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Abstract. A new informed image watermarking technique is proposed incorpo-
rating perceptual factors into dirty paper coding. Due to the equi-energetic na-
ture of the adopted codewords and to the use of a correlation-based decoder, in-
variance to constant value-metric scaling (gain attack) is automatically achieved.
By exploiting the simple structure of orthogonal and Gold codes, an optimal in-
formed embedding technique is developed, permitting to maximize the water-
mark robustness while keeping the embedding distortion constant. The maximum
admissible distortion level is computed on a block by block basis, by using Wat-
son’s model of the Human Visual System (HVS). The performance of the wa-
termarking algorithm are improved by concatenating dirty paper coding with a
turbo coding (decoding) step. The validity of the assumptions underlying the the-
oretical analysis is evaluated by means of numerical simulations. Experimental
results confirm the effectiveness of the proposed approach.

1 Introduction

Several digital watermarking methods trying to put into practice the hints stemming
from the information-theoretic analysis of the watermarking game have been proposed.
The main merit of these schemes, globally termed as informed watermarking algo-
rithms, is that they permit to completely reject the interference between the cover signal
and the watermark, thus leading to systems in which, in the absence of attacks, a zero
error probability is obtained.

Random binning coding (or dirty paper coding) lies at the hearth of the informed
watermarking approach [1]. To be specific, let us introduce an auxiliary source of ran-
domness U , let B indicate the set with all the possible to-be-hidden messages, and let
2nR be the number of messages contained in it. Finally, let C be the source emitting
the cover feature sequence. The embedder first generates a codebook U consisting of
2nRt entries (call them u’s) which are randomly generated so to span uniformly the set
of typical sequences of U (for a tutorial introduction to typical sequences see [2, 3]).
Then U is randomly (and uniformly) split into 2nR bins (sub-codebooks) each contain-
ing 2n(Rt−R) codewords. It is then possible to associate each message b ∈ B to a bin
of U . In order to transmit a message b, the embedder looks at the host feature sequence
c that is going to host the message, then an entry in the bin indexed by b is looked for
which is jointly typical with c. Next it maps the cover features c into a marked fea-
ture sequence cw which is jointly typical with u and c . At the other side, the decoder
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receives a sequence r. In order to estimate the transmitted message, the decoder looks
for a unique sequence u∗ in U which is jointly typical with r and outputs the message
corresponding to the bin u∗ belongs to. The decoder declares an error if more than one,
or no such typical sequence exists. If R is lower than the watermarking capacity then
it is possible to choose Rt so that the error probability averaged over al possible codes
U tends to 0 as the length n of the transmitted sequence tends to infinity. The major
problem with the random binning approach is that when n increases the dimension of
the codebook becomes unmanageable, thus calling for the construction of structured
codebooks allowing for an efficient search.

The most popular solution to put the random binning approach into practice is
through the use of lattice based codebooks [4, 5, 6, 7]. The major weakness of the lat-
tice approach, is that these schemes are vulnerable against constant value-metric scaling
of the host features, a very common operation which consists in multiplying the host
feature sequence by a constant factor g which is unknown to the decoder.

To overcome this problem, Miller et al. [8, 9] proposed to use equi-energetic code-
books and a correlation-based decoder, so that invariance to the presence of the constant
gain g is automatically achieved. Their system relies on a dirty paper Trellis in which
several paths are associated to the same message.

Of course equi-energetic codes do a much worse job in uniformly covering the host
feature space, hence it is necessary to devise a particular embedding strategy which per-
mits to move the host features sequence into a point within the decoding region associ-
ated to the to-be-transmitted message. This can be done either by fixing the watermark
robustness and trying to minimize the embedding distortion, or by fixing the embedding
distortion while maximizing the watermark robustness. In [8, 9], a sub-optimum, fixed-
robustness, embedding strategy is proposed. In [10], the simple structure of orthogo-
nal, and pseudo-orthogonal, codes is exploited to derive an optimum fixed-robustness
embedding algorithm leading to performance which are superior to those obtained by
Miller et al. with the further advantage of a reduced computational burden.

