
11 Linear-Time Codes for Unique Decoding

11.1 Context and Introduction

The goal of this chapter is also to construct codes which can be decoded
from a large, and essentially up to a “maximum” possible, fraction of errors,
with a near-optimal trade-off between rate and error-correction radius. The
difference is that we are now interested in unique decoding as opposed to list
decoding.

The biggest selling point of the codes in this chapter will be the linear-
time encoding and decoding algorithms. Spielman [176] presented asymptot-
ically good binary codes which can be encoded in linear time and also be
(unique) decoded from a small (about 10−6) fraction of errors in linear time.
In this chapter, we will improve this error fraction dramatically, and present
binary codes that can correct a fraction (1/4 − ε) of errors, for arbitrary
ε > 0, which is the maximum possible fraction of errors from which unique
decoding is possible with positive rate. This is because for unique decoding,
the maximum number of errors that can be corrected is limited by half the
minimum distance of the code. Since binary code families of positive rate
have relative distance less than 1/2,1 the half-the-minimum-distance barrier
implies that the maximum possible fraction of errors that can be uniquely
decoded is (1/4 − ε) for binary codes. For codes over large alphabets, the
maximum unique decoding radius is (1/2− ε) (this requires an alphabet size
of Ω(1/ε), though).

We will not only be able to construct asymptotically good codes over
a large (resp. binary) alphabet that can be unique decoded in linear time
from a fraction (1/2 − ε) (resp. (1/4 − ε)) of errors, but also construct such
codes of near-optimal rate (resp. rate matching those of the best polynomial-
time constructions). Specifically, for every r, 0 < r < 1, and ε > 0, we will
construct codes over an alphabet of fixed size depending only on ε, which are
linear-time encodable and linear-time decodable from a fraction (1− r− ε)/2
of errors. Since relative distance of codes of rate r is at most (1 − r), this
trade-off is optimal, and we have linear-time algorithms to go along with it!
Concatenation of these codes with binary inner codes that lie on the Gilbert-

1This is a well-known bound in coding theory that follows for example from the
“Plotkin bound”, cf. [193, Section 5.2].
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Varshamov bound yields binary codes that can be encoded in linear time and
decoded up to half the Zyablov bound in linear time. This essentially matches
the performance achieved by polynomial time decodable constructions.

All our constructions share the common thread of using expander-like
graphs as a component, and there is a strong overlap in techniques between
this chapter and portions of Chapter 9 (specifically, Section 9.4). The ex-
pander graphs enable the design of efficient decoding algorithms through
various forms of voting procedures. The presentation in this chapter should
be reasonably self-contained and should allow the reader to read and appreci-
ate the chapter on its own. Though the results of this chapter have no direct
impact for list decoding, we point out that these expander-based techniques
together with more sophisticated analysis methods have led subsequently to
the construction of linear time encodable and list decodable codes as well [83].

Most of the material in this chapter appears in the papers [81, 82], the
second of which was written only after the first version of this work was
submitted. Therefore, the results reported in the thesis originally submitted
to MIT are weaker than the ones stated in this chapter. But the proofs of
the results in [82] are not any harder and yield near-optimal bounds, so we
have chosen to follow the presentation of [82].

Organization: We present the necessary background on expanders first in
Section 11.2. We then present a simpler construction of codes (with weaker
guarantees) that is easier to describe and follow in Section 11.3. This enables
unique decoding a fraction (1/2−ε) of errors with rate Ω(ε2) (which is worse
than the optimal bound of Ω(ε)), and by concatenation gives binary codes
of rate Ω(ε4) to correct a fraction (1/4 − ε) of errors. In Section 11.4 we
present our linear-time “near-MDS” codes with near-optimal trade-offs (that
match the Singleton bound). Finally, linear-time binary codes are obtained
by concatenation of our near-MDS codes with suitable, constant-sized, inner
codes in Section 11.5.

11.2 Background on Expanders

There are several ways in which expander graphs are defined in the liter-
ature. For our application here we will also need some “isoperimetric” or
“pseudorandom” properties offered by expanders, and therefore we use a
spectral definition of expanders based on the second largest eigenvalue of
the normalized adjacency matrix. Under this definition a ∆-regular graph H
on n vertices with adjacency matrix A is an expander if λ(H) < 1, where
λ(H) def= max{λ2, |λn|} is defined to be the second largest eigenvalue in mag-
nitude and 1 = λ1 ≥ λ2 ≥ · · ·λn ≥ −1 are the n eigenvalues of 1

∆ · A.
The following result relating the second eigenvalue to vertex expansion is

well-known and has appeared in many places (see, for example, Theorem 2.4
of [10, Chap. 9]).
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Lemma 11.1. Let H = (V,E) be a ∆-regular graph with n = |V | and λ(H) =
λ, and let T ⊆ V with |T | = bn. Let t = |v ∈ V : N(v) ∩ T = ∅}| be the
number of vertices of H that have no neighbors in T . Then

t ≤ λ2(1 − b)n
b

. (11.1)

The above lemma applies to a general graph while we are interested in
bipartite graphs. But this is easily fixed. One can define a n × n bipartite
graph G = (A,B,E′) from the above graph H by letting A,B to be copies of
V and connecting a vertex a ∈ A with b ∈ B iff the corresponding vertices in
V are adjacent in H . We call such a graph G the double cover of H . Together
with the above lemma, this gives us the desired bipartite expanders, stated
in the form of the following corollary.

