Soft IP Protection: Watermarking HDL Codes

Lin Yuan, Pushkin R. Pari, and Gang Qu

Department of Electrical and Computer Engineering
and Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742
{yuanl,pushkin, gangqu@eng.umd.edu}

Abstract. Intellectual property (IP) reuse based design is one of the
most promising techniques to close the so-called design productivity gap.
To facilitate better IP reuse, it is desirable to have IPs exchanged in the
soft form such as hardware description language (HDL) source codes.
However, soft IPs have higher protection requirements than hard IPs
and most existing IP protection techniques are not applicable to soft
IPs. In this paper, we describe the basic requirements, make the neces-
sary assumptions, and propose several practical schemes for HDL code
protection.

We protect the HDL codes by hiding author’s signature also called as
watermarking, similar to the idea for hard IP and multimedia data pro-
tection. But the new challenge is how to embed watermark into HDL
source codes, which must be properly documented and synthesizable for
reuse. We leverage the unique feature of Verilog HDL design to develop
several watermarking techniques. These techniques can protect both new
and existing Verilog designs. We watermark SCU-RTL & ISCAS bench-
mark Verilog circuits, as well as a MP3 decoder. Both original and water-
marked designs are implemented on ASICs & FPGAs. The results show
that the proposed techniques survive the commercial synthesis tools and
cause little design overhead in terms of area/resources, delay and power.

1 Introduction

Design reuse and reuse-based design have become increasingly important and
are widely considered as the most efficient way to close the design productivity
gap between silicon capacity and designer’s ability to integrate circuits onto
silicon [27]. For reuse to be successful, the reusable building blocks, also known
as macros, cores, intellectual properties (IPs), or virtual components, must be
easily accessible and integrable. Several industry organizations such as the San
Jose-based ” Virtual Socket Interface Alliance”, the ”design and reuse” in Europe,
and ”IP highway” in Japan have already started building libraries and tools
that can be shared by designers all over the world. More importantly, they are
working on the specification of various IP design standards for IP integration.
But how to guarantee IP provider’s IP rights and royalties remains one of the
major obstacles for design reuse.

J. Fridrich (Ed.): TH 2004, LNCS 3200, pp. 224-238 2004.
© Springer-Verlag Berlin Heidelberg 2004

Soft IP Protection: Watermarking HDL Codes 225

IP exchange and reuse normally takes the forms of hard, firm, or soft. Hard
IPs, delivered as GDSII files, are optimized for power, size, or performance. Soft
IPs are delivered in the form of synthesizable HDL codes. Firm IPs, such as place-
ment of RTL blocks or fully placed netlist, are a compromise between hard and
soft IPs [24]. From security point of view, hard IPs are the safest because they are
hard to be reverse engineered or modified. But this one-fits-all solution does not
give IP users any flexibility other than the built-in configuration options. Soft
IPs, on the other hand, are preferred by IP users due to their flexibility of being
integrated with other IPs without much physical constraints. On some occasions,
IP provider may also prefer releasing soft IPs to leave customer-dependent opti-
mization process to the users. Not surprisingly, it has been recognized that the
IP market will be dominated by soft IPs [10]]. However, the flexibility makes soft
IPs hard to trace and therefore difficult to prevent IP infringements from hap-
pening. IP providers are taking a high risk in releasing their IPs in the soft form
without protecting their HDL codes with techniques that are effective, robust,
low-complexity, and low-cost. Unfortunately, such techniques or tools are not
available and their development is challenging.

Most existing VLSI design IP protection mechanisms, such as physical tag-
ging, digital watermarking and fingerprinting, target the protection of hard/firm
IPs. Traditional software obfuscating and watermarking methods are not appli-
cable to HDL code either. In this paper, we 1) analyze the challenges in HDL code
protection; 2) describe the basic requirements and necessary assumptions; 3) de-
velop the first set of Verilog source code protection methods. Our approaches can
be easily integrated with the design process to protect a new design. They can
also be applied to protect existing designs, which give IP providers the option
of releasing the (protected) source code for their hard/firm IPs that are already
in the IP market to make them more competitive.

We propose three watermarking techniques to protect Verilog source code.
The first method takes advantage of the don’t-care conditions inherently exist-
ing in the modules by enforcing them to have specific values corresponding to
designer’s signature. A separate test module can be easily constructed to re-
trieve such information. The second one utilizes the fact that many logic units
can be implemented in different ways. Instead of using one fixed structure, we
build multiple functionally identical modules with different implementations in
the same Verilog code. We then selectively instantiate these duplicated modules
for information hiding. The third technique splits the implementation of one
module into two phases in such a way that designer’s signature will be mixed
with the module’s input and output information. We implement and test the
proposed protection schemes on SCU-RTL and ISCAS benchmark circuits using
Synopsys’ design analyzer and Xilinx FPGA CAD tool. The results show that
our watermark survives the synthesis and optimization tools. We measure the
area/resources, delay, and power of the designs before and after watermarking,
and find that our methods introduce little overhead in these three key aspects.

