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Abstract. Given is a search problem or a sequence of search problems, as well
as a set of potentially useful search algorithms. We propose a general framework
for online allocation of computation time to search algorithms based on experi-
ence with their performance so far. In an example instantiation, we use simple
linear extrapolation of performance for allocating time to various simultaneously
running genetic algorithms characterized by different parameter values. Despite
the large number of searchers tested in parallel, on various tasks this rather gen-
eral approach compares favorably to a more specialized state-of-the-art heuristic;
in one case it is nearly two orders of magnitude faster.

1 Introduction

Suppose we have a finite or infinite set A of search algorithms a1, a2, . . .. For example,
A could be the infinite set of all programs of a particular programming language, or a
finite set of genetic algorithms (GAs) [6] that differ only by certain parameters such as
mutation rate and population size.

Given some problem or problem sequence, we would like to automatically – not
manually as in much traditional work! – collect experience with various elements of A,
in order to allocate more time to more “promising” ai ∈ A, such that the total computa-
tional effort is small. Towards this end we introduce the following general framework.

The life of our Adaptive Online Time Allocator (AOTA) consists of steps 1, 2, . . ..
At step k it tries to solve current problem r(k) by allocating discrete computation time
t(k) to algorithm a(k) ∈ A. After its time has expired, a(k) will pause and output a D-
dimensional data vector d(k) ∈ �D conveying information such as: did a(k) converge
on r(k)? How much did a(k) improve some r(k)-specific fitness function? For all k,
the pair

(a(k), t(k)) = f(r(k), H(k), P ) (1)

is a function of the historic experience set H(k) = {(i, r(i), a(i), t(i), d(i)) : 0 < i <
k} and the initial bias P , typically a probability distribution over A.

If the problems r(k) change over time we may speak of inter-problem adaptation, or
inductive transfer from one problem to the next. Otherwise we speak of intra-problem
adaptation1.

1 Note that we always refer to the adaption of the time allocation schedule, not of the parameters
themselves. The parameters of each a stay fixed. A broader class of AI algorithms, which we
do not consider here, deals with the adaption of parameter values themselves, e.g. by decreas-
ing a learning rate according to the current convergence, etc.
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In the following we briefly present a few existent (sect. 1.1) and possible (sect. 1.2)
examples of both kinds of adaptation, then we introduce our intra-problem approach ap-
plied to GA parameter selection (sect. 1.3), and give experimental results for it (sect. 2).

1.1 Previous Work

Certain previous methods may be viewed as instances of this framework. For example,
the A of the Optimal Ordered Problem Solver (OOPS ) [12] may include all programs
of a universal programming language. The initial bias P is a probability distribution on
A. As OOPS is solving more and more problems, it may reuse programs computing so-
lutions to previous problems, increasing the probabilities of formerly unlikely programs
in bias-optimal fashion [12], and with an optimal order of computational complexity.
However, the feedback data d(k) used by OOPS is quite limited: it just says whether
a(k) has halted or not, and whether it has solved the current problem. That is, OOPS

performs inter-problem adaptation and does not exploit intra-problem information.
A theoretical description of a similar inter-problem adaption scheme, with some

form of intra-problem adaption, is given in [14], where a system solves function inver-
sion and time-limited optimization problems by searching in a space of problem solving
techniques described in a Lisp-like language, allocating time to them according to their
probabilities, and updating the probabilities according to positive and negative results
on a sequence of problems.

Examples of simple intra-problem AOTAs are racing algorithms [10, 1]. Their finite
A contains different parameterizations of a given supervised algorithm. Each is repeat-
edly run on a sequence of leave-one-out training sets; the d(k) provide current mean
errors and relative confidence intervals of each a ∈ A; badly performing a ∈ A are pro-
gressively discarded as statistically sufficient evidence is gathered against them. This
straight-forward approach, however, cannot be immediately extended to algorithms
with unknown convergence time, e.g. GAs.

The “parameterless GA” [5] also may be viewed as a specialized intra-problem
AOTA. Its A contains generational GAs ai with population size 2i (without mutation),
which are generated and executed according to a fixed interleaving schedule that as-
signs runtime to ai ∈ A in proportion to a variable bias pi, initialized by 2−i. Once
the population of ai converges, or some aj (j > i) achieves higher average fitness, pi

becomes 0 and all pj(j > i) are doubled. This simple heuristic is motivated by the fact
that, in the absence of mutation, convergence of a population is irreversible, and once
the population of ai+1 reaches the average fitness of the population of ai while being
run half the time of ai, then the population of ai is probably drifting too slowly, so one
may safely stop executing it, as it is unlikely that a smaller population will eventually
produce a better solution than a larger one.

