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Abstract. Recent advances in CT technology have allowed the devel-
opment of systems with multiple rows of detectors and rapid rotation.
These new imaging systems have permitted the acquisition of high res-
olution, spatially registered, and cardiac gated 3D heart data. In this
paper, we present a framework that makes use of these data to recon-
struct the 3D cardiac anatomy with resolutions that were not previously
possible. We use an improved 3D hybrid segmentation framework which
integrates Gibbs prior models, deformable models, and the marching
cubes method to achieve a sub-pixel accuracy of the reconstruction of
cardiac objects. To improve the convergence at concavities on the ob-
ject surface, we introduce a new type of external force, which we call
the scalar gradient. The scalar gradient is derived from a gray level edge
map using local configuration information and can help the deformable
models converge into deep concavities on object’s surface. The 3D seg-
mentation and reconstruction have been conducted on 8 high quality CT
data sets. Important features, such as the structure of papillary muscles,
have been well captured, which may lead to a new understanding of the
cardiac anatomy and function. All experimental results have been evalu-
ated by clinical experts and the validation shows the method has a very
strong performance.

1 Introduction

Cardiovascular disease is the most common cause of death in America and there
is a strong need to detect and diagnose such disease in its early stages. The auto-
mated analysis of cardiac images has been improved dramatically in the past few
year and provides a way to get detailed anatomic and functional information of
the heart. One of the pre-requisites of quantitative analysis of cardiac images is
the accurate location of the surfaces of the ventricles and the myocardium. The
segmentation and the subsequent reconstruction of the ventricular-myocardium
surface is not trivial because of the noise, blurring effects at edges, and motion
artifacts. In addition, the segmentation should be automated and time-efficient
in order to be clinically applicable.
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Recently, several methodologies have been proposed by different research
groups to solve the cardiac segmentation problem. In [8], [9] deformable models
are integrated with statistical models or atlases to enable the use of both inten-
sity and spatial information. Several techniques derived from the Active Shape
Model (ASM)[4] and the Active Appearance Model (AAM)[7] have been used in
[10] to improve the reliability and consistency of the segmentation process. How-
ever, all of these approaches aim to solve 2D problems, so that the segmentation
and reconstruction may miss important features distributed along the cardiac
long axis.

In [5], a 3D ventricular surface is constructed using a deformable model from
tagged MRI data. This approach has succeeded in capturing the data related to
the strain and stress distribution on the surface of the myocardium. However, the
reconstructions, especially of the endocardial surface, are limited by the sparsity
of the data and the low quality of the shape model. Important anatomic struc-
tures, such as the papillary muscles and valves, can be missed in this model.
In [11] a 3D statistical model for atria and ventricles has been built using a 3D
AAM. However, the deformable model does not converge well to the data at con-
cavities and convexities on the ventricular surface because of: 1) the smoothing
effect of the deformable surface at concavities, and 2) the lack of corresponding
details in the initialization of the deformable model.

In [6], the Gradient Vector Flow approach has been proposed to address the
problem of deformable model convergence at concavities. The use of the Gradi-
ent Vector Flow can extend the attraction range of the gradient information by
diffusing a gray level or binary edge map. The extended gradient flow enables
the deformable model to fit into concavities on the object surface. However, the
computation process of the Gradient Vector Flow is tedious. Moreover, the Gra-
dient Vector Flow’s performance degrades as the concavity becomes deeper.

In previous work [2], we have proposed a 3D hybrid framework that is capable
of achieving sub-pixel accuracy segmentation of medical images. In this paper,
we improve the framework by using a new type of external force during model
deformation, which derives from the idea of ”scale” in [3]. The new external force
has a superior performance in concavity convergence.

The remaining parts of this paper are organized as follows. In section 2,
we present the acquisition of the high quality CT data. In section 3, the hybrid
framework will be explained. Related improvements, such as the definition of the
new external force, will also be given. Section 4 shows some representative high
quality 3D reconstructions of cardiac objects produced by our framework. We
will also discuss an interesting anatomical structure based on the 3D reconstruc-
tion result. Section 5 presents the validation results and the final conclusion.

2 Data Acquisition

Image acquisition with multi-detector CT (MDCT) with continuous table motion
is accomplished using cardiac gating. Current MDCT systems permit coverage
of the chest in a breath hold, with effective temporal resolution on the order of
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120 ms of the cardiac cycle and isotropic spatial resolution in three dimensions
on the order of 0.75 mm; a 16 detector-row CT system (Siemens Sensation 16,
SMS, Malvern, PA) with these specifications was used to acquire the images
used in this study. The images were acquired during the intravenous infusion
of radiographic contrast agent (Visipaque 320) at 4 ml/s; image acquisition was
timed to coincide with the maximum opacification of the cardiac chambers.
The heart rate was slowed using beta blockers, preferably to 60 BPM or less, in
order to minimize motion blurring; image acquisition was gated from mid to late
diastole to minimize motion blurring and to capture the ventricles in a relatively
relaxed state. The data created have 512 by 512 by 281 pixels.

