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Abstract. Extraction of structures of interest in medical images is often
an arduous task because of noisy or incomplete data. However, hand-
segmented data are often available and most of the structures to be
extracted have a similar shape from one subject to an other. Then, the
possibility of modeling a family of shapes and restricting the new struc-
ture to be extracted within this class is of particular interest. This ap-
proach is commonly implemented using active shape models [2] and the
definition of the image term is the most challenging component of such
an approach. In parallel, level set methods [8] define a powerful optimiza-
tion framework, that can be used to recover objects of interest by the
propagation of curves or surfaces. They can support complex topologies,
considered in higher dimensions, are implicit, intrinsic and parameter
free. In this paper we re-visit active shape models and introduce a level
set variant of them. Such an approach can account for prior shape knowl-
edge quite efficiently as well as use data/image terms of various form and
complexity. Promising results on the extraction of brain ventricles in MR
images demonstrate the potential of our approach.

1 Introduction

Object extraction is one of the first steps in medical imaging. Further analysis
will highly depend on the quality of the segmented structures. However, medical
images often suffer from noise, occlusions and incomplete data. Therefore, regu-
larization constraints and prior knowledge are usually of good use. In this paper,
we address this application with objective to recover a structure of particular
geometric form.

B-splines deformable models as well as point distribution models are mathe-
matical formulations introduced to the snake framework [4] to account for shape
consistency. Active shape models [2] were a major breakthrough in object ex-
traction and image segmentation. Such a framework consists of two stages; (i)
the modeling and (ii) the segmentation phase.

During modeling the objective is to recover a compact representation for
the geometric form of the structure of interest. Using a set of registered train-
ing examples, one can either represent prior knowledge using simple or more
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complicated density functions. Gaussian distribution [2], mixture models [1] or
non-parametric function [3] were considered in the past.

The segmentation/object extraction stage aims at recovering a geometric
structure in the image plane that accounts for the desired image characteristics
while being in the family of shapes generated by the model . To this end, a
mechanism for recovering the most probable object location in the image was
considered. Then, one can iterate and move closer to the target by updating the
position of the model such that it gets closer to the desired image characteristics.

Level set representations [8] is an established technique for tracking moving
interfaces in imaging, vision and graphics [7]. One can see numerous advantages
for considering a level set variant of the active shape model. Such a formulation
could account for various forms (boundary or regional) of data/image terms of
various nature (edges, intensity properties, texture, motion, etc.), an important
limitation of the active shape model. Furthermore, one can maintain the implicit
and intrinsic property of the level set method as well as the ability to account
for topological changes while being able to introduce prior shape knowledge, a
task partially addressed up to now [6,12,10].

In this paper we propose a level set variant of active shape models that con-
sists of various terms. Quite critical is the term that refers to the prior knowledge
with objective to constrain the evolving surface to belong to a compact family
of shapes - the one recovered through the training set. Such a term couples two
unknown variables; (i) the evolving contour, (ii) the optimal projection param-
eters of this contour to the model space and imposes the active shape model
behavior on the process. Furthermore, various image-driven terms - a major ad-
vantage/characteristics of the method - could be considered to guide the evolving
contour towards the desired image characteristics.

The most closely related work with our approach, the active shape model
can be found in [2]. In [6,12,10] substantial efforts to integrate prior knowl-
edge within level set representations were considered. Worth mentioning is [6,
12] where modeling of prior knowledge is done in a consistent active shape model
manner. Contrary to [6], where two optimization processes alternate, we propose
a variational integration of data and prior terms. Moreover, the evolving surface
is not restricted within the modeled space like in [12], but only attracted to this
space, allowing more flexibility.

The reminder of the paper is organized as follows: in Section 2 we briefly intro-
duce the level set representations, while in Section 3 we address the construction
of the prior model in the space of level set functions. The main contribution of
the paper, the level set variant of the active shape model is presented in Section
4, while in Section 5 we demonstrate the efficiency and the flexibility of our ap-
proach through the integration of a region-based data term for 3D segmentation
in MR images.

2 Level Set Representations

Level set representations [8] are a useful mathematical formulation for imple-
menting efficiently curve/surface propagation. One can also consider the level
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set space as an optimization framework Let φ : Ω × R+ → R+ be a Lipschitz
function with the following properties,

φ((x, y); t) =






0 , (x, y) ∈ C(t)
+D((x, y), C(t)) > 0 , (x, y) ∈ Cin(t)
−D((x, y), C(t)) < 0 , (x, y) ∈ Cout(t) = [Ω − Cin(t)]

where (x, y) = p, Cin(t) is the area enclosed by the curve C, D((x, y), C(t)) the
minimum Euclidean distance between the pixel (x, y) and C(t) at time t.

