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Abstract. Osteoporosis is due to the following two phenomena: a re-
duction bone mass and a degradation of the microarchitecture of bone
tissue. In this paper, we propose a method for extracting morphological
information enabling the description of bone structure from radiological
images of the calcaneus. Our main contribution relies on the fact that
we provide bone descriptors close to classical 3D-morphological bone pa-
rameters. The first step of the proposed method consists in extracting
the grey-scale skeleton of the microstructures contained in the underlying
images. After an appropriate processing, the resulting skeleton provides
discriminant features between osteoporotic patients and control patients.
Statistical tests corroborate this discrimination property.

1 Introduction

Clinically, osteoporosis is a consequence of a gradual loss of calcium and col-
lagen which induces both a dramatical bone mass decrease and, an alteration
of the trabecular microarchitecture [I]. As the skeleton becomes too fragile to
support the body, fractures occur frequently, especially in the wrist, spine or
femur. In this context, diagnosing osteoporosis and assessing the efficacy of a
treatment is a challenging issue for the health community. Since several years,
various techniques have been developed in order to detect early and efficiently
the apparition of this disease before fracture. The decrease of the Bone Mineral
Density (BMD) is generally assessed through non-invasive methods as the dual
energy X-ray absorptiometry. However, it has been recognized that in addition to
BMD tests, information about the bone structure helps to determine the bone
quality and hence, the probability of fractures [2]. Indeed, the bone structure
consists of arches (trabeculae) that are arranged in groups according to different
orientations that correspond mainly to compression/tensile stress. The analysis
of such a stucture provides valuable information about the bone’s mechanical
strength and the alteration of its microarchitecture and hence, about the disease
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apparition or evolution. For instance, the bone is scanned by Magnetic Reso-
nance Imaging (MRI) or X-rays in order to generate a textured “image” of the
real bone structure. However, MRI suffers from a limited spatial resolution [3]
and Computed Tomography (CT) techniques have limited applicability because
of the high radiation dose. This is the reason why plane-film radiograph is pre-
ferred since it is inexpensive and requires much lower radiation doses. It is worth
pointing out that the resulting 2D radiological patterns are the projection of the
3D anatomical structures on the plane film. Despite the artefacts inherent to
the projection procedure, radiological trabecular patterns are assumed to re-
flect the anatomical one. The great irregularity (in shape, size and thickness)
of the radiographic pattern and the low contrast in certain areas make difficult
the interpretation of bone alteration by visual inspection. Therefore, computer-
aided methods of texture analysis have been developed to assist clinicians in
their diagnosis. The most challenging task consists in characterizing the bone
microarchitecture by parameters automatically estimated from the images that
are able to accurately detect and quantify the alterations of the bone. . In this
work, we are interested in detecting osteoporosis through a texture analysis of
calcaneus radiographs. Indeed, calcaneus is known to contain rich information
on microarchitectural patterns and the required image acquisition system can
be easily adjusted [6]. Most methods for such detection task [4]-[8] use classical
approaches in texture analysis domain. Related to the approach of Gereats[9],
our contribution consists in using morphological tools in order to extract charac-
teristic features of the trabecular bone image close to classical 3D-morphological
parameters. This paper is organized as follows. In Section [2, the skeletonization
procedure and its composition are briefly described. In SectionBl the problem of
the skeleton characterization is addressed and skeleton features are introduced.
In Section [ some experimental results are reported and commented. Finally, in
Section[d, some conclusions are drawn.

2 Computing the Skeleton

2.1 Test Images

First of all, some information about image acquisition is given. Radiographic
film is used for the formation of each image; the region of interest is 2.7 c¢m
x 2.7 cm. This area only includes trabecular bone in the posterior part of the
calcaneus and has a reproducible location [6]. The same X-ray clinical apparatus,
with a tube voltage of 36kV, with a 18mAs exposure level with a Min-R film is
employed during the acquisition procedure.The radiographs are scanned by an
Agfa duoscan enabling their digital conversion. The scanning resolution amounts
100 pm so as a pixel represents an area of 105um x105um. Finally, the resulting
digital images I(m, n) have a size of 256 x 256 and are coded at 8 bpp. A number
of 31 images of Osteoporotic Patients (OP) with vetebral fractures and (or) with
other kind of fractures and 39 images of Control Patients (CP) matched for age,
are considered.
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2.2 The Corresponding Skeleton

During the first stage of processing, the aim was to extract the grey-level skeleton
of the microstructures contained in the underlying images. The skeleton consists
of a network of arches which are located along local higher intensity regions.
Its extraction was not an easy task because of the lack of a unifying approach
for grey-scale image skeletonization [IOITT]. In our case, a meaningful skeleton of
the microarchitectures was expected preserve the microarchitecture connectivity.
Therefore, we applied the skeletonization algorithm described in [T2JT3]. Indeed,
the underlying thinning procedure is homotopic which is a crucial property for
shape description applications. Furthermore, the skeletonization procedure had
a very low computational cost. Figure [[l(b) provides an example of a resulting
skeleton in the OP case. As can be seen, the skeleton corresponds to a very
connected network of arches. The principal arches are vertical in the region of
interest and originating in the subtalar joint, they correspond to the longitudinal
trabeculae. The incidental arches are located in the bottom left of the region of
interest originating in the inferior cortice of the calcaneus and they are associ-
ated with the transversal trabeculae.

