
Concept Formation
in Expressive Description Logics

Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and Giovanni Semeraro

Dipartimento di Informatica, Università degli Studi di Bari
Via Orabona 4, 70125 Bari, Italy

surname@di.uniba.it

Abstract. We investigate on the automated construction of terminolo-
gies from assertions in an expressive Description Logics representation
like ALC. The overall unsupervised learning problem is decomposed into
smaller supervised learning problems once clusters of disjoint concepts
are detected. In turn, these problems are solved by means of refinement
operators1.

1 Motivation

In the perspective of the Semantic Web [1], an effort is required for supporting
interoperability at a semantic level. Ontological knowledge is to be employed
for organizing and classifying resources on the ground of their meaning. Such
knowledge bases can be a powerful tool for supporting many other services, such
as reasoning and retrieval. In the proposed frameworks, an ontology is cast as
a concept graph, accounting for concepts and relationships, in specific or larger
contexts, intended for being used by machines. Each class of resources is defined
extensionally by the set of the resources it represents, and intensionally by de-
scriptions which account for them and possibly also for instances that may be
available in the future. Annotating resources after semantic criteria is not a triv-
ial and inexpensive task. Thus, the problem is how to support the construction
of such ontological knowledge. In this context, we focus on the induction of defi-
nitions for classes of resources from their available assertions. Indeed, supervised
maintenance tools can be an important factor to boost the realization of the Se-
mantic Web. In a learning service for the Semantic Web, representation languages
that are typical in this context have to be considered. Such languages are closely
related to the family of languages known as Description Logics (henceforth DL),
which are endowed with well founded semantics and reasoning procedures [2].
In DL knowledge bases, the world state (extension) is given by an A-box to be
regarded as a collection of assertions about the resources, while the structural
descriptions of their classes (intension) are maintained in a T-box. The induc-
tion of structural knowledge, like the T-box taxonomies, is not new in machine
1 This research was partially funded by the European Commission under the IST In-

tegrated Project VIKEF - Virtual Information and Knowledge Environment Frame-
work (Contract no. 507173); more information at http://www.vikef.net.

J.-F. Boulicaut et al. (Eds.): ECML 2004, LNAI 3201, pp. 99–110, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

100 Nicola Fanizzi et al.

learning, especially in the context of concept formation where clusters of similar
objects are aggregated in hierarchies according to heuristic criteria or similarity
measures. Most of the methods apply to simple (propositional or equivalent)
representations, whereas ontologies require richer structural languages. Yet, the
induction of structural knowledge turns out to be a hard problem in first-order
logic representations or fragments therein [3]. In Inductive Logic Programming
(ILP), attempts have been made to extend relational learning techniques to-
wards more expressive languages [4] or hybrid representations [5]. In the DL
literature, often inductive methods are based on a heuristic search to cope with
the problem complexity. They generally implement bottom-up operators, such
as the least common subsumer defined for various DL languages [6], that tend to
induce correct yet overly specific concept definitions that may have poor predic-
tive capabilities. Moreover, for the sake of efficiency, simple DLs have been taken
into account which are less expressive than the current standards for ontology
markup languages. In the proposed methodology, an expressive language like
ALC [2] is adopted. As in previous work [7], though on different representations,
the overall unsupervised learning problem is decomposed into smaller supervised
learning problems. Initially, a basic taxonomic structure of the search space is
induced from the A-box. This phase elicits clusters of mutually disjoint concepts
that require a discriminant definition. Thus, several smaller supervised learning
problems are issued. This task is cast as a search for correct definitions for a
concept in the context of its cluster(s). Therefore, investigating the properties of
the search space and the related operators, we also define a method for induction
and refinement in ALC. This method, relying on the notion of counterfactuals
[8], can exploit more intensively the knowledge provided by the available as-
sertions. The paper is organized as follows. In Sec. 2 the search space and its
properties are presented. The method for knowledge base induction is illustrated
and discussed in Sect. 3. Sect. 4 concludes examining possible extensions.

