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Preface

The importance of vorticity and vortex dynamics has now been well recog-
nized at both fundamental and applied levels of fluid dynamics, as already
anticipated by Truesdell half century ago when he wrote the first monograph
on the subject, The Kinematics of Vorticity (1954); and as also evidenced by
the appearance of several books on this field in 1990s. The present book is
characterized by the following features:

1. A basic physical guide throughout the book. The material is directed by
a basic observation on the splitting and coupling of two fundamental
processes in fluid motion, i.e., shearing (unique to fluid) and compress-
ing/expanding. The vorticity plays a key role in the former, and a vortex
is nothing but a fluid body with high concentration of vorticity compared
to its surrounding fluid. Thus, the vorticity and vortex dynamics is ac-
cordingly defined as the theory of shearing process and its coupling with
compressing/expanding process.

2. A description of the vortex evolution following its entire life. This begins
from the generation of vorticity to the formation of thin vortex layers
and their rolling-up into vortices, from the vortex-core structure, vortex
motion and interaction, to the burst of vortex layer and vortex into small-
scale coherent structures which leads to the transition to turbulence, and
finally to the dissipation of the smallest structures into heat.

3. Wide range of topics. In addition to fundamental theories relevant to the
above subjects, their most important applications are also presented. This
includes vortical structures in transitional and turbulent flows, vortical
aerodynamics, and vorticity and vortices in geophysical flows. The last
topic was suggested to be added by Late Sir James Lighthill, who read
carefully an early draft of the planned table of contents of the book in 1994
and expressed that he likes “all the material” that we proposed there.

These basic features of the present book are a continuation and de-
velopment of the spirit and logical structure of a Chinese monograph by
the same authors, Introduction to Vorticity and Vortex Dynamics, Higher
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Education Press, Beijing, 1993, but the material has been completely rewrit-
ten and updated. The book may fit various needs of fluid dynamics scientists,
educators, engineers, as well as applied mathematicians. Its selected chapters
can also be used as textbook for graduate students and senior undergraduates.
The reader should have knowledge of undergraduate fluid mechanics and/or
aerodynamics courses.

Many friends and colleagues have made significant contributions to im-
prove the quality of the book, to whom we are extremely grateful. Professor
Xuesong Wu read carefully the most part of Chaps. 2 through 6 of the man-
uscript and provided valuable comments. Professor George F. Carnevale’s
detailed comments have led to a considerable improvement of the presen-
tation of entire Chap. 12. Professors Boye Ahlhorn, Chien Cheng Chang,
Sergei I. Chernyshenko, George Haller, Michael S. Howe, Yu-Ning Huang,
Tsutomu Kambe, Shigeo Kida, Shi-Kuo Liu, Shi-Jun Luo, Bernd R. Noack,
Rick Salmon, Yi-Peng Shi, De-Jun Sun, Shi-Xiao Wang, Susan Wu, Au-Kui
Xiong, and Li-Xian Zhuang reviewed sections relevant to their works and made
very helpful suggestions for the revision. We have been greatly benefited from
the inspiring discussions with these friends and colleagues, which sometimes
evolved to very warm interactions and even led to several new results reflected
in the book. However, needless to say, any mistakes and errors belong to our
own.

Our own research results contained in the book were the product of our
enjoyable long-term cooperations and in-depth discussions with Professors
Jain-Ming Wu, Bing-Gang Tong, James C. Wu, Israel Wygnanski, Chui-Jie
Wu, Xie-Yuan Yin, and Xi-Yun Lu, to whom we truly appreciate. We also
thank Misses Linda Engels and Feng-Rong Zhu for their excellent work in
preparing many figures, and Misters Yan-Tao Yang and Ri-Kui Zhang for
their great help in the final preparation and proof reading of the manuscript.

Finally, we thank the University of Tennessee Space Institute, Peking Uni-
versity, and Tianjin University, without their hospitality and support the com-
pletion of the book would have to be greatly delayed. The highly professional
work of the editors of Springer Verlag is also acknowledged.

Beijing-Tennessee-Arizona Jie-Zhi Wu
October 2005 Hui-Yang Ma

Ming-de Zhou
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1

Introduction

Vortices are a special existence form of fluid motion with origin in the rota-
tion of fluid elements. The most intuitive pictures of these organized structures
range from spiral galaxies in universe to red spots of the Jupiter, from hurri-
canes to tornadoes, from airplane trailing vortices to swirling flows in turbines
and various industrial facilities, and from vortex rings in the mushroom cloud
of a nuclear explosion or at the exit of a pipe to coherent structures in tur-
bulence. The physical quantity characterizing the rotation of fluid elements is
the vorticity ω = ∇ × u with u being the fluid velocity; thus, qualitatively
one may say that a vortex is a connected fluid region with high concentration
of vorticity compared with its surrounding.1

Once formed, various vortices occupy only very small portion in a flow but
play a key role in organizing the flow, as “the sinews and muscles of the fluid
motion” (Küchemann 1965) and “the sinews of turbulence” (Moffatt et al.
1994). Vortices are also “the voice of fluid motion” (Müller and Obermeier
1988) because at low Mach numbers they are the only source of aeroacoustic
sound and noise. These identifications imply the crucial importance of the
vorticity and vortices in the entire fluid mechanics. The generation, motion,
evolution, instability, and decay of vorticity and vortices, as well as the interac-
tions between vortices and solid bodies, between several vortices, and between
vortices and other forms of fluid motion, are all the subject of vorticity and
vortex dynamics.2

The aim of this book is to present systematically the physical theory of
vorticity and vortex dynamics. In this introductory chapter we first locate
the position of vorticity and vortex dynamics in fluid mechanics, then briefly
review its development. These physical and historical discussions naturally
lead to an identification of the scope of vorticity and vortex dynamics, and

1 This definition is a generalization of that given by Saffman and Baker (1979) for
inviscid flow.

2 In Chinese, the words “vorticity” and “vortex” can be combined into one character
sounds like “vor,” so one has created a single word “vordynamics”.
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thereby determine what a book like this one should cover. An outline of every
chapter concludes this chapter.

1.1 Fundamental Processes in Fluid Dynamics
and Their Coupling

A very basic fact in fluid mechanics is the coexistence and interaction of two
fundamental dynamic processes: the compressing/expanding process (“com-
pressing process” for short) and the shearing process, of which a rational
definition will be given later. In broader physical context these are called
longitudinal and transverse processes, respectively (e.g., Morse and Feshbach
1953). They behave very differently, represented by different physical quanti-
ties governed by different equations, with different dimensionless parameters
(the Mach number for compressing and the Reynolds number for shearing).
These two fundamental processes and their interactions or couplings stand at
the center of the entire fluid mechanics.

If we further compare a fluid with a solid, we see at once that their com-
pressing properties have some aspects in common, e.g., both can support lon-
gitudinal waves including shock waves, but cannot be indefinitely compressed.
What really makes a fluid essentially differ from a solid is their response to
a shear stress. While a solid can remain in equilibrium with finite deforma-
tion under such a stress, a fluid at rest cannot stand any shear stress. For
an ideal fluid with strictly zero shear viscosity, a shearing simply causes one
fluid layer to “slide” over another without any resistance, and across the “slip
surface” the velocity has a tangent discontinuity. But all fluids have more or
less a nonzero shear viscosity, and a shear stress always puts fluid elements
into spinning motion, forming rotational or vortical flow. A solid never has
those beautiful vortices which are sometimes useful but sometimes harmful,
nor turbulence. It is this basic feature of yielding to shear stress that makes
the fluid motion extremely rich, colorful, and complicated.

Having realized this basic difference between fluid and solid, one cannot
but highly admire a very insightful assertion of late Prof. Shi-Jia Lu (1911–
1986), the only female student of Ludwig Prandtl, made around 1980 (private
communication):

The essence of fluid is vortices. A fluid cannot stand rubbing; once you
rub it there appear vortices.

For example, if a viscous flow has a stationary solid boundary, a strong
“rubbing” must occur there since the fluid ceases to move on the boundary. A
boundary layer is thereby formed, whose separation from the solid boundary
is the source of various free shear layers that roll into concentrated vortices
which evolve, interact, become unstable and break to turbulence, and finally
dissipate into heat.

Of the two fundamental processes and their coupling in fluid, two key
physical mechanisms deserve most attention. First, in the interior of a flow,
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the so-called Lamb vector ω × u not only leads to the richest phenomena of
shearing process via its curl, such as vortex stretching and tilting as well as
turbulent coherent structures formed thereby,3 but also serves as the crossroad
of the two processes. Through the Lamb vector, shearing process can be a
byproduct of strong compressing process, for example vorticity produced by
a curved shock wave; or vice versa, for example sound or noise produced by
vortices. Second, on flow boundaries the two processes are also coupled, but
due to the viscosity and the adherence condition. In particular, a tangent
pressure gradient (a compressing process) on a solid surface always produces
new vorticity, which alters the existing vorticity distributed in the boundary
layer and has significant effect on its later development.

The presentation of the entire material in this book will be guided by the
earlier concept of two fundamental processes and their coupling.

1.2 Historical Development

Although vortices have been noticed by the mankind ever since very ancient
time, rational theories were first developed for the relatively simpler com-
pressing process, from fluid statics to the Bernoulli theorem and to ideal fluid
dynamics based on the Euler equation. The theory of rotational flow of ideal
fluid was founded by the three vorticity theorems of Helmholtz (1858, English
translation 1867), who named such flows as “vortex motions.” His work opened
a brand new field, which was enriched by, among others, Kelvin’s (1869) circu-
lation theorem. But the inviscid fluid model on which these theorems are based
cannot explain the generation of the vortices and their interaction with solid
bodies. Most theoretical studies were still confined to potential flow, leaving
the famous D’Alembert’s paradox that a uniformly translating body through
the fluid would experience no drag. The situation at that time was as Sir
Hinshelwood has observed, “... fluid dynamicists were divided into hydraulic
engineers who observed what could not be explained, and mathematicians who
explained things that could not be observed”. (Lighthill 1956). The theoretical
achievements by then has been summarized in the classic monograph of Lamb
(1932, first edition: 1879), in which the inviscid, incompressible, and irrota-
tional flow occupies the central position and vortex motion is only a small
part. Thus, “Sydney Goldstein has observed that one can read all of Lamb
without realizing that water is wet!” (Birkhoff 1960).

A golden age of vorticity and vortex dynamics appeared during 1894–1910s
as the birth of aerodynamics associated with the realization of human power
3 Here lies one of the hardest unsolved mathematic problems, on the finite-time
existence, uniqueness, and regularity of the solutions of the Navier–Stokes equa-
tions. To quote Doering and Gibbon 1995: “It turns out that the nonlinear terms
that can’t be controlled mathematically are precisely those describing what is pre-
sumed to be the basic physical mechanism for the generation of turbulence, namely
vortex stretching”.
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flight.4 Owing to the astonishing achievements of those prominent figures such
as Lanchester, Joukowski, Kutta, and Prandtl, one realized that a wing can fly
with sustaining lift and relatively much smaller drag due solely to the vortex
system it produces.

More specifically, in today’s terminology, the Kutta–Joukowski theorem
(1902–1906) proves that the lift on an airfoil is proportional to its flight speed
and surrounding velocity circulation, which is determined by the Kutta condi-
tion that the flow must be regular at the sharp trailing edge of the airfoil. The
physical root of such a vortex system lies in the viscous shearing process in
the thin boundary layer adjacent to the wing surface, as revealed by Prandtl
(1904). The wing circulation is nothing but the net vorticity contained in the
asymmetric boundary layers at upper and lower surfaces of the wing, and the
Kutta condition imposed for inviscid flow is simply a synthetic consequence
of these boundary layers at the trailing edge.

The wing vortex system has yet another side. The boundary layers that
provide the lift also generate a friction drag . Moreover, as the direct conse-
quence of the theorems of Helmholtz and Kelvin, these layers have to leave the
wing trailing edge to become free vortex layers that roll into strong trailing
vortices in the wake (already conceived by Lanchester in 1894), which cause
an induced drag .

All these great discoveries made in such a short period formed the classic
low-speed aerodynamics theory. Therefore, at a low Mach number all aspects
of the wing-flow problem (actually any flow problems) may essentially amount
to vorticity and vortex dynamics. The rapid development of aeronautical tech-
niques in the first half of the twentieth century represented the greatest prac-
tice in the human history of utilization and control of vortices, as summarized
in the six- and two-volume monographs edited by Durand (1934–1935) and
Goldstein (1938), respectively.

Then, the seek for high flight speed turned aerodynamicists’ attention
back to compressing process. High-speed aerodynamics is essentially a com-
bination of compressing dynamics and boundary-layer theory (cf. Liepmann
and Roshko 1957). But soon after that another golden age of vorticity and
vortex dynamics appeared owing to the important finding of vortical struc-
tures of various scales in transitional and turbulent flows. In fact, the key
role of vortex dynamics in turbulence had long been speculated since 1920–
1930s, a concept that attracted leading scientists like Taylor and Thomson,
and reflected vividly in the famous verse by Richardson (1922):

Big whirls have little whorls,
Which feed on their velocity.
And little whorls have lesser whorls,
And so on to viscosity.

4 For a detailed historical account of the times from Helmholtz to this exciting
period with full references, see Giacomelli and Pistolesi (1934).
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This concept was confirmed and made more precise by the discovery of
turbulent coherent structures, which immediately motivated extensive stud-
ies of vortex dynamics in turbulence. The intimate link between aerodynamic
vortices and turbulence has since been widely appreciated (e.g., Lilley 1983).
In fact, this second golden age also received impetus from the continuous de-
velopment of aerodynamics, such as the utilization of stable separated vortices
from the leading edges of a slender wing at large angles of attack, the pre-
vention of the hazardous effect of trailing vortices on a following aircraft, and
the concern about vortex instability and breakdown. Meanwhile, the impor-
tance and applications of vorticity and vortex dynamics in ocean engineering,
wind engineering, chemical engineering, and various fluid machineries became
well recognized. On the other hand, the formation and evolution of large-scale
vortices in atmosphere and ocean had long been a crucial part of geophysical
fluid dynamics.

The second golden age of vorticity and vortex dynamics has been an-
ticipated in the writings of Truesdell (1954), Lighthill (1963), and Batchelor
(1967), among others. Truesdell (1954) made the first systematic exposition of
vorticity kinematics. In the introduction to his book, Batchelor (1967) claimed
that “I regard flow of an incompressible viscous fluid as being at the center
of fluid dynamics by virtue of its fundamental nature and its practical im-
portance. ... most of the basic dynamic ideas are revealed clearly in a study
of rotational flow of a fluid with internal friction; and for applications in
geophysics, chemical engineering, hydraulics, mechanical and aeronautical en-
gineering, this is still the key branch of fluid dynamics”. It is this emphasis
on viscous shearing process, in our view, that has made Batchelor’s book a
representative of the second generation of textbooks of fluid mechanics after
Lamb (1932). In particular, the article of Lighthill (1963) sets an example of
using vorticity to interpret a boundary layer and its separation, indicating
that “although momentum considerations suffice to explain the local behavior
in a boundary layer, vorticity considerations are needed to place the bound-
ary layer correctly in the flow as a whole. It will also be shown (surprisingly,
perhaps) that they illuminate the detailed development of the boundary layer
... just as clear as do momentum considerations...”. Therefore, Lighthill has
placed the entire boundary layer theory (including flow separation) correctly
in the realm of vorticity dynamics as a whole.

So far the second golden age is still in rapid progress. The achievements
during the second half of the twentieth century have been reflected not only
by innumerable research papers but also by quite a few comprehensive mono-
graphs and graduate textbooks appeared within a very short period of 1990s,
e.g., Saffman (1992), Wu et al. (1993), Tong et al. (1994), Green (1995), and
Lugt (1996), along with books and collected articles on special topics of this
field, e.g., Tong et al. (1993), Voropayev and Afanasyev (1994), and Hunt
and Vassilicos (2000). Yet not included in but relevant to this list are books
on steady and unsteady flow separation, on the stability of shear flow and
vortices, etc. In addition to these, very far-reaching new directions has also
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emerged, such as applications to external and internal biofluiddynamics and
biomimetics, and vortex control that in broad sense stands at the center of
the entire field of flow control (cf. Gad-el-Hak 2000). The current fruitful
progress of vortex dynamics and control in so many branches will have a very
bright future.

1.3 The Contents of the Book

Based on the preceding physical and historical discussions, especially following
Lu’s assertion, we consider the vorticity and vortex dynamics a branch of
fluid dynamics that treats the theory of shearing process and its interaction
with compressing process. This identification enables one to study as a whole
the full aspects and entire life of a vortex, from its kinematics to kinetics,
and from the generation of vorticity to the dissipation of vortices. But this
identification also posed to ourselves a task almost impossible, since it implies
that the range of the topics that should be included is too wide to be put into
a single volume. Thus, certain selection has to be made based on the authors’
personal background and experience. Even so, the content of the book is still
one of the widest of all relevant books.

A few words about the terminology is in order here. By the qualitative
definition of a vortex given at the beginning of this section, a vortex can be
identified when a vorticity concentration of arbitrary shape occurs in one or
two spatial dimensions, having a layer-like or axial structure, respectively. The
latter is the strongest form permissible by the solenoidal nature of vorticity,
and as said before is often formed from the rolling up of the former as a further
concentration of vorticity. But, conventionally layer-like structures have their
special names such as boundary layer (attached vortex layer) and free shear
layer or mixing layer (free vortex layer). Only axial structures are simply
called vortices, which can be subdivided into disk-like vortices with diameter
much larger than axial scale such as a hurricane, and columnar vortices with
diameter much smaller than axial length such as a tornado Lugt (1983). While
we shall follow this convention, it should be borne in mind that the layer-like
and axial structures are often closely related as different temporal evolution
stages and/or spatial portions of a single vortical structure.

Having said these, we now outline the organization of the book, which is
divided into four parts.

Part I concerns vorticity dynamics and consists of five chapters. Chap-
ter 2 is an overall introduction of two fundamental dynamic processes in fluid
motion. After highlighting the basis of fluid kinematics and dynamics, this
chapter introduces the mathematic tools for decomposing a vector field into
a longitudinal part and a transverse part. This decomposition is then applied
to the momentum equation, leading to an identification of each process and
their coupling.
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Chapter 3 gives a systematic presentation of vorticity kinematics, from
spatial properties to temporal evolution, both locally and globally. The word
“kinematics” is used here in the same spirit of Truesdell (1954); namely, with-
out involving specific kinetics that identifies the cause and effect. Therefore,
the results remain universal.5 The last section of Chap. 3 is devoted to the
somewhat idealized circulation-preserving flow , in which the kinetics enters
the longitudinal (compressing) process but keeps away from the transverse
(shearing) process. Rich theoretical consequences follow from this situation.

Chapter 4 sets a foundation of vorticity dynamics. First, the physical mech-
anisms that make the shearing process no longer purely kinematic are ad-
dressed and exemplified, with emphasis on the role of viscosity. Second, the
characteristic behaviors of a vorticity field at small and large Reynolds’ num-
bers are discussed, including a section on vortex sheet dynamics as an asymp-
totic model when the viscosity approaches zero (but not strictly zero). Finally,
formulations of viscous flow problems in terms of vorticity and velocity are
discussed, which provides a theoretical basis for developing relevant numerical
methods.6

Chapter 5 presents theories of flow separation (more specifically and im-
portantly, boundary-layer separation at large Reynolds’ numbers). Due to
separation, a boundary layer bifurcates to a free shear layer, which naturally
rolls up into a concentrated vortex. Thus, typically though not always, a vor-
tex originates from flow separation. Therefore, this chapter may serve as a
transition from vorticity dynamics to vortex dynamics.

The next three chapters constituent Part II as fundamentals of vortex dy-
namics. In Chap. 6 we present typical vortex solutions, including both exact
solutions of the Navier–Stokes and Euler equations (often not fully realistic)
and asymptotic solutions that are closer to reality. The last section of the
chapter discusses an open issue on how to quantitatively identify a vortex.
According to the evolution order of a vortex in its whole life, this chapter
should appear after Chap. 7; but it seems better to introduce the vortex solu-
tions as early as possible although this arrangement makes the logical chain
of the book somewhat interrupted.

The global separated flow addressed in Chap. 7 usually has vortices as
sinews and muscles, which evolve from the local flow separation processes
(Chap. 5). After introducing a general topological theory as a powerful qual-
itative tool in analyzing separated flow, we discuss steady and unsteady sep-
arated flows. The former has two basic types: separated bubble flow and free
vortex-layer separated flow, each of which can be described by an asymptotic
theory as the viscosity approaches zero. In contrast, unsteady separated flow
is much more complicated and no general theory is available. We thus confine
ourselves to the most common situation, the unsteady separated flow behind

5 For many authors, any time evolution of a system is considered falling into the
category of dynamics.

6 The methods themselves are beyond the scope of the book.
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a bluff body, and focus on its phenomena and some qualitative physical inter-
pretations.

To describe different stages of the entire life of a vortex, various ap-
proximate theories have been developed to capture the dominant dynamic
mechanisms. These are discussed in Chap. 8, including vortex-core dynamics,
three-dimensional vortex filaments, two-dimensional point-vortex systems,
and vortex patches, etc. The chapter also discusses typical interactions of
a vortex with a solid wall and a free surface.

The vorticity plays a crucial role as flow becomes unstable, and rich pat-
terns of vortex motion appear during the transition to turbulent flow and
in fully developed turbulence. The relevant complicated mechanisms are dis-
cussed in Part III as a more advanced part of vorticity and vortex dynamics.
Chapter 9 presents selected hydrodynamic stability theories for vortex layers
and vortices. In addition to interpreting the basic concepts and classic results
of shear-flow instability in terms of vorticity dynamics, some later develop-
ments of vortical-flow stability will be addressed. The chapter also introduces
recent progresses in the study of vortex breakdown, which is a highly nonlinear
process and has been a long-standing difficult issue.

Chapter 10 discusses the vortical structures in transitional and turbulent
flows, starting with the concept of coherent structure and a discussion on co-
existence of vortices and waves in turbulence fields. The main contents focus
on the physical and qualitative understanding of the formation, evolution,
and decay of coherent structures using mixing layer and boundary layer as
examples, which are then extended to vortical structures in other shear flows.
The understanding of coherent structure dynamics is guided by the examina-
tion of two opposite physical processes, i.e., the instability, coherence produc-
tion, self-organization or negative entropy generation (the first process) and
the coherent-random transfer, cascade, dissipation or entropy generation (the
second process). The energy flow chart along the two processes and its impact
on the philosophy of turbulent flow control is briefly discussed. Based on the
earlier knowledge, typical applications of vorticity equations in studying co-
herent structures are shown. The relation between the vortical structures and
the statistical description of turbulence field are also discussed, which may
lead to some expectation on the future studies.

The topics of Part IV, including Chaps. 11 and 12, are somewhat more
special. As an application of vorticity and vortex dynamics to external-flow
aerodynamics, Chap. 11 presents systematically two types of theories, the pro-
jection theory and derivative-moment theory, both having the ability to reveal
the local shearing process and flow structures that are responsible for the to-
tal force and moment but absent in conventional force–moment formulas. The
classic aerodynamics theory will be rederived with new insight. This subject
is of great interest for understanding the physical sources of the force and
moment, for their diagnosis, configuration design, and effective flow control.

Chapter 12 is an introduction to vorticity and vortical structures in geo-
physical flow, which expands the application of vorticity and vortex dynamics



1.3 The Contents of the Book 9

to large geophysical scales. The most important concept in the determination
of large-scale atmospheric and oceanic vortical motion is the potential vor-
ticity . The dynamics of vorticity also gains some new characters due to the
Earth’s rotation and density stratification.

Throughout the book, we put the physical understanding at the first place.
Whenever possible, we shall keep the generality of the theory; but it is often
necessary to be confined to as simple flow models as possible, provided the
models are not oversimplified to distort the subject. Particularly, incompress-
ible flow will be our major model for studying shearing process, due to its
relative simplicity, maturity, and purity as a test bed of the theory. Obvi-
ously, to enter the full coupling of shearing and compressing processes, at
least a weakly compressible flow is necessary.

The reader is assumed to be familiar with general fluid dynamics or aero-
dynamics at least at undergraduate level but better graduate level of ma-
jor in mechanics, aerospace, and mechanical engineering. To make the book
self-contained, a detailed appendix is included on vectors, tensors, and their
various operations used in this book.



Part I

Vorticity Dynamics



2

Fundamental Processes in Fluid Motion

2.1 Basic Kinematics

For later reference, in this section we summarize the basic principles of fluid
kinematics, which deals with the fluid deformation and motion in its most
general continuum form, without any concern of the causes of these deforma-
tion and motion. We shall be freely using tensor notations and operations, of
which a detailed introduction is given in Appendix.

2.1.1 Descriptions and Visualizations of Fluid Motion

As is well known, the fluid motion in space and time can be described in two
ways. The first description follows every fluid particle, exactly the same as in
the particle mechanics. Assume a fluid body V moves arbitrarily in the space,
where a fixed Cartesian coordinate system is introduced. Let a fluid particle
in V locate at X = (X1,X2,X3) at an initial time τ = 0, then X is the label
of this particle at any time.1 This implies that

∂X

∂τ
= 0. (2.1)

Assume at a later time τ the fluid particle moves smoothly to x = (x1, x2, x3).
Then all x in V can be considered as differentiable functions of X and τ :

x = φ(X, τ), (2.2)

where φ(X, 0) = X. For fixed X and varying τ , (2.2) gives the path of the
particle labeled X; while for fixed τ and varying X, it determines the spatial
region V(τ) of the whole fluid body at that moment. This description is called
material description or Lagrangian description, and (X, τ) are material or
Lagrangian variables.
1 More generally, the label of a fluid particle can be any set of three numbers which
are one-to-one mappings of the particle’s initial coordinates.
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Equation (2.2) is a continuous mapping of the physical space onto itself
with parameter τ . But functionally the spaces spanned by X and x are dif-
ferent. We call the former reference space or simply the X-space. In this
space, differenting (2.2) with respect to X, gives a tensor of rank 2 called the
deformation gradient tensor :

F = ∇Xx or Fαi = xi,α, (2.3)

which describes the displacement of all particles initially neighboring to the
particle X. Hereafter we use Greek letters for the indices of the tensor compo-
nents in the reference space, and Latin letters for those in the physical space.
The gradient with respect to X is denoted by ∇X , while the gradient with
no suffix is with respect to x. (·),α is a simplified notation of ∂(·)/∂Xα.

The deformation gradient tensor F defines an infinitesimal transformation
from the reference space to physical space. Indeed, assume that at τ = 0 a
fluid element occupies a cubic volume dV , and at some τ it moves to the
neighborhood of x, occupying a volume dv. Then according to the theory of
multivariable functions and the algebra of mixing product of vectors, we see
that

dv = JdV, (2.4)

where the Jacobian

J ≡ ∂(x1, x2, x3)
∂(X1,X2,X3)

= det F (2.5)

represents the expansion or compression of an infinitesimal volume element
during the motion. Moreover, keeping the labels of particles, any variation of
J can only be caused by that of x. By using (2.4), an infinitesimal change of
J is given by (for an explicit proof see Appendix,A.4.1)

δJ = J∇ · δx. (2.6)

Initially separated particles cannot merge to a single point at later time,
even though they may be tightly squeezed together; meanwhile, a single par-
ticle initially having one label cannot be split into several different ones. Thus
we can always trace back to the particle’s initial position from its position x
at any τ > 0. This means the mapping (2.2) is one-to-one and has inverse

X = Φ(x, t). (2.7)

Here t = τ is the same time variable but used along with x. Functions Φ and
φ are assumed to have derivatives of sufficiently many orders. Since (2.2) is
invertible, J must be regular, i.e.,

0 < J <∞. (2.8)

In the Lagrangian description X and τ are both independent variables, so
the particle’s velocity and acceleration are



2.1 Basic Kinematics 15

u =
∂x

∂τ
, a =

∂2x

∂τ2
=

∂u

∂τ
,

respectively. Therefore, the study of fluid motion in this description amounts
to solving a dynamic system of infinitely many degrees of freedom. Unlike
solids which can only have relatively small deformation gradient, a fluid cannot
stand shearing and hence F may have very complicated behavior. Thus, the
Largangian approach is generally inconvenient. However, it finds some impor-
tant applications in both theoretical and computational vorticity dynamics.
Special topics of Lagrangian description useful in some later chapters are given
in AppendixA.4.

Instead of following the motion of each particle, we may concentrate on
the spatial distribution of physical quantities and their temporal variation at
every point x. This leads to the field description or Eulerian description. By
(2.2) and (2.7), any field quantity F (x, t) can be expressed as

F (x, t) = F (φ(X, τ), τ),

which is also a function of (X, τ), and vice versa. Now there is

∂F

∂τ
=

∂F

∂t
+

∂xi
∂τ

∂F

∂xi
,

thus
∂

∂τ
=

∂

∂t
+ u · ∇ ≡ D

Dt
(2.9)

is the operator of material derivative (i.e., the rate of change following the
same particles) in the field description. Here ∂/∂t implies the local rate of
change at fixed x, while u · ∇ is the rate of change due to advection. Clearly,
∂/∂τ for fixed X and ∂/∂t for fixed x are different operations. Thus, (2.1)
and a = ∂u/∂τ in the Eulerian description become, respectively,

DX

Dt
= 0, (2.10)

a =
Du

Dt
=

∂u

∂t
+ u · ∇u. (2.11)

Moreover, from (2.6) and (2.9) follows the classic Euler formula for the rate
of change of J :

DJ
Dt

= J∇ · u. (2.12)

As a field theory, Eulerian description does not care which fluid particle
occupies a position x at time t. As long as two flow fields have the same
velocity distribution in space and time, they will be considered kinematically
identical, no matter if their individual particles experience the same motion.
In other words, fluid particles are allowed to be relabeled during the motion
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in the Eulerian description. This is the case in most applications. Hence, the
information in the Eulerian description is less than that in the Lagrangian
description.

Some developments of fluid mechanics, however, are based on taking (2.11)
as a nonlinear system and thus require tracing individual particles. This
requirement happens in the study of, e.g., chaos and mixing, as well in vari-
ational approaches of vortical flows. In these situations one has to keep the
particle labels X unchanged. This is simply done by adding to the Eulerian
description condition (2.10), known as Lin’s constraint (cf. Serrin 1959). Then
the two descriptions become fully equivalent (for more discussion see Sect. 3.6).

It is appropriate here to distinct three different types of curves in a flow
field, defined based on the earlier two descriptions. First, as noted earlier, a
pathline is the curve created by the motion of a particle X as time goes on,
described by (2.2), where X is fixed and 0 < τ < ∞. Equation (2.2) is the
solution curve of the ordinary differential equation

dxi
dt

= ui(x, t) (2.13)

under the initial condition x(0) = X.
Next, a curve tangent to the velocity u(x, t) everywhere at a time t is a

streamline at this time. Its equation follows from eliminating dt in (2.13):

dx1
u1(x, t)

=
dx2

u2(x, t)
=

dx3
u3(x, t)

, (2.14)

of which the solution curve f1(x, t) = 0, f2(x, t) = 0 passing a given x at a
given t is the required streamline.

Then, consider all the fluid particles which have passed a point x0 at any
t < t0 and continue to move ahead. The set of their spatial positions at t0
constitute a curve passing x0, called a streakline passing (x0, t0). By (2.7),
the labels of these particles are Φ(x0, t), −∞ < t ≤ t0, where t becomes a
parameter for identifying different particles. The positions of these particles
at t0 follow from (2.2):

x(x0, t0, t) = φ(Φ(x0, t), t0), −∞ < t ≤ t0. (2.15)

It is easily seen that at a given t0, the streamline passing x0, the pathline of
a particle locating at x0 and the streakline passing x0 have a common tangent
vector at x0. When the flow is steady, i.e., in (2.13) u is independent of t, the
three curves coincide. But even in this case the streamlines may not necessarily
be well-ordered; in Sect. 3.2.3 we shall see a famous counter-example. For
more general unsteady flows, then, the three curves are entirely different. The
behavior of streamlines and pathlines vary drastically as the observer changes
from a fixed frame of reference to a moving one, but the streaklines will
remain the same (Taneda 1985). Figure. 2.1 sketches the unsteady streamlines
and streaklines due to the instability traveling waves in a flat-plate boundary
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Streamlines

Streamlines
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Fig. 2.1. Schematic streamlines (viewed in different frames) and streaklines in a
boundary layer with traveling instability waves. C is the wave speed. Reproduced
from Taneda (1985)

layer, viewed from different frames of reference. Note that the streamlines in
the frame moving with the wave exhibit some vortex-like structure (so-called
“cat-eyes”), but whether or not these cat-eyes can be classified as vortices
should be judged by the concentration of vorticity rather than merely by the
frame-dependent streamlines. A discussion on vortex definition will be made
in Sect. 6.6.

Flow visualization is a powerful and intuitive means in understanding var-
ious vortical flows (see Van Dyke 1982), of which the foundation is a clear
distinction of the earlier three types of curves. If one introduces a tracer par-
ticle into the fluid and photographs its motion with a long time exposure,
he/she obtains a pathline. If one spreads the tracer particles and takes photo
with very short time exposure, then he/she sees a set of short line segments,
of which a smooth connection can represent a family of instant streamlines.
If one introduces some dyed fluid continuously at a fixed point x0 and takes
a fast photograph at a later time t0, then he/she obtains the streakline con-
sisting of all particles passing x0 at any t ≤ t0.

A pathline or a streakline can intersect itself, but a streamline cannot.
Most visualization experiments with vortical flows give at least streaklines.
But their interpretation needs great care, since vortical flows are inherently
more or less unsteady. Ignoring the difference of these three types of lines
in an unsteady flow may lead to serious misunderstanding. Figure. 2.2 shows
both streamlines and streaklines due to the unsteady vortex shedding from a
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Fig. 2.2. Streamlines and streaklines in unsteady vortex shedding from a circular
cylinder. From Taneda (1985)

circular cylinder, where their difference is obvious. However, while streaklines
can tell where the vorticity resides in a flow, it tells very little about the
surrounding fluid and the entrainment process. In this regard instantaneous
streamlines in an unsteady flow are still useful; and it can be shown that over a
very short time interval streaklines, pathlines, and instantaneous streamlines
are identical (Perry et al. 1982).

