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Vortical Aerodynamic Force and Moment

11.1 Introduction

As an applied branch of fluid dynamics, aerodynamics (and hydrodynamics)
studies the force and moment experienced by solid bodies moving through
the fluid. In order to fully understand relevant mechanisms, aerodynamics
has a task in common to general fluid dynamics: investigating various flow
phenomena generated by the body motion. In addition, the ultimate concern
of aerodynamics, also its unique task, is expressing the force and moment in
a way that can precisely capture the key physical mechanisms contributing to
these integrated performances.

Low-speed aerodynamics is dominated by the shearing process, of which
the necessary physical knowledge has been discussed in preceding chapters.
Therefore, it is natural now to further identify those specific key shearing
processes that contribute most significantly to the force and moment for any
given body motion at low Mach numbers. This task requires developing some
special theories. We focus on incompressible flow, but some theories also cover
compressible flow. It can then be seen that, as the Mach number increases,
the compressing process is progressively important for the force and moment
and becomes dominant in supersonic flow.

The main concern of this chapter is a basic external-flow problem: a mate-
rial body of volume B moves arbitrarily in a viscous fluid. The body may have
arbitrarily deformable boundary, as encountered in several areas such as fish
swimming and insect flight in external biofluiddynamics, nonlinear fluid–solid
coupling, and flow control by flexible walls, etc.1 Thus, we assume the body
surface ∂B has specified velocity distribution u = b(x, t). The fluid volume
Vf is bounded internally by the material surface ∂B and externally by a con-
trol surface Σ. The latter may have arbitrary velocity v(x, t) or extend to
infinity where the fluid is at rest or in uniform translation. The flow domain
is sketched in Fig. 11.1.

1 Some of the theories can also be applied to gas–liquid two-phase flow by adding
the surface tension effect.
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Fig. 11.1. Flow domain to be analyzed and notations

11.1.1 The Need for “Nonstandard” Theories

The general expressions of aerodynamic force and moment are “standard”
formulas (2.71) and (2.72). For an incompressible external flow defined in
Fig. 11.1, by the Reynolds transport theorem (2.37), these formulas take the
following alternative forms, based on (a) direct integrals of surface stresses
and their moments over ∂B, (b) integrals of local balance of momentum and
angular momentum, and (c) the rate of change of total momentum and angular
momentum in a generic control volume:

F = −
∫
∂B

(−pn+ τ ) dS (11.1a)

= −ρ
∫
Vf

adV +
∫
Σ

(−pn+ τ ) dS (11.1b)

= −ρ d
dt

∫
Vf

udV +
∫
Σ

[−pn+ τ − ρu(un − vn)] dS, (11.1c)

M = −
∫
∂B

x× (−pn+ τ ) dS +MsB (11.2a)

= −ρ
∫
Vf

x× adV +
∫
Σ

x× (−pn+ τ ) dS +MsΣ (11.2b)

= −ρ d
dt

∫
Vf

x× udV +
∫
Σ

x× [−pn+ τ − ρu(un − vn)] dS +MsΣ .

(11.2c)

Here, a = Du/Dt is the fluid acceleration and we have used the triple decom-
position of the stress t = −pn+τ+ts, with τ = µω×n and ts being the shear
stress and the stress due to surface deformation, respectively, see (2.149) and
(2.150). We have bypassed the need for calculating the local ts (which may
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be complicated on a deformable surface) as much as possible. The effect of ts
vanishes in (11.1), while that of x× ts in (11.2) has been integrated out, see
(2.153):

MsB = −2µ
∫
∂B

n̂nn× bdS = −2µ
∫
B

ωB dV, (11.3a)

MsΣ = −2µ
∫
Σ

n× udS = −2µ
∫
V

ω dV, (11.3b)

where n̂nn = −n is the outward normal of ∂B and V = Vf + B. The total
vorticity in B or V can evidently be expressed by the total circulation in two
dimensions and by (3.14) in three dimensions. Of these alternative formulas,
forms (b) and (c) will be identical if Vf is a material fluid volume. Form (a)
is most primary but may also be viewed as the special case of (b) or (c): If Σ
shrinks to the body surface ∂B so that Vf = 0, then since the direction of n
on Σ is opposite to that on ∂B, (b) or (c) is reduced to (a).

These formulas, however, are not physically most revealing. What appear
in their integrand are variables like velocity, pressure, and density themselves,
but the mechanisms leading to their specific distribution in a flow field and
at the body surface are hidden. These mechanisms come from local dynamics
governed by

ρa = −∇p+ µ∇2u = −∇p− µ∇× ω, (11.4)

∇× a =
∂ω

∂t
+∇× (ω × u) = ν∇2ω, ν = µ/ρ, (11.5)

where one sees the spatial and temporal derivatives of the relevant variables.
It is the interactions of these derivatives that form various flow structures
which at large Reynolds numbers are highly localized but may dominate the
integrated performance. Thus, there is a theoretical gap between standard
formulas and local dynamics. This gap cannot be eliminated by simply sub-
stituting (11.4) into (11.1b) and (11.2b), because the pressure p is a global
effect of all interactions; it is actually the quantity that one wishes most to
remove or replace by other local dynamic processes.

For example, at large Reynolds numbers, by (11.1a) we know that the
lift on an airfoil is dominated by the pressure difference on its both surfaces,
which is in turn explainable by the Bernoulli equation due to a larger fluid
speed on the upper surface. But a deeper physical question is: Why the fluid
runs faster on the upper surface?

A popular heuristic answer to this question is: The fluid particles that
separate at the front stagnation point have to meet again at the trailing edge.
This story is, however, wrong. The timelines (Sect. 2.1) in Fig. 11.2 indicate
that the fluid on the upper surface runs even faster than needed for meeting
the fluid from the lower surface at the trailing edge. No explanation can be
directly found from (11.1).
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Fig. 11.2. Potential flow over a Joukowski airfoil. Dashed lines are time lines.
Reproduced from Panton (1984)

More generally, the above theoretical gap exists between any integrated
performances and their key local contributors. It makes the physical under-
standing, flow diagnosis, and configuration design lose the most valuable guid-
ance. The awareness of this gap is becoming clearer as one’s strong pursuit
of carefully and optimally designed high-performance configurations. Suppose
one is given a set of finite-domain data for a viscous flow over a body. One can
then calculate the stress on the wall and apply (11.1a) to get the force. Then
one may look at various fields in the domain: streamlines, velocity vectors, the
contours of pressure and vorticity, etc. These together form a quite complete
physical picture of the flow. However, if one wishes to identify the physical
mechanisms that result in that force status, only some qualitative assessments
can be drawn from these plots. They are still insufficient to pinpoint what flow
structures have net contribution to the force, in what way, how, and why.

11.1.2 The Legacy of Pioneering Aerodynamicist

In fact, filling the aforementioned gap has been a long-term effort in the devel-
opment of aerodynamics, where the “standard” formulas are only a starting
point rather than the final form of the theory. Instead, a great milestone in
the development of classic aerodynamics is the well-known circulation theory ,
where the aerodynamic force is expressed by elegant “nonstandard” formulas
in terms of the circulation Γ of a wing section. The historical significance of
the circulation theory has been well described by Wu (2005):

“The task of finding theoretical solutions to practical aerodynamic flow
problems was (and still is) formidably difficult. Bypassing flow details as much
as possible was indeed the only strategy open to the pioneering aerodynami-
cist. Together with simplifications of the inviscid-fluid assumption, this strat-
egy served as the springboard for the dazzling developments of aerodynamics
a century ago by leading scholars in Europe: Kutta, Joukouski, Lanchester,
Prandtl, among others.”

To see how this strategy worked so successfully, let us briefly recall the
circulation theory for steady flow. This includes the Kutta–Joukowski formula
(see Joukowski 1931)

L = −ρUΓ (11.6)



11.1 Introduction 591

for the lift of a two-dimensional airfoil, and Prandtl’s lifting-line theory for the
lift and induced drag of a three-dimensional wing (e.g., Prandtl and Tietjens
1934; Glauert 1947)2:

L � ρU

∫ s

−s
Γ (y) dy, (11.7a)

Din � −ρ
∫ s

−s
w(y)Γ (y) dy, (11.7b)

where s is the semi-span and

w(y) = − 1
4π

∫ s

−s

dΓ (y′)
dy′

dy′

y − y′
< 0 (11.8)

is the downwash velocity (usually estimated at the 1/4-chord point, i.e., the
aerodynamic center). Both theories are valid for streamlined wings in the
limit of Re → ∞. Note that Γ does not appear in (11.1) at all; but it is
this quantity that immediately reveals that the physical root of the force and
moment is the vorticity in wing boundary layers and vortical wake formed
thereby. In particular, the key to arriving at (11.7) was the ingenious insight
of Prandtl and Lanchester that, owing to Helmholtz’s vorticity theorems and
in linearized approximation, a finite-span wing produces a horseshoe vortex
system consisting of a bound line vortex (the lifting line) along the 1/4-chord
line of the wing and a flat wake vortex sheet with variable strength3

γ(y) = exγ(y) = −ex
dΓ
dy

, (11.9)

Fig. 11.3.4 Then, (11.8) is merely a simple application of the Biot–Savart for-
mula (3.31) to the horseshoe vortex system.

Evidently, the circulation theory has indeed bypassed the flow details as
much as possible, narrowing the unknowns down to a single circulation Γ to
be solved for calculating the forces. In two dimensions, it is obtainable by
using complex variable and conformal mapping (e.g., Lighthill 1986b). On the
flow plane z = x+iy = reiϕ there exists analytical complex velocity potential
w(z) = φ + iψ, and one maps the airfoil onto a unit circle ζ = eiθ on the

2 For two-dimensional flows we work on the (x, y)-plane, so that a clockwise circu-
lation is negative as in the case around an airfoil with positive lift. But for three-
dimensional flows we follow the convention that, in a wind-axis system, (x, y, z)
are along the oncoming flow, wing-span, and vertical up directions, respectively,
see Fig. 7.18. Thus on an (x, z)-plane a clockwise circulation is positive.

3 In linear approximation the rolling-up of vortex sheet due to self-induction, see
Sects. 4.4.4 and 7.3, is entirely ignored.

4 Ideally, the horseshoe vortex system becomes closed loop by the starting vortex
at downstream infinity that retreats continuously with velocity U .
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Fig. 11.3. The steady horseshoe vortex system of a thin wing

ζ plane. In that plane one considers the flow Ueiα over the circle at incidence
α with arbitrary circulation Γ :

dw
dζ

= u− iv = U

(
e−iα − eiα

ζ2

)
+

Γ

2πiζ
,

which yields

dw
dζ

= −ie−iθ

[
2U sin(α− θ) +

Γ

2π

]
at ζ = eiθ.

The trailing edge of the airfoil can always be managed to map to ζ = 1, thus
the Kutta condition (Sect. 4.4.2) requires dw/dζ = 0 at θ = 0. This gives
Γ = −4πU sinα, so by (11.6) the lift coefficient is

Cl =
L

1
2ρU

2c
=

8π
c

sinα, (11.10)

where the chord length c of the airfoil depends on the specific mapping func-
tion and equals 4 for a flat plate, which is almost true for any thin airfoil as
well. This leads to the well-known simple formula

Cl = 2π sinα � 2πα for α
 1. (11.11)

Then, for a large-span wing, (11.6) holds approximately at every wing section,
so Γ (y) in (11.7) is known. However, the relative downwash w/U implies a
reduction of the effective angle of attack that reduces the circulation and
causes the induced drag (11.7b). This observation leads to an integral equation

Γ (y) = πUc(y)
[
α(y)− 1

4πU

∫ s

−s

dΓ (y′)
dy′

dy′

y − y′

]
, α
 1, (11.12)

of which the solution can be obtained analytically (e.g., Glauert 1947; Ander-
son 1991), with the famous conclusion that a wing with elliptical load distri-



11.1 Introduction 593

bution has minimum induced-drag. Note that, remarkably, in the above en-
tire two- and three-dimensional circulation theory one only needs to find the
mapping function ζ = f(z); no flow field needs to be solved at all.

Now, modern aerodynamics is facing many new challenging problems, in
which the flow complexity is far beyond the reach of any analytical solutions.
Meanwhile, advanced experimental and numerical techniques have made it
possible, at least in principle, to obtain detailed and complete data bases for
such complex flows. Thus, the force F and moment M may follow at once
by substituting the data into (11.1) and (11.2) or their compressible version.
This being the case, then, is there still any need for “nonstandard” formulas as
those pioneers did to explicitly reveal the key physical mechanisms responsible
F and M?

The answer is positive. Modern aerodynamics is not merely a simple com-
bination of the flow data and standard formulas like (11.1) and (11.2). The
more complicated the flow is, the more important role will the key physical
factors play. “Bypassing flow details as much as possible” so as to reveal the
key physical factors to F and M is actually the most valuable legacy of the
pioneering aerodynamicists, which should be continued and further enriched.
Modern versions of the “nonstandard” formulas are still highly desired, but
their integrand can now be obtained experimentally or numerically rather
than necessarily by approximate theories. Namely, the formulas should be
exact and general. They can serve not only as a basis for deducing various
approximate theories (including the circulation theory) but also as a powerful
tool in flow analysis, diagnosis, and optimal configuration design.