Corollary 11.2. Let H be a ∆-regular graph on n vertices with λ(H) = λ.
Let G = (A,B,E) be the double cover of H. Then for every subset X ⊆ A

with |X | ≥ bn, we have |Γ (X)| ≥ (1− λ2

b )n where Γ (X) ⊆ B is the set of all
nodes with some neighbor in X.

Expander graphs with λ � 1 also have good isoperimetric properties.
Loosely speaking this means that the fraction of edges between two large
sets of vertices approximately equals the product of the densities of those
sets. The formal lemma, stated below, is folklore (see for example Corollary
2.5 in [10, Chap. 9]).

Lemma 11.3. Let H be a ∆-regular graph with λ(H) = λ < 1. Let G =
(A,B,E) be the double cover of H. Then for every pair of subsets X ⊆ A
and Y ⊆ B, we have

∣
∣
∣
E(X : Y )
∆|X | − |Y |

|B|
∣
∣
∣ ≤ λ

√

|Y |
|X | .

Thus a low value of λ achieves both good vertex expansion and isoperimet-
ric properties. It is known, however, that the best value of λ one can hope for
in an infinite family of ∆-regular graphs is 2

√
∆−1
∆ −o(1). Amazingly enough,

there are explicitly known constructions of an infinite family of ∆-regular
graphs {Gi}i≥1 with lim sup

i→∞
λ(Gi) = 2

√
∆−1
∆ < 2√

∆
. These graphs, which

are called Ramanujan graphs, were constructed independently in [131] and
[136].

11.3 Linear-Time Encodable and Decodable Codes:
Construction I

In this section, we present a quite simple (given as starting point the Spielman
code) construction of linear-time codes that enables correction up to the
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maximum possible error fractions (which is (1/2 − ε) for codes over a large
alphabet and (1/4− ε) for binary codes). In the next section we will improve
this construction, but the codes of this section are easier to describe and
elucidate the main idea behind our approach. We would therefore recommend
reading this section before reading the improved constructions in Section 11.4.

11.3.1 Codes with Rate Ω(ε2) Decodable Up to a Fraction
(1/2 − ε) of Errors

Theorem 11.4. For any ε > 0 there is an explicitly specified code family with
rate Ω(ε2), relative distance at least (1 − ε) and alphabet size 2O(1/ε2), such
that a code of blocklength n from the family can be (a) encoded in O(n/ε2)
time, and (b) uniquely decoded from up to a fraction (1/2 − ε) of errors in
O(n/ε2) time.

Proof: We need the following two combinatorial objects for our code con-
struction:

(1) A binary asymptotically good [n, k]2 linear code C, encodable and
uniquely decodable from a fraction γ > 0 of errors in linear time (here γ
is an absolute positive constant). An explicit construction of such a code
is known [176, 175].

(2) A ∆-regular bipartite graph G = (A,B,E) with |A| = |B| = n, such
that:
(a)for every set X ⊂ A with |X | ≥ γn, if Y is the set of neighbors of X

in G, then |Y | ≥ (1 − ε)|B|.
(b)for every set Y ⊂ B with |Y | ≥ (1/2 + ε)n, the set X ′ ⊆ A defined by

X ′ = {x ∈ A : x has as many neighbors in B \ Y as in Y } (11.2)

has size at most γn.

A graph as in (2) above with ∆ = O( 1
γε2 ) can be obtained from a Ra-

manujan graph (i.e., an expander with second largest eigenvalue O(1/
√
∆)).

Indeed let H = (V,E′) be a ∆-regular Ramanujan graph with λ(H) = λ =
O(1/

√
∆). Take G to be the double cover of H . We will prove that G both

the properties (a) and (b) described above. For property (a), we apply Corol-
lary 11.2 with the choice b = γ. This gives that for all X ⊆ A with |X | ≥ γn,
the set Y ⊆ B of all nodes with neighbors in X satisfies

|Y | ≥
(

1 − λ2

γ

)

n ≥
(

1 −O
( 1
∆γ

))

n ≥ (1 − ε2)n > (1 − ε)n ,

for ∆ = Ω( 1
γε2 ).

For the second property (b), assume that |Y | ≥ (1/2 + ε)n and let X ′ be
defined as in (11.2). We need to prove that |X ′| ≤ γn. By the definition of
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X ′, we have E(X ′ : Y ) ≤ ∆|X ′|/2. Applying the result of Lemma 11.3, we
know that

E(X ′ : Y )
∆|X ′| ≥ |Y |

n
− λ

√

|Y |
|X ′|

≥
(1

2
+ ε

)

− λ

√

|Y |
|X ′| .

