
1 Introduction

In the everyday situation where one party wishes to communicate a message
to another distant party, more often than not, the intervening communication
channel is “noisy” and distorts the message during transmission. The prob-
lem of reliable communication of information over such a noisy channel is a
fundamental and challenging one. Error-correcting codes (or simply, codes)
are objects designed to cope with this problem. They are now ubiquitous and
found in all walks of life, ranging from basic home and office appliances like
compact disc players and computer hard disk drives to deep space communi-
cation.

The theory of error-correcting codes, which dates back to the seminal
works of Shannon [160] and Hamming [93], is a rich, beautiful and to-date
flourishing subject that benefits from techniques developed in a wide variety
of disciplines such as combinatorics, probability, algebra, geometry, number
theory, engineering, and computer science, and in turn has diverse applica-
tions in a variety of areas.

In this work, we study the performance of error-correcting codes in the
presence of very large amounts of noise, much more than they were “tra-
ditionally designed” to tolerate. This situation poses significant challenges
not addressed by the classical decoding procedures. We address these chal-
lenges with a focus on the algorithmic issues that arise therein. Specifically,
we establish limits on what can be achieved in such a high-noise situation,
and present algorithms for classically studied codes that decode significantly
more errors than all previously known methods. We also present several novel
code constructions designed to tolerate extremely large amounts of noise, to-
gether with efficient error-correcting procedures. The key technical notion
underlying our work is “List Decoding”. This notion will be defined, and our
contributions will be explained in further detail, later on in this chapter.

1.1 Basics of Error-Correcting Codes

Informally, error-correcting codes provide a systematic way of adding redun-
dancy to a message before transmitting it, so that even upon receipt of a
somewhat corrupted message, the redundancy in the message enables the re-
ceiver to figure out the original message that the sender intended to transmit.

V. Guruswami: List Decoding of Error-Correcting Codes, LNCS 3282, pp. 1-14, 2004.
 Springer-Verlag Berlin Heidelberg 2004

2 1 Introduction

The principle of redundant encoding is in fact a familiar one from every-
day language. The set of all words in English is a small subset of all possible
strings, and a huge amount of redundancy is built into the valid English
words. Consequently, a misspelling in a word usually changes it into some
incorrect word (i.e., some letter sequence that is not a valid word in En-
glish), thus enabling detection of the spelling error. Moreover, the resulting
misspelled word quite often resembles the correct word more than it resem-
bles any other word, thereby permitting correction of the spelling error. The
“ispell” program used to spell-check this book could not have worked but
for this built-in redundancy of the English language! This simple principle of
“built-in redundancy” is the essence of the theory of error-correcting codes.

In order to be able to discuss the context and contributions of our work, we
need to define some basic notions concerning error-correcting codes.1 These
are discussed below.

– Encoding. An encoding function with parameters k, n is a function E :
Σk → Σn that maps a message m consisting of k symbols over some
alphabet Σ (for example, the binary alphabet Σ = {0, 1}) into a longer,
redundant string E(m) of length n over Σ. The encoded string E(m) is
referred to as a codeword.

– Error-Correcting code. The error-correcting code itself is defined to be the
image of the encoding function. In other words, it is the set of all codewords
which are used to encode the various messages.

– Rate. The ratio of the number of information symbols to the length of the
encoding — the quantity k/n in the above definition — is called the rate
of the code. It is an important parameter of a code, as it is a measure of
the amount of redundancy added by the encoding.

– Decoding. Before transmitting a message, the sender of the message first
encodes it using the error-correcting code and then transmits the resulting
codeword along the channel. The receiver gets a possibly distorted copy
of the transmitted codeword, and needs to figure out the original message
which the sender intended to communicate. This is done via a decoding
function, D : Σn → Σk, that maps strings of length n (i.e., noisy re-
ceived words) to strings of length k (i.e., what the decoder thinks was the
transmitted message).

– Distance. The minimum distance (or simply, distance) of a code quantifies
how “far apart” from each other different codewords are. Define the dis-
tance between words as the number of coordinates at which they differ. The
(minimum) distance of a code is then defined to be the smallest distance
between two distinct codewords.

