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Abstract. We introduce a framework for the automatic segmentation
of the ventricles, atria, and epicardium simultaneously from cardiac mag-
netic resonance (MR) volumes. The basic idea is to utilize both short-
axis (SA) and long-axis (LA) MR volumes. Consequently, anatomical
information is available from the whole heart volume. In this paper, the
framework is used with deformable model based registration and segmen-
tation methods to segment the cardiac structures. A database consisting
of the cardiac MR volumes of 25 healthy subjects is used to validate the
methods.
The results presented in this paper prove that by using both the SA
and LA MR volumes the ventricles and atria can be simultaneously seg-
mented from cardiac MR volumes with a good accuracy. The results show
that notably better segmentation results are obtained when the LA vol-
umes are used in addition to the SA volumes. For example, this enables
accurate segmentation of the ventricles also in the basal and apical levels.

1 Introduction

Cardiac MR imaging provides accurate information on the anatomy of the heart.
This information can be used to study and analyze the cardiac function [1].
Segmentation of cardiac structures is a pre-requisite for the determination of
quantitative measurements, such as the volume of the ventricles, wall thick-
ness, or ejection fraction. Automated segmentation algorithms are needed to
produce objective, reproducible segmentations, and to avoid the need for the
time-consuming manual segmentation of large amount of data.

Cardiac MR volumes have often low quality: the signal is lost due to the
blood flow and partial volume effect, and the volumes are noisy and corrupted
with artifacts. Therefore, a priori knowledge is usually utilized in segmentation.
In model-based segmentation, for example, atlases or statistical models can be
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used. In [2], an anatomical atlas was constructed from a set of healthy subjects,
and the atlas was used to give an a priori estimate in the non-rigid registration-
based segmentation of the ventricles. In [3], a probabilistic anatomical atlas was
used to initialize the parameters of expectation maximization algorithm. Statis-
tical shape (Active Shape Model, ASM) [4] and appearance (Active Appearance
Model, AAM) [5] models are popular methods in cardiac segmentation. Kaus et
al. [6] used a statistical shape model to regularize the deformable model-based
segmentation of the left ventricle. In [7], Mitchell et al. combined ASM and AAM
approaches in the cardiac segmentation, and in [8], they presented fully 3D AAM
algorithm for the same problem.

Most of the recent cardiac segmentation studies using MR images deal with
the segmentation of the left ventricle and epicardium [6,8,9,10]. In some studies,
also the right ventricle is segmented [2,3,7,11]. These studies have been done
using short-axis MR images. In this study, we utilize simultaneously both short-
axis and long-axis MR volumes. The SA and LA volumes are first transformed
into same coordinate system using image header information. Then, the segmen-
tation takes place in this coordinate system. The use of two volumes provides
supplementary information that enables more accurate segmentation of the ven-
tricles in the basal and apical levels.

In this paper, we apply a deformable model-based segmentation method in
this context. A mean shape and grey-level model, which is constructed from a
database, is deformed using deformation spheres [12]. Previously, we have used
similar framework in the tracking of cardiac MR images [13], and in the con-
struction of statistical shape model [14]. Lelieveldt et al. constructed an AAM
from three MR views, and used the model to segment the left ventricle simulta-
neously from all three views in [15]. However, to our knowledge, the simultaneous
segmentation of the ventricles and atria from SA and LA MR volumes has not
been reported earlier.

2 Material

The cardiac MR volumes of 25 healthy control persons of two separate clinical
studies formed the database of this study. The volumes were obtained with
1.5 T Siemens Vision and Siemens Sonata MR devises with a phased array coil
(Siemens, Erlangen, Germany) at the Helsinki Medical Imaging Center in the
University of Helsinki. A standard turboflash cine imaging series was obtained
with ECG-gating during a breath hold. SA volumes contained ventricles from
the valve level until the last level where the apex is still visible, and LA volumes
contained atria and ventricles. The pixel size of both SA and LA image slices
was either 1.0 × 1.0 mm or 1.4 × 1.4 mm, and the slice thickness was 6 − 7 mm.
The number of slices in the SA volumes was 4− 5, and in the LA volumes 4− 7.
Examples of the SA and LA image slices are given in Fig. 1 for one database
subject. The ventricles, atria, and epicardium were manually segmented from
the volumes by an expert. Thereafter, triangle surface models were constructed
from the manual segmentations (Fig. 1c).
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(a) (b) (c) (d)