11.1.3 Exact Integral Theories with Local Dynamics

In order to bridge the theoretical gap between integral performance and local
dynamics, we need systematic approaches able to transform standard integral
formulas to nonstandard forms, so that the local dynamic processes that have
crucial net contribution to the force and moment can stand out explicitly.
Currently, there are two types of theories that fit this need, to which this
entire chapter is devoted.

One type is the projection theory to be presented in Sect. 11.2, which
projects each term of the Navier–Stoke equation onto a vector space spanned
by properly chosen harmonic vectors. The force and moment due to nonlo-
cal pressure effect is replaced by other quantities describing local shearing
and compressing processes. The theory has been formulated for externally
unbounded flow problems.

Another type of theories with wider versatility is based on various deriv-
ative moment transformations (DMT for short), which execute multidimen-
sional integration by parts to cast the original integrand to a moment of its
derivatives (see Appendix A.2), and of which we have seen a few kinematic
examples in Chap. 3. Of this type of DMT-based force and moment theo-
ries, there first appeared the vorticity moment theory, which expresses the
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total force and moment by the rate of change of vortical impulse and an-
gular impulse (the first- and second-order vorticity moments, respectively)
introduced in Sect. 3.4.1. The theory is valid for incompressible flow and con-
tains classic results like (11.6) and (11.7) as its direct corollaries. Then, after
this theory there appeared the boundary vorticity-flux theory , which expresses
the total force and moment in terms of the first and second moments of the
stress-related boundary vorticity fluxes introduced in Sect. 4.1.3. The theory
may cover viscous compressible flow over any deformable closed or open solid
surface or fluid interface, and has been applied to innovative aerodynamic di-
agnosis and configuration design in both external and internal flow problems.
Actually, the boundary vorticity-flux theory is a special case of a more gen-
eral DMT-based theory for an arbitrary domain, whose consistency with the
vorticity moment theory can also be easily verified.

DMT-based theories will be presented in Sects. 11.3–11.5. Typical appli-
cations of the projection theory and DMT-based theories in theoretical de-
velopment and flow diagnosis will be exemplified, and their linkage to classic
aerodynamics will be addressed. Whenever possible, we shall also point out
how to extend the theory to compressible flow with constant or variable µ
governed by (2.134) or (2.160), respectively. Here we just mention that the
vortical form of (2.134) is5

ρu,t + ρω × u− 1
2
q2∇ρ = −∇Π0 −∇× (µω), Π0 = Π +

1
2
ρq2. (11.13)

11.2 Projection Theory

Consider a set of basis vectors ∇ψi satisfying ∇2ψi = 0, i = 1, ..., n, n = 2, 3.
Take the inner product of (11.13) and ∇ψi, and integrate the result over Vf .
By using identities

∇ψi · ∇β = ∇ · (β∇ψi), ∇ψi · (∇×A) = ∇ · (A×∇ψi)
for any scalars β and vector A, we obtain n scalar equations∫

Vf

(
ρ
∂u

∂t
+ ρl− 1

2
q2∇ρ

)
· ∇ψi dV =

∫
∂B

(−Π0n+ τ ) · ∇ψi dS

−
∫
Σ

Π0n · ∇ψi dS, (11.14)

where l ≡ ω × u is the Lamb vector. The control surface Σ is assumed fixed
and sufficiently large with ω = 0 thereon. In (11.14) each term is a weighted
integral of a constituent of inertial or surface force. Depending on the specific
choice of ψi, two versions of the theory have been developed. We focus on the
total force; the total moment can be similarly treated by a different set of
basis vectors as will be briefly mentioned.

5 Unlike the analysis of vorticity evolution and interaction, in considering the force
and moment the equations for momentum and angular momentum have to be
expressed in terms of per unit volume.
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11.2.1 General Formulation

The primary goal of the projection theory is to re-express the integrated pres-
sure force over ∂B by the integrations of vorticity and density gradient. The
approach was first introduced by Quartapelle and Napolitano (1983) for vis-
cous incompressible flow. For compressible flow considered by Chang and Lei
(1996a), we replace the total pressure force by that due to normal stress Π,
denoted by FΠ . Its difference from Fp is small at large Reynolds numbers.

An inspection of (11.14) indicates that to construct the ith component of
FΠ we simply need n · ∇ψi = n · ei on ∂B, where ei is the unit vector along
the ith Cartesian coordinate, since then −Π0n ·∇ψi = −Π0ni. To remove the
integral over Σ or make it able to be explicitly estimated, we need n · ∇ψi
to vanish at infinity. This pair of boundary conditions for ψi is nothing but
(2.185) for the potential φ̂i caused by the body motion with unit velocity
U = −ei. By (2.174), ∇φ̂i decays as O(|x|−n) as |x| → ∞. More precisely,
when the body moves with constant velocity, let Σ be a big sphere of radius
|x| = x = R, then the boundary integral is negligible if (Chang and Lei 1996a)

1
R

max
x=R

(|Π|, ρq2, |tvis|)→ 0 uniformly as R→∞. (11.15)

Chang et al. (1998) demonstrate that this condition imposes no strict limita-
tion to flows of practical interest. When the body has acceleration, somecon-
tribution from Σ will appear due to compressibility(Chang and Lei 1996a).
Thus, for a nonaccelerating body, from (11.14) and (2.185) it follows that

FΠi = −
∫
Vf

(
ρ
∂u

∂t
+ ρl− 1

2
q2∇ρ

)
· ∇φ̂i dV +

∫
∂B

τ · ∇φ̂i dS. (11.16)

Now the integral of u,t is well convergent. This effect can be further localized
in incompressible flow (Howe 1995). For example, for a linearly accelerating
body with velocity U(t), since∫

Vf

u,t · ∇φ̂i dV =
∫
∂B

u,t · nφ̂i dS = U̇j

∫
∂B

nj φ̂i dS,

the first term of (11.16) can be written in terms of the virtual mass tensor
defined by (2.186). Thus the total force due to pressure reads

Fpi = −MijU̇j − ρ

∫
Vf

(ω × u) · ∇φ̂i dV +
∫
∂B

(µω × n) · ∇φ̂i dS.

Moreover, set u = U + v such that v is the relative velocity (the velocity
viewed in the frame fixed to the body), since

(ω ×U) · ∇φ̂i = φ̂i,k(Ujuk,j − uj,kUj) = uk,j(Uj φ̂i,k − Ukφ̂i,j)

= [Ujukφ̂i,k − Ukuj φ̂i,k − Ukukφ̂i,j ],j ,
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the volume integral of (ω ×U) · ∇φ̂i can be cast to surface integral over ∂B
with u = U thereon. Thus, what left is an integral of n · ∇φ̂i dS = ni dS by
(2.185a), which, however, vanishes on closed surface. Therefore, we have

Fpi = −MijU̇j − ρ

∫
Vf

(ω × v) · ∇φ̂i dV +
∫
∂B

(µω × n) · ∇φ̂i dS, (11.17)

indicating that the contribution from the Lamb vector comes from the flow
region away from ∂B. Equation (11.17) decomposes Fp into a virtual mass
effect, an inviscid Lamb-vector integral, and a viscous surface-vorticity inte-
gral. Note that, however, in real viscous fluid the acyclic potential flow and
its associated virtual-mass effect must cause a vortex sheet γac, which holds
exactly in the asymptotic limit of ν → 0 but is only an approximation at finite
Reynolds numbers (for further discussion see Sect. 11.3.3).

The total moment due to the normal stress can be similarly expressed, of
which the details is omitted here. We just observe that since the i-component
of MΠ is

MΠi =
∫
∂B

ei · (x× n)Π dS,

one simply needs to replace the harmonic function φ̂i by a potential χ̂i that
would be induced in an inviscid fluid by rotation of ∂B at unit angular velocity
about an axis through the origin in the i-direction. Namely, χ̂i satisfies the
boundary condition (Quartapelle and Napolitano 1983)

n · ∇χ̂i = (x× n) · ei = n · (ei × x) at ∂B. (11.18)

Note that for rotating and/or deforming body M contains an extra term Ms

due to the surface-deformation stress.
Alternative to the choice ψi = φ̂i, it is natural to consider taking ψi in

(11.14) as the acyclic potential for the idealized irrotational flow over a body
with unit velocity ei = ∇xi at infinity, viewed in a frame of reference fixed
to the center of B which has no angular momentum. The body surface ∂B
may have arbitrary velocity b(x, t). Denote the harmonic basis vectors so
constructed by Xi (not the Lagrangian coordinates in early chapters), then
instead of (2.185) we now have

n · ∇Xi = 0 at ∂B, (11.19a)
n · ∇Xi = ni at infinity. (11.19b)

Evidently Xi and φ̂i are related by

Xi = xi − φ̂i. (11.20)

This set of basis vectors has been used by Howe (1989, 1991, 1995), who
developed a projection theory for the total force F exerted to rigid body by
incompressible flow with uniform density.
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Set ψi = Xi, the incompressible version of (11.14) reads

ρ

∫
Vf

∂u

∂t
·∇Xi dV +

∫
Σ

pni dS = −ρ
∫
Vf

l ·∇Xi dV +
∫
∂B

τ ·∇Xi dS. (11.21)

While (11.16) directly follows from the integral of normal stress over the body
surface, we now use (11.1c) instead, assuming that Σ is large enough to enclose
all vorticity with negligible |u|2:

Fi = −ρ
d
dt

∫
Vf

ui dV −
∫
Σ

pni dS. (11.22)

A combination of (11.21) and (11.22) eliminates the pressure integral and in-
troduces Fi. To simplify the result, we transform the unsteady term in (11.21).
After dropping all surface integrals over Σ, we find∫

Vf

Xi,juj,t dV =
d
dt

∫
Vf

ui dV −
d
dt

∫
∂B

φ̂iun dS −
∫
∂B

un
DXi
Dt

dS,

where φ̂i is the potential used before. Thus, we arrive at a general force formula
found by Howe (1995):

Fi = −ρ
d
dt

∫
∂B

φ̂iun dS−ρ
∫
∂B

DXi
Dt

un dS+ρ

∫
Vf

l ·∇Xi dV −
∫
∂B

τ ·∇Xi dS.

(11.23)
In particular, for a rigid body moving with uniform velocity b = U(t)

the second integral in (11.23) vanishes; thus we obtain a decomposition very
similar to (11.17) but now for the entire total force:

Fi = −MijU̇j + ρ

∫
Vf

(ω × v) · ∇Xi dV −
∫
∂B

(µω × n) · ∇Xi dS. (11.24)

Subtracting (11.17) from (11.24) should give the force due to skin friction,
i.e., the integral of τ over ∂B. This can indeed be verified.

For the total moment, similar to (11.18) but corresponding to Xi, the basis
vectors for projection is taken as (Howe 1995)

∇Yi ≡ ei × x−∇χ̂i. (11.25)

Howe (1995) has applied (11.23) to re-derive several classic results at high
and low Reynolds numbers. These include airfoil lift, induced drag, rolling and
yawing moment (within the lifting-line theory), drag due to Kármán vortex
street and on small sphere and bubble.

11.2.2 Diagnosis of Pressure Force Constituents

Owing to the fast decay of ∇φ̂i, the projection theory for externally un-
bounded flow can be used to practically diagnose flow data obtained in a
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finite but sufficiently large domain. In addition to the replacement of pressure
force by local dynamic processes, this is another advantage of the projection
theory. Equation (11.16) has been applied by Chang et al. (1998) to analyze
the numerical results of several typical separated flows in transonic–supersonic
regime. In the frame fixed to the body moving with U = −Uex, they found
that the dominant source elements of FΠ are

R(x) = −1
2
q2∇ρ · ∇φ, (11.26a)

V (x) = ρ(ω × u) · ∇φ (11.26b)

with φ = Uiφ̂i, which contribute to 95% or more of the total drag and lift.
The positive or negative contributions to the lift and drag of major flow struc-
tures (shear layers, vortices, and shock waves) via V (x) and R(x) can be
clearly identified. We cite two examples here. The first is a steady supersonic
turbulent flow over a sphere, computed by Reynolds-average Navier–Stokes
equations. The key structures are shown in Fig. 11.4.