1.2 Choices for Learning Procedure f

Generally speaking, we might use all kinds of well-known learning algorithms to im-
plement f . For example, we could use all or recent parts of the history H(k) to train
a neural network or a support vector machine to predict d(k + 1) from inputs repre-
senting possible combinations of a(k + 1) and t(k + 1). The predictive model could
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then be used to find a pair (a(k + 1), t(k + 1)) that maximizes predicted success. Or,
in a Reinforcement Learning (RL) setting [8], we may view each sequence H(k) as a
point in a huge, possibly continuous state space. The action at step k is the selection
of pair (a(k), t(k)); the reward for solving a problem is inversely proportional to the
total search time. Meta-learning techniques for algorithm recommendation [13, 9, 3], in
which the relative performances of different a ∈ A are predicted based on results on
previous problems, could in principle be used as a base for inter-problem adaption.

Next we will present first results with a novel AOTA system that allocates time
to GAs differing in more than just one parameter, and that implements f in a simple
yet non-trivial way by extrapolating a linear best fit model of previous observations of
performance improvements.

1.3 Intra-problem AOTA for Genetic Algorithms

The probability update scheme of the parameterless GA discussed above relies on spe-
cific issues related to population size. It cannot be extended to the choice of other pa-
rameters such as mutation rate. The AOTA system below is more general, but we will
see that it does not suffer much from its increased generality, matching or even greatly
exceeding the performance of the parameterless GA on several test problems.

We consider a single problem r(k) = r for all k, a finite set of GAs A = {ai, i =
1..n} generated by combining different parameter settings, a bias P (k) = {pi(k) =
Pr{ai} at step k, i = 1..n} defined as a probability distribution over it, obtained by
applying a function fP to a set of values U(k) = {ui(k), i = 1..n} that we will
relate to each algorithm’s performance through a function fu. Our d(k) contains only
the current average fitness of the individuals in the population of GA a(k), that is, the
history Hi(k) of each ai, Hi(k) = {(t(k), d(k))|a(k) = ai}, is simply a table of time
versus average fitness values. Machine time is subdivided in small slots of duration ∆T ,
and a sequence of pairs (a(k), t(k)) = (ai, pi∆T ) is generated, allocating the slot to
the various algorithms proportionally to this bias, as follows:

Method 1 (Bias based AOTA) Initialize ∆T and ui(0), i = 1..n, and set k = 1.

While (r not solved)
Update PA(k) = fP (UA(k))
For each i = 1..n

Generate and execute pair (a(k), t(k)) = (ai, pi∆T )
Update ui(k + 1) = fu(Hi(k)).
k = k + 1

End
End

As for the choice of fu: from Hi, we try to give an estimate of the time Ti,sol at
which ai would reach the target fitness value, and set ui(k) = 1/(Ti,sol−Ti(k)), where
Ti(k) =

∑
a(k)=ai

t(k) is the time spent on ai up to step k. In this way a suboptimal
searcher on which we already have spent a lot of time can receive more credit than a
faster searcher whose execution just started. With a linear regression based on a shifting
window of the most recent c values in Hi(k) (see Fig. 1), we estimate Ti,sol as the time
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at which the resulting linear model predicts the target fitness value2, rounded up to the
nearest multiple of the time taken to run one generation of GA ai, which is equivalent
to population size zi if we measure time in fitness function evaluations.

The size c of the shifting window used for the regression should be small enough,
such that the linear model quickly reacts to changes in trend of the average fitness
(e.g. when a population converges), but large enough to compensate for noise on the
average fitness values. For example, different window sizes should be used for ai’s
with different mutation rates, and preliminary experiments with a fixed window size
gave best results for different values of c on different problems. For such reasons we
plug adaptive window sizing into our AOTA framework, drawing inspiration from a
financial forecasting method developed by Chow [4]. We set ci = 2 and keep updating
three linear models, one using window size ci, the others 2 ∗ ci, and max(2, ci/2),
respectively. At each step k we compare the new d(k) with the values predicted by the
three linear models. The window size for which the smallest error is achieved becomes
the current ci.

For all ai ∈ A the initial bias pi(0) is inversely proportional to population size zi, as
in parameterless GA. We initialize ui(0) = const/zi; each time an ai is run for the first
time, the estimated ui is used to initialize uj = uizi/zj for all aj’s that have not started
yet. Subsequent updates are only due to fu, such that this initial bias can be quickly
modified by experience.