Together with E(X ′ : Y ) ≤ ∆|X ′|/2, this implies that

|X ′| ≤ λ2|Y |
ε2

= O
( n

∆ε2

)

≤ γn ,

for ∆ = Ω( 1
γε2 ). Hence we conclude that the graph G required in (2) above

exists with degree ∆ = O( 1
γε2 ) = O(1/ε2), since γ is an absolute constant.

Given the code C and graph G, our final code, call it C′, is constructed as
follows: to encode a message x according to C′, we first encode it into C(x),
and then push symbols of C(x) along the edges of G. The i’th symbol of the
codeword C′(x), for 1 ≤ i ≤ n, comprises of the collection of the symbols
received at the i’th node of the right side B of G. This is the same as the
construction illustrated in Figure 9.2, with the left code being fixed to the
linear-time codes due to Spielman [176].
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(C = linear−time Spielman code)

Highly noisy received
word for C’
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majority value of
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right "votes" for
all its neighbors 
on the left

Fig. 11.1. The majority voting based decoding algorithm

Since C has constant rate, clearly C′ has rate Ω(1/∆) = Ω(ε2). Since C
is uniquely decodable up to a fraction γ of errors, its relative distance must
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be at least 2γ, and this together with the expansion property (a) of G clearly
implies that C′ has relative distance at least (1 − ε).

The encoding time for C′ is the same as for C (i.e., linear), plus O(n∆) =
O(n/ε2). In order to decode a received word z which differs from a codeword
C′(x) in at most a fraction (1/2 − ε) of positions, we first perform the fol-
lowing key voting step, which is illustrated in Figure 11.1: Each node v in A
recovers the bit which is the majority of the neighbors of v in B (ties broken
arbitrarily).

Since z and C′(x) agree on at least (1/2+ ε)n positions, appealing to the
property (b) of the graph G, we conclude that at most γn nodes in A recover
incorrect bits of C(x) in the above voting procedure. Then, by the property
of the code C, we can decode x in linear time. The total decoding time is
again equal to O(n/ε2) for the first stage and then a further O(n) time for
the decoding of C. Hence the total decoding time is O(n/ε2), as claimed. �

11.3.2 Binary Codes with Rate Ω(ε4) Decodable Up to a Fraction
(1/4 − ε) of Errors

In this section we show how to augment the linear-time codes from the pre-
vious section in order to obtain binary codes with linear-time encoding, and
linear-time decoding up to a fraction (1/4 − ε) of errors.

Theorem 11.5. For every ε > 0 there is a binary linear code family of
rate Ω(ε4) and relative distance at least (1/2 − O(ε)), such that a code of
blocklength N from the family can be uniquely decoded from up to a frac-
tion (1/4 − ε) of errors in O(N/ε2 + 2O(1/ε4)) time, and can be encoded in
O(N + 2O(1/ε2)) time. The code can be constructed in probabilistic O(1/ε4)
or deterministic 2O(1/ε4) time.

Proof Sketch: The code is constructed by concatenating the code from
Theorem 11.4 with a suitable binary code. Let C′ be the code from the
Theorem 11.4.2 The alphabet size of C′ is Q = 2O(1/ε2). Let C3 be any
[O(lgQ/ε2), lgQ]2 linear code with relative distance at least (1/2−ε). Such a
code can be constructed by a picking random linear code from a “Wozencraft
ensemble” in probabilistic O(1/ε4) time or by a brute-force search in such
an ensemble in 2O(1/ε4) time, cf. Proposition 8.10. We concatenate C′ with
C3 obtaining a binary linear code , say C∗, of blocklength N = O(n/ε4),
rate Ω(ε4) and relative designed distance at least δ def= (1 − ε)(1/2 − ε) =

2Actually, we will need to make slight changes in the assumptions about the
components used in the construction of C′ in Theorem 11.4, namely in the assump-
tions about the expander graph G. But the construction of C′ itself (given the left
code C and the expander G), as well all its properties claimed in Theorem 11.4,
remain unaltered — we will only pose some stronger requirements on G and the
decodability of C′. We will discuss these and justify how they can be achieved
without any loss in rate later in the proof.
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(1/2 − O(ε)).3 Since C′ can be encoded in O(n/ε2) time, the encoding of
C∗ can be performed in O(n/ε4) time (since each encoding by C3 can be
done in 1/ε4 time using a look-up table building which takes a one-time
cost of 2O(1/ε2) time and space). As the overall blocklength of C∗ equals
N = O(n/ε4), the claimed encoding time holds.

It remains to show how to unique decode C∗ from a fraction δ/2 of errors
in linear-time. Since δ = (1 − ε)(1/2 − ε) and ε > 0 is arbitrary, this will
imply the claimed result. This is accomplished by a general technique to
decode concatenated codes called Generalized Minimum Distance (GMD)
decoding due to Forney [60]. This requires a decoding algorithm for the outer
code C′ that can correct any combination of a fraction s of erasures and e
of errors as long as 2e + s ≤ (1 − ε). It is possible to extend the algorithm
from Theorem 11.4 to have this property. We omit the details of this as well
as the workings of GMD decoding now, since we will anyway discuss these
in the next two sections where we give linear-time codes of near-optimal rate
(specifically Theorems 11.8 and 11.10). �

11.4 Linear-Time Codes with Near-Optimal Rate

In this section, we will describe our construction of linear-time encod-
able/decodable codes over large alphabets which are near-MDS and match
the Singleton bound. We first describe the construction over large alphabets,
and will then describe how we can get binary codes by using concatenation
plus GMD decoding.