It was found that the computational domain needs a radius of 17–22 dia-
meters of the sphere to make the contribution to FΠ of the flow outside
the domain negligible. Denote the drag coefficients due to R(x) and V (x)
by CDR and CDV, respectively. Their variation as free-stream Mach number
M∞ is shown in Fig. 11.5. As M∞ increases, R(x) due to density gradient
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Flow
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transonic
region

Recirculation
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Bow shock wave

Secondary separation region

Shock wavelet

Shear layer
Neck

Wake

Trailing shock-wave

Shock wake
interaction
region

Expansion/compression
inviscid supersonic region

Fig. 11.4. Typical flow pattern of a supersonic flow around a sphere. Reproduced
from Chang and Lei (1996a)
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is progressively important relative to V (x) due to vorticity. It is well known
that the drag reaches a maximum at a transonic Mach number; remarkably,
Fig. 11.5 provides an interpretation of this phenomenon: the decrease of CD

as M∞ further increases is due to the fact that the contribution of the Lamb
vector to the axial force changes from a drag to a thrust.

The second numerical example is steady flow over a slender delta wing
with sweeping angle of 70◦ and an elliptic cross-section of the axis ratio 14:1.
M∞ varies from 0.6 to 1.8, and the angle of attack α varies from 5◦ to 19◦.
The flow relative to the leading edge is still subsonic so in a transonic range
vortices may still be the major source of lift and drag, see the sketch of
Fig. 7.6. Figure 11.6 shows the situation by plotting the variation of CLV

and CLR as α at two values of M∞. Also shown in the figure is the separate
contribution to CLV of the vorticity on windside (CLV(w)) and leeside (CLV(l))
of the wing surface, indicating that V (x) on windside always contributes a
negative vortical lift, which at a special Mach number M∞ = 1.2 just cancels
the positive contribution of V (x) at wing side and leads to CLV � 0. This
behavior involves the relative orientation of u, ω, and ∇φ in different regions
of the flow (for detailed analysis see Chang and Lei (1996b)).

11.3 Vorticity Moments and Classic Aerodynamics

The vorticity moment theory is the first version of the derivative-moment type
of theories in aerodynamics, applied to a moving body B in an incompressible
fluid with uniform density. Assuming the external boundary Σ retreats to
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flow over a slender delta wing. (a) M∞ = 0.6. (b) M∞ = 1.2. Based on Figs. 8 and
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infinity where the fluid is at rest, the theory casts F and M to the rate of
change of the vortical impulse I and angular impulse L defined by (3.78) and
(3.79), respectively. Thus, it represents a global view. Since Vf must include the
starting vortex system (cf. Fig. 3.5c) and as the body keeps moving the wake
region must grow, the flow in Vf is inherently unsteady. In this section we derive
the theory, discuss its physical implication and exemplify its application, and
then show how it reduces to the classic “inviscid” aerodynamics theory. Useful
identities for derivative-moment transformation are listed in Sect. A.2.2.

11.3.1 General Formulation

For generality and better understanding, we first examine the force and mo-
ment under a weaker assumption than that stated above: The flow is irrota-
tional at and near its external boundary Σ, so that ω, ∇×ω, and l = ω×u
vanish on Σ. We then start from the standard force formula (11.1b), where
the acceleration integral can be expressed by identity (3.117a) or (3.117b),
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each representing a derivative-moment transformation. From both we have
obtained the rate of change of the vortical impulse for any material volume
V as given by (3.118). Now, set D = Vf with ∂Vf = ∂B + Σ in (3.117b) and
substitute the result into (11.1b). Since under the assumed condition on Σ
there is ρa = −∇p there, by the derivative-moment transformation identity
(A.25) the pressure term in (11.1b) is exactly canceled. Hence, it follows that

F = −ρ

k

∫
Vf

x× ω,t dV −
∫
Vf

l dV +
ρ

k

∫
∂B

x× [n× (aB − l)] dS, (11.27)

where and below k = n − 1 and n = 2, 3 is the spatial dimensionality, aB =
Db/Dt is the acceleration of the body surface due to adherence, and

n× l = ωun − uωn. (11.28)

Thus, by the Reynolds transport theorem (2.35b), we obtain

F = −ρdIf
dt
− ρ

∫
Vf

l dV +
ρ

k

∫
∂B

x× (aB + bωn) dS, (11.29)

where If is for volume Vf . On the other hand, set D = B in (3.117b) and
notice that the outward unit normal of ∂B is −n (Fig. 11.1), since B is a
material body, by (2.35b) we have

d
dt

∫
B

bdV =
dIB
dt

+
1
k

∫
∂B

x× (n× aB + bωn) dS.

Comparing this with (11.29) yields

F = −ρdIV
dt
− ρ

∫
V

l dV + ρ
d
dt

∫
B

bdV, (11.30)

where V = Vf + B has only an external boundary Σ. This “nonstandard”
formula tells that if Σ does not cut through any rotational-flow region then
the total force has three sources: the rate of change of the impulse of domain
Vf + B, the vortex force given by the Lamb-vector integral (which has long
been known; e.g., Saffman (1992)), and the inertial force of the virtual fluid
displaced by the body.

We now shift Σ to infinity so that V = V∞. In this case the vortex force
vanishes due to the kinematic result (3.72).6 Hence, (11.30) reduces to

F = −ρdI∞
dt

+ ρ
d
dt

∫
B

bdV. (11.31)

6 Recall that in deriving (3.72) and (3.73) use has been made of the asymptotic
far-field behavior of the irrotational velocity.
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A similar approach to the moment based on (11.2b), using derivative-
moment transformation identities (A.24a) and (A.28a) as well as (3.73),
yields

M = −ρdL∞
dt

+ ρ
d
dt

∫
B

x× bdV. (11.32)

When B is a flexible body, its interior velocity distribution may not be easily
known. In that case, it is convenient to replace the body-volume integrals
in (11.31) and (11.32) by the rate of change of identities (3.80) and (3.81a)
applied to B. This yields

F = −ρdIf
dt

+
ρ

k

d
dt

∫
∂B

x× (n× b) dS, (11.33)

M =
ρ

2
dLf

dt
− ρ

2
d
dt

∫
∂B

x2n× bdS, (11.34)

where only the body-surface velocity needs to be known.
Equations (11.31–11.34) are the basic formulas of the vorticity-moment

theory (Wu 1981, 2005). Recall that at the end of Sect. 3.5.2 we have shown
that I∞ and L∞ of an unbounded fluid at rest at infinity is time invariant,
even if the flow is not circulation-preserving. This invariance, however, was
obtained under an implicit assumption that no vorticity-creation mechanism
exists in V∞. Saffman (1992) has shown that a distributed nonconservative
body force in V∞ will make I∞ and L∞ no longer time-invariant. Now, Vf is
bounded internally by the solid body B, of which the motion and deformation
is the only source of the vorticity in V∞; in this sense it has the same effect
as a nonconservative body force. Then the variation of I∞ and L∞ caused by
the body motion just implies a force and moment to B as reaction. A clearer
picture of this reaction to vorticity creation at body surface will be discussed
in Sect. 11.4.

An interesting property of the vorticity moment theory is the linear depen-
dence of F and M on ω due to the disappearance of vortex force and moment.
Hence, they can be equally applied to the total force and moment acting to a
set of multiple moving bodies (Wu 1981), but not that on an individual body
of the set. This property makes the theory very similar to the corresponding
theory for potential flow, see (2.183) and (2.184), which by nature is always
linear. The analogy between (11.31) and (2.183), and likewise for the moment,
becomes perfect if b is constant so that in the former the integrals over B are
absent.

Except the unique property of linear dependence on vorticity, the vortic-
ity moment theory exhibits some features common to all derivative-moment
based theories. Firstly, owing to the integration by parts in derivative-moment
transformation, the new integrands (in the present theory, the first and second
moments of ω) do not represent the local density of momentum and angular
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momentum. Rather, they are net contributors to F and M . The entire po-
tential flow, which occupies a much larger region in the space, is filtered out
by the transformation and no longer needs to be one’s concern (its effect on
the vorticity advection, of course, is included implicitly).

Secondly, the new integrands have significant peak values only in consid-
erably smaller local regions due to the exponential decay of vorticity at far
field. This is a remarkable focusing, a property also shared by the projection
theory.

Thirdly, since the derivative-moment transformation makes the new lo-
cal integrands x-dependent, if the same amount of vorticity, say, locates
at larger |x|, then its effect is amplified, and vice versa. This amplification
effect by x further picks up fewer vortical structures that are crucial to F
and M .7

11.3.2 Force, Moment, and Vortex Loop Evolution

The core physics of vorticity moment theory and its special forms have been
known to many researchers for long time (cf. Lighthill 1986a,b). Because under
the assumed condition the total vorticity (total circulation if n = 2) is zero,
the vorticity tubes created by the body motion and deformation must form
closed loops (vortex couples for n = 2). Thus, if the circulation Γ and motion
of a vortex loop or couple are known, then so is their contribution to the
force and moment. The problem is particularly simple in the Euler limit with
dΓ/dt = 0.

von Kármán and Burgers (1935) have essentially used (11.31) to give a
simple derivation of the Kutta–Joukwski formula (11.6). Consider the two-
dimensional vortex couple introduced in Sect. 3.4.1, see (3.87) and Fig. 3.12.
Let Γ < 0 be the circulation of the bound vortex of the airfoil in an on-
coming flow U = Uex, and assume the near-field flow is steady. As shown
in Sect. 4.4.2, in this case no vortex wake sheds off. Thus, −Γ > 0 must be
the circulation of the starting vortex alone, which retreats with speed U . The
separation r of the vortex couple then increases with the rate dr/dt = U , and
hence (11.6) follows at once.

In three dimensions, as shown by (3.88), (3.89), and Fig. 3.13, the impulse
and angular impulse caused by a thin vortex loop C of circulation Γ are pre-
cisely the vectorial area spanned by the loop and the moment of vectorial

7 The origin of the position vector (which has been set zero here and below) can be
arbitrarily chosen (a general proof is given in Sect. A.2.3). Hence whether a local
vortical structure has favorable contribution to total force also depends on the
subjective choice of the origin. But one can always make a convenient choice such
that the flow diagnosis is most intuitive. See the footnote following (11.54a,b)
below.
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surface element, respectively. Hence a single evolving vortex loop will con-
tribute a force and moment

F = −ρΓ d
dt

∫
S

dS, (11.35)

M = −2
3
ρΓ

d
dt

∫
S

x× dS. (11.36)

For a flow over a three-dimensional wing of span b with constant velocity U =
Uex, a remote observer will see such a single vortex loop sketched in Fig. 3.5c.
Then the rate of change of S equals −bUez, solely due to the continuous
generation of the vorticity from the body surface. Therefore, (11.35) gives

F � ρU × Γ b, (11.37)

which is asymptotically accurate for a rectangular wing with constant chord
c and b → ∞; each wing section of unit thickness will then have a lift given
by (11.6).

Better than (11.37), we may replace the single pair of vorticity tubes with
distance b by distributed ωx(y, z) in the wake vortices, which correspond to a
bundle of vortex loops. This leads to

L � ρU

∫
W

yωx dS, (11.38)

whereW is a (y, z)-plane cutting through the wake (cf. Fig. 11.20). Then, if ωx
is confined in a thin flat vortex sheet with strength γ(y) as in the lifting-line
theory (Fig. 11.3), by a one-dimensional derivative-moment transformation
and (11.9) there is

yγ = Γ − d(yΓ )
dy

.

Substituting this into (11.38) and noticing Γ = 0 at y = ±s, we recover
(11.7a) at once.

The multiple vortex-loop argument has been used by Wu et al. (2002) in
analyzing various constituents of the force and moment on a helicopter rotor.
An interesting application of (11.31) is given by Sun and Wu (2004) in a
simulation of insect flight. Insects may fly at a Reynolds number as small as of
100, for which the lift predicted by classic steady wing theory is far lower than
needed for supporting the insect weight. The crucial role of unsteady motion
of lifting vortices was experimentally discovered only recently (e.g., Ellington
et al. 1996). To further understand the physics, Sun and Wu conducted a
Navier–Stokes computation of a thin wing which rotates azimuthally by 160◦

at constant angular velocity and angle of attack after an initial start, see
Fig. 11.7. Numerical tests have confirmed that to a great extent this model
can well mimic a down- or upstroke of the flapping motion of insect wings,
yielding lift L and drag D in good agreement with experimental results.
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Fig. 11.8. Time evolution of isovorticity surface (left) around the wing and contours
of ωy′ at wing section 0.6R. From Sun and Wu (2004)

Sun and Wu (2004) found that L and D computed from (11.31) is in
excellent agreement with that obtained by (11.1a). Figure 11.8 shows the
isovorticity surface and the contours of ωy′ at wing section 0.6R (R is
the semi wingspan) and different dimensionless time τ . A strong separated
vortex remains attached to the leading edge in the whole period of a single
stroke, which connects to a wingtip vortex, a wing root vortex, and a starting
vortex to form a closed loop. As the wing rotates, the vector surface area
spanned by the loop increases almost linearly and the loop is roughly on an
inclined plane. Therefore, almost constant L and D are produced after start.
The authors further found that the key mechanism for the leading-edge vor-
tex to remain attached is a spanwise pressure gradient (at Re = 800 and
3,200), and its joint effect with centrifugal force (at Re = 200). Similar
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to the leading-edge vortices on slender wing (Chap. 7), now these spanwise
forces advect the vorticity in leading-edge vortex to the wingtip to avoid over-
saturation and shedding.