Fig. 1. a) A short-axis, b) long-axis slice, and c) a triangle surface model of one
database subject. d) A slice from a labeled volume constructed from the manual seg-
mentation

(a) (b) (c)

Fig. 2. a) A short-axis, b) long-axis mean model. c) A mask used in the calculation of
the similarity measure

2.1 Mean Shape and Grey-Level Model

A mean shape and grey-level model (Fig. 2) was constructed from the database
using the procedure presented in [16]. One subject was randomly selected as
a reference. The remaining database volumes were registered with the refer-
ence volume using translation, rotation, and isotropic scaling. The registration
method used for this purpose is presented in Section 3.3. Next, the reference
volume was non-rigidly registered to the database volumes. The non-rigid regis-
tration method based on deformation spheres was used in this step [12]. Labeled
volumes constructed from the manual segmentations (Fig. 1d) were used instead
of the real grey-level volumes to ensure accurate registrations of the object sur-
faces [17]. From the resulting deformation fields, a mean deformation field was
computed, and it was applied to the reference volume. This produced a mean
shape model. To end up with a mean grey-level volume, the deformation fields
of the non-rigid registrations were used to register the database volumes to the
mean shape model, and the grey-level values were averaged voxel-wise. This pro-
cedure was repeated twice by using the obtained mean model as the reference
to reduce the bias of the mean shape towards the selected reference subject.
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3 Methods

The basic idea of the segmentation and registration methods studied in this paper
is to deform an a priori model to match with the target volume. The deformations
are determined based on a voxel similarity measure that is computed from both
the SA and LA volumes. The mean model that was constructed in Section 2.1
is used as an a priori model.

3.1 Preprocessing

Because both the SA and LA volumes are used simultaneously in segmentation,
the correspondence between the SA and LA volumes has to be determined. The
necessary information is available in the image headers. Based on this informa-
tion, the translation, rotation, and scaling parameters that transform the LA
volumes to the coordinate system of the SA volumes, or vice versa, can be com-
puted [13]. In this study, this procedure is used to transform the LA volumes
into the coordinate system of the SA volumes.

There are several sources of motion artifacts (e.g., breathing) in the cine
cardiac MR imaging. Consequently, the slices may be misaligned, and the cor-
respondence between the SA and LA volumes may be inaccurate. The motion
artifacts are corrected from the data using a registration-based method that
moves the slices, and optimizes the normalized mutual information (NMI) be-
tween the SA and LA volumes [18]. After this, the voxel-by-voxel correspondence
between the SA and LA volumes is guaranteed.

3.2 Similarity Measure

The initial alignment and image segmentation are implemented using normalized
mutual information (NMI) as a similarity measure [19]. The NMI is defined as

I(S, Ti) =
H(S) + H(Ti)

H(S, Ti)
, (1)

where H(S) and H(Ti) are the marginal entropies and H(S, Ti) is the joint
entropy of the source data S and the target data Ti.

In this study, the source data consist of both SA and LA source data, S =
{SSA, SLA}, and the target data consist of the SA and LA data of the target
subject, Ti = {Ti,SA, Ti,LA}. For example, the histogram that is used to calculate
the joint entropy H(S, Ti) is built from both the SA and LA volumes. The volume
in which the SA source volume has meaningful information constitutes the SA
source data, SSA. Similarly, a part of the LA source volume constitutes the LA
source data, SLA. A mask is made to determine these regions (Fig. 2c). The SA
volume information is used in the white regions, and the LA volume information
in both the white and grey regions of Fig. 2c.
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3.3 Affine Registration

The transformation parameters for the initial alignment of the database vol-
umes with the mean model are optimized using the similarity measure presented
in Section 3.2, and the Simplex optimization algorithm. Both seven- (rigid plus
isotropic scaling) and nine-parameter (rigid plus anisotropic scaling) affine trans-
formations were studied. The seven-parameter affine transformation was selected
because it proved to be more robust and accurate than the nine-parameter affine
transformation.

3.4 Non-rigid Registration-Based Segmentation

The mean model and the affinely registered database volumes are used as source
and target volumes, respectively, in a deformable model-based segmentation
method. The method registers non-rigidly the mean model to the database vol-
umes using deformation spheres [12]. In this method, smooth deformations are
applied to the voxels inside a sphere in such a way that the NMI (Section 3.2) is
maximized. The location of the sphere is randomly chosen from the surfaces of
the ventricles, atria, and epicardium, and it is varied during the iteration. The
radius of the sphere is iteratively decreased from 30 voxels to 10 voxels. The
deformation can be regularized in several ways in the segmentation tool. In this
study, the directions of the normal vectors of the surfaces are regularized.