Finally, if one inserts a straight metal wire across a moving fluid (say, wa-
ter) and introduces pulsating current with fixed frequency ω through it, then
the wire will electrolyze the water and release hydrogen bubbles periodically,
which are advected by local flow velocity. Hence the pulsating appearance of
bubbles will form a velocity profile along the wire (Fig. 2.3). These pulsating
lines are called time-lines. Referring to Fig. 2.3 and assume the metal line is
located along the y-axis. Then at time t, the time line released from all points
x0 = (0, y) at initial time t0 < t is given by

x(x0, t0, t;ω) = φ(Φ(0, y, t0), t;ω) for all y, t > t0. (2.16)

2.1.2 Deformation Kinematics. Vorticity and Dilatation

The central issue of fluid kinematics concerns the deformation rate of a ma-
terial fluid line, surface, and volume element. We first consider the rate of
change of a material line element dx. By using (2.2), since X is fixed, there
is

D
Dt

(dxi) =
D
Dt

(xi,α dXα) = ui,α dXα = ui,αXα,j dxj = ui,j dxj ,
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Fig. 2.3. Time lines behind a circular cylinder at Reynolds number 152. From
Taneda (1985)

thus
D
Dt

(dx) = dx · ∇u = du. (2.17)

Therefore, the rate of change of a material line element results in the velocity
difference du at the two ends of the element. This rate of change includes both
magnitude and direction, which should be analyzed separately. But the more
fundamental quantity in (2.17) is the velocity gradient ∇u, the deformation-
rate tensor (not to be confused with the deformation gradient tensor F defined
by (2.3)), which is independent of the choice of specific line element. The
intrinsic decomposition of ∇u into symmetric and antisymmetric parts gives

∇u = D+Ω, (2.18)

whereD andΩ are the strain-rate tensor and vorticity tensor (or spin tensor),
defined by

D =
1
2
[∇u+ (∇u)T], with Dii = ϑ, (2.19a)

Ω =
1
2
[∇u− (∇u)T], with εijkΩjk = ωi, (2.19b)

respectively, with the superscript T denoting transpose. Here,

ϑ = ∇ · u, ω = ∇× u (2.20)

are the dilatation and vorticity, respectively, which are the central concepts of
this book and serve as the kinematic representations of the compressing and
shearing processes.2

2 In a shearing process the vorticity usually coexists with the rate of strain, see the
example of simple shear flow discussed later and a general triple decomposition



20 2 Fundamental Processes in Fluid Motion

By (A.12), (2.17) gives

D
Dt

(dx) = dx ·D+
1
2
ω × dx. (2.21)

Thus, the point x + dx rotates around x with angular velocity ω/2, which
changes the direction of dx. This is a primary interpretation of the meaning of
vorticity. However, the concept of angular velocity is taken from the rotation
of a rigid vector, and how to extend it to a fluid element still needs to be
clarified. We return to this issue in Sect. 3.1.

Then, the inner product of dx and (2.21) yields the rate of change of the
length of the line element:

D
Dt

(ds2) = 2
D
Dt

(dx) · dx = 2dx ·D · dx. (2.22)

Therefore, D measures the change of the magnitude but not that of the direc-
tion of dx. For rigid bodies ds2 is invariant, so D is identically zero. If D is
isotropic, i.e., D = ϑI with I being the unit tensor, then the right-hand side
of (2.22) is 2ϑ ds2 which implies an isotropic expansion or contraction. This
is a primary interpretation of dilatation. The nonisotropic part of D,

D′ = D− 1
3
ϑI with tr D′ = 0, (2.23)

is called the deviator of D.
Now, let t be a given unit vector, onto which the projection of D is a

vector Ai = Dijtj . Then t and A will be parallel if Ai = λti, or

(Dij − λδij)tj = 0,

which has no trivial solution since |t| = 1 and thus implies a third-order
equation for eigenvalues:

λ3 − Iλ2 + IIλ− III = 0,

where I,II,III are three basic invariants of D. Since D is symmetric, the
eigenvalues (λ1, λ2, λ3) are all real, associated with three orthogonal principal
directions (p1,p2,p3). Thus we can introduce a local Cartesian system at

of the strain-rate tensor (Sect. 2.4). But the most essential property of shearing is
fluid particle spinning, thus one cannot take the rate of strain that also exists in an
irrotational flow to characterize the shearing process. On the other hand, in some
very special equilibrium state of the evolution of a shearing process, the spin may
disappear while the vorticity is still nonzero, such as a solid-like rotation (e.g.,
near the axis of a nonstretched vortex or in a circular cylindric container rotating
about its axis), or the vorticity vanishes but spin still exists (e.g., outside a point
vortex). These exception happen because in a curved flow the vorticity contains
not only spinning but also trajectory rotation of fluid particles (Sect. 3.1).
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each (x, t), called the principal-axis system, with its axes along the princi-
pal directions. By their derivation, the principal axes are not bending during
infinitesimal deformation, but only subjected to stretching or shrinking. They
are instantaneously rigid.

Moreover, consider a small spherical fluid element centered at x with speci-
fied D. By (2.22), we may define a quadratic form of r = x′−x with |r| 
 1:

2ϕ ≡ r ·D · r = const.,

which represents a family of quadratic surfaces, the deformation ellipsoids.
The gradient of the above equation is

∇ϕ = r ·D.

Thus, the strain-rate tensor “induces” a potential velocity field in the neigh-
borhood of the point under consideration, with direction normal to the defor-
mation ellipsoid.

In summary, the velocity at x′ = x+ r is

u(x′) = u(x) +∇ϕ+
1
2
ω × r. (2.24)

This result is known as the fundamental theorem of deformation kine-
matics: The instantaneous state of the fluid motion at every point is the
superposition of a uniform translation, an irrotational stretching or shrinking
along three orthogonal principal axes, and a rigid rotation around an axis.
Figure. 2.4 illustrates this theorem schematically.

A typical example illustrating the earlier theorem is the simple unidirec-
tional shear flow u = (kx2, 0, 0) with constant shearing rate k. Its vorticity

u (x )
x

x �1

x �3

x1

x3

w (x )1
2

w (x )1
2

Fig. 2.4. The deformation of small fluid sphere. Only the pattern on the (x1, x3)
plane is shown
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and strain rate are ω = (0, 0,−k) and

Dij =

 0 k/2 0
k/2 0 0
0 0 0

 ,

respectively, both being characterized by k. Moreover, it follows from this
Dij that the direction of principal axes of D is the (x1, x2) axes rotating
counter-clockwise by π/4, and in this principal system Dij has only two
nonzero components (the principal values) ± k/2. In this example ϑ = 0,
thus D is a pure deformation. A small sphere of radius ε will deform to
an ellipsoid during a time interval dt, with the length of its semiaxes being
ε(1 + k dt/2), ε, and ε(1 − k dt/2). However, the rotation around the x2 axis
has a tendency of turning the principal axes back to their original directions
in order to maintain the shear flow pattern. For instance, after a dt time the
actual angle between the first principal axis and the x1 axis is π/4 − k dt/2
(Lighthill 1986b).

2.1.3 The Rate of Change of Material Integrals

The rate of change of a material volume element dv directly follows from (2.4)
and the Euler formula (2.12):

D
Dt

(dv) = ϑ dv, (2.25)

where ϑ = ∇ · u is again the dilatation.
The rate of change of a directional material surface element dS = ndS,

where n is its unit normal vector, can be derived from that of line and volume
elements. Take a line element dx not tangent to the surface element, such
that dx · dS constitutes a volume element dv. Then

D
Dt

(dv) =
D
Dt

(dx) · dS + dx · D
Dt

(dS),

thus by (2.17) and (2.25),

ϑ dx · dS = dx · ∇u · dS + dx · D
Dt

(dS).

Since dx was chosen arbitrarily, there must be

D
Dt

(dS) = dS ·B or
1
dS

D
Dt

(dS) = n ·B, (2.26)

where, denoting the unit tensor by I,

B ≡ ϑI− (∇u)T (2.27)
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is the surface deformation-rate tensor . The vector n ·B represents the strain-
rate of a surface element of unit area. From a vector identity

(a×∇)× b = a · {(∇b)T − (∇ · b)I}, (2.28)

it follows that
1
dS

D
Dt

(dS) = n ·B = −(n×∇)× u. (2.29)

Since (n×∇) is a tangent derivative operator, we see that the surface deforma-
tion is determined by the velocity distribution on the surface only, independent
of any flow field away from it. In other words, like the surface tension, this is
a surface process rather than a volumetric process.

The knowledge of the rate of change of dx, dv, and dS enables us to obtain
the rate of change of integrations of any physical quantity F (which can be a
tensor of arbitrary rank) over a finite material line, surface or volume. This is
the basis of deriving fundamental fluid dynamic equations. Since a material
line, surface or volume consists of the same set of particles, the operator d/dt
in front of a material integral should be ∂/∂τ and can directly enter the
integrals to become D/Dt therein.

First, denote any meaningful tensor product by ◦, for a material curve C
there is

d
dt

∫
C
dx ◦ F =

∫
C

{
D
Dt

(dx) ◦ F + dx ◦ DF
Dt

}
,

thus by (2.17),

d
dt

∫
C
dx ◦ F =

∫
C

(
dx ◦ DF

Dt
+ dx · ∇u ◦ F

)
. (2.30)

The most important example of line integral is the circulation defined by

ΓC =
∮
C
u · dx =

∫
S
ω · n dS, (2.31)

where S is any surface with C as its boundary and ω the vorticity. Denote
q = |u|, since du · u = d(q2/2), (2.30) gives

d
dt

∫
C
u · dx =

∫
C
a · dx+

q2

2

∣∣∣∣2
1

over an open material curve, where a = Du/Dt is acceleration and 1,2 in-
dicate the end points of the curve. Thus, we immediately obtain the Kelvin
circulation formula

dΓC
dt

=
d
dt

∫
S
ω · ndS =

∮
C
a · dx (2.32)

for any closed material curve C.
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Similarly, for any material surface S, by (2.26) we have

d
dt

∫
S
dS ◦ F =

∫
S

[
dS ◦ DF

Dt
+ (dS ·B) ◦ F

]
. (2.33)

As a trivial example, let S be a closed surface and set F = 1. Then by using
the generalized Gauss theorem (A.15) there is∫

S
n ·B dS = 0, (2.34a)

which also implies
∇ ·B = 0, (2.34b)

as can be directly verified by (2.27).
Finally, for any material volume V, by (2.25) there is

d
dt

∫
V
Fdv =

∫
V

(
DF
Dt

+ ϑF
)
dv. (2.35a)

=
∫
V

∂F
∂t

dV +
∫
∂V

Fu · ndS, (2.35b)

where V is a fixed control volume coinciding with V instantaneously. It is clear
that the second terms in (2.30), (2.33), and (2.35a) are the contribution of
the motion and deformation of C, S and V, respectively.

Note that (2.35b) is a special case of the more general Reynolds trans-
port theorem:

d
dt

∫
V (t)

FdV =
∫
V (t)

∂F
∂t

dV +
∫
∂V (t)

Fv · ndS (2.36)

for any time-dependent control volume V (t) with velocity v at ∂V (t), which
could be, e.g., a body-fitted grid with time-dependent shape and boundary.
We may continue v(x, t) smoothly into the interior of V (t), so that∫

∂V (t)

Fv · ndS =
∫
V (t)

∇ · (vF)dV =
∫
V (t)

∇ · [uF − (u− v)F ]dV,

where u is the fluid velocity. Thus (2.36) can be cast to

d
dt

∫
V (t)

F dV =
∫
V (t)

(
DF
Dt

+ ϑF
)
dV −

∫
∂V (t)

(un − vn)F dS. (2.37)

If V (t) is a material volume F with v = u, then we return to (2.35a).
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2.2 Fundamental Equations of Newtonian Fluid Motion

Fluid kinetics involves constitutive structures relating internal forces and de-
formation of a fluid. This book considers Newtonian fluid only, characterized
by the linearity of its constitutive equation. The balances of mass,3 momen-
tum, and energy, which govern the global and local rate of change of flow
quantities, follow from the combination of kinematics, kinetics, and general
physical laws, which establish the fundamental equations of fluid dynamics.
In this section we first list the main dynamic and thermodynamic theorems
with necessary remarks. The integrated theorems are all referred to a material
volume V, which are used to derive corresponding differential equations.

2.2.1 Mass Conservation

Without any internal source or sink, the fluid mass is conserved:

d
dt

∫
V
ρdv = 0, (2.38)

where ρ is the density. From (2.38) and (2.35) follows the continuity equation:

Dρ
Dt

+ ρϑ = 0, ϑ = ∇ · u, (2.39a)

or
∂ρ

∂t
+∇ · (ρu) = 0. (2.39b)

By (2.12) and (2.39a) we can express the dilatation in terms of the Jacobian
or density:

ϑ =
1
J

DJ
Dt

= −1
ρ

Dρ
Dt

, so ρJ = ρ0. (2.40)

For any tensor F , upon substituting (2.40) into (2.35a) and setting F = ρF̂
(F̂ is defined for per unit mass), we obtain a convenient general formula

d
dt

∫
V
ρF̂ dv =

∫
V
ρ
DF̂
Dt

dv, (2.41)

which is used below in deriving all dynamic equations from integral to differ-
ential form.

3 The mass conservation is independent of constitutive structure and sometimes
treated as a kinematical condition, especially for incompressible flow.
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2.2.2 Balance of Momentum and Angular Momentum

Let f be the body force of unit mass and t(x,n) be the surface force per
unit area, where n is the unit normal vector. The surface force is caused by
internal interaction. Then the momentum balance reads

d
dt

∫
V
ρudv =

∫
V
ρf dv +

∫
∂V

t dS. (2.42)

From (2.42) we have the following results. First, let l be the length scale of V
so that V ∼ l3 and ∂V ∼ l2. Dividing both sides of (2.42) by l2 and let l→ 0,
since volume integrals yields terms of O(l), we obtain

lim
l→0

(
1
l2

∫
∂V

t(x,n)dS
)

= 0,

indicating that the surface force is locally self-balanced. This is a theorem due
to Cauchy.

Second, observe that t dS is a vector proportional to dS, while a surface
element is always directional with a normal n, i.e., dS = ndS is also a vector.
The two vectors t and n must then be linearly related, or the jth component
of t must be a linear form of the ith component of n: tj = Tijni, where Tij
are the coefficients independent of n. Now, to ensure this vector equality the
coefficients Tij have to be the components of a tensor T of rank 2, called the
stress tensor . Namely, we have

t(x,n) = n ·T(x). (2.43)

The existence of the stress tensor is known as the Cauchy stress theorem. The
classic proof of the theorem (e.g., Lamb 1932; Serrin 1959; Batchelor 1967)
appeals to the application of the earlier local self-balance of the surface force
to the boundary of a small cubic or tetrahedral fluid element; but here it
directly follows from the vector property of t, n, and their linear relation.

Having obtained (2.43), from (2.42) and the Gauss theorem we obtain the
Cauchy motion equation

ρ
Du

Dt
= ρf +∇ ·T. (2.44)

For Newtonian fluid, T is related to the pressure p, the strain rate D, and its
trace ϑ linearly, given by the Cauchy–Poisson constitutive equation

T = (−p+ λϑ)I+ 2µD, (2.45)

with µ and λ being the first (shear) and second viscosity coefficients. Thus,
by (2.43) the surface force reads

t(x,n) = (−p+ λϑ)n+ 2µn ·D. (2.46)
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Substituting (2.46) into (2.42) or (2.45) into (2.44), we obtain the Navier–
Stokes equation

ρ
Du

Dt
= ρf −∇(p− λϑ) +∇ · (2µD). (2.47)

Remarks:

1. Only a part of the stress tensor T,

V ≡ T+ pI = λϑI+ 2µD (2.48)

is related to fluid deformation rate through viscosities. The constitutive
equation (2.45) can be expressed in terms of V and the deviator of D, see
(2.23):

V = 2µD′ + ζϑI, (2.49)

where ζ = λ+ 2µ/3 is the bulk viscosity .
2. The mean normal force with sign reversed is

p ≡ −1
3
Tii = p− ζϑ, (2.50)

which differs from the pressure for compressible flow when ζ �= 0. Some
authors assume ζ = 0 so that p = p as first did by Stokes. In this case V
is the deviator of T. But generally ζ does not vanish and turns out to be
frequency-dependent so that it exhibits dispersion (Landau and Lifshitz
1987).

Now, let x0 be a fixed point in space and r = x−x0. The vector product
of r and the general Cauchy motion equation (2.44) yields

ρ
D
Dt

(r × u) = ρr × f + r × (∇ ·T),

where ρ(r×u) is the angular momentum (or moment of momentum) per unit
volume about the point x0. Since for a Newtonian fluid

εijkrjTlk,l = (εijkrjTlk),l − εijkTjk = (εijkrjTlk),l

due to Tjk = Tkj implied by (2.45), integrating the earlier moment equation
gives the balance of angular momentum about the point x0:

d
dt

∫
V
ρr × udv =

∫
V
ρr × f dv +

∫
∂V

r × t dS. (2.51)

If one assumes (2.51) as the basis of angular momentum balance, then revers-
ing the earlier procedure will show that the stress tensorTmust be symmetric.
Therefore, for Newtonian fluid the angular momentum balance does not lead
to an independent equation. Nevertheless, the concept of angular momentum
is useful, and the rate of change of the fluid angular momentum is of di-
rect relevance to the total moment acted to a body moving in the fluid; see
Sect. 2.2.4.
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2.2.3 Energy Balance, Dissipation, and Entropy

From the inner product of the momentum balance (2.44) with u, one obtains
the balance of kinetic energy :

d
dt

∫
V

1
2
ρq2 dv =

∫
V
(ρf · u+ pϑ− Φ)dv +

∫
∂V

t · udS, (2.52)

ρ
D
Dt

(
1
2
q2
)

= ρf · u+ pϑ+∇ · (T · u)− Φ, (2.53)

where q = |u| and, by (2.45) and using double dots to denote twice contrac-
tion,

Φ ≡ D : V = λϑ2 + 2µD : D (2.54)

is the dissipation rate of the Newtonian fluid, the rate at which the mechanical
work is transferred into heat.

Remark: For a volume element δV the resultant rate of work done by t per
unit volume must be

lim
δV→0

(
1

δV

∫
∂δV

t · udS
)

= ∇ · (T · u) (2.55)

due to the Gauss theorem, as appearing in (2.53). It would be incorrect to
consider ∇·T as a body force and simply take (∇·T) ·u as the corresponding
rate of work. It is this difference between the body force ρf and resultant
surface force that leads to the dissipation Φ as well as the pressure work pϑ.

The appearance of Φ in the balance of kinetic energy implies the involve-
ment of thermodynamics. Let e be the specific internal energy , T the temper-
ature, and κ the heat conductivity. Then by the Fourier law

q = −κ∇T (2.56)

is the heat flux through the boundary of a fluid body (−q · n = κ∂T/∂n is
the heat entering the fluid per unit area per unit time). An application of the
first law (energy conservation) and second law of thermodynamics4 leads to,
respectively, the total energy equation5

d
dt

∫
V
ρ

(
e+

1
2
q2
)
dv =

∫
V
ρf · udv +

∫
∂V

(t · u− q · n)dS (2.57)

4 The rigorous approach to the first law and second law of thermodynamics and
their form in continuous mechanics is still a subject of research; see, e.g., Serrin
(1986).

5 We neglect the heating by radiation.
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and Clausius–Duham inequality

d
dt

∫
V
ρsdv ≥ −

∫
∂V

q · n
T

dS, (2.58)

where s is the specific entropy which relates to e by

de = cv dT = T ds− pd
(
1
ρ

)
, (2.59)

where cv is the specific heat at constant volume. Subtracting (2.52) from (2.57)
yields the internal energy equation, of which the local form reads

ρ
De
Dt

= T : D−∇ · q. (2.60)

From this equation and using (2.59) and (2.54), an elegant equation follows:

ρT
Ds
Dt

= Φ−∇ · q. (2.61)

Dividing (2.61) by T and integrating over a fluid body, we obtain

d
dt

∫
V
ρsdv =

∫
V

(
Φ

T
− q · ∇T

T 2

)
dv −

∫
∂V

q · n
T

dS. (2.62)

Compare this with (2.58), we see that the second law of thermodynamics is
ensured if

Φ ≥ 0, q · ∇T ≤ 0,

which by (2.54) and (2.56) requires

λ+ 2µ ≥ 0, µ ≥ 0, κ ≥ 0.

It is often convenient to replace the internal energy by enthalpy h and to
replace the total energy by total enthalpy H, defined by

h = cpT = e+
p

ρ
, H = h+

1
2
q2, (2.63)

respectively, where cp the specific heat at constant pressure. From the first
relation and (2.59) there is

dh = T ds+
1
ρ
dp. (2.64)

Thus, replacing d-operation by D/Dt, from (2.61) and (2.54) it follows that

ρ
Dh
Dt

= D : V −∇ · q +
∂p

∂t
+ u · ∇p.
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But by (2.46), after neglecting the body force f there is

u · ∇p = ∇ · (u ·V)−D : V − ρ
D
Dt

(
1
2
q2
)
.

Therefore, we obtain the total enthalpy equation

ρ
DH
Dt

=
∂p

∂t
+∇ · (u ·V − q), (2.65)

where the dissipation term is canceled.

2.2.4 Boundary Conditions. Fluid-Dynamic Force and Moment

Boundary conditions are necessary in solving the fluid dynamic equations for
various specific problems. We denote a material boundary of a viscous flow by
B, which can be either a rigid or flexible wall, or an immiscible interface of
two different fluids. When there is a need for distinguishing a solid wall and
an interface, we set B = ∂B for the former and B = S for the latter. Let us
agree that the unit normal vector n points out of the flow domain on ∂B and
from fluid 1 to fluid 2 on S.

A material boundary can be defined by an equation of surface

B : F (x, t) = 0. (2.66a)

Since B remains to be a material surface during the fluid motion, it immedi-
ately follows that there must be

DF
Dt

=
∂F

∂t
+ u · ∇F = 0 on B (2.66b)

as a kinematic boundary condition. For viscous flows some further conditions
on B have to be satisfied, which can be stated in a unified way. Let [[F ]] de-
note the jump of any quantity F right across B, so that on a solid boundary
[[u]] = u−b, where b is the solid velocity, while on an interface between fluid 1
and fluid 2, say, [[u]] = u1−u2. Then, the boundary conditions should ensure
the continuity of velocity and that of surface force with allowance of surface
tension (Wehausen and Laitone (1960); Batchelor (1967)). The velocity conti-
nuity implies [[u]] = 0 on B, or, in decomposed form, the no-through condition
and no-slip condition:

n · [[u]] = 0, (2.67a)
n× [[u]] = 0. (2.67b)

Similarly, let T be the surface tension which vanishes on B, then the surface-
force continuity across B implies

n · [[t]] + Tκ = 0, (2.68a)
n× [[t]] = 0, (2.68b)



2.2 Fundamental Equations of Newtonian Fluid Motion 31

where κ is the mean curvature of B. Note that, with surface tension T = 0,
(2.68) applies equally well to any material surface inside a viscous flow as well
as on solid boundary ∂B. For the latter case it simply tells that the forces
experienced by the solid wall equal that by the fluid but with opposite sign
(Newton’s third law).

For vorticity dynamics, in addition to the earlier primary boundary con-
ditions we also need some derived boundary conditions, which are corollaries
of (2.67). First, (2.67b) directly implies the continuity of normal vorticity:

n · [[ω]] = (n×∇) · [[u]] = 0 on B. (2.69)

Thus, on a nonrotating B there must be n·ω = 0. In contrast, since the tangent
vorticity involves normal gradient of the tangent velocity, it is generically
discontinuous across B. For example, assume a solid body in the fluid rotates
with angular velocity W and consider a boundary point x on ∂B with n·W �=
0. The fluid vorticity at x is decomposed to a normal vector ωn and a tangent
vector ωπ, see Fig. 2.5. Then ωn must go through ∂B to continuously connect
to the normal component 2Wn of the body vorticity, but ωπ �= 2Wπ. We may
conveniently define a relative vorticity ωr ≡ ω − 2W , which by (2.69) only
has tangent components at B that have to stay in the fluid and go around the
body. It is this discontinuity of ωπ across B that is responsible for the skin
friction (Sect. 2.4.2) and the very important mechanism of tangent-vorticity
creation at boundaries to be addressed in Sect. 4.1.3.

wn = 2Wn

2W

2Wp

wp

w r

W

w

Fig. 2.5. The continuation of normal vorticity and discontinuation of tangent vor-
ticity on a rotating body surface. The relative vorticity ωr = ω − 2W has only
tangent components
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Second, if at an initial time t = 0 a fluid particle sticks to a point of a solid
wall, or a particle of fluid 1 sticks to a particle of fluid 2 at an interface, by
(2.67) the stickiness will continue as time goes on. Thus, there must be the
continuity of acceleration:

n · [[a]] = 0, (2.70a)
n× [[a]] = 0. (2.70b)

Conversely, (2.70) plus the initial velocity adherence ensures (2.67).
Having stated the boundary conditions for a viscous fluid, it is straightfor-

ward to obtain the total force and moment acting on boundary by the fluid.
Consider a solid body B moving in an otherwise unbounded fluid, so that
∂V = ∂B in these equations. Then, since the unit normal out of the body is
û = −n, by (2.68) the forces acting on the body surface must be −t = n̂ ·T
on ∂B. Hence, along with (2.42) and (2.51), the total force F acted to the
body and the total moment M about x0 = 0 are given by

F = −
∫
∂B

t dS = − d
dt

∫
V
ρudv +

∫
V
ρf dv, (2.71)

M = −
∫
∂B

x× t dS = − d
dt

∫
V
ρx× udv +

∫
V
ρx× f dv. (2.72)

The total force can also be expressed by using a control volume V fixed
in the space, bounded internally by the body surface ∂B and externally by
a control surface Σ. Then applying the Reynolds transfer theorem (2.36) to
(2.42), and using the first equality of (2.71), we obtain

F =
∫
V

(
−∂(ρu)

∂t
+ ρf

)
dV +

∫
Σ

(t− ρuu · n)dS. (2.73)

For the total moment M a similar formula exists.
In particular, for steady flow without body force in V , the control-volume

approach finds important application in studying an externally unbounded
flow past a body with uniform upstream velocity U . In this case the control
surface Σ can be chosen large enough such that the viscous stress thereon can
be neglected. Then (2.73) is reduced to

F = −
∫
Σ

(pn+ ρuu · n)dS. (2.74)

Another formula for the rate of work done by a rigid body for maintaining
its motion can be derived from the kinetic-energy balance (2.52). The general
motion of a rigid body is given by

uB = U(t) +W (t)× x, (2.75)

where W is the angular velocity of the body and like (2.72) we locate the
origin of x at the instantaneous rotating center. Assume the fluid is externally
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unbounded and at rest at infinity. Then we have∫
∂B

t · uB dS = −U · FB −W ·MB = UD +WM,

where D and M are the drag and resistance torque, respectively. Hence, by
(2.52) we simply have

UD +WM =
d
dt

∫
V

1
2
ρq2 dv +

∫
V
Φdv −

∫
V
(ρf · u+ pϑ)dv. (2.76)

Thus, the rate of work done by the moving body, including translation and
rotation, is consumed to change the fluid kinetic energy, to overcome the rate
of work done by the body force and pressure force to the fluid, and to cause
the dissipation. More discussions on the total force and moment will be made
in Chap. 11.

2.2.5 Effectively Inviscid Flow and Surface of Discontinuity

So far our fundamental equations and boundary conditions have been formu-
lated for viscous fluids, since all fluids are viscous no matter how small the
viscosity could be. Inspecting the Navier–Stokes equation (2.47), especially
its natural Helmholtz-decomposition form (2.134) later, we see that the vis-
cous effect always coexists with vorticity and dilatation (more precisely, their
gradient or the second-order derivatives of velocity). This effect can compete
the inertial force only if

µ‖∇ω‖ = O(1), (µ+ 2λ)|∇ϑ| = O(1).

As the shear viscosity µ decreases or the Reynolds number Re = ρUL/µ
increases, the strong viscous effect occurs only in some progressively thinner
layers with very high peaks of ‖∇ω‖ = O(Re−1), for example the strong shear
layer (boundary layer) adjacent to a solid wall where the no-slip condition
(2.67b) holds (Sect. 4.3 below) or in very thin but strong compressing layers
in supersonic flow (shock layer). In the large remaining regions a mild vorticity
or dilatation is insufficient to reach an O(1) viscous effect, and hence the flow
there can be treated as effectively inviscid (Batchelor 1967), with the Navier–
Stokes equation degenerating to the Euler equation6

ρ
Du

Dt
= ρf −∇p. (2.77)

We may further talk about the asymptotic state of the flow as µ → 0 or
Re → ∞, for which the region covered by (2.77) becomes almost the entire
6 It should be noticed that even at an arbitrary Reynolds number there can still be
viscous but irrotational flow. A typical example is the asymptotic steady state of
the flow outside a rotating circular cylinder (e.g., Lagerstrom 1964).
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flow domain except vanishingly thin shear layers and shock layers. Across these
layers the flow velocity varies abruptly, associated with infinitely large peaks
of ω and/or ϑ. Following Lagerstrom (1977), we call this asymptotic state the
Euler limit , which should not be confused with the completely inviscid flow
of an ideal fluid.

Having said these, in what follows we highlight some issues of inviscid-
flow theory. First, because the Prandtl number Pr = µcp/κ is of O(1), the
heat conductivity κ in (2.56) should be neglected wherever so is µ; hence
when (2.77) applies the entropy equation (2.61) is reduced to the isentropic
condition

Ds
Dt

= 0, (2.78)

while the total-enthalpy equation (2.65) is reduced to

ρ
DH
Dt

=
∂p

∂t
, (2.79)

indicating that if the flow is steady then the total enthalpy is conservative.
In the Euler limit, the mathematic models of infinitely thin shock layers

and shear layers are surfaces of normal and tangential discontinuity, respec-
tively, which are permitted by the Euler equation (2.77) and across which the
differential form of the fundamental equations are no longer applicable. To
describe surfaces of discontinuity in accordance with using (2.77) to (2.79),
we need to extend the integral form of the fundamental theorems. Let ud be
the velocity of a surface of discontinuity Sdis, Vn = n · (u−ud) be the normal
velocity of the fluid relative to the moving Sdis. Then using the preceding
jump notation and generalized Reynolds transport equation (2.37), there is

d
dt

∫
V
F dv =

∫
V

(
DF
Dt

+ ϑF
)
dV +

∫
Sdis

[[FVn]]dS. (2.80)

Setting F as ρ, ρu, ρ(e + q2/2), and ρs in turn, we obtain the general jump
conditions imposed by dynamics and thermodynamics:

[[ρVn]] = 0, (2.81a)

[[ρVnu+ pn]] = 0, (2.81b)

[[ρVn(q2/2 + e) + pu · n]] = 0, (2.81c)

[[ρVns]] ≥ 0. (2.81d)

When (2.81b) is applied to an interface or free surface, the surface tension
should be added. In these relations there are jumps of some products, say
[[fg]], which can be treated by using a pair of identities:

[[fg]] = f [[g]] + [[f ]]g, (2.82a)

fg = fg +
1
4
[[f ]][[g]]. (2.82b)
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In (2.81a), ρ1Vn1 = ρ2Vn2 = m is the mass flux across Sdis. If m = 0
we call Sdis a contact discontinuity, across which some tangent components
are discontinuous. If m �= 0 we call Sdis a shock, across which some normal
components are discontinuous. For each of these two kinds, (2.81) can be
accordingly simplified. We exemplify this by the jump conditions across a
stationary shock. Denote the tangent component of a vector by suffix π and
assume on both sides of the shock Vn > 0. The tangent component of (2.81b)
is [[ρVnuπ]] = 0, which by (2.81a) implies [[uπ]] = 0. Thus, a shock can only
have normal velocity discontinuity. Using this condition and (2.82), (2.81) is
cast to the classic Rankine–Hugoniot shock relations

[[ρVn]] = [[m]] = 0, (2.83a)

[[ρV 2
n + p]] = 0, [[uπ]] = 0, (2.83b)

[[H]] = 0, H =
1
2
V 2
n + h, (2.83c)

[[s]] ≥ 0. (2.83d)

Note that across a stationary shock the total enthalpy is preserved.
The basic properties and dynamics of a surface of contact discontinuity

are also derived from (2.81) with zero mass flux, as will be fully addressed in
Sect. 4.4. But a few words is in order here. In an ideal fluid with µ ≡ 0, on
a surface of contact discontinuity the fluid particles of both sides just slide
over each other as schematically shown in Fig. 2.6a. This happens especially
on a boundary B since there one can only impose normal conditions (2.67a)
and (2.68a). In contrast, in the Euler limit of viscous flow this surface is
actually a thin vortex layer with singular vorticity distribution, across which
the integral of ω remains finite. Such a surface is known as a vortex sheet
consisting of material fluid elements, which has extremely strong shearing as
sketched in Fig. 2.6b. Vortex sheets and shocks are the idealized asymptotic
states of shearing and compressing processes in a viscous flow, respectively.

It is known that in a flow domain with no-through boundary condition the
Euler solution is not unique; for example, for a uniform oncoming flow over a
circular cylinder the solution of (2.77) can either be fully attached or separate
from the cylinder surface at any point (cf. Sect. 5.3.3). Of these possible Euler

(a) (b)

Fig. 2.6. (a) Tangent discontinuity in strictly inviscid flow. (b) Vortex sheet
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solutions only one is qualified to be the Euler limit of the viscous solution,7

which is referred to as the relevant Euler solution (Lagerstrom, 1977).
Once a relevant Euler solution is known, at least in principle one can re-

versely perturb either a shock or a vortex sheet to construct an approximate
Navier–Stokes solution with µ
 1. A perturbation to the Rankine–Hugoniot
relations (2.83) means to replace a shock by a viscous shock layer of thick-
ness δ 
 1, inside which the differential dynamic equations still apply. If the
coordinate normal to the shock layer, say x, is rescaled by x = δX so that
X = O(1), then it can be proved (Serrin 1959) that a smooth shock-layer
can exist only if it matches (2.83) as δ → 0 and X → ±∞. Conversely, with
(2.83) as boundary conditions at X → ±∞ the shock-layer solution can be
obtained. An important observation is that the Reynolds number based on δ
must be of O(1), and hence the ratio of δ to the global length scale L must
be O(Re−1). In air, if the Mach number ahead of the shock layer is 2.0, one
finds δ ∼ 2.5× 10−6 cm, the same order of molecular free path.