226 Lin Yuan, Pushkin R. Pari, and Gang Qu

2 Previous Work

HDL codes describe VLSI design IPs in the style and structure similar to general
C/C++ programs. Hence, it is natural to investigate whether the existing design
IP protection techniques and software watermarking and obfuscating methods
can be extended for HDL code protection.

2.1 VLSI Design IP Protections

According to the IP protection white paper released by VSIA, there are three
approaches to secure an IP: deterrent approach like patents, copyrights, and
trade secrets; protection via licensing agreements or encryption; detection
mechanism such as physical tagging, digital watermarking and fingerprinting
[23]. Legal enforcement (copyright, licensing agreement, etc.) can be used to pro-
tect HDL codes. But it is always hard to enforce such protection, particularly
for the flexible soft IPs. Encryption can be used for soft IP protection [2122].
But it makes IP reuse inconvenient and there are security holes from which
the un-encrypted IP information may leak. Recently, Kahng et al. [§] estab-
lished principles for constraint-based watermarking techniques in the protection
of VLSI design IPs [T6l/17].

The protection is achieved by tracing unauthorized reuse and making un-
traceable unauthorized reuse as difficult as re-designing the IP from scratch.
The essence of their approach is to introduce watermark-related additional con-
straints into the input of a black-box design tool such that the design will be
rather unique and the embedded watermark can be revealed as proof of author-
ship. This approach is generic and has been applied to various stages of the VLSI
design process, from behavioral and logic synthesis to standard cell place and
route algorithms, to FPGA designs [7IRIQITO[TTIT4].

It is possible, but never easy, to extend the idea of constraint-based water-
marking directly into the context of HDL code protection. RT-level HDL source
codes normally describe a design in a program-like manner. The constraints
are the abstract description of the system’s functionality. One can introduce
new constraints as watermark. However, any additional constraint at the top
abstract level description usually can be easily identified and thus removed or
modified. Another concern is the design overhead incurred by adding constraints
at this level. If we add constraints at such early stage, it may have large impact
to the design quality.

2.2 Software Watermarking and Obfuscating

Watermarking, tamper proofing, and obfuscating are the typical source code
protection methods to prevent software piracy [BI2J6JI5IT9I20]. Watermarking
is a technique that embeds a secret message into the program to discourage
IP theft by enabling the establishment of TP ownership [512]. Tamper-proofing
technique protects software from being tampered by making the software with

Soft IP Protection: Watermarking HDL Codes 227

any unauthorized modification into a nonfunctional code. Obfuscating method
makes the program ”unintelligible” while preserving its correct functionality.

Obfuscating and tamper-proofing techniques are not suitable for HDL code
protection. First, they make programs less readable and harder (if not impossi-
ble) to modify, which are all against the incentive to release soft IPs for better
design reuse. Secondly, the continuous push for HDL design standards reduces
the power of such protections.

Software watermarking methods embed a structure or a function into the
program such that it can be reliably located and extracted even after the program
has been translated, optimized, and obfuscated. Existing software watermarking
schemes are either static or dynamic [4]. Static schemes embed watermark only
in the executable and are vulnerable to many attacks. HDL program does not
have any executables, so this approach cannot be applied. Dynamic watermark
is constructed at run time and stored in dynamic state of the program. The
quality of a watermarking scheme depends on how well it stands up to different
types of attacks and how successfully the watermark can be retrieved.

To sum up, HDL source codes are soft IPs in the form of program. They have
more reuse value than hard/firm IPs because of their flexibility and easy acces-
sibility. However, existing hard/firm IP protection techniques cannot be directly
used to prevent designers from losing control of their IPs once HDL source codes
are released. On the other hand, HDL code is different from other program-
ming languages like C/C++ and Java [1J13[1§]. Current software protection is
not applicable for HDL code protection due to the following two reasons: 1)
design reuse methodology requires HDL code to be developed and documented
following industrial standards; 2) there are no executables associated with HDL
programs.