11.4.1 High-Level View of the Construction

Before delving into the formal construction, we describe the high-level idea
behind the construction (reading what follows with an eye on Figure 11.2
might be useful). Our code is constructed by combining three objects, a
“left” code C, a constant-sized MDS (say, Reed-Solomon) code C̃, and a
suitable bipartite expander graph G (say, with n vertices on each side). The
message will be first encoded by the left code C. The resulting codeword of
C will then be broken into n blocks, each of constant size, and each of these
blocks will be encoded by the Reed-Solomon code C̃. The symbols of the
resulting string will then be redistributed using the edges of the expander G,
the symbols in the encoding of the i’th block being sent to the neighbors of
the i’th node on the left side of G. Now, the final codeword (of length n) is
obtained by “juxtaposing” or “concatenating” the symbols received at each
of the n vertices on the right. The construction scheme is similar in spirit
to earlier expander-based code constructions in [6, 7], and specifically the
construction of near-MDS erasure codes in [7].

3The code C∗ will be linear since C3 is linear and it is easy to check that the
construction from Theorem 11.4 gives an additive code C′.
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Fig. 11.2. Basic structure of the construction of near-MDS linear time codes. The
“left” code is first broken into blocks and each block encoded by a constant-sized
Reed-Solomon code C̃. Note that the second symbol a of the encoded block is sent
to the second neighbor of the corresponding node of the expander. This is in general
how symbols are redistributed from the left to the right using the expander. On the
right side, the symbol at each position is the juxtaposition of the symbols received
from the neighbors on the left. (For example, in the figure the second position
receives a from its third neighbor on the left, and therefore has a at the third
position of the 5-tuple of symbols that it receives.) This yields the overall encoding,
and we denote by C∗ the code obtained by the combination of all the encoding
steps.

We now elaborate a bit on how we pick each of these components. The
left code C will be a linear-time code of rate very close to one, say, (1 − γ)
for some small γ > 0, which can correct a fraction Θ(γ2) of errors in linear
time. The code C̃ will be a Reed-Solomon code of rate (very close to) r. Its
block length will be equal to the degree D of the expander. For the graph G,
we can take any expander whose second eigenvalue λ is much smaller than
its degree D; in order to get the best parameters (specifically, alphabet size),
we use a Ramanujan graph which satisfies λ = O(

√
D).

The code C̃ and the expander are standard and we just use them “off-
the-shelf”. For the left code C, the existing construction of linear-time en-
codable/decodable codes due to Spielman [176, 175] do not give this directly,
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as even to correct a very small fraction of errors, the rate has to be an ab-
solute constant bounded away from 1. However, as Spielman [175] remarks
it is possible to pick parameters differently in his construction and achieve
any rate, though the formal details have not been made explicit anywhere.
Here, we present a new construction which has the property necessary to
us; our construction is obtained by combining ideas from [7] and [201]. Our
construction also achieves a slightly better dependence between the fraction
of errors corrected and the rate (compared to what can be deduced by work-
ing through the construction in [176]); this translates into a slightly better
alphabet size for our overall construction. We discuss this construction next,
before moving on to the construction of the final near-MDS code.

11.4.2 Linear-Time Codes with Rates Close to 1

In this section, we describe a code construction that will serve the role of the
“left code” in the construction scheme of Figure 11.2. The required qualitative
properties from these codes is that they be able to correct a small constant
fraction β of of errors and have rate approaching 1 as β → 0; the exact
dependence of how close the rate is to 1 as a function of the fraction of errors
corrected is not important. In fact it is this trade-off that we will improve to
near-optimal in Section 11.4.3.

Lemma 11.6. For every γ > 0, there is an explicitly specified code of rate
1/(1+γ) over an alphabet of size q = O(1/γ2) such that a code of block length
N in the family can be encoded in O(N/γ) time and can be decoded from a
fraction β = O(γ2) of errors in O(N/γ2) time.

Proof: For infinitely many values of m and for some fixed q = O(1/γ2),
we will construct a code over GF(q) of dimension m and block length N =
(1 + γ)m which can be encoded in linear time and can be decoded from βm
errors in linear time for β = Θ(γ2). The encoding will work in two steps. In
the first step, the message is encoded by a code C1 into a string of length
(1 + 2γ′)m comprising of the m message symbols and 2γ′m check symbols
(we take γ′ = γ/8). This code has the property that given the correct values
to all of the check symbols, an arbitrary set of βm errors in the message
symbols can be corrected. In the second step, the check symbols are further
encoded by a linear-time rate 1/4 code C2 that can correct up to βm errors.
The combined code thus maps m symbols into (1+8γ′)m = (1+γ)m symbols
and can correct up to βm errors. The decoding algorithm for the combined
code from βm errors is the obvious one: first decode C2 to correct any errors
in the check bits, and then decode C1 to correct, using the correct values of
the check bits, the up to βm errors that could exist in the message bits.