2 Preliminaries on the Search Space

The theoretical setting of learning in DL spaces requires the definition of syntax
and semantics for the proposed representation. The data model should be ex-
pressed by means of DL concept languages for which reasoning tools are already
available. Furthermore, the learning problem is cast as a search in the space of
candidate definitions induced by the reference representation.

2.1 Knowledge Bases in Description Logics

In a DL language [2], primitive concepts NC = {C, D, . . .} are interpreted as
subsets of a certain domain of objects and primitive roles NR = {R, S, . . .} are
interpreted as binary relations. In ALC [2] complex descriptions can be built
from primitive concepts and roles by means of the constructors given in Tab. 1.
In an interpretation I = (∆I , ·I), ∆I is the domain of the interpretation and
the functor ·I maps the concepts to their extensions (subsets of the domain ∆I).

Concept Formation in Expressive Description Logics 101

Table 1. ALC constructors and related interpretation.

Constructor Syntax Semantics I

top concept � ∆I

bottom concept ⊥ ∅
concept negation ¬C ∆I \ CI

concept conjunction C1 � C2 CI
1 ∩ CI

2

concept disjunction C1 � C2 CI
1 ∪ CI

2

value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

A knowledge base K = 〈T ,A〉 contains a T-box T and an A-box A. T is a set of
(acyclic) concept definitions C

.= D, meaning CI = DI , where C is the concept
name and D is a DL description given in terms of the language constructors.
A contains extensional assertions on concepts and roles, e.g. C(a) and R(a, b),
meaning respectively that aI ∈ CI and (aI , bI) ∈ RI . A notion of subsumption
between concepts (or roles) is given in terms of their interpretations:

Definition 2.1 (subsumption). Given two concept (role) definitions D1 and
D2 in a T-box T , D1 subsumes D2 iff DI1 ⊇ DI2 holds for every interpretation
I of T . This is denoted by D1 �T D2, or simply D1 � D2 when T is obvious.

Example 2.1. An example of concept definition in the proposed language:
Father

.= Male � ∀hasChild.Being� ∃hasChild.Being
which translates the sentence ”fathers are male that have beings as their children,
and precisely at least one child”. A specialized concept definition is:
FatherWithoutSons

.= Male � ∃hasChild.Being � ∀hasChild.(Being � ¬Male)
It holds that: Father � FatherWithoutSons.
Examples of A-box assertions are the following:
Father(zeus), Male(zeus), God(zeus),¬Father(era), hasChild(zeus, apollo),
hasChild(zeus, hercules),¬∀hasChild.God(zeus)

A concept may have many semantically equivalent, yet syntactically differ-
ent, descriptions that can be reduced to a normal form by means of equivalence-
preserving rewriting rules (see [2]). Preliminarily, the different parts of a de-
scription are to be designated: prim(C) is the set of the concepts at the top-level
conjunction of C; if there exists a universal restriction ∀R.C′ at the top-level of C
then valR(C) = C′ otherwise valR(C) = 	; exR(C) is the set of the descriptions
C′ in existential restrictions ∃R.C′ at the top-level conjunction of C.

Definition 2.2 (normal form). An ALC concept description D is in normal
form iff D ≡ ⊥ or D ≡ 	 or if D = D1�· · ·�Dn (∀i ∈ {1, . . . , n} Di
≡ ⊥) with

Di =
�

A∈prim(Di)

A �
�

R∈NR


 �

V ∈valR(Di)

∀R.V �
�

E∈exR(Di)

∃R.E




where and ∀R ∈ NR every description in exR(Di)∪ valR(Di) is in normal form.

102 Nicola Fanizzi et al.

2.2 Induction as Search

Provided that an order is imposed on the concept descriptions, the induction
of the definitions for undefined concepts in the A-box can be cast as a search
process. The search space depends on the order adopted that induces a general-
ization model. This provides a criterion for traversing the space of solutions by
means of suitable operators [9]. They allow for the treatment of induction as a
search process that is decoupled from the specific heuristics to be employed.