Historical Interlude: We now briefly discuss the history behind the defini-
tion of these concepts. The notions of encoding, decoding, and rate appeared

1Here we only define the most basic notions. Further definitions appear in Chap-
ter 2.

1.1 Basics of Error-Correcting Codes 3

in the work of Shannon [160]. The notions of an error-correcting code itself,
and that of the distance of a code, originated in the work of Hamming [93].

Shannon proposed a stochastic model of the communication channel, in
which distortions are described by the conditional probabilities of the trans-
formation of one symbol into another. For every such channel, Shannon
proved that there exists a precise real number, which he called the chan-
nel’s capacity, such that in order to achieve reliable communication over the
channel, one has to use a encoding function with rate less than its capacity.
He also proved the converse result — namely, for every rate below capacity,
there exist encoding and decoding schemes which can used to achieve reli-
able communication, with a probability of miscommunication as small as one
desires. This remarkable result, which precisely characterized the amount of
redundancy needed to cope with a noisy channel, marked the birth of infor-
mation theory and coding theory.

However, Shannon only proved the existence of good coding schemes at
any rate below capacity, and it was not at all clear how to perform the
required encoding or decoding efficiently. Moreover, the stochastic description
of the channel did not highlight any simple criterion of when a certain code
is good.

2E(m)
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

d

(d−1)/2E(m)1

Fig. 1.1. A code of minimum distance d. Spheres of radius (d − 1)/2 around the
codewords are all disjoint.

Intuitively, a good code should be designed so that the encoding of one
message will not be confused with that of another, even if it is somewhat
distorted by the channel. Now, if the various codewords are all far apart
from one another, then even if the channel distorts a codeword by a small
amount, the resulting string will still resemble the original codeword much
more than any other codeword, and can therefore be “decoded” to the cor-

4 1 Introduction

rect codeword. In his seminal work, Hamming [93] realized the importance
of quantifying how far apart various codewords are, and defined the above
notion of distance between words, which is now appropriately referred to as
Hamming distance. He also formally defined the notion of an error-correcting
code as a collection of strings no two of which are close to each other, and
defined the (minimum) distance of a code as the smallest distance between
two distinct codewords. This notion soon crystallized as a fundamental pa-
rameter of an error-correcting code. Figure 1.1 depicts an error-correcting
code with minimum distance d, which, as the figure illustrates, implies that
Hamming balls of radius (d− 1)/2 around each codeword are all disjoint. In
this model, an optimal code is one with the largest minimum distance among
all codes that have a certain number of codewords. As Figure 1.1 indicates,
finding a good code in this model is a particular kind of “sphere-packing”
problem. Unlike Shannon’s statistical viewpoint, this combinatorial formula-
tion permitted a variety of techniques from combinatorics, algebra, geometry,
and number theory to be applied in attempts to solve the problem. In turn,
this led to the burgeoning of coding theory as a discipline.

1.2 The Decoding Problem for Error-Correcting Codes

The two main algorithmic tasks associated with the use of an error-correcting
code are implementing the encoding function E and the decoding function D.

2E(m)
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

d

(d−1)/2E(m)1
r

Fig. 1.2. A code of distance d cannot correct d/2 errors. The figure shows a received
word r at a distance of d/2 from two codewords corresponding to the encodings of
m1 and m2. In such a case, r could have resulted from d/2 errors affecting either
E(m1) or E(m2).

1.2 The Decoding Problem for Error-Correcting Codes 5

The former task is usually easy to perform efficiently, since the “construction”
of a code often works by giving such an encoding procedure.

For the decoding problem, we would ideally like D(E(m) + noise) = m
for every message m, and every “reasonable” noise pattern that the channel
might effect. Now, suppose that the error-correcting code has minimum dis-
tance d (assume d is even) and m1,m2 are two messages such that the Ham-
ming distance between E(m1) and E(m2) is d. Then, assume that E(m1)
is transmitted and the channel effects d/2 errors and distorts E(m1) into a
word r that is right in between E(m1) and E(m2) (see Figure 1.2). In this
case, upon receiving r, the decoder has no way of figuring out which one of
m1 or m2 was the intended message, since r could have been received as a
result of d/2 errors affecting either E(m1) or E(m2).