For fP we use plain normalization pi = ui/
∑

j∈I uj; and compare to a greedy
normalization, in which half of the current time slot is allocated to the current best ai,
the other half according to normalized ui values.

Our method strives to be algorithm independent, i.e. we view our ai’s as black
box searchers with unknown inner structure and properties. For example, we do not
exploit the fact that in absence of mutation convergence is irreversible; neither do we
try to infer relationships between the various ai, e.g. by interpolating their performances
across parameter space. Each ui is updated independently; the only interaction between
the ai is due to their competition for runtime, mediated by the normalization process
fP . The need of algorithm specific knowledge is limited to the choice of the algorithm
set A, the state information d, and the initial bias P .

2 Experiments

We tested our method on the following set of problems:

CNF3 SAT m n is a conjunctive normal form (CNF) satisfiability problem, with n
clauses, each being a logical OR of three variables chosen from a set of m boolean
variables and their negations. The problem consists in finding an instantiation of
the variables that verifies all clauses, and is termed satisfiable if it can be solved.

2 The algorithm already solves the problem when the best fitness value reaches the target, but
this value is usually noisier than the average fitness, and leads to less reliable predictions.
Some upper limit can be used if no target value is known: with a higher target y∗, more credit
is given to the slope αi of the linear model, and less to the current average fitness yi obtained
by ai, as it can be shown that pi ∝ tan αi

y∗−yi
.
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It can be expressed as a fitness maximization problem and addressed by a GA
with bitstrings of length m as genomes, each representing an instantiation of the
variables, with fitness equal to the number of satisfied clauses, between 0 and n.
We chose three satisfiable instances from SATLIB [7], namely CNF3 SAT 20 91
(20 variables, 91 clauses, file uf20-91/uf20-01.cnf ); CNF3 SAT 50 218 (50
variables, 218 clauses, file uf50-218/uf50-01.cnf); CNF3 SAT 75 325 (75
variables, 325 clauses, file uf75-325/uf75-01.cnf).

ONEMAX a simple toy problem, also reported in [5], that consists in maximizing the
number of ones in a bitstring of length 100.

TRAP a deceptive artificial problem from [5], consisting in 10 copies of a 4-bit trap
function. Each 4-bit block of a bitstring of length 40 gives a fitness contribution of
4 if all four bits are 1, and of 3 − q if q < 4 bits are 1.

TSP The Traveling Salesman Problem (TSP) requires to find the shortest path through
a fully connected graph, without revisiting nodes. It can be solved by a GA with
node lists as genomes. We expressed it as a fitness maximization problem, in which
a path of length l is given fitness 1/l. We considered two real instances from
TSPLIB [11], with known best path: TSP burma 14 (14 nodes, file burma14.tsp)
and TSP gr 17 (17 nodes, file gr17.tsp).

In all cases fitness values were normalized between 0 and 1. Machine time was
always realistically measured in number of fitness evaluations, such that a GA with
population size z takes z time steps to run for one generation.

In a first group of experiments we used the exact settings of the parameterless GA
in [5]: a set A1 of 19 simple generational GAs, with no mutation, uniform crossover
with probability 0.5, tournament selection without replacement, tournament size 4, and
population sizes 2i, i = 1..19. We then repeated the experiments with a set A2 of
twice the size (this implies double-sized search space), obtained by instantiating each
algorithm in A1 with mutation probabilities 0 and 0.7/L, where L is the genome length,
for a total of 19×2 = 38 competing algorithms. The search space was made again twice
as large in set A3 by adding a binary parameter representing a choice between uniform
and one-point crossover (19 × 2 × 2 = 76 competing search algorithms).

Distance Preserving Crossover (DPX [2]) was used for TSP problems, along with
swap mutation; Partial Match Crossover, as implemented in GALib [15], was added in
A3.

In table 1 we give results for four variations of our method, obtained by combining
plain (p) and greedy (g) probability update with fixed (f ) and adaptive (a) window size.
We label these methods AOTApf , AOTApa, AOTAgf , AOTAga.

For comparison, we also give results for a parameterless GA over set A1 only, la-
beled PLESS3; and of the a priori unknown fastest (on average) element of the three
sets, labeled bestGA. The latter provoked counter-intuitive results, especially on set
A1, where bestGA is much slower than the time allocation procedures. This is because
GAs in set A1 do not use mutation, so a very large population is required to avoid pre-
mature convergence on all 40 runs executed, even if in most cases a smaller population

3 Since the set A of this algorithm is in principle unbounded, we applied a variation of the
algorithm with limited maximal population size: to avoid penalizing PLESS, we ran the limit
population whenever a larger population was requested.
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would suffice. For PLESS and AOTA, many GAs are available at each run: if one ai

reaches the solution on all but a few unlucky runs, in which ai+1 wins, the resulting
average performance will be largely determined by the faster ai.