3 Methodology

The hybrid framework proposed in [2] consists of 4 internal modules: the region
segmentation module driven by high order Gibbs prior models, the deformable
model, marching cubes, and the parameter updating module.

The acquired high quality CT data (in DICOM format, refer to section 2)
are translated into raw data sets using the image reader provided by Insight
Toolkit (ITK) for further processing.

During the segmentation process, we first apply the Gibbs prior models
onto the image. The joint distribution of the medical image is expressed in the
following Gibbsian form:

Π(X) = Z−1 exp(−H(X)) (1)

where we use X to denote the set of all possible configurations of the image
X, z is an image in the set of X, Z =

∑
z∈X exp(−H(z)) is a normalizing

factor, and H(X) is the energy function of image X. The image is segmented
by constructing a suitable energy function for the image and minimizing it. A
Gibbs prior energy is defined as follows:

Hprior(X) = H1(X) + H2(X) (2)

where H1(X) models the piecewise pixel homogeneity statistics and H2(X)
models the object boundary continuity. In studying the CT data, we find
that the ventricular-myocardium surfaces are not smooth; instead, the surface
features many small concavities and convexities. In addition, the existence of
the papillary muscle and cardiac valves makes the surface even more irregular.
In our implementation, such surface features have been modelled by assigning
low potential to local configurations that ensemble a continuous surface with
angles so that during the energy minimization the Gibbs model is capable of
capturing the saw-like cardiac chamber surface structure.

According to Bayesian framework, the final energy function we minimized is
a posterior energy which is in the form of:

Hposterior(X, Y ) = Hprior(X) + Hobservation(X, Y ) (3)
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where Hobservation(X, Y ) = ϑ3
∑

s∈X(ys −xs)2 if we assume the image has been
distorted by Gaussian noise, ys is the observation of pixel s, xs is the estimated
value, ϑ3 = 2σ2 is the weight for the constraint of observation, and σ is the
standard deviation.

The 3D binary mask output by the region segmentation module is used as
the input to the marching cubes module. A 3D mesh consisting of triangular
elements is created along the surface of the binary mask. The 3D mesh is used
as the initial geometry of the deformable model.

We use Langrange dynamics to deform our model as follows:

ḋ + Kd = fext (4)

where d is the displacement, K is the stiffness matrix, and fext are the external
forces.

The deformable model deforms under the effect of the internal force Kd
and external forces fext. The internal forces keep the deformable model surface
smooth and continuous during its deformation. The external force will lead the
model to the object surface using image information such as the gradient. In
[2], the external force is derived from the second order derivative of a diffused
gradient map. In this paper, we describe a new type of external force that will
improve the convergence at concavities (refer to section 3.1).

To solve equation (4) we use the Euler integration as follows:

dnew = ḋ · ∆t + dold (5)

where ∆t is the time step. The deformation stops when the force equilibrate or
vanish.

The deformable model segmentation will then be used to update the parame-
ters of the Gibbs prior model, which includes mean intensity, standard deviation,
and the local potentials (refer to [2]). Then we will start a new loop of the seg-
mentation framework. In most cases, we can achieve a good segmentation result
within 2 iterations.

We show the process of our segmentation-reconstruction method in figure 1.

Fig. 1. Hybrid Segmentation Framework
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Fig. 2. 2D scalar gradient vector construction

3.1 Scalar Gradient

During the process of fitting the deformable model to the cardiac surface, we use
a new type of external force, which we call the ’scalar gradient’, to achieve better
convergence at concavities. The scalar gradient is derived from the definition
of ’tensor scale’ in [3]. The tensor scale at an image pixel is the parametric
representation of the largest ellipse (for 2D) centered at the pixel and containing
only the homogeneous region under prior criterion. It contains information of
the orientation, anisotropy, and thickness of local structures.