Therefore, when using a code of minimum distance d, a noise pattern of
d/2 or more errors cannot always be corrected. On the other hand, for any
received word r, there can be only one codeword within a distance of (d−1)/2
from r. This follows using the triangle inequality (since Hamming distance
between strings defines a metric). Consequently, if the received word r has at
most (d−1)/2 errors, then the transmitted codeword is the unique codeword
within distance (d − 1)/2 from r (see Figure 1.3). Hence, by searching for a
codeword within distance (d− 1)/2 of the received word, we can recover the
correct transmitted codeword as long the number of errors in the received
word is at most (d− 1)/2.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

d

r

(d−1)/2E(m)

Fig. 1.3. A code of distance d can correct up to (d − 1)/2 errors. For the received
word r, E(m) is the unique codeword within distance (d− 1)/2 from it, so if fewer
than (d − 1)/2 errors occurred, r can be correctly decoded to m.

Due to these facts, a well-posed algorithmic question that has been the
focus of most of the classical algorithmic work on efficient decoding, is the

6 1 Introduction

problem of decoding a code of minimum distance d up to (d − 1)/2 errors.
We call such a decoding unique/unambiguous decoding in the sequel. The
reason for this terminology is that the decoding algorithm decodes only up
to a number of errors for which it is guaranteed to find a unique codeword
within such a distance of the received word.

The obvious unique decoding algorithms which search the vicinity of the
received word for a codeword are inefficient and require exponential runtime.
Nevertheless, a classic body of literature spanning four decades has now given
efficient unique decoding algorithms for several interesting families of codes.
These are among the central and most important results in algorithmic coding
theory, and are discussed in detail in any standard coding theory text (eg.,
[132, 193]).

We are interested in what happens when the number of errors is greater
than (d − 1)/2. In such a case the unique decoding algorithms could either
output the wrong codeword (i.e., a codeword other than the one transmit-
ted), or report a decoding failure and not output any codeword. The former
situation occurs if the error pattern takes the received word within distance
(d−1)/2 of some other codeword. In such a situation, the decoding algorithm,
though its answer is wrong, cannot really be faulted. After all, it found some
codeword much closer to the received word than any other codeword, and
in particular the transmitted codeword, and naturally places its bet on that
codeword. The latter situation occurs if there is no codeword within distance
(d − 1)/2 of the received word, and it brings out the serious shortcoming of
unique decoding, which we discuss below.

It is true that some patterns of d/2 errors, as in Figure 1.2, are uncor-
rectable due to there being multiple codewords at a distance d/2 from the
received word. However, the situation in Figure 1.2 is quite pathological and
it is actually the case that for most received words there will be only a single
codeword that is closest to it. Moreover, the sparsity of the codewords implies
that most words in the ambient space fall outside the region covered by the
(disjoint) spheres of radius (d− 1)/2 around the codewords. Together, these
facts imply that most received words have a unique closest codeword (and
thus it is reasonable to expect that the decoding algorithm correct them to
their closest codeword), and yet unique decoding algorithms simply fail to de-
code them. Indeed, as Shannon’s work [160] already pointed out, for “good”
codes (namely, those that approach capacity), if errors happen randomly ac-
cording to some reasonable probabilistic model, then with high probability
the received word will not be correctable by unique decoding algorithms!

In summary, on a overwhelming majority of error patterns, unique decod-
ing uses the excuse that there is no codeword within a distance (d−1)/2 from
the received word to completely give up on decoding those patterns. This lim-
itation is in turn due to the requirement that the decoding always be unique
or unambiguous, which, as argued earlier, means there are some (pathologi-
cal) patterns of d/2 errors which are not correctable. It turns out that there is

1.3 List Decoding 7

a meaningful relaxation of unique decoding which circumvents this predica-
ment and permits one to decode beyond the perceived “half-the-distance
barrier” faced by unique decoding. This relaxed notion of decoding, called
list decoding, is the subject of this book, and we turn to its definition next.

