outer and inner codes. These
were introduced by Forney [59] in a classic and seminal work. The basic idea
is very natural (see the illustration in Figure 2.1): to encode a message using
the concatenated code, we first encode it using Cout, and then in turn encode
each of the resulting symbols (which all belong to [Q]) into the corresponding
codeword of Cin. Since there are exactly Q codewords in Cin, the encoding
procedure is well defined.

The rate of the concatenated code is the product of the rates of the outer
and inner codes, and the distance is at least as large as the product of the
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n symbols over F

Outer encoding
Cout

a 2 a n1a

inin

Message

Inner Encodings

C   (a  ) 

Cin

C   (a  )2 nC   (a  )in 1

Fig. 2.1. Code concatenation. If the outer code Cout is over an alphabet F , and
the inner code Cin has exactly |F | codewords corresponding to the |F | symbols of
F , there is a natural way to combine them by “concatenation”.

distances of the outer and inner codes. The product of the distances of the
outer and inner codes is called the designed distance of the concatenated code.
Thus, concatenated codes have good rate and distance if the outer and inner
codes have good rate and distance.

The big advantage of concatenated codes for us is that we can get a good
list decodable code over a small alphabet (say, binary codes) based on a good
list decodable outer code (like a Reed-Solomon or AG-code) and a “suitable”
binary inner code. The dimension of the inner code is small enough to permit
a brute-force search for a “good” code in reasonable time. Code concatenation
forms the basis of all our code constructions in Chapters 8, 9 and 10, and is
a heavily used tool in this book.

2.2.5 Number-Theoretic Codes

The book also discusses number-theoretic codes which are based on a similar
algebraic principle to the one underlying the construction of Reed-Solomon
and AG-codes.

Chinese Remainder Codes Chinese Remainder codes (or CRT codes,
for short), also called Redundant Residue codes, are the number-theoretic
analog of Reed-Solomon codes. The messages of the CRT code are integers
in {0, 1, . . . ,K− 1} for some K, and a message m, 0 ≤ m < K, is encoded as

m �→ 〈m mod p1,m mod p2, . . . ,m mod pn〉
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for n relatively prime integers p1 < p2 < · · · < pn. If k is such that
∏k

i=1 pi >
K, then by the Chinese Remainder theorem (hence the name of the code),
the residues of m modulo any k of the pi’s uniquely specifies m. Hence any
two codewords (corresponding to encodings of m1,m2 with m1 �= m2) differ
in at least (n − k + 1) positions. Thus, the distance of the code is at least
(n− k + 1).

Number Field Codes Number field codes are the number-theoretic analogs
of AG-codes, and generalize CRT codes akin to the way AG-codes generalize
Reed-Solomon codes. The code is based on a suitable “number field” (i.e., a
finite extension of the field Q of rational numbers) and the associated “ring
of integers” R. A formal description of these codes will take us too far afield
from the main thrust of this book. Hence we do not discuss these codes here;
the interested reader is pointed to [127, 77] for formal definitions of these
codes and details on their properties.

2.3 Detailed Description of Book Chapters

This book presents a comprehensive investigation of the notion of list decod-
ing. It deals both with fundamental combinatorial questions relating to list
decoding and the algorithmic aspects of list decoding. It also discusses a few
applications of list decoding both within coding theory (to questions not di-
rectly concerned with list decoding) and to certain complexity-theoretic and
algorithmic questions outside coding theory.

Though the questions addressed are all intimately related, for purposes of
exposition and because they permit such modularity, we structure the results
in this book into three parts: Combinatorial Results (Part I), Algorithms and
Code Constructions (Part II), and Applications (Part III).

The combinatorial results of Part I set the stage for the algorithmic re-
sults by highlighting what one can and cannot hope to do with list decod-
ing. The algorithmic results attempt to “match” the combinatorial bounds
with explicit code constructions and efficient decoding algorithms. These in-
clude algorithms for classical and well-studied codes like Reed-Solomon and
algebraic-geometric codes, as well as for certain novel code constructions. In
Part III, we discuss some applications of the results and techniques from
earlier chapters to domains both within and outside of coding theory. The
notion of list decoding turns out to be central to certain contexts outside of
coding theory, for example to several complexity-theoretic questions. These
and several other applications are discussed in Part III of the book.