3 HDL Code Watermarking Techniques

3.1 Goals and Assumptions

The sole objective of HDL code watermarking is to hide designer’s digital in-
formation into the HDL source code for ownership protection. However, a good
HDL watermarking technique (at RT-level) must also meet the following goals:
(1) Strong proof of authorship. (2) Low design overhead. (3) Survivability from
re-synthesis. (4) Resilience. (5) Preserve IP’s I/O interface.

To achieve the above goals, we make two necessary assumptions:

Documentation Assumption: designer must document the HDL modules
properly and give sufficiently detailed information on each reusable module’s
input, output, and functionality. However, other details on how each module is
implemented are not required.

This assumption has been widely accepted in the HDL design community. It is
critical for HDL code watermarking. Without this assumption, designers will be
forced to document everything including their watermark implementation. This
makes watermark visible and further increases the difficulty of watermarking.

228 Lin Yuan, Pushkin R. Pari, and Gang Qu

Verification Assumption: all HDL design should follow the hierarchical
modular fashion and complicated gate-level HDL code should not be mixed with
RT-level description.

We focus on the protection of soft IP at HDL source code level and conse-
quently we restrict the watermark verification problem to be within the context
of HDL code as well. The verification assumption prohibits the following attack:
obtain the gate-level HDL codes for certain modules from the netlist and use
them to replace their equivalent modules. We mention that our proposed tech-
niques are robust against the attack of replacing a single RT-level module by
its equivalent gate-level code. However, if the attacker constructs a new module
by flattening and combining several modules in gate-level code, then the prob-
lem of identifying a watermark is equivalent to sub-circuit isomorphism which is
NP-hard. The verification assumption requires hierarchical modular design and
discourages designs with only a single module. This is not vital to our approach,
but rather a common practice in large real life designs. Attackers can verify the
functionality of each module, but they cannot afford to extract all the modules
from the HDL source code and re-synthesize them and their combinations. In
fact, such attempt is more expensive than redesign from the top-level description
given in the documentation.

Next, we will use Verilog as the framework to illustrate three HDL code
watermarking approaches. We mention that since Verilog share many common
features as hierarchical modular design fashion, code documentation and reused-
based design with other HDL languages, VHDL for example, we can easily extend
the proposed watermarking techniques for the protection of general HDL code.

3.2 Verilog Watermarking Approaches

Module Watermarking: In this method, we extend the concept of constraint-
based watermarking to the Verilog design of a module. A module takes certain
input signals and produces output based on the logical functionality to be im-
plemented. The input-output relationship, known as truth table, constrains the
module’s implementation. To embed additional constraints, we take advantage
of the don’t care conditions inherently existing in the module. Consider the de-
sign of an encoder that converts radix-4 numbers into binary. The useful inputs
for this module are 0001, 0010, 0100 and 1000, which produce outputs 00, 01, 10
and 11 respectively. The other twelve combinations of the 4-bit input are don’t
care conditions as they will not occur in the circuit. Now we show how to embed
into the design of this encoder a 15-bit stream b14b13. .. b10p=100010010000010
(’DA’ in binary with the last bit as the parity bit). First we order the 12 don’t
cares in ascending order and make a cyclic list: 0000,0011,0101,,1111. Then we
repetitively pick don’t cares one- by-one and assign them specific output values
to embed the above bit-stream following the algorithm in Figure [0l

More specifically, we take 3, the value of [loga12] , bits babiby = 010 from
the given bit-stream (line 4 and 5). This gives us the binary 2 and we thus
select the third (0-offset) don’t care 0101 from the list of don’t cares. Next we
assign a specific value, 00=b4bs, to this input (line 7) and delete it from the list

Soft IP Protection: Watermarking HDL Codes 229

of don’t cares (line 10). Now there are 11 don’t cares left and we restart from
the top don’t care 0110 which is the one after 0101. We repeat this process and
assign don’t care 1011 output 00=bgbg and 1101 output 10=b14b13, where the two
don’t cares are selected based on b7bgbs and bi2b11b19. As a result, we implement
this encoder based on the watermarked truth table (Figure (b)) instead of the
original truth table (Figure 2f(a)).

Input: cyclic list of n don’t cares L, number of output bits m, and bit-stream b;
to be embedded.
Output: list of selected don’t cares and their assigned output W.

Algorithm:
1. 1 = 0; // start with the last bit b0 of the bit-stream
2. j =0; //start with the top don’t care in list L
3. do
4. s = |logan] ; //bits to pick don’t care
5. (d)10 = (bsti—1...bit1bi)2;
6. i = s+1; // update the position in the bit-stream
7. add {the (d+j) (mod n) don’t care, its assigned output brm4i—1...bi+1b;}

to the output list W;
8. i=m+ i
9. j = (d+j+1) mod n;//update the top don’t care in list L
10. delete the (d+j) (mod n) don’t care from L;
11. n =n- 1; // delete the selected don’t care from L
12. while (bit-stream embedding not done)

Fig. 1. Pseudo-code for module watermarking with don’t cares.