A better performance indicator are overhead values: the ratios between total search
time and time spent on the ai that first solves the problem.

In most cases, our method performs at least as well as PLESS. It is remarkable that
despite its large search space of parameter combinations and simultaneously running
search algorithms, our rather generic algorithm achieves results comparable to those of
a highly specific algorithm incorporating detailed knowledge of GAs.

As expected, moving from set A1 to set A2 generally improved the performance,
as it added faster solvers to the set4, except for the deceptive problem TRAP, in which
mutation is actually a slight disadvantage. Here the size of A was doubled through
adding ai’s with performances very similar to those of A1; hence the total search time
increased. Use of the largest (least biased) A3 led to slightly worse but still compara-
tively good performances on TSP and the two more difficult SAT problems, while the
improvement on TRAP was dramatic, corresponding to a speed-up factor of roughly
30: this problem can in fact be solved much faster using one-point mutation, as it tends
to preserve its building blocks.

Concerning fP , the greedy approach performs almost always better than plain nor-
malization, but the latter might generally be less risky. Fixed and adaptive window size
led to similar results, with a slight advantage for the first. But since the adaptive scheme
relieves the user from setting one parameter, it is preferable.

Figure 1 displays snapshots from three instants in the solution of the ONEMAX
problem on set A3. A value τ22 is obtained as current time-to-goal estimate, subtracting
the time already spent (T22) from the time T22,sol at which the resulting linear model
reaches the target fitness value (Fig. 1 a); u22 is then set to 1/τ22, and a portion p22 ∝
u22 of next time slot ∆T is allocated to a22. (Fig. 1 b) displays bar graphs relative to
the state of the a ∈ A3: probability values (P), total time spent (T), average (avg) and
best fitness. The arrows point to data relative to a22, whose parameters are: pop size 23,
mutation rate 0.007, uniform crossover, and which will eventually be the first to solve
the problem, reaching the target fitness value 1 at T22 = 1072, after a total time of 7268
fitness function evaluations.

3 Conclusion and Outlook

The literature on search and optimization algorithms includes many papers on methods
whose performance depends on numerous parameters. Typically, these parameters are
adjusted by hand. The time that went into fine-tuning them is usually not reported.

Here we made first steps towards establishing a general framework for automat-
ically adjusting such parameters. We let numerous search algorithms with alternative
parameter settings compete against each other, allocating more computation time to
the “more promising” ones in online fashion, where the notion of “more promising” is
derived from an adaptive model of the experience so far.

4 Smaller populations, and shorter execution times, are typically needed in presence of mutation,
at least when the fitness landscape is not deceptive.
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Fig. 1. Three snapshots from our AOTA at work, solving the ONEMAX problem on set A3.
(a) The learning curve for algorithm a22 (thick line), with its linear regression (thin dashed line).
(b) Bar graphs relative to the state of the a ∈ A3: probability values (P), total time spent (T),
average (avg) and best fitness. The bars are lined according to population size z, from 1 (z1 = 2)
to 19 (z19 = 219): for each size there are four a differing in mutation rate (rows 1,3: 0; rows 2,4:
0.007) and crossover operator used (rows 1,2: uniform; rows 3,4: one-point). The arrows point to
data relative to a22, which will eventually be the first to solve the problem.
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In a particular instantiation of this framework, we used a simple linear best fit model
that maps online experience with algorithm-specific time allocation to expected perfor-
mance improvements. The model is used to predict useful pairs of particular genetic
algorithms and corresponding time allocations. Despite the relative generality of the
approach and its comparatively large search space, its performance in terms of total
computation time sometimes not only matches but greatly exceeds the one of a well-
known but less general approach, although the latter has a much smaller search space
motivated by human insight.

Future research will follow different directions, including the design of alternative
adaptive performance models fu, and their application to search spaces including al-
gorithms other than GAs. The obtained techniques could then be used as plugins for
inter-problem search, which is our longer-term goal.

A further step could be made leaving the framework presented in 1, in favour of a
more general intra/inter-problem search in spaces of programs that can combine other
algorithms as primitive actions, modifying their parameters online, possibly also per-
forming conditional jumps to earlier parts of the code, in the style of the universal
language used by OOPS [12].
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