We now discuss the results of each of these parts in further detail.

2.3.1 Combinatorial Results

Chapter 3 — The Johnson Bound on List Decoding Radius. We
argued in the introduction that unique/unambiguous decoding is not possible
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when the number of errors exceeds half the minimum distance (say, d/2) of
the code. The purpose of list decoding is to allow for meaningful recovery
when the number of errors exceeds this bound. But for list decoding to be
meaningful, and definitely for it to be algorithmically feasible, one needs the
guarantee that one can correct many more than d/2 errors with fairly small
lists (say, of size a fixed constant, or a fixed polynomial in the blocklength). In
this chapter, we revisit a classical bound from coding theory called “Johnson
bound”, present extensions of it, and apply it to the context of list decoding.
The bound demonstrates that one can always correct more than d/2 errors
with “small” lists – the exact number of errors to which the bound applies is
an explicit function of the distance of the code, and we call this the Johnson
bound on list decoding radius. One way to view these results is that one
can construct good list decodable codes by constructing codes with large
minimum distance. There are several proofs known for Johnson-type bounds
in the literature – the proof presented in this chapter appears in [91].

Chapter 4 — Limits to List Decodability. We address the natural ques-
tion raised by the results of Chapter 3 – namely whether the Johnson bound
is “tight”, that is, whether the Johnson bound is the best possible bound on
the list decoding radius (purely as a function of the distance of the code). For
general, non-linear codes, it is easy to show that the Johnson bound is indeed
tight as a general trade-off between list decoding radius and distance. The
more interesting case of linear codes, however, turns out to be significantly
harder to resolve, and is the subject of this chapter. We present construc-
tions of linear codes of good distance with several codewords in a “small”
Hamming ball. Under a widely believed number-theoretic conjecture (which
in particular is implied by a suitably generalized Riemann Hypothesis), we
prove that the Johnson bound is indeed a “tight” bound on the list decoding
radius (for decoding with polynomial sized lists). We prove such a result un-
conditionally for list decoding with constant-sized lists. We also prove that
the list decoding radius for polynomial-sized list is bounded away from the
minimum distance of the code.

Chapter 5 — List decodability Vs. Rate. The results of the earlier
chapters show that one way to get codes with large list decoding radius
is to use codes with large minimum distance. But if our main concern is
list-of-L decoding (for some list size L), then is this “two-step” route the
best way to get good list decodable codes? The answer turns out to be no,
and in this chapter we show that one can achieve a much better rate by
directly optimizing the list-of-L decoding radius, than by going through the
minimum distance (and using the Johnson bound on list decoding radius).
Our results employ the probabilistic method, and are thus non-constructive.
Nevertheless, these results set the stage for the algorithmic results of Part
II, by highlighting the kind of parameters one can hope for in efficiently list
decodable codes. Moreover, for small enough blocklengths, these “good” codes
can be found by brute-force search, and this is exploited in our concatenated
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code constructions. The results in this chapter are a combination of results
from [203, 80, 81].

Part I: Summary. The combinatorial results provide a fairly precise un-
derstanding of the general trade-off between the list decoding radius of a
code, and the more traditional parameters like rate and minimum distance
of a code. The Johnson bound asserts that codes with large minimum dis-
tance have large list decoding radius, which raises algorithmic questions on
list decoding such codes from a large number of errors. This is not the only
approach to get good list decodable codes, however, as directly optimizing
the list decoding radius can lead to better trade-offs as a function of the rate
of the code.

2.3.2 Algorithmic Results

Even though the notion of list decoding originated more than 40 years
ago [48, 199], and some of its combinatorial and information-theoretic as-
pects (relating to channel capacity under list decoding) received attention,
until recently no efficient list decoding algorithms were known for any (non-
trivial) family of codes that could correct asymptotically more errors than the
traditional half the distance bound. Part II of the book presents polynomial
time list decoding algorithms for several classical families of codes as well
as several new constructions of codes that have very efficient list decoding
algorithms. Details of the specific chapters and the results therein follow.