Definition 2.3 (refinement operators). Given a quasi-ordered set (S,�), a
downward (resp. upward) refinement operator ρ (resp. δ) is a mapping from S
to 2S , such that D′ ∈ ρ(D) implies D � D′ (resp. D′ ∈ δ(D) implies D′ � D).
The closure of the operator τ for C ∈ S is defined: τ∗(C) =

⋃
n≥0 τn(C), where

τ0(C) = {C} and τn(C) = {D ∈ S | ∃E ∈ τn−1(C) : D ∈ τ(E)}.

The properties of the operators depend on the order adopted.

Definition 2.4 (properties). In a quasi-ordered set (S,�), a refinement op-
erator τ is locally finite iff ∀C ∈ S : τ(C) is finite and computable. A downward
(resp. upward) refinement operator ρ (resp. δ) is proper iff ∀C ∈ S : D ∈ ρ(C)
implies C � D (resp. D ∈ δ(C) implies D � C). A downward (resp. upward)
refinement operator ρ (resp. δ) is complete iff ∀C, D ∈ S, D � C implies
∃E ∈ ρ∗(D) such that E ≡ C (resp. C � D implies ∃E ∈ δ∗(D) such E ≡ C).
A locally finite, proper and complete operator is defined as ideal.

In inductive reasoning, it is necessary to test the coverage of candidate hy-
potheses with respect to the examples. Coverage also determines the decisions on
the possible refinement of such hypotheses. However, it should be noted that in
the DL settings the Open World Assumption (OWA) is adopted, differently from
the context of learning or query answering where the Closed World Assumption
(CWA) is commonly made. It is supposed that preliminarily a representative at
the concept language level is derived in the form of most specific concept (msc)
[6, 2]. The msc required by the following algorithms is a concept description, en-
tailing the given assertion, that it is bound to be among the most specific ones.
Hence, the examples will be represented with very specific conjunctive descrip-
tions obtained by means of the realization [2] of the assertions. Since an msc
need not to exist in ALC, for each individual, we consider an approximation of
its msc with respect to A, up to a certain depth k [2]:

Definition 2.5 (coverage). Given the knowledge base 〈T ,A〉, the definition of
a concept C

.= D covers an assertion C(e) iff ∃k : D �T msck,A(e)

The unsupervised learning problem can be formally stated as follows:

Definition 2.6 (DL learning problem). In a search space (S,�)
Given a knowledge base K = 〈T ,A〉, supposed that T does not contain defini-
tions for all the concepts with assertions in A
Induce a set of concept definitions, by means of refinement operators, TC =
{C1

.= D1, C2
.= D2, . . .} such that ∀i∀Ci(e) ∈ A : T ∪ TC covers Ci(e)

Concept Formation in Expressive Description Logics 103

The problem requires to find definitions TC for undefined concepts concerning
assertions in the A-box. T can be regarded as a sort of background knowledge
(possibly imported from higher level ontologies), which is supposed to be correct
but also incapable to account for all of the assertions in the A-box.

3 Induction of ALC Concept Descriptions

A method for concept formation in the referred representation is presented2. Af-
ter inferring the basic structure of the search space, the concept characterization
requires the solution of supervised learning problems. Albeit these can be solved
by means of refinement operators and heuristics, a more knowledge-intensive
method based on counterfactuals is used to increase the process efficiency.

3.1 A Concept Formation Algorithm

The main concept formation algorithm applied in our method is presented in
Fig. 1. As mentioned, it consists of two phases: construction of the basic taxon-
omy and solution of the induced learning problems.

The basic taxonomy of primitive concepts is built from the knowledge avail-
able in the starting A-box A: if also T is non-empty, then A is augmented with
assertions obtained by saturation with respect to T . This phase also singles out
domains and ranges of the roles as the starting superconcepts SCs (step 5).
Direct subsumption relationships between the concept extensions are detected
(level-wise) so to build up a hierarchy based on them. Meanwhile, the relation-
ships of pairwise disjointness among the subconcepts Csj that can induced from
the A-box are exploited to infer the candidate clusters of concepts MDC s (steps
6–12). A MDC stands for the maximal set of mutually disjoint concepts, i.e. a
cluster of disjoint subconcepts of the same concept. MDC s are built by itera-
tively splitting by disjointness the sets of (direct) subconcepts of a superconcept
SCj . At each iteration, the set of the subconcepts replaces the current set of
superconcepts SCs for the next level (until a base level is reached). However,
finding the MDCs has a superpolynomial worst case complexity [7].