In contrast, a perturbation to a vortex sheet attached to a wall leads to
the boundary layer theory to be discussed in Sect. 4.3, which shows that the
layer’s thickness is of O(Re−1/2), much thicker than shock layers. Therefore,
for compressing process one can well assume the flow is inviscid (unless the
internal structure of shock layers is the concern), and the governing parameter
is the Mach number; while for shearing process the viscosity is of fundamental
importance, and the governing parameter is the Reynolds number.

2.3 Intrinsic Decompositions of Vector Fields

As defined in Chap. 1, the vorticity dynamics is the theory of shearing (trans-
verse) process and its interaction with compressing (longitudinal) process. We
thus need to examine how a fluid motion is split into these distinct processes
and what their respective characters are. In the standard form of kinematic re-
lations and dynamic equations as appeared in the preceding sections, however,
only quite limited relevant clues can be found. A more systematic mathematic
approach is necessary, which is the classic Helmholtz decomposition and its
modern sharpenings to be introduced in this section. While the theory applies
to any vector field, we use vector fields in fluid mechanics as illustration.

2.3.1 Functionally Orthogonal Decomposition

In the discussion of boundary conditions of a flow field, we have applied the
familiar geometrically orthogonal decomposition of a vector to the compo-
nent along a given direction, say n, and the components perpendicular to it,

7 Here we assume the solution of a well-posed Navier–Stokes problem exists and is
unique, and do not consider chaos and turbulence.
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e.g., (2.67) and (2.68). From these component vectors one recovers the original
vector, say velocity u, by the well-known identity:

u = n(n · u)− n× (n× u) ≡ u‖ + u⊥, (2.84)

where ‖ and ⊥ denote the component vectors parallel and perpendicular to
n, respectively. This decomposition is intrinsic with respect to the specified
direction n. More generally, if we have two vectors such as velocity u and
vorticity ω, then the geometrically orthogonal decomposition of ω with respect
to u, and that of u with respect to ω, are8

|u|2ω = u(ω · u)− u× (u× ω), (2.85a)

|ω|2u = ω(ω · u)− ω × (ω × u). (2.85b)

It is worth mentioning that in (2.85) there appears two quantities of crucial
importance in vorticity dynamics: scalar ω ·u, known as the helicity density ,
and vector ω × u, the Lamb vector . Their roles as well as the implication of
(2.85a) will be fully discussed later.

Splitting a vector into parallel and perpendicular parts as in (2.85) is the
prototype of a more advanced orthogonal decomposition of vectors, which can
be conveniently observed by replacing ω by∇ in (2.85b), yielding a differential
identity

∇2u = ∇(∇ · u)−∇× (∇× u)
= ∇ϑ−∇× ω. (2.86)

This is an example of the well-known Helmholtz decomposition, characterized
by the fact that the first part is curl-free (irrotational) while the second part
is divergence-free (solenoidal).

In fluid mechanics, the Helmholtz decomposition is most often used to
decompose the velocity field:

u = ∇φ+∇×ψ, (2.87)

where φ and ψ are the scalar and vector potentials of velocity, respectively.
Of the three independent components of u, φ represents one of them, so we
always choose ψ to have only two independent components by imposing a
constraint or gauge condition

∇ ·ψ = 0, (2.88)

which in (2.86) is automatically satisfied. Then, taking divergence and curl of
(2.87) and using (2.88) yield

8 The geometrically orthogonal decomposition (2.84) and (2.85) can be generalized
to any tensor of higher rank.
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∇2φ = ϑ, (2.89a)

∇2ψ = −ω, (2.89b)

which can be solved for φ and ψ for given ϑ and ω, respectively, under proper
boundary conditions to be discussed later. Thus, velocity potentials carry the
same physical information as dilatation and vorticity. This along with (2.87)
confirms our statement following (2.20) on the role of ϑ and ω.

Now, as a generalization of geometric orthogonality, the vector fields ∇φ
and ∇× ψ in (2.87) defined on a domain V are said functionally orthogonal
in the inner-product integral sense, if and only if they are square-integrable
and ∫

V

∇φ · (∇×ψ)dV = 0. (2.90)

For simplicity assume V is simply-connected. Condition (2.90) implies that
the curl-free and solenoidal parts of (2.87) will behave quite independently,
or are decoupled. When (2.90) holds, we use the same notation ‖ and ⊥ to
denote

u‖ = ∇φ, u⊥ = ∇×ψ, (2.91)

and specifically call u‖ and u⊥ the longitudinal and transverse parts, respec-
tively.

If V is an unbounded domain where the potentials decay sufficiently fast
as approaching infinity (see Sect. 2.3.2 later), or a cubic box with periodic
boundary condition, such that the Fourier analysis applies, then the Helmholtz
decomposition (2.87) plus (2.88) is unique and the decomposed parts are func-
tionally orthogonal. In this case, the decomposition is best expressed in the
Fourier space spanned by wave vector k = (k1, k2, k3):

F{u(x)} = û(k) =
1

(2π)3

∫
u(x)e−ik·xd3x, d3x ≡ dx1 dx2 dx3, (2.92)

where F{·} denotes the Fourier transform operator. It then follows that

F{∇ · u} = ik · û, (2.93a)
F{∇ × u} = ik × û. (2.93b)

Hence, the functional orthogonality in physical space degenerates to the geo-
metric one in spectral space. Equation (2.93) clearly reveals that a dilatation
wave is a longitudinal wave, and a vorticity wave is a transverse wave. Their
oscillating directions are geometrically along and perpendicular to the direc-
tion of wave vector k, respectively.9

9 This explains the name of our two fundamental processes. We shall use these terms
in a broader sense than that implied by (2.93). If in a bounded domain the Fourier
expansion is not feasible, the simple geometric relations between wave oscillating
directions and k no longer exists, while (2.91) still defines the longitudinal and
transverse parts of a vector.
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Moreover, the Fourier transform of (2.87) and (2.88) is

û = i(kφ̂+ k × ψ̂), (2.94)

ik · ψ̂ = 0, (2.95)

which decomposes û into components along and normal to k; while the Fourier
transform of (2.86) is

k2û = k(k · û)− k × (k × û), (2.96)

the same form as (2.85). Thus, to obtain the transverse part of û, one simply
has

û⊥i = Pij ûj , Pij ≡ δij −
kikj
k2

, (2.97)

where Pij is a projection operator.
In contrast to the earlier decomposition in the spectral space, in an arbi-

trary bounded domain V the Helmholtz potentials in (2.87) are not unique,
since ψ + ∇η for an arbitrary scalar η is also a vector potential due to
∇ × ∇η = 0. This arbitrariness cannot be completely removed by (2.88),
which only implies ∇2η = 0. The uniqueness and orthogonality of ∇φ and
∇×ψ in a bounded V depend on their boundary conditions. By ∇ · u⊥ = 0
and the Gauss theorem, there is∫

V

∇φ · u⊥ dV =
∫
V

∇ · (φu⊥)dV =
∫
∂V

φn · u⊥ dS.

Therefore, the orthogonality condition (2.90) holds if

n · u⊥ = 0 on ∂V, (2.98a)

i.e., u⊥ is parallel to ∂V . This implies that the normal component of u on
∂V comes entirely from u‖; hence a scalar equivalence of (2.98a) is

∂φ

∂n
= n · u on ∂V. (2.98b)

Condition (2.98) ensures not only the orthogonality but also the uniqueness
and existence of the decomposition. Suppose u has two different splittings
u = ∇φ1 + u⊥1 = ∇φ2 + u⊥2, both satisfying (2.98). Then

0 = u⊥1 − u⊥2 +∇(φ1 − φ2).

Taking the inner product with u⊥1 − u⊥2 and integrating, we have

0 =
∫
V

{|u⊥1 − u⊥2|2 + (u⊥1 − u⊥2) · ∇(φ1 − φ2)}dV

=
∫
V

|u⊥1 − u⊥2|2dV
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due to the Gauss theorem and (2.98a). Thus, there must be u⊥1 = u⊥2 and
hence ∇φ1 = ∇φ2. This guarantees the uniqueness of the decomposition and
excludes any scalar potentials from u⊥. Moreover, (2.89a) and (2.98b) form a
well-posed Neumann problem for φ, of which the solution exists and is unique
up to an additive constant. Hence so does u⊥ = u−∇φ. Collecting the earlier
results, we have (Chorin and Marsdon 1992)

Helmholtz–Hodge Decomposition Theorem. A vector field u on V
can be uniquely and orthogonally decomposed in the form u = ∇φ+u⊥, where
u⊥ has zero divergence and is parallel to ∂V .

This result sharpens the Helmholtz decomposition (2.87) and is called
Helmholtz–Hodge decomposition. It is one of the key mathematic tools in ex-
amining the physical nature of various fluid-dynamics processes.

Note that from scalar φ one can further separate a harmonic function ψ
with∇2ψ = 0, such that∇ψ is also orthogonal to both∇(φ−ψ) and u⊥. Thus,
strictly, u has a triple orthogonal decomposition. The harmonic part belongs
to neither compressing nor shearing processes, but is necessary for φ and ψ
to satisfy the orthogonality boundary conditions and thereby influences both.
For example, if a vorticity field ω has zero normal component on boundary so
that ω = ω⊥, there can be ∇×ω �= (∇×ω)⊥ if the former is not tangent to
the boundary. In this case we introduce a harmonic function χ, say, and write

∇× ω = (∇× ω)⊥ +∇χ, (2.99)

where

∇2χ = 0 in V, (2.100a)

∂χ

∂n
= n · (∇× ω) = (n×∇) · ω on ∂V. (2.100b)

The second equality of (2.100b) implies that χ is not trivial once ω varies
along ∂V , of which the significant consequence will be analyzed in Sect. 2.4.3.

2.3.2 Integral Expression of Decomposed Vector Fields

In the special case where the Fourier transform applies, we have obtained the
explicit expressions of u‖ and u⊥ in terms of a given u as seen from (2.96).
This local relation in the spectral space must be nonlocal in the physical
space after the inverse transform is performed. Indeed, comparing (2.87) with
identity (2.86), it is evident that if we set u = −∇2F then the Helmholtz
potentials in (2.87) are simply given by φ = −∇·F and ψ = ∇×F . Computing
these potentials for given u amounts to solving Poisson equations, and the
result must be nonlocal.

Without repeatedly mentioning, in what follows use will be frequently
made of the generalized Gauss theorem given in AppendixA.2.1. Let G(x) be
the fundamental solution of Poisson equation
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∇2G(x) = δ(x) (2.101)

in free space, which in n-dimensional space, n = 2, 3, is known as

G(x) =


1
2π

log |x|, if n = 2,

− 1
4π|x| , if n = 3.

(2.102)

The gradient of G will be often used:

∇G =
x

2(n− 1)π|x|n . (2.103)

Now assume u is given in a domain V and u = 0 outside V . We define a
vector F by

F (x) = −
∫
V

G(x− x′)u(x′) dV ′,

where dV ′ = dV (x′). On both sides we consider the Laplacian, which does
not act to functions of x′ but to G(x− x′) only. By (2.101) we have

−∇2F =
∫
V

δ(x− x′)u(x′)dV ′ =

{
u if x ∈ V,

0 if x /∈ V.

Thus, replacing u in identities (2.86) and (2.87) by F , and denoting the
gradient operator with respect to the integration variable x′ by ∇′ so that
∇G = −∇′G and ∇2G = ∇′2G, we obtain, when x is in V ,

φ = −∇ · F = −
∫
∇′G · udV ′

=
∫
V

Gϑ dV ′ −
∫
∂V

Gn · udS′, (2.104a)

ψ = ∇× F =
∫
∇′G× udV ′

= −
∫
V

Gω dV +
∫
∂V

Gn× udS′, (2.104b)

where the second-line expressions were obtained by integration by parts.
When x is outside V , these integrals vanish. Therefore, we have constructed
a Helmholtz decomposition of u:

u = ∇φ+∇×ψ for x ∈ V,

0 = ∇φ+∇×ψ for x /∈ V.

For unbounded domain, the Helmholtz decomposition is still valid provided
that the integrals in (2.104) converge. This is the case if (ω, ϑ) vanish outside
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some finite region or decay sufficiently fast (Phillips 1933; Serrin 1959).10

Therefore, (2.104) provides a constructive proof of the global existence of the
Helmholtz decomposition for any differentiable vector field. Moreover, (2.104)
indicates that the split vectors ∇φ and ∇ × ψ can be expressed in terms of
dilatation and vorticity, respectively:

∇φ =
∫
V

ϑ∇GdV ′ −
∫
∂V

(n · u)∇GdS′, (2.105a)

∇×ψ =
∫
V

ω ×∇GdV ′ −
∫
∂V

(n× u)×∇GdS′. (2.105b)

This result is the generalized Biot–Savart formulas to be discussed in detail in
Chap. 3. The formulas not only show the nonlocal nature of the decomposition
but also, via (2.103), tells how fast the influence of ω and ϑ at x′ on the field
point x decays as |x− x′| increases.

It should be stressed that for bounded domain the earlier results only
provide one of all possible pairs of Helmholtz decomposition of u. It does
not care any boundary condition for ∇φ and ∇ × ψ. In order to obtain
the unique Helmholtz–Hodge decomposition, the simplest way is to solve the
scalar boundary-value problem (2.89a) and (2.98b). To see the structure of
the solution, we use Green’s identity∫

V

(G∇2φ− φ∇2G)dV =
∫
∂V

(
G
∂φ

∂n
− φ

∂G

∂n

)
dS

along with (2.98b) to obtain

φ =
∫
V

Gϑ dV −
∫
∂V

(
Gn · u+ φ

∂G

∂n

)
dS. (2.106)

Compared with (2.104a), we now have an additional surface integral with
unknown boundary value of φ. To remove this term we have to use a boundary-
geometry dependent Green’s function Ĝ instead of G, which is the solution of
the problem

∇2Ĝ(x) = δ(x),
∂Ĝ

∂n
= 0 on ∂V. (2.107)

This gives a unique

∇φ̂ =
∫
V

ϑ∇Ĝ dV −
∫
∂V

n · u∇Ĝ dS, (2.108)

and hence u⊥ = u−∇φ̂ is the unique transverse vector.
The Helmholtz–Hodge decomposition is also a powerful and rational tool

for analyzing numerically obtained vector fields, provided that effective meth-
ods able to extend operators gradient, curl, and divergence from differential
formulation to discrete data can be developed. For recent progress see, e.g.,
Tong et al. (2003).
10 For the asymptotic behavior of velocity field in unbounded domain see Sect. 3.2.3.
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2.3.3 Monge–Clebsch decomposition

So far we have been able to decompose a vector field into longitudinal and
transverse parts. It is desirable to seek a further intrinsic decomposition of
the transverse part into its two independent components. A classic approach
is to represent the solenoidal part of a vector, say v ≡ u −∇φ = ∇× ψ, by
two scalars explicitly, at least locally:

v = ∇ψ ×∇χ. (2.109)

The variables φ, ψ, and χ are known as Monge potentials (Truesdell 1954) or
Clebsch variables (Lamb 1932). For the proof of the local existence of ψ and χ,
the reader is referred to Phillips (1933). Then, since ∇× (ψ∇χ) = ∇ψ×∇χ,
for the Helmholtz vector potential of u we may set (Phillips 1933; Lagerstrom
1964)

ψ = ψ∇χ, (2.110)

or more symmetrically (Keller 1996),

ψ =
1
2
(ψ∇χ− χ∇ψ). (2.111)

Both ways cast the Helmholtz decomposition (2.87) to a special form

u = ∇φ+∇ψ ×∇χ, (2.112)

where the vector stream function ψ is replaced by two scalar stream functions
ψ and χ. Accordingly, the vorticity is given by

ω = ∇× (∇ψ ×∇χ)
= ∇2χ∇ψ −∇2ψ∇χ+ (∇χ · ∇)ψ − (∇ψ · ∇)χ. (2.113)

The Monge–Clebsch decomposition has proven useful in solving some vor-
tical flow problems (Keller 1998, 1999), but it is not as powerful as the
Helmholtz–Hodge decomposition since unlike the latter it may not exist glob-
ally. Thus, if one wishes ψ and χ satisfy boundary condition (2.98a) or

n · (∇ψ ×∇χ) = 0 on ∂V (2.114)

and thereby produce a Helmholtz–Hodge decomposition, the problem may
not be solvable. Also note that neither (2.110) nor (2.111) satisfies the gauge
condition (2.88) although both contain only two independent variables.

Instead of the solenoidal part of u, one can also represent the vorticity ω
in the form of (2.109). In this case we set

u = ∇φ+ v, v = λ∇µ, (2.115)

so that ω = ∇λ × ∇µ and ∇ × (u − λ∇µ) = 0. This is the original form of
the Monge decomposition, also called the Clebsch transformation (Lamb 1932;
Serrin 1959). But in general λ∇µ is not a solenoidal vector and (2.115) does
not represent any Helmholtz decomposition.
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2.3.4 Helical–Wave Decomposition

An entirely different approach to intrinsically decompose a transverse vector
and giving its two independent components clear physical meaning, free from
the mathematical limitation of Clebsch variables, can be inspired by observing
light waves. A light wave is a transverse wave and can be intrinsically split
into right- and left-polarized (helical) waves.11 Mathematically, making this
splitting amounts to finding a complete set of intrinsic basis vectors, which
are mutually orthogonal in the sense of (2.90), and by which any transverse
vector can be orthogonally decomposed.

Recalling that the curl operator retains only the solenoidal part of a vector,
and observe that the sign of its eigenvalues may determine the right- and left-
polarity or handedness. We thus expect that the desired basis vectors should
be found from the eigenvectors of the curl. Indeed, denote the curl-eigenvalues
by λk, where λ = ± 1 marks the polarity and k = |k| > 0 is the wave number
with k the wave vector. Then there is

Yoshida–Giga Theorem (Yoshida and Giga 1990). In a singly-connected
domain D, the solutions of the eigenvalue problem

∇× φλ(k,x) = λkφλ(k,x) in D,
n · φλ(k,x) = 0 on ∂D, λ = ± 1, (2.116)

exist and form a complete orthogonal set {φλ(k,x)} to expand any transverse
vector field u⊥ parallel to ∂D.12

These φλs can only be found in complex vector space. Their orthogonality
(normalized) is expressed by

〈φλ(k,x),φ∗
µ(k

′,x)〉 = δλµδ(k − k′), λ, µ = ± 1, (2.117a)∑
k

φλi(k,x)φλj(k,x′) = δijδ(x− x′), λ = ± 1, (2.117b)

where the asterisk means complex conjugate and repeated indices imply
summation. Using this basis to decompose a transverse vector is called the
helical-wave decomposition (HWD). For neatness we use 〈·, ·〉 to denote the
inner-product integral over the physical space, then the HWD of F⊥ reads

11 A transverse vector, which can be constructed by vector product or curl operation,
is an axial vector or pseudovector. It is always associated with an antisymmetric
tensor (see AppendixA.1) and changes sign under a mirror reflection. And, like
polarized light, an axial vector is associated with certain polarity or handedness. A
true vector, also called polar vector, does not change sign by mirror reflection and
has no polarity. In an n-dimensional space the number of independent components
of a true vector must be n, but that of an axial vector is the number of the indepen-
dent components in its associated antisymmetric tensor, which is m = n(n−1)/2.
Thus, only in three-dimensional space there is m=n, but in two-dimensional space
an axial vector has only one independent variable (e.g., Lugt 1996).

12 Additional condition is necessary in a multiple-connected domain.
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F⊥(x, t) =
∑

k

Fλ(k, t)φλ(k,x), (2.118a)

Fλ(k, t) = 〈F (x, t),φ∗
λ(k,x)〉. (2.118b)

Note that 〈F − F⊥,φλ〉 = 0.
For example, for an incompressible flow with un = ωn = 0 on ∂D, one can

expand

u(x, t) =
∑
k,λ

uλ(k, t)φλ(k,x), ω(x, t) =
∑
k,λ

λuλ(k, t)φλ(k,x). (2.119)

Here the term-by-term curl operation on the infinite series converges. However,
as seen from (2.99) and (2.100), although∇×ω is solenoidal, only (∇×ω)⊥ can
have HWD expansion on which the term-by-term curl operation converges.
Therefore, the result is

∇× ω =
∑
k,λ

λ2uλφλ +∇χ, (2.120)

where χ is determined by (2.100).
The specific form of HWD basis depends solely on the domain shape. In

a periodic box (2.116) is simplified to

ik × φλ(k,x) = λkφλ(k,x),

from which the normalized HWD eigenvectors can be easily found (Moses
1971, Lesieur 1990):

φλ(k,x) = hλ(k)eik·x,

hλ(k) =
1√
2
[e1(k) + iλe2(k)],

(2.121)

where λ = ± 1, and e1(k), e2(k), and k/k form a right-hand Cartesian triad.
In this case (2.117a) is simplified to

hλ(k) · h∗
µ(k) = δλµ. (2.122)

If the Cartesian triad is so chosen such that k = kez, then

φλx(k,x) =
1√
2
cos kz, φλy(k,x) = −

λ√
2
sin kz, φλz(k,x) = 0. (2.123)

Therefore, as we move along the z-axis, the locus of the tip of φλ(k,x) will be
a left-handed (or right-handed) helix if λ = 1 (or −1), having a pitch equal to
wavelength 2π/k, see Fig. 2.7. In other words, each eigenmode with nonzero
eigenvalue is a helical wave. This explains the name HWD. A combined use
of the Helmholtz–Hodge and HWD decompositions permits splitting a vector
intrinsically to its finest building blocks.
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k

Fig. 2.7. A helical wave

The simple Fourier HWD basis cannot be applied to domains other than
periodic boxes. To go beyond this limitation, we notice that the curl of (2.116)
along with itself leads to a vector Helmholtz equation

∇2φλ + k2φλ = 0. (2.124)

Unlike (2.116), now the three component equations are decoupled, each rep-
resenting a Sturm–Liouville problem. Then in principle one can use the
Helmholtz vectors to construct the HWD bases. Since a transverse vector
field depends on only two scalar fields, say ψ and χ, a simplification may
occur if both scalars are solutions of the scalar Helmholtz equation

∇2ψ + k2ψ = 0. (2.125)

Morse and Feshbach (1953, pp. 1764–1766) have shown that this can indeed
be realized in and only in Cartesian, cylindrical, spherical, and conical coor-
dinates. Specifically, a transverse solutions (not normalized) of (2.124) can be
written as

a⊥ = M +N , M = ∇× (ewψ), N =
1
k
∇×∇× (ewχ),

where e can be three Cartesian unit vectors, the unit vector along the axis
in cylindrical coordinates, or that along the radial direction in spherical and
conical coordinates, but none other. the scalar w in the first two cases is 1,
while in the others is the radius r. In particular, when ψ = χ there is

∇× (M + λN) = λk(M + λN);

thus, one can write down the HWD basic vector (not normalized)

φλ = ∇× (ewψ) +
λ

k
∇×∇× (ewψ). (2.126)

Chandrasekhar and Kendal (1957) have given the HWD basis in terms of
spherical coordinates. For vorticity dynamics the basis in terms of cylindrical
coordinates (r, θ, z) is of interest. Assume that along the z-axis we can impose
periodic boundary condition. Then a scalar Helmholtz solution that is regular
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at r = 0 is

ψ = Jm(βr)ei(mθ+kzz), kz =
πn

L
,

β2 = k2 − k2z , m = 0, 1, 2, . . . , n = ± 1,± 2, . . . ,

where Jm(βr) are Bessel functions of the first kind. Substituting this ψ into
(2.126) and multiplying the result by a constant iαλ(λ, n) ≡ iλk/kz, we obtain

φλr =
[
Jm+1(βr)−

m

βr
(1 + αλ)Jm(βr)

]
ei(mθ+kzz),

φλθ = i
[
αλJm+1(βr)−

λm

βr
(1 + αλ)Jm(βr)

]
ei(mθ+kzz),

φλz = i
β

kz
Jm(βr)ei(mθ+kzz).

(2.127)

This result has been applied to vortex-core dynamics, see Sect. 8.1.4. The
HWD has also found important applications in the analysis of turbulent
cascade process; e.g., Waleffe (1992, 1993); Chen et al. (2003), and refer-
ences therein. For a bounded domain of arbitrary shape, finding the curl-
eigenvectors is not an easy task and requires special numerical algorithms
(e.g., Boulmezaoud and Amari 2000).

2.3.5 Tensor Potentials

Before closing this section we take a further look at the Helmholtz potentials.
Return to the Cauchy motion equation (2.44) and denote

fs ≡ ∇ ·T = lim
V→0

(
1
V

∫
∂V

t dS
)
, (2.128)

which is the resultant surface force per unit volume and contains most of the
kinetic properties of flows. Assume we have decomposed fs to

fs = −∇Φ+∇× Ψ , ∇ · Ψ = 0. (2.129)

Observe that
−Φ,i + εijkΨk,j = −(Φδji + εjikΨk),j ,

where
εjikΨk ≡ Ψji = −Ψij (2.130)

is an antisymmetric tensor. Thus, (2.129) can be written as

fs = ∇ · T̂, T̂ij ≡ −(Φδij + Ψij). (2.131)

As a generalization of the concept of scalar and vector potentials φ and ψ in
(2.87), we may view the stress tensor T and the tensor T̂ as tensor potentials
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of fs. Obviously there must be ∇· (T− T̂) = 0. Any other tensor, say T′, can
also be a tensor potential of fs provided that T−T′ is divergenceless. Thus,
while for Newtonian fluid the stress tensor T is uniquely given by (2.45), fs
has infinitely many tensor potentials, among which the above T̂ with only
three independent components is the simplest one. We call it the Helmholtz
tensor potential of fs.

The value of introducing the Helmholtz potential lies in the fact that in
(2.44) the six-componentT plays a role only through its divergence. Therefore,
once the expression of T̂ (or the Helmholtz potentials Φ and Ψ) is known, in
the local momentum balance T can well be replaced by the simpler T̂. Thus
we call T̂ the reduced stress tensor. However, on any open surface T̂ produces
a reduced surface force

t̂tt(x,n) = n · T̂(x) = −Φn+ n× Ψ , (2.132)

which is generically different from the full surface force t given by (2.43). It is
here that the extra part of T cannot be ignored. Nevertheless, the replacement
of t by t̂tt is feasible when one considers the volume integral of fs:∫

V

fs dV =
∫
∂V

t dS =
∫
∂V

t̂tt dS (2.133)

due to the Gauss theorem.

Remarks:

1. We know the divergence of any differentiable tensor of rank 2 is a vector.
Now since for any vector field one can always find its Helmholtz potentials
as proven by the Helmholtz–Hodge theorem, we see the inverse is also true.

2. Because the Helmholtz decomposition is a global operation, in applica-
tions the replacement of (T, t) by (T̂, t̂tt) is convenient only when fs has a
natural Helmholtz decomposition, as in the kinematic case of (2.86). This
important situation also occurs in dynamics as will be seen in the Sect. 2.4.

3. The body force ρf in (2.44) can also be expressed as the divergence of
a tensor potential. But this in no ways means that one may cast any
body force to a resultant surface force. Whether a force is a body force
or surface force should be judged by physics rather than mathematics; a
surface force is caused by internal contact interaction of the fluid.

2.4 Splitting and Coupling of Fundamental Processes

Having reviewed the basic principles of Newtonian fluid dynamics and intro-
duced the intrinsic decomposition of vector fields, we can now gain a deeper
insight into the roles of compressing and shearing processes in the kinematics
and dynamics of a Newtonian fluid. Our main concern is the splitting and
coupling of the two processes in the Navier–Stokes equation (2.47). As just
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remarked, the splitting will be convenient when a natural Helmholtz decom-
position manifests itself from (2.47). Remarkably, this is the case as long as µ
is constant. By using (2.86) we have

2∇ ·D = ∇ϑ+∇2u = 2∇ϑ−∇× ω,

so (2.47) immediately yields a natural Helmholtz decomposition of the total
body force (inertial plus external) as pointed out by Truesdell (1954):

ρ
Du

Dt
− ρf = −∇Π −∇× (µω), (2.134)

where
Π ≡ p− (λ+ 2µ)ϑ (2.135)

consists of the pressure and a viscous contribution of dilatation. The appear-
ance of pressure changes the dynamic measure of the compressing process to
the isotropic part of T (per unit volume), which is Π; and the dynamic mea-
sure of the shearing process remains to be the vorticity ω (multiplied by the
shear viscosity).13

The elegance of (2.134) lies in the fact that Π and ω have only three inde-
pendent components, and three more independent components in the strain-
rate tensor D do not appear. This fact deserves a systematic examination of
its physical root and consequences, which is the topics of this section.

2.4.1 Triple Decomposition of Strain Rate and Velocity Gradient

According to our discussion on tensor potentials of a vector in Sect. 2.3.5
and the Cauchy motion equation (2.44), the natural Helmholtz decomposi-
tion in (2.134) implies that there must be a natural algebraic decomposi-
tion of the stress tensor T for Newtonian fluid, able to explicitly reveal the
Helmholtz tensor-potential part of T. This, by the Cauchy–Poisson equation
(2.45), in turn implies that the desired algebraic decomposition must exist
in the strain-rate tensor D. Therefore, we return to kinematics. Unlike the
classic symmetric-antisymmetric decomposition (2.18), we now consider the
intrinsic constituents of D in terms of fundamental processes. The result is
simple, but has much more consequences than merely for rederiving (2.134).

Since DT = D but ΩT = −Ω, we may write

(∇u)T = D−Ω+ ϑI− ϑI,

13 The dynamic measure of compressing process per unit mass may switch to other
scalars, see later.
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so that by (2.27) there is an intrinsic triple decomposition of D and ∇u (Wu
and Wu 1996):

D = ϑI+Ω−B, (2.136a)

∇u = ϑI+ 2Ω−B. (2.136b)

Thus, the velocity gradient and rate of strain consist of a uniform expan-
sion/compression, a rotation, and a surface deformation. Here, B has most
complicated structure among the three tensors on the right-hand side, and
needs a further examination.

As seen from (2.26) and (2.29), the primary appearance of B is in the form
of n ·B for the rate of change of a surface element dS = ndS, which involves
the kinematics on the surface only. Denoting the tangent components of any
vector by suffix π, it can then be shown that (AppendixA.3.2)

n ·B = (∇π · u)n− (∇πun + u ·K), (2.137)

where
K ≡ −∇πn (2.138)

is the symmetric curvature tensor of dS consisting of three independent tan-
gent components. Then (2.137) can be written as

n ·B =
n

dS
D
Dt

dS +
Dn

Dt
= nrs +W × n, (2.139)

where rs is the rate of change of the surface area and W (x, t) is the angular
velocity of n, expressed solely in terms of the velocity and geometry of the
surface (the normal component of W is simply Wn = ωn/2):

rs = ∇π · u = ϑ− un,n (2.140a)

Wπ = −n× (∇πun + u ·K). (2.140b)

Return now to the triple decomposition (2.136). As a special case and
a fundamental application, we consider its form on an arbitrary material
boundary B with unit normal n and velocity u = b. The resulting kinematic
knowledge (Wu et al. 2005c) is indispensible in studying any fluid-boundary
interactions. Due to the adherence, we may write

∇u = n(n · ∇u) +∇πu = n(n · ∇u) +∇πb on B.

Since (2.136b) gives

n · ∇u = nϑ+ ω × n− n ·B,

we obtain

∇u = nnϑ+ n(ω × n)− n(n ·B) +∇πb on B. (2.141)



2.4 Splitting and Coupling of Fundamental Processes 51

Here, the tensor ∇πb depends solely on the motion and deformation of B but
independent of the flow. To see the implication of (2.141), we first assume B
is rigid to which our frame of reference can be attached, so the last two terms
vanish:

∇u = nnϑ+ n(ω × n).

Then, taking the symmetric part immediately yields the Caswell formula
(Caswell 1967):

2D = 2nnϑ+ n(ω × n) + (ω × n)n, (2.142)

where by (2.140a) ϑ can be replaced by un,n since rs = 0.
We now extend (2.142) to an arbitrary deformable surface B (to which no

frame of reference can be attached). For this purpose we only need to treat
the tensor ∇πb in (2.141). In general, it consists of a tangent–tangent tensor
(∇πb)π and a tangent–normal tensor

(∇πb · n)n = (∇πbn − b · ∇πn)n = −(W × n)n

due to (2.138) and (2.140b). Substituting these into (2.141) and using (2.139)
to express n ·B, we obtain a general kinematic formula:

∇u = nnun,n + n(ω × n)− [n(W × n) + (W × n)n] + (∇πb)π. (2.143)

Note that rs in the normal–normal component is canceled. Then, let S and A
be the symmetric and antisymmetric parts of (∇πb)π, from (2.143) it follows
that

2D = 2nnun,n + n(ωr × n) + (ωr × n)n+ 2S, (2.144)

2Ω = n(ω × n)− (ω × n)n+ 2A, (2.145)

where ωr ≡ ω−2W is the relative vorticity with n·ωr = 0, see (2.69). Tensor S
has three independent components and can be called surface-stretching tensor.
In contrast, A has only one independent component, which must be ωn. Note
that on a rigid boundary (2.144) reduces to (2.142), but viewed in a frame of
reference fixed in the space.

The generalized Caswell formula (2.144) contains the key kinematics on
an arbitrary boundary B. It represents an intrinsic decomposition of D with
respect to one normal (N) and two tangent (T) directions, along with their
respective physical causes. Namely: the N–N component caused by the normal
gradient of normal velocity; the N–T and T–N components caused by the rela-
tive vorticity; and the T–T components caused by the surface flexibility. With
known b(x, t)-distribution and surface geometry, (2.143) and (2.144) express
a basic fact that the motion and deformation of a fluid element neighboring B
are described by only three independent components of velocity derivatives.

The form of (2.144) suggests a convenient curvilinear orthonormal basis
(e1,e2, n̂nn) on B. Let e2 be along ωr, n̂nn = −n (towards fluid), and hence e1 is
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Fig. 2.8. Principal directions of the strain-rate tensor on a rigid boundary

along ωr × n̂nn. It will be seen below (Sect. 2.4.2) that for Newtonian fluid e1
is the direction of shear stress τ ; thus we call this frame the τ -frame. Then
(2.144) reads

{Dij} =

 S11 S12 ωr/2
S12 rs − S11 0
ωr/2 0 un,n

 . (2.146)

We have seen in Sect. 2.1.2 that the first and third eigenvalues λ1,3 and
associated principal directions of D reflect the maximum stretching/shrinking
rates and directions, respectively. On a boundary B they have dominant effect
on the near-boundary flow structures and their stability. Let θ1,3 be the angles
between the stretching/shrinking principal axes and e1 of the τ -frame. If B
is rigid with S = 0 and if the flow is incompressible, from (2.146) it follows
at once that λ1,3 = ±ωr/2, λ2 = 0, and θ1,3 = ± 45◦, as sketched in Fig. 2.8.
But the situation can be very different if B is deformable, as demonstrated by
Wu et al. (2005c).