Chapter 6 — Reed-Solomon and Algebraic-geometric Codes. We
present an efficient algorithm to list decode the important class of Reed-
Solomon codes up to the Johnson bound on list decoding radius. Among
other things this is the first algorithm to decode Reed-Solomon codes beyond
half the distance for every value of the rate. This algorithm was obtained in
joint work with Madhu Sudan [88], and it builds upon the earlier works by
Sudan [178] and Ar et al [11]. We also present a “weighted” version of the
decoding algorithm which can take “soft” inputs – this is a very useful subrou-
tine in soft-decision decoding of Reed-Solomon codes [121] and in decoding
various concatenated codes. We also present a generalization of the algorithm
to list decode algebraic-geometric codes, following some ideas from the earlier
work of [165]. The family of algebraic-geometric codes are more general than
Reed-Solomon codes, and for large enough alphabets contain codes with the
best known asymptotic trade-off between the rate and relative distance.

Chapter 7 — Unified Paradigm for List Decoding. We present a uni-
fied description of several known algebraic codes including Reed-Solomon,
algebraic-geometric and Chinese Remainder (CRT) codes in the language of
rings and ideals. We also present a unified list decoding algorithm for ideal-
based codes which encompasses and generalizes the algorithms from Chapter
6. As a corollary, we extract an algorithm for list decoding CRT codes up
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to (almost) the Johnson bound on list decoding radius (suitably adapted to
the case of the CRT codes). The unified paradigm emerging out of this study
could be of independent interest. These results are based on joint work with
Amit Sahai and Madhu Sudan [86].

Chapter 8 — List Decoding of Concatenated Codes. The results of the
previous chapters apply to codes over large alphabets (algebraic-geometric
codes exist over small alphabets, but their list decodability is limited by
certain barriers based on some deep results from algebraic geometry). It is
natural to ask if there are codes over fixed small alphabets, say binary codes
for concreteness, which can be list decoded efficiently from a large fraction of
errors. It turns out that the earlier results for Reed-Solomon and algebraic-
geometric codes play a critical role in answering this question — using them
as outer codes in suitable concatenation schemes yields constructions of bi-
nary codes of good rate and good list decodability. In particular, we present
a polynomial time construction of binary codes of rate Ω(ε4) that are list
decodable in polynomial time from a fraction (1/2 − ε) of errors (for ε > 0
as small a constant as we desire). This construction uses a combination of
the algorithmic results from Chapters 6 and the combinatorial results from
Chapter 5. The material from this chapter is a collection of results from
[89, 80, 90].

Chapter 9 — New, Expander-based List Decodable Codes. It fol-
lows from the results of Chapter 6 (on Reed-Solomon and algebraic-geometric
codes) that there are rate Ω(ε2) codes that can be efficiently list decoded up
to a fraction (1 − ε) of errors. Reed-Solomon codes are defined over a large,
growing alphabet size, while algebraic-geometric achieve a constant (in fact
poly(1/ε)) alphabet size, but suffer from complicated and inefficient construc-
tions and decoding. It is natural to ask if there is a “better” construction of
codes that are list decodable up to a fraction (1 − ε) errors. This chapter
answers this question and presents a novel construction of such codes over a
constant-sized alphabet, along with a simple, near-quadratic time decoding
procedure. Furthermore, we know from Chapter 5 that, non-constructively,
a rate of Ω(ε) is feasible for codes with list decoding radius of (1 − ε). Us-
ing our basic construction, together with some other ideas, we are able to
construct codes of the optimal Ω(ε) rate that are list decodable up to a frac-
tion (1− ε) of errors in sub-exponential time. This is the first construction to
beat the “ε2-barrier” on rate and approach the optimal rate in a meaningful
way. This chapter also introduces several tools for code constructions such as
pseudolinear codes, multi-concatenated codes, and juxtaposed codes, which
are interesting in their own right. The material in this chapter is based on
joint work with Piotr Indyk [81].

Chapter 10 — List Decoding from Erasures. All prior chapters dealt
with the model where a certain fraction of the codeword symbols are ad-
versarially corrupted. A weaker noise model is that of erasures where a cer-
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tain adversarially chosen fraction of the codeword symbols are erased by the
channel. While this is an easier model to deal with, it also enables achiev-
ing better trade-offs and parameters. We prove combinatorial results akin
to those of Chapter 5 specialized for the case of erasures, and then use tech-
niques similar to those used in Chapters 8 and 9 to construct codes with good
(and sometimes near-optimal) rate and good erasure list decodability. A side
consequence of one of the results in this chapter is a provable asymptotic
separation between the performance of linear and general, non-linear codes
(with respect to erasure list decodability). Such an asymptotic separation
is quite rare in coding theory. The material in this chapter appears in the
papers [78, 82].