For the code C2, we can use the codes due to Spielman which have some
constant rate. Specifically, as stated in [7], there is an explicit such code
C2 over GF(q) of rate 1/4 which can correct a fraction b of errors for some
absolute constant b > 0 that is independent of γ. The qualitative feature that
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is important about C2 is that its rate and fraction of correctable errors both
be absolute constants (independent of γ); the exact values of these constants
are not important and therefore we can get away with just using the original
Spielman code. It remains to describe the code C1. The code C1 must encode
m symbols into (1+2γ′)m symbols such that the encoding can be performed
in linear time and moreover C1 can be decoded from up to βm errors in the
message bits, where β = O(γ′2), in linear time.

Let H be a d-regular bipartite “Ramanujan” expander with m edges and
n = m/d vertices on each side, such that the second largest eigenvalue λ of its
adjacency matrix satisfies λ ≤ 2

√
d. Here d is a constant that is independent

of n, i.e., we use a family of constant-degree expanders (jumping ahead d =
O(1/γ2) will suffice). The m positions of the message to be encoded are
identified with the edges of H . For each vertex v of H , we compute γ′d check
symbols corresponding to the message symbols on edges incident upon v.
These are computed using some systematic MDS code C′ of dimension d,
block length (1 + γ′)d, and which can correct fewer than γ′d/2 errors; for
example we can use a Reed-Solomon code over a field of size O(d). In all, this
gives 2n(γ′d) = 2γ′m check symbols, as required.

It is clear that C1 can be encoded in linear time, since each of the n MDS
codes is of constant-size. We now discuss the linear-time decoding algorithm
for C1 that corrects up to βm errors in the message symbols, given the correct
values of all check symbols. This algorithm and its analysis follows along
the lines of Zemor’s recent improvement [201] of the analysis of Sipser and
Spielman [171]. For completeness sake, we next present the details of this
analysis.

Let the two sides of the bipartition of H be A and B. For each v ∈ A∪B
denote by Ev the set of edges of H incident on v. Let x ∈ GF(q)m be the
portion of the received word corresponding to the m message symbols —
by hypothesis, x is the message vector corrupted by at most βm errors.
Let y ∈ GF(m)γ′m be the vector of the check symbols. Denote by xEv the
projection of x on the d edges in Ev, and by yEv the projection of y to the
γ′d check symbols that correspond to the encoding by the MDS code C′ of
the symbols on the edges in Ev. The decoding algorithm proceeds in rounds,
and in each round does the following in sequence:

(a) (Left wing decoding) For each v ∈ A in parallel, check if there exists a
vector z ∈ GF(q)d within distance γ′d/2 of xEv and whose check bits
agree with yEv ; if so, set xEv to z.

(b) (Right wing decoding) For each v ∈ B in parallel, check if there exists
a vector z ∈ GF(q)d within distance γ′d/2 of xEv and whose check bits
agree with yEv ; if so, set xEv to z.

To analyze the algorithm, by linearity it suffices to consider the case when
the correct message is the all-zeroes string (which also implies that all check
symbols equal 0). Let X = {e : xe �= 0} be the set of edges whose symbols are
in error in the original received word x. For i ≥ 1, let Y (i) (resp. Z(i)) be the
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set of edges in error, i.e. edges e so that xe �= 0, after the left wing (resp. right
wing) of the i’th round of decoding (we use the convention Y (0) = Z(0) = X).
Define the set A(i) and B(i) for i ≥ 1 as follows:

– A(i) = {v ∈ A : Ev ∩ Y (i) �= ∅}
– B(i) = {v ∈ B : Ev ∩ Z(i) �= ∅}
Now comes the crucial part of the analysis. Let i ≥ 1 be fixed. For each
v ∈ A(i) (i.e., vertices on the left which are incident to some uncorrected edge
after the left wing decoding of the i’th round), we have |Ev ∩Z(i−1)| ≥ γ′d/2,
as otherwise the left wing decoding of the i’th round would have corrected
the fewer than γ′d/2 errors that remained in the edges of Ev. We also have,
for the same reason, |Ev ∩ Y (i)| ≥ γ′d/2 for every v ∈ B(i).

Our goal is to now prove that the size of the A(i)’s and B(i)’s decreases ge-
ometrically, which will imply that the algorithm converges in O(log n) rounds.
Note that this immediately implies only anO(n logn) complexity decoding al-
gorithm, but not a linear upper bound on the decoding time, since each round
itself appears to require linear runtime. However, there is a linear-time imple-
mentation of the algorithm by carefully considering only “relevant” subsets of
A,B which decrease in size geometrically when implementing the successive
decoding rounds. We omit the details here and point the reader, for example,
to [20, Sec. V], where explicit details on this aspect appear.