2.4.2 Triple Decomposition of Stress Tensor and Dissipation

We move on to dynamics. Substituting (2.136a) into (2.45) immediately leads
to a triple decomposition of the stress tensor

T = −ΠI+ 2µΩ− 2µB, (2.147)

where Π is defined by (2.135). Then since by (2.34b) µB is a trace-free
tensor, the first two terms on the right-hand side of (2.147) form the nat-
ural Helmholtz tensor potential of the surface force. In other words, for flow
with constant µ, the surface deformation process does not affect the local
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momentum balance (Wu and Wu 1993). This explains the origin of (2.134)
and permits introducing the reduced stress tensor and reduced surface stress
solely in terms of compressing and shearing processes:

T̂ = −ΠI+ 2µΩ, (2.148)

t̂tt = n · T̂ = −Πn+ µω × n. (2.149)

The conceptual simplification brought by T̂ can also lead to significant compu-
tational benefit. For example, Eraslan et al. (1983) have developed a Navier–
Stokes solver where some components of T were found never useful and hence
simply dropped. Consequently, for incompressible flow the solver reached a
big saving of CPU in stress computation.

Evidently, although for constant µ the surface-deformation stress does not
contribute to the differential momentum equation nor integrated surface force
over a closed boundary, it must show up in more general circumstances. Here
we consider two simple examples; in Sect. 4.3.2 we shall see the crucial role of
the surface-deformation stress in free-surface flow.

First, on any surface element of unit area in the fluid or at its boundary,
we have a triple decomposition of the surface force:

t = t̂tt+ ts, ts = −2µn ·B = −2µ(nrs +W × n), (2.150)

where ts is the viscous resistance of the fluid surface to its motion and defor-
mation, which has both normal and tangent components. Thus, denote the
orthogonal decomposition of the stress by t = −Π̃n+τ , by (2.135) the general
normal and tangent components are

Π̃ = Π + 2µrs = p− λϑ− 2µun,n, (2.151a)

τ = µωr × n, ωr = ω − 2W . (2.151b)

On a solid wall τw = −τ is the skin-friction stress, always determined by
the relative vorticity. Note that ts = 0 only if the surface performs uniform
translation; even a rigid rotation will cause a nonzero ts due to the viscous
resistance to the variation of n.

Second, using the generalized Stokes theorem (A.17) and its corollary
(A.26), from (2.150) and (2.29) we find the general formulas for integrated
force and moment due to ts on an open surface S with boundary loop C:∫

S

ts dS = 2µ
∮
C

dx× u, (2.152a)

∫
S

x× ts dS = 2µ
∮
C

x× (dx× u)− 2µ
∫
S

n× udS. (2.152b)

In particular, on a closed boundary ∂V of a fluid volume V , by the generalized
Gauss theorem (A.14), the total moment due to ts is proportional to the total
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vorticity in V (Wu and Wu 1993):∫
∂V

x× ts dS = −2µ
∫
∂V

n× udS = −2µ
∫
V

ω dV. (2.153)

Corresponding to (2.147), a triple decomposition can also be made for the
dissipation Φ, which brings some simplification too. We start from a kinematic
identity (cf. Truesdell 1954)

D : D = ϑ2 +
1
2
ω2 −∇ · (B · u), (2.154)

where ω2 ≡ |ω|2 is called the enstrophy . Thus, for constant µ, (2.54) yields
the triple decomposition of dissipation rate:

Φ = (λ+ 2µ)ϑ2 + µω2 −∇ · (2µB · u). (2.155)

Once again, the role of the three viscous constituents of stress tensor is
explicitly revealed. Note that the B-part of Φ can be either positive or nega-
tive. More interestingly, we have

t · u = −Πn · u+ µω · (n× u)− n · (2µB · u);

substituting this and (2.155) into (2.52), we see that the B-part of Φ and that
of t · u are canceled. Explicitly, at each point the work rate per unit volume
done by ts is

ws ≡ lim
V→0

1
V

∫
∂V

ts · udS = −∇ · (2µB · u),

precisely the last term of (2.155), say Φs. Therefore, the work done by ts does
not influence the change of kinetic energy but always directly dissipated into
heat (Wu et al. 1999a). Hence, instead of (2.52) and (2.53) we can simply
write

d
dt

∫
V
ρ

(
1
2
q2
)
dv =

∫
V
(ρf · u+ pϑ− Φ̂)dv +

∫
∂V

t̂tt · udS, (2.156a)

ρ
D
Dt

(
1
2
q2
)

= ρf · u+ pϑ+∇ · (T̂ · u)− Φ̂, (2.156b)

where T̂ and t̂tt are given by (2.148) and (2.149), and

Φ̂ ≡ Φ− Φs = (λ+ 2µ)ϑ2 + µω2 ≥ 0 (2.157)

is the reduced dissipation, again due only to compressing and shearing processes.
Wu et al. (1999a) notice that the characteristic distribution of scalars ϑ2, ω2,
and Φs in (2.157) may serve as good indicators for identifying different struc-
tures in a complex high Reynolds-number flow. However, it should be warned
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that it is the full dissipation Φ rather than Φ̂ that causes the entropy pro-
duction in (2.61). Otherwise a fluid making a solid-like rotation would have a
dissipation µω2, which is of course incorrect.

Finally, for constant µ, from (2.155) the total dissipation over a volume V
is ∫

V

ΦdV =
∫
V

[(λ+ 2µ)ϑ2 + µω2]dV +
∫
∂V

ts · udS. (2.158)

This result generalizes the Bobyleff–Forsythe formula (Serrin 1959) for im-
compressible flow:∫

V

ΦdV = µ

∫
V

ω2 dV + 2µ
∫
∂V

u · ∇u · ndS. (2.159)

If ∂V extends to infinity where the fluid is at rest, then only the reduced
dissipation Φ̂ contributes to the total full dissipation.

So far we have assumed a constant µ. More generally, with µ = µ(T )
the natural Helmholtz decomposition of the momentum equation (2.134) no
longer exactly holds. Rather, there will be (Wu and Wu 1998)

ρ
Du

Dt
− ρf = −∇Π −∇× (µω)− 2∇µ ·B, (2.160a)

where B is the surface strain rate tensor. Here, the viscosity gradient can be
cast to

−∇µ =
SµPr

h
q with Sµ ≡

d logµ
d log T

, (2.160b)

where h = cpT is the enthalpy and q = −κ∇T the heat flux. Both the Prandtl
number Pr = µcp/κ and Sµ are of O(1). Because q is along the normal of
isothermal surfaces, the extra term in (2.160a) is proportional to the viscous
resistance of isothermal surfaces to their deformation. In most cases this effect
is small.

2.4.3 Internal and Boundary Coupling of Fundamental Processes

For vorticity dynamics (and sometimes “compressing dynamics” as well), the
Navier–Stokes equation expressed for unit mass is more useful than that for
unit volume. But, once the fluid density is a variable, such an equation with
constant µ,

Du

Dt
= f − 1

ρ
∇Π − ν∇× ω, (2.161)

where ν = µ/ρ is the kinematic viscosity, is no longer a natural Helmholtz
decomposition. To discover the underlying physics of the two fundamental
processes and their coupling most clearly, we need a different decomposition
to maximally reveal the natural potential and solenoidal parts.
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First, on the left-hand side of (2.161) it is the nonlinear advective accel-
eration u · ∇u that causes all kinematic complexity of fluid motion, never
encountered in solid mechanics. Thus we decompose it first. Write

∇u = ∇u− (∇u)T + (∇u)T = 2Ω+ (∇u)T,

such that
2u ·Ω = ω × u, u · (∇u)T = ∇u · u.

Then (2.11) is cast to the vorticity form, very important in vorticity and
vortex dynamics:

Du

Dt
=

∂u

∂t
+ ω × u+∇

(
1
2
q2
)
, q ≡ |u|. (2.162)

Therefore, the advective acceleration consists of two parts. One is the gradient
of kinetic energy, evidently a longitudinal process, implying that the acceler-
ation increases as fluid particles move toward higher kinetic-energy region.
The other is the Lamb vector ω × u already encountered in (2.85), which
is analogous to the Coriolis force observed in a rotating frame of reference
(see Sect. 12.1.1) and drives the particles move around the vorticity direction.
Generically ω×u is neither solenoidal nor irrotational, and hence appears in
the evolution of both longitudinal and transverse processes.

Next, on the right-hand side of (2.161) there is an inviscid term −∇p/ρ,
which by (2.64) equals −∇h + T∇s, where ∇h is also a natural longitudi-
nal process. Thus, (2.161) can be cast to the Crocco–Vazsonyi equation (its
inviscid version is the Crocco equation):

∂u

∂t
+ ω × u− T∇s = f −∇H + η, (2.163)

where H is the total enthalpy defined in (2.63), and

η ≡ 1
ρ
∇ ·V =

1
ρ
∇[(λ+ 2µ)ϑ]− ν∇× ω +

2
ρ
∇µ ·D (2.164)

collects all viscous forces including variable µ. We may introduce a constant
averaged kinematic shear viscosity ν0 and write η = η′− ν0∇×ω to separate
a basic viscous force due to vorticity diffusion, so that on the right-hand side
of (2.163) an explicit Helmholtz decomposition is recovered. The extra term
η′ originates from compressibility and thermodynamics, which in most cases
is negligible. Therefore, the main complexity of (2.163) lies in its inviscid
nonlinear term called generalized Lamb vector :

L ≡ ω × u− T∇s, (2.165)

which is usually dominated by the Lamb vector ω × u.
Now, in order to examine to what degree the two fundamental processes

can be split and how they are coupled, we assume the external body force
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does not exist (to be discussed in Sects. 3.6.2, 4.1.1, and Chap. 12), and take
the curl and divergence of (2.163). Since ν0∇×ω is divergence-free, this yields

∂ω

∂t
− ν0∇2ω = −∇× (L− η′), (2.166)

∂ϑ

∂t
+∇2H = −∇ · (L− η′). (2.167)

While (2.166) represents the general vorticity transport equation which char-
acterizes all transverse interactions, (2.167) characterizes all longitudinal
interactions and suggests that the viscous effect is much weaker than that
in (2.166). Because the Helmholtz decomposition is a linear operation, the
nonlinearity in L−η′ in both equations makes the coupling of both processes
inevitable. It is their intersection.

For weakly compressible flow the entropy gradient can be neglected and ν
is nearly constant. Then (2.166) is reduced to the classic Helmholtz equation
for the vorticity to be studied in depth in this book:

∂ω

∂t
+∇× (ω × u)− ν∇2ω = 0, (2.168)

where the solenoidal part of the Lamb vector ω×u is the only nonlinear term.
Meanwhile, under the same condition, (2.167) is reduced to

∂ϑ

∂t
+∇2H +∇ · (ω × u) = 0, (2.169)

where the potential part of the Lamb vector ω × u appears. As a scalar
equation, the spatial structure of (2.169) is simpler than (2.168); but we have
to express one of the two scalars ϑ and H by the other, which complicates
the final form of (2.169). The result is an advective wave equation for the
total enthalpy H obtained by Howe (1975, 1998, 2003), with the Lamb vector
and entropy variation being the source of the wave. We illustrate the Howe
equation for inviscid homentropic flow. Multiplying the inviscid version of
(2.163) by ρ and taking divergence, we have

∇ ·
(
ρ
∂u

∂t

)
+∇ · (ρ∇H) = −∇ · (ρω × u).

Here, using (2.40) and the inviscid version of (2.65), there is

∇ ·
(
ρ
∂u

∂t

)
= ∇ρ · ∂u

∂t
− ρ

∂

∂t

D ln ρ
Dt

= −ρ D
Dt

∂ ln ρ
∂t

= −ρ D
Dt

(
1
ρc2

∂p

∂t

)
= −ρ D

Dt

(
1
c2

DH
Dt

)
,
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where c = (dp/dρ)1/2s is the speed of sound. Therefore, it follows that (Howe,
2003) [

D
Dt

(
1
c2

D
Dt

)
− 1

ρ
∇ · (ρ∇)

]
H =

1
ρ
∇ · (ρω × u). (2.170)

In its most general form (Howe 1998), the Howe equation governs almost
all compressing processes and could be solved jointly with the vorticity trans-
port equation (2.166). But its main application is on the sound generated
by unsteady vorticity field, known as vortex sound named by Powell (1961,
1964), who studied this topic extensively under far-field approximation (see
the review of Powell (1995)). By using singular perturbation to match the far-
field and near-field solutions, Crow (1970a) was the first to prove rigorously
that the principal source of sound at low Mach numbers is the divergence
of the Lamb vector. In aeroacoustics, the variable describing the sound field
in a flow can be the fluctuating part of p, ρ, etc. but it has been found
that the most appropriate one is the disturbance total enthalpy H (Howe
1975; Doak 1998). Hence, (2.170) reveals that in a homentropic flow the mov-
ing vorticity is the only source of sound, or sound is a byproduct of vortex
motion.

In particular, at low Mach numbers with |u|/c
 1, c and ρ in (2.170) can
be replaced by their constant mean values c0 and ρ0, so that the equation is
reduced to the classic linear wave equation and can be solved by using the
Green’s function method. In this case the sound-wave length λ is generically
much larger than the scale of the moving vortices, so that to an observer at
a far-field point x the emission-time difference at different points y in the
source region is negligible: one has r = |x − y| � |x|. Then a general result
of interest is that the far-field acoustic pressure p′ depends linearly on the
unsteady vorticity alone (Möhring 1978, Kambe et al. 1993, Powell 1994):

p′(x, t) =
ρ0βiβj
4πc20x

∂3

∂t3

∫
1
3
yi(y × ω)j(t− x/c0)d3y, (2.171)

where x = |x|, βi = xi/x is the directional cosine of x in the observation
direction, and the integrand is estimated at an earlier time t− x/c0.

The earlier coupling between the two processes dominated by the nonlinear
Lamb vector is inviscid in nature. It no longer exists on a solid boundary ∂B
with known motion or at rest. Due to the acceleration adherence (2.70), the
left-hand side of (2.161) is known, or simply vanishes in the frame of reference
fixed to the solid boundary. However, there appears a different type of viscous
boundary coupling of which the effect may also reach the interior of the flow
field. To illustrate the situation in its simplest circumstance, assume the flow
is incompressible and the solid wall is at rest. Then the momentum balance
implies

∇p+ µ∇× ω = 0 on ∂B,
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so that

n×∇p = −µn× (∇× ω), (2.172a)

n · ∇p = −µ(n×∇) · ω. (2.172b)

This pair of equations, especially (2.172a), contain rich physical and mathe-
matical information relevant to vorticity dynamics and will be fully explored
later. The absence of advection makes the coupling linear and hence a series
of formally analytical results are possible.

From the preceding analysis we may also summarize the involvement
of thermodynamics in dynamic processes, which can be both inviscid and
viscous. The viscous involvement of thermodynamics has been encountered
in (2.160). Inviscidly, it appears in the generalized Lamb vector (2.165). If
the flow is baroclinic, i.e., with more than one independent thermodynamic
variables, thermodynamics enters both compressing and shearing processes
through (p, ρ) in (2.161), or through (T, s) in (2.163). Two independent vari-
ables determine a surface with a normal direction; and in a baroclinic flow
this normal is ∇ρ×∇p or ∇T ×∇s. In contrast, if the flow is barotropic, i.e.,
with only one independent thermodynamic variables so that ∇T×∇s = 0, the
inviscid coupling of thermodynamics and dynamics occurs only in compressing
process. For more discussion see Sects. 3.6.2 and 4.1.2 later.

2.4.4 Incompressible Potential Flow

In the context of Helmholtz–Hodge decomposition we have seen that a scalar
function χ with ∇2χ = 0 is necessary, and in general at large Re a big portion
of a viscous flow field can be irrotational. It is appropriate here to briefly
review some basic issues of incompressible potential flow.

Consider an externally unbounded fluid domain Vf which is at rest at
infinity and in which a moving body B causes a single-valued or acyclic (or
noncirculatory) velocity potential φ,14 which is solved from the kinematic
problem

∇2φ = 0 in Vf , (2.173a)

∂φ

∂n
= n · b on ∂B, φ→ 0 as |x| = r →∞, (2.173b)

where b is the velocity of ∂B. It is known that the far-field asymptotic behavior
of such a φ and u is

φ = −A · n
rn−1

+ ..., u = ∇φ =
n(A · n)n−A

rn
+ ... , (2.174a,b)

14 A single-valued potential cannot have discontinuity, and hence excludes any vor-
tex sheet, across which a loop going once will have nonzero circulation, see (4.128)
and Fig. 4.19 of Sect. 4.4.
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where n = 2, 3 is the space dimensions, n = x/r, and A depends on the body
shape and velocity.

First, by (2.173), the total kinetic energy of the flow is

K =
ρ

2

∫
Vf

∇φ · ∇φdV =
ρ

2

∫
Vf

∇ · (φ∇φ)dV =
ρ

2

∫
∂B

φn · bdS. (2.175)

Thus, the flow has no memory on its history but completely depends on the
current motion of boundary. Since K = 0 implies ∇φ = 0 everywhere, if ∂Vf
is suddenly brought to rest then the entire flow stops instantaneously, which
is evidently unrealistic. In reality a fluid flow without moving boundary must
be vortical and/or compressible.

If one adds any disturbance u′ to the velocity field with kinetic energy
K ′ > 0, such that u1 = ∇φ+ u′, and if u′ · n = 0 on ∂Vf , then

K1 =
ρ

2

∫
Vf

(∇φ+ u′) · (∇φ+ u′)dV

= K +K ′ + ρ

∫
∂Vf

n · u′φdS = K +K ′ > K. (2.176)

This is the famous Kelvin’s minimum kinetic energy theorem: Among
all incompressible flows satisfying the same normal velocity boundary condi-
tion, the potential flow has minimum kinetic energy.

Next, the total force and moment acting to Vf come only from the pressure
on ∂B. The Crocco–Vazsonyi equation (2.163) can then be integrated once to
yield the well-known Bernoulli equation

∂φ

∂t
+

p

ρ
+

1
2
q2 = C(t), (2.177)

where C(t) can be absorbed into φ without affecting u = ∇φ. Therefore, once
φ is known by solving (2.173), one can obtain the total force and moment act-
ing on Vf via the first equality of (2.71) and (2.72), respectively. But in force
and moment analysis it is often convenient to employ the concept of hydro-
dynamic impulse and angular impulse (Lamb 1932; Batchelor 1967; Saffman
1992). These are the hypothetical impulsive force and moment that bring the
fluid from rest to the current motion instantaneously. Suppose at t = 0+ there
is a finite velocity field u(x, 0+), which is imagined to be suddenly generated
from the fluid at rest everywhere at t = 0− by an impulsive external force
density F = i(x)δ(t) distributed in a finite region. We integrate the incom-
pressible Navier–Stokes equation (say (2.161) with Π = p and constant ν)
over a small time interval [0−, δt]. Since all finite terms in the equation in-
cluding advection and diffusion can only have a variation of O(δt), u(x, 0+)
must be solely generated by the infinitely large F at t = 0, which also causes
a pressure impulse:

P (x) =
1
ρ

∫ δt

0−
p(x, t) dt.



2.4 Splitting and Coupling of Fundamental Processes 61

Hence, the momentum balance implies

u(x, 0+) = −∇P + i(x). (2.178)

From (2.178) it follows that ∇2P = ∇ · i and ω = ∇× i. While the integral
of i leads to so-called vortical impulse to be addressed in Sect. 3.4.1, in a
potential flow one simply has P = −φ. The integrals of −nP and −x × nP
over ∂Vf = ∂B+∂V∞ are known as the potential impulse and angular impulse
of the fluid, respectively, denoted by Iφ and Lφ:

Iφ ≡ −
∫
∂Vf

nP dS =
∫
∂Vf

nφdS, (2.179)

Lφ ≡ −
∫
∂Vf

x× nP dS =
∫
∂Vf

x× nφdS. (2.180)

Note that by (2.174) the integrals of nφ and x× nφ over ∂V∞ have poor
convergence property; but our concern here is the rate of change of these im-
pulses, which is definitely finite. In fact, since ∂Vf consists of material surfaces,
there is

d
dt

∫
∂Vf

φndS =
∫
∂Vf

D
Dt

(φndS),
d
dt

∫
∂Vf

x×φndS =
∫
∂Vf

D
Dt

(x×φndS).

Here, since now (2.26) is reduced to

D
Dt

(ni dS) = −φ,ijnj dS,

we have
D
Dt

(φni dS) = [(φ,t + φ,jφ,j)ni − φφ,ijnj ] dS,

where by using (2.173a) the last term integrates to

−
∫
∂Vf

φφ,ijnj dS = −1
2

∫
∂Vf

(φ,jφ,j)ni dS.

Hence, by using (2.177), it follows that

d
dt

∫
∂Vf

φndS =
∫
∂Vf

(
∂φ

∂t
+

1
2
q2
)

ndS = −1
ρ

∫
∂B

pndS, (2.181)

where the integral over ∂V∞ with constant p = p∞ vanishes.
Similarly, for computing dLφ/dt there is

D
Dt

(εijkxjφnk dS) = εijk[xj(φ,t + φ,lφ,l)nk + φφ,jnk − xjφφ,klnl]dS.

By casting the last two terms on the right to a volume integral over B and
simplifying the result, the volume integral can be transformed back to surface
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integral and yields

d
dt

∫
∂Vf

x×φndS =
∫
∂Vf

x×
(
∂φ

∂t
+

1
2
q2
)

ndS = −1
ρ

∫
∂B

x×pndS. (2.182)

Therefore, the force and moment acting to ∂Vf are

F = −
∫
∂B

pndS = ρ
dIφ
dt

, (2.183)

M = −
∫
∂B

x× pndS = ρ
dLφ
dt

. (2.184)

Specifically, assume B moves with uniform velocity b = U(t). In this case,
since both (2.173a) and (2.173b) are linear, there must be φ = Uj φ̂j , where
φ̂j is the potential caused by the same rigid body moving with unit velocity
along the j-direction. Namely, φ̂j satisfies (2.173a), while if ej (j = 1, 2, 3) are
the Cartesian basis vectors, (2.173b) becomes

n · ∇φ̂j = n · ej = nj at ∂B, (2.185a)

n · ∇φ̂j = 0 at infinity. (2.185b)

Therefore, we can define a tensor solely determined by the body’s geometry:15

Mij = ρ

∫
∂B

φ̂inj dS, (2.186)

which is symmetric (Batchelor 1967). Once Mij is calculated for a given body,
the potential flow caused by any translational motion of the body can be
known at once.

Now, substituting φ = Uj φ̂j into (2.183) and noticing the integral over
∂V∞ plays no role, we obtain

F = M · U̇ , (2.187)

where U̇ = dU/dt. Hence, the total force experienced by the body of mass
mB is

FB = −(M+mBI) · U̇ , (2.188)

implying that Mij acts as a virtual mass (or apparent or added mass) as
one calls it. Thus, in an acyclic potential flow a rigid body performing con-
stant translation experiences no force. This is the classic D’Alembert para-
dox which will be revisited later in different contexts. Likewise, (2.175) is

15 The approach can be generalized to rigid-body rotation, e.g., Batchelor (1967),
but not to deformable body.
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simplified to

K =
ρ

2
Ui

∫
∂B

niφdS =
1
2
UiMijUj , (2.189)

so by (2.76),
dK
dt

= UD = U̇ ·M ·U , (2.190)

where D is the drag. Note that without the assumed acyclic feature of φ we
cannot derive (2.183) and (2.184), and hence neither (2.187); but (2.189) is
not affected. In this case the D’Alembert paradox can be said for drag only,
and a finite lateral force perpendicular to U is not excluded, say a lift (see
Sect. 4.4 and Chap. 11).

It should be stressed again that the result of this subsection can approxi-
mately represent a real viscous flow only in a portion of the flow domain and
in the sense of effectively inviscid flow. There is no such thing like ideal fluid,
and a globally effective potential flow is an oversimplified model. To quote
Saffman (1981):

“if ω = 0 everywhere in an incompressible fluid, then the fluid really ceases
to be a fluid; it losses its infinite number of degrees of freedom, which makes
possible the infinite variety of fluid motion, and becomes a flexible extension
of the bodies whose movement generates the flow; bring the walls to rest and
the fluid stops immediately.”

Summary

1. The vorticity and vortex dynamics for Newtonian fluid is based on the
general principles of fluid dynamics, especially the Navier–Skokes equa-
tions with small viscosity. The tangent continuity of velocity and surface
forces across boundaries is of crucial importance for the vorticity genera-
tion from boundaries, which accordingly excludes any globally ideal fluid
model in the study of vorticity dynamics. But at large Reynolds numbers
a big portion of the flow can be treated effectively inviscid, to which the
Euler equation applies. The viscous effect is significant only in thin layers
with extremely high concentration of vorticity or dilatation. In the asymp-
totic limit of infinite Reynolds number (the Euler limit), these layers are
treated as surfaces of tangent and normal discontinuities in an effectively
inviscid flow.

2. The mathematic tool for understanding the decomposition and coupling
of the fundamental kinematic and dynamic processes in a flow field is the
Helmholtz decomposition and its modern development. The Helmholtz
decomposition allows splitting a vector field into solenoidal and potential
parts. It is sharpened by the Helmholtz–Hodge decomposition that en-
sures the uniqueness and functional orthogonality of the split parts, i.e.,
transverse and longitudinal vectors, respectively. A transverse vector is



64 2 Fundamental Processes in Fluid Motion

always an axial or pseudovector with two independent components, which
can be expressed explicitly (and at least locally) by two Clebsch variables.
The helical-wave decomposition further splits the transverse part into two
intrinsic polarity states, and any transverse vector can be expanded by a
complete orthonormal set of curl-eigenvectors.

3. The fundamental processes in volumetric fluid motion are longitudinal
compressing and transverse shearing, with governing dimensionless para-
meter being the Mach number and Reynolds number, respectively. The
latter is more complicated since it is a vector process. There is yet a surface
process due to fluid surface deformation. The explicit coexistence of these
processes in the strain rate tensor, velocity gradient tensor, stress ten-
sor, surface stress, and the dissipation roots in the very fundamental and
simple triple decomposition (2.136). The coupling and decoupling of the
two volumetric processes and a surface process in the governing dynamic
equations and boundary conditions can then be examined systematically.

4. The representative variable for shearing process is always the vorticity
vector ω, governed by vorticity transport equation. The representative
variable for compressing process varies in different situations and formu-
lations. Kinematically it is the dilatation ϑ. Dynamically the choice of
compressing variable is not unique. It can be the normal force Π, pressure
or density as in classic acoustics, or the total enthalpy as in vortex-sound
theory. It can also be the velocity potential φ as in classic high-speed
aerodynamics. The process is governed by the Howe equation.

5. For a Newtonian fluid with constant shear viscosity µ, the compressing
variable Π and the shearing variable µω form a reduced stress tensor T̂,
having three independent components. It is the Helmholtz tensor potential
of the resultant surface force per unit volume. T̂ can replace the full stress
tensor T in the Cauchy motion equation and the kinetic-energy balance
without affecting any result. The remaining part of T comes from surface
deformation rate tensor B. This B-part enters the angular momentum
balance, its rate of work is always directly and locally transferred to heat
and thereby affects the internal-energy increase only.

6. The two fundamental volumetric processes are generically coupled through
two mechanisms. In the interior of the flows the coupling is caused
by the nonlinearity in advection (mainly the Lamb vector) and the
nonlinear involvement of thermodynamics especially in baroclinic flows.
At a solid boundary a linear viscous coupling is caused by the momen-
tum balance, which occurs whenever the longitudinal and transverse vari-
ables are not uniformly distributed on the boundary. But the role of one
process in the evolution of another is not equally important. In certain
situations the shearing process is dominant and the compressing process
is a byproduct, e.g., vortex sound; while in some other situations their
relative importance is opposite (cf. Sect. 4.1.2).

7. In some purified situations the two fundamental processes are decoupled.
In a viscous incompressible flow there only exists shearing process and
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all waves are transverse. In contrast, in an irrotational compressible flow
there only exists compressing process and all waves are longitudinal. How-
ever, these two extreme situations are not of equal importance. While
the viscous incompressible flow is a good approximation of a big class of
real flows, No real flow can be completely irrotational in its full domain.
Finally, incompressible potential flow belongs to neither compressing
process nor shearing process, but is an inevitable constituent for satis-
fying boundary conditions and coupled with other constituents.



3

Vorticity Kinematics

Compared with general fluid kinematics reviewed in Sect. 2.1, the content of
vorticity kinematics is much more abundant (Truesdell 1954; Truesdell and
Toupin 1960). It covers even a major part of vorticity and vortex dynamics,
and makes this chapter very heavy. We begin with the physical interpretation
of vorticity (Sect. 3.1), and then consider the spatial properties of a vorticity
field (Sects. 3.2–3.4), followed by the temporal evolution of vorticity and other
related quantities (Sect. 3.5). With a few exceptions, no kinetics will be intro-
duced to the shearing process, and hence the results possess general validity.
This chapter concludes with a general theory of circulation-preserving flows
(Sect. 3.6), where the kinetics never appears in shearing process.

While most of the materials are presented in terms of Eulerian descrip-
tion, we shall gain some unique insight by using Lagrangian description with
relevant mathematical details given in AppendixA.4.

3.1 Physical Interpretation of Vorticity

As seen in Chap. 1, the concept of vortices is very intuitive but the rigorous
definition of a vortex is difficult, see Sect. 6.6. Lugt (1983, 1996) observed
that the situation for the vorticity is opposite: its physical interpretation is
not as self-evident as its mathematical definition. Before developing the gen-
eral theory of vorticity kinematics, therefore, it is necessary to gain a good
understanding of this key vector.

In Sect. 2.1.2, the vorticity is roughly interpreted as twice of the angular
velocity of a fluid element. This interpretation needs elaboration and refine-
ment. First of all, the concept “angular velocity ” itself, originally defined for
rigid motion, needs be extended when applied to a deformable fluid. Consider
a small circular disk A of radius ε centered at x, with unit normal n (Fig. 3.1).
If A is rigid, its angular velocity around n (the projection of angular velocity
vector W onto n) is simply the tangent velocity along ∂A divided by ε. But
for a fluid disk the tangential velocity is variable and an average must be
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ε

∂A

A

n u0

u0+dudx

Fig. 3.1. A fluid disk for defining angular velocity

u

Fig. 3.2. Vorticity on a boundary

used. Thus a natural extension of the concept of angular velocity around n is
(Batchelor 1967)

W · n = ε−1 (averaged tangential velocity along ∂A)

=
1

2πε2

∮
∂A

u · dx =
1

2πε2

∫
A

ω · ndS, (3.1)

which approaches ω · n/2 as ε → 0. Since n is arbitrary, ω(x)/2 can be
interpreted as the angular velocity of the fluid element centered at x. However,
this interpretation cannot be applied to the vorticity right on a boundary B,
although the boundary vorticity is certainly meaningful and important as can
be seen from (2.142) and (2.151b). The situation for the latter is sketched in
Fig. 3.2, where neither the hemispheric element can rotate as a whole, nor can
there be a fluid disk centered at B with normal vector tangent to it.

A unified interpretation of vorticity requires something which rotates as a
rigid body, at least locally and instantaneously, both inside the fluid and on
boundaries. In Sect. 2.1.2 we have seen that the principal axes of the strain-rate
tensor have this property. Thus, it is more precise to interpret the vorticity
ω(x) as twice the angular velocity of the instantaneous principal axes of the
strain-rate tensor of an fluid element centered at x.1

Interpreting the vorticity in terms of angular velocity, however, by no
means implies that the angular velocity is a more fundamental concept than
vorticity. On the contrary, as indicated by (3.1), the latter is an extension of
the former. To see this more clearly, we express the vorticity in an intrinsic
coordinate system moving along a streamline C. At each point on C there is
an orthonormal triad consisting of the tangent vector t, the principal normal
n (toward the center of curvature), and the binormal b = t × n (see A.3.1).

1 According to Truesdell (1954), this interpretation is attributed to Boussinesq.
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In this frame the velocity is u = qt with q = |u|, thus

ω = ∇× (qt) = ∇q × t+ q∇× t,

which as shown in Sect. A.3.1 yields

ω = ξqt+
∂q

∂b
n+

(
κq − ∂q

∂n

)
b, (3.2)

where κ is the curvature of C and

ξ ≡ t · (∇× t) = b · ∂t
∂n
− n · ∂t

∂b
(3.3)

is called the torsion of neighboring vector lines (Truesdell 1954). Equation
(3.2) reveals the inherent complication of a full physical understanding of the
vorticity. Note that a kink of the streamline with κ → ∞ must have q = 0,
for otherwise there would be |ω| → ∞ there.

A special case is two-dimensional flow, where the only nonzero component
of ω is along the b = e3 direction and (3.2) is reduced to

ω = ωe3 =
(
q

r
+

∂q

∂r

)
e3 =

1
r

∂(rq)
∂r

e3 (3.4)

in which r = κ−1 is the radius of curvature and dr = −dn. An axisymmetric
rectilinear vortex is a further special case of (3.4). The two terms, q/r and
∂q/∂r, represent trajectory rotation and spin of a fluid element, respectively,
see Fig. 3.3. Only for uniform vorticity ω = 2W , say (so the vorticity on C is

r
r

(a) (b)

(c)

r

Fig. 3.3. Trajectory rotation and spin of a fluid element. (a) Rigidly rotating flow;
(b) irrotational flow; and (c) generic rotational flow
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the same as that at the curvature center), we will have q/r = ∂q/∂r = W and
the flow behaves as a rigid rotation with angular velocity W . In contrast, if in
a flow both q/r and ∂q/∂r exist but q/r = −∂q/∂r and hence q = C/r, then
the flow is irrotational with a singularity at r = 0. In more general case each
point has its own ω as the angular velocity 2W of the principal axes of strain-
rate tensor. Moreover, as r →∞, a rigid (or global) rotation is impossible but
a local spin of fluid elements may still exist if there is a shearing.

In a three-dimensional flow the situation is more complicated, where the
vorticity may also have components along the t and n directions. An ωn will
appear if q depends on b, and ωt will appear if the torsion of neighboring
streamlines does not vanish.