INPUT]|OUT
INPUT|OUT 1000 | 00
0100 | 01
1000 | 00 0010 | 10
(a)[0100 | 01 (b)
0001 | 11
0010 | 10
0001 | 11 0110 | 00
1011 | 00
0000 | 10

Fig. 2. (a) Original truth table. (b) Watermarked truth table.

To retrieve the bit-stream, we can conveniently write test module forcing
these selected don’t cares to be the inputs of the watermarked module. We then
use Verilog simulation tools to re-establish the bit-stream from the mapping
between the don’t cares and their corresponding outputs.

230 Lin Yuan, Pushkin R. Pari, and Gang Qu

Now we briefly analyze this technique. First, watermark’s strength, P., can
be defined as the probability that a random truth table implementation for the
original assigns same values to our selected don’t cares. Small P, indicates strong
watermark. Let n be the total number of don’t cares in the module, k¥ be the
number of don’t cares that we choose to embed our watermark and m be the
number of output bits. P. can be roughly estimated as:

P - k‘!.(nn— k‘)'%)mk (1)
k = [ol/(llogan | + m) (2)

However, to embed b bits information, we must choose at least don’t care con-
ditions and give them specific values accordingly. This may introduce design
overhead. For example, the original encoder in Figure 2(a) can be implemented
by two OR gates and four literals, but the watermarked one needs one NOR
gate, one OR gate, one AND gate, and a total of five literals. To reduce this
overhead, we break long watermark into multiple short ones and embed them
into different modules.

Finally, we mention that this method is robust and it is unique for circuit
design protection. To remove or alter the watermark, one need to change the
values that we have assigned to the selective don’t cares. But, in the final circuit
implementation of the design, every input pattern will produce a deterministic
output. One cannot distinguish whether this output is the original requirement,
or comes from the watermark, or simply a value assigned to a don’t care condition
during the logic synthesis and minimization.

Module Duplication: Despite the possible overhead, the module watermark-
ing method can be easily implemented before the start of Verilog coding. How-
ever, it cannot be applied to protect an existing module in Verilog unless we
know all original don’t cares and redesign the module. The second approach
avoids this problem by duplicating some modules and selectively instantiating
either the original module or one of its ’duplicates’ to hide information.

In Verilog code, there usually exist basic functional modules that are in-
stantiated multiple times by the top-level module or other modules in a higher
hierarchy. The functionality of these modules normally can be implemented in
different ways. We thus build duplicates for these modules with a ’different look’.
That is, they all perform the same function as the original one but synthesis tools
will not identify them as identical copies and therefore they will stay in the final
design. The simplest way is by assigning different values to don’t cares in the
original module every time we duplicate it. In this way, the synthesis tool will
not delete the duplicates to optimize the design. In the absence of don’t cares,
normally we can find alternative implementation for the module. Consider an
"1101” pattern detector example which receives one bit input data during each
clock cycle. It sets output to be 1’ whenever it detects a consecutive inputs pat-
tern ’1101’; otherwise, the output is always ’0’. This module is implemented in
Verilog in two different ways. Module detector_0 in Figure [3(a)] uses finite state

Soft IP Protection: Watermarking HDL Codes 231

machine while module detector_1 in Figure uses a shift register. However,
these two modules are functionally equivalent.

Suppose the detector module has been instantiated multiple times in another
module P. Now, with the presence of duplicates, we will have option of which
module to instantiate. Instead of instantiating one randomly, we can embed
information behind the selection. For example, one scheme is to pick the original
Verilog module detector_0 for bit ’0” and instantiate module detector_1 for a bit
’1’. This is shown in Figure[4] below:

Verifying the signature involves a simple equivalence checking of the module
and its duplicates, as well as the evidence of their instantiations. This method
provides a strong protection for the Verilog IP as it is highly unusual for an
optimized design to have two or more modules that are functionality equivalent.
The implementation challenge of this method, however, is how to disguise the
duplicates to survive from synthesis. In practice, we have discovered a set of tricks
to successfully fool the synthesis tools. One of them, for example, is to assign
different values to the same don’t care for the original module and its duplicate.
The method is robust against attackers who attempt to remove the duplicates or
change the module instantiations. Attackers face the (sub-) circuit verification
problem and they need to detect the duplicates that have already survived the
synthesis optimization tools! Frequent module instantiations in large hierarchical
Verilog designs not only provide us a large space for signature embedding, but
also make the watermark resilient as we can duplicate modules throughout the
design. Another advantage is that it is applicable to existing Verilog codes.