Mutually disjoint concepts within an MDC require non-overlapping defini-
tions. This is aimed at during the supervised phase (steps 13–25). Each non-
primitive subconcept Ci in the selected MDC needs a discriminating definition
that is induced as the result of a separate supervised learning problem, where the
instances of disjoint subconcepts in the MDC act as negative examples. Thus,
a loop is repeated looking for a candidate definition Di for each concept in the
selected MDC using an upward operator δ. A disjoint per loop is calculated cov-
ering (part of) the positive instances Ai related to concept Ci. When a definition
Di covers negative examples represented by the instances of other concepts in
the context of the MDC, it has to be specialized by a downward operator. A
given threshold minq states the minimum quality for a candidate definition Di.

2 It was inspired by Kluster [7] where the BACK language [2] is adopted.

104 Nicola Fanizzi et al.

Tbox-induction(A,T ,TC)
input A: A-box; T : T-box
output TC: T-box
1. if T
= ∅ then A ← A ∪ saturate(A,T)
2. for each primitive concept Ci with assertions in A do
3. Di ← ⊥
4. Ai ← {Ci(e) ∈ A}
5. SCs← {domain(R) | R ∈ NR(A)} ∪ {range(R) | R ∈ NR(A)}
6. repeat (* find the MDCs *)
7. for each SCj ∈ SCs do
8. Csj ← {C � SCj |
 ∃C′ : C � C′ � SCj}
9. MDCsj ← split disjoint(Csj)
10. MDCs←MDCs ∪MDCsj

11. SCs←
⋃

j
Csj

12. until SCs = ∅ (* no direct subconcepts *)
13. repeat (* supervised phase *)
14. MDC← select(MDCs)
15. repeat (* solve next supervised learning problem *)
16. choose Ci ∈ MDC such that Ai
= ∅
17. Di ← Di� generalize(Di,Ai,δ)
18. q ← eval(Di,MDC)
19. while q < minq and refinable(Ci) do
20. Di ← specialize(Di, MDC, ρ)
21. q ← eval(Di,MDC)
22. Ai ← Ai \ {Ci(e) ∈ Ai | Di covers Ci(e)}
23. until ∀Ci ∈ MDC : Ai = ∅
24. MDCs← MDCs \MDC
25. until MDCs = ∅
26. TC ← {Ci

.
= Di | for each concept}

27. return TC

Fig. 1. The main T-box induction algorithm.

Like in the lcs-based approach [6], the initial characterization of a concept is
modeled like a bottom-up search for generalizations. In [9] a different strategy
is proposed. The search should start from the most general definition 	, and
then it would repeatedly apply a downward refinement operator ρ up to finding
discriminating generalizations for the target concepts. The method described
in [7] employs incomplete specialization and generalization operators. It is not
guaranteed to find a correct definition, since the search space is limited in order to
preserve efficiency. For example, the generalization algorithm follows a predefined
schema that forces an order in the refinement graph which may not lead to the
correct definitions.

3.2 Refinement Operators for ALC and Heuristics

Given the ordering relationship induced by subsumption for the space of hy-
potheses (ALC,�), it is possible to specify how to traverse this space by means

Concept Formation in Expressive Description Logics 105

of refinement operators. Preliminarily, the definition of a difference operator is
needed for both conjunctive and disjunctive descriptions. In the former case,
C = C1 � · · · � Cn, the difference is the generalized conjunct resulting from re-
moving one conjunct: C − Ci =

�
k �=i Ck. In latter case, D = D1 � · · · � Dm,

the difference is the specialized disjunct D − Dj =
⊔

k �=j Dk. Considered the
ALC normal form, each level of a concept description interleaves disjunctive or
conjunctive descriptions. Thus, the operators should accommodate either case.