In literature the vorticity has sometimes been interpreted as the angular
momentum M of a fluid element. This is easily misleading and special care is
necessary, because although both describe fluid rotation they do in different
ways. By definition, the vorticity is a local quantity but the angular mo-
mentum given in (2.51) is an integrated quantity depending on one’s choice
of a common origin x0 about which the moment is taken. Assume a con-
stant density ρ, we may further compare a vorticity integral with the angular
momentum per unit mass

M

ρ
=
∫
V

r × udV, r = x− x0. (3.5)

The dimension of ω and (3.5) suggests that M/ρ should be related to an
integrated second-order vector moment of the vorticity, which may take three
forms as appearing in and related by the identity

r × (r × ω) = r(r · ω)− r2ω. (3.6)

Each of these vorticity moments is related to M/ρ by an identity, see Appen-
dixA.2.2. One of these reads, for example,∫

V

r × u dV = −1
2

∫
V

r2ω dV +
1
2

∫
∂V

r2n× udS. (3.7)

Thus, M/ρ can be viewed as any one of the three second-order vorticity
moments plus boundary contribution. To interpret ω by M/ρ, therefore, we
need some further specifications.

First, let u(x) = u0 + δu where u0 = u(x0), it is easily seen that u0

will have no contribution to the boundary integral in (3.7) if ∂V has spherical
symmetry. Then, let x0 be the mass center of a sphere of radius ε, such that
r = εn on ∂V . In this case (3.7) is reduced to∫

V

r × udV =
1
2

∫
V

(ε2 − r2)ω dV, (3.8)

so M/ρ is solely related to vorticity moments.
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Next, let ε be sufficiently small such that inside the sphere ω(x) = ω(x0)
is constant. Then by (2.24) we may replace δu by ω × r/2. Substituting this
into the left-hand side of (3.8) then yields

M =
1
2
ω · J, (3.9)

where

J = ρ

∫
V

(r2I− rr) dV or Jij = ρ

∫
V

(r2δij − rirj) dV (3.10)

is the symmetric tensor of moment of inertia of the fluid in V (e.g., Landau
and Lifshitz 1976). For a sphere of mass m = ρV there is J = 2mε2I/5, hence
the angular momentum of the sphere of unit volume with respect to its mass
center is

M

V
=

1
5
ρε2ω,

indicating that for such a spherical element the vorticity is proportional to the
angular momentum (Lighthill 1986b; Saffman 1992). As V further shrinks to
a point, however, the vorticity remains a finite vector but the angular momen-
tum vanishes as ε5. An infinitesimal fluid element has an angular velocity but
no angular momentum. Nevertheless, since ω is a quantity defined on a fluid
element per unit mass, it is fairer to compare it with the angular momentum
per unit moment of inertia that remains finite too as ε→ 0.

The above analysis indicates that the vorticity may be interpreted by
angular momentum only under very restrictive conditions. Alternatively, one
might be tempted to consider the angular momentum of a fluid element as
∇ × (ρu) = ρω + ∇ρ × u, which is, however, not Galilean invariant. Thus
the vorticity, with kinematic dimension, is the unique measure of the rotation
status of a fluid element. This is why vorticity transport equations are always
written in terms of unit mass rather than unit volume.

3.2 Vorticity Integrals and Far-Field Asymptotics

With a single exception on the far-field vorticity in Sect. 3.2.1 where dynamics
has to enter, in this and the following two sections we consider the spatial
properties of the vorticity field at a fixed time t. These properties are based
on the definition of vorticity ω = ∇×u and its direct consequence ∇ ·ω = 0,
and are therefore universally true. Unless stated otherwise, we always consider
viscous fluid so that the no-slip condition (2.67b) holds at boundary.

3.2.1 Integral Theorems

All the spatial integral properties of vorticity field are based on its divergence-
free feature, which can be derived by various methods (Truesdell 1954; Howard
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1957). We start from a single identity. Let F be any tensor and f = ∇ ×A
be any solenoidal vector field, such that f · ∇F = ∇ · (fF). Then by the
generalized Gauss theorem there is∫

V

f · ∇F dV =
∫
∂V

(n · f)F dS. (3.11a)

Namely, The volume integral of f ·∇F is completely determined by the value
of F and normal component of f on the boundary. In particular, if f⊥ is a
transverse vector satisfying boundary condition (2.98a), then∫

V

f⊥ · ∇F dV = 0. (3.11b)

Now, setting f = ω yields a general vorticity integral identity∫
V

ω · ∇F dV =
∫
∂V

(n · ω)F dS. (3.12)

If ∂V is nonrotating such that by (2.69) there is ω · n = 0 on ∂V , or if
∂V extends to infinity with vorticity decaying sufficiently fast, then ω = ω⊥
and (3.11b) applies. Obviously, by assigning F as different quantities, we may
obtain infinitely many conserved vorticity integrals. Among these the following
ones are most useful, where the vorticity appears as the only physical quantity.

The simplest application of (3.12) results from setting F = 1, implying∫
∂V

ω · ndS = 0, (3.13)

which is evidently the direct consequence of ∇ · ω = 0. Now, a curve in a
flow field tangent to the vorticity ω at every point is called a vorticity line. A
tube-like surface formed by all vorticity lines passing through a closed curve,
which itself is not a vorticity line and can shrink to a point inside the fluid, is
called a vorticity tube (“vortex tube” in most publications).2 Let two sectional
surfaces Sα with boundary loops Cα (α = 1, 2) cut the tube to form a volume
V , with S3 being its side boundary, see Fig. 3.4. Then it is well known that,
along with (2.31), (3.13) implies∫

S1

ω · ndS =
∫
S2

ω · ndS or
∮
C1

u · dx =
∮
C2

u · dx.

Therefore, we arrive at a fundamental theorem of Helmholtz (1858).

2 The popular name “vortex tube” is imprecise, because the rigorous definition of
a vortex is still a controversial issue, see Sect. 6.6. This name is also easily mis-
leading, since in general the side boundary of a vortex (as qualitatively identified
in the beginning of Chap. 1 or rationally defined in Sect. 6.6) is not a vorticity
surface.
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C2

S2

S3

V

C1 S1

Fig. 3.4. A vorticity tube

The First Helmholtz Vorticity Theorem . The integrated vorticity flux
over a cross surface of a vorticity tube or the circulation of the tube is constant,
independent of the shape and location of the cross surface or its boundary over
which the integrals are estimated.

Owing to this theorem, the integrated vorticity flux or circulation is a
proper measure of the strength of a vorticity tube. If a cross surface of a vor-
ticity tube shrinks to a point, then the vorticity there must be infinity, which
is impossible. Therefore, vorticity tubes cannot terminate inside a fluid ; they
must form closed loops or extend through an interface to another fluid. Note
that due to (2.69) these tubes cannot terminate at a nonrotating solid bound-
ary either, on which the no-slip condition holds.3 Rather, as a vorticity tube
approaches such a boundary, (2.69) forces the sectional area of the vorticity
tube to increase infinitely like a horn, in order to keep its constant strength.

This situation is illustrated in Fig. 3.5a, where a tornado-like vortex
hits a nonrotating wall. The figure also shows that a single vorticity line
rather than a vorticity tube can terminate at the wall (unlike vorticity
tubes, the vorticity can vary along a vorticity line and becomes zero when
the line hits the boundary). Thus, if one creates a vortex in a cup of water
with a spoon, its vorticity tubes must turn to the direction along the bottom
and climb up along the side wall, forming a boundary layer with vorticity
of the sign opposite to that of the main vortex, as in Fig. 3.5b. Fig. 3.5c is
another familiar example, where a pair of vortices shed from the wing tips of
an aircraft, known as trailing vortices or wing-tip vortices. This vortex pair
must also form a closed loop: its upstream segment consists of the boundary
layers of upper and lower surfaces of the wing and is the source of the lift and
drag (Chap. 11), while its downstream segment is called the starting vortex

3 This point had been ignored until it was first clarified by Kellogg (1929). See also
Serrin (1959) and Lighthill (1963). The vorticity-tube termination on a nonrotat-
ing wall would be allowable if the fluid is ideal and only impermeable condition
(2.67a) is imposed. This is, however, unrealistic, since then the main source of
vortices would be lost.
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(a)

(c)

B

U

(b)

t2>t1
t1

A

Fig. 3.5. (a) Vorticity lines in a tornado-like vortex. (b) Vorticity lines in a cup of
rotating water. (c) Vortex system associated with a flying wing

system which is about at rest relative to the surrounding air. But the vortex
loop in this figure is merely a highly simplified sketch. The trailing vortices
are actually unstable and will break into vortex rings (Sect. 9.4; Fig. 9.25).
Thus, rather than all the way connecting with the starting vortices, the real
downstream end of the wing vortex system is at the location where the first
vortex ring is formed.

If a flow field has a material boundary B, either solid wall or an interface
with another fluid, the velocity adherence (2.67) on B allows us to conve-
niently consider the fluid plus solid or another fluid as a single unbounded
continuous system in which the velocity is everywhere continuous, and across
B the normal component of vorticity is also continuous. The first Helmholtz
theorem still applies to this unbounded system where all vorticity tubes
remain to be closed loops. But, due to the discontinuity of tangent vorti-
city at B (see Fig. 2.5), when a fluid vorticity tube reaches a rotating B it
must be split into a normal tube and a tangent tube. The former goes across
B with the solid or another fluid as a continuation of the tube, while the latter
has to go around B.

Next to (3.13), we now let F in (3.12) be the position vector x. Then since
xi,j = δij , we obtain at once a general formula for total vorticity:∫

V

ω dV =
∫
∂V

(n · ω)x dS. (3.14)

In particular, for nonrotating boundary or if V is unbounded with |ω| ∼ |x|−k
and k > 3 as |x| → ∞, (3.14) is reduced to the Föppl theorem of total vorticity
conservation (Föppl 1897)
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Fig. 3.6. The streamlines showing the formation of starting vortex and lifting vortex
as an airfoil begins to move (from left to right). (a) Soon after the airfoil has begun
to move, (b) after the airfoil has moved steadily through about one chord length.
From Prandtl and Tietjens (1934)

∫
V

ω dV = 0 (3.15)

as a special case of a general integral property (3.11b) of a pure transverse
vector in V . This theorem implies that the contribution of one piece of a
vorticity tube to the total vorticity must be cancelled by another piece with
vorticity of opposite sign, which is possible only if all vorticity tubes are
closed. Therefore, Helmholtz’s first theorem and Föppl’s theorem reflect the
same solenoidal nature of the vorticity field from different aspects. Equation
(3.15) also applies to the abovementioned continuous system of fluid plus solid.

In two-dimensional flows on the (x, y)-plane, ω = ωez and the integral of
ω over V becomes the total circulation along the boundary line of the flow
domain. In this case (3.14) does not apply,4 because the vorticity lines do
not form closed loops. But another general kinematic result holds, known as
the total circulation conservation theorem: For an externally unbounded
fluid at rest at infinity, there is

dΓ∞
dt

= 0. (3.16)

The proof is deferred to the beginning of Sect. 3.5.2. Thus, if initially there
is Γ∞ = 0, it will be always so. This is true for any fluid motion starting
from rest. A nonzero Γ∞ implies that the velocity decays as slowly as |x|−1,
which must imply unrealistically an infinite total kinetic energy and angular
momentum.5 Therefore, one may simply set Γ∞ = 0. The appearance of Γ∞
in some of our later formulas is merely for completeness and illustrating its
role.

As a famous demonstration of (3.16), Fig. 3.6 shows a flow visualization
photo taken from Prandtl and Tietjens (1934), where an airfoil moves (from
4 This fact can be verified by considering a deck-like volume on the flow plane with
unit thickness. Applying (3.14) to the deck would lead to trivial result 0 = 0.

5 This can be most easily verified for the potential flow induced by a single line
vortex given by (3.33).
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left to right) in an undisturbed fluid a short time after start. The picture can
be viewed as the mid-span portion of Fig. 3.5c. The vorticity shed from the
airfoil forms a concentrated vortex, which is the two-dimensional version of
the starting vortex with a circulation Γstart < 0. Thus by (3.16) there must
be a circulation around the airfoil with circulation Γairfoil = −Γstart, which is
the root of the lift (Chap. 11).

More generally, again start from (3.12) but assign F as a tensor of rank n
generated by the product of n position vectors:

F = x(n) ≡ xx . . .x.

Then on the left-hand side of (3.12) we have

ωl(xixj . . . xk),l = ωl(δilxj . . . xk + xiδjlxk + · · ·+ xixj . . . δkl)
= ωixj . . . xk + xiωj . . . xk + · · ·+ xixj . . . ωk,

where the last expression defines a symmetric vorticity moment of order m =
n− 1, denoted by

{x(m)ω} ≡ x(m)ω + x(m−1)ωx+ . . .+ ωx(m). (3.17a)

Thus (3.12) now yields the vorticity moment theorem (Truesdell 1954)∫
V

{x(m)ω}dV =
∫
∂V

(n · ω)x(m+1)dS, (3.17b)

showing that the integrated effect of the nth symmetric vorticity moment de-
pends solely on the boundary distribution of normal vorticity. Equations (3.13)
and (3.14) are the simplest cases of (3.17) with n = 0 and 1 respectively. Once
again this theorem applies only to three-dimensional flows.

In an unbounded fluid as we often encounter, whether (3.17b) is meaningful
depends on the convergence of the surface integral. This (and many other
surface integrals involving vorticity to be studied later) requires a general
estimate of the vorticity decay rate at far field. Here we state the result,
leaving its proof and some discussion to the end of this section.

Theorem . Let an externally unbounded incompressible fluid start to be in
motion from rest at t = 0, and assume the vorticity of the flow is initially
confined in a finite region. Then at any finite t <∞, the vorticity at far field
decays exponentially:

|ω| ∼ O(e−ax), a > 0, x ≡ |x| → ∞. (3.18)

Under the condition of the theorem, for externally unbounded flow the
outer boundary integral in (3.17) for any m can be dropped. Thus, denote
〈F〉 ≡

∫
FdV for neatness, there is 〈{x(m)ω}〉 = 0, or in component form

〈xixj . . . ωk〉+ · · ·+ 〈xiωj . . . xk〉+ 〈ωixj . . . xk〉 = 0. (3.19)
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Integral relations like (3.19) are known as consistency conditions, which are
necessary for a vorticity field to be divergence-free. These conditions can be
used to determine the far field asymptotic behavior of velocity, see Sect. 3.2.3,
and to control numerical error in computations where an unbounded domain
is always approximated by a bounded one. To understand what is meant by
(3.19), we first note that for m = 1 there is 〈xω + ωx〉 = 0, indicating that
the tensor 〈xω〉 is anti-symmetric with only three independent components:

〈xiωj〉 =
1
2
〈xiωj − ωixj〉. (3.20a)

Similarly, for m = 2, by taking i = j, j = k, and k = l in turn, and letting all
of them be different, respectively, we obtain 10 constraint equations

〈x2iωi〉 = 0, i, j = 1, 2, 3 (no summation)
〈x2iωj〉+ 2〈xiωixj〉 = 0, i, j = 1, 2, 3, i �= j

〈x1x2ω3〉+ 〈x2x3ω1〉+ 〈x3x1ω2〉 = 0


(3.20b)

Because xixj = xjxi, there are 18 second-order moments, thus only 8 linear
combinations of the second moments are independent (Ting 1983). In general,
the number ofmth moment is 3(m+2)(m+1)/2, and the number of constraint
equations obtained from (3.19) is (m + 3)(m + 2)/2. Thus the number of
independent combinations of the moments, say N(m), is

N(m) =
3
2
(m+ 2)(m+ 1)− 1

2
(m+ 3)(m+ 2) = m(m+ 2). (3.21)

There remains the proof of (3.18). Following Wu (1982), we cast the incom-
pressible vorticity transport equation (2.168) to an inhomogeneous diffusion
equation: (

∂

∂t
− ν0∇2

)
ω = F , F ≡ −∇× (ω × u)

of which the solution structure can be qualitatively analyzed by its fundamen-
tal solution

G∗(r, τ) =
H(τ)

(4πντ)n/2
exp

(
−|r|

2

4ντ

)
, r = x− x′, τ = t− t′, (3.22)

where H is the Heaviside step function and n = 2, 3 is the spatial dimension.
Thus, for arbitrary volume V there is

ω(x, t) =
∫
V

(G∗ω′)|t′=0 dV ′ +
∫ t

0

dt′
∫
V

G∗F ′ dV ′

+
∫ t

0

dt′
∫
∂V

ν

(
G∗ ∂ω

′

∂n
− ω′ ∂G

∗

∂n

)
dS′, (3.23)

where the prime means taking the value at (x′, t′). Now, without really solving
for ω, it can be seen that as long as t <∞ the vorticity field must be confined
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to a finite region since it is so initially. Then, on the righthand side of (3.23) the
vorticity appears homogeneously, so the integration variable x′ is bounded.
But the field point x can be arbitrarily far away from the body, permitting
|r| → ∞. Because G∗ also appears homogeneously, from (3.22) we obtain
(3.18) at once.

An inspection of the above proof indicates that the validity of (3.18) can
be extended to a vorticity field governed by the general transport equation
(2.166). In fact, the only additional condition is that ∇ × (T∇s + η′) must
be confined in a finite region in the entire time interval [0, t]. This is possible
because any long-range propagation of disturbance caused by T∇s + η′ will
take the form of sound wave, which is eliminated by the curl.

It should be stressed that the far-field behavior of the vorticity field in
a strictly steady and externally unbounded flow can be very different from
(3.18), see Sect. 4.2.3. However, such a flow does not exist in reality and the
steadiness is always an approximate concept. If a body has been in uniform
translational motion for t 1 after start but still t <∞, the influence of its
far-wake unsteady evolution on the flow around the body can be neglected,
let alone the influence of the starting vortex system. Then in the frame of
reference fixed to the body the near-field flow can well be considered steady,
which holds at a large but finite distance from the body. This is all what
the concept of steadiness is about. Therefore, assuming t <∞ and including
the starting vortex system in the flow domain does not conflict the near-field
steadiness at all.

3.2.2 Biot–Savart Formula

An important kinematic aspect of the vorticity and dilatation is the rela-
tions of their distribution to the velocity field, in which the time evolution
is not involved. For a given velocity field u these relations are nothing but
the definition (2.20) of ϑ and ω. Our interest here is the inverse problem, the
determination of u from an (ω, ϑ) field specified in a flow domain V . Then
(2.20) becomes a pair of differential equations for u:

∇ · u = ϑ, ∇× u = ω (3.24a,b)

of which the solvability is ensured by the compatibility conditions∫
V

ϑ dV =
∮
∂V

un dS, ∇ · ω = 0, (3.25a,b)

and proper boundary condition of u on ∂V . This problem can be solved by
either differential or integral approach, which is a necessary kinematic part in
developing vorticity-based numerical schemes.

We first seek the boundary condition under which the solution of (3.24) is
unique. Suppose that un is given at ∂V and assume u1 and u2 are two solutions
of (3.24), so that v = u1 − u2 must be both solenoidal and irrotational, i.e.,
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v = ∇φ for some harmonic φ. Then by assumption there must be ∂φ/∂n = 0
on ∂V and hence φ can only be a constant. Therefore, there can be at most
only one solution. Alternatively, suppose n × u is given at ∂V . Then there
must be n×∇φ = 0 for the same φ over the entire ∂V , again leading to the
same conclusion.

The existence of a velocity field with given (ω, ϑ) and un or n × u on
∂V is somewhat more difficult. Within the range of kinematics, the above
uniqueness argument implies that the existence consideration should be made
with either n·u or n×u given at the boundary, but not both. A well-posedness
theorem for the differential approach to (3.24), where the boundary conditions
are both sufficient and necessary, will be given in Sect. 4.5. Here we focus on
the integral approach, for which two alternative formulations can be made.

The first formulation is based on the potentials

φ =
∫
V

Gϑ dV ′, ψ = −
∫
V

Gω dV ′,

where G is given by (2.102). We may then construct v = ∇φ+∇×ψ, so that

∇ · v = ∇2φ = 0, ∇× v = ∇(∇ ·ψ)−∇2ψ = ω

if the gauge condition (2.88) holds. To check this construction, we note that

∇ ·ψ = −
∫
V

∇G · ω dV ′ =
∫
V

∇′ · (Gω) dV ′ =
∫
∂V

Gn · ω dS.

Therefore, v has the desired feature if n ·ω = 0. This condition is satisfied by
(3.18) for an externally unbounded fluid, as well as for a viscous flow in the
exterior or interior of any nonrotating body surface ∂B. If ω · n �= 0 on ∂B,
then, one may continue ω through ∂B to a new virtual boundary outside V
with ω ·n = 0 there, while keeping ω ·n continuous across ∂B, namely letting
vorticity lines going through the boundary. This continuation is not unique;
for example, one may choose ω = ∇η with ∂η/∂n = ω ·n on ∂B and ∇2η = 0
in the virtual domain (Serrin 1959; Batchelor 1967). Note that the velocity so
constructed may not satisfy the specified n ·u or n×u on ∂V ; which is taken
care of by a harmonic component ∇χ as remarked at the end of Sect. 2.3.1.
Therefore, we now have

u =
∫
V
(ϑ∇′G+ ω ×∇′G)dV ′ +∇χ,

∇2χ = 0, ω · n = 0 on ∂V or extended boundary.
(3.26)

The second formulation directly follows from the already constructed velo-
city (2.105). A substitution of (2.103) then yields (Phillips 1933; Serrin 1959)

u =
1

2(n− 1)π

(∫
V

ϑr + ω × r

rn
dV +B

)
, (3.27)

where n = 2, 3 is the spatial dimension and
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B = −
∫
∂V

[(n · u)r + (n× u)× r]
dS
rn

= −
∫
∂V

[(n · r)u+ (n× r)× u]
dS
rn

(3.28)

is a boundary integral. Equation (3.26) or (3.27) is known as the generalized
Biot–Savart formula, which are actually equivalent to each other because one
can directly verify B = ∇χ and ∇2χ = 0.

It should be emphasized that, in general, a specified distribution of ω
and ϑ and their “induced” velocity field via the Biot–Savart formula may
not represent any physically realistic flow. The preceding uniqueness analysis
clearly indicates that, if the full adherence condition is imposed to fix the
boundary velocity u in (3.28), then generically no continuous velocity field
obtained from (3.27) can fit this boundary velocity.6 Usually, to ensure the
kinematic existence one imposes the nonpermeable condition (2.67a) only; the
simple example in Sect. 2.3.2 has shown that (2.107) and (2.108) with known
un do ensure a unique solution. However, only if the flow is strictly inviscid,
can (3.27) yield a u field with any given ω distribution in V and given un
on ∂V . But this simply implies that for inviscid flow the vorticity field is
indeterminate, which is not the reality.

It is precisely the impossibility of imposing the full adherence condition
to the velocity field derived from a given (ω, ϑ) distribution, plus a harmonic
part, that has a deep physical reason: for viscous fluid the ω field cannot
be arbitrarily given in a bounded fluid domain V , say bounded internally
by a solid surface ∂B. If the no-through condition has been satisfied, adding
a given n × u on ∂B must create a vortex sheet thereon due to the no-
slip condition. This is the mechanism of vorticity generation at ∂B and must
alter the originally specified vorticity field. The vorticity creation at boundary
and the methods of solving the vorticity field for viscous flow (with (3.24) and
(3.25) as the kinematic part of the problem) will be addressed in Sects. 4.1 and
4.5, respectively. Only after such an (ω,u) field has been dynamically solved,
can the full adherence condition be satisfied on ∂B. In this case, then, (3.28)
clearly indicates that the boundary integral can be removed by continuing the
velocity field into B to form an unbounded continuous system V +B, for which
(3.26) and (3.27) can be applied without ambiguity. In the following kinematic
discussions, therefore, we always assume the real flow has been solved and
hence the domain can be treated as unbounded, with the understanding that
whenever necessary the system can consist of both fluid and solid or more
than one fluids.

The incompressible version of (3.27) is our major interest, which reads:

u(x) =
1

2(n− 1)π

∫
V

ω × r

rn
dV. (3.29)

6 This happens because G is the free-space Green’s function.
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Fig. 3.7. The velocity at point P (x) induced by a vortex filament of circulation Γ

If moreover ω is confined in a thin vortex sheet S of thickness δ→ 0, with a
finite strength

γ = lim
δ→0

∫ δ

0

ω dn, (3.30)

then we have ω dV = γ dS and

u(x) =
1

2(n− 1)π

∫
S

γ × r

rn
dS, (3.31)

which is a basis of vortex-sheet kinematics. On the other hand, if ω is confined
in a very thin closed vorticity tube C, called vortex filament (Fig. 3.7), then
by the first Helmholtz theorem the tube has a single strength or circulation
Γ . Thus, let dx′ = t ds be a line element of C, there is ω dV = Γ t ds and
(3.29) is reduced to

u(x) =
Γ

2(n− 1)π

∮
C

t× r

rn
ds, (3.32)

which is a basis of vortex-filament kinematics. In the limit as the filament
diameter approaches zero, the vortex filament is called a line vortex in which
the vorticity is singular.7

The simplest form of (3.32) is the velocity “induced” by a single straight
line vortex of circulation Γ , located at the center of a cylindrical coordi-
nate system (r, θ, z). We only need to consider a “point vortex” in the two-
dimensional flow on a cross plane; with u = (ur, uθ) and n = 2 in (3.32), the

7 The name of the generalized Biot–Savart law came from the analogy between
(3.32) and the Biot–Savart law for the static magnetic field induced by a line
current. But in fluid mechanics “induction” is a misnomer, since in the kinematic
relations between the vorticity, dilatation, and velocity no causality can be iden-
tified. With this reservation in mind, the word “induction” will still be used for
simplicity.
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familiar elementary result follows:

ur = 0, uθ =
Γ

2πr
. (3.33)

Since in Cartesian coordinates (x1, x2) there is u = −uθ sin θ and v = uθ cos θ,
in terms of complex variable

Z = x1 + ix2,
dZ
dt

= u+ iv,

equation (3.32) can be cast to dZ∗/dt = Γ/(2πiZ), where ∗ denotes the
complex conjugate. Therefore, for N point vortices with circulation Γk located
at Zk (k = 1, . . . , N), there is

dZ∗

dt
=

1
2πi

N∑
k=1

Γk
Z − Zk

, (3.34)

which is the basis of point-vortex system dynamics to be explored in Chap. 8.
Finally, if all point vortices line up along a curve, with N → ∞ and Γk being
replaced by a continuous distribution γ(s)ds (ds is the arclength of the curve),
then (3.34) is changed to the velocity “induced” by a two-dimensional vortex
sheet

dZ∗

dt
=

1
2πi

∫
γ(s)ds

Z − Z(s)
, (3.35)

which is merely the complex form of (3.31) with n = 2.
Before closing this subsection, we remark that from the generalized Biot–

Savart formula one can further derive the strain-rate tensor associated with a
given vorticity and dilatation. Assume the flow is unbounded with ∇χ = 0 in
(3.26), then in component form there is

2Dij =
∫
[ϑ(G,ij +G,ji) + ωk(εiklG,lj + εjklG,li)] dV.

Here, G,ij = G,ji, and from (2.103) it follows that

G,ij(r) =
δij − neiej
2(n− 1)πrn

, e =
r

r
. (3.36)

Therefore, we obtain

D =
1

4(n− 1)π

∫
{2(I− nee)ϑ+ n[e(ω × e) + (ω × e)e]}dV

rn
(3.37)

of which the incompressible version for n = 3 was derived by Constantin
(1994) and will be used later in the study of vorticity-tube stretching.

We have seen the local relation between D and ω for the special case of
simple shear flow in Sect. 2.1.2, and general local relation (2.136) between
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D, ϑ, and Ω, but with the surface-deformation rate tensor B involved. The
B-tensor is now removed from (3.37) with the expense that the relation must
be global. Remarkably, (3.37) bears some resemblance to the Caswell formula
(2.142), where the B tensor disappears on any stationary wall. The unit nor-
mal n in (2.142) is now replaced by the unit vector e along the r direction.

3.2.3 Far-Field Velocity Asymptotics

The vorticity moment theorem and the Biot–Savart formula obtained in the
preceding sections allow us to analyze the asymptotic behavior of the veloc-
ity field in an unbounded domain. Again assume the flow is incompressible,
with vorticity decaying exponentially, see (3.18).8 Let x be the field point
with |x| = x and x′ be the moving point inside the finite vortical region with
|x′| = x′, such that at far field x  x′. This implies that in the free-space
Green’s function G(x−x′) defined by (2.102) there is r = |x−x′| � x. More
precisely, denote the values of G and its derivatives at x′ = 0 by suffix 0 and
recalling that ∇ = −∇′, we have the Taylor expansion with respect to x′:

G(x− x′) = G0 − x′
i(G,i)0 +

1
2
x′
ix

′
j(G,ij)0 + · · · ,

where G0 is given by (2.102) for spatial dimensionality n = 2, 3, while from
(2.103) and (3.36) there is

(G,i)0 =
1

2(n− 1)π
xi
xn

,

(G,ij)0 =
1

2(n− 1)π

(
δij
xn
− nxixj

xn+2

)
+O(x−m), m ≥ 4.

This expansion converges as long as x > x′. In general, a scalar

F =
∂nFijk...

∂xi∂xj∂xk . . .
(3.38)

is called a multipole of order 2n. Hence, the terms in the above expansion
are recognized as monopole, dipole, quadrupole, etc. at x = 0. Then the
substitution of this G-expansion into (2.104b) yields

ψ = −G0〈ω〉+
1

2(n− 1)π

∞∑
m=1

ψ(m) (3.39)

with
ψ
(1)
k =

xi
xn
〈x′
iωk〉,

ψ
(2)
k =

1
2xn

(nxixj
x2

− δij

)
〈x′
ix

′
jωk〉, etc.

(3.40)

8 The far-field asymptotic behavior of the velocity associated with a given dilatation
distribution is fully discussed in Batchelor (1967).
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Here, the same simplified notation is used for integrals as in Sect. 3.2.1, and
the consistency conditions (3.19) can be used for estimating any ψ(m).

We can now consider the far-field behavior of u = ∇× ψ, for which two-
and three-dimensional flows should be analyzed separately. In three dimen-
sions, the Föppl theorem (3.15) immediately implies ψ(0) = 0. Then (3.20a)
gives

ψ(1) =
1

2x3
x · 〈x′ω − ωx′〉 = − 1

2x3
x× 〈x′ × ω〉 = ∇

(
1
x

)
× I, (3.41)

where
I ≡ 1

2

∫
x× ω dV (3.42)

is the vortical impulse, which in unbounded domain must be finite as ensured
by (3.18) and will be shown a motion invariant. Thus, since I is independent
of x and ∇2(1/x) = 0 for x �= 0, by (3.41) the leading term of the velocity
expansion is

u ∼ 1
4π
∇×

[
∇
(
1
x

)
× I

]
=

1
4π
∇
[
∇
(
1
x

)
· I
]

=
1
4π

I · ∇∇
(
1
x

)
=

1
4πx3

(
3I · xx

x2
− I

)
, (3.43)

which behaves as the potential flow induced by a dipole of strength I at the
origin. The omitted terms are of O(x−m), m ≥ 4. In particular, on a large
sphere of radius R→∞, since x = Rn, (3.43) yields

u =
1
4π
∇
( n

R2

)
· I =

1
4πR3

(3nn · I − I). (3.44)

For two-dimensional flows, we have ψ = (0, 0, ψ), ω = (0, 0, ω), and 〈ω〉 =
Γ∞. The first vorticity moment has two components 〈xω〉 and 〈yω〉, which
form a vector

I ≡
∫

ωx× ez dV (3.45)

as the two-dimensional vortical impulse. It differs from (3.42) by a factor 1/2
due to the geometrical reason (Sect. 3.4.1). Similar to the preceding procedure,
the two-dimensional counterpart of (3.41) and (3.43) reads:

ψ = − 1
2π

(Γ∞ez lnx+∇ lnx× I) + O(x−m), m ≥ 2, (3.46)

u = − 1
2π

[Γ∞∇ lnx× ez +∇(∇ lnx · I)] + O(x−m)

=
1

2πx2
(
Γ∞ez × x+ 2I · xx

x2
− I

)
+O(x−m), m ≥ 3. (3.47)
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The two terms correspond to the flows induced by a rectilinear vortex (point
vortex) of circulation Γ∞ and a dipole of strength I, respectively, both at the
origin. To see this clearly, take a large circle C of radius R that contains all
the vorticity and let t be the unit vector tangent to C such that (n, t,ez)
form a local orthogonal triad. Then (3.47) gives a flow irrotational at x �= 0

u =
Γ∞
2πR

t+
2nn · I − I

2πR2
+O(R−3). (3.48)

In two dimensions with ω · x ≡ 0, of the three second-order vorticity
moments related by (3.6) only one is independent. Later, it will be shown that
the second-order vorticity moments of an unbounded domain are also time
invariant. Because the multipoles depend on x only but not the distributed
vorticity field, they can be easily obtained. Only their strengths need to be
computed, but the invariants can be obtained once and for all.

For later use, we list some asymptotic behaviors of the potential-flow at a
large spherical surface ∂VR for n = 3 and a large circle CR for n = 2 in terms
of I (different from (2.174) in form), with radius R→∞ and x = Rn. First,
from (3.44) and (3.47), the velocity potential φ behaves as (we retain Γ∞ for
seeing its role)

n = 3 : φ = − 1
4πR2

n · I, (3.49a)

n = 2 : φ = − 1
2π

(
Γ∞ lnR+

1
R

n · I
)
, (3.49b)

where we recall I differs by a factor 1/2 for n = 2 and 3. Then, the tangent
velocity n× u is given by

n = 3 : n× u = −n× I

4πR3
, (3.50a)

n = 2 : n× u =
Γ∞
2πR

ez −
n× I

2πR2
. (3.50b)

3.3 Lamb Vector and Helicity

The local geometrically orthogonal decomposition (2.85) introduces two quan-
tities, the Lamb vector ω×u and the helicity density ω ·u. This decomposition
implies a triangle relation:

q2ω2 = |ω · u|2 + |ω × u|2, q = |u|. (3.51)

In terms of the intrinsic orthonormal basis vectors moving along a streamline,
the vorticity components are given by (3.2), where appears the torsion of
neighboring streamlines ξ. Thus (3.51) is reduced to

ω2 = ξ2q2 + |ω × t|2, (3.52)
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and the helicity density is given by

ω · u = ξq2. (3.53)

Thus, for given q and |ω|, whenever there is a high helicity density the Lamb
vector must be small, and vise versa. The key role of the Lamb vector have
been made clear in Sect. 2.4.3, and more will be seen later. We now discuss
some kinematic aspects of these pair of quantities.