A difficulty with the fixed-robustness approach, is that the robustness constraint
does not allow to take perceptual factors into account. As a matter of fact, in order to
diminish the visibility1 of the watermark, it is desirable that some features are marked
less heavily than others, leading to a constraint on the maximum allowable distortion.
In this paper, we extend the analysis contained in [10], to develop a fixed-distortion em-
bedding algorithm for still image watermarking. Then we will use such an algorithm to
incorporate perceptually driven considerations within the embedding step. Watermark
embedding is performed in the block-DCT domain, since the Human Visual System
(HVS) behavior is better modelled by working in the frequency domain. More specifi-
cally, we rely on the popular Watson’s model [11, 12] measuring the maximum allow-
able distortion a block-DCT coefficient can sustain before the modification becomes
visible. Watson’s measure is used to constrain the maximum allowable embedding dis-
tortion on a block-by block basis.

Experiments and simulations were carried out to validate both the effectiveness of
the proposed embedding strategy and to estimate the overall performance of the new
watermarking system in terms of invisibility and robustness. In particular, the experi-

1 We focus on still image watermarking.
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ments demonstrated an excellent robustness against attacks involving scaling of the host
features and a moderate robustness against more classical attacks such as noise addition
and JPEG compression. Watermark invisibility was satisfactorily reached as well.

This paper is organized as follows. In section 2 the basic ideas behind dirty pa-
per coding by means of orthogonal codes are reviewed. In section 3 the optimal algo-
rithm for fixed-distortion embedding is derived, and the extension to quasi-orthogonal
dirty paper coding presented. Section 4 explains how perceptual factors are incorpo-
rated within the fixed-distortion embedding scheme. The adoption of multistage (turbo)
decoding to improve the overall performance of the system is described in section 5.
Simulation and experimental results are presented in section 6. Finally, in section 7
some conclusions are drawn and directions for future research highlighted.

2 Orthogonal Dirty Paper Coding

In this section we briefly review the basic ideas of orthogonal dirty paper coding. For a
more detailed analysis readers are referred to [10].

Let c represent the cover feature vector of length n = 2w and U a real n × n
unitary matrix such as UT U = In

2. Each column of U, say it ui, i = 0, . . . , n − 1,
represents one out of n available codewords that can be associated to the information
blocks to be embedded within c. It is then assumed that a block of k bits is transmitted
every side information block of length n and that each k-bit block is associated with
one codeword which will be referred to as the carrier codeword. Note that, since the
number of available codewords is n, a clear limit exists for k, i.e., k ≤ log2(n), or,
equivalently, k ≤ w.

Let now consider a partition of U into 2k disjoint subsets Ql, l = 0, . . . , 2k−1, such
that

⋃
Ql

= U . Assume that a one-to-one predefined mapping p = β(l) exists between
each possible k-bit information sequences bl, l = 0, . . . , 2k − 1 and the subsets Qp,
p = 0, . . . , 2k − 1. This means that each k-bit information sequence can be associated
to one out of 2w−k carrier codewords ui. Of course we must define a strategy to solve
the above ambiguity, i.e. we must define how the carrier codeword is chosen among all
the codewords in the same bin. Let us start by considering that this strategy has already
been defined, and let us indicate the chosen carrier codeword by um. We will go back
to the choice of um at the end of this section.

We now consider the case in which an AWGN attack is present. In this scenario, de-
noting by cw the transmitted n-dimensional column vector, the received n-dimensional
column vector r can be expressed as:

r = cw + n, (1)

n being an additive white Gaussian noise vector with variance σ2
n, i.e., n ∼ N (0, σn).

Upon receiving a sequence r, the decoder performs the estimation of the î-th carrier
sequence by evaluating:

î = arg max
i=0,...,n−1

(
rT ui

)
(2)

2 The set with the n columns of U gives the codebook U
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where T stands for transpose operation. The estimated transmitted sequence bl̂ cor-
responds to the sequence associated to the bin uî belongs to. Note that the decoding
rule outlined above, together with the equi-energetic nature of the carrier codewords,
ensures that the watermark is robust against multiplication by a scale factor g.

2.1 Constant Robustness Embedding

In order to derive the optimum fixed-robustness embedding strategy, a parameter mea-
suring the robustness of the watermark is needed. To this aim, we propose to use the
maximum pairwise error probability between the transmitted codewords and all the
codewords of U belonging to a bin Qj with j �= l, where by l we indicated the in-
dex associated to the transmitted information sequence. Even if such a probability does
not coincide with the true error probability of the system, it can be shown [13] that if
the attack noise is not too strong, the maximum pairwise error probability is a good
approximation of the true error probability3.