11.3.3 Force and Moment on Unsteady Lifting Surface

Various classic external aerodynamic theories can be deduced from the vortic-
ity moment theory in a unified manner at different approximation levels. This
theoretical unification is a manifestation of the physical fact that all incom-
pressible force and moment are from the same vortical root. We demonstrate
this in the Euler limit.

The simplest situation is the force and moment due purely to body accel-
eration, for which (11.33) and (11.34) should reduce to (2.183) and (2.184)
but with viscous interpretation. The body acceleration creates an unsteady
boundary layer attached to ∂B but inside Vf , of which the effect is in If and
Lf . Namely, an accelerating body must be dressed in an acyclic attached vortex
layer. Let n̂nn = −n be the unit normal of ∂B pointing into the fluid, in the
Euler limit this layer becomes a vortex sheet of strength

γac = n̂nn× [[u]] = n̂nn× (∇φac − b), (11.39)

where suffix ac denotes acyclic and φac can be solved from (2.173) solely from
the specified body-surface velocity b(x, t). Then

If =
1
k

∫
∂B

x× γac dS =
1
k

∫
∂B

x× [n̂nn× (∇φac − b)] dS.

Here, after being substituted into (11.33), the integral of b is canceled, while
like (3.84) the integral of φac is cast to

1
k

∫
∂B

x× (n̂nn×∇φac) dS = −
∫
∂B

φacn̂nn dS = Iφ.

Thus, along with a similar approach to Lf , in (11.33) and (11.34) what remains
is just (2.183) and (2.184):

Fac = −ρ
dIφ
dt

, Mac = −ρ
dLφ
dt

.

Therefore, denote the impulse and angular impulse of Vf excluding the con-
tribution of γac by If− and Lf− , respectively, the force and moment can be
simply expressed by

F = −ρ d
dt

(If− + Iφ), (11.40)

M = −ρ d
dt

(Lf− +Lφ), (11.41)

with the understanding that φac has influence on the vorticity advection.
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We digress to note that the concept of vortex sheet can well be applied to
flow at finite Reynolds numbers, as explained by Wu (2005). During a small
time interval δt, the body-surface acceleration aB causes a velocity increment
δb = aBδt, which by (11.39) yields a vortex layer of strength δγac, so that the
rate of change of γac is proportional to aB . This picture becomes exact as δt→
0 no matter if Re → ∞. Wu (2005) has demonstrated that, by substituting
this δγac into (11.33), one obtains exactly the same Fac as calculated by the
virtual mass approach based on inviscid potential-flow theory (Sect. 2.4.4).

Having clarifying the role of body-surface acceleration, we now focus on the
rest part of force and moment caused by attached vortex sheet with nonzero
circulation and free vortex sheet in the wake, denoted by suffix γ. We consider
a thing wing represented by a bound vortex sheet or lifting surface as in
Sect. 4.4.1. The interest in unsteady flexible lifting surface theory has recently
revived due to the need for a theoretical basis of studying thin fish swimming
and animal flight (Wu 2002).

In the Euler limit, the expressions of I and L and their rates of change
have been given by (4.136–4.139), with vanishing Lamb-vector integrals. From
these and (4.133) that tells how an unsteady bound vortex sheet induces a
pressure jump [[pγ ]]:

−[[pγ ]]n = ρn
DΓ
Dt

= ρ

(
ūπ × γb +

∂Γ

∂t
n

)
,

we obtain the force and moment on a rigid or flexible lifting surface:

Fγ = −
∫
Sb

[[pγ ]]ndS = ρ

∫
Sb

DΓ
Dt

ndS (11.42a)

= ρ

∫
Sb

ūπ × γb dS + ρ

∫
Sw

∂Γ

∂t
ndS, (11.42b)

Mγ = −
∫
Sw

[[pγ ]]x× ndS = ρ

∫
Sb

DΓ
Dt

x× ndS (11.43a)

= ρ

∫
Sb

x× (ūπ × γb) dS + ρ

∫
Sb

∂Γ

∂t
x× ndS, (11.43b)

where Sb is the area of the bound vortex sheet, i.e., the wing area. These
formulas are the basis of unsteady lifting-surface theory, which clearly reveal
the vortical root of pressure jump on a wing.

Then, in linearized approximation, the vortex sheet has known location as
we saw in the lifting-line theory. This greatly simplifies the above formulas
and leads one back to almost entire classic wing aerodynamics. For exam-
ple, it is easily verified that, the three-dimensional steady version of (11.42)
returns to (11.7), while its two-dimensional unsteady version returns to the
oscillating-airfoil theory. For details of these classic theories see, e.g., Prandtl
and Tietjens (1934), Glauert (1947), Bisplinghoff et al. (1955), and Ashley
and Landahl (1965).
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11.4 Boundary Vorticity-Flux Theory

Opposite to the global view implied by the vorticity moment theory, we now
trace the physical root to the body surface, where the entire vorticity field is
produced. Then, the derivative-moment transformation leads to the boundary
vorticity-flux theory as an on-wall close view.

11.4.1 General Formulation

Return to the incompressible flow problem stated in Sect. 11.1.1 (See Fig. 11.1),
but now start from (11.1a) and (11.2a) where F and M are expressed by the
body-surface integrals of the on-wall stress t and its moment, respectively.
Naturally, the desired local dynamics on ∂B that has net contribution to F
and M should follow from proper transformation identities for surface inte-
grals, which are given in Sect. A.2.3. To employ these identities we have to
decompose the stress t into normal and tangent components first. Because
the effect of ts has been integrated out, it suffices to deal with the orthogonal
components of the reduced stress t̂ = −pn + µω × n, see (2.149). Therefore,
using (A.25) and (A.26) to transform (11.1a), and using (A.28a) and (A.29)
to transform (11.2a), in three dimensions we immediately obtain (Wu 1987)

F = −
∫
∂B

ρx×
(
1
2
σp + σvis

)
dS, (11.44)

M =
∫
∂B

ρ

[
1
2
x2(σp + σvis)− xx · σvis

]
dS +MsB, (11.45)

where σp and σvis are the stress-related boundary vorticity fluxes defined in
(4.24b), and MsB is given by (11.3a). These formulas are the main result
of the boundary vorticity flux theory. If one wishes, MsB can be absorbed
into the first term of (11.45) by using the full normal and tangent stresses on
deformable surface, see (2.151). Therefore, we conclude that

For three-dimensional viscous flow over a solid body or a body of different
fluid performing arbitrary motion, a body surface element has net contribution
to the total force and moment only if the stress-related boundary vorticity
fluxes are nonzero on the element.

For example, for flow over sphere of radius R at Re
 1, the Stokes drag
law (4.59) can be quickly inferred from (11.44) by the vorticity distribution
(4.57a) alone, which has led to (4.60a).8 Thus, (4.59) follows at once, indi-
cating that the pressure force and skin-friction force provide 1/3 and 2/3 of
the total drag, respectively. On the other hand, by (11.45), for flow over any
non-rotating sphere at arbitrary Re, we simply have

M =
1
2
ρR2

∫
∂B

(σp + σvis) dS,

8 This involves only the near-wall vorticity distribution, regardless the failure of
the Stokes solution at far field.
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where by (4.24b) both σp and σvis are under the operator n×∇ and hence in-
tegrate to zero by the generalized Stokes theorem. Thus the sphere is moment-
free as it should. But if the sphere rotates the entire vorticity field will be
redistributed, and there will be a nonzero moment

M = µR2

∫
∂B

eR∇π · ω dS − 8πR3

3
µΩ.

The theory can be easily generalized in a couple of ways (Wu et al. 1988b;
Wu 1995; Wu and Wu 1993, 1996). Firstly, a simple replacement of pressure
p by Π = p− (λ+2µ)ϑ immediately extends the theory to viscous compress-
ible flow with constant µ. Here, expressing F and L by boundary vorticity
fluxes does not conflict the dominance of the compressing process in super-
sonic regime. Rather, due to the viscous boundary coupling via the no-slip
condition (Sect. 2.4.3), a shearing process must appear adjacent to the wall
as a byproduct of compressing process. For example, when a shock wave hits
the wall, the associated strong adverse pressure gradient will enter the bound-
ary vorticity flux through σΠ and hence causes a strong creation of vorticity
opposite to that upstream the shock, somewhat similar to case that the in-
teractive pressure gradient of O(Re1/8) in the boundary-layer separation zone
causes a strong peak of σp (Sect. 5.3). In other words, as an on-wall footprint
of the flow field, the boundary vorticity flux can faithfully reflect the effect of
compressing process on the wall.

Secondly, owing to the transformation identities in Sect. A.2.3, we can
consider the force and moment on an open surface, such as a piece of aircraft
wing or body, a turbo blade, or the under-water part of a ship. This extension
is done by simply adding proper line-integrals, including those due to ts given
by (2.152a,b). Thus, for incompressible flow, we may write

F = Fsurf + Fline, M = Msurf +Mline,

where Fsurf and Msurf are given by (11.44) and (11.45), respectively, while

Fline =
1
2

∮
∂S

x× (pdx+ 2µω × dx) + 2µ
∮
∂S

u× dx, (11.46)

Mline = −
1
2

∮
∂S

[x2pdx+ (x2I− 2xx) · (µω × dx)]

+2µ
∮
∂S

x× (u× dx). (11.47)

Note that with the help of these open-surface formulas, the (p,ω)-distribution
in (11.44) and (11.45) only needs to be piecewise smooth, because the bound-
ary line-integral of each open piece must finally be cancelled. This is useful
when the body surface has sharp edges, corners, or shock waves across which
the tangent gradients of Π and ω are singular.
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Thirdly, when µ is variable as in flows with extremely strong heat transfer,
a simple way to generalize the preceding formulas is to take µω as a whole,
including redefining the boundary vorticity flux as σd = n · ∇(µω) so it
has a dynamic dimension (denoted by superscript d), see Wu and Wu (1993).
Moreover, since now ∇·(2µB) �= 0 and the local effect of ts has to be included,
we should use (2.151) and define

σdΠ ≡ n×∇Π̃, σdvis ≡ (n×∇)× (µωr). (11.48)

Correspondingly, (11.44) and (11.45) are extended to

F = −
∫
∂B

x×
(
1
2
σd
Π̃
+ σdvis

)
dS, (11.49)

M =
∫
∂B

[
1
2
x2(σd

Π̃
+ σdvis)− xx · σdvis

]
dS, (11.50)

where density ρ as well as MsB in (11.45) has been absorbed into σds. This
generalization makes the resulting force and moment formulas have exactly the
same application range as that of the Navier–Stokes equation. Note that for
variable µ the Navier–Stokes equation has an extra term, see (2.160a), which
adds a viscous constituent σdµ ≡ 2n× (∇µ ·B) to the boundary vorticity flux
studied in Sect. 4.1.3. However, σdµ is not stress-related and does not explicitly
enter the force and moment.

Finally, two-dimensional flow on the (x, y)-plane needs special treatment.
We illustrate this by incompressible flow over an open deformable contour C
with end points a and b. The positive direction of a boundary curve is defined
by the convention that as one moves along it the fluid is kept at its left-
hand side. Thus, on body surface we let s increase along clockwise direction
such that (n,es,ez) form a right-hand triad. Then by (A.36) and (A.37), and
noticing that the two-dimensional version of (2.152a,b) is

∫ b

a

ts ds = 2µ(vex − uey)|ba, (11.51a)

∫ b

a

x× ts ds = 2µez

[
(x · u)|ba −

∫ b

a

us ds

]
, (11.51b)

we obtain

Fx = ρ

∫ b

a

(
−yσp + νx

∂ω

∂s

)
ds+ (yp− µxω + 2µv)|ba, (11.52a)

Fy = ρ

∫ b

a

(
xσp + νy

∂ω

∂s

)
ds− (xp+ µyω + 2µu)|ba. (11.52b)
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Moreover, for M = Mzez, as observed at the end of Sect. A.2.4 it is impossible
to express the boundary integral of x × (µω × n) = ezµω(x · n) by ∂ω/∂s.
Thus by (A.38) and (11.51b), the result is

Mz = ρ

∫ b

a

(
1
2
x2σp + νx · nω

)
ds− 2µ(xu+ yv)|ba + 2µ

∫ b

a

us ds. (11.53)

For a closed loop the last term is −2µΓC by our sign convention.

11.4.2 Airfoil Flow Diagnosis

While for Stokes flow the boundary vorticity flux distributes quite evenly, at
large Reynolds numbers it typically has high peaks at very localized regions
of ∂B, see the discussion following (4.94). It is this property in the high-Re
regime that makes the theory a valuable tool in flow diagnosis and control. So
far it has been applied to the diagnosis of aerodynamic force on several con-
figurations at different air speed regimes (Wu et al. 1999c), including airfoils
and delta wing-body combination in incompressible flow, fairing in transonic
flow, and wave rider in hypersonic flow. Zhu (2000) has demonstrated that
the σp-distribution can be posed in the objective function for optimal airfoil
design.