Before characterizing the skeleton, it is necessary to determine its composition.
Generally, a skeleton is viewed as the set of intersection points and the segments
that connect such points. It is possible to classify the intersection pixels of the
skeleton into the 2 following categories.

e The first one concerns pixels that are connected to at least 4 neighbors (accord-
ing to the 8-connectivity). Since the maximum width of the skeleton amounts to
2 pixels, the pixels of this first class belong to intersection consisting of several
pixels.

e The second category contains only pixels whose neighborhoods (according to
the 8-connectivity) contain pixels that are not mutually 4-connected.

After determining the pixels of the first category, a label is assigned to each
segment according to the segments emerging from each intersection. Indeed, at
each intersection, the neighboring pixels (outside the intersection) are listed and
if necessary, a new label is created for each of the listed pixels. This label is then
propagated towards its nearest neighbor. It is worth noting that when the first
pixel is receiving a label, two of its neighbors are potential candidates for the
propagation procedure. The retained candidate is the neighbor which does not
have any intersection pixel in its neighborhood. The scanning of the segment
is stopped at a labeled pixel that encloses in its neighborhood an intersection
pixel. The result of this classification is illustrated in the figure [dl.(b). As a re-
sult, the projected portions of the trabeculae which correspond to the segments
separating two adjacent multiple points can be identified.

3 Exploiting the Skeleton

The resulting grey-scale skeleton can be used to analyze the texture of the calca-
neus. More precisely, we are interested here in quantifying the morphological fea-
tures of the skeleton that give reliable information about the microarchitecture
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(a)

Fig. 1. Composition of skeleton: the image (b) is the pixel classification of the skeleton
extrated from the image (a), the most black pixels are intersections. In the image (c)
the half intra-projected distances of the left upper corner of (b) are illustrated with
black arrows.

of the bone. The aim is to extract morphological features wich may be related
to quantities obtained from invasive tests performed in pathological analysis.

3.1 Inter-projected Distance

An inter-projected distance is estimated as a length separating two successive
intersections on a path of the skeleton, that is called a segment. The orientation of
such a segment is measured with respect to the horizontal image axis. Again, for
each segment, the orientation mean is defined as the average of the orientations
calculated at each pixel of the underlying segment.

3.2 Intra-projected Distance

The intra-projected distances is the distances between the two lines of the max-
imum gradient directions around the skeleton. Hence, our objective is to deter-
mine for each segment point, the closest points to the left and the right of the
segment where the absolute value of the gradient is maximum. Obviously, these
points are searched along the normal to the segment [14]. The distance between
the left or the right points is then computed and finally, the median value of
these distances when the whole the segment is scanned could be considered as
the half intra-projected distance. It is worth noting that this procedure is carried
out only if the projected segment has three or more pixels, otherwise the deriva-
tive filters cannot be applied. Furthermore, the coherence between the direction
of the skeleton and the direction of the detected border lines was controlled as in
[14]. Among 4000 segments are generally detected in an image. With these two
contraints, about 1000 intra-projected distances were estimated by using only
few pixels per segment. These estimations are depicted by the black arrows in
Figure [Mc.
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3.3 Extracted Features

As noted by radiologists, osteoporosis tends to alterate the trabeculae that are
the least required during the body motion. In the case of calcaneus, these trabec-
ulae correspond to transversal ones [15]. Therefore, the features were separated
into the two following categories :the first one is related to the transversal seg-
ments and corresponding to transversal trabeculae, the second related to the
longitudinal segments corresponding to longitudinal trabeculae.

The histogram of the orientations of the segment is thresholded locally accord-
ing to a sliding window. The largest value is associated with the longitudinal
segments. The transversal and longitudinal projected segments do not share the
same properties. To emphasize such dissymetry, the ratio between the variances
of the angles and the ratio between the cardinalities of each class were evaluated.
Within each class of orientation, we compute the following features :

e the mean L (resp. [) of respectively the length L and the half-width I of the
projected trabeculae; their variance o7 (resp.o?).

e the variance of the angles 0?() with respect to the local mean.

e the total number of pixels IV, belonging to the skeleton.

e the total number of ending pixels N, of the skeleton.

4 Experimental Results

4.1 Univariate Analysis

In this part we evaluate de dispersion of each feature for CP and for OP class.
The corresponding intervals mentioned in Table Mllshow OP has a larger variation
than CP. Althougth the OP intervals overlap the CP ones, it can be noted that
for a large number of skeleton features, CP and OP are significantly different.
The exceptions are N, whatever the orientation, the mean length (L) in the
transverse direction, and the ratio between the values of IV, in each direction.
The p-values resulting from the Wilcoxon Test show that a better discrimination
between OP and CP is obtained in the longitudinal direction. More precisely,
it indicates that the inter-projected and intra-projected distances take globally
highest values within the CP group. Indeed, the reduction of such distances, in
the OP could be imputed to a greater transparency of the bone network due
to the microarchitecture deterioration. More precisely, the transparency induced
by the disease is generally the result of two phenomena : a thinning effect and a
perforation effect which can quantified by N, feature.