With the above observations in mind, and by denoting with Pe(m, q) the pairwise
(error) probability that the receiver decodes the sequence uq instead of the carrier se-
quence um, we have:

Pe(m, q) = Prob
{
cw

T (um − uq) + z < 0
}

(3)

where z ∼ N
(
0, σn

√|um − uq|
)

. By exploiting the well known approximation [13]:

Pe(m, q) ∼= 1
2

exp






[

− cw
T (um − uq)√

2σn

√|um − uq|

]2




, (4)

and by proceeding as in [10], the fixed robustness embedding problem can be formu-
lated as follows: evaluate the transmitted n-dimensional column vector cw that mini-
mizes the distortion ∆ = (cw − c)T (cw − c), subject to the linear constraint:

cw
T um − cw

T uq ≥ S , ∀q|uq /∈ Ql, (5)

with:

S = 2

√

Pc ×
(
10−

DNR
10

)
× log

(
1

2P ∗
e

)

, (6)

where is is assumed that the attacker uses the maximum noise power allowed to him,
P ∗

e indicates the target error probability, Pc = E[‖c‖2], and where DNR indicates the
Data to Noise Ratio defined as

DNR = 10log10

(
Pc

σ2
n

)

. (7)

3 On the other hand, when the attack noise gets high, the system performance deteriorates
rapidly, hence making the above analysis useless.
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Since the columns of the unitary matrix U represent an orthonormal basis for R
n, it is

possible to express the error vector e = cw − c as a linear combination of ui’s, i.e.,

e = Ua, (8)

where a = (a0, a1, . . . , an−1)T is the column vector with the weights of the linear

combination. Given the above, it is straightforward to observe that ∆ = ‖a‖2 =
n−1∑

h=0

a2
h

and aT UT ui = ai. Accordingly, our problem is equivalent to find the vector a such
that:

a = argmin
ah

(
n−1∑

h=0

a2
h

)

subject to :
am − aq + cT um − cT uq ≥ S , q|uq /∈ Ql

(9)

or:

a = argmin
am, aq

(

a2
m +

∑

q|uq /∈Ql

a2
q

)

subject to :
aq ≤ am − S + χq,m , q|uq /∈ Ql

(10)

where χq,m = cT um − cT uq. The constraint in (10) can be reformulated as:

aq = min (0, am − S + χq,m) (11)

Indeed, if am−S+χq,m is greater than or equal to zero, the value of aq which minimizes
the error ∆ while fulfilling the constraint is aq = 0. Conversely, if am − S + χq,m is
lower than zero the minimum is obtained at the edge, i.e., for aq = am − S + χq,m.
Accordingly, the minimization problem can be expressed as:

a = arg min
am



a2
m +

∑

q∈Cl

a2
q





aq = min (0, am − S + χq,m) q|uq /∈ Ql (12)

Note that the problem is now formulated as a mono dimensional minimization problem
in the unknown am. Such a minimum can be easily computed by means of a numeric
approach (e.g., see [14]).

Having defined the optimum embedding rule, we now go back to the choice of um.
By recalling that the decoder takes its decision by maximizing the correlation between
r and all the codewords in U , we decided to choose the carrier codeword which maxi-
mizes the correlation with c, i.e.

um = argmax
us∈Ql

cT us . (13)
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3 Fixed Distortion Embedding

We now want to re-formulate the embedding problem by fixing the distortion ∆ and
maxime the watermark robustness, i.e. minimize the maximum pairwise error probabil-
ity. To do so, we can rely on the analysis reported in the previous section, however it is
necessary that a closed form expression for ∆ is obtained. Let us start by denoting with
χ̃q,m the reordered set of χq,m, so that χ̃0,m ≤ χ̃1,m, . . . ,≤ χ̃d−1,m, where d is the
dimension of χq,m, i.e., d = n − 2w−k. Of course, the unknown term am will satisfy
one of the following mutually exclusive conditions:

(I) S − am < χ̃0,m

(II) χ̃0,m ≤ S − am < χ̃d−1,m (14)

(III) S − am ≥ χ̃d−1,m

Let us first assume that condition (I) holds. In this case, since χ̃0,m ≤ χ̃q,m, it is also
verified am − S + χ̃q,m ≥ 0, that is, directly from (12), aq = 0. Besides, since in this
case the minimization function is ∆m = a2

m and since for hypothesis am > S − χ̃0,m,
we have

a(0)
m = max (0, S − χ̃0,m) , (15)

and

∆(0)
m = [max (0, S − χ̃0,m)]2 , (16)

where the apex 0 means that am and ∆m are evaluated by assuming S − am < χ̃0,m.
If case (II) holds, it is of course possible to find an index f , for which:

