
A GMD Decoding of Concatenated Codes

We present a proof of Proposition 11.9, restated below, which was used in
the construction of linear-time binary codes from Chapter 11. The result in
particular implies an efficient algorithm to decode concatenated codes up
to the product bound provided there exists an efficient errors-and-erasures
decoding algorithm for the outer code, and the decoding of the inner codes
can also be performed efficiently (which is usually easy since the dimension
of the inner code is typically small).

Proposition A.1. Let Cout be an (N,K)Q code where Q = qk and let Cin

be an (n, k)q code with minimum distance at least d. Let C be the (Nn,Kk)q

code obtained by concatenating Cout with Cin. Assume that there exists an
algorithm running in time Tin to uniquely decode Cin up to less than d/2
errors. Assume also the existence of an algorithm running in time Tout that
uniquely decodes Cout from S erasures and E errors as long as 2E + S <
D̃ for some D̃ ≤ dist(Cout). Then there exists an algorithm A running in
O(NTin + dTout) time that uniquely decodes C from any pattern of less than
dD̃
2 errors.

The proof is based on the same approach as the GMD decoding algorithm
due to Forney [60, 59] and its use by Justesen [110] to decode his explicit
asymptotically good code constructions. The exact style of presentation is
inspired by that of [180]. One technical aspect in the proof is that we show
that GMD decoding works with as many rounds of decoding of the outer
code as there are distinct weights passed by the inner stage. In particular
this implies that one has to invoke the outer errors-and-erasures decoding
algorithm at most �d/2� + 1 times.

A.1 Proof

Let r ∈ [q]Nn be a received word which is at a Hamming distance less than
dD̃/2 from a codeword z of the concatenated code C. We divide r and z into
N blocks of n symbols each corresponding to the n encodings by the inner
codes. Denote by ri (resp. zi) the i’th block of r (resp. z), for 1 ≤ i ≤ N .
Let yi be the unique codeword of Cin with ∆(yi, ri) < d/2, if one exists.
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The inner decoder can find such an yi if it exists in time Tin. If the inner
decoder fails to find any codeword within distance d/2 of ri, we set yi to
be an arbitrary codeword of Cin. For each yi, we compute a weight wi =
min{∆(ri, yi), �d/2�}. The inner codewords y1, y2, . . . , yN together with the
weights w1, . . . , wN can all be found in NTin time.

Assume without loss of generality that w1 ≤ w2 ≤ · · · ≤ wN . Let s be
the number of distinct weights among w1, w2, . . . , wN . By the definition of
the weights, we clearly have s ≤ ⌊

d
2

⌋
+ 1. Let Sj be the block of (contiguous)

indices with the same value of wi for 1 ≤ j ≤ s, and denote by w̃j this
common weight. Let nj = |Sj |.

The decoding of r is now finished as follows. For each p, 1 ≤ p ≤ s,
we run the assumed errors-and-erasures decoding algorithm for Cout on the
received word 〈y1, y2, . . . , yN 〉, by declaring the yi’s in the last p blocks Sj ,
s − p + 1 ≤ j ≤ s, as erasures. If any of these decodings finds a message x
such that ∆(r,C(x)) < dD̃/2, we output the codeword C(x) and terminate
the algorithm, otherwise we report that there exists no codeword of C at a
Hamming distance less than dD̃/2 from r.

Since the algorithm runs the outer decoding algorithm s times, the total
time of the decoding algorithm is O(NTin + dTout), as claimed. We next
proceed to prove the correctness of the algorithm. That is, if there exists
z ∈ C with ∆(r, z) < dD̃/2, then the above algorithm will find and output z.

Let �i = ∆(ri, zi) — then by our definition of wi, we have �i ≥ wi. Also,
if yi �= zi (i.e., the inner decoder makes a mistake in position i), then clearly
�i ≥ d − wi (by triangle inequality). So if we denote by ai the indicator
variable for yi �= zi, we have �i ≥ ai(d−wi). Together with �i ≥ wi, this gives

�i ≥ (1 − ai)wi + ai(d− wi) = wi + ai(d− 2wi) . (A.1)

We would like to prove that if the decoding failed to find the codeword
z, then we must have ∆(r, z) ≥ dD̃/2 errors. In our notation this means we
want to prove

N∑

i=1

�i ≥ D̃d

2
. (A.2)

Define the quantities Aj =
∑

i∈Sj
ai and Lj =

∑
i∈Sj

�i. We have by (A.1),
for 1 ≤ j ≤ s,

Lj ≥ njw̃j +Aj(d− 2w̃j) . (A.3)

Rewriting (A.2), recall that our goal is to prove that

1
d

s∑

j=1

Lj ≥ D̃

2
. (A.4)

Define xj = (1 − 2w̃j/d). Clearly 1 ≥ x1 > x2 > · · · > xs ≥ 0. We have from
(A.3) that

Lj

d
≥ nj

(1 − xj)
2

+Ajxj . (A.5)
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Define ∆j = nj

2 −Aj . Using (A.5) above and the fact that
∑s

j=1 nj = N , we
get that in order to prove (A.4), it suffices to prove that

s∑

j=1

∆jxj ≤ N − D̃

2
. (A.6)

Now if each of the s errors-and-erasures outer decodings fail to find the
codeword z, then in each run the E+S/2 < D̃/2 condition must fail. In such
a case we must have, for each p, 1 ≤ p ≤ s,

p∑

j=1

Aj +
1
2
·

s∑

j=p+1

nj ≥ D̃

2
, (A.7)

which is the same as
p∑

j=1

∆j ≤ N − D̃

2
. (A.8)

Define xs+1 = 0. Multiplying the p’th equation above with the non-negative
quantity (xp − xp+1) for 1 ≤ p ≤ s, and adding up the resulting inequalities,
we get

s∑

j=1

∆jxj ≤ N − D̃

2
· x1 ≤ N − D̃

2
, (A.9)

which is exactly Equation (A.6) that we had to prove. �
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