Let us also introduce the approximations of Dirac and Heaviside distributions
as defined in [10]. Then one can define terms along C as well as interior and
exterior to the curve using the Dirac and Heaviside functions:

(x, y) ∈ Ω : {limα→0+ [δα(φ(x, y)] = 1} = C
(x, y) ∈ Ω : {limα→0+ [Hα (φ(x, y))] = 1} = Cin

Such terms will be used later to introduce the active shape prior term as well as
data/image-driven terms that guides the contour (C) towards the object of inter-
est. The extension to higher dimensions is straightforward and in the following
parts, we use this representation for an an evolving surface (S) in R3.

3 Modeling Prior Knowledge in the Level Set Space

Learning the distribution of geometric/image structures is a common problem in
computer vision with applications to segmentation, tracking, recognition, etc. It
is clear that the selection of the representation is important. Given the selected
optimization framework, level set functions is a natural selection to account for
prior knowledge with numerous earlier described advantages. Let us consider a
training set Ci of N registered curves or surfaces. Then, a distance transform
can be used to represent Ci as a level set function φi.

The next step is the construction of the shape model, using the aligned con-
tours. In order to create an invariant representation, one should first normalize
the training set φi. Subtraction of the mean (that can be recovered by averaging
φi’s) is a common selection to this end. However, a simple averaging over the
training will not give a istance function. To overcome this limitation, we consider
a more rigorous approach [10], seeking to estimate the distance function (φM )
that minimizes:

E(φM) =
n∑

i=1

∫

Ω

(φi − φM)2dΩ, subject to : |∇φM|2 = 1

One can optimize such a term though a gradient descent method:

d

dt
φM =

n∑

i=1

(φi − φM)

while φM is projected to the space of distance functions following [11]. The two
steps alternate until the system reaches a steady-state solution. Then, we con-
sider the modeling approach introduced in [6,12]. Once the samples φi centered
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Fig. 1. Left: Some surfaces of the Training Set (segmented lateral brain ventricles of
several patients), Right: Model with the most important shape of variations [principal
two modes after rigid alignment (blue:mean, red: +σ, green:−σ)].

with respect to φM, [ψi = φi − φM], the most important modes of variations
can be recovered through Principal Component Analysis:

φ = φM +
m∑

j=1

λj Uj

where m is the number of retained modes of variation, Uj are these modes
(eigenvectors), and λj are linear weight factors within the allowable range defined
by the eigenvalues.

An example of such an analysis is shown in [fig. (1)] for the 3D modeling of
lateral brain ventricles. The model was built using 8 surfaces from different sub-
jects. This example includes a difficult issue for classical parametric approaches
because of different surface topologies within the training set. For example, the
fourth surface in [fig. (1)] shows a separation between left and right ventricles.
Our approach can deal naturally with this type of data. The obtained model gives
a compact representation of the shape family: the first two modes of variation
represent the major part of the class (80%), while the third one (9%) accounts
for non-symetric properties of the ventricles that can be observed in some of the
training samples. Moreover, the implicit representation of the surfaces make the
modeling phase entirely automatic.

4 Introducing Prior Knowledge in the Level Set Space

Let us now consider an interface represented by a level-set function φ(x) as
described in Section 2 (where x is in R2 or R3). We would like to evolve it while
respecting some shape properties φP(x) modulo a transformation A belonging
to a predefined family. Assuming a rigid transformation A(x) = Rx + T, the
evolving interface and the transformation should satisfy the conditions:

{
x → A(x)

φ(x) ≈ φP(A(x)), ∀x ∈ Ω
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Fig. 2. Segmentation of lateral brain ventricles with Shape Prior (b = 0.3) of a noisy
MR image. Top Left: surface evolution, Top Right: projected surface in the learning
space and ground-truth surface (from the training set), Bottom: surface cut (green)
and its projection in the learning space (red) during surface evolution.

In that case, the optimal transformation A should minimize:

E(φ, A) =
∫

Ω

ρ(φ, φP(A))dΩ

where ρ is a dissimilarity measure. For the sake of simplicity, we will use the sum
of squared differences. Scale variation can be added to the rigid transformation
A, leading to a similarity one A(x) = S Rx + T (for 3D images, we obtain 7
parameters: S, R(θ1, θ2, θ3), T = (Tx, Ty, Tz)T ). In that case, the objective func-
tion should be slightly modified (refer to [10] for further details). Furthermore,
one can assume that estimating and imposing the prior within the vicinity of the
zero-crossing of the level set representation is more meaningful. Within distance
transforms, shape information is better captured when close to the origin of the
transformation. The prior can be thus rewritten:

E(φ, A) =
∫

Ω

δε(φ) (Sφ − φP(A))2 dΩ where ε � α

During the model construction, we have analyzed the principal modes of varia-
tion within the training set. Including this information, the ideal transformation
will map each value of current representation to the ”best” level set representa-
tion belonging to the class of the training shapes. If a shape representation φP
belongs to this class, then it can be derived from the principal modes:

φP = φM +
m∑

j=1

λj Uj

Hence, we define a new objective function by introducing the modes weights
λ = (λ1, . . . , λm) as additional free parameters:

E(φ, A, λ) =
∫

Ω

δε(φ)
(

Sφ −
(

φM(A) +
m∑

j=1

λj Uj(A)
))2

dΩ
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Fig. 3. Segmentation of lateral brain ventricles with Shape Prior (b = 0.3) in an MR
image which was not used during the learning phase: surface cut (green) and its projec-
tion in the learning space (red) at initialization (Left) and after convergence (Right).