1.3 List Decoding

1.3.1 Definition

List decoding was introduced independently by Elias [48] and Wozencraft [199]
in the late 50’s. List decoding is a relaxation of unique decoding that al-
lows the decoder to output a list of codewords as answers. The decoding is
considered successful as long as the codeword corresponding to the correct
message is included in the list. Formally, the list decoding problem for a code
E : Σk → Σn is defined as follows: Given a received word r ∈ Σn, find and
output a list of all messagesm such that the Hamming distance between r and
E(m) is at most e. Here e is a parameter which is the number of errors that
the list decoding algorithm is supposed to tolerate. The case e = (d − 1)/2
gives the unique decoding situation considered earlier.

List decoding permits one to decode beyond the half-the-distance barrier
faced by unique decoding. Indeed, in the situation of Figure 1.2, the decoder
can simply output both the codewords that are at a distance of d/2 from the
received word. In fact, list decoding remains a feasible notion even when the
channel effects e� d/2 errors.

An important parameter associated with list decoding is the size of the
list that the decoder is allowed to output. Clearly with a list size equal to one,
list decoding just reduces to unique decoding. It is also undesirable to allow
very large list sizes. This is due to at least two reasons. First, there is the
issue of how useful a very large list is, since it is reasonable that the receiver
might finally want to pick one element of the list using additional rounds
of communication or using some tie-breaking criteria. Second, the decoding
complexity is at least as large as the size of the list that the algorithm must
output in the worst-case. Since we want efficient, polynomial time, decoding
procedures, the list size should be at most a polynomial in the message length,
and ideally at most a constant that is independent of the message length.

It turns out that even with a list size that is a small constant (say, 20),
any code of distance d can be list decoded well beyond d/2 errors (for a
wide range of distances d). The bottom line, therefore, is that allowing the
decoder to output a small list of codewords as answers opens up the possibility
of doing much better than unique decoding. In other words, list decoding is
combinatorially feasible.

8 1 Introduction

1.3.2 Is List Decoding a Useful Relaxation of Unique Decoding?

But the above discussion does not answer the obvious question concerning list
decoding that comes to one’s mind when first confronted with its definition:
how useful is the notion of list decoding itself? What does one do with a list
of answers, and when too many errors occur, why is receiving an ambiguous
list of answers better than receiving no answer at all? We now proceed to
answer these questions.

Firstly, notice that list decoding only gives more options than unique
decoding. One can always go over the list output by the algorithm and check
if there is any codeword within distance (d−1)/2 of the received word, thereby
using it to perform unique decoding. But the advantage of list decoding is that
it also enables meaningful decoding of received words that have no codeword
within distance (d−1)/2 from them. As discussed earlier, since the codewords
are far apart from one another and sparsely distributed, most received words
in fact fall in this category. For a large fraction of such received words, one can
show that in fact there is at most one codeword within distance e from them,
for some bound e which is much greater than d/2. Therefore, list decoding
up to e errors will usually (i.e., for most received words) produce lists with at
most one element, thereby obviating the need of dealing with more than one
answer being output! In particular, for a channel that effects errors randomly,
this implies that with high probability, list decoding, when it succeeds, will
output exactly one codeword.

Furthermore, if the received word is such that list decoding outputs several
answers, this is certainly no worse than giving up and reporting a decoding
failure (since we can always choose to return a failure if the list decoding does
not output a unique answer). But, actually, it is much better. Since the list
is guaranteed to be rather small, using an extra round of communication, or
some other context or application specific information, it might actually be
possible to disambiguate between the answers and pick one of them as the
final output. For example, the “ispell” program used to spell-check this book
often outputs a list of correct English words that are close to the misspelled
word. The author of the document can then conveniently pick one of the
words based on what he/she actually intended. As another example, consider
the situation where a spacecraft transmits the encoding of, say a picture
of Saturn, back to the Earth. It is possible that due to some unpredictable
interference in space, the transmission gets severely distorted and the noise
is beyond the range unique decoding algorithms can handle. In such a case,
it might be unreasonable to request a retransmission from the spacecraft.
However, if a list decoding algorithm could recover a small list of candidate
messages from the received data, then odds are that only one member of the
list will look anything like a picture of Saturn, and we will therefore be able
to recover the original transmitted image.