In a 2D implementation, to calculate the scale at a pixel, we first find the
closest edge points to the pixel along a group of sample lines that are normally
distributed over the entire angular space around the pixel. Different from the
computation of the tensor scale, for each conjugate pair of sample lines, we
reposition the sampled edge points by selecting the point that is further from
the pixel and reflect it on its complementary sample line. Let the coordinates of
the edge points on sample lines be (x1, y1), (x2, y2), . . . , (x2m, y2m), and that of
the pixel be (x0, y0); we can compute the local covariance matrix M, where

M1,1 = 1
2m

∑
i=1,2,...,2m(xi − x0)2,M2,2 = 1

2m

∑
i=1,2,...,2m(yi − y0)2,

M1,2 = M2,1 = 1
2m

∑
i=1,2,...,2m(xi − x0)(yi − y0)

(6)

M is a symmetric matrix with positive diagonal elements so it has two or-
thogonal eigenvectors and two positive eigenvalues λ1, λ2 associated with the
eigenvectors. We use the direction of the principal radius as the direction of the
scalar gradient vector, and the magnitude of the scalar gradient is proportional
to λ1

λ2
, where λ1 > λ2. The computation of the 2D scalar gradient is shown in

figure 2, and it is simple to extend it into 3D.
For simplicity, we derive the scalar gradient field using the edge map of the

original image. The threshold of the edge can be calculated using the result
of the Gibbs segmentation. This map will be used to locate those edge points
around pixels during the computation of local ellipses. We then combine the
scalar gradient with the original gradient flow to form the external force field.
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Fig. 3. We show the LV and RV atria in blue, the ventricles in green, and the epicardial
surface in transparent red. a) shows a view of the heart from the bottom. b) shows a
view of the heart from the front. In c) we intersect the 3D reconstruction using a plane
that is vertical to the long axis of the heart and show the resulting endocardial and
epicardial surface from the top.

Fig. 4. Anatomic structure of the papillary muscle. 3 views of the papillary muscle
being cut by user-defined planes. The white plane is the intersection of cutting plane to
the 3D reconstruction of myocardium. Notice that there are tunnels for blood between
the papillary muscle and the myocardium.

4 Experimental Results and Discussion

We applied our method to eight different cardiac datasets. In figure 3, we show
the 3D reconstructions of cardiac surfaces based on the segmentation result of
one dataset. The data size is 256 by 256 by 140. Our segmentation method has
succeeded in capturing the surface features and the global shape of the cardiac
chambers. The whole segmentation process takes about 10 minutes on a P4 2.2G
Hz desktop.

Figure 4 illustrates the anatomic structure of the papillary muscle. The ren-
dered 3D images of the segmented heart wall show the structures of the trabec-
ulae carnae and papillary muscles very clearly on the endocardial surface of the
ventricular cavity. The three-dimensional nature of these structures and their
anatomical relationships are much more readily appreciated with such a render-
ing than from the original image data, even with interactive reformatting of the
displayed image plane. In particular, it can be appreciated how the rope-like
trabeculae carnae course over the inner surface of the heart wall, and how the
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papillary muscles are attached to the trabeculae carnae by branching structures
at their bases, rather than directly to the solid portion of the heart wall, as has
been conventionally believed.

5 Validation and Conclusion

The experimental results of our segmentation and reconstruction framework has
been qualitatively evaluated by clinical experts. According to them, in most cases
our segmentation framework achieves an excellent agreement with the manual
segmentation, while the segmentation time is dramatically decreased compared
to manual segmentation. More validation results will be available soon to prove
the possible clinical usage of this method. We also plan to use the framework on
other image modules with different noise levels. Currently, we tried the frame-
work on a 192 by 192 by 18 MRI cardiac data to reconstruct the endocardial
surface of the LV. The result has also been approved by clinical experts.

Although the inner surface of the cardiac chambers is well known to be rough,
the three-dimensional structure of the endocardial surface has not been previ-
ously well demonstrated non-invasively in vivo. In particular, the relationship
of the papillary muscles to the heart wall can be seen with our high resolution
CT images to be not a simple joining of the base of the papillary muscles with
the solid portion of the wall, as has been conventionally believed, but rather a
branching connection of the base with the trabeculae carnae lining the ventric-
ular cavity. This has not been appreciated with previous tomographic imaging
methods, which have had insufficient resolution to demonstrate these structures
and limited 3-D registration between different image planes. Study of ex vivo
specimens has also not demonstrated this relationship, due to the typically highly
contracted state of these specimens. The ability to efficiently and accurately
segment these high resolution 3D CT images for full 3D demonstration of the
structural relationships of the interior of the heart should provide us with a valu-
able new tool for the study of normal and abnormal cardiac anatomy. It should
also lead us to new insights as to the functional significance of these anatomical
relationships.

Our 3D hybrid segmentation framework has provided high resolution seg-
mentation results of the complex cardiac structure. This is the first time that
the roughness on the endocardial surface has been so fully reconstructed in 3D.
Its time efficiency should enable us to apply it to more clinical use. The high
convergence at concavities shows the advantage of the hybrid framework and the
strength of the scalar gradient. Our aim is to make further improvements to the
methodology so that it can be used as a standard method for 3D cardiac data
segmentation and reconstruction.
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