Now, consider the subgraph of H induced by the edges in Y (i). By defi-
nition, each such edge must be incident upon a vertex in A(i). Furthermore,
every vertex in B(i) is incident upon at least γ′d/2 edges of Y (i). Apply-
ing Lemma 11.7 stated at the end of this section to this situation (with the
choice S = A(i), T = B(i) and Y = Y (i)), the expansion property of the
graph H implies that B(i) has to be small provided A(i) is small. Specifically,
|B(i)| ≤ ζ|A(i)| for some ζ < 1, provided |A(i)| ≤ ρn

(
γ′

4 − 2√
d

)

for some ρ < 1.

This condition will be satisfied provided d ≥ 64/γ′2 and |A(i)| ≤ γ′n/16. By
the same argument, we will also have |A(i+1)| ≤ ζ|B(i)| for i ≥ 1. Hence, we
would have proved the geometrically decreasing property, provided we can
get an upper bound of γ′n/16 on |A(1)| to start with.

By definition each vertex of A(1) is adjacent to at least γ′d/2 erroneous
edges, and hence we have |X | ≥ |A(1)|γ′d/2. Also, by hypothesis there are at
most βm = βnd errors, and so |A(1)| ≤ 2βn

γ′ . Therefore, if β ≤ γ′2/32, then
|A(1)| ≤ γ′n/16 as desired. � (Lemma 11.6)

Lemma 11.7 ([201]). Let ρ < 1 be arbitrary. Let H = (A,B,E) be a d-
regular bipartite expander with n vertices on each side and whose adjacency
matrix has second largest eigenvalue λ ≤ d/3. Let S be a subset of vertices of
A such that |S| ≤ ρn

(
α
2 − λ

d

)

. Let T be a subset of vertices of B and suppose
that there exists a set Y ⊆ E of edges such that:
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(a) every edge in Y has one of its endpoints in S, and
(b) every vertex in T is incident to at least αd edges of Y .

Then, |T | ≤ 1
2−ρ |S|.

11.4.3 Linear-Time Error-Correcting Codes Meeting the
Singleton Bound

We now use the codes from the previous section as the “left code” in our
general construction scheme to obtain linear time encodable/decodable codes
whose rate vs. error-correcting trade-off approaches the Singleton bound (we
call such codes near-MDS codes). Below we state a more general result that
handles both errors and erasures. This will help us deduce the result for
binary codes in the next section very easily, since the GMD algorithm for
concatenated codes that we will employ requires an errors-and-erasures de-
coding algorithm for the outer code.

Theorem 11.8. For every r, 0 < r < 1, and all sufficiently small ε > 0, there
exists an explicitly specified family of GF(2)-linear (also called additive)4

codes of rate r and relative distance at least (1 − r − ε) over an alphabet of
size 2O(ε−4r−1 log(1/ε)) such that codes from the family can be encoded in linear
time and can also be (uniquely) decoded in linear time from a fraction e of
errors and s of erasures provided 2e+ s ≤ (1 − r − ε).

Proof: We will use the construction outlined in Section 11.4.1 with left code
being the code from Lemma 11.6 for the choice γ = ε/4. Let x be a message
of length m over GF(q) for some constant q (jumping ahead, q will be a
power of two large enough for the left code and the Reed-Solomon code C̃
to exist). The message is first encoded by C to give a string y = C(x) of
length n′ = (1 + ε/4)m over GF(q). We assume, by Lemma 11.6, that C
can correct βn′ errors in linear time for β = O(ε2). The symbols of y will
be broken up into n = n′/b blocks consisting of b symbols each for a block
size b = Θ(1/ε4). Each of these n blocks will undergo encoding by a Reed-
Solomon code C̃ over GF(q) of dimension b and rate r′ = r(1 + ε/4), to give
n blocks B1, . . . , Bn each consisting of ∆ = b/r′ symbols over GF(q) (if we
pick q = Ω(r−1ε−4) ≥ ∆, both the left code as well as the Reed-Solomon
code will exist over an alphabet of size q).

Let G = (A,B,E) be a ∆-regular bipartite expander with n vertices on
each side with the following property:

(*) For every subset X ⊂ A with |X | ≥ βn/2 and every Y ⊆ B, we have
∣
∣
∣
|E(X:Y )|

|X|∆ − |Y |
|B|

∣
∣
∣ ≤ ε/4.

4Recall that a code C over a field of characteristic 2 is said to GF(2)-linear or
additive if x + y ∈ C whenever both x ∈ C and y ∈ C. The codes we construct
have this property, but they are not in general linear over the larger field.