To demonstrate the basic nature of this kind of diagnosis, we now con-
sider the total force acting to a stationary two-dimensional airfoil by steady
incompressible flow. At Re  1 the contribution of skin friction can be ne-
glected. In the wind-axis coordinate system (x, y), (11.52) yields the lift and
drag formulas

L = ρ

∫
C

xσp ds, D = −ρ
∮
C

yσp ds. (11.54a,b)

For convenience let the origin of (x, y) be at the mid-chord point of the airfoil.
Then by (11.54a) a negative σ-peak implies a positive lift for x < 0 and
negative lift for x > 0. If for x < 0 there is a positive σ-peak on the upper
surface, say, it not only produces a negative lift but also tends to cause early
separation since it will be stronger as α increases. Moreover, the vorticity
created by this unfavorable σ adds extra enstrophy to the flow field, implying
larger viscous drag. Therefore, ideally one wishes the sign of σ over the upper
surface to be like that sketched in Fig. 11.9a without front positive σ-peak
and rear negative σ-peak on the upper surface.9 In the figure the sign of σ

9 Whether a boundary vorticity flux peak is favorable depends on the choice of
the origin of the coordinates. For example, shifting the origin to the trailing edge
would imply that negative boundary vorticity flux peaks on upper surface are all
favorable, but by (11.54a) the contribution to the lift of a rear peak is less than
that of a front one. However, this does not influence the net effect on the lift and
drag, and setting the origin at the mid-chord is most convenient.
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z z
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(b)(a)

Fig. 11.9. Idealized boundary vorticity flux distribution over airfoil. (a) The bound-
ary vorticity flux is completely favorable on upper surface. (b) An even more favor-
able boundary vorticity flux distribution

over the lower surface is qualitatively estimated by pressure gradient and the
constraint ∮

C

σp ds = −
∮
C

∂p

∂s
ds = 0. (11.55)

Given the favorable sign distribution of σp, however, (11.54a) indicates
that there is still a room to further enhance L by shifting the location of
σ-peaks. On the upper surface, the front negative σ-peak and rear positive σ-
peak will produce more lift if their |x| is larger, while on the lower surface these
peaks will produce less negative L if their |x| is smaller. This simple intuitive
observation suggests a modification of the airfoil shape of Fig. 11.9a to that
of Fig. 11.9b, which is precisely of the kind of supercritical airfoils originally
designed for alleviating transonic wave drag. The present argument indicates
that a supercritical airfoil must also have better aerodynamic performance at
low Mach numbers.

Quantitatively, consider the relation between σ and the airfoil geometry.
For steady and attached airfoil flow at large Re, this relation can be ob-
tained analytically in the Euler-limit by the potential-flow theory. Let C be
any streamline in the potential-flow region, of which the arc element ds has
inclination angle χ with respect to the x-axis, see Fig. 11.10. Thus, in terms
of complex variables z = x + iy and w = φ + iψ as used in deriving (11.10),
we have

dx = cosχds, dy = sinχds, dz = ds eiχ,

u = q cosχ, v = q sinχ,
dw
dz

= q e−iχ.
(11.56)

And, the tangent component of the Euler equation C reads

as =
1
2
∂q2

∂s
= −∂p

∂s
on C. (11.57)

Now, denote

ρ(z) = log q − iχ = log
(
dw
dz

)
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dy
ds

dx

χ

Fig. 11.10. Geometric relation of a contour C

such that
dρ
dz

=
dz
dw

d2w
dz2

=
1
2q2

dq2

dz
− i

dχ
dz

.

Then by using dz = ds eiχ and (11.57) we find eiχdρ/dz = q−2σp − iκ, where
κ ≡ dχ/ds is the curvature of C. But by (11.56) eiχ = q dz/dw, so

as
q3
− iκ

q
=
(
dz
dw

)2 d2w
dz2

on C.

Therefore, as/q3 and −κ/q are the real and imaginary parts of an analytical
function (which is known once so is dw/dz).

Finally, let the streamline C be the airfoil contour underneath the attached
vortex sheet where the no-slip condition still works and as drops to zero. But
the viscosity comes into play, producing a boundary vorticity flux σ to replace
as to balance the pressure gradient. Namely, we have

σp
q3
− iκ

q
=
(
dz
dw

)2 d2w
dz2

on airfoil, (11.58)

indicating that if q ∼ 1 then σp, or pressure gradient, is directly linked to
the local airfoil curvature.10 But strictly the σp–κ relation is nonlinear and of
global nature.

Equation (11.58) can be used to calculate σp over a realistic airfoil as
long as the flow is attached. Figure 11.11a shows the σ-distribution computed
thereby for a helicopter rotor airfoil VR-12 at α = 6◦, compared with the
Navier–Stokes computation at Re = 106 using an one-equation turbulence
model (Zhu 2000). The difference is very small except at the trailing edge,
where the “inviscid” σ approaches ±∞. But it can be shown that this singu-
larity is symmetric and precisely canceled in (11.54).

The VR-12 airfoil has higher maximum lift before stall and larger stall
angle of attack than a traditional airfoil, say NACA-0012. By (11.54a), the

10 This result can be compared with that in the linearized supersonic aerodynamic
theory, where the pressure is simply proportional to the local wall slope, as ex-
emplified by (5.56c′).
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Fig. 11.11. Boundary vorticity flux distributions on VR-12 airfoil (a) and a re-
designed airfoil (b). The design scheme sets a projective boundary vorticity flux
only in the marked local region. From Zhu (2000)
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major net contributor to the total lift is the primary negative σ-peak in a
very narrow region on the upper surface, right downstream of the front stag-
nation point. But the effect of the following positive σ-peak associated with
an adverse pressure gradient is unfavorable. Suppressing this front positive
peak should lead to an even better performance. By (11.55), this suppression
may also cause a favorable positive rear boundary vorticity-flux peak on the
upper surface.

This conjecture has been confirmed by Zhu (2000) using a simple optimal
design scheme, where the objective function includes minimizing the unfavor-
able σ in a front-upper region. Some airfoils with better σ-distributions were
produced thereby, of which one is shown in Fig. 11.11b associated with larger
stall angle and maximum lift coefficient.

11.4.3 Wing-Body Combination Flow Diagnosis

Compared to airfoils, much less has been known on the optimal shapes of
a three-dimensional wing. An interesting boundary vorticity-flux based diag-
nosis of a flow over a delta wing-body combination, see Fig. 11.12, has been
made by Wu et al. (1999c). The flow parameters are α = 20◦, M = 0.3, and
Re = 1.744× 106 ft−1.

The model has an infinitely extended cylindrical afterbody, so the flow
data on the body base were not available. Therefore, the body surface is
open, of which the boundary is a circle C of radius a on the (y, z)-plane at the
trailing edge. The line integrals in (11.46) have to be included; in the body-axis

24
.4

8
in

.

22.83 in.

65�

Fig. 11.12. A wing–body combination. From Wu et al. (1999c)
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coordinate system with origin at the apex, the extended force formula gives
(again ignore the skin-friction and denote σp simply by σ)

Fx =
1
2

∫
S

ρ(zσy − yσz) dS +
a2

2

∫ 2π

0

pdθ, (11.59a)

Fz =
1
2

∫
S

ρ(yσx − xσy) dS, (11.59b)

where S is the open surface of wing–body combination and tan θ = z/y. The
surface integral of (11.59a) is found to provide a negative axial force (thrust),
which is upset by the line integral, resulting in a net drag. The integrand pdθ
is zero except a pair of sharp positive peaks at the wing–body junctures. Thus
a fairing of the junctures would reduce the drag.

On the other hand, (11.59b) traces the normal force Fz to the root of the
leading-edge vortices, i.e., the root of the net free vortex layers shed from
the leading edges. These layers are dominated by the lower-surface boundary
layer but partially cancelled by the upper-surface boundary layer. Thus, the
σ on the upper and lower surfaces should provide a negative and positive
lift, respectively. Indeed, a survey indicates that the lower-surface gives about
200% of Fz, but half of it is canceled by the unfavorable σ on the upper
surface.

Moreover, it is surprising that σ is highly localized very near the leading
edges, as demonstrated in Fig. 11.13 by the distribution of ρ(yσx−xσy)/2 on
the contour of a cross-flow section at x/c0 = 0.24, where c0 is the root-chord
length. The data analysis shows that an area around the leading edges, only
of 1.7% of S, contributes to 104% of the total Fz. The remaining area of
98.3% S merely gives −4% of Fz. This diagnosis underscores the very crucial
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Fig. 11.13. (a) Sectional contour of the wing–body combination at x/c0 = 0.24.
(b)Boundary vorticity flux distribution. Solid line: lower surface, dash line: upper
surface. From Wu et al. (1999c)
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importance of near leading-edge flow management in the wing design. Should
the spanwise flow on the upper surface be guided more to the x-direction, not
only can it provide an axial momentum to reduce the drag but also the shed
vortex layers from the lower surface could be less cancelled. Then stronger
leading-edge vortices could be formed to give a higher normal force.

A different wing-flow diagnosis will be presented in Sect. 11.5.4.

11.5 A DMT-Based Arbitrary-Domain Theory

As a global view, the vorticity moment theory of Sect. 11.3 requires the data
of the entire vorticity field in an externally unbounded incompressible fluid,
but in flow analysis the available data are always confined in a finite and
sometimes quite small domain. As an on-wall close view, boundary vorticity-
flux theory of Sect. 11.4 requires only the flow information right on the body
surface (“footprint” and “root” of the flow field), but is silent about how the
generated vorticity forms various vortical structures that evolve, react to the
body surface, and act to other downstream bodies. The shortages of these
theories can be overcome by considering an arbitrary domain Vf , which has
resulted in the finite-domain extensions of the above two theories, given by
Noca et al. (1999) and Wu et al. (2005a), respectively.

The extension of vorticity-moment theory follows the same derivation of
(11.29) from (11.27), but with all vortical terms retained at an arbitrary Σ.
Like the original version, in this extension the rate of change d/dt is calcu-
lated after integration is performed. The results are convenient for practical
estimate of the force and moment acting to a body moving and deforming
in an incompressible fluid, using measured or computed flow data. A more
convenient formulation, obtained by a different DMT identity, will be given
in Sect. 11.5.4. In particular, these progresses have excited significant interest
in applying the new expressions to estimate the unsteady forces based on flow
data measured by the particle-image velocimetry (PIV).

In contrast, the extension of the boundary vorticity-flux theory to include
the flow structures in a finite Vf is characterized by shifting the operator d/dt
into relevant integrals. This shift permits a direct generalization of the results
to compressible flow, and makes it possible to quantitatively identify how
each flow structure localized in both space and time affects the total force
and moment, from a more fundamental point of view. The convenience of
practical force estimate is not a mojor concern. This formulation is presented
below. Once again we work on incompressible flow; as in Sects. 11.2 and 11.4,
the compressibility effect can be easily added.

11.5.1 General Formulation

The formulation is based on proper derivative-moment transformation of the
full expressions of F and M given by (11.1b) and (11.2b).
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Diffusion Form

We start from identity (3.117a) for the fluid acceleration, and set D = Vf with
∂D = ∂B + Σ. Substitute this into (11.1b) and replace ∇× a by ν∇2ω due
to (11.5). On ∂B, we recognize that n × a is the boundary vorticity flux σa

due to acceleration of ∂B, defined in (4.24a). On Σ, we use (11.4) as well as
identities (A.25) for n = 3 and (A.36) for n = 2 to transform n × a, which
makes the pressure integral in (11.1b) canceled. Therefore, we obtain (Wu and
Wu 1993)

F = −µ
k

∫
Vf

x×∇2ω dV + FB + FΣ , (11.60)

where FB and FΣ are boundary integrals over ∂B and Σ, respectively:

FB =
1
k

∫
∂B

ρx× σa dS, (11.61a)

FΣ = −µ
k

∫
Σ

x× [n× (∇× ω)] dS + µ

∫
Σ

ω × ndS. (11.61b)

Note that (11.61b) consists of only viscous vortical terms.
By using (A.24a), a similar approach to the moment yields

M =
µ

2

∫
Vf

x2∇2ω dV +MB +MΣ , (11.62)

where

MB = −1
2

∫
∂B

ρx2σa dS, (11.63a)

MΣ =
µ

2

∫
Σ

x2n× (∇× ω) dS+µ

∫
Σ

x× (ω × n) dS+MsΣ , (11.63b)

in which MsΣ is given by (11.3b).
Like FB and MB , the integrals of τ in FΣ and x×τ in MΣ can be further

cast to derivative-moment form as well, in terms of vorticity diffusion flux on
a surface given by (4.23) and (4.24). Then (4.22) implies

−n× (∇× νω) =
{
νn · ∇ω = σ for n = 2,
νn · ∇ω − (n×∇)× νω = σ − σvis for n = 3. (11.64)

Thus, for three-dimensional flow, by using (A.26) and (A.29) we obtain

FΣ =
1
2

∫
Σ

ρx× (σ + σvis) dS, (11.65)

MΣ =
1
2

∫
Σ

ρ(2xx · σvis − x2σ) dS +MsΣ . (11.66)

For flow with Re 1, generically |σvis| 
 |σ|.
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Equations (11.60) to (11.66), characterized by the moments of µ∇2ω, can
be called the diffusion form of the arbitrary-domain theory. It is easily seen
that they hold true for compressible flow with constant µ as well. These for-
mulas reveal explicitly the viscous root behind the classic circulation theory.
The direct contribution of the body motion and deformation to the force and
moment amounts to the moments of σa, which is solely determined by the
specified b(x, t) and independent of the flow.