Definition 3.1 (downward operator). In the search space (ALC,�), the
downward refinement operator ρ� for disjunctive concept descriptions (in ALC
normal form) D = D1 � · · · � Dn is defined as follows:

– D′ ∈ ρ�(D) if D′ = D − Di for some 1 ≤ i ≤ n
– D′ ∈ ρ�(D) if D′ = (D − Di) � D′i for some D′i ∈ ρ�(Di), 1 ≤ i ≤ n

The downward refinement operator ρ�, given a conjunctive concept description
C = C1 � · · · � Cm, is defined as follows:

– C′ ∈ ρ�(C) if C′ = C � Cj+1 for some Cj+1
� C
– C′ ∈ ρ�(C) if C′ = (C − Cj) � C′j for some 1 ≤ j ≤ m, where:

• C′j = ∃R.D′j, Cj = ∃R.Dj and D′j ∈ ρ�(Dj) or
• C′j = ∀R.D′j, Cj = ∀R.Dj and D′j ∈ ρ�(Dj)

It is straightforward to define the dual upward operator that seeks for more
general hypotheses by adding disjuncts or refining them.

Definition 3.2 (upward operator). In the search space (ALC,�), the up-
ward refinement operator δ� for disjunctive concept descriptions (in ALC nor-
mal form) D = D1 � · · · � Dn is defined as follows:

– D′ ∈ δ�(D) if D′ = D � Dn+1 for some Dn+1 such that Dn+1
� D
– D′ ∈ δ�(D) if D′ = (D − Di) � D′i for some D′i ∈ δ�(Di), 1 ≤ i ≤ n

The upward refinement operator δ�, given a conjunctive concept description
C = C1 � · · · � Cm, is defined:

– C′ ∈ δ�(C) if C′ = C − Cj for some 1 ≤ j ≤ m
– C′ ∈ δ�(C) if C′ = (C − Cj) � C′j for some 1 ≤ j ≤ m, where:

• C′j = ∃R.D′j, Cj = ∃R.Dj and D′j ∈ δ�(Dj) or
• C′j = ∀R.D′j, Cj = ∀R.Dj and D′j ∈ δ�(Dj)

It can be shown that these operators are complete although highly redundant
and therefore non ideal. Ideal refinement operators have been proven not to exists
in spaces where infinite chains of descriptions occur [10]. In our case, one can
consider the infinite chain ∃R.	 � ∃R.∃R.	 � ∃R.∃R.∃R.	, etc... Owing to
the large extent of the search space, heuristics should be used together with
refinement operators in order to focus their search. Defining suitable heuristics
based on the available assertions can address a refinement operator to promising
regions of the search space. The candidate hypotheses evaluation should take into

106 Nicola Fanizzi et al.

account the coverage of positive and negative examples in the learning problem.
Intuitively, a good hypothesis should cover as many positive examples as possible
and reject the negative ones. Moreover, other limitations are typically made
upon the size of the hypotheses, in favor of the simpler ones (those containing
less restrictions and with the lowest nesting factor, in the adopted language). In
the algorithm presented, a possible form for the evaluation function of the i-th
concept definition with respect to the j-th MDC may be:

eval(Di, MDCj) = wp · pos ij − wn · negij − ws · sizei

here pos ij and negij are determined by the rate of examples covered by the
candidate hypothesis over the examples in the MDC, while sizei should be cal-
culated on the ground of its syntactic complexity (each term adds 1 to the size
plus the size of the nested concept description, if any). Although this approach
may seem quite simplistic, it has proven effective in an ILP context. It should be
noted that subsumption in ALC is computationally expensive and it is known
to be hardly reducible to structural operations [2]. Therefore, pursuing a mere
generate and test strategy for solving supervised learning problems, even inves-
tigating better operators, is bound to be inefficient. Better methods should be
devised for solving supervised learning problems. The information conveyed by
the assertions is to be exploited in the refinement process rather than being
tested afterwards.

3.3 Solving Supervised Learning Problems

A learning methodology is proposed based on the notion of counterfactuals built
on the ground of residual learning problems [8]. The learning algorithm relies on
two interleaving routines performing, respectively, generalization and specializa-
tion, that call each other for converging toward a correct concept definition.