Part II: Summary. The algorithmic results of the above chapters show that
for several important and useful code families, there is an efficient algorithm
to list decode them up to (close to) the Johnson bound on list decoding radius.
These codes are defined over a large alphabet. However, one can use them as
outer codes in concatenated schemes together with suitable inner codes that
have list decodability properties similar to those guaranteed by the combina-
torial results (from Chapter 5). This enables us to get new constructions of
binary codes of good rate and excellent algorithmic list decodability.

2.3.3 Applications

Chapter 11 — Linear-time codes for unique decoding. This chapter
uses techniques similar to previous chapters, specifically Chapter 9, to build
codes of very good rate together with extremely efficient unique/unambiguous
decoding algorithms. Specifically, for every ε > 0 and 0 < r < 1, we construct
codes with rate r that can be encoded in linear time and can be unique
decoded from a fraction (1 − r − ε)/2 of errors in linear time. This trade-
off between rate and fraction of errors tolerated is optimal since it almost
matches the Singleton bound, and in addition we are able to get linear time
algorithms. We then concatenate these codes with suitable inner codes to get
binary codes that attain the so-called “Zyablov bound” together with linear-
time algorithms to perform encoding and decoding up to (almost) half the
minimum distance. These linear-time codes significantly improve the fraction
of errors corrected by the earlier linear-time codes due to Spielman [176]. Our
codes are obtained by using Spielman’s codes as a building block and then
boosting its error-resilience via suitable expander graphs using techniques
from [6, 7]. The results in this chapter are based on joint work with Piotr
Indyk [81, 82].

Chapter 12 — Sample Applications outside Coding Theory. We dis-
cuss some sample applications of list decoding outside coding theory. We
present an algorithmic application to the problem of guessing secrets, which
is a variant of the “20 questions” game played with more than one secret. List
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decoding has found several compelling applications in complexity theory and
we discuss some of these including hardcore predicate constructions, hardness
amplification of boolean functions, constructions of extractors and pseudo-
random generators, inapproximability of NP witnesses, etc. The chapter also
discusses some applications of list decoding to cryptographic questions such
as cryptanalysis of certain block ciphers, finding smooth integers, and traitor
tracing.

2.3.4 Conclusions

Chapter 13 — Concluding Remarks. We conclude with a brief summary
and discuss some open questions and possible directions for future research.

2.3.5 Dependencies Among Chapters

A pictorial depiction of the interdependencies among the various technical
chapters is presented in Figure 2.2.

Chap. 3

Chap. 4

Chap. 6

Chap. 7 Chap. 8

Chap. 5

Chap. 9

Chap. 12 Chap. 11

Chap. 10

Algorithms

Combinatorics

Applications

Fig. 2.2. The interrelationship between various chapters. A solid line indicates a
dependency (in either techniques or results themselves). A dashed arrow from A
to B indicates a “soft” dependency; i.e., reading portions of A prior to B would
be helpful, but is not strictly necessary. A dotted line from A to B that results of
chapter A “motivate” the contents of chapter B, though there is no real dependency
in the results or techniques themselves.

We would like to point out that the separation of the combinatorial and
algorithmic results in this book is not a strict one. We only isolate the most
basic combinatorial results in Part I, namely those results which are inter-
esting independent of whether there are algorithmic results or not (though
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they do end up motivating and being used in several of the algorithms in
Part II anyway). Some combinatorial results can also be found in Part II. In
all such cases, due to the somewhat “local” nature of their application, we
chose to defer the presentation of the concerned combinatorial results to the
point where they are actually needed. Examples of such combinatorial results
discussed in Part II include: a version of the Johnson bound in Chapter 7
when the various codeword positions have different contributions towards
the minimum distance (this happens for the Chinese Remainder code), a
Johnson-type bound in Chapter 8 concerning the coset weight distribution
of codes as a function of the distance of the code, an existence result for
codes whose coset weight distribution has a certain property in Chapter 8,
results concerning pseudolinear codes in Chapters 9 and 10, and combinato-
rial bounds and existence results concerning erasure list decodable codes in
Chapter 10.
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