χ̃f,m ≤ S − am < χ̃f+1,m. (17)

Hence, am − S + χ̃q,m > 0, for q > f , and am − S + χ̃q,m ≤ 0, for q ≤ f . We thus
obtain directly from (12) aq = 0, for q > f , and aq = am − S + χ̃q,m, for q ≤ f . The
distortion becomes:

∆m = a2
m +

f∑

q=0

(am − S + χ̃q,m)2 . (18)

Since in this case ∆m is a quadratic form of am, the computation of the minimum
distortion subject to (17), say it ∆

(f)
m , is straightforward. Indeed, since the derivative of

(18) is zero for

am = âm =
S(f + 1)

f + 2
−

f∑

q=0
χ̃q,m

f + 2
, (19)

the value of am which gives the minimum, call it a
(f)
m , is:

a(f)
m =






âm, for S − χ̃f+1,m ≤ âm < S − χ̃f,m

S − χ̃f+1,m, for âm < S − χ̃f+1,m

S − χ̃f,m, for âm ≥ S − χ̃f,m.
(20)
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Note that for high values of f , equation (19) can be rewritten as:

a(f)
m

∼= S −

f∑

q=0
χ̃q,m

f + 1
≥ S − χ̃f,m. (21)

We will assume in the following that (21) holds for each f . By considering (21) and
(20), we obtain:

a
(f)
m = S − χ̃f,m,

∆
(f)
m = (S − χ̃f,m)2 +

f∑

q=0
(χ̃q,m − χ̃f,m)2 .

(22)

Finally, by means of similar considerations, we have for case (III):

a
(d−1)
m = S − χ̃d−1,m,

∆
(d−1)
m = (S − χ̃d−1,m)2 +

d−1∑

q=0
(χ̃q,m − χ̃d−1,m)2 .

(23)

According to the above considerations, the distortion minimization problem can be ex-
pressed as:

hm = arg min
h=0,...,d−1

∆
(h)
m

am = a
(hm)
m

∆m = ∆
(hm)
m .

(24)

Note that (24) allows to evaluate the minimum distortion for a given robustness S and
a given m. Such an estimation can be performed by computing all the d possible values
of the error ∆m and selecting the minimum.

The above procedure can be easily managed so that the inverse problem, that is to
evaluate the maximum robustness S for a given error ∆, is addressed. Firstly, observe
from (22) that a given error ∆ can be achieved only if

f∑

q=0

(χ̃q,m − χ̃f,m)2 < ∆ (25)

Accordingly, the search must be restricted to the set of values f which satisfy (25), say
{0, 1, . . . , d′ − 1}, with d′ ≤ d. Now, for a given ∆, it is possible to derive from (23)

and (22) the robustness parameter S
(h)
m , with h ∈ {0, 1, . . . , d′ − 1}, as:

S(h)
m = χ̃h,m +

√
√
√
√∆ −

h∑

q=0

(χ̃q,m − χ̃h,m)2, (26)

Accordingly, the maximum robustness problem can be expressed as:

pm = arg max
p=0,...,d′−1

S
(p)
m

am = a
(pm)
m ,

(27)

Note that both (27) and (24) can be evaluated by means of an exhaustive procedure over
all d possible values of ∆

(h)
m and S

(h)
m , respectively.
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3.1 Quasi-Orthogonal Dirty Paper Coding

As in [10], to further improve the performance of the proposed system we replace the or-
thogonal codes with quasi-orthogonal sequences, so to increase the number of available
codewords for a given sequence length n. Specifically, we use Gold sequences of length
n since their cross-correlation properties ensure that different sequences are almost or-
thogonal among them [13]. Accordingly, the matrix U is now a rectangular n × h ma-
trix with column vectors ui, i = 1, . . . , h, representing a set of h Gold sequences with
length n. Gold sequences have been widely studied in the technical literature, partic-
ularly for spread spectrum applications, for their autocorrelation and cross-correlation
functions that are reminiscent of the properties of white noise. Specifically, in the fol-
lowing we will assume that ui are normalized Gold sequences [15] with ui(l) = ± 1√