The generalization algorithm (Fig. 2) is a greedy covering one: it tries to
define positive examples by constructing disjunctive definitions. At each outer
iteration, the msc of an example is selected as a starting seed for a new par-
tial generalization; then, iteratively, the hypothesis is generalized by means of
the operator δ (with a heuristic that privileges the refinements that cover the
most of positives) until all positive concept representatives are covered or some
negative representatives are explained. In such a case, the current concept def-
inition ParGen has to be specialized by some counterfactuals. The co-routine,
which receives the covered examples as its input, finds a sub-description K that
is capable of ruling out the negative examples previously covered.

In the specializing routine (Fig. 3), given a previously computed hypothesis
ParGen, which is supposed to be complete yet inconsistent with respect to some
negative assertions, it must find counterfactuals that, conjuncted to the incor-
rect definition, can restore its correctness by ruling out the covered negative
instances. The algorithm is based on the construction of residual learning prob-
lems based on the sub-descriptions that caused the subsumption of the negative
examples, represented by their msc’s. In this case, a residual is derived by consid-
ering that part of the incorrect definition ParGen that did not play a role in the

Concept Formation in Expressive Description Logics 107

generalize(Positives, Negatives, Generalization)
input Positives, Negatives: positive and negative instances at concept level;
output Generalization: generalized concept definition
1. ResPositives← Positives
2. Generalization← ⊥
3. while ResPositives
= ∅ do
4. ParGen← select seed(ResPositives)
5. CoveredPos← {Pos ∈ ResPositives | ParGen � Pos}
6. CoveredNeg← {Neg ∈ Negatives | ParGen � Neg}
7. while CoveredPos
= ResPositives and CoveredNeg = ∅ do
8. ParGen← select(δ(ParGen),ResPositives)
9. CoveredPos ← {Pos ∈ ResPositives | ParGen � Pos}
10. CoveredNeg ← {Neg ∈ Negatives | ParGen � Neg}
11. if CoveredNeg
= ∅ then
12. K ← specialize(ParGen,CoveredPos,CoveredNeg)
13. ParGen← ParGen � ¬K
14. Generalization← Generalization � ParGen
15. ResPositives← ResPositives \ CoveredPos
16. return Generalization

Fig. 2. The generalizing routine.

subsumption. The residual will be successively employed as a positive instance of
that part of description that should be ruled out of the definition (through nega-
tion). Analogously, the msc’s derived from positive assertions plays the opposite
role of negative instances for the residual learning problem under construction.
Finally, this problem is solved by conjoining the negation of the generalization
returned by the co-routine, applying it to these example descriptions.

The refinement method is somehow specialization-oriented being the gen-
eralization mechanism weaker than the one used for specializing the concept
definitions. Thus, for the algorithm to work it is required that the starting ap-
proximations calculated on the ground of the negative examples be not greater
than those relative to the positive ones. The function for calculating residuals is
essentially a difference function. In the case of the ALC language, it is easy to
define it as C − D ≡ C � ¬D.

Example 3.1. Suppose that the starting A-box is3 A = {M(d), r(d, l), r(j, s),
¬M(m), r(m, l),¬M(a), w(a, j), r(a, s), F (d), F (j),¬F (m)¬F (a)}.

Let F be the target concept, thus the examples and counterexamples are:
Positives = {d, j} and Negatives = {m, a}. The approximated msc’s are:

msc(j) = ∃r.	 msc(d) = M � ∃r.	
msc(m) = ¬M � ∃r.	 msc(a) = ¬M � ∃r.	 � ∃w.	

In Fig. 4 learning process step-wise run is reported. The result is F = M �∃r.	.

It can be proven that, provided that the adopted language bias is appropriate,
the method actually converges to a solution of the learning problem [11]:
3 F stands for Father, M for Man, r for the parentOf role while w represents wifeOf.

108 Nicola Fanizzi et al.

specialize(ParGen,CoveredPos,CoveredNeg, K)
input ParGen: inconsistent concept definition

CoveredPos, CoveredNeg : covered positive and negative descriptions
output K: counterfactual
1. NewPositives← ∅
2. NewNegatives← ∅
3. for each Ni ∈ CoveredNeg do
4. NewPi ← residual(Ni,ParGen)
5. NewPositives← NewPositives ∪ {NewPi}
6. for each Pj ∈ CoveredPos do
7. NewNj ← residual(Pj ,ParGen)
8. NewNegatives ← NewNegatives ∪ {NewNj}
9. K ← generalize(NewPositives,NewNegatives)
10. return K

Fig. 3. The specializing routine.