Module Splitting: This approach is usually applied to fairly large modules. It
basically splits a large module into several smaller modules. As shown in Figure
Bl we use two modules: A(X1,Y1, Z1) and B(X2, Ys, Z3), to implement a single-
module M(X,Y, Z), where X is the set of inputs, Y is the set of outputs and Z
are optional test outputs. Module splitting is performed as follows:

— First, the watermarking module A takes input X; C X and produces 1) part
of the functional outputs in Y3 C Y, 2) part of the optional test outputs in
7y C Z, and 3) the intermediate watermarking outputs W. W is defined
according to our signature on specific input pattern of X;.

— Next, the correction module B takes inputs Xo € W U X and produces
the rest of the required outputs in Y5 and Zs. That is, Yo = Y — Y7 and
Zo =7 — 7.

The above module splitting method is functionally correct because the two
modules A and B combined to generate signals Y and Z, same as the signals
generated by M. To verify the signature, one only needs to feed module A the in-
put pattern that we define our watermarking signal W, which will be observable
from A’s output. To make the watermark robust against both synthesis tools and
attackers, we use watermarking signal W from A and as few as possible inputs
from X as input for module B. In such way, the watermarking signal W becomes
part of the design. Otherwise, they will most likely be removed immediately by

232 Lin Yuan, Pushkin R. Pari, and Gang Qu

module detector0 (clk, reset, dataln, out);
input clk, reset, dataln;
output out;
reg out;
reg [1:0] currentState, nextState;
always @(dataln or currentState) begin
case (currentState)
2’b00: begin
nextState = (dataln == 1) ? 2’b01
out = O;end
2’b01: begin
nextState = (dataln == 1) ? 2’b10
out = O;end
2’b10: begin
nextState = (dataln == 0) ? 2’b11
out = O;end
2’b11: begin
nextState = 2’b00;
out = (dataln == 1);end
endcase
end
always@(posedge clk) begin
if(~reset) begin
currentState <= 2’b00;

out <= 0;
end
else currentState <= nextState;
end
endmodule

(a) FSM implementation

module detector_1 (clk,reset,dataln,out);
input dataln,clk,reset;
output out;
reg out;
reg [3:0] pattern;
always@(posedge clk) begin
if(reset) begin

pattern = 0;
out = 0;end
else begin

pattern[0]=pattern[1];
pattern[l]=pattern[2];
pattern[2]=pattern[3];
pattern[3]=dataln;
if(pattern==4’b1101) out=1,;
else out=0;
end
end
endmodule

(b) Shift register implementation

: 2'b00;

: 2'b00;

: 2'b10;

Fig. 3. '1101’ Patern Detector

Soft IP Protection: Watermarking HDL Codes 233

module P;
reg clk, reset;
reg datal,data2,data3;
wire outl, out2, out3;
detector_0 d1(clk, reset, datal, outl);// signature bit 0
detector_1 d2(clk, reset, data2, out2);// signature bit 1
detector_0 d3(clk, reset, data3, out3);// signature bit 0

endmodule

Fig. 4. Instantiation of module detector

optimization tools. The strength of the watermark relies on the rarity of imple-
menting module M by constraining the intermediate signal W. Although it is
secure as watermark is integrated into the design, we mention that this method
may considerably increase design complexity particularly for the second module
and will be vulnerable to attacks if the verification assumption is not made.

Fig. 5. The idea of module splitting

4 Experimental Results

We apply the proposed techniques to benchmark Verilog circuits and demon-
strate that they meet the watermarking objectives. Verilog designs include cir-
cuits such as controllers, adders, multipliers, comparators, DSP cores, ALUs
(from SCU-RTL and ISCAS benchmarks [26027], and a MP3 decoder [25]. The
MP3 design and SCU-RTL benchmarks [28] are original designs while the RT-
level ISCAS Verilog codes are obtained from netlists by reverse engineering [25].
The SCU-RTL and the MP3 benchmarks are perfect examples for the module
duplication technique because of the multiple single module instantiations or
function calls. The first module watermarking method can also be applied to
these designs if the original detailed functional description of each module is
available. However, they are not good for the module splitting method because
the modules are small. For the ISCAS benchmarks, because they are reversed
engineered, we cannot identify the original don’t cares and they have only a few