n
,

∀i, l . Note that all Gold sequences have the same norm, thus ensuring that the decoder
performance are invariant with respect to multiplication by a gain factor g. In this case,
for a given length n = 2w − 1, the number of possible Gold sequences that are char-
acterized by good periodic cross-correlation properties is n + 2. Since each cyclic shift
of any Gold sequence is still characterized by the same properties, the overall number
of Gold sequences that can be considered for information embedding is h = n(n + 2).
Note that, as required to write (8), Gold sequences are a frame for R

n, hence ensuring
that every element of R

n can be expressed as a linear combination of the ui’s.
Let us now consider the distortion introduced by watermark embedding, we have:

d =

∣
∣
∣
∣
∣

h∑

i=1

aiui

∣
∣
∣
∣
∣

2

=
h∑

i=1

a2
i +

∑

i�=j

aiajuT
i uj . (28)

We can argue that, due to the particular properties of Gold sequences, the first term of
the above equation is predominant with respect to the second one, even if the second
term is not exactly equal to zero due to the non perfect orthogonality of Gold sequences.
Such an assumption will be validated through numerical simulations in section 6. By
relying on the above observations, the fixed distortion constraint can still be replaced

by a constraint on
m∑

i=1

a2
i .

4 Perceptual Dirty Paper Coding

The analysis carried out in the previous section gives the possibility of fixing the em-
bedding distortion. This turns out to be a very useful feature if we want to give to
the embedding systems a perceptually-flavored behavior. More specifically, we con-
sider the watermarking of still images in the block-DCT domain. The host image is first
partitioned into non-overlapping 8 × 8 blocks, that then are DCT-transformed. For each
DCT block a set of intermediate frequency coefficients is extracted to form the host fea-
ture vector. In our implementation we considered 12 DCT coefficients for each block,
more specifically after zig-zag scanning the DCT block we skip the first 3 coefficients
and select the next 12 ones.

At this point we need a system to measure the maximum amount of distortion that
can be tolerated by each coefficient before the watermark becomes visible. Though
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many algorithms are available to this aim, we decided to adopt the approach proposed
by Watson in [11] for its simplicity.

At a general level Watson’s visual model consists of three main parts: a sensitiv-
ity function giving the visibility of a visual stimulus as a function of frequency; two
masking components, taking into account the capacity of the host image to mask the
stimulus; and a pooling function to consider how visual stimuli at different frequencies
combine together to form the final visual appearance of the composite stimulus.

The sensitivity function is given as a table specifying for each DCT position the
smallest magnitude (Just Noticeable Difference - JND) of the corresponding DCT co-
efficient that is visible in the absence of any masking components. Let us denote the, so
to say, threshold values contained in the sensitivity table by t(i, j), where the indexes
i and j indicate the position of the DCT coefficient within the 8 × 8 block. The exact
values of the sensitivity table depends on a number of parameters, including viewing
conditions, environment lightness, etc. Here we used the values given in [12]. To take
into account luminance masking, Watson suggests to modify the threshold values as:

tl(i, j, k) = t(i, j)
(

C(0, 0, k)
C0,0

)0.649

, (29)

where C(0, 0, k) is the DCT coefficient of the k-th block and C0,0 is the average value of
all the DCT coefficients of the image. Note that the modified thresholds vary from block
to block due to the presence of the C(0, 0, k) term. Finally, the modified thresholds
tl(i, j, k) are adjusted to take into account iso-frequency contrast masking, leading to a
final masked threshold (or slack) given by:

s(i, j, k) = max{tl(i, j, k); ‖C(i, j, k)‖0.7tl(i, j, k)0.3}. (30)

Of course a different s(i, j, k) is obtained for each coefficient, however in our case we
need to specify the same distortion, for all the n coefficients bearing the same bit. For
this reason the embedder considers an average distortion computed as:

∆2
max,av =

∑
s(i, j, k)2

n
, (31)

where the sum is extended to all the n coefficients hosting the same bit. Note that
since typically n is larger than 12, the sum spans several DCT blocks. For instance, for
n = 32, the sum spans three blocks4.

At this point the fixed distortion embedding algorithm described in the previous
section is applied to embed the bit of the information message into the host features.
Note that a different distortion constraint is applied to DCT blocks hosting different
bits, hence each bit will be characterized by a different robustness.