Also, we would like to point out that one can always pick from the list the
codeword closest to the received word, if there is a unique such codeword, and

1.3 List Decoding 9

output it. This gives the codeword that has the highest likelihood of being the
one that was actually transmitted, even beyond the half-the-distance barrier.
Finding such a codeword is referred to as maximum likelihood decoding in the
literature. See the “interlude” at the end of this section for further discussion
about this point, but in a nutshell, list decoding permits one to perform
maximum likelihood decoding as long as the number of errors effected by the
channel is bounded by the maximum number of errors that the list decoding
algorithm is designed to tolerate.

Finally, error-correcting codes and decoding algorithms play an important
role in several contexts outside communication, and in fact they have become
fundamental primitives in theoretical computer science. In many cases list
decoding enhances the power of this connection between coding theory and
computer science.

Interlude: Maximum likelihood decoding (MLD) is an alternate notion of
decoding considered in the literature. The goal of MLD is to output the
codeword closest in Hamming distance to the received word (ties broken
arbitrarily). This is considered by many to be the “holy grail” of decoding,
since it outputs the codeword with the highest likelihood of being the one that
was actually transmitted. MLD clearly generalizes unique decoding, since if
there is a codeword within distance (d− 1)/2 of the received, it must be the
unique closest codeword. List decoding and MLD are, however, incomparable
in power. List decoding can be used to perform MLD as long as the number
of errors is bounded by the amount that the list decoding algorithm was
designed to tolerate. In such a case, list decoding is in fact a more general
primitive since it gives all close-by codewords, including the closest one(s),
while a MLD algorithm rigidly makes up its mind on one codeword. On the
other hand, MLD does not assume any bound on the number of errors, while
list decoding, owing to the requirement of small list size in the worst-case,
does. The main problem with MLD is that it ends up being computationally
intractable in general, and extremely difficult to solve even for particular
families of codes. In fact, the author is unaware of any non-trivial code family
for which maximum likelihood decoding is solvable in polynomial time. In
contrast, list decoding, as our work demonstrates, is algorithmically tractable
for several interesting families of codes. End Interlude

1.3.3 The Challenge of List Decoding

The real problem with list decoding was not that it was not considered to be
useful, but that there were no known algorithms to efficiently list decode well
beyond half-the-distance for any useful family of error-correcting codes (even
though it was known that, combinatorially, list decoding offered the potential
of decoding many more than d/2 errors using small lists). The naive brute-
force search algorithms all take exponential time, and we next give some idea
of why efficient list decoding algorithms have remained so elusive, despite
substantial progress on efficient unique decoding.

10 1 Introduction

Classical unique decoding algorithms decode only up to half-the-distance.
In particular, they can never decode when more than half the symbols are in
error. List decoding, on the other hand, aims to handle errors well beyond
half-the-distance, and consequently, must even deal with situations where
more than half the symbols are in error, including cases where the noise is
overwhelming and far out-weighs the correct information. In fact, list decod-
ing opens the potential of decoding when the noise is close to 100%. Realiz-
ing the potential of list decoding in the presence of such extreme amounts of
noise poses significant algorithmic challenges under which the ideas used in
the classical decoding procedures break down.

1.3.4 Early Work on List Decoding

The early work on list decoding focused only on statistical or combinatorial
aspects of list decoding. We briefly discuss these works below. The initial
works by Elias [48] and Wozencraft [199], which defined the notion of list
decoding, proved tight bounds on the error probability achievable through
list decoding on certain probabilistic channels. Results of a similar flavor also
appear in [162, 61, 2]. Elias [49] also generalized the zero error capacity of
Shannon [161] to list decoding and obtained bounds on the zero error capacity
of channels under list decoding with lists of certain size.

The focus in the 80’s shifted to questions of a more combinatorial nature,
and considered the worst-case list decoding behavior of codes. The central
works in this vein are [203, 27, 50]. These established bounds on the number
of errors that could be corrected by list decoding using lists of a certain fixed
size, for error-correcting codes of a certain rate. This is in the spirit of the
questions that we investigate. However, none of these results presented any
non-trivial list decoding algorithms.2 Thus, despite being an extremely useful
generalization of unique decoding, the potential of list decoding was largely
untapped due to the lack of good algorithms.