11.4 Linear-Time Codes with Near-Optimal Rate 295

One can show that Ramanujan graphs, namely graphs whose second largest
eigenvalue satisfies λ = O(

√
∆), of degree ∆ = O(1/βε2) = O(1/ε4), give

bipartite graphs with the above property. Explicit constructions of Ramanu-
jan graphs are known [131] and since C, C̃ are explicitly specified as well,
our overall construction is explicit.5 The symbols of the i’th block will be
redistributed to the neighbors of the i’th vertex on the left side of G (the
j’th symbol going to the j’th neighbor of the vertex, for 1 ≤ j ≤ ∆, as per
some arbitrary ordering of the neighbors of each vertex). This gives, for each
vertex on the right side, a collection of ∆ GF(q)-symbols obtained from its ∆
neighbors on the left, which, equivalently, can be viewed as a single symbol
over GF(q∆). The string (of length n) consisting of these symbols forms the
encoding of x by our overall code over GF(q∆), call it C∗. (Taking another
quick look at Figure 11.2 before reading on might be useful to the reader.)
Rate and alphabet size. This gives a code over an alphabet of size q∆ =
2O(b lg q/r′) = 2O(ε−4r−1 log(1/ε)) and which has rate m/∆

n = mr′
bn = mr′

n′ = r
(since n′ = (1 + ε/4)m and r′ = r(1 + ε/4)). It is also clear that C∗ has a
linear time encoding algorithm.
Decoding complexity. Using the Property (*) of G, it is also easy to show
that the relative distance of C∗ is at least (1−r−ε/2). In fact, we next prove
that C∗ can be uniquely decoded from a fraction e of errors and s of erasures
provided 2e+ s ≤ (1 − r − ε).

Let z be a received word for C∗ with a fraction s of erasures and a fraction
e of errors, where 2e + s ≤ (1 − r − ε). Since the relative distance of C∗ is
greater than (1 − r − ε), there is a unique message x that is solution to the
decoding problem. Let S be the set of erasures in the received word z, and
let F be the set of errors (i.e., the positions where C∗(x) and z differ). We
have |S| = sn and |F | = en.

Given the received word z, the decoding algorithm proceeds as follows.
In the first step, the word z is used to compute certain “received words” zi,
1 ≤ i ≤ n, for the n encodings by C̃ (corresponding to the n blocks into
which a codeword of C is broken into). This is done as follows. For each
i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ ∆, if the j’th neighbor of the i’th node of
A has an unerased symbol, say ζ ∈ GF(q∆), then the j’th symbol of zi is
set to the symbol in the appropriate coordinate of ζ (namely, the coordinate
which received that symbol through the expander). If the j’th neighbor of
the i’th node of A has an erased symbol, then we declare an erasure at the
j’th position of zi.

5Here we assume that parameters have been so picked that there is an explicit
Ramanujan graph, eg. the construction of [131], with exactly n vertices. Since there
is a lot of flexibility in the choice of parameters of the left code C and the Reed-
Solomon code C̃, and since the sequences of vertex sizes of known explicit con-
structions of Ramanujan graphs form a dense sequence, this can be easily ensured.
For sake of simplicity, we ignore this issue and simply assume that expanders with
exactly the required number of vertices exist.
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For each i, 1 ≤ i ≤ n, let zi be the received word thus obtained for the
encoding of i’th block. Let si be the fraction of positions in zi which are
erased, and let ei be the fraction of positions in zi which are set to a wrong
symbol. With the zi’s computed, the algorithm continues as follows. For each
i, we run a unique error-erasure decoding algorithm for the Reed-Solomon
code C̃ with received word zi. If it succeeds in decoding, we let yi ∈ GF(q)b be
the message it outputs, otherwise we let yi be an arbitrary string in GF(q)b.
Finally, the decoding is completed by running the linear time unique decoding
algorithm for C on the received word y = 〈y1, y2, . . . , yn〉, and outputting
whatever message x it outputs.

It is clear that the algorithm runs in linear time. We now prove the cor-
rectness of this procedure. We claim that it suffices to prove that the re-
ceived words zi (obtained from the first stage of the decoding that uses the
expander) satisfy 2ei + si < (1 − r − ε/4) for at least (1 − β)n values of
i. Indeed, for any such i, the Reed-Solomon decoder will succeed in finding
the correct block yi (as the relative distance of each Reed-Solomon code is
at least (1 − r(1 + ε/4)) ≥ 1 − r − ε/4). Hence the received word y passed
to the decoding algorithm for C will agree with C(x) entirely on a fraction
(1− β) of the blocks, or in other words y and C(x) will differ in at most βn′

positions. Since the assumed decoding algorithm for C can correct up to a
fraction β of errors, we will correctly find and output the message x.

It remains to prove that 2ei + si < (1− r− ε/4) for all but βn values of i.
Define X ′ ⊂ A to be the set of nodes which have at least a fraction (s+ ε/4)
of neighbors in the set S (the set of erasures in the received word z). Also
define X ′′ ⊂ A to be the nodes which have at least a fraction (e + ε/4) of
neighbors in F (the set of erroneous positions in z). It easily follows from the
Property (*) of the expander G that |X ′|, |X ′′| ≤ βn/2.