5 Multistage Decoding

As we pointed out at the end of the previous section, bit hosted by different DCT blocks
are characterized by different levels of robustness. As an extreme case, for some blocks

4 We neglect border effects for simplicity.
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the admissible distortion may be so low that the embedding algorithm fails to enter the
correct decoding region. In other words, in certain regions the interference of the host
image can not be rejected completely, leading to a non-null error probability even in the
absence of attacks. In order to improve the robustness of the watermark, an additional
channel coding step prior to orthogonal (or Gold) dirty paper coding is introduced. More
specifically a turbo coding (decoding) step is performed prior to watermark embedding.
To this aim, let us observe that the detection strategy (2) generates hard estimates of the
bits bl = (bl,0, . . . , bl,k−1). On the other hand, when dealing with multistage decoding
it is preferable that the inner decoder produces soft estimates to be delivered to the outer
decoder [13]. In order to provide the outer decoder with a soft estimate of the hidden
bit, we follow the same approach described in [10]. Let the sets I1,s and I0,s be defined
as:

I1,s = {l : bl,s = 1} ,

I0,s = {l : bl,s = 0} , (32)

that is I1,s (I0,s) represents the set of 2k−1 sequences bl for which the s-th bit is 1 (0).
Then we use the following soft estimate of the s-th bit:

vs = P1,s − P0,s = max
ui∈Ql,l∈I1,s

(
rT ui

)− max
ui∈Ql,l∈I0,s

(
rT ui

)
. (33)

The sign of (33) determines the hard estimate of the s-th bit and its absolute value
represents the soft output information that can be used by the outer decoder.

It is worth pointing out that the above soft decoding strategy can be applied to any
kind of binary outer coder’s structure. In this paper, the outer code is the Rc = 1/2
binary punctured parallel concatenated turbo coder presented in [16] which allows to
achieve error correction performance that are very close to the theoretical Shannon
limit.

We conclude this section by highlighting the necessity of scrambling the to-be-
hidden bits after the turbo encoder, prior to embedding. This is because due to the
coherence of natural still images, the DCT blocks characterized by a very low admissi-
ble distortion are likely to be contiguous, hence resulting in the introduction of bursty
errors. The scrambler avoids this problem by transforming bursty errors into isolated
errors. Of course, de-scrambling is applied at the decoder prior to turbo decoding.

6 Simulations and Experimental Results

The validity of the above analysis and the performance of the watermarking scheme
deriving from it, have been tested by means of both numerical simulations and exper-
imental tests. Simulations aimed at validating the fixed distortion embedding strategy
derived theoretically. This is a necessary step when we use Gold sequences instead of
orthogonal codewords, since the analysis we carried out relies on the assumption that
the second term in equation (28) is negligible with respect to the first one. In figure 1 the
histogram of the actual embedding distortion d (measured in terms of of DWR) when
a target DWR of 15dB was asked is shown. The histogram was built by applying the
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Fig. 1. Histogram of the actual DWR when a target DWR of 15dB is asked, for Gold
sequences of length 32 (a) and 64 (b).
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Fig. 2. Histogram of the second term in equation (28) when a target DWR of 15dB
is asked, for Gold sequences of length 31 (a) and 63 (b). The histograms should be
compared with the value of

∑
i a2

i , that, for DWR = 15dB, is approximately equal to
0.0316 (we let Pc = 1).

embedding algorithm to several cover sequences. As it can be seen the actual DWR is
slightly higher than the target one. In figure 2 the histogram of the second term in equa-
tion (28) is plotted (linear scale). As it can be verified the error we made by neglecting
this term is negligible. As a matter of fact with DWR = 15dB, and since in our simu-
lations we let Pc = 1, we have that

∑
i a2

i = 10−1.5 ≈ 0.0316 which is much higher
than the values reported in figure 2. In addition in most of the cases this term turns out
to be negative, hence ensuring that the actual distortion is lower than the target one.

In order to estimate the overall performance of the system, a selection of the results
we obtained on real images is now described. For sake of brevity we describe only
the performance of the algorithm based on Gold sequences. Similar results (actually,
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slightly worse) were obtained for the orthogonal case, which, on the other hand, ensured
a much faster embedding phase.