234 Lin Yuan, Pushkin R. Pari, and Gang Qu

modules, almost all of which are instantiated only once. Consequently, both mod-
ule watermarking and duplication are not applicable for these benchmarks. But
we can use module splitting technique to protect these moderate sized modules
with known functionality. We are currently developing a set of Verilog designs
to test the first module watermarking method, which we are unable to test over
these two existing benchmarks due to the unavailability of their original detailed
design specifications. We optimize each original design by Synopsys’ design an-
alyzer and then map them to the CLASS library. After that, we collect the
following design metrics: area, power, and delay through the design analyzer
report. Next, we apply the proposed Verilog watermarking techniques to these
designs and repeat the above design process for the watermarked design. As we
have described, SCU-RTL benchmark is watermarked by module duplication,
and ISCAS circuits by module splitting.

After optimization, we can clearly identify from the schematic view in the
Synopsys design analyzer window, both the duplicated modules in the module
duplication method and the watermark module in the module splitting method.
This insures that our watermarks survive the synthesis tools. Figure 6 gives the
gate-level views of ISCAS 74181 circuit (a 4-bit ALU) before and after water-
marking, where a 9-letter message (corresponding to author’s affiliation, hidden
for anonymous review) in ASCII is embedded by splitting the CLA module,
which has 3 inputs and 4 outputs, into two modules. We document these two
modules in the same way as other original modules. To test the watermark’s
resilience at both the Verilog code level and the gate level, we showed the water-
marked Verilog codes with documentation to a group of our colleagues together
with Figure6. None of them could tell which one was the original.

Benchmark Circuits Original| Watermarked|Overhead

FIR Area (A7) | 4083 4557 11.6 %

(2264 gates, 16 bits |Power (u W)| 34.49 35.33 2.4 %
embedded) Delay (ns) 48.7 48.7 0%

IR Area (X%) | 16419 16431 0.07 %

(15790 gates, 15 bits [Power (u W)| 35.33 35.06 -0.76 %
embedded) Delay (ns) | 49.15 49.15 0 %
IDCT Area (\%) | 20755 21271 2.5 %
(17341 gates, 16 bits |Power (p W)| 23.31 23.5 0.8 %
embedded) Delay (ns) 49.2 49.2 0%
MP3 Area (\?) | 16955 17297 4.9 %
(>20000 gates, 20 bits|Power (u W)| 67.49 70.82 2.0 %
embedded) Delay (ns) | 49.15 49.15 0 %

Table 1. Watermarking SCU-RTL & MP3 Verilog benchmark circuit.

Table [l reports the design overhead on SCU-RTL benchmarks by module
duplication. As expected, there is little area overhead due to the duplicated
modules. However, the average area overhead is about 4.76% (and this percent-
age is mainly caused by the small FIR Design). The watermarked design does

Soft IP Protection: Watermarking HDL Codes 235

not introduce any additional delay and consumes only 1% more energy on an
average than the original design.

Benchmark Circuits Original| Watermarked |Overhead
74181 Area ((\?) 86 94 9.3 %
(61 gates, 56 bits [Power (u W)| 102.41 111.84 9.2 %
embedded) Delay (ns) 9.26 10.38 121 %
C432 Area (\?) 176 192 9.1 %
(160 gates, 56 bits|Power (p W)| 230.87 249.89 8.2 %
embedded) Delay (ns) | 20.44 19.63 -4.0%
C499 Area (\7) 400 410 25 %
(202 gates, 56 bits|Power (u W)| 14.75 11.71 2.5 %
embedded) Delay (ns) | 14.75 11.71 -20.6 %
c1908 Area ((\?) 574 598 4.1 %
(880 gates, 56 bits|Power (u W)| 581.43 612.47 5.3 %
embedded) Delay (ns) | 21.82 22.54 3.3 %
C7552 Area (\?) | 4489 4525 0.8 %
(61 gates, 56 bits [Power (p W)| 5778.1 5808.5 0.5 %
embedded) Delay (ns) | 65.57 65.57 0 %

Table 2. Watermarking on ISCAS benchmark circuits.

Table 2 reports the results of watermarking ISCAS benchmarks by module
splitting. In this technique, we enforce the watermark into design’s functionality.
In general, this should cause design overhead. For example, we see that both
average area and power overhead are slightly over 5 %. Interestingly, the circuit
delay may decrease after watermarking. This might be possible, for example,
if we split a module that has a signal on the critical path, this signal may be
generated by the simpler watermarking module and thus reduce the delay. From
tables 1 and 2, we can see that large design overhead often occurs for small
designs (FIR, 74181, and C432). Although it is premature to claim, given the
limited set of experiments, we anticipate that all design overhead will decrease
for large designs and eventually become negligible for real life designs.