Now consider any node i ∈ A \ (X ′ ∪ X ′′). It has less than a fraction
(e + ε/4) of neighbors in F . These correspond to the errors in the received
word zi, and hence we have

ei < e+ ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.3)

A node i ∈ A \ (X ′ ∪X ′′) also has less than a fraction (s+ ε/4) of neighbors
in S. These correspond to the erasures in the received word zi, and hence we
have

si < s+ ε/4 for every i ∈ A \ (X ′ ∪X ′′) . (11.4)

Since 2e + s ≤ (1 − r − ε) by hypothesis, we have, combining (11.3) and
(11.4) that 2ei + si < (1 − r − ε/4), for each i ∈ A \ (X ′ ∪ X ′′). Since
|X ′|, |X ′′| ≤ βn/2, we have proved that the condition 2ei + si < (1− r− ε/4)
holds for all but a fraction β of i’s in the range 1 ≤ i ≤ n. This completes
the proof of correctness of the decoding algorithm. �
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11.5 Linear-Time Encodable Binary Codes Meeting the
Zyablov Bound

We now construct binary codes which have excellent rate vs. error-correction
trade-off and further have linear time encoding and decoding algorithms.
Our codes meet the Zyablov bound which is the best trade-off known with
reasonable construction complexity (and the best known for concatenated
codes).

Our code constructions are obtained by concatenating the near-MDS
codes from Theorem 11.8 with a binary inner code which meets the Gilbert-
Varshamov bound. Such a code can be constructed by picking a linear code
at random and checking that it has the necessary distance property, or a
deterministic construction can be obtained by searching for the inner code
(since it is of constant size, this takes only O(1) time). Linear time encoding is
clear, and for decoding we use Generalized Minimum Distance (GMD) decod-
ing [60], which decodes a concatenated code up to the “product bound” (i.e.,
half the product of the designed distances of the outer and inner codes) by
running several instances of the errors-and-erasures algorithm for the outer
near-MDS code. The number of such runs needed is bounded from above
by half the distance of the inner code and therefore by a fixed constant as
the inner code is of constant size. Since each run takes linear time by Theo-
rem 11.8, the overall decoding time is linear. The statement we need about
GMD decoding is formally stated below — a proof appears in Appendix A.

Proposition 11.9. Let Cout be an (N,K)Q code where Q = qk and let Cin

be an (n, k)q code with minimum distance at least d. Let C be the (Nn,Kk)q

code obtained by concatenating Cout with Cin. Assume that there exists an
algorithm running in time Tin to uniquely decode Cin up to less than d/2
errors. Assume also the existence of an algorithm running in time Tout that
uniquely decodes Cout from S erasures and E errors as long as 2E + S <
D̃ for some D̃ ≤ dist(Cout). Then there exists an algorithm A running in
O(NTin + dTout) time that uniquely decodes C from any pattern of less than
dD̃
2 errors.

Using the above result for concatenated codes with outer codes from The-
orem 11.8 and inner code being one of the appropriate dimension that meets
the Gilbert-Varshamov bound, we get our result for linear-time binary codes
below.

Theorem 11.10. For every ε > 0 and for any code rate 0 < R < 1, there
exists a family of binary linear concatenated codes of rate R which can be
encoded in linear time and can be decoded in linear time from up to a fraction
e of errors, where

e ≥ max
R<r<1

(1 − r − ε)H−1(1 −R/r)
2

(11.5)
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(H−1(y) is defined to be the unique x in the range 0 ≤ x ≤ 1/2 that sat-
isfies H(x) = y). Every code in the family is explicitly specified given a
constant sized binary linear code which can be constructed in probabilistic
O(ε−4 log(1/ε)) or deterministic 2O(ε−4 log(1/ε)) time.

The bound of Equation (11.5) is half the Zyablov bound [202], and thus
these codes match the best error-correction performance known for construc-
tive binary concatenated codes. We remark that the first explicit construction
of codes meeting the Zyablov bound for all rates was due to Shen [164]. These
were based on certain algebraic-geometric codes as outer codes and the en-
coding and decoding times were at least quadratic in the block length.

11.6 Bibliographic Notes

The simple scheme of using expanders to increase the distance of codes we
used in Section 11.3 first appeared in [6]. The majority voting based decoding
algorithm for such codes was given in our joint work with Indyk [81]. The
basic scheme that was described in Section 11.4.1 first appeared in [7] where
they used it to construct linear-time codes for recovery from erasures. The
results of Theorem 11.8 and Theorem 11.10 first appeared in our joint work
with Indyk [82]. This paper [82] also contained some results on list decoding
that were described in Chapters 9 and 10 — the results on unique decoding
alone, together with improvements that attain the Blokh-Zyablov bound as
well as the Forney exponent for decoding under the binary symmetric channel,
appear in a journal paper [85].

We saw in this chapter an instance of how techniques developed for list de-
coding are useful also for new, powerful results on unique decoding. Another
instance of this is the work of Guruswami and Indyk [84] on a probabilis-
tic construction of efficiently decodable binary linear codes that meet the
Gilbert-Varshamov bound — specifically, they used a concatenation scheme
with an outer list-decodable code to get binary codes on the GV bound for
low rates together with a polynomial time algorithm to perform decoding up
to half the distance.
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