6.1 Watermark Invisibility

We fist checked whether the proposed fixed distortion strategy actually ensures the in-
visibility of the watermark. To do so, we built a database of 40 1024 × 1024 images,
and embedded the watermark in all of them by letting n = 32 and k = 1, 2, thus obtain-
ing an overall rate of 1/64 and 1/32 respectively. We visually inspected all the marked
images and the watermark resulted to be invisible in all the cases: the observer could
individuate the watermark only by comparing two magnified versions of the original
and watermarked images on a high resolution monitor. No visual artifact was perceived
by looking at the images in normal conditions or by looking at the images after printing
by means of a high quality printer.

For all the images we measured the DWR (data to watermark ratio) both by consid-
ering only the watermarked DCT coefficients and globally, i.e. by exploiting the fact the
not all the DCT coefficients are marked. The results we obtained are reported in table 1.
In the same table, the Watson distance [12] between the watermarked and the original
images is also given.

Table 1. Objective measures of the distortion introduced by the watermark. The results
have been obtained by averaging those obtained on a test database consisting of 40 1024
× images. By DWRall, DWRsel and Dwats, the DWR computed on the overall image,
the host DCT coefficients and the Watson distance are meant respectively.

Rate DWRall(db) DWRsel (db) DWats (db)
n = 32, k = 2 37.46 13.24 17.43
n = 32, k = 1 37.52 13.12 17.49

6.2 Watermark Robustness

With regard to robustness, given the fixed distortion embedding strategy we adopted,
we first had to evaluate whether host signal rejection was actually achieved or not (the
admitted distortion could not be enough to ensure that the right decoding region is en-
tered). Hence we tried to detect the watermark on the marked images in the absence of
attacks. We repeated this test on all the images of the database and no errors were found.
Then we considered a number of attacks involving scaling (not necessarily uniform) of
the host features. In particular we considered histogram stretching, histogram equaliza-
tion and sharpening. In all the cases the watermark was successfully recovered with no
errors in all the images of the database. To give an idea of the robustness of our system
against this kind of attacks, two examples of images attacked by means of histogram
equalization are shown in figure 3. As it can be seen the attack strength may be very
high, and amplitude scaling of DCT coefficients highly non-uniform, nevertheless the
watermark is correctly retrieved.
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As a second test we considered robustness against white noise addition. More specif-
ically the watermarked image was impaired by spatially adding a white Gaussian noise,
with increasing variance. The results we obtained demonstrate only a moderate robust-
ness against this kind of attack. For example, when the variance of noise is set to 10, the
bit error probability was equal to 1.1 · 10−1 (k = 1). Note that adding a white Gaussian
noise with variance 10 results in a visible, yet slight, degradation of the marked image. It
has to be noted, though, that such an attack results in an average WNR - computed only
on the host features - approximately equal to -2 db, and that for negative WNR values,
a high robustness can only be achieved for lower rates (or by relaxing the invisibility
constraint).

Fig. 3. Robustness against histogram equalization. Despite the great difference between
the marked (left) and the marked and attacked (right) images, no decoding error was
found.
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Similar considerations hold when robustness against JPEG compression is consid-
ered. The results we obtained in this case are summarized in table 2.

Table 2. Robustness against JPEG compression. The bit error probability averaged over
all the images of the database is given as a function of the JPEG quality factor (Q).

Rate Q = 90 Q = 80 Q = 70

n = 32, k = 2 0 1.2 · 10−2 0.34
n = 32, k = 1 0 3 · 10−3 1.2 · 10−1

7 Conclusions

By relying on the simple structure of orthogonal and Gold sequences, we have presented
a new dirty paper coding watermarking scheme. The main merit of the proposed scheme
is the use of an optimum embedding strategy, which permits to maximize the robustness
of the watermark for a fixed distortion. Another advantage of the new scheme is that
due to the equi-energetic nature of the codewords and to the adoption of a correlation-
based decoder, robustness against value-metric scaling is automatically achieved, thus
achieving a very good robustness against common image processing tools such as image
enhancement and histogram manipulation. We have also shown how the performance of
the system are improved by concatenating the dirty paper code with an outer turbo code.
To this aim, we had to introduce a new soft dirty paper decoding scheme which allows
the iterative multistage decoding of the concatenated codes. The validity of the pro-
posed techniques has been assessed through experimental results which demonstrated
an excellent behaviour from the point of view of watermark invisibility and robustness
against attacks involving scaling of the host features.

Several directions for future work remain open, including the usage of more pow-
erful spherical codes [17, 18, 19] instead of the simple orthogonal codes used here and
the adoption of more sophisticated HVS models to improve watermark invisibility.
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