FPGA designs occupy a significant part of the integrated circuit market these
days, and our watermarking techniques are easily applicable to them as well. We
implement the original and watermarked Verilog benchmarks on certain Xilinx
Virtex-1II devices. Most of the Verilog code written for ASIC implementation can
be synthesized by FPGA synthesis tools with little or no modifications. Some
Verilog code had some technology dependent features, such as instantiating some
gates from a particular library that could not be mapped to the FPGA devices
using our FPGA synthesis tool. Therefore a subset of all the designs was chosen
and synthesized using the Xilinx ISE5.1. (This is the reason why in Table 3,
the gate counts for the same benchmark increase.) The synthesizable Verilog
benchmarks include: the IIR circuit from the SCU-RTL benchmark suite and
74181, C432 and C499 circuits from the ISCAS benchmark suite. These designs
are mapped to Xilinx Virtex-II devices and the implementation results show

236 Lin Yuan, Pushkin R. Pari, and Gang Qu

; Eﬂﬁ
i ﬁggmgmﬂ%n I Lo e
Bl B L e |
,ﬁ,,%ﬁyﬁ%‘”ﬂ% ey b % e
E%ﬂmﬂﬂ ey " gg ﬂﬁ i [e,
i i:
wwm—ﬂﬂﬂ S Fg% ﬂﬁﬁzwg ey,
ey .] T #%iﬁﬂﬁj
i [l] T .
R =z
it Y L) | b= .
Fﬁj S =acali=Ti=d Esom=1= q’{ ﬁﬁﬂ”
= =il PR

(a) Original (b) Watermarked

Fig. 6. Gate-level view of circuit 74181

that the embedded watermarks survive synthesis and optimization performed
by the design tool. Figure 7 displays the fully placed and routed original and
watermarked IIR design on the Xilinx Virtex IT FPGA. We have embedded a
15-bit signature in the watermarked Verilog source code. However, it is not easy
to locate the watermark by reverse engineering at the chip-level as there is no
information available at that level, specific to the watermark.

In FPGAs, the two main design criteria are speed and resource utilization in
terms of the number of slices and LUTs used. Table 3 reports the Maximum com-
binational path delay and resource utilization in both original and watermarked
designs generated by the Xilinx tool.

(a) Original (b) Watermarked

Fig. 7. Floor plan view of IIR targeted to Xilinx Virtex-II.

Soft IP Protection: Watermarking HDL Codes 237

Benchmark Circuits Original| Watermarked|Overhead
TIR (27572 gates, f Slices 286 329 18.71 %
15 bits embedded|Max. Path Delay (ns)| 11.1 11.1 0%
C432 (420 gates, #Slices 40 44 10.1 %
56 bits embedded|Max. Path Delay (ns)| 29.791 29.137 22 %
C499 (696 gates, fSlices 67 74 10.45 %
56 bits embedded|Max. Path Delay (ns)| 16.326 17.908 9.69 %
74181 (132 gates, gSlices 13 13 0%
56 bits embedded|Max. Path Delay (ns)| 13.71 13.71 0 %

Table 3. Benchmarks targeted to Xilinx Virtex-II FPGA.

5 Conclusions

We propose the first set of non-traditional protection mechanisms for soft IPs
(HDL codes). These codes describe circuits at the software level and there-
fore their protection has different requirements and challenges, from those for
hard/firm VLSI IP or software protection. We use Verilog as the framework and
leverage Verilog’s unique role between hardware and software to embed the wa-
termark message into the source code for protection. We evaluate the strength,
resilience, and design overhead of these watermarking techniques both analyti-
cally and by simulation over benchmark Verilog circuits available in the public
domain. We demonstrate the applicability of these techniques for FPGA and
ASIC designs and evaluate the overhead. The proposed techniques can be used
to protect both new and existing Verilog designs as well as VHDL designs. We
are currently collecting and building more Verilog and VHDL circuits to test our
approach. We are also planning to develop CAD tools for HDL protection.

References

1. G. Arboit, ”A Method for Watermarking Java Programs via Opaque Predicates
(Extended Abstract)”, The Fifth International Conference on Electronic Commerce
Research (ICECR-5), 2002.

2. C. Collberg and G. Myles and A. Huntwork, ”SANDMARK — A Tool for Software
Protection Research”, IEEE Magazine of Security and Privacy, vol. 1, aug, 2003.

3. C.S. Collberg and C. Thomborson, ”Watermarking, tamper-proofing, and obfusca-
tion — tools for software protection”, IEEE Transactions on Software Engineering,
Vol. 8, 8, 2002.