In contrast, for two-dimensional flow on the (x, y)-plane, apply the con-
vention and notation defined in Sect. 11.4.1 to Σ, from (11.64) and a one-
dimensional derivative-moment transformation we obtain the drag and lift
components:

DΣ = µ

∮
Σ

(
y
∂ω

∂n
− x

∂ω

∂s

)
ds,

LΣ = −µ
∮
Σ

(
y
∂ω

∂s
+ x

∂ω

∂n

)
ds,

(11.67)

indicating that the local dynamics on Σ is reflected by the vorticity gradient
vector ∇ω. But, for MΣ = MΣez, due to the same reason as that leading to
(11.53), we stop at

MΣ = µ

∮
Σ

(
1
2
x2

∂ω

∂n
+ x · nω

)
ds− 2µΓΣ . (11.68)

For flow with Re 1, generically |∂ω/∂s| 
 |∂ω/∂n| in (11.67) and (11.68).

Advection Form

Owing to (11.5), ν∇2ω in (11.60) and (11.62) can be replaced by∇×a = ω,t+
∇× l, where (·),t = ∂(·)/∂t and l ≡ ω×u is the Lamb vector. Therefore, the
force and moment can be equally interpreted in terms of the local unsteadiness,
advection, and stretching/tilting of the vorticity field in Vf . But to retain the
vortex force as in (11.30), we switch to identity (3.117b) that has led to the
force formula (11.27). A corresponding formula for the moment can be derived
from identity (A.24a). Consequently, (11.60) and (11.62) can be alternatively
expressed as

F = −ρ
∫
Vf

(
1
k
x× ω,t + l

)
dV − ρ

k

∫
∂Vf

x× (n× l) dS

+FB + FΣ , (11.69)

M = ρ

∫
Vf

(
1
2
x2ω,t + x× l

)
dV +

ρ

2

∫
∂Vf

x2n× l dS

+MB +MΣ , (11.70)
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where n × l is given by (11.28). We call this set of formulas the advection
form of the general derivative-moment theory. The splitting of the moments
of µ∇2ω into three inviscid terms (two volume integrals and one boundary
integral) further decomposes the physical mechanisms responsible for the total
force and moment to their most elementary constituents. The role of the vortex
force and the boundary integral of x× (n× l) will be addressed in Sect. 11.5.4
for steady flow. To have a feeling on the role of x×ω,t, consider a fish B just
starting to flap its caudal fin for forward motion so that |ω| is increasing, as
sketched in Fig. 11.14. Putting the other terms in (11.69) aside, based on the
sign of x and y we can readily infer the qualitative effect of the tail swinging
on the thrust and side force of the fish as indicated in the figure.

Due to the arbitrariness of the domain size, the theory can be applied to
obtain the force and moment acting on any individual of a group of deformable
bodies, which may perform arbitrary relative motions.

Now, as remarked earlier, as long as we use the full expression (11.69)
to replace (11.27) and repeat the same steps there, a fully general version
of (11.29) follows at once as the main result of the finite-domain vorticity
moment theory (Noca et al. 1999). The original vorticity moment theory (J.C.
Wu 1981) is then a special case of it as Σ retreats to infinity where the fluid
is at rest. On the other hand, as Σ shrinks to the body surface ∂B, what
remains in (11.60) and (11.62) is

F = FB + FΣ , M = MB +MΣ ,

where the normal vector n on Σ now equals n̂nn = −n. Hence, substituting
(11.61), (11.63), (11.65), and (11.66) into the above expressions, and using
(4.23) and (4.24), we recover (11.44) and (11.45) of the boundary vorticity-flux
theory for three-dimensional flow at once. The proof for two-dimensional flow
is similar. A unification of various DMT-based theories is therefore achieved.
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Fig. 11.14. A qualitative assessment of the effect of unsteady vorticity moments
on the total force and moment
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The Effect of Compressibility

By an inspection of the structure of (11.69) and (11.70) as well as a comparison
of (11.4) and (11.13), we find that to generalize these formula to compressible
flow it suffices to make simple replacements

ρω × u =⇒ ρω × u− 1
2
q2∇ρ, ρω,t =⇒ ∇× (ρu,t).

This leads to

F = −1
k

∫
Vf

x×∇× (ρu,t) dV −
∫
Vf

(
ρl− 1

2
q2∇ρ

)
dV

−1
k

∫
∂Vf

x×
[
n×

(
ρl− 1

2
q2∇ρ

)]
dS + FB + FΣ , (11.71)

M = −1
2

∫
Vf

x2∇× (ρu,t) dV −
∫
Vf

x×
(
ρl− 1

2
q2∇ρ

)
dV

+
1
2

∫
∂Vf

x2n×
(
ρl− 1

2
q2∇ρ

)
dS +MB +MΣ . (11.72)

The analogy between (11.71) and (11.16) is obvious. By using the numerical
scheme developed by Chang and Lei (1996a) in their diagnosis of transonic vis-
cous flow over circular cylinder based on the projection theory (Sect. 11.2.2),
a similar diagnosis has been performed by Luo (2004) based on (11.71), for
which Σ can be quite small. The flow remains steady in the computed Mach-
number range M ∈ [0.6, 1.6]. Among Luo’s results an interesting finding is
that the compressing effect −q2∇ρ/2 prevails over the vortex force ρω × u
at the same subsonic Mach number as Chang and Lei found, and that the
vortex force changes from a drag to a thrust at the same supersonic Mach
number as Chang and Lei found. These qualitative turning points, therefore,
are independent of the specific local-dynamics theories.

11.5.2 Multiple Mechanisms Behind Aerodynamic Forces

In addition to the global view represented by the vorticity moment theory and
the on-wall close view represented by the boundary vorticity flux theory, the
present arbitrary-domain theory further enriches one’s views of the physical
mechanisms that have net contribution to the force and moment. How this is so
has been exemplified byWu et al. (2005a), using the unsteady two-dimensional
and incompressible flow over a stationary circular cylinder of unit radius at
Re = 500 based on diameter. The flow field was solved numerically using a
scheme developed by Lu (2002). An instantaneous plot of vorticity contours,
in which the Kármán vortex street is clearly seen, is shown in Fig. 11.15. Since
the computational domain does not cover the entire vorticity field, the figure
represents a mid-field view.
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Fig. 11.15. An instantaneous vorticity contour (from −20 to 20 with increment
0.25) of flow over circular cylinder. In this and following figures solid and dashed
lines represent positive and negative values, respectively. From Wu et al. (2005a)

It is well known that the unsteady force and moment acting to the cylin-
der are associated with the motion of the vortex street. However, as pointed
out in Sect. 11.1, this common flow-visualization plot (along with the plots of
velocity field and pressure contours, etc.,) does not tell precisely which part of
each vortex in the street has a positive, negative, or zero instantaneous contri-
bution to the total drag and lift. This information can only be found from the
integrand distributions of the derivative-moment formulas (as well as those
of the projection-theory of Sect. 11.2), obtained by a simple postprocessing of
the flow data. Let us focus on the total drag and lift.

Take Σ as concentric circles of varying radius R. In the following expres-
sions the integrands of field integrals are expressed in Cartesian coordinates,
while those in boundary integrals in polar coordinates (r, θ). Then (11.60)
yields

D(t) = −µ
∫
Vf

y∇2ω dS + µR2

∮
Σ

(
∂ω

∂r
sin θ − 1

R

∂ω

∂θ
cos θ

)
dθ

= D1 +D2 +D3, (11.73a)

L(t) = µ

∫
Vf

x∇2ω dV − µR2

∮
Σ

(
∂ω

∂r
cos θ +

1
R

∂ω

∂θ
sin θ

)
dθ

= L1 + L2 + L3, (11.73b)

where and below D1, ..., L3 etc. denote corresponding integrals symbolically.
In these formulas, by (11.69) there is

D1 =
∫
Vf

ρ

(
−y ∂ω

∂t
+ vω

)
dS +R

∮
Σ

ρωur sin θ dθ

= D4 +D5 +D6, (11.74a)

L1 =
∫
Vf

ρ

(
x
∂ω

∂t
− uω

)
dS −R

∮
Σ

ρωur cos θ dθ

= L4 + L5 + L6. (11.74b)
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In particular, when Σ shrinks to the cylinder surface at r = 1, (11.73) reduces
to the boundary vorticity-flux formulas

D = (D2 +D3)r=1, (11.75a)
L = (L2 + L3)r=1. (11.75b)

Equations (11.73–11.75) form a set of derivative-moment formulas for the
force diagnosis, each yielding a special insight into the physics responsible for
D and L. Below we look at the distributions of their integrands.

Mid-Field View

The inviscid decompositions of D1 and L1 given by (11.74) are shown in
Figs. 11.16 and 11.17, respectively. As a mid-field view, these plots exhibit the
same vortex structures as Fig. 11.15. But, due to the sign change of ω,t, v and
y, as a vortex passes a spatial point x the contribution of a single wake vortex
may be split into two or even four pieces. It is this further identification of
the net effect of every piece of a vortex constitutes the additional information
carried by the local dynamics of the wake field. Note that the integrand of L4,
i.e., the unsteady term ρxω,t, does not reduce as x increases (see Fig. 11.16a).
But this does not matter since in a finite domain the integral-convergence
problem does not exist, while when Σ retreats to infinity the theory becomes
the vorticity-moment theory with well-behaved convergence.

Near-Field View

Although mathematically the diffusion form (11.60) is exactly equivalent to
the advection form (11.69), for a flow at large Reynolds numbers that is our
main interest the flow regions where the peak integrands of these alternative
forms are very different. In the well-developed wake vortices µ|∇2ω| has be-
come quite weak, but it is very strong in boundary layers and free shear layers,
across which µ|∇2ω| � µ|ω,nn| reaching O(1). While in the advection form
one already sees highly localized wake-vortex structures, in the diffusion form
the key contributors to F and M are even more compact. Consequently, for
flow with Re 1, switching from the advection form to diffusion form implies
tracking the more upstream vortical structure of those shown in Fig. 11.15.
An observer watching the diffusion form naturally gains a near-field view, as
demonstrated by Fig. 11.18 that shows the field of the integrand of D1 and L1.

It is remarkable that, as a sharp contrast to Figs. 11.16 and 11.17, accord-
ing to (11.73) the near-field boundary layers and separated shear layers right
before the formation of the Kármán vortex street have about 90% of the net
contribution to D and L. Each free vortex layer exhibits a sandwich structure
because across such a layer ω,nn changes sign twice. Once a concentrated wake
vortex is formed and sheds downstream with its feeding sheet being cut off, it
joins the rows of wake vortices which as a whole have only about 10% direct
contribution to the forces.
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Fig. 11.16. Distribution of integrand of (a) D4 from −5 to 5 with increment 0.5;
(b) D5 from −5 to 5 with increment 0.25; and (c) D6 from −2 to 6 with increment
0.2. The θ-variation of the integrand of D6 depends on R, which can be qualitatively
read off in (c) from the intersections of the field distribution and a few concentric
circles. From Wu et al. (2005a)

The vortices in the vortex street are all product of the rolling-up of these
separated shear layers, and Fig. 11.18 convincingly indicates that (11.60) can
indeed trace the key local dynamic structures for the total force toward their
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Fig. 11.17. Distribution of integrand of (a) L4 from −25 to 25 with increment
0.5; (b) L5 from −10 to 10 with increment 0.5; and (c) L6 from −40 to 40 with
increment 2. The θ-variation of the integrand of L6 can be qualitatively read off
similar to Fig. 11.16c. From Wu et al. (2005a)

origin, a task that cannot be achieved by standard formulas. Of course, the
Kármán street does strongly influence the total force; but its major effect is
indirect through its induced unsteadiness of the flow, including the periodic
swing of the peak ∇2ω in near-field vortex layers.
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10 with increment 0.5. From Wu et al. (2005a)

On-Wall Close View

If the radius of Σ is R0 = 1 + δ with δ 
 1 such that Vf is well within
the sublayer of the boundary layer adjacent to the cylinder and the flow
therein is dominated by diffusion, then FΣ contributes to almost all F and
the Stokes approximation (Sect. 4.2.1) can be applied in a way very similar
to that discussed in Sect. 11.4.1. The result is actually independent of R0

and equal to that obtained by (11.75) since the radius is canceled during
integration. Therefore, to the above physical pictures we may add Fig. 11.19,
which shows the θ-variation of the two terms in (11.75a,b) as the on-wall
close view. Recall that the normal and tangent components of ∇ω are from
respectively the pressure gradient (σ = σp) and skin-friction, and the former
is much stronger than the latter, it is still the moments of σ that dominate the
drag and lift. We have seen in the context of Fig. 4.12 that the sign change of
σp signifies that the boundary layer is about to separate; now x = cos θ and
y = sin θ in (11.75) add additional sign changes of the integrand in D and L,
resulting in their different θ-dependence.