Theorem 3.1 (correctness). The algorithm eventually terminates computing
a correct concept definition when this exists.

The process terminates because the generalize routine produces one disjunct at
each outer iteration, accommodating at least one positive example which is suc-
cessively removed. Then the termination of the routine is guaranteed, provided
that the inner loop terminates. This loop generalizes the seed-definition by ap-
plying δ. Eventually, it terminates either because the generalization is correct or
it covers some negative example. This is the case when the specialize co-routine
is invoked. This routine contains two initial loops that are controlled by the
sizes of the input example sets. Each loop produces a residual concept defini-
tion to be used for the successive generalization. Provided that the other routine
produces a correct generalization of the residual concept then also the special-
izing routine terminates. As regards the correctness, it is to be proven that,
on return from the routine, the following relations hold: 1. ∀Pos ∈ CoveredPos :
(ParGen�¬K) � Pos and 2. ∀Neg ∈ Negatives : (ParGen�¬K)
� Neg. If the call
to generalize succeeds then for all NewNj ∈ NewNegatives : K
� NewNj . By def-
inition, Pj ∈ Positives implies that residual(Pj ,ParGen) ∈ NewNegatives. Hence
K
� residual(Pj ,ParGen). Since ∀Pos ∈ Positives = CoveredPos : ParGen �
Pos condition 1. holds. For condition 2., recall that (ParGen � ¬K)
� Neg iff
ParGen
� Neg or ParGen � Neg and K � residual(Neg,ParGen). Considering
all Neg ∈ Negatives, if ParGen
� Neg then the condition holds. Otherwise, if
ParGen � Neg then the routine builds a residual element residual(Neg,ParGen)
for NewPositives. Thus, on return from generalize, K is a generalization of every
description in NewPositives, and hence K � residual(Neg,ParGen). Here, it is
assumed that the language bias is adequate for the target problem otherwise the
algorithm would fail to discriminate between identical descriptions. In this case,
new concepts or roles may be introduced (constructive induction) for building
discriminating definitions [7]. This goes beyond the scope of our present work.
The specialization routine is linear in the number of examples except for the

Concept Formation in Expressive Description Logics 109

generalize:
ResidualPositives ← {msc(d), msc(j)}
Generalization ← ⊥

/* Outer while loop */
ParGen ← msc(d) = M � ∃r.�
CoveredPos ← {msc(d)} and CoveredNeg ← {}
ParGen ← ∃r.� /* M dropped in the inner loop step 8.*/
CoveredPos ← {msc(d), msc(j)} and CoveredNeg ← {msc(m), msc(a)}
Call specialize(∃r.�, {msc(d), msc(j)}, {msc(m), msc(a)})
specialize:

NewP1 ← ¬M � ∃r.� � ¬∃r.� = ¬M
NewPositives ← {¬M}
NewP2 ← ¬M � ∃r.� � ∃w.�� ¬(∃r.�) = ¬M � ∃w.�
NewPositives ← {¬M,¬M � ∃w.�}
NewN1 ← M � ∃r.�� ¬∃r.� = M
NewNegatives ← {M}
NewN2 ← �
NewNegatives ← {M,�}
Call generalize({¬M,¬M � ∃w.�}, {M,�})
generalize:

ResidualPositives ← {¬M,¬M � ∃w.�}
Generalization ← ⊥

/* Outer while loop */
ParGen ← ¬M � ∃w.�
CoveredPos ← {¬M � ∃w.�} and CoveredNeg ← {}
/* Second while loop*/

ParGen ← ¬(M � ¬(M � ∃w.�) = ¬M
CoveredPos ← {¬M,¬M � ∃w.�} and CoveredNeg ← {}
Generalization ← ¬M