3.3.1 Complex Lamellar, Beltrami,
and Generalized Beltrami Flows

Based on (3.51), two extreme flow types with both ω �= 0 and u �= 0 are of
special interest: ω · u = 0 and ω × u = 0. We discuss these flows separately.

First, if the helicity density ω ·u = 0 everywhere, i.e., the streamlines are
orthogonal to vorticity lines, the flow is called complex lamellar flow.9 Such a
flow exists if and only if (Truesdell 1954)

u = λ∇µ, (3.54)

which is the second term of the Monge decomposition (2.115). In this flow,
there exists a set of equi-potential surfaces µ = const. orthogonal to stream-
lines everywhere, and potential flow is the special case with λ = 1. Since
ω = ∇λ×∇µ we indeed have ω · u = 0.

It can be easily seen that both two-dimensional flow and rotationally sym-
metric flow are complex lamellar flow.10 Both allow for introducing a scalar
stream function ψ, which is the only nonzero component of the vectorial poten-
tial ψ of the velocity. In two-dimensional flow ψ(x, y) is the third component
of ψ or stream function, which satisfies u = ∇ψ × ez or

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.55)

In this case (2.89b) is reduced to a scalar Poisson equation

∇2ψ = −ω. (3.56)

In rotationally symmetric flow observed in cylindrical coordinates (r, θ, z)
there is ψ = (0, ψθ, 0), so

∇×ψ =
ez
r

∂(rψθ)
∂r

− er
r

∂(zψθ)
∂z

.

9 This name came from some similarity with potential flow, which used to be called
lamellar flow.

10 A rotationally symmetric flow is generated by a flow on the meridian plane
rotating around the z-axis. It is a subclass of axisymmetric flow with zero cir-
cumferential velocity.
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Thus, let ψ(r, z) = rψθ be the Stokes stream function, for u = (u, 0, w) there
is

u = −1
r

∂ψ

∂z
, w =

1
r

∂ψ

∂r
. (3.57)

Correspondingly, the vorticity is ω = (0, ωθ, 0), having only one component
as well; and (2.89b) is reduced to

∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r

∂2ψ

∂z2
= −ωθ. (3.58)

These scalar stream functions automatically ensure the incompressibility
∇ · u = 0 and can fully describe the velocity and vorticity field. Note that
the use of scalar stream functions can be somewhat extended. First, for steady
incompressible flow the continuity equation reduces to ∇·(ρu) = 0, and hence
(u, v) and (u,w) in (3.55) and (3.57) can be replaced by (ρu, ρv) and (ρu, ρw),
respectively. Second, if in a three-dimensional flow the third velocity compo-
nent w is independent of z, then it does not appear in the continuity equation
and (3.55) still holds. The same is true for a nonzero circumferential velocity
v in an axisymmetric flow, and (3.57) still holds. But in these extended cases
a single ψ cannot fully describe the flow field.

We digress to make an observation. Assume the Lamb vector ω×u is also
a complex lamellar field, i.e., it can be written as ω×u = g∇h, say, such that

(ω × u) · [∇× (ω × u)] = 0, ω × u �= 0. (3.59)

Then there exists a set of surfaces h = const., known as the Lamb surfaces,
which are orthogonal to the Lamb vector everywhere. Since both u and ω are
tangent to these surfaces, a Lamb surface is both stream surface and vorticity
surface (Fig. 3.8). Sposito (1997) has made a comprehensive study of Lamb
surfaces for steady flows.

The existence of Lamb surfaces is important regarding the integrability
and chaos of the flow. For a system, if under a given initial condition of
finite accuracy its motion in subsequent times can be determined with finite
accuracy, then the system is said to be integrable. Otherwise, the system is
nonintegrable, extremely sensible to the initial condition. An uncertainty of the
initial condition will cause the system’s motion indeterminate or impossible
to determine, and the motion will exhibit chaos. It can be shown that the
pathline equations for a steady flow on a two-dimensional surface is always
integrable; thus, steady flow with Lamb surfaces can in no way be chaotic.

The other extreme situation, i.e., ω × u = 0 and ω · u �= 0, implies that
the streamlines are always parallel to vorticity lines, i.e., ω = ξu. This type
of flow is called Beltrami flow or helical flow. Then, the vorticity form of the
acceleration formula (2.162) is reduced to

Du

Dt
=

∂u

∂t
+∇

(
1
2
q2
)
, (3.60)
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w

u

Fig. 3.8. A Lamb surface

the same as for potential flow. Moreover, for steady compressible Beltrami
flow or any incompressible Beltrami flow, there is

∇ · (ρu) = ∇ ·
(
ρω

ξ

)
= ∇

(
ρ

ξ

)
· ω = 0

due to the continuity. Thus, by using (3.53), the surfaces

ξ

ρ
=

ω · u
ρq2

=
ω

ρq
= const. (3.61)

are both vorticity surfaces and stream surfaces.
The above discussion shows that each of the complex-lamellar flow and

helical flow shares some of the properties of potential flow (Truesdell 1954).
However, these two extrema are not of equal importance or simplicity. As
seen in Sect. 2.4.3, the Lamb vector is the major source of the flow nonlinear-
ity. Once it vanishes as in any Beltrami flow, the Helmholtz equation (2.168)
is linearized, while (2.169) indicates that the coupling of shearing and com-
pressing processes disappears inside the flow field.11 Later in Sect. 3.4.2 we will
see that the total kinetic energy of incompressible flow can be expressed in
terms of an integrated scalar moment of the Lamb vector, indicating that an
unbounded flow can by no means be entirely Beltramian, let alone having
a solid body moving through it. Therefore, a local flow region may be Bel-
tramian in a real flow field, but this region is inactive and quite passively
driven by the surrounding non-Beltramian motion.

On the other hand, because the governing equation of a Beltrami flow is
often directly solvable, some thorough analysis becomes possible. In particular,
∇ × u = ξu implies that u is an eigenvector of the curl operator associated
with eigenvalue ξ. If ξ is constant, the flow is specifically called a Trkalian
flow (Aris 1962). Recall the discussion on helical wave decomposition (HWD)
in Sect. 2.3.4, we recognize that each Trkalian flow is a basis vector of HWD.

A nontrivial example of Trkalian flow was proposed by Arnold (1965a),
whose intention was to seek the possibility of chaos in steady inviscid flows. As
mentioned before, for searching chaos, steady flows having Lamb surfaces must

11 But the vorticity-induced velocity is involved in the total enthalpy H.
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be excluded. Thus the desired flow, if exists, must be Beltramian. Moreover,
if in (3.61) ∇ξ �= 0, the velocity will be on the surfaces with ∇ξ as normal,
and is still integrable. Therefore, the only possibility of incompressible chaotic
steady flow should be that with ∇ξ ≡ 0, i.e., a Trkalian flow. Without loss
of generality, we take ξ = 1 such that ω = u in the whole flow field. We
confine our attention to a periodic box 0 ≤ (x, y, z) ≤ 2π so that the Fourier
transform of the Trkalian flow is one of the Fourier HWD basis vectors (2.121)
with k = 1 and λ = +1, not normalized

u+(x) =
∑
|k|=1

u+(k)(e1 + ie2)eik·x, |k| = 1,

where (e1,e2,k) form a Cartesian triad. By letting e1 be along the plus or
minus direction of three Cartesian bases (ex,ey,ez) in turn and enforcing the
reality condition u+∗(k) = u+(−k) to u, due to the arbitrariness of translation
along the Cartesian axes, we find that the number of independent coefficients
u+(k) determining the flow is only 3. Denoting these by A,B, and C, we
obtain

u+ = A sin z + C cos y, v+ = B sinx+A cos z, w+ = C sin y +B cosx.
(3.62)

By (3.60), this flow is a solution of the incompressible steady Euler equation
with p = −q2/2. After Arnold, this Beltrami flow was analyzed by Childress
(1970) and is therefore called the “ABC flow”. Careful studies have shown
that it indeed exhibits chaotic streamlines for certain range of the values of
A,B, and C (Dombre et al. 1986). Note that if we add λ = −1 modes to
(3.62), then the interaction between the two modes will make the flow no
longer Beltramian.

While the Beltrami flow represents an extreme class of three-dimensional
vortical flows, a much wider class of vortical flows can be found if we relax
the condition of ω × u = 0 to

∇× (ω × u) = 0 or ω × u = ∇χ. (3.63)

A flow satisfying (3.63) is called a generalized Beltrami flow (Wang 1990,
1991). It has some nice properties. First, (3.59) is ensured, so any generalized
Beltrami flow, steady or unsteady, must have Lamb surfaces. Second, (3.63)
makes the incompressible Helmholtz equation (2.168) linearized, and thus
opens a door to many analytically obtainable exact vortex flow solutions,
some are very useful and will be given in Chap. 6.

Third, the complex lamellar flow and generalized Beltrami flow have an
interesting intersection set, when a single scalar stream function ψ can fully
describe the velocity and vorticity, see (3.55)–(3.58). Denote the single nonzero
vorticity component in both (3.56) and (3.58) by ω, for two-dimensional flow
we have ω × u = ω∇ψ and

∇× (ω × u) = ez

[
∂

∂x

(
ω
∂ψ

∂y

)
− ∂

∂y

(
∂ψ

∂x

)]
,
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while for rotationally symmetric flow there is ω × u = (ω/r)∇ψ and

∇× (ω × u) = eθ

[
∂

∂z

(
ω

r

∂ψ

∂r

)
− ∂

∂r

(
ω

r

∂ψ

∂z

)]
.

In both cases the square brackets is a Jacobian, which vanishes if and only if
ω and ψ or ω/r and ψ depend solely on each other (this does not exclude their
dependence on t). Therefore, two-dimensional flow and rotationally symmetric
flow are generalized Beltramian if and only if (Wang 1990,1991)

ω =
{

f(ψ, t) for two-dimensional flow,
rf(ψ, t) for rotationally symmetric flow. (3.64)

This condition reduces (3.56) and (3.58) to

∇2ψ = −f(ψ, t), (3.65)
∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r

∂2ψ

∂z2
= −rf(ψ, t), (3.66)

respectively. In both cases it can be easily verified that

ω × u = ω∇ψ = f(ψ, t)∇ψ = ∇
∫

f(ψ, t) dψ, (3.67)

which explicitly gives the scalar potential χ in (3.63).
As will be demonstrated in Sect. 6.4.3, however, for a viscous flow, while it

is easy to solve a linearized vorticity equation, it may not be so to satisfy the
kinematic constraint (3.65) or (3.66) necessary for the linearization, especially
when f(ψ) is a nonlinear function.

3.3.2 Lamb Vector Integrals, Helicity,
and Vortex Filament Topology

We now look at the volume integrals of the Lamb vector and helicity density.
First, by using (2.162) and noticing

u · ∇u = ∇ · (uu)− uϑ,

where ϑ is the dilatation, we have identity

ω × u+ ϑu = ∇ ·
(
uu− 1

2
q2I

)
. (3.68)

Indicating that the tensor in the bracket on the right is a natural tensor
potential of ω × u + ϑu. Thus, using direct integration and integration by
parts, one easily obtains (again n = 2, 3 is the spatial dimensionality)
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V

(ω × u+ ϑu) dV =
∫
∂V

(
n · uu− 1

2
q2n

)
dS, (3.69)∫

V

x× (ω × u+ ϑu) dV =
∫
∂V

x×
(
n · uu− 1

2
q2n

)
dS. (3.70)∫

V

x · (ω × u+ ϑu) dV =
∫
∂V

x ·
(
n · uu− 1

2
q2n

)
dS

+
1
2
(n− 2)

∫
V

q2dV, q = |u|. (3.71)

The n = 3 case of (3.71) is evidently relevant to the total kinetic energy
of incompressible flows with uniform density (Sect. 3.4.2); while (3.69) and
(3.70) are relevant to the evolution of vortical impulse and angular impulse
(Sect. 3.5.2). In particular, in an unbounded incompressible fluid at rest at
infinity, the surface integrals in these identities can be taken over the surface
at infinity where u = ∇φ, which must vanish by (3.49). Therefore, it follows
that: ∫

V∞

ω × udV = 0, (3.72)∫
V∞

x× (ω × u) dV = 0, (3.73)∫
V∞

x · (ω × u) dV =
1
2
(n− 2)

∫
V∞

q2 dV. (3.74)

If the fluid has internal boundary, say a solid surface ∂B, to use (3.69) to (3.74)
one may either employ the velocity adherence to cast the surface integrals over
∂B to volume integrals over B, or continue the Lamb vector into B. Both ways
form a single continuous medium although locally ω is discontinuous across
∂B.

The integral of helicity density ω · u is called the helicity. Moffatt (1969)
finds that this integral is a measure of the state of “knotness” or “tangledness”
of vorticity lines. We demonstrate this feature for thin vortex filaments (thin
vorticity tubes). Assume that in a domain V with n · ω = 0 on ∂V there
are two thin vortex filaments C1 and C2, with strengths (circulation) κ1 and
κ2 respectively, away from which the flow is irrotational. C1 and C2 must be
both closed loops. Suppose C1 is not self-knotted, such that it spans a piece
of surface S1 without intersecting itself, and that the circulation along C1 is

Γ1 =
∮
C1

u · dx =
∫
S1

ω · ndS.

In the present situation, Γ1 can only come from the contribution of the fila-
ment C2. Therefore, if C1 and C2 are not tangled (Fig. 3.9a) then Γ1 = 0; but
if C2 goes through C1 once (Fig. 3.9b) then Γ1 = ±κ2, with the sign depend-
ing on the relative direction of the vorticity in C1 and C2. More generally, C2
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C1
C2

(a) (b) (c)

C1

C2

C1

C2

Fig. 3.9. The winding number of closed vortex filaments C1 and C2. (a) α12 = 0,
(b) α12 = −1 , (c) α12 = 2

C1

C2

C

=

Fig. 3.10. Decomposition of a knotted vortex filament

can go through C1 an integer number of times (Fig. 3.9c), so that Γ1 = α12κ2,
where α12 = α21 is a positive or negative integer called the winding number
of C1 and C2.

By inserting one or more pair of filaments of opposite circulations, a self-
knotted vortex filament can always be decomposed into two or more filaments
which go through each other but are not self-knotted. Figure. 3.10 shows the
decomposition of a triple knot, for which we have∮

C

u · dx =
∮
C1

u · dx+
∮
C2

u · dx = 2κ.

In general, if there are n unkotted vortex filaments, then the circulation along
the ith closed filament is

Γi =
∮
Ci

u · dx =
n∑
j=1

αijκj ,

where αij is the winding number of Ci and Cj . Multiplying both sides by κi,
we get (repeated indices imply summation)

κiΓi =
∮
Ci

κiu · dx = αijκiκj .

Now, observe that since the filaments are sufficiently thin, κi dx is nothing
but ωdV for the ith vortex filament; thus

αijκiκj =
∫
V

ω · udV, (3.75)
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which is precisely the helicity. Therefore, the helicity measures the strengths
of vortex filaments and their winding numbers.

A remark is in order here. If we express the velocity by the Monge decom-
position (2.115), there is

ω · u = εijk(φλ,jµ,k),i − εijk(φλ,jµ,ik),

where the second term vanishes. Hence∫
V

ω · udV =
∫
∂V

n · ωφdS, (3.76)

which is zero by assumption, conflicting (3.75) if the filaments are knotted.
This apparent paradox comes from the local effectiveness of (2.115). Brether-
ton (1970) has pointed out that for knotted filaments the potential φ cannot
be single-valued and hence the argument leading to (2.115) (Phillips 1933)
does not hold.

The knotness or tangledness, characterized by the winding number, is
known as the topological property of a curve. A topological property of a
geometric configuration remains invariant under any continuous deformation.
Thus, configurations in Fig. 3.11a have the same topological property. To re-
tain the continuity during the deformation process, no tearing or reconnection
is allowed; thus the patterns in Fig. 3.11a are topologically different from those
in Fig. 3.11b. The former is simply connected, but the latter is doubly con-
nected (connectivity is also a topological property).

A flow also has its topological structure. When a flow structure is a ma-
terial curve like a vortex filament, the state of its knotness or tangledness is
its topological property. Some new progress in the study of this property has

(a)

(b)

Fig. 3.11. Topological property of geometric configurations. Topologically, the con-
figurations in (a) are the same as a sphere, and those in (b) are the same as a
torus
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been reviewed by Ricca and Berger (1996). Later in Sect. 7.1 we shall meet
the topological structure of a vector field, which is a powerful tool in studying
separated vortical flows. For fluid mechanics these topological properties are
of qualitative value; in fact, just because quantitative details are beyond its
concern, the topological analysis is generally valid.

3.4 Vortical Impulse and Kinetic Energy

This section establishes direct relations between vorticity integrals and two
fundamental integrated dynamic quantities: the total momentum and kinetic
energy of incompressible flows with uniform density ρ = 1. The results suggest
that almost the entire incompressible fluid dynamics falls into vorticity and
vortex dynamics (complemented by the potential-flow theory of Sect. 2.4.4).

3.4.1 Vortical Impulse and Angular Impulse

It has long been known that the total momentum and angular momentum
of an unbounded fluid, which is at rest at infinity, are not well defined since
relevant integrals are merely conditionally convergent. To avoid this difficulty,
one appeals to the concept of hydrodynamic impulse (impulse for short) and
angular impulse. The potential impulse has been introduced in Sect. 2.4.4, and
we now consider the impulse and angular impulse associated with vortical flow,
i.e., the vector field i(x) in (2.178), which is nonzero in a finite region. Since
ω = ∇× i, integrating i and using the derivative-moment identity (A.23) in
n-dimensional space, we obtain∫
V

idV =
1

n− 1

∫
V

x×ω dV − 1
n− 1

∫
∂V

x× (n× i) dS, n = 2, 3. (3.77)

As ∂V encloses the entire vector field i(x), the surface integral vanishes since
i = 0 there by assumption. This proves that∫

V

idV = I ≡ 1
n− 1

∫
V

x× ω dV, (3.78)

which defines the total vortical impulse I, already introduced by (3.42) for
n = 3 and (3.45) for n = 2. Evidently, due to (3.18), I is well defined and
finite. A similar argument on the instantaneous angular momentum balance,
using (A.24a), shows that∫

V

x× idV = L ≡ −1
2

∫
V

x2ω dV (3.79)

which defines the total vortical angular impulse.
Now, by applying the same identities to the integral of u and x × u, we

immediately obtain (Thomson 1883)
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V

udV = I − 1
n− 1

∫
∂V

x× (n× u) dS, (3.80)

∫
V

x× udV = L+
1
2

∫
∂V

x2n× udS, (3.81a)

= L′ − 1
3

∫
∂V

x× [x× (n× u)] dS, (3.81b)

where
L′ ≡ 1

3

∫
V

x× (x× ω) dV (3.82)

is an alternative definition of the angular impulse, see (3.6). Comparing (3.81a)
and (3.81b), for n = 3 there is

L′ −L =
1
6

∫
∂V

(2xx+ x2I) · (n× u)dS

=
1
6

∫
V

(2xx+ x2I) · ω dV =
1
6

∫
∂V

x2x(n · ω)dS, (3.83)

so L′ = L if n ·ω = 0 on ∂V . Each of these vortical impulses differs from the
total momentum and angular momentum only by a surface integral.

While identities (3.80) and (3.81) hold for any volume V , an important
situation is that V contains all vorticity so that on ∂V the flow has acyclic
potential φ (see Sect. 2.4.4). Then we can replace u by ∇φ in the above sur-
face integrals, which can then be simplified owing to the derivative-moment
transformation (A.25) and (A.28a,c):12

− 1
n− 1

∫
∂V

x× (n× u) dS =
∫
∂V

φndS, (3.84)

1
2

∫
∂V

x2n× udS = −1
3

∫
∂V

x× [x× (n× u)] dS

=
∫
∂V

x× φndS. (3.85)

Recall the definition of potential impulse and angular impulse Iφ and Lφ
given by (2.179) and (2.180), we see that the total momentum and angular
momentum in V with ρ = 1 are reduced to I + Iφ and L+Lφ, respectively.

As observed in Sect. 2.4.4, if V extends to infinity as in the case of exter-
nally unbounded flow, by (3.49) (with Γ∞ = 0 when n = 2) the convergence

12 The derivative-moment transformation is a set of integral identities in two- and
three-dimensional spaces, which express the integral of a vectorial function to that
of the moment of its derivatives, plus a boundary term. The details are given in
AppendixA.2.
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property of Iφ and Lφ are poor. This unpleasant feature is evidently given
to the volume integrals of u and x × u (e.g., Batchelor 1967; Saffman 1992;
Wu 1981). Take the far-field boundary shape as a large sphere (n = 3) or
circle (n = 2) of radius R→∞. We can then estimate the surface integral in
(3.84) by using (3.49). This yields (for n = 2, Γ∞ has no contribution to the
integral) ∫

∂VR

φndS = − 1
n
I. (3.86)

Thus, no matter how large R could be, there is always I/n being communi-
cated to the potential flow outside the sphere or circle. This apparent paradox,
that a potential flow can carry a part of vortical impulse, is explained by Lan-
dau and Lifshitz (1976) as due to the assumption of incompressibility. Once
a slight compressibility with constant speed of sound c is introduced, then at
time t the momentum inside the sphere R = ct is (n − 1)I/n and the “lost”
momentum I/n is transmitted by a spherical pressure wave front R = ct.

In contrast, the surface integral in (3.85) is simple when n = 3 or n = 2
with Γ∞ = 0, since over the sphere or circle x× φn = Rφn×n = 0. But for
n = 2 with Γ∞ �= 0, φ is not single-valued and it is better to apply (3.50b) to
the surface integral of (3.81a). This yields an R2-divergence:∮

C

x2n× uds =
R2

2
ΓRez.

However, these discussions are of mainly academic interest. What enters
dynamics is only the rate of change of these integrals, for which the diver-
gence issue does not appear at all (Sects. 2.4.4 and 3.5.2; Chap. 11).

In two dimensions, the simplest vortex system with finite total momentum
and angular momentum is a vortex couple of circulation ∓Γez (Γ < 0) located
at x = ±r/2, respectively, see Fig. 3.12. Then by (3.78) there is

I = eyΓr. (3.87)

The fluid in between is pushed downward by the vortex couple.

I

y

G -G
x

Fig. 3.12. The impulse produced by a vortex couple with Γ < 0 in two dimensions
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x

O

I

G

C

t ds

Fig. 3.13. The impulse produced by a vortex loop in three dimensions

In three dimensions, the simplest vortex system is a closed loop C of thin
vortex filament of circulation Γ , see Fig. 3.13. In this case (3.78) is reduced
to, owing to (A.19)

I =
Γ

2

∮
C

x× t ds = Γ

∫
S

dS = ΓS, (3.88)

where dS = x× t ds/2 is the vector surface element spanned by the triangle
formed by x and dx = t ds, and S is the vector surface spanned by C. Note
that |S| is the area of the minimum surface spanned by the loop, just like
the area of a soap film spanned by a metal frame. It is very different from the
area S of a cone with apex at the origin of x that depends on the arbitrarily
chosen origin. Similarly, if the vortex loop is isolated, by (3.82) and (3.83) we
have

L =
Γ

3

∮
C

x× (x× t)ds =
2Γ
3

∫
S

x× dS. (3.89)

3.4.2 Hydrodynamic Kinetic Energy

Lamb (1932) gives two famous formulas for the total kinetic energy in a
domain V ,

K =
∫
V

1
2
q2 dV, q = |u|, (3.90)

in terms of vorticity. Here the flow is assumed incompressible with ρ = 1. The
first formula is based on the identity

q2 = u · (∇φ+∇×ψ) = ∇ · (uφ+ψ × u) + ω ·ψ, (3.91)

where φ and ψ are the Helmholtz potentials given by (2.104) with ϑ = 0 now.
The second formula is the direct consequence of (3.74) for three-dimensional
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flow only. Thus, Lamb’s first and second formulas for kinetic energy read,
respectively,

K =
1
2

∫
V

ω ·ψ dV +
1
2

∫
∂V

u · (nφ+ n×ψ)dS, n = 2, 3, (3.92)

K =
∫
V

(ω × u) · x dV +
∫
∂V

x ·
(
1
2
q2n− uu · n

)
dS, n = 3. (3.93)

If there is u = ∇φ on ∂V , the surface integrals in both formulas are reduced
to the potential-flow kinetic energy Kφ given by (2.175). More specifically,
as x = |x| → ∞, for n = 3 the surface integrals in both formulas decay as
O(x−3). For n = 2, by (3.46) and (3.47), if Γ∞ = 0, then the surface integral
in (3.92) decays as O(x−2). However, if Γ∞ �= 0, there will be

|uφ| ∼ ‖uψ‖ = O(x−1 lnx)

and the surface integral is infinity. Therefore, for unbounded two-dimensional
flows Lamb’s first formula can be applied only if Γ∞ = 0. We will be confined
to this case. By taking a large sphere or circle, the preceding argument in
dealing with impulse and angular impulse indicates that for unbounded flow
(3.92) can be written as a double volume integral

K =
1
2π

∫ ∫
Gω · ω′dV dV ′, (3.94)

where G is given by (2.102). Hence, in three dimensions there is

K = − 1
8π

∫ ∫
ω · ω′

|x− x′|dV
′dV (3.95a)

=
∫

x · (ω × u) dV. (3.95b)

Some general comparisons of the two formulas for any domain V can be
made. They both consist of a volume integral and a boundary integral, which
can be symbolically expressed by

K = K
(α)
V +K

(α)
S , (3.96)

with α = 1, 2 denoting which of the two formulas is referred to. Then:

1. Since both formulas are obtained by integration by parts, the integrand
of the volume integrals in (3.92) and (3.93),

k
(1)
V (x) ≡ 1

2
ω ·ψ, (3.97a)

k
(2)
V (x) ≡ (ω × u) · x = (x× ω) · u, (3.97b)
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do not represent the local kinetic energy density q2/2. They are even
not positively definite. However, like in many other formulas from inte-
gration by parts, only k

(α)
V , α = 1, 2, have net volumetric contribution

(positive or negative) to K, with more localized support but containing
more information on flow structures than q2/2. In this sense, k(α)V can be
viewed as the net kinetic-energy carriers (per unit mass). As illustra-
tion, Fig. 3.14 compares the instantaneous distribution of q2/2 and ωψ/2
for a two-dimensional homogeneous and isotropic turbulence obtained by
direct numerical simulation. We see that while ωψ/2 has high peaks in
vortex cores and hence clearly shows the vortical structures, q2/2 distrib-
utes more evenly with larger values in between neighboring vortices of
opposite signs due to the strong induced velocity there.

2. While k(1)V directly reflects the vortical structures of the flow, k(2)V depends
on the choice of the origin of x. Thus, when the flow domain is a periodic
box, the surface integral K(1)

S vanishes; but the appearance of x in K
(2)
S

makes the boundary contribution to K from opposite sides of the box
doubled. In a sense, by integration by parts, (3.93) shifts more net kinetic-
energy carrier from the interior of the flow to boundary.

3. Despite the above inconvenience of Lamb’s second formula, it has some
unique significance. As seen in Sect. 2.4.3, the Lamb vector ω × u is at
the intersection point of two fundamental processes. Moreover, (3.97b)
indicates that k(2)V may be interpreted as an “effective rate of work” done
by the “impulse density” x × ω. In particular, if we consider the rate of
change of the local kinetic energy q2/2 by taking inner product of (2.162)
and u, then evidently the Lamb vector has no contribution. But now it
dominates the total kinetic energy as a net kinetic-energy carrier. This
fact is a reflection of the nonlinearity in vortical flow advection.

(a) (b)

Fig. 3.14. Instantaneous distribution of (a) q2/2 and (b) ωψ/2 in a two-dimensional
homogeneous and isotropic turbulence, based on direct numerical simulation. Cour-
tesy of Xiong
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It is of interest to observe that, if we use (2.162) to compute the rate of
change of the kinetic energy, then since (ω × u) · u = 0 the vorticity will
have no local nor global inviscid contribution, see (2.52) and (2.53). Now,
for incompressible flow Lamb’s second formula asserts that the vorticity does
affect the total kinetic energy, but indirectly. In fact, through the Lamb vector,
the vorticity as an analogue of the Coriolis force must induce a change of not
only direction but also magnitude of u, and hence of q2/2. It is this mechanism
that is explicitly reflected by Lamb’s first formula. For a similar mechanism
involved in the total disturbance kinetic energy and its relation to flow stability
see Sect. 9.1.3.

3.5 Vorticity Evolution

We now examine the temporal evolution of vorticity and related quantities,
including the rate of change of circulation, total vorticity and its moments,
helicity, vortical impulse, and total enstrophy. In the evolution of all these
quantities there appears a key vector ∇ × a, where a = Du/Dt is the fluid
acceleration which bridges kinematics to kinetics. Following Truesdell (1954),
to keep the results universal we shall often stay with ∇×a in its general form.
But it should be kept in mind that behind∇×a is the shearing kinetics, which
will be addressed in Sect. 4.1.

3.5.1 Vorticity Evolution in Physical and Reference Spaces

The time-evolution of vorticity in physical space comes from the curl of the
vorticity form of the material acceleration, (2.162), and the result can be
expressed in a few equivalent forms:

∇× a =
∂ω

∂t
+∇× (ω × u) (3.98a)

=
∂ω

∂t
+∇ · (uω − ωu) (3.98b)

=
Dω

Dt
− ω · ∇u+ ϑω. (3.98c)

Introducing the continuity equation (2.39) into (3.98c) brings a slight simpli-
fication, known as the Beltrami equation:

D
Dt

(
ω

ρ

)
=

ω

ρ
· ∇u+

1
ρ
∇× a. (3.99)

Moreover, since ∇u = D+Ω and ω ·Ω = ω × ω/2 = 0, there is

ω · ∇u = ω ·D = D · ω = ω · (∇uT), (3.100)
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where the first two equalities imply that this term is a coupling of strain-rate
tensor and vorticity tensor , while the last equality implies that ω ·∇u−ϑω =
−ω · B with B = ϑI − (∇u)T being the surface deformation tensor, see the
context of (2.27). This leads to another compact form of (3.98c):

Dω

Dt
+ ω ·B = ∇× a. (3.101)

The unique kinematic property of vorticity evolution in three-dimensional
flows is reflected by the key term ω · B. Let dS = ndS be a cross surface
element of a thin vorticity tube so that ω = ωn. Then

ω ·B =
ω

dS
D
Dt

(ndS) = ω

[
Dn

Dt
+

n

dS
D
Dt

(dS)
]
, (3.102)

where the two terms represents the tilting and stretching or shrinking of a
material vorticity tube, measured by the rate of change of n and cross area
dS of the tube, respectively. These mechanisms do not create vorticity from
an irrotational flow but alter the existing vorticity distribution, leading to
very far-reaching results (Sect. 3.5.3, Chap. 9 and 10). In two-dimensional flow
ω ·B = ωϑ, only the compressibility may change the cross area of a vorticity
tube.

Associated with the tilting and stretching of vorticity tube, a vorticity line
is also subjected to tilting and stretching. To see this, we assume ∇× a = 0,
so (3.99) indicates that the equation for ω/ρ has exactly the same form as
the rate of change of a material line element δx given by (2.17). Suppose δx
is a segment of a vorticity line and at t = 0, δx = εω/ρ. Then there is

D
Dt

(
δx− ε

ω

ρ

)
=
(

δx− ε
ω

ρ

)
· ∇u, (3.103)

which forms a set of ordinary differential equations in terms of Lagrangian
variables. If ∇u is bounded (and integrable), then the existence and unique-
ness theory for the initial-value problem of these equations ensures δx = εω/ρ
for all later t (e.g., Whitham 1963). Therefore, once ∇ × a = 0 each line of
ω/ρ remains the same material line at any time. This is the second Helmholtz
vorticity theorem to be discussed later.

We now take the inner product of (3.99) and the gradient of an arbitrary
tensor S (we use a tensor of rank 2 in the algebra but the result holds for any
rank). Since

D
Dt

(
ωi
ρ
Skl,i

)
=

∂

∂t

(
ωi
ρ

)
Skl,i +

ωi
ρ

(
∂Skl
∂t

)
,i

+ uj

(
ωi
ρ

)
,j

Skl,i +
ωi
ρ
ujSkl,ij

=
D
Dt

(
ωi
ρ

)
Skl,i +

ωi
ρ

[(
DSkl
Dt

)
,i

− uj,iSkl,j

]
,

by (3.99) we obtain a generalized vorticity formula (Truesdell 1954)
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D
Dt

(
ω

ρ
· ∇S

)
=

ω

ρ
· ∇

(
DS
Dt

)
+

1
ρ
(∇× a) · ∇S. (3.104)

Assigning S with different quantities may lead to a variety of results. Taking
S = x simply returns to (3.99). The major applications of (3.104) is when S
is Lagrangian invariant:

DS
Dt

= 0. (3.105a)

Then there is
D
Dt

(
ω

ρ
· ∇S

)
=

1
ρ
(∇× a) · ∇S. (3.105b)

A special case of (3.105) is that S is a conservative scalar φ. The scalar (ω/ρ) ·
∇φ is known as the potential vorticity introduced by Rossby (1936, 1940) and
Ertel (1942), governed by (the name will be explained in Sect. 3.6.1)

D
Dt

(
ω

ρ
· ∇φ

)
=

1
ρ
(∇× a) · ∇φ, Dφ

Dt
= 0. (3.106)

Because (3.106) is the simplest form of (3.105), we call the tensor (ω/ρ) ·∇S,
with S being a Lagrangian invariant, the generalized potential vorticity.