4. C.S. Collberg, C. Thomborson, ”Software Watermarking Models and Dynamic Em-
beddings,” ACM Symposium on Principles of Programming Languages, Jan 1999.

5. P. Cousot and R. Cousot, ”An Abstract Interpretation-Based Framework for Soft-
ware Watermarking”, ACM Principles of Programming Languages, 2004.

6. R.L. Davidson and N. Myhrvold, ”Method and System for Generating and Auditing
a Signature for a Computer Program”, US Patent 5,559,884, Assignee: Microsoft
Corporation,1996.

238 Lin Yuan, Pushkin R. Pari, and Gang Qu

7. 1. Hong and M. Potkonjak. ”Behavioral Synthesis Techniques for Intellectual Prop-
erty Protection”, 36th ACM /IEEE Design Automation Conference Proceedings, pp.
849-854, June 1999.

8. A.B. Kahng, et al.. ”Watermarking Techniques for Intellectual Property Protec-
tion”, 35th ACM/IEEE Design Automation Conference Proceedings, pp. 776-781,
June 1998.

9. D. Kirovski, Y. Hwang, M. Potkonjak, and J. Cong. ”Intellectual Property Pro-
tection by Watermarking Combinational Logic Synthesis Solutions,” IEEE/ACM
International Conference on Computer Aided Design, pp. 194-198, November 1998.

10. M. Keating and P. Bricaud. ”Reuse Methodology Manual, For System-On-A-Chip
Designs,” Second Edition, 1999.

11. J. Lach, W.H. Mangione-Smith, and M. Potkonjak. "FPGA Fingerprinting Tech-
niques for Protecting Intellectual Property,” Proceedings of the IEEE 1998 Custom
Integrated Circuits Conference, pp. 299-302, May 1998.

12. G. Myles and C. Collberg, ”Software Watermarking Through Register Allocation:
Implementation, Analysis, and Attacks”, International Conference on Information
Security and Cryptology, 2003.

13. A. Monden and H. Iida and K. Matsumoto and K. Inoue and K. Torii, ” A practical
method for watermarking Java programs”, 24th Computer Software and Applica-
tions Conference, 2000.

14. A.L. Oliveira. ”Robust Techniques for Watermarking Sequential Circuit Designs,”
36th ACM/IEEE Design Automation Conference Proceedings, pp. 837-842, June
1999.

15. J. Palsberg and S. Krishnaswamy and M. Kwon and D. Ma and Q. Shao and Y.
Zhang, ” Experience with Software Watermarking”, Proceedings of ACSAC’00, 16th
Annual Computer Security Applications Conference, pp. 308-316, 2000.

16. G. Qu and M. Potkonjak, “Analysis of watermarking techniques for graph col-
oring problem”, Proceedings of the 1998 IEEE/ACM international conference on
Computer-aided design, pp. 190-193, 1998.

17. G. Qu and M. Potkonjak, ”Fingerprinting intellectual property using constraint-
addition”, Design Automation Conference, pp. 587-592, 2000.

18. J. P. Stern and G. Hachez and F. Koeune and Jean-Jacques Quisquater, “Robust
Object watermarking: Application to code”, Information Hiding, pp. 368-378, 1999.

19. R. Venkatesan and V. Vazirani and S. Sinha, “A Graph Theoretic Approach to
Software Watermarking”, 4th International Information Hiding Workshop, Pitts-
burgh, PA, april, 2001.

20. R. Venkatesan and V. Vazirani, “A Technique For Producing, Through Water-
marking, Highly Tamper-Resistant Executable Code And Resulting ” Watermarked”
Code So Formed”, International Patent WO 01/69355 A1, 2001.

21. Altera Corporation. San Jose, California. http://www.altera.com/

22. Xilinx Inc. San Jose, California. http://www.xilinx.com

23. Virtual Socket Interface Alliance. ”Intellectual Property Protection White Paper:
Schemes, Alternatives and Discussion Version 1.0,” September 2000.

24. Virtual Socket Interface Alliance. ” Architecture Document Version 1.0,” March
1997.

25. http://www.ece.cmu.edu/~ee545/s02/10/fpga_1813.txt

26. http://www.eecs.umich.edu/~jhayes/iscas.

27. International Technology Roadmap for Semiconductors.
http://public.itrs.net/Files/20011TRS/

28. http://www.engr.scu.edu/mourad /benchmark /RTL-Bench.html

	Introduction
	Previous Work
	HDL Code Watermarking Techniques
	Experimental Results
	Conclusions