4.2 Multivariate Analysis

In this section we are interesting to study the contribution of the morpho-
logical features combined with bone density (BMD) and Age, to discriminate
between OP and CP. To visualize multidimensionality, we use the principal
components analysis (PCA) approach so as to illustrate the complementary
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Table 1. Statistical distributions of the considered parameters. The first table gives
statistics on our features for the longitudinal direction and the second table for the
transversal direction. For each direction, the associated table shows, for the length L
respectively for the half-width I of the image, its interval of dispersion, its variance
o? (resp.a?)7 the total number of pixels N, belonging to the skeleton and the total
number of ending segments N, of the skeleton. The third table gives global statistics
of the skeleton for OP and CP as the total pixels of the skeleton N, the total number
of intersections, the rate of the total number of pixels in longitudinal and transversal
direction NPL/N;‘F, and the rate of the variance of the angles o*(0) with respect to the
local mean of each direction.

Longitudinal L [ oL o1 Ny Ne
Osteoporotic [[3.61 5.56]([0.29 1.02]{[1.01 2.89]|[0.65 1.15]|[4078 5800]| <110]
Control [4.16 5.12]|[0.49 0.95]|[1.44 2.60]|[0.75 1.14]|[4756 5534]| [33 69]
Wilcoxon Test| C > O C>0 C>0 C>0 C>0 |C>0
(p-value) (0.004) | (0.0056) | (0.0054) | (0.025) (0.0018) |(0.316)
Transversal L l oL oy N, N,
Osteoporotic |[3.87 5.59]{[0.33 1.06]|[1.25 3.02]|[0.66 1.13]([3023 4723]|[ 17 79]
Control  [[4.20 5.33][ [0.5 0.99] [[1.53 2.81][[0.74 1.12][[3501 4383][ 23 64]
Wilcoxon Test| C > O C>0 >0 >0 cC>0 |C<O
(p-value) (0.13) | (0.035) | (0.137) | (0.056) | (0.46) | (0.13)
Global N, Intersections Ng“ /NZ:‘F O'i (9)/Jr2r (9)
Osteoporotic |[ 12866 18591]| [1567 2864] |[1.01 1.56]| [0.22 5.87]
Control [ 14045 16987]| [1777 2540] |[1.08 1.54]| [0.30 4.50]
Wilcoxon Test C<O C<O C>0 C<O
(p-value) (0.01) (0.009) (0.12) (0.032)

information given by our features added to BMD and Age. From the analy-
sis of the figure (Ela), we obtain three groups of features weakly correlated.
The first, strongly correlated to the first factorial axis, contains length L, the
half-width [ of the projected trabeculae, their variance for the two directions
(L(L), L(T),01(L),o(T),I(L),I(T),01(L),o7(T)) and the number of intersec-
tions. The second, describing the second factorial axis, contains features de-
duced from the numbers of pixels (N, (L), Np(T'), Np(L)/N,(T)). The last group

including BMD and age is not well depicted in this first factorial plane.

The projection of our sample on the first factorial plane shows the pertinence
of the first principal component (“facteur 17 in figure ([@a), to discriminate
between OP and CP. We have chosen to separate the osteoporotic with vertebral
fracture (black circles) from those with other fractures (darck grey circles) in
addition.The discrimination between OP and CP is more striking when we limit
ourselves to OP with vertebral fracture.

To classify OP and CP, logistic regression models were applied. The best models
with three features were obtained as follows : one feature of first group explaining
the spread of our sample was entered into the model combined with N (T") and
BMD. With [(T)) as the feature of the first group, we obtained 77% well classified
with 89.7% in the CP class and a very good fit with a smalle p-value (< 1073).
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Fig. 2. The figure (a) is the correlation circle associated with the first factorial plane
of the morphological features combined with bone density BMD and AGE. The figure
(b) is the projection of our sample on this plane. The discs of black color give the
position of OP having a vertebral fracture. The discs of dark grey color are patients
having both vertebral fracture and another one fracture. Finally, the discs of light grey
color give the position of CP. Bigger is the circle, higher is the proximity to the plane.

5 Conclusion and Perspectives

In this paper, we have extracted features from calcaneus radiographs that reflect
the trabeculae microarchitecture of the bone. Statistical tests have indicated that
the inter and intra projected distances are key-discriminant features. In fact, the
results obtained are promising in the sense that :

— additional information was producted with respect to BMD and age,
— they permitted to point out well known osteoporosis symptoms related to the
microarchitecture from a radiograph instead of an invasive test.

So, larger data set and more sophisticated methods should be used in order to
consider more than two classes. Then it could be possible to study separately
different kind of fractures.
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