Notice the physical relation between Figs. 11.18 and 11.19. The boundary
layers and their separation in the former are the spatial and temporal accu-
mulated effect of the boundary vorticity fluxes in the latter (Sect. 4.2.3). This
could be clearly seen by comparing a time sequence of both kinds of figures.

The above discussions have shown how different views capture different
stages of the evolution of the same vorticity field, and how the physics of these
stages are consistent and complementary to each other. Taking together, they
form a complete multidimensional picture of the mechanisms responsible for
the force and moment.

It should be stressed that a vortical structure favorable to the force and
moment at one of its evolution stage may become unfavorable at another
stage, although in terms of the flow data at any stage one can always infer
the same force and moment. Therefore, as yet another evolution view, one
may trace the motion of each individual structure (or a group of structures),
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observing its “role switch,” and assess its merit. Such a thorough quantitative
assessment would be very beneficial in creating new configurations and flow-
control strategy.

11.5.3 Vortex Force and Wake Integrals in Steady Flow

We now return to classic aerodynamics on steady flow over a stationary rigid
body. Assume the Reynolds number is sufficiently large, all the attached
boundary layers of the body are enclosed by Σ which only cuts vortical flow
in the wake. The preceding example of circular-cylinder flow has indicated
that in the fully developed wake region the viscous vorticity gradient is much
smaller than O(1). This is generally true in high Reynolds-number steady
aerodynamics, and right on Σ one can neglect the effect of µ∇ω compared to
the pressure force; namely, the entire FΣ and MΣ in (11.69) and (11.70) can
be dropped.11 Therefore, since FB and MB also vanish, we simply have

F = −ρ
∫
Vf

l dV − ρ

k

∫
Σ

x× (n× l) dS (11.76a)

= −ρ

k

∫
Vf

x× (∇× l) dV = −µ
k

∫
Vf

x×∇2ω dV, (11.76b)

M = −ρ
∫
Vf

x× l dV +
ρ

2

∫
Σ

x2n× l dS (11.77a)

=
ρ

2

∫
Vf

x2∇× l dV =
µ

2

∫
Vf

x2∇2ω dV. (11.77b)

11 This does not imply the neglect of viscosity inside Vf . It is the accumulated effect
of the viscous force in Vf that forms the dominant feature of the wake.
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Fig. 11.20. Control volume V in which the flow is steady, wake plane W , and its
vortical part Wv. From Wu and Wu (1996)

Therefore, for steady flow at large Re, no transverse Lamb vector, no force
and moment.

Let us concentrate on the force given by (11.76) and consider a wing flow
schematically drawn in Fig. 11.20. The oncoming flow has uniform velocity
U = Uex in the wind-axis coordinate system (x, y, z). The flow in a cylindrical
control volume V is assumed steady and symmetric with respect to the (x, z)-
plane. V has sufficiently remote side boundary S and a downstream boundary
W on the (y, z)-plane (a Wake plane) at an arbitrary fixed x location with
n = ex there, such that the vorticity can be set zero over Σ except a small
vortical part of W , Wv 
 W . Hence, in (11.76a) the Σ-integral reduces to a
Wv-integral.

One’s concern in the flow property on a wake-plane is mainly from experi-
mental aerodynamics. It has long been hoped that for steady flow a wake-plane
survey may permit inferring the lift and drag on the body as an alternative to
the balance measurement and the very difficult measurement of body-surface
skin friction. For example, the approximate lift formula (11.38) has been used
for decades. In what follows we use (11.76a) to address three problems of
considerable practical interest. We denote

u = (U + u′, v, w), p = p∞ + p′. (11.78)

On the Distinction of Induced and Profile Drags

In steady flow, the drag consists of induced drag (see (11.7b)) and profile drag.
The latter is associated with the shedding of low-energy viscous boundary-
layer flow into the wake. Unlike the lift and induced drag which exist even in
the Euler limit (Re → ∞), the profile drag appears only at finite Re. How
to rationally distinct the two drag constituents for a general nonlinear and
viscous flow is important, since to alleviate them one has to use different
methods based on their respective physical roots (cf. Kroo 2001).
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Consider the Euler limit first, where the vortex-sheet Lamb vector (Sects.
4.4.1 and 11.3.3) in steady flow is nonzero only in the “bound vortex,” i.e.,
the boundary layers attached to the wing. Thus, in (11.76a) the Wv-integral
disappears, and we see at once that the vortex force must be the only source
of both lift and induced drag:

L = −ρ
∫
V

lx dV = ρ

∫
V

(uωy − vωx) dV, (11.79a)

Din = −ρ
∫
V

ly dV = ρ

∫
V

(vωz − wωy) dV. (11.79b)

In fact, from these formulas one may easily deduce (11.7a) and (11.7b) as
linearized approximation.

We can also recover (11.38) from the vortex force, by using (A.22):

−ρ
∫
Vf

l dV � ρU ×
∫
Vf

ω dV = ρUez

∫
Wv

yωx dS. (11.80)

Note that, as a mid-field view, here the relevant vortex dynamics mechanism is
more upstream than that in deriving (11.38) based on the global view. While
in the latter we focused on the increase of the vortex-loop area, now we are
focusing on the vorticity inside the wing boundary layers. This is evident in
two-dimensional flow, for which (11.5) directly follows from (11.79b) without
appealing to the starting vortex.

The induced drag can also be approximately expressed by a wake-plane
integral. Similar to the derivation of (11.7a) from (11.38), by (11.9) and the
same one-dimensional derivative-moment transformation for Γ used there,
since the integral of wd(yΓ )/dy vanishes due to the symmetry, (11.7b) is cast
to (Wu et al. 2002)

Din = −ρ
∫ s

−s
yw(y)γ(y) dy, (11.81a)

which is the vortex-sheet form of a more general wake integral for distributed
vorticity, in pair with (11.38):

Din � −ρ
∫
Wv

ywωx dS. (11.81b)

We now turn to the finite-Re effect reflected by the boundary integral of
(11.76), which is a wake integral of

x× (n× l) = ex(x · l)− xl = ex(xπ · l)− xlπ,

where the suffix π denotes the (y, z) components tangent to W . On W the
Lamb vector can be replaced by the total-pressure gradient due to the steady
Crocco equation

ρω × u = −∇P, P ≡ p+
1
2
ρq2, (11.82)
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of which both sides approach zero simultaneously in the Euler limit. Since
x = xw is fixed and ∇P = ∇P ′ where P ′ = P − P∞ vanishes at ∂W , the
integral of ρxlπ = −x∇πP ′ over W vanishes. Thus, the wake integral yields
a drag only, which is the profile drag:

Dprof = −
ρ

k
ex

∫
Wv

xπ · l dS (11.83a)

= −ex

∫
Wv

P ′ dS. (11.83b)

Equation (11.83b) is the exact formula for deducing the profile drag from
the measured total-pressure deficit over Wv. Its vorticity-dynamics origin is
revealed by (11.83a): the nonBeltramian behavior of the viscous flow at finite
Re. To see relevant mechanisms explicitly, denote the Euler-limit values of l,
ω, and u by suffix 0 and their residual values at finite Re by a tilde, so that

l̃ = ω0 × ũ+ ω̃ × u0 + ω̃ × ũ.

we may then replace l in (11.83a) by l̃, and find a leading-order cause of the
profile drag

Dprof �
ρ

k
U

∫
Wv

(zω̃y − yω̃z) dS. (11.84)

As shown in Fig. 11.21, the wing boundary layers from upper and lower sur-
faces have positive and negative ω̃y, respectively, which merge at the trailing
edge and form a wake of finite thickness, with zω̃y > 0. This is the entire
Dprof in two dimensions. In three dimensions the side edges of the wing also
have boundary layers, which yields −yω̃z > 0 at both sides.

On the Forces by Vortical-Wake Integrals

It has been highly desired to express, if possible, the forces by integrals only
over the vortical part of the wake plane, Wv 
 W , because the entire W is

a

z y

x

Fig. 11.21. Viscous sources of profile drag according to (11.84)
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often too large to make a velocity survey. We have just seen that the profile-
drag formula satisfies this need. To see to what extent the lift and induced
drag can be likewise expressed, we first notice that the vortex force can be
cast to an integral over a full W . By using the mass conservation one has the
balance of momentum-flux through W and side boundary S (Batchelor 1967):∫

S

uun dS = −ex

∫
W

Uu′ dS,

by which and identity (3.69) one transforms (11.79) to (Yates and Donaldson
1986)

L = −
∫
W

uw dS, Din =
1
2

∫
W

(q2π − u′2) dS, (11.85)

where q2π = v2 + w2. Note in passing that substituting these and (11.83) into
(11.76), we recover the conventional wake integrals for lift and drag, which
are a component form of (2.74) and have been the standard starting point of
flow diagnosis by experimentally measured wake data:

L = −ρ
∫
W

uw dS, (11.86a)

D =
∫
W

[(p∞ − p) + u(U − u)] dS. (11.86b)

However, (11.85) no longer has vortical form nor exhibits local dynamics.
Unfortunately, there is no other way but the kinematic identity (3.69) to cast
the Lamb-vector volume integral to boundary integral. Therefore, in exact
form one has to be satisfied with either the compact vortical form (11.76)
but allowing for volume integral, or wake integrals (11.85) over a large W .
In other words, it is impossible to exactly express the lift and induced drag by
any wake integrals over the vortical region only.

Nevertheless, some approximate formulas solely in terms of integrals over
Wv are available. For the induced drag, so far the best result is the leading-
order approximation (11.81b). For the lift, the best result follows from trans-
forming (11.86b) by identity (A.26) (Wu and Wu 1989):

L = ρ

∫
Wv

y[uωx − (vωy + wωz)] dS + ρ

∫
W

(wv,x − vw,x) dS, (11.87)

of which the leading order is (11.80) or again (11.38). The second integral in
(11.87) represents a small near-field correction to ensure the lift is independent
of x, of which the integrand is not confined to Wv.

Equation (11.87) has been applied to the diagnosis of a steady incom-
pressible flow over a delta wing with leading-edge vortices, based on the
measured data over a wake plane near the trailing edge (Wu et al. 1996).12

12 In Wu and Wu (1989) and Wu et al. (1996) the drag formula is in error.
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Fig. 11.22. Spanwise distribution of normal force and its vortical constituents over
a half delta wing. From Wu et al. (1996)

The wing has sharp leading edge of 76◦ sweeping angle, and is at α = 20◦ and
Re = 1.14× 106 ft−1. With coordinates fixed to the wing, the wake plane W
is at x/c = 0.075 downstream of the trailing edge, on which a set of measured
data of (u, v, w, p, P ) for half wing was utilized to infer the three vorticity
components. The data show a strong leading-edge vortex, of which the core
axial velocity is as high as u = 1.8U . This is the key structure of producing
the normal force along with a negative axial force.

Figure 11.22 shows the spanwise normal load distribution from wing cen-
terline to wing tip (integration along z has been performed) computed from
(11.87). Also shown are separate contributions from ωx, ωy, and ωz in its
Wv-integral. The vortical wake integral of yuωx is dominant, leading to a lo-
cal peak of lift/drag ratio of order 10 at the leading-edge vortex location. A
weaker peak of normal load appears outside the wing tip, which is the place
where boundary layers (dominated by that from the lower surface) leave the
wing, with very low total pressure and hence a large axial force. The local
Cl/Cd there is only of order one. Therefore, a better aerodynamic performance
would be gained if the wing tip is properly cut off, as in many successful wing
designs.

Forces in Terms of Flow Data Downstream of a Wake Plane

There are occasions where the flow-field survey can hardly be done around
the body, and what one can measure is only a downstream wake. Hence, it is
of interest to see whether an observer sitting in such the wake, without seeing
the flow around body at all, can still infer exactly the same F as (11.86). We
show that the answer is positive.