Fig. 4. Segmentation of lateral brain ventricles varying the influence of the shape prior
term. From left to right, the shape prior weight b is 0, 0.3, 0.4, 0.5.

In order to minimize the above functional with respect to the evolving level set
representation, the global linear transformation and the modes weights λj , we
use the calculus of variations. The equation of evolution for φ is given by the
calculus of its variations:

d

dt
φ = −2δε(φ)S

(
Sφ − φM(A)

)
− d

dφ
δε(φ)

(
Sφ − φM(A)

)2

The differentiation with respect to the modes weights gives us a close form of
the optimal parameters by solving the linear system Ūλ = b with:

{
Ū(i, j) =

∫

Ω
δε(φ)Ui(A)Uj(A)

b(i) =
∫

Ω
δε(φ)(Sφ − φM(A))Ui(A)

where Ū is a m × m positive definite matrix. Finally, the minimization of the
energy with respect to the pose parameters is done by considering the gradient
of each parameter:
{ d

dt
S = 2

∫

Ω
δε(φ)(Sφ − φP(A))(−φ + ∇φP(A) · ∂

∂S A)dΩ
d
dt

ai = 2
∫

Ω
δε(φ)(Sφ − φP(A))(∇φP(A) · ∂

∂ai
A)dΩ with ai ∈ {θ1, θ2, θ3, Tx, Ty, Tz}
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5 Active Shapes, Level Sets, and Object Extraction

In this section, we integrate the proposed level set variant of the active shape
model to the Geodesic Active Region model [9], that on top of salient features
uses global region statistics.

5.1 Geodesic Active Region

Introducing global region properties is a common technique to improve segmen-
tation performance. To this end, one can assume a two-class partition problem
where the object and the background follow different intensity distribution. Let
pCin

and pΩ−Cin
be the densities of I(x) in Cin and Ω − Cin. Then according to

the Geodesic Active Region model [9] one can recover the object through the
optimization of the following function:

E(φ, pCin , pΩ−Cin) = (1 − a)
∫

Ω
δα(φ)g(|∇I|)|∇φ|dΩ

−a
∫

Ω
[Hα(φ) log(pCin(I)) + (1 − Hα(φ)) log(pΩ−Cin(I))] dΩ

One can consider either parametric approximation [9] or a non-parametric den-
sity [5] functions to describe intensity properties. In both cases the new term
will result in a local balloon force that moves the contour in the direction that
maximizes the posterior segmentation probability as shown in [9].

5.2 Object Extraction

The Geodesic Active Region module is used jointly with the shape prior con-
straint. This data-specific information make the contour evolve toward the object
of interest while keeping a global shape consistant with the prior shape family.
For this purpose a variational formulation incorporating two terms is used:

E(φ,A, λ) = bEshape(φ,A, λ) + (1 − b)Edata(φ)

where Eshape is the shape prior and Edata is the Geodesic Active Region module.
This framework has been tested on the extraction of the lateral brain ventri-

cles. [Fig. (2)] show the robustness to noise brought by the prior shape knowledge
(the image is one of the training images but with additional Riccian noise). In
[fig. (3)], we show the ability of our approach to extract objects from new images
(not used for building the model). The active shape model is able to approx-
imate the surface with a similar one from the modeled class while the object
extraction allows small local variations with respect to the model. Finally, in
[fig. (4)], we show the influence of the shape prior term by changing its weight.
While prior knowledge improves the quality of the object extraction, overweight-
ing shape prior will make object details to be missed. The possibility of tuning
this parameter is an important advantage of our approach compared to [12].
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6 Conclusion

We have proposed a level set variant of active shape models to deal with object
extraction in medical MR images. Our approach exhibits numerous advantages.
It can deal with noisy, incomplete and occluded data because of its active shape
nature. It is intrinsic, implicit parameter and topology free, a natural property
of the level set space. Examples on the brain ventricles extraction demonstrate
the potential of our method. The nature of the sub-space of plausible solutions
is a limitation of the proposed framework. Quite often the projection to this
space does not correspond to a level set distance function. To account for this
limitation, we currently explore prior modeling directly on the Euclidean space,
and then conversion to the implicit space during the object extraction.
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