1.4 Contributions of This Work

Our work presents a systematic and comprehensive investigation of list de-
coding, with a focus on algorithmic results. Presenting our contributions in
sufficient detail would require several more definitions. Therefore, we only
give a high level description of the contributions here, deferring a detailed
discussion of the contributions of the individual chapters and how they fit
together to the next chapter. Figure 1.4 gives a bird’s eye view of the kind
of results discussed in this monograph. The following description is probably
best read with Figure 1.4 in mind.

2Here triviality is used to rule out both brute-force search algorithms and unique
decoding algorithms.

1.4 Contributions of This Work 11

(Chapters 3, 4, 5)
Reed−Solomon Decoding

(Chapter 6)

 AlgorithmsComplexity Crypto

Applications

Theory

(Chapter 12)

Concatenation

Good List Decodable

(Chapters 8, 10)
Binary codes

Expanders

Expander−based
List decodable codes

(Chapter 9)

(Chapter 11)
decodable codes
Linear time unique

AG−codes

Generalization +
Unified Paradigm

"Ideal"−based codes
(Chapters 6, 7)

Combinatorial Results

Fig. 1.4. A high level view of various chapters in this book

The first part of this monograph investigates certain combinatorial aspects
of list decoding. We study the trade-offs between the list decodability of a
code and the more classical parameters like rate and minimum distance. The
results yield a significant sharpening of our understanding of the potential and
limits of list decoding. Our combinatorial results are important in their own
right and also because they set the stage for, and are repeatedly appealed to
or used in, several subsequent results. The crux of this work is its algorithmic
results, which comprise the second part of the thesis.

The highlight here is a list decoding algorithm for Reed-Solomon codes
(Chapter 6). Reed-Solomon codes are among the most important and widely
studied families of codes, and several classical unique decoding algorithms are
known for them (cf. [132, Chapters 9,10]). However, despite over four decades
of research, there was no known algorithm to efficiently list decode Reed-
Solomon codes well beyond d/2 errors where d is the minimum distance. In
Chapter 6, we present the first polynomial time list decoding algorithm that
corrects more than d/2 errors for every value of the rate. This result builds
upon an earlier breakthrough result of Sudan [178] who gave such an algo-
rithm for Reed-Solomon codes of rate less than 1/3. Our result list decodes up
to what might well be the true list decoding potential of Reed-Solomon codes.
We also generalize the algorithm to algebraic-geometric codes. The novelty
of our technique enables us to also get a more general soft list decoding al-
gorithm , which can take advantage of reliability information on the various
symbols. This is the first non-trivial soft decoding algorithm with a provable

12 1 Introduction

performance guarantee for Reed-Solomon codes since the classic 1966 work
of Forney [60] on Generalized Minimum Distance (GMD) decoding.

Using our decoding algorithms for Reed-Solomon codes at the core, we
also obtain several other non-trivial list decoding algorithms. These include
novel algorithms for list decoding of several concatenated codes.3 As a re-
sult we obtain constructions of binary codes which are efficiently list decod-
able from extremely large amounts of noise, and which have rate reasonably
close to the best possible for such codes. (Prior to our work, there was no
known construction of such codes with a positive rate, no matter how low
the rate.) We also introduce novel code constructions by combining algebraic
list decodable codes with “highly expanding” graphs, and thereby get new
list decodable codes which improve these bounds further.

Using an expander-based construction in the same spirit as our construc-
tion for list decoding, we also get a significant improvement over a prior result
for unique decoding. (This shows that techniques developed for list decod-
ing also yield new insights towards solving classically studied questions like
unique decoding.) Specifically, we prove that for every ε > 0 and 0 < r < 1,
there are linear time encodable and decodable codes of rate r which can be
uniquely decoded up to a fraction (1 − r − ε)/2 of errors. By the Singleton
bound, this fraction of errors is the best possible for unique decoding, and
we are able to achieve this optimal trade-off together with linear time al-
gorithms. By concatenation, this also gives linear-time encodable/decodable
binary codes that (almost) match the rate of the best known polynomial time
decodable constructions. In contrast, the linear time encodable/decodable bi-
nary codes known prior to this work, due to Spielman [176], could correct
only a tiny fraction of errors (of the order of 10−6).