Return ¬M
Return ¬M /* back to first call to Generalization */

ParGen ← ∃r.�� ¬(¬M)
Generalization ← ∃r.�� ¬(¬M)
ResidualPositives ← {}

Return ∃r.� �M
F = M � ∃r.�

Fig. 4. The learning process for the A-Box in Ex. 3.1.

dependency on the generalization algorithm. Then it suffices here to discuss the
complexity of such an algorithm. The generalization proposed here is a generic
divide and conquer algorithm which performs a greedy search using the refine-
ment operator δ. The number of iterations is linear in the number of instances.
The actual source of complexity are the subsumption tests which are known to
be PSpace-complete in ALC [2].

4 Conclusions and Future Work

While deductive reasoning and querying for knowledge bases in DL representa-
tion are well assessed, their construction can be a complex task for knowledge
engineers which calls for semi-automatic tools. A method for concept forma-
tion in the ALC description logic has been presented. We applied a two-step
algorithm where the first step induces level-wise supervised learning problems
solved in the second step. The learning process can be performed by using the
proposed refinement operators and heuristics. Besides, we have developed a more
efficient method based on counterfactuals learning from the available assertions.
The proposed framework could be extended along three directions. First, a more

110 Nicola Fanizzi et al.

expressive language bias could be chosen: e.g. the transitivity of relations would
allow to learn recursive concepts. Secondly, inductive construction should be
employed to introduce new concept and roles that help the definition and orga-
nization of the knowledge bases. Finally, we want to investigate learning with
hybrid representations, where clausal logic descriptions are mixed with descrip-
tion logics, the latter accounting for the available ontological knowledge.

References

1. Berners-Lee, T.: Design Issues: Technical and philosophical notes on web architec-
ture (1990-2002) http://www.w3.org/DesignIssues.

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. Cambridge University Press (2003)

3. Haussler, D.: Learning conjuntive concepts in structural domains. Machine Learn-
ing 4 (1989) 7–40

4. Nienhuys-Cheng, S., Laer, W.V., Ramon, J., Raedt, L.D.: Generalizing refinement
operators to learn prenex conjunctive normal forms. In: Proceedings of the In-
ternational Conference on Inductive Logic Programming. Volume 1631 of LNAI.,
Springer (1999) 245–256

5. Rouveirol, C., Ventos, V.: Towards learning in CARIN-ALN . In Cussens, J.,
Frisch, A., eds.: Proceedings of the 10th International Conference on Inductive
Logic Programming. Volume 1866 of LNAI., Springer (2000) 191–208

6. Cohen, W., Hirsh, H.: Learning the CLASSIC description logic. In Torasso, P.,
Doyle, J., Sandewall, E., eds.: Proceedings of the 4th International Conference on
the Principles of Knowledge Representation and Reasoning, Morgan Kaufmann
(1994) 121–133

7. Kietz, J.U., Morik, K.: A polynomial approach to the constructive induction of
structural knowledge. Machine Learning 14 (1994) 193–218

8. Vere, S.: Multilevel counterfactuals for generalizations of relational concepts and
productions. Artificial Intelligence 14 (1980) 139–164

9. Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description logics. In
Cussens, J., Frisch, A., eds.: Proceedings of the 10th International Conference on
Inductive Logic Programming. Volume 1866 of LNAI., Springer (2000) 40–59

10. Nienhuys-Cheng, S., de Wolf, R.: Foundations of Inductive Logic Programming.
Volume 1228 of LNAI. Springer (1997)

11. Esposito, F., Fanizzi, N., Iannone, L., Semeraro, G.: Refinement of conceptual
descriptions in ALC knowledge bases. Technical Report DL-2004-01, LACAM,
Dipartimento di Informatica, Università degli Studi di Bari (2004)

	1 Motivation
	2 Preliminaries on the Search Space
	2.1 Knowledge Bases in Description Logics
	2.2 Induction as Search

	3 Induction of \cal{ALC} Concept Descriptions
	3.1 A Concept Formation Algorithm
	3.2 Refinement Operators for \cal{ALC} and Heuristics
	3.3 Solving Supervised Learning Problems

	4 Conclusions and Future Work
	References