3.5 Evaluation Methods

The registration and segmentation methods presented in this section are evalu-
ated using the database presented in Section 2. Leave-one-out cross-validation
is used: each database subject is once regarded as a target, and the mean model
used as an a priori model is constructed from the remaining 24 database sub-
jects. For comparison, identical segmentations were performed using only the SA
volumes.

The segmentation/registration error is defined as the mean distance from the
manually segmented target surface to the deformed mean model’s surface:

E ≡ 1
Nt

Nt∑

i=1

d (ti, S) , (2)

where Nt is the number of the nodes in the target triangle surface model, ti is
the ith target node, and d (ti, S) is the Euclidean distance from the point ti to
the triangle surface of the deformed mean model, S. The error of the epicardium
is computed only from the surface below the valve level.

4 Results

The results for the segmentation using only the SA volumes and for the seg-
mentation using both the SA and LA volumes are given in Table 1. For one
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Table 1. The segmentation/registration errors (mean ± standard deviation) after the
affine registration and after the non-rigid registration-based segmentation

E (mm) E (mm)
after affine registration after segmentation

organ only SA SA+LA only SA SA+LA
LV 4.20 ± 1.64 2.97 ± 0.77 3.12 ± 1.40 2.62 ± 0.75
RV 4.84 ± 2.06 3.75 ± 1.01 4.13 ± 2.68 3.66 ± 1.04
LA 5.71 ± 2.50 3.26 ± 1.34 2.62 ± 1.11
RA 7.14 ± 4.15 3.76 ± 1.08 2.85 ± 0.89

epicardium 4.38 ± 1.88 3.30 ± 0.72 3.62 ± 1.46 3.21 ± 0.65
all 5.25 ± 2.22 3.41 ± 0.66 2.99 ± 0.58

(a) (b)

Fig. 3. An SA and LA image slice of the results for one database subject a) after
the affine registration (E = 3.83 mm), and b) after the non-rigid registration-based
segmentation (E = 2.96 mm)

database subject, the method using only the SA volumes produced totally in-
correct segmentation. To enable reasonable comparison, this database subject
was excluded from the results presented in Table 1. Therefore, the error values
in Table 1 are the mean errors of 24 target subjects. The removed database
subject gave the worst accuracy also for the segmentation using both the SA
and LA volumes. When all 25 database subjects were used as a target, the mean
segmentation error of all organs was E = 3.09 ± 0.75 mm. The results for one
database subject after the affine registration and the non-rigid registration-based
segmentation are shown in Fig. 3.
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The segmentation using both the SA and LA volumes was performed also by
using a randomly selected database subject as an a priori model instead of the
mean model. The mean errors of all organs, which are comparable to the results
in Table 1, were E = 5.72±2.32 after the affine registration and E = 4.22±1.83
after the non-rigid registration-based segmentation.

5 Discussion

The results in Table 1 showed that by utilizing both the short-axis and long-
axis MR volumes the ventricles and atria can be simultaneously segmented.
Especially, the segmentation accuracy of the atria was improved from the affine
registration. The superiority of using both the SA and LA volumes instead of just
the SA volumes was demonstrated. The reason for the improved segmentation
accuracy is that the comprehensive information on the SA and LA volumes is
utilized to produce more accurate spatial transformations. In addition, the LA
volumes include areas which are not visible in the SA volumes. It is worth of
noting that the SA volumes used in this study did not contain atria. Therefore,
when only the SA volumes were used in the affine registration, the transformation
parameters had to be estimated from the ventricle data only. Furthermore, this
is why the segmentation errors in Table 1 are reported only for the ventricles
and epicardium when only the SA volumes were used.

We also proved that better accuracy is obtained by using a mean model as
an a priori model instead of a randomly selected database subject. Naturally, if
another database subject had been selected, the results could have been different.

In this study, the LA volumes were transformed into the coordinate system
of the SA volumes (Section 3.1), in which the segmentation was performed.
When the LA volumes were transformed into the coordinate system of the SA
volumes, interpolation errors were produced. The registration and segmentation
could have been performed with the LA volumes in their own coordinate system,
but this would have increased the computational complexity.
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