List decoding, while primarily a coding-theoretic notion, has also found
applications to other areas of theoretical computer science like complexity
theory, cryptography, and algorithms. For these applications unique decoding
does not suffice, and moreover, for several of them one needs efficient list
decoding algorithms. In Chapter 12, we survey some of these “extraneous”
applications of list decoding.

Despite its conception more than four decades ago, the long hiatus before
efficient algorithms were found means that list decoding is still a subject in its
infancy. This book represents the first comprehensive survey of the subject of
list decoding. Inspite of its length, we have attempted a cohesive presentation
that hopefully succeeds in highlighting the various aspects of list decoding
and how they all fit together nicely. There is lot more work to be done on the
subject, and it is our hope that this monograph will inspire at least some of
it.

3Concatenated codes are obtained by combining two codes. The message is first
encoded according to the first code, and then each symbol of the resulting codeword
is encoded using the second code. A more detailed description will appear in the
next chapter, specifically in Section 2.3.

1.6 Comparison with Doctoral Thesis Submitted to MIT 13

1.5 Background Assumed of the Reader

This work faces the situation of having at least two audiences: computer
scientists and coding theorists. Hopefully the style of our presentation will
be accessible to people with either background. However, the author being
a computer scientist by training, the book is probably more in line with the
language and style of presentation that computer scientists are used to. The
only real background required to read this book are basic algebra (comfort
with finite fields and the like), some amount of probability and combinatorics,
etc. Also, the focus of the bulk of the book is quite algorithmic, and hence
comfort with the analysis of asymptotic complexity of algorithms would be
a big plus.

Some portions of the monograph, by the very nature of the topic they
discuss, are necessarily somewhat heavy on rather technical and/or algebraic
matter. These include: Chapter 4 on the combinatorial limitations of list
decoding, the portion of Chapter 6 that deals with algebraic-geometric codes,
and Chapter 7 on the decoding of ideal-based codes. In all these cases, we
have attempted to clearly state the necessary facts/theorems that we borrow
from algebra. Assuming these facts the rest of the presentation should be
generally accessible.

1.6 Comparison with Doctoral Thesis Submitted to MIT

Except for stylistic changes, our presentation for the large part closely follows
the version of the author’s doctoral dissertation that was submitted to MIT
in August 2001.

The subject of list decoding has seen some significant new developments
since 2001; however, we have resisted including details of these recent works
beyond giving a pointer to them where appropriate (and in some cases, de-
scribing the gist of the improvement). A notable exception to this is in Chap-
ter 11 on expander-based unique decodable codes. The results of Sections
11.4 and 11.5 were obtained in work done after the submission of the thesis
[82], that improved the bounds discussed in the original version of the thesis
(based on an earlier paper [81]). We chose to present the results from [82]
because they not only get the “right” trade-offs, but do so with elegant tech-
niques that are not much more difficult compared to the approach of [81]. We
also removed some portions of Chapter 11 on near-linear time list-decodable
codes that appeared in the thesis version, since these have since become ob-
solete in light of the near-linear time implementations of the Reed-Solomon
list decoding algorithm [4].

Below we mention some other portions where significant revisions were
done. Section 4.5 in Chapter 4 was newly added, and the contents of Sec-
tion 4.6 were revised to highlight the explicit constructions used to prove the

14 1 Introduction

bound in Theorem 4.9. We also added a brief section (Section 4.7.3) on an
unconditional proof of tightness of Johnson bound based on the work [87].

Several portions of Chapter 10 were significantly revised based on the
journal paper [78], and implicit results on erasure list decoding from the lit-
erature that were stated in the language of “Generalized Hamming Weights”,
are now explicitly referenced and used.

	1.1 Basics of Error-Correcting Codes
	1.2 The Decoding Problem for Error-Correcting Codes
	1.3 List Decoding
	1.4 Contributions of This Work
	1.5 Background Assumed of the Reader
	1.6 Comparison with Doctoral Thesis Submitted to MIT