Moreover, since by (2.1) or (2.10) the fluid–particle label X is also
Lagrangian invariant, an important example of generalized potential vorticity
is obtained by setting S = X in (3.105b):

D
Dt

(
ω

ρ
· ∇X

)
=

1
ρ
(∇× a) · ∇X, (3.107)

where ∇X = F−1 is the inverse of the deformation gradient tensor F =
∇Xx defined by (2.3). The vectors in (3.107) are defined in the reference
space spanned by X, indicating that we have obtained the vorticity trans-
port equation in reference space. Then, since in the Lagrangian description
D / Dt = ∂/∂τ , where τ = t is the time variable, (3.107) can be integrated
once. Set x = X and ∇X = I at t = 0, we obtain

ω

ρ
· F−1 =

ω0

ρ0
+
∫ τ

0

1
ρ
(∇× a) · F−1 dτ. (3.108)

A detailed explanation of this formula and its physical meaning is given in
Appendix.A.4, where a different derivation of (3.108) can be inferred. Taking
the inner product of both sides with F from the right, (3.108) is transformed
back to the physical space:

ω

ρ
=
(

ω0

ρ0
+
∫ τ

0

1
ρ
(∇× a) · F−1 dτ

)
· F. (3.109)

Truesdell (1954) calls (3.109) the fundamental vorticity formula. Its two
terms have distinct physical sources and behavior. Recall that F measures
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the relative displacement of fluid particles that were in the neighborhood of
X at t = 0. At any t, F depends only on the displacement of the particles
from their initial position but independent of the history of their motion.
Hence, so is the first term of (3.109). The evolution represented by this term
is purely kinematic. In contrast, since the kinetics of shearing process is fully
reflected by ∇× a, we now see that through the time integral in (3.109) the
shearing kinetics yields an accumulated effect on the vorticity at all points
through which a fluid particle X goes. This makes the final state of vorticity
of the fluid particles inherently rely on their history, which is precisely the
characteristics of kinetics. Following Truesdell (1954) but adding an adjective,
we call ∇×a the vorticity diffusion vector and ρ−1(∇×a) ·F−1 the material
vorticity diffusion vector, to which the study of vorticity kinetics is thereby
attributed: what causes the vorticity to diffuse and how much the diffusion
will be. This is the topic of Sect. 4.1.

3.5.2 Evolution of Vorticity Integrals

Let V be a material volume and V a fixed control volume. The integral form
of (3.98)is obvious:

d
dt

∫
V
ω dv =

∫
∂V

(ω · n)udS +
∫
∂V

n× adS, (3.110)∫
V

∂ω

∂t
dV =

∫
∂V

n · (ωu− uω)dS +
∫
∂V

n× adS, (3.111)

where n·(ωu−uω) = −n×(ω×u). Applying these integrals to an unbounded
fluid at rest at infinity, by (3.18) there is

d
dt

∫
V∞

ω dV = 0. (3.112)

This result is consistent with the Föppl theorem (3.15) for three-dimensional
flow, and provides a proof of the total-circulation conservation theorem (3.16)
for two-dimensional flow.

We proceed to consider the rate of change of some vorticity-related inte-
grals. First, (3.110) is a special case of the time-evolution of a general nth-
order moment (3.17b), of which the derivation is longer but straightforward;
the result reads:

d
dt

∫
V
{ωx(n)}dv =

∫
∂V

ω · n{x(n)u}dS +
∫
∂V
{x(n)(n× a)}dS. (3.113)

Second, let S be any material surface bounded by C. As the classic example
of the Stokes theorem (A.17), we have obtained the Kelvin circulation formula
(2.32). Noticing that the circulation of the potential part of a, say −∇φ∗, must
vanish if φ∗ is single-valued. Thus, denoting the rotational part of a by ar,
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(2.32) can be written

dΓC
dt

=
∮
C
ar · dx =

∫
S
(∇× a) · ndS, (3.114)

which also implies (3.16). Compared with (3.98), (3.99), or (3.101), the evo-
lution of circulation is independent of the effect of vorticity stretching and
tilting. This simplicity is achieved at the expense of less information. As a
scalar, Γ only reflects the strength of a vortex tube but not its orientation,
nor the vorticity magnitude at a point.

Next, consider the evolution of helicity defined as the material volume
integral of helicity density. Its rate of change can be derived from (3.99) by
using (2.41):

d
dt

∫
V
ω · udv =

d
dt

∫
V
ρ

(
ω

ρ
· u
)
dv =

∫
V
ρ
D
Dt

(
ω

ρ
· u
)
dv

=
∫
V
[ω · ∇u · u+ (∇× a) · u+ ω · a]dv.

Then since

ω · ∇u · u = ∇ ·
(
1
2
q2ω

)
, ω · a = ∇ · (u× a) + (∇× a) · u,

we obtain

d
dt

∫
V
ω · udv = 2

∫
V
(∇× a) · udv +

∫
∂V

(
1
2
q2ω + u× a

)
· ndS. (3.115)

In particular, for an unbounded fluid at rest at infinity, there is

d
dt

∫
V
ω · udv = 2

∫
V
(∇× a) · udv. (3.116)

Finally, the rate of change of vortical impulse I and angular impulse L
defined by (3.78) and (3.79), respectively, are closely related to the integrals
of the Lamb vector l ≡ ω×u and its moment. Instead of directly calculating
the time derivative of I and L, we start from making the derivative-moment
transformation of acceleration a by using (A.23) for any fluid domain D:∫

D
adV =

1
k

∫
D

x× (∇× a)dV − 1
k

∫
∂D

x× (n× a)dS, (3.117a)

where k = n − 1 and n = 2, 3 is the spatial dimensionality, and ∇ × a is
expressed by (3.98a). We than use (A.23) again to transform the integral of
∇×l (l = ω×u denotes that Lamb vector) back to the integral of l, obtaining∫

D
adV =

∫
D

(
1
k
x× ω,t + l

)
dV − 1

k

∫
∂D

x× [n× (a− l)]dS. (3.117b)
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Hence, if the flow is incompressible and D is a material volume V, by (2.35b),
comparing (3.117a) and (3.117b) yields

dIV
dt

+
∫
V
l dv − 1

k

∫
∂V

x× uωn dS =
1
k

∫
V
x× (∇× a)dv. (3.118)

A similar approach to the integral of x× a by using (A.24a) yields

dLV
dt

+
∫
V
x× l dv +

1
2

∫
∂V

x2uωn dS = −1
2

∫
V
x2∇× adv. (3.119)

In particular, if the fluid is unbounded both internally and externally, and
at rest at infinity, then since by (3.72) and (3.73) the integrals of the Lamb
vector and its moment vanish, we simply have

dI∞
dt

=
1
k

∫
V∞

x× (∇× a) dV, (3.120)

dL∞
dt

= −1
2

∫
V∞

x2∇× adV. (3.121)

Moreover, since ∇ × a = ∇ × ar where ar = ∇ × ψ∗ is the rotational part
of a, we may apply (3.117a) to ar only, so that the second term of (3.120)
is cast to surface integrals of ψ∗ and ar, which vanish as |x| → ∞ (e.g., for
viscous incompressible flow ψ∗ = −νω). The same can be similarly done for
the right-hand side of (3.121). Hence, the vortical impulse and angular impulse
of an unbounded fluid is time invariant.

3.5.3 Enstrophy and Vorticity Line Stretching

Owing to the Föppl theorem (3.15), the integral of vorticity vector ω cannot
tell the total amount of shearing in a flow domain. Similar to the kinetic
energy, we use the enstrophy ω2/2 for such a measurement and now examine
its time evolution.

The inner product of ω with (3.101) yields

D
Dt

(
1
2
ω2

)
= −ω ·B · ω + ω · (∇× a). (3.122)

Unlike circulation, in (3.122) the stretching effect is retained but tilting effect
is removed. Write ω = tω, we have

−ω ·B · ω = αω2, α ≡ −t ·B · t = t ·D · t− ϑ. (3.123)

The scalar α is the stretching rate of an infinitely thin vorticity tube or a
single vorticity line. Namely, there is

D
Dt

(
1
2
ω2

)
= αω2 + ω · (∇× a), (3.124)

Dω
Dt

= αω + t · (∇× a), (3.125)
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showing that the magnitude of vorticity will be intensified by a positive
stretching.

In Lagrangian description (3.124) or (3.125) can be integrated with respect
to time. Again let τ be the Lagrangian time and denote

A(τ) =
∫ τ

0

αdη, (3.126a)

there is

ω(τ) = ω(0)eA(τ) +
∫ τ

0

t · (∇× a)eA(τ−η)dη. (3.126b)

While the effect of ∇ × a on the variation of ω is formally linear, that of
stretching is exponential.

Figure. 3.15 shows a numerical example due to Siggia (1985), who com-
puted the evolution of a vorticity loop which is initially elliptic on the (y, z)-
plane. Let L be its total length and σ be the cross-sectional radius, and assume
that σ2L is time-invariant. At time t = 0, σ0, and L0 were taken as 0.2 and
∼10, respectively, and the ratio of the axes of the initial elliptical ring was
4:1. The self-induction is nonuniform, as can be inferred from (3.32). This
induction causes the vortex ring to deform quickly and the filament to stretch
nonuniformly. Figure. 3.15a shows a sequence of the vorticity-loop shapes and
Fig. 3.15b shows the growth of L in time, where the last three points imply
an exponential growing.

As a nonlinear effect, vortex stretching is a crucial kinematic mechanism
in the entire theory of shearing process. This mechanism and vortex tilting, as
well as the cut and reconnect of vortices due to viscosity (Sect. 8.3.3), are the
key to understanding many complex vortical flows. In particular, stretching
is responsible for the cascade process in turbulence, by which large-scale vor-
tices become smaller and smaller ones with increasingly stronger enstrophy
(Chap. 10). In fact, turbulence may be briefly defined as randomly stretched
vortices (Bradshaw, private communication, 1992). The strain rate D that
causes stretching can be either a background field induced by other vortices,
or induced locally by the vortex itself. The strongest stretching and shrink-
ing occur if ω is aligned to the stretching and shrinking principal axes of D,
respectively. Then the stretching rate α is the maximum eigenvalue of D.

Generically, ω is not aligned to any principal axis of D, and it is desired to
analyze the mechanisms responsible for α. We now give two general formulas
for incompressible flow. The first formula is local. Similar to the intrinsic
streamline triad used before, we introduce an intrinsic triad along a vorticity
line, with (t,n, b) being the unit tangent, normal, and bi-normal vectors,
respectively. Let κ and τ be the curvature and torsion of the ω-line, and
u = (us, un, ub). Then by the Frenet–Serret formulas (A.39) there is
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Fig. 3.15. The self-induced stretching of a vorticity loop, starting from an elliptical
vortex ring on the (y, z) plane. (a) The shape evolution of the loop, (b) the growth
of the length L of the loop. From Siggia (1985)

t · ∇u =
(
∂us
∂s
− unκ

)
t+

(
∂un
∂s

+ usκ− ubτ

)
n

+
(
∂ub
∂s

+ unτ

)
b. (3.127)

The component of t · ∇u along t makes the ω-line stretched or contracted,
and those along n and b make it tilted. Thus

α =
∂us
∂s
− unκ. (3.128)
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For small κ and τ , the ω-line stretching (or contracting) and tilting are dom-
inated by the increments of us and (un, ub) along s, respectively (Batchelor
1967). However, a strong stretching may occur at a point of a vortex filament
even if ∂us/∂s = 0, as long as κ 1 and un < 0 (outward from the curvature
center). Inversely, if un > 0 (toward the curvature center) then the vortex fil-
ament will be significantly compressed and becomes much thicker. Note that
this curvature effect cannot be explained solely by the strain-rate tensor of a
background flow; the local self-induced velocity has to be included.

The second formula is global, which expresses the stretching rate caused
by a distributed vorticity field rather than a thin vortex filament. Assume the
incompressible flow is unbounded and at rest at infinity. The strain rate tensor
D has been expressed by vorticity integral in (3.37). Making inner product at
its both sides with the unit vector t(x) along ω(x), and writing ω(x′) = t′ω′,
the desired formula follows (Constantin (1994)):

α(x) =
3
4π

∫
(e · t)[t′ · (t× e)]ω′ dV

′

r3
. (3.129)

To see the implication of this result, assume the distribution of |ω(x)| = ω(x)
is given. Then α(x) solely depends on the orientation of the three unit vectors
e, t′, and t. Here, |e · t| ≤ 1 and the scalar in square brackets is the volume of
the prism formed by these three unit vectors. This volume crucially depends
on the orientation of t′ and t. The local vorticity ω(x′) will have a strongest
contribution to the stretching rate α(x) if ω(x) and ω(x′) are perpendicular,
and if ω and r is neither parallel nor perpendicular. Denote t ·t′ = cosφ, then

|(e · t)(t′ × t) · e| ≤ | sinφ|.

It should be stressed that, as seen from Fig. 3.15, when the vortex ring is
stretched it is also tilted. A straight vortex cannot be stretched unboundedly:
Chorin (1994) points out that by (3.95a) this would increases the induced
kinetic energy K unboundedly, but the total kinetic energy is conserved (or
decreasing due to dissipation) if in (2.52) no external force is imposed and the
fluid is unbounded. To offset the increase of kinetic energy due to stretching,
therefore, there must be vortex tilting, see the first term of (3.102), which
may cause a partial cancellation of part of D. Note that, contrary to the
stretching, (3.95a) indicates that the main contribution to K is from those
vortex segments that are parallel to each other.

The vortex stretching also plays a key role in the mathematical aspects
of the Navier–Stokes equation. It is especially relevant to a long-standing
unsolved problem on whether a three-dimensional Navier–Stokes solution with
smooth initial condition can spontaneously develop a singularity at a finite
time t∗ (and hence for t > t∗ the solution no longer exists). Beale et al. (1984)
have proved that only if the maximum of |ω| diverges as t → t∗, can the
three-dimensional Euler solution blow up. In other words, vortex stretching
dominates the regularity of flows (see also Majda 1986; Doering and Gibbon
1995; Majda and Bertozzi 2002). But the final answer remains unknown.
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Finally, we mention that in two-dimensional flow without vorticity-tube
stretching and tilting, the vorticity field may also evolve to some structures
and the transition to turbulence may still happen. The underlying physical
mechanism is quite different, though, and will be addressed in Chap. 12.

3.6 Circulation-Preserving Flows

Since the shearing kinetics is solely reflected by the specific content of the
vorticity diffusion vector ∇× a, a great simplification can be achieved if any
one of the following three equivalent conditions holds:

∇× a = 0, (3.130a)
a+∇φ∗ = 0, (3.130b)

d
dt

∮
C
u · dx = 0, (3.130c)

where C is any material loop. Equation (3.130c) comes from (3.114) and is
the well-known Kelvin circulation theorem: If and only if the acceleration
is curl-free, the circulation along any material loop is time invariant. Condi-
tions in (3.130) define a special class of flows of significant interest, known as
circulation-preserving flows (Truesdell 1954).

In terms of the two fundamental processes, an overall physical understand-
ing can be gained for the very nature of circulation-preserving flows. Because
a and ∇ × a are the bridges of kinematics and kinetics in the momentum
equation and the vorticity transport equation, respectively, we see at once that
(3.130a) implies that in a circulation-preserving flow the evolution of shearing
process is purely kinematic. Consequently, a series of important Lagrangian
invariant quantities or conservation theorems for the shearing process exist,
which we present first. On the other hand, (3.130b) implies that the kinetics
only enters the compressing process through the acceleration potential φ∗,
which suggests a possibility for the momentum equation be integrated once
to yield Bernoulli integrals. This is our second topic. Then, since the vortic-
ity conservation and Bernoulli integral appear as the two sides of a coin, a
combination of both may lead to a deeper understanding of this class of flows
and some further important theoretical results. These can be best revealed in
the Hamiltonian formalism and is our third topic. The study of this section
naturally paves a way to vorticity dynamics, which starts from Chap. 4.

3.6.1 Local and Integral Conservation Theorems

Almost all the results of this subsection come solely from (3.130a). The central
local conservation theorem is a direct consequence of (3.130) and (3.105).

The Generalized Potential Vorticity Conservation Theorem. Let S
be any conservative tensor with DS/Dt = 0 and assume (∇ × a) · ∇S = 0.
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Then the generalized potential vorticity (ω/ρ) · ∇S of each fluid particle is
preserved. Namely,

D
Dt

(
ω

ρ
· ∇S

)
= 0, (3.131a)

or
ω

ρ
· ∇S =

ω0

ρ0
· ∇S0 following particles. (3.131b)

For steady flow this theorem implies that the generalized potential vorticity
is constant along a streamline. On the other hand, under the same conditions
any tensor function F of the generalized vorticity must also be a conserved
quantity, and so is the material-volume integral of ρF owing to (2.41)∫

V
ρF

(
ω

ρ
· ∇S

)
dv = const. (3.132)

This theorem has two important corollaries. First, setting S = X in (3.131)
and define

Ω(X, τ) ≡ ω

ρ
· F−1 (3.133a)

as the Lagrangian vorticity , which is the image of the physical vorticity in the
reference space (see AppendixA.4 and a comprehensive study of Casey and
Naghdi 1991). Then by (2.1), (3.107), and (3.109), we have

∂Ω

∂τ
= 0 or

ω

ρ
=

ω0

ρ0
· F, (3.133b)

known as the Cauchy vorticity formula. Thus, the Lagrangian vorticity is
stationary in the reference space, always equal to its initial distribution. In
physical space, of course ω keeps evolving, but is solely driven by the deforma-
tion gradient tensor F and independent of the history. Evidently, any F(Ω)
is also conserved, and in reference space we have

∂

∂τ

∫
V
F(Ω)ρ0 d3X = 0. (3.134)

Moreover, as a special case of (3.133b) we have Cauchy potential-flow theorem:
every initially irrotational fluid element will always be irrotational if and only
if the flow is circulation-preserving.

Second, taking S = φ as a conserved scalar, from (3.131) follows that, if

Dφ
Dt

= 0, for any φ and P ≡ ω

ρ
· ∇φ, (3.135)

then
DP
Dt

= 0. (3.136)

This is the famous Ertel’s potential-vorticity theorem (Ertel 1942): The
potential vorticity defined in (3.106) is Lagrangian invariant if and only if ei-
ther the flow is circulation-preserving or ∇φ is perpendicular to the vorticity
diffusion vector.
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The dimension of P may not be the same as that of the vorticity. The
name “potential vorticity” came from the fact that, if the distance between
two neighboring iso-φ surfaces increases such that |∇φ| is reduced, then by
(3.136) the component of ω/ρ parallel to ∇φ must be enhanced. If ρ varies
very weakly, what is changing must be the vorticity, and the stretching of
the distance between iso-φ surfaces has an effect similar to the vorticity-tube
stretching.

The Ertel theorem has found most comprehensive applications in geophys-
ical fluid dynamics to be examplified in Chap. 12. As an easy application of
the Ertel theorem, take φ = z in two-dimensional flow. Since Dz/Dt = w = 0,
∇z = ez, and ω · ez = ω is the only nonzero vorticity component, for two-
dimensional circulation-preserving flows there is

D
Dt

(
ω

ρ

)
= 0, (3.137)

which also follows directly from the Beltrami equation (3.99). Similarly, for
rotationally symmetric flow, take φ as the polar angle θ in a cylindrical coor-
dinates. Then since rDθ/Dt = uθ = 0 and ∇θ = eeeθ/r, we get

D
Dt

(
ωθ
ρr

)
= 0. (3.138)

In addition to these local conservation theorems, there are various inte-
gral conservation theorems of which the central one is the Kelvin circulation
theorem (3.130c). Except its extensive practical applications, this powerful
theorem has been used to prove other conservation theorems, including the
Cauchy potential flow theorem and the following theorem.

The Second and Third Helmholtz Vorticity Theorems (Helmholtz
1858). If and only if the flow is circulation-preserving, a material vorticity
tube will move with the fluid (the second theorem) and its strength is time-
invariant (the third theorem).

Remark. The first Helmholtz theorem (Sect. 3.2.1) is universally true, since
it only relies on the spatial property∇·ω ≡ 0. The second and third Helmholtz
theorems are conditional since they involve dynamic assumptions.

The proof of the second and third theorems can be found in standard
textbooks. We just recall that a proof of the second theorem has already
appeared following (3.103), where the same circulation-preserving condition
was used but applies to any single vorticity line, more general than the sec-
ond Helmholtz theorem. Actually, the sufficient and necessary condition for a
vorticity line to remain a material line, and hence for the second Helmholtz
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theorem to hold, can be relaxed to (Truesdell 1954)13

ω × (∇× a) = 0, (3.139)

i.e., ∇× a is aligned to ω. To prove this, consider a material line x = x(s, t)
with s being the parameter defining the line. At a time t this line coincides
with a vorticity line if and only if

∂x

∂s
× ω = 0 or

∂x

∂s
= fω, (3.140a,b)

where f �= 0 is a scalar. If the vorticity line is still tangent to this material
line at t+ dt, there must be

D
Dt

(
∂x

∂s
× ω

)
=
(
∂x

∂s
· ∇u

)
× ω +

∂x

∂s
× Dω

Dt
= 0,

where by (3.140a,b) the right-hand side reads:

fω ×
(
Dω

Dt
− ω · ∇u

)
= fω × (∇× a)

due to (3.98c). Thus, (3.139) is a necessary condition. Conversely, if (3.139)
holds and if at t = 0 we have (3.140a,b), then (∂x/∂s)×ω will vanish at t = 0
and have a vanishing material derivative; hence it must always be zero. Thus
(3.139) is also sufficient.

Note that by (3.98a), for steady flow (3.139) implies the alignment of
∇ × (ω × u) and ω, which by (3.59) ensures the existence of Lamb surfaces
(Sposito 1997). Thus, the material surfaces forming any vorticity tubes are
Lamb surfaces.

Next, by (3.115) we have the helicity conservation theorem (Moffatt
1969): The helicity of circulation-preserving flow in a domain is time-invariant
if ω · n = 0 and n× a = 0 on the boundary :

d
dt

∫
V
ω · udv = 0. (3.141)

Due to (3.75) and (3.130c), the theorem implies that the topology of vortex fil-
aments is invariant for circulation-preserving flow under the aforementioned
boundary condition. Note that although a wall-bounded viscous flow may
satisfy this boundary condition, it cannot be circulation preserving near the
wall.

Finally, it is worth emphasizing again that, as shown in Sect. 3.5.2, the
vortical impulse and angular impulse are invariant even for viscous flow if it
is incompressible, unbounded, and at rest at infinity (e.g. Saffman 1992).

13 This argument is invalid for two-dimensional flow, since there (3.140a,b) is im-
possible.
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3.6.2 Bernoulli Integrals

We now turn to the consequence of (3.130b) to seek Bernoulli integrals, first
in terms of the Eulerian description and then Lagrangian description. We stay
with the acceleration potential φ∗ in its general form until the most general
Bernoulli integral of circulation-preserving flows is found. The kinetic content
of φ∗ will then be identified.

Substituting (3.130b) into (2.162) yields

∂u

∂t
+ ω × u+∇

(
1
2
q2 + φ∗

)
= 0. (3.142)

Evidently, if in a region the flow is irrotational such that u = ∇ϕ, then (3.142)
can be integrated once to yield the most commonly encountered Bernoulli
integral, with (2.177) being a special case:

∂ϕ

∂t
+

1
2
q2 + φ∗ = 0, (3.143)

where the integration “constant” C(t) has been absorbed into ϕ. However,
our main interest is Bernoulli integrals for rotational flow. In this case, if on
a line, a surface or in a volume the first two terms of (3.142) can be reduced
to a gradient of a scalar, then (3.142) can be integrated once on that line,
surface or volume, yielding a corresponding Bernoulli integral.

In the Eulerian description, when (3.130b) holds, the weakest condition
for the existence of a Bernoulli integral is that the flow is rotational but the
vorticity is steady :

∂ω

∂t
= ∇×

(
∂u

∂t

)
= 0.

Then the local acceleration ∂u/∂t has a potential, say

∂u

∂t
= ∇β,

and hence

u(x, t) = ∇
(∫

β(x, t)dt
)
+ vvv(x) = ∇ϕ+ v.

This situation occurs, for instance, when an acoustic wave hits a steady vor-
ticity field. Then (3.142) becomes

ω × u+∇
(
∂ϕ

∂t
+

1
2
q2 + φ∗

)
= 0. (3.144)

But this implies at once that (3.63) is satisfied, i.e., the flow is generalized
Beltramian. If the potential χ of ω×u is known, say (3.67) for two-dimensional
or rotationally symmetric flow, then a volume Bernoulli integral exists:
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∂ϕ

∂t
+

1
2
q2 + φ∗ + χ = C(t). (3.145)

Alternatively, since (3.63) implies (3.59), there must exist a set of Lamb sur-
faces which are orthogonal to the Lamb vector everywhere. Denoting these
surfaces by SL and integrating (3.144) along such a surface, we obtain a sur-
face Bernoulli integral

∂ϕ

∂t
+

1
2
q2 + φ∗ = C(SL, t), (3.146)

where C(SL, t) is the integration “constant” which varies with SL and t. Note
that the kinetic energy q2/2 may contain the contribution of the velocity
induced by a vorticity field, which and the Lamb surfaces are the place where
the coupling with shearing process (see Sect. 2.4.3) enters the Bernoulli inte-
gral.

The Bernoulli integrals appearing in most books represent various appli-
cations and simplifications of (3.145) or (3.146). But since the circulation
preserving is a Lagrangian property, the most general form of the Bernoulli
integral should be best revealed in the Lagrangian description, where the trou-
blesome nonlinear Lamb vector in (3.142) is absent. This integral follows from
inspecting the X-space image of the acceleration, which reads (for derivation
see Appendix.A.4)

∂U

∂τ
= A+∇X

(
1
2
q2
)
, (3.147)

where

Uα ≡ xi,αui or U = F · u, (3.148)
Aα ≡ xi,αai or A = F · a (3.149)

are the images of velocity and acceleration in the reference space, respectively.
Then by (3.130b) there is

Aα = −φ∗
,ixi,α = −φ∗

,α, (3.150)

hence (3.147) is reduced to

∂U

∂τ
= ∇X

(
1
2
q2 − φ∗

)
, (3.151)

which can be integrated once:

U = u0 +∇XΨ, Ψ =
∫ τ

0

(
1
2
q2 − φ∗

)
dτ. (3.152)

This equation for compressing process can be compared with the Cauchy
vorticity formula (3.133) for the transverse process. Unlike the latter, the
velocity evolution depends on the history of fluid particles, and hence cannot
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be attributed to pure kinematics even if the flow is circulation-preserving.
This is what we asserted in the beginning of the section.

We now need to map (3.152) from the reference space to physical space.
First, we make a Monge decomposition of u0 at τ = 0 (see (2.115)):

u0 = ∇Xφ0 + g∇Xh, (3.153)

where φ0, g, and h are functions of X only. Substitute this into (3.152), and
set

Φ(X, τ) = φ0(X) + Ψ(X, τ),

we have
U = ∇XΦ+ g∇Xh.

Taking inner product of both sides with ∇X then gives the counterpart of
(3.152) in physical space at any time:

u = ∇Φ+ g∇h, Dg
Dt

=
Dh
Dt

= 0. (3.154a,b)

The special feature of this Monge–Clebsch decomposition is that the circu-
lation-preserving condition ensures the existence of two Lagrangian invariant
potentials g and h. Physically, we have ω = ∇g×∇h, so that surfaces g = con-
stant and h = constant are material vorticity surfaces, in consistency with the
Helmholtz second vorticity theorem. Note that as remarked following (2.115),
Φ is not the full velocity potential and depends on history.

Finally, substituting (3.154a) into the acceleration formula (2.11), i.e.,
a = ∂u/∂t+ u · ∇u, and using (3.154b), we obtain

ai =
∂

∂t
(Φ,i + gh,i) + uj(Φ,i + gh,i),j =

(
DΦ
Dt
− 1

2
q2
)
,i

where by (3.154a)

DΦ
Dt

=
∂Φ

∂t
+ ui(ui − gh,i) =

∂Φ

∂t
+ q2 + g

∂h

∂t
.

Thus, a comparison with (3.130b) yields the most general Bernoulli integral,
written in terms of Lagrangian and Eulerian descriptions, respectively (Serrin
1959),

∂Φ

∂τ
− 1

2
q2 + φ∗ = 0, (3.155a)

∂Φ

∂t
+

1
2
q2 + g

∂h

∂t
+ φ∗ = 0,

Dg
Dt

=
Dh
Dt

= 0, (3.155b)

where again the arbitrary integration constant has been absorbed into one of
the potentials. Therefore, we have proved the following theorem.
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Theorem . For any circulation-preserving flow there exists a Bernoulli inte-
gral (3.155) following each fluid particle.

Equation (3.155a) has been used in the Lagrangian approach of some flow
problems (e.g., Baker et al. 1982), but in practice (3.155b) is of little value. It
requires solving seven first-order equations for (ui, φ∗, Φ, g, h) and, in general,
even for steady flow there will still be g ∂h/∂t �= 0 (Serrin 1959). Nevertheless,
we may easily see the connection of (3.155b) and preceding Bernoulli integrals.
Assume the vorticity is steady and ∂u/∂t = ∇(∂ϕ/∂t) as before. Comparing
(3.144) and (3.155b) yields

ω × u = ∇
(
∂Φ

∂t
− ∂ϕ

∂t
+ g

∂h

∂t

)
,

indicating the existence of a set of Lamb surfaces. Thus we return to (3.146).
Note that in (3.155a) the sign in front of q2/2 is negative; we shall soon

see that for effectively inviscid flow satisfying (3.130), q2/2 − φ∗ is nothing
but the Lagrangian density which integrates to the Lagrangian action, while
the total energy q2/2+φ∗ appeared in the Bernoulli integrals in the Eulerian
description is the Hamiltonian density .

It is in order now to identify the dynamic and thermodynamic content as
well as the physical meaning of φ∗. By (2.44) and (2.163), the momentum
equation can be rewritten

a = f − 1
ρ
∇p+ η = f −∇h+ T∇s+ η, (3.156)

where η is the viscous force given by (2.164). Thus, the vorticity diffusion
vector reads

∇× a = ∇× f +
1
ρ2
∇ρ×∇p+∇× η (3.157a)

= ∇× f +∇T ×∇s+∇× η. (3.157b)

Evidently, a flow will be circulation-preserving if and only if all terms on the
right-hand side disappear.

First, ∇ × f = 0 if and only if f = −∇ζ, say. In many applications the
existence of ζ is not a problem. For a gas motion f is negligible, and for
liquid the gravitational force has a potential ζ = gz, with z being the vertical
distance from a reference level.

Next, the second term of (3.157a) disappears if ∇ρ and ∇p are parallel.
This is so for incompressible flow without density stratification. For a com-
pressible flow ∇ρ × ∇p = 0 if and only if the flow is barotropic, i.e., in the
flow only one thermodynamic variable is independent (a flow with two or more
independent thermodynamic variables is called baroclinic). The proof of “if”
is evident, since then there must be p = f(ρ), say, so ∇p = f ′(ρ)∇ρ which is
parallel to ∇ρ. To prove the “only if,” observe that the condition

0 = ∇p×∇ρ = ∇× (p∇ρ)
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implies either p = f(ρ) and hence the flow is barotropic, or p∇ρ = ∇λ has
a potential. But in the latter case λ can be taken as the unique independent
thermodynamic variable; thus the proof is completed. Consequently, we have
∇p/ρ = ∇(

∫
dp/ρ). Similarly one can prove ∇T ×∇s = 0 in (3.157b).

Finally, the third term of (3.157) disappears if and only if there exists a
potential, say σ, such that

η = −∇σ, (3.158)

which is trivially satisfied for effectively inviscid flows but holds only for a
special class of viscous flows. Note that an inviscid flow is a nondissipative
system but viscous flow contains irreversible process due to friction. While
the isentropic condition Ds/Dt = 0 applies only to the former, a flow having
a Bernoulli integral is not necessarily inviscid. In any case, when all the pre-
ceding three conditions are satisfied, the acceleration potential φ∗ exists and
is given by

φ∗ = ζ +
∫

dp
ρ

+ σ, (3.159)

showing that Bernoulli integrals are energy integrals governing the transfer of
one kind of energy to another.

Finally, we remark that the circulation preserving is sufficient but not
necessary for having a Bernoulli integral. For example, one may use (3.142)
to construct a Bernoulli integral along a line perpendicular to both ∂u/∂t
and ω×u (Truesdell 1954). However, this kind of integrals are not practically
useful.

3.6.3 Hamiltonian Formalism

Having examined the implication of (3.130) to the shearing and compressing
processes separately, We now seek a combination of both sides. For nondissi-
pative systems with η = 0, this is best done in terms of the Hamiltonian
formalism, see, e.g., Lanczos (1970) for a basic knowledge of variational cal-
culation as well as Lagrangian and Hamiltonian mechanics. A comprehensive
presentation of Hamiltonian fluid dynamics is given by Salmon (1998). Viscous
circulation-preserving flows will be addressed in Sect. 3.6.5.

In fluid mechanics, the direct counterpart of finite-number discrete parti-
cles is the infinitely many Lagrangian labels X, while the counterpart of gen-
eralized coordinates and generalized velocity are the position vector x(X, τ)
and velocity ẋ(X, τ) = ∂x/∂τ of particle X at time τ . The summation over
the particle number is replaced by integration over the X-space. Therefore,
for the Lagrangian L we have

L =
∫
V
ρ0Ld3X, (3.160)

where L is the Lagrangian density . The mass conservation requires that
ρ0d3X = ρdv is invariant during variation. The Hamilton’s principle reads:
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t1

dτ
∫
V
ρ0δLd3X = 0 (3.161)

from which follows the Euler–Lagrange equation for L:

∂L
∂xi
− ∂

∂τ

(
∂L
∂ẋi

)
= 0. (3.162)

In carrying out variations in the X-space, all Lagrangian variables are to be
kept fixed and Eulerian variables are to be varied (and vise versa if we work
in the physical space).

The choice of Lagrangian density is not unique. Let k = q2/2 = ẋ · ẋ/2 be
the kinetic energy per unit mass, the motion equation of a physical field can
be written

∂

∂τ

∂k

∂ẋi
= − ∂U

∂xi
, (3.163)

where U(x, t) collects other kinds of energy which do not explicitly depend on
ẋ. Then one can set L = k−U such that (3.163) leads to (3.162). Specifically,
one may choose U = ζ + e as the sum of potential and internal energies, so
that

L̂ =
1
2
ẋ · ẋ− (ζ + e). (3.164)

By using the continuity equation (2.40) and isentropic condition (2.78), it can
be shown that this choice casts (3.161) to (Salmon (1998))∫ t2

t1

dτ
∫
V
ρ

[(
∇ζ + 1

ρ
∇p

)
· δx

]
d3x = 0,

from which and (3.162) follows the Euler motion equation for effectively in-
viscid and barotropic flow with conservative body force:

∂2x

∂τ2
= −∇ζ − 1

ρ
∇p, p = f(ρ). (3.165)

Alternative to (3.164), since (3.130b) is nothing but the general momentum
equation of circulation-preserving flow, comparing it with (3.163) suggests
that we may simply set U = φ∗ if the flow is effectively inviscid. In fact, since
in (3.159) with σ = 0 there is ζ = ζ(x, t), p = p(ρ), ρ = ρ(J) by (2.40) while
J = J(x) for fixed X, φ∗(x, t) indeed does not explicitly depend on k. Thus,
we now have

L =
1
2
q2 − φ∗ =

1
2
ẋ · ẋ− ζ −

∫
dp
ρ
. (3.166)

Note that this identification gives (3.151) a deeper implication

∂U

∂τ
= ∇XL, (3.167)
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which is an X-space image of the circulation-preserving acceleration formula
(3.130b). Correspondingly, the Bernoulli integral (3.155a) now simply reads.