Use a wake plane W to cut the whole space V∞ into a “front” and a
“rear” control volumes, V and R, respectively, see Fig. 11.23. Conceive that
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V
W R

Fig. 11.23. The “front” and “rear” control volumes V and R divided by a wake
plane W , with V +R = V∞

a front observer A and a rear observer B can only see the flows in V and R,
respectively. Kinematically, the two observers are linked by relations∫

V

ω dV =
∫
Wv

ωxx dS,
∫
Wv

ωx dS = 0, (11.88)∫
R

l(x, t) dV = −
∫
V

l(x) dV. (11.89)

Dynamically, their bridge can be found from the vorticity-moment formula
(11.48), by which it easily follows that

F = −ρ
(
dIV
dt

+
dIR
dt

)
= −ρ∂IR

∂t
. (11.90)

Shifting ∂/∂t into the integral over R and using (A.23) to manipulate the
result, since viscous terms are dropped on W , (11.90) becomes

F = ρ

∫
R

l dV +
ρ

2

∫
Wv

x× (n̂nn× l) dS, n̂nn = −ex, (11.91)

which is evidently nothing but (11.76) due to (11.89). Physically, the rear ob-
server sees that at the upstream end of R there comes a vortex pair satisfying
(11.88), carrying a flux of vorticity moment into R through Wv via the second
term of (11.91). This vortex pair is connected to the starting-vortex system
to form an unsteady horseshoe vortex, and the area spanned by the vortex
(cut by Wv) is increasing as shown by (11.90), which implies the vortex force
in (11.91).

11.5.4 Further Applications

Before closing this section, we present two more applications of the derivative-
moment transformation. We first extend our discussion on experiment-oriented
force formulas to unsteady flow. We have seen that to obtain exact lift and
drag in steady flow, the minimum requirement is to survey at least a large area
of a wake plane where u′ �= 0. The question now is what is the corresponding
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minimum requirement if the flow around the body is unsteady. Experimental
survey on a wake plane is certainly insufficient since the flow unsteadiness
propagates to all directions. Thus we go to the next: How about on a control
surface enclosing the body?

It has been believed that the answer is negative due to the extra volume
integral of ∂u/∂t. Moreover, even if one can make the flow survey in a finite
domain rather than merely on a wake plane, the gathered data may still be
unable to fulfill the entire Vf . For example, PIV can hardly detect the velocity
distribution adjacent to the body surface.

Contrary to the conventional idea, however, we now show that the force
formula by control-surface integral alone can be easily found once we enter the
DMT-based formulation, as first shown by Noca et al. (1999). Here we follow
Wu et al. (2005d), starting from (11.1c). When the flow is incompressible, an
application of (A.22) to its first term immediately yields the desired result:

F = −ρ d
dt

(∫
∂B

xbn dS +
∫
Σ

xun dS
)
−
∫
Σ

[pn+ρu(un−vn)−τ ] dS. (11.92)

Alternatively, by (A.25) and (11.4) we have

−
∫
Σ

pndS = −ρ

k

∫
Σ

x× (n× a) dS − µ

k

∫
Σ

x× [n× (∇× ω)] dS,

where the second term and the integral of τ in (11.92) just combine to form
FΣ given by (11.65) or (11.67). Therefore, the involvement of pressure can be
replaced by that of acceleration:

F = −ρ d
dt

(∫
∂B

xbn dS +
∫
Σ

xun dS
)
− ρ

k

∫
Σ

x× (n×a) dS+FΣ . (11.93)

For a specified body motion, since the PIV can yield the material acceleration
a (e.g., La Porta et al. 2001; Christensen and Adrian 2002) on Σ, by which
the pressure can be inferred (e.g., Liu and Katz 2004), the unsteady force can
be deduced from (11.92) or (11.93).

Unfortunately, for the total moment a formula corresponding to (11.92)
does not exist, since x×u is not divergence-free even for incompressible flow.

Equations (11.92) and (11.93) have been verified by numerical tests. One
example is a two-dimensional uniform oncoming flow U = Uex past a de-
formable airfoil at Re = 104, of which the centerline oscillates as a traveling
wave

y = a(x) sin[2π(x− ct)], (11.94)

where the amplitude a(x) is a parabolic curve. The deformable airfoil is shown
in Fig. 11.24, along with three different deformable control surfaces. Fig-
ure 11.25 is an instantaneous vorticity contour plot at phase speed c/U = 0.5,
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Fig. 11.25. An instantaneous vorticity contour plot for c/U = 0.5. Courtesy of Lu

and in Fig. 11.26 we plot the varying drag and lift computed by (11.92) and
(11.93) over a period for the three Σ-locations at this phase speed. For com-
parison the result computed by (11.1a) is also shown. This example confirms
the correctness of the derivative-moment formulas and the Σ-independent of
of the results. The drag will become a thrust when c/U > 1 (not shown).

The second example is a local-dynamics diagnosis of the internal incom-
pressible flow in a turbofan compressor, where the performance is no longer
characterized by force and moment but the derivative-moment transformation
can still be applied. After passing a row of rotor blades of angular velocity Ω
about the z-axis, the fluid gains pressure and is slowed down at the exit. We
analyze the flow in a domain V consisting of a passage between two neigh-
boring blades. Let the inlet plane at z = z0 and exit wake plane at z = z1 be
perpendicular to the z-axis, and denoted by S0 and S1, respectively. Then a
key stationary performance parameter is the total-pressure ratio, which should
be as high as possible:

β ≡ 1
S1P∞

∫
S1

P dS, P ≡ p+
1
2
ρq2, (11.95)
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Fig. 11.26. The time history of drag and lift coefficients of the flexible airfoil for
c/U = 0.5, computed by (11.1a), (11.92), and (11.93) for three deformable Σi,
i = 1, 2, 3. The curves computed by these formulas are marked by standard, DMT1,
and DMT2, respectively. From Wu et al. (2005d)

where q = |u| and the overline denotes the time average over a cycle. Another
stationary performance parameter is the compressor efficiency η, which we
define based on (2.76):

η ≡ 1
ΩMz

(∫
S1

Puz dS − P∞US0

)
, (11.96)

where Mz is the moment acting to the flow by the rotating blade. Since on
both the solid blade/hub surface and the exit plane S1 the work rate done by
pressure force is much larger than that done by viscous stress, the latter is
neglected. Puz represents the total-pressure flux entering into the combustor.
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Now, to find the local flow structures that influence the total-pressure radio
β, we use cylindrical coordinates (r, θ, z) and write dS = r dr dθ in (11.95).
Since for any function f(r, θ, z, t) there is

fr =
1
2
∂

∂r
(fr2)− r2

2
∂f

∂r
,

we can make an one-dimensional derivative-moment transformation:∫
S1

Pr dr dθ =
1
2

[∫ 2π

0

(PsR
2
s − PhR

2
h)z1 dθ −

∫
S1

r2
∂P

∂r
dr dθ

]
, (11.97)

where r = Rs(z) and r = Rh(z) define the generators of the shroud and hub,
respectively, and

Ps ≡ P (Rs, z1, θ) = p(Rs, z1, θ), (11.98a)
Ph ≡ P (Rh, z1, θ) = p(Rh, z1, θ) +R2

hΩ
2 (11.98b)

due to the adherence condition. It is now evident that the local dynamics
enters the last term on the right-hand side of (11.97), through the momentum
equation (11.4). Hence, (11.95) is cast to

β =
1

2S1P∞

[∫ 2π

0

(P sR
2
s − P hR

2
h)z1 dθ +

∫
S1

ρr(ωθuz − ωzuθ) dS
]
, (11.99)

which clearly reveals that, except the boundary line integrals, the key mech-
anism is the r-component of the Lamb vector. A similar derivative-moment
transformation can be made for the integral of Puz in determining the effi-
ciency η, see (11.96):∫

S1

Puz dS =
1
2

∫
S1

r

[
ωθ(ρu2z + P )− ρuzuθωz − P

∂ur
∂z

]
dS. (11.100)

On the other hand, applying (11.45) along with (11.47) to the open surface
of the blade, after neglecting the viscous stresses we obtain

Mz = −
1
2

∫
Sb

ρr2σpz dS +
1
2

∮
∂Sb

pr2 dz, (11.101)

where Sb is the area of the blade surface with ∂Sb being its boundary line at
the juncture with the hub. Therefore, a simultaneous analysis of the integrand
of β, η, and M forms a basis of local-dynamics diagnosis and can fill the gap
between conventional analysis and blade design. the extension to compressible
flow is straightforward.

Li and Guo (2005) have applied (11.99) and (11.100) to diagnose the blade
design of a test model of low-speed compressor. Under the design condition,
the rotational speed is 3000 rpm, total-pressure ratio was 150mm (water),
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total mass flux was 2.4m3 s−1, and efficiency was 85%. They found that
the dominant local-dynamics mechanism in both (11.99) and (11.100) is a
strong ωθ > 0, of which the best favorable effect occurs at large r, i.e.,
near the shroud. By a Reynolds-averaged Navier–Stokes computation, Li and
Guo observed a quite uniform distribution of the total-pressure flux Puz
across a sectional plane at the blade trailing edge, but this performance was
deteriorated under small-flux condition and became the worst when stall
occurred. The corresponding distributions of ωθ indicated that the efficiency
drop is associated with the accumulation of large ωθ toward the region of
smaller r. Based on this diagnosis and using (11.101), then, Li and Guo con-
ducted a redesign of the blade shape, see Fig. 11.27, which improved signifi-
cantly the uniformity of the ωθ-distribution under the off-design conditions.

(a) (b)
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y
z

x

y
z

Fig. 11.27. (a) The original blade shape of a test model of low-speed compressor,
and (b) the improved shape based on local-dynamics diagnosis. Courtesy of Li
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Fig. 11.28. The performance of the two blade shapes of Fig. 11.27. (a) total pressure
ratio. (b) Efficiency. Dashed line and solid line represent the numerical results for
the original blade and new blade, respectively. The filled circles are the experimental
results of the original blade. Reproduced from Li and Guo (2005)
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The total-pressure ratio and efficiency were accordingly enhanced at small-flux
side, as evidenced by Fig. 11.28. The stall margin is considerably enlarged.

Summary

1. The emphasis of the aerodynamics theories presented in this chapter is to
reveal the local dynamic processes that have net contribution to the total
force and moment. This information is very valuable for understanding the
physics and in flow diagnosis, configuration design, and flow control. The
local dynamic processes are measured by the spatial–temporal derivatives
of relevant flow quantities, which at large Reynolds numbers are highly lo-
calized to a few discrete peaks associated with key flow structures. These
structures have full appearance only in differential equations, but can be
made reappear in integrated force and moment by projection or derivative-
moment transformations (DMT). Both types of approaches arrive at the
same overall physical picture: at low Mach numbers the dominant mecha-
nism in the force and moment is the shearing process, while at supersonic
Mach numbers it becomes the compressing process.

2. The projection theory projects the Navier–Stokes equation onto the vector
space spanned by the unit acyclic potential velocities and then take inte-
gration. In particular, the integrated pressure force is replaced by those
terms in the momentum balance that characterize the shearing and com-
pressing processes, mainly the Lamb vector (vortex force) and density
variation. The theory applies to externally unbounded fluid at rest at in-
finity or having uniform velocity. Due to the fast far-field convergence of
the acyclic potential velocity, the force can be calculated from the flow
data in a sufficiently large but finite domain.

3. The DMT-based theory transforms the integrands of standard force and
moment formulas by the moments of their spatial–temporal derivatives
that represent the local dynamics. In its general form, the theory is for-
mulated for arbitrary domain, of which the outer boundary can extend to
infinity, remain finite, or shrink to the body surface. This flexibility per-
mits a global view, a mid-field view, a near-field view, and an on-wall close
view, respectively. At two opposite extremal views, the theory recovers the
infinite-domain vorticity-moment theory and boundary vorticity-flux the-
ory, respectively. The former is the first systematic DMT-based theory for
the force and moment, with very intuitive vortex-dynamics interpretation.
The classic incompressible aerodynamic theories can be easily deduced
from these DMT-based theories at certain approximate levels.

4. For the same flow field, each view of the DMT-based arbitrary-domain
theory has its own key dynamic mechanism as the net contributor to
the total force and moment. These include the rate of change of impulse
and angular impulse, the Lamb-vector integrals along with unsteady vor-
ticity moments, the vorticity diffusion moments, and the stress-related
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boundary vorticity fluxes, etc. These multiple pictures reflect different
evolution stages or aspects of the same flow; capturing any one of them
can lead to the correct total force and moment. Therefore, a rich “multi-
dimensional” means is available for a thorough flow analysis.

5. High-accuracy estimate of total force by experimentally measured data
also calls for unconventional expressions with easily measurable integrand.
Vorticity dynamics and DMT help achieve this goal and clarify some long-
standing issues. For steady incompressible flow at large Reynolds numbers,
the minimum requirement for the measurement is to survey a wake plane
over the region where disturbance velocity is nonzero. To survey a small
vortical region of the wake plane, one can obtain the profile drag but at
most a good yet still approximate estimate of the lift, and a rough estimate
of the induced drag. For unsteady incompressible flow, the use of a proper
DMT identity permits an accurate estimate of total force by surveying
the flow data on a control surface alone.

6. The application of derivative-moment transformations is not confined to
external flow problems. The theory may well be applied to local-dynamics
diagnosis of internal flows with different performance parameters.