DΦ
Dt

= L. (3.168)

Then, since the δ-operation and ∂/∂τ = D/Dt operation are permutable, we
have identity

∂

∂τ
(u · δx) = a · δx+ u · δ∂x

∂τ
= a · δx+ δ

(
1
2
q2
)
, (3.169)

and hence from (3.166) there is

δL = δ
(
1
2
q2
)
−∇φ∗ · δx =

∂

∂τ
(u · δx)− (a+∇φ∗) · δx.

Substituting this into (3.161) and note that the first term integrates to zero
for fixed t1 and t2, from the arbitrariness of δx we return to the “momentum
equation” (3.130b). This confirms our choice (3.166) for L. More explicitly,
by (3.166), for fixed X we have

∂L
∂xi

= −ζ,i −
1
ρ
p,i,

∂L
∂ẋi

= ẋi

so from (3.162) we re-obtain (3.165).
Moreover, similar to particle mechanics, there is

D
Dt

(
1
2
q2 + φ∗

)
= −∂L

∂t
. (3.170)

Hence, the total energy is conserved if L is independent of time. Then, since

D
Dt

(
1
2
q2
)

= u · a = −u · ∇φ∗,

we also have
∂L
∂t

= −∂φ
∗

∂t
. (3.171)

We may also obtain the Hamiltonian of circulation-preserving flow, but the
partial derivatives with respect to generalized coordinates and generalized
momentum for particle system (e.g., Lanczos 1970) need to be replaced by
corresponding variational derivatives. Thus, now the generalized momentum
is

pi =
δ

δui

∫
V

(
1
2
q2 − φ∗

)
d3X = ui = ẋi.
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Therefore, the Hamiltonian is simply given by

H =
∫
V
H d3X, H ≡ 1

2
q2 + φ∗, (3.172a,b)

where the Hamiltonian density H satisfies the canonical equations:

u̇i = −
δH
δxi

, ẋi =
δH
δui

. (3.173a,b)

Here, (3.173a) is nothing but a = −∇φ∗ and (3.173b) comes from (3.172b).
We also have

DH
Dt

= −∂L
∂t

=
∂φ∗

∂t
. (3.173c)

due to (3.171).
The Hamilton’s principle (3.161) is formulated in the reference space.

The derivation of momentum equation for such flows in Eulerian descrip-
tion is more complicated, where the key is keeping the full equivalence of
the two descriptions (but, see some different findings below), which is en-
sured by Lin’s constraint (2.10). For effectively inviscid flows, in terms of the
Eulerian variables the Lagrangian density was chosen as L̂ defined by (3.164),
of which the variation is subjected to three constraints: the mass conserva-
tion Dρ/Dt = −ρϑ, the energy conservation Ds/Dt = 0, and Lin’s constraint
DX/Dt = 0. Then the Euler equation follows. This formulation is called
Herrivel–Lin variational principle, see Serrin (1959), who also proved that
conversely every Euler flow is an extremal under those three constraints. For
further discussions see Bretherton (1970) and Salmon (1988).

3.6.4 Relabeling Symmetry and Energy Extremum

At this place we observe that, as a close analogy with particle mechanics, the
Hamiltonian formalism so far developed for circulation-preserving flow con-
centrates only on energy consideration, where both the Lagrangian density L
and the Hamiltonian density H belong to the longitudinal part only. This is
natural because particle mechanics does not have any transverse interaction.
Actually, the self-closure of compressing dynamics makes this direct anal-
ogy possible. It is then clear that in the Hamiltonian formalism there must
still be a room to add the information on shearing process, which is now a
purely kinematic matter. Therefore, the Hamiltonian structure of circulation-
preserving flows is more abundant than its particle-mechanics counterpart,
and any results derived from a transverse variable must be unique to contin-
uum mechanics (Salmon 1988).

First, recall that the Hamiltonian principle for circulation-preserving flow
is formulated in the X-space, in which the Lagrangian vorticity Ω(X) defined
by (3.133a) is time-independent (Lagrangian invariant). A virtual change δX
of the particle label X(x, t) during variation implies a relabeling of the fluid
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particles; while the observation following (3.165) has indicated that the X
enters the Lagrangian (3.164) or (3.166) only through the density ρ = J−1ρ0.
Thus, the dynamics of circulation-preserving flow will be unaffected provided
δJ−1 = 0, which imposes a constraint to the possible relabeling. In fact, due
to the symmetry between the mappings x = φ(X, τ) and X = Φ(x, t), the
reverse of (2.6) must be

δJ−1 = J−1∇X · δX. (3.174)

Hence, δJ−1 = 0 if and only if

δX = ∇X × c (3.175)

for some vector c. Namely, in a circulation-preserving flow a solenoidal relabel-
ing δX does not alter any fluid motion. A variation that leaves L unchanged
implies a symmetry; so we now have a relabeling symmetry.

Conversely, by the Noether theorem (e.g., Lanczos 1970), the invariance of
L under certain transformation must imply a conservation law. To see what
this law is in the present case, we use (3.175) for any vector c to compute δL
defined by (3.166):

δL = uiδ
(
∂xi
∂τ

)
− φ∗

,αδXα = uixi,α
∂

∂τ
(δXα)− φ∗

,αδXα

= εαβγ

(
Uα

∂cγ,β
∂τ

− φ∗
,αcγ,β

)
= εαβγ

[
∂

∂τ
(Uαcγ,β)− (φ∗

,αcγ),β −
∂Uα,β
∂τ

cγ

]
,

where Uα is defined by (3.148a). Substituting this into (3.161), since the first
two terms integrate to zero, it follows that:

δ
∫ t2

t1

dτ
∫
V
Lρ0d3X =

∫ t2

t1

dτ
∫
V
c · ∂Ω

∂τ
ρ0d3X = 0,

where Ω is the Largangian vorticity defined by (3.133a). Therefore, due to the
arbitrariness of c, we return to (3.134), which is equivalent to (3.130). Thus,
we arrive at the remarkable conclusion as given below.

Relabeling Symmetry Theorem . The fluid particle-relabeling symmetry
and circulation preserving are equivalent.

This theorem was discovered and formulated in different ways by a number
of authors during 1960s–1980s (for brief reviews of its history see, Salmon 1988
and Padhye and Morrison 1996). It implies that for circulation-preserving flow,
Lin’s constraint DX/Dt = 0, which was considered necessary for deriving the
Euler equation for isentropic vortical flow in physical space but is inconvenient
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in applications, can be relaxed to solenoidal exchange of particle labels without
altering the flow field.

In fact, a recent work of Kambe (2003, 2004) based on the gauge field theory
has shown that even the entire issue of particle labeling can be avoided. As-
suming the flow is inviscid and isentropic, Kambe first shows that the Eulerian
variation of the Lagrangian of the free field of fluid flows implies the potential-
flow equation, which is, however, not invariant under a local rotational gauge
transformation. He then shows that the vorticity is the gauge field of the flow
required by the local rotational gauge invariance, just like the electromagnetic
field is the gauge field of charged particles. In this approach Lin’s constraint
is not needed at all. Kambe (private communication) conjectured that the
principle of local rotational gauge invariance is equivalent to chasing particle
motion.

Owing to these progresses, it can be said that for circulation-preserving
flow the Eulerian description alone is complete (closed). The underlying
physics can be easily understood in terms of fundamental processes. Circula-
tion preserving makes the transverse part retreat within kinematics and has no
direct influence on the Lagrangian. Conversely, since the Lagrangian (3.166)
comes from the direct analogy with particle mechanics that contains only lon-
gitudinal part of the motion, if this part is self-closed, then the transverse
part must not enter dynamics and the flow must be circulation preserving.

The relabeling symmetry has not yet fully explored the joint properties
of compressing dynamics and shearing kinematics. By the Lyapunov stabil-
ity theory (see Chap. 9), if for a flow one can find a scalar function which
takes extremum (maximum or minimum) among all flows of the same kind
satisfying the same boundary conditions, then this flow will be stable. There-
fore, finding extrema for certain flows is of great interest in fluid-dynamic
stability analysis, which is, however, difficult in general cases. But, for certain
circulation-preserving flow several extremum theorems have been found.

For incompressible potential flow we have Kelvin’s minimum kinetic-
energy theorem (Sect. 2.4.4), of which the condition is unfortunately too lim-
ited. It is natural to attempt its generalization to circulation-preserving flow.
Kelvin (1887) himself conjectured that “The condition for steady motion of
an incompressible inviscid fluid filling a finite fixed portion of space... is that,
with a given vorticity, the energy is a thorough maximum, or a thorough min-
imum, or a minimax.” This conjecture was first proven by Arnold (1965b,c)
for incompressible circulation-preserving flow. We restate the first part of his
results as follows.

Arnold’s Energy Theorem . Of all possible circulation-preserving flows
having the same Lagrangian vorticity and satisfying the same boundary con-
dition, the total energy of steady flow takes stationary value.

The basic idea behind this theorem can be interpreted as follows. To find
a stationary value (necessary for being extremum) of a functional by the vari-
ational method, a common choice of the functional is conservative quantities.
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As indicated by (3.172) and (3.173c), the total energy H is such a functional
when the flow is steady. However, to cover the rotational flow one has to add
a new conservative scalar

C =
∫
∂V

c(Ω)ρ0d3X with
∂C

∂τ
= 0. (3.176)

Therefore, instead of δH = 0 alone that leads to the steady momentum equa-
tion, we should consider the conditional variation of H under the constraint
of the Lagrangian constancy of C and to seek for the result of

δ(H + C) = δ
∫
V
[H+ c(Ω)]ρ0d3X = 0. (3.177)

No Lagrangian multiplier is needed due to the arbitrariness of c(Ω). We then
expect that (3.177) should lead to steady circulation-preserving vortical flow.
This can be proven by different ways; one of which starting from (3.177) is
given by Holm (1986). Here, we cite a neater approach for incompressible flow
given by Vladimirov and Ilin (1988), quite close to Arnold’s original approach.

Consider an inviscid and incompressible circulation-preserving flow with
a = −∇φ∗ in a singly connected fixed domain D, so by (3.130a) there is
(subscripts denote partial derivatives),

ut + ω × u+∇
(
1
2
q2 + φ∗

)
= 0, n · u = 0 on ∂D. (3.178)

We perform the variation of u in a way to preserve the circulation along
any material loop. To this end, Arnold introduces a set of transformations
gε : x =⇒ x̃(x, ε) of the domain D to itself, defined by

dx̃
dε

= ξ(x, ε), (3.179a)

where ξ satisfies

∇ · ξ = 0 in D, n · ξ = 0 on ∂D. (3.179b)

Namely, gε can be interpreted as a “virtual incompressible motion” of the fluid
away from the real flow field, with ε, x̃, and ξ being the “virtual time,” “virtual
position” of fluid particle whose position at ε = 0 was x, and the “virtual
velocity,” respectively. This virtual motion creates a vector field ũ(x̃, ε) such
that ũ(x̃, ε)|ε=0 = u(x) is the real velocity, and for any ε there is n · ũ = 0
on ∂D. Thus, we may define operator D/Dε such that

Dũ

Dε
= ũε + ξ · ∇̃ũ,

D
Dε

dx̃ = dx̃ · ∇̃ξ (3.180)

as we did for real flow, see (2.11) and (2.17). Then, assuming ε is small, we
can use Taylor expansion to write
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δu ≡ ũε
∣∣
ε=0

, δ2u ≡ 1
2
ũεε

∣∣
ε=0

. (3.181)

Now, to ensure gε is circulation-preserving, for any material loop C(t) which
is transformed to gεC(t), there should be∮

gεC

ũ · dx̃−
∮
C

u · dx = ε
dΓ̃
dε

∣∣∣
ε=0

+
1
2
ε2
d2Γ̃
dε2

∣∣∣
ε=0

+O(ε2) = 0. (3.182)

Here, by (3.180) and using identities

a · ∇b+∇a · b = ∇(a · b)− a× (∇× b), (3.183a)∮
dx · ∇χ = 0 for any χ, (3.183b)

there is

d
dε

∮
gεC

ũ · dx̃ =
∮
gεC

{
dx̃ · Dũ

Dε
+

D
Dε

(dx̃) · ũ
}

=
∮
gεC

dx̃ · (ũε + ξ · ∇̃ũ+ ∇̃ξ · ũ) =
∮
gεC

(ũε + ω̃ × ξ) · dx̃.

Thus, the O(ε) term in (3.182) yields

δu = ξ × ω −∇α and hence δω = ∇× (ξ × ω), (3.184)

where α is a scalar function. Therefore, by using (3.184), (3.178), and (3.179b),
the first energy variation for steady flow under the circulation-preserving con-
dition is given by

δK =
∫
D

u · δu dV =
∫
D

ξ · (ω × u)dV = −
∫
D

ξ · ∇
(
1
2
q2 + φ∗

)
dV = 0,

(3.185)
which proves the theorem.

For later use in stability analysis (Chap.9), let us proceed to derive the
second energy variation. Similar to the derivation of δu, by using (3.183) and
(3.184) we find

d2

dε2

∮
gεC

ũ · dx̃ =
∮
gεC

{ũεε + ξ × [∇̃ × (ω̃ × ξ) + ω̃ × ξε]} · dx̃.

Thus, the O(ε2) term in (3.182) yields

δ2u = ξ × δω +ψ × ω −∇β, ψ ≡ ξε
∣∣
ε=0

. (3.186)

Then, we have

δ2K =
∫
D

{
1
2
(δu)2 + u · δ2u

}
dV,
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where, by (3.186) and (3.178) there is

u · (ψ × ω) = (ω × u) ·ψ = −∇ ·
[
ψ

(
1
2
q2 + φ∗

)]
since ∇ ·ψ = 0. Therefore, it follows that:

δ2K =
1
2

∫
D
{(δu)2 + δω · (u× ξ)}dV. (3.187)

3.6.5 Viscous Circulation-Preserving Flow

We close this lengthy section by viscous circulation-preserving flows satisfying
(3.158). In contrast to other terms in (3.156), although σ also has dimension
of energy per unit mass, since now the process is irreversible, a nonzero σ
is a function of that process rather than a function of equilibrium thermo-
dynamic state. Only a few special viscous flows can satisfy (3.158). Consider
incompressible flow with η = −ν∇× ω, (3.158) requires

ν∇× ω = ∇σ, ∇2σ = 0, (3.188a)

or
∇2ω = 0. (3.188b)

This will be satisfied if the vorticity is a linear function of x:

ωi = Cijxj +Di. (3.189)

Then there is
σ = −νεijkCijxk, (3.190)

which vanishes if Cij = Cji. The viscous Poiseuille flow (Di = 0) and Couette
flow (Cij = 0) between parallel plates are of this type. For the simple shear
flow exemplified in Sect. 2.1.2, we may write ω = C32x2 and hence σ = νC32x1.
Actually, for any viscous unidirectional flow there is u·∇u = 0 (see Sect. 4.1.4
below), so if the flow is steady there is

ν∇× ω = −1
ρ
∇p.

Thus, we simply have σ = −p/ρ, implying that the pressure work is completely
spent on compensating the viscous dissipation.

Note that for a steady incompressible viscous flow the Helmholtz equation
(2.168) indicates that (3.188) holds if and only if so is (3.63), i.e., the flow is
generalized Beltramian.

A viscous circulation-preserving flow also has some unique features. First,
for the total enstrophy, there is (Wu et al. 1993):



126 3 Vorticity Kinematics

Minimum Enstrophy Theorem . Among all viscous incompressible flows
satisfying the same adherence boundary condition, the circulation-preserving
flow has minimum total enstrophy.

The proof is similar to that of Kelvin’s minimum kinetic-energy theo-
rem (Sect. 2.4.4). Denote the total enstrophy by E, and assume a circulation-
preserving flow u is disturbed to u1 = u + u′ with u′ = 0 on the boundary
so that

E1 =
1
2

∫
V

(ω + ω′) · (ω + ω′)dV = E + E′ +
∫
V

ω · ω′dV.

To handle the integral, we use the identity

∇ · (u′ × ω) = ω · (∇× u′)− u′ · (∇× ω).

Hence, since η = −ν∇ × ω = −∇σ by (3.158) and u′ · ∇σ = ∇ · (u′σ), we
obtain ∫

V

ω · ω′ dV =
∫
∂V

n ·
(
u′ × ω − 1

ν
u′σ

)
dV = 0

due to u′ = 0 on ∂V . Thus, we have E1 = E + E′ ≥ E.
It will be shown in Sect. 4.1 that the creation of vorticity and enstrophy at

boundary is inevitable for viscous flows, which is in general a noncirculation-
preserving process. Therefore, on a bounded viscous circulation-preserving
flow such as the Poiseuille flow, the continuously produced new enstrophy must
be immediately dissipated to ensure no enstrophy accumulation. The mini-
mum enstrophy theorem is precisely a quantitative reflection of this physics.

As a corollary, we recall the generalized Bobyleff–Forsythe formula (2.158)
links the total enstrophy to dissipation, where in the last term the surface
deformation stress ts is fixed for given boundary. Hence, for the disturbed flow
we simply have ts1 · u1 = ts · u. Therefore, when the flow is incompressible,∫

V

Φ1 dV =
∫
V

ΦdV + 2µE′ ≥
∫
V

ΦdV,

which is the classic Helmholtz–Rayleigh minimum dissipation theo-
rem14 stated exactly in the same way as the minimum enstrophy theorem.
Moreover, from this theorem and entropy equation (2.61), when the heat flux q
can be neglected and hence the flow is isothermal, we arrive at one more similar
theorem of minimum entropy production for circulation-preserving isothermal
flow.

The proofs of the above theorems crucially depends on the incompressibil-
ity condition. Variational calculation is necessary once we enter compressible
14 Its direct proof is simpler than that for the minimum enstrophy theorem, see

Serrin (1959), p. 258.
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flow. Consider the total dissipation for general circulating-preserving flow. As-
sume the flow is steady, so the continuity equation is ∇·(ρu) = 0, which serves
as a constraint to the variational problem of total dissipation. Thus, we write

δ
∫
V

[Φ− λ∇ · (ρu)]dV = 0,

where Φ = DijVij is the full dissipation rate defined by (2.54) and λ is a
Lagrangian multiplier. An integration by parts gives

δ
∫
V
Φ̃dV = 0, Φ̃ = Φ− ρu · ∇λ.

Since Φ = V : D does not explicitly depend on velocity, we have

∂Φ̃

∂ui
= −ρλ,i,

∂Φ̃

∂ui,j
=

1
2
Vlk

∂

∂ui,j
(uk,l + ul,k) =

1
2
Vlk(δikδjl + δilδjk) = Vji.

Thus, from the Euler–Lagrangian equation, it follows that there must be

η ≡ 1
ρ
∇ ·V = ∇λ,

which is simply (3.158). Therefore, among all compressible viscous flows sat-
isfying the same adherence boundary condition, the total dissipation of steady
circulation-preserving flow takes stationary value. It has been explicitly shown
by He et al. (1988) that this is true for Newtonian fluid, and moreover such
a steady flow satisfies the necessary condition of having minimum total dissi-
pation.

Summary

Vorticity kinematics studies the behavior of a vorticity field and relevant quan-
tities in space and time without introducing the constitutive structure of the
fluid, and hence is most widely valid. The content of vorticity kinematics is
far more abundant than general fluid kinematics due solely to taking the curl
of the latter. It constitutes an important part of the entire vorticity dynamics.

1. The concept of vorticity itself needs careful physical interpretation. Either
inside the fluid or on boundaries, the vorticity at a point equals twice of
the angular velocity of the principal exes of the strain-rate tensor at the
point. But the vorticity should be viewed as a generalization of the concept
of the angular velocity in an infinitely deformable medium. It differs from
the concept of angular momentum per unit mass. Only for a small and
finite spherical element of unit mass the vorticity is proportional to the
angular momentum about the center of the sphere.
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2. The basic spatial properties of a vorticity field are the first Helmholtz
theorem and vorticity moment theorem. Along with the no-slip condition,
the first Helmholtz theorem excludes the possibility of a vorticity tube
(not a single vorticity line) terminating at a nonrotating wall. The vortic-
ity moment theorem establishes infinitely many kinematic constraints on
the asymptotic behavior of the velocity field that extends to infinity. The
spatial properties also include the generalized Boit–Savart formula that
determines the velocity field associated with (“induced by”) a given vor-
ticity and dilatation field. All these results are solely from the solenoidal
feature of the vorticity and its mathematic definition, and hence are uni-
versally true.

Special care is necessary for the vorticity kinematics in two-dimensional
flow.

3. The geometric relation between the vorticity and velocity at a point re-
veals different key roles of the Lamb vector and the helicity density. The
complex-lamellar flow with zero helicity density and helical (Beltrami)
flow with zero Lamb vector represent a pair of exclusive extrema of vorti-
cal flows, each of which shares some feature of potential flow. By relaxing
the condition of Beltrami flow one gets the generalized Beltrami flow,
in which the Lamb vector has only longitudinal part and hence the key
kinematic nonlinearity in the shearing process disappears. Moreover, the
helicity (integral of helicity density) represents the topological structure
of thin vortex filament loops.

4. For incompressible flows the total momentum and angular momentum can
be expressed by the first- and second-order vorticity moments or vortical
impulse and angular impulse, respectively. Similarly, the total kinetic en-
ergy can be expressed by double vorticity integrals or scalar moment of the
Lamb vector. These hydrodynamic integrals enable replacing a widely dis-
tributed (even not unconditionally convergent) integrand by a much more
compact vorticity-related integrand. This is not only a matter of conve-
nience but also an indication that physically vortices are the “sinews and
muscles of the fluid motion” (Küchemann 1965).

5. The entire temporal evolution of the vorticity field is most neatly de-
scribed by the Lagrangian vorticity equation in the reference space. The
temporal properties of a vorticity field can be reflected from the evolution
of many relevant quantities, such as the vorticity itself and total vorticity,
circulation, potential vorticity, helicity, and enstrophy, as well as vortical
impulses. The rate of change of these quantities contains two types of
mechanisms. The first type is purely kinematics, among which the vor-
ticity stretching and tilting are most remarkable, which lie at the root of
the complexity of turbulence. The second type has its root at the curl of
acceleration (the vorticity diffusion vector), behind which is the kinetics.

6. Among various vortical flows the simplest class is circulation-preserving
flows, where the vorticity diffusion vector vanishes or the acceleration has a
potential. In these flows the shearing appears as only a kinematic process.
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This class of flows permits many conservation theorems, in particular
the Cauchy vorticity formula, the Kelvin circulation theorem, the second
and third Helmholtz vorticity theorems, and the conservation of vortex-
filament topology, etc. As the other side of the coin, the kinetics enters
the compressing process, but the momentum equation can be integrated
once to yield various Bernoulli integrals. For effectively inviscid flows,
both sides can be put into the Hamiltonian formalism, where the kinetic
energy and acceleration potential constitute the Lagrangian density and
Hamiltonian for the longitudinal part, and there exist the fluid–particle
relabeling symmetry and kinetic-energy extremum theorem. Then, a vis-
cous circulation-preserving flow has minimum dissipation, which when the
flow is incompressible is equivalent to minimum enstrophy.



4

Fundamentals of Vorticity Dynamics

This chapter enters vorticity dynamics. The comprehensive discussions of vor-
ticity kinematics in Chap. 3 enables us to focus on the situations with nonzero
vorticity diffusion vector ∇×a, of which the physical sources will be addressed
first. We then examine the dependence of the behavior of the shearing process
on its governing dimensionless parameter, the Reynolds number. Finally we
present a couple of general formulations of viscous incompressible flow prob-
lems in terms of vorticity, which may serve as a theoretical foundation of
vorticity-based numerical methods. Further materials of vorticity dynamics
will appear in later chapters.

4.1 Vorticity Diffusion Vector

For clarity, each of the three effects of the vorticity diffusion vector seen in
(3.157):

∇× a = ∇× f +
1
ρ2
∇ρ×∇p+∇× η, (3.157a)

= ∇× f +∇T ×∇s+∇× η, (3.157b)

namely, nonconservative body force, baroclinicity, and viscosity, will be exam-
ined in an isolated circumstance where the others are assumed not to occur.
We first discuss the two inviscid effects, followed by various aspects of the
viscous effect that has universal existence and fundamental importance.

4.1.1 Nonconservative Body Force in Magnetohydrodynamics

Consider an incompressible flow with uniform density ρ, not bounded by a free
surface. Then the role of pressure is merely to ensure the incompressibility.1

1 As implied by (2.68a), on a free surface the pressure must appear in the dynamic
boundary condition.
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Since any conservative body force can be absorbed into a modified pressure
gradient, these forces do not alter the flow field at all because one can well solve
the flow from the vorticity transport equation and proper boundary conditions
(see Sect. 4.5). This observation underscores the sole role of a nonconservative
body force in affecting the flow development through its interaction with the
vorticity field.

The most familiar nonconservative body force is the Coriolis force observed
in a rotating frame of reference, which serves as an internal source of the rel-
ative vorticity viewed in that frame. This effect is important in geophysical
vorticity dynamics to be addressed in Chap. 12. Here we consider a true non-
conservative body force that has a variety of significant effects on the vorticity,
namely the rotational part of the Lorentz force in an electrically conducting
and nonmagnetic fluid, which is a major concern of magnetohydrodynamics
(MHD) encountered in many engineering problems as well as geophysics and
astrophysics. For introductory books on this field see, e.g., Shercliff (1965)
and Davidson (2001).

It is well known that a particle of charge q moving through an electric field
E and a magnetic field B will experience an electrostatic force and a Lorentz
force, of which the sum is q(E+u×B). In a continuous medium with charge
density ρe, this force becomes ρeE+J×B per unit volume, where J = ρeu is
the current density. In MHD the forces on individual charges are unimportant
compared to those on the bulk of the fluid; so the force is simply J × B.
Therefore, the Navier–Stokes equation reads

Du

Dt
= −1

ρ
∇p− ν∇× ω +

1
ρ
J ×B, (4.1)

while the vorticity transport equation becomes

∂ω

∂t
+∇× (ω × u) = ν∇2ω +

1
ρ
∇× (J ×B). (4.2)

Such a flow problem has to be solved in couple with electrodynamic equa-
tions which relate J , B, and E. Since in MHD the displacement currents are
negligible compared to J , it suffices to use pre-Maxwellian equations, namely
Ohm’s law, Ampère’s law plus charge conservation, and Faraday’s law plus the
solenoidal condition of the magnetic field. These equations read, respectively,

J = σ(E + u×B), (4.3a)
∇×B = µmJ , ∇ · J = 0, (4.3b)

∇×E = −∂B
∂t

, ∇ ·B = 0, (4.3c)

where σ and µm are the electrical conductivity and magnetic permeability,
respectively. Now, by (4.3b) the Lorentz force can be cast to

J ×B =
1
µm

(
B · ∇B − 1

2
∇|B|2

)
=

1
µm

[
∇ · (BB)− 1

2
∇|B|2

]
,
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which is in exact analogy with the Lamb vector in the flow convection as the
vortex force per unit volume, see (2.162):

ρ(ω × u) = ρ

(
u · ∇u− 1

2
∇|u|2

)
= ρ

[
∇ · (uu)− 1

2
∇|u|2

]
.

The rotational part of the Lorentz force forms a true internal vorticity source:

∇× (J ×B) =
1
µm
∇× [∇ · (BB)]. (4.4)

Moreover, by combining (4.3a–c) we find the magnetic field satisfies exactly
the same transport equation as the vorticity field:

∂B

∂t
+∇× (B × u) = λ∇2B, λ = (µmσ)−1. (4.5)

The constant λ is called the magnetic diffusivity which, along with the char-
acteristic velocity U and length scale L, defines a magnetic Reynolds number

Rm =
UL

λ
= ULµmσ. (4.6)

If Rm 
 1, the reaction of the current (carried by the electrically conducting
flow) to an imposed magnetic field, say B0, can be neglected and one only
needs to study the effect of B0 on the fluid motion. Note in passing that there
are some further analogies between vorticity dynamics and MHD, of course
one being the original Biot–Savart law as the inversion of (4.3b),

B =
µm

2(n− 1)π

∫
J × r

rn
dV, (4.7)

from which (3.27) gained its name.
The earlier-cited books contain many examples in nature and technology

on how the rotational part of the Lorentz force creates, suppresses, and prop-
agates a vorticity field. This important role of the Lorentz force has also made
it a potential means in vortical-flow control, especially near-wall turbulence
control, of a conducting fluid (e.g., Du and Karniadakis (2000); Gad-el-Hak
(2000)). Here, we follow Davidson (2001) to consider a linearized MHD flow
in an imposed uniform magnetic field B0. The flow carries a weak current j
which induces a small disturbance magnetic field b by (4.3b), governed by

∂b

∂t
= ∇× (u×B0) + λ∇2b = B0 · ∇u+ λ∇2b,

of which the curl is
∂j

∂t
=

1
µm

B0 · ∇ω + λ∇2j.
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Comparing this with the linearized version of (4.2),

∂ω

∂t
=

1
ρ
B0 · ∇j + ν∇2ω,

we eliminate j to obtain a linear wave equation for the MHD vorticity:

∂2ω

∂t2
=

1
ρµm

(B0 · ∇)2ω + (ν + λ)∇2

(
∂ω

∂t

)
− λν∇4ω, (4.8)

which permits a traveling vorticity wave ω ∼ ω0 ei(k·x−nt) with n being
the circular frequency. Substituting this wave into (4.8) yields the dispersion
relation

n = − i
2
(ν + λ)k2 ±

√
B2
0k

2
‖

ρµm
− 1

4
(ν − λ)2k4, (4.9a)

where k‖ is the component of the wave vector k parallel to B0. A negative
imaginary part of n implies a damping. For inviscid flow (4.9a) is reduced to

n = − i
2
λk2

1∓

√
1−

4B2
0k

2
‖

ρµmλ2k4

 . (4.9b)

From (4.9) some simple solutions can be deduced. First, if both ν = 0 and
λ = 0 or Rm →∞ by (4.6), (4.9a) gives the classic Alfvén wave with frequency
n = ±vak‖ and phase velocity va = B0/(ρµm)1/2. This solution represents the
propagation of transverse (vorticity) inertial waves, an important phenomenon
in astrophysics. Then, if ν = 0 and λ is small but finite, (4.9b) gives a damped
Alfvén wave due to Ohmic dissipation (Fig. 4.1a):

n = − i
2
λk2 ± vak‖.

Finally, if λ → ∞ (Rm → 0) as in typical liquid-metal MHD, by (4.9b) one
has

n = −iλk2 or n = −
ik2‖
τk2

,

where τ = (σB2
0/ρ)

−1 is the magnetic damping time. While the former is sim-
ply a rapid-dissipated disturbance, the latter is a nonoscillating disturbance
that decays slowly on a time scale of τ (Fig. 4.1b).

4.1.2 Baroclinicity

Consider now the baroclinic effect in (3.157) due to nonzero ∇T × ∇s or
∇ρ×∇p. To isolate this effect, assume the external body force and viscosity
are both zero. Then the Kelvin circulation formula (2.32) implies
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Fig. 4.1. Damped Alfvén waves at high and low Rm.
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Fig. 4.2. A numerical Navier–Stokes solution of the steady flow past a circular
cylinder at M = 0.8 and Re = 500 (based on cylinder’s diameter). (a) Vorticity
contours, and (b) baroclinicity as the vorticity source. From Luo (2004)

dΓC
dt

= −
∮
C

1
ρ
dp =

∫
S

1
ρ2

n · (∇ρ×∇p)dS, (4.10a)

=
∮
C
T ds =

∫
S
n · (∇T ×∇s)dS. (4.10b)

A typical baroclinic flow to which (4.10a) applies is the density stratification
in atmosphere and sea water due to gravity (Chap. 12). Here we note that
the viscosity plays a key implicit role behind the apparently inviscid formula
(4.10b) via the dissipation-caused entropy increase, see (2.61).

As a demonstration, Fig. 4.2a shows the vorticity contours for a two-
dimensional steady viscous flow past a circular cylinder at freestream Mach
number 0.8. One sees a weak bow-shape vortex layer in front of the cylinder,
which can only be a baroclinic effect. In fact, at the location of the vortex
layer both density and pressure, as well as the local Mach number, have quite
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strong gradients. In terms of the intrinsic streamline coordinates (s, n, z) with
u = (q, 0, 0), from the two-dimensional inviscid and steady vorticity trans-
port equation one finds that, along a streamline starting from a point s0 in
upstream irrotational region, the vorticity at s is an accumulated effect of the
baroclinicity:

ω(s) =
∫ s

s0

1
qρ2

∂(ρ, p)
∂(s, n)

ds.

The distribution of this Jacobian divided by ρ2 is shown in Fig. 4.2b, which
also reveals some stronger baroclinic sources of vorticity in the boundary layers
and wake vortices.

In fact, in the transonic regime, a bow-shape shock wave appears at about
the same location as the bow baroclinic zone. In the Euler limit this layer
becomes a normal discontinuity which hides the baroclinic mechanism. Nev-
ertheless, the newly produced vorticity behind the shock can be analytically
obtained from the inviscid theory and Rankine–Hugoniot shock relations
(2.83), and the result is consistent with the corresponding viscous solution.
The creation of vorticity across a curved shock, across which the entropy in-
crease is not uniform, is sketched in Fig. 4.3. This inviscid theory has been
developed by Lighthill (1957) and Hayes (1957), which we present later.

Assume the flow is steady and let the shock have normal n. As explained
in the context of (2.83), the normal velocity un = u · n as well as p and ρ
will experience a jump as the flow goes through the shock, but the tangential
velocity uπ ≡ n× (u×n) remains continuous. Thus, no new normal vorticity
is created across the shock. In contrast, a tangent vorticity will appear behind
an oblique curved shock. In the Euler equation the vorticity appears explicitly
only through the Lamb vector ω × u, which must experience a discontinuity.
Thus, we take the jump of the tangential component of the steady Euler
equation:

n× [[ρ(ω × u+ q∇q)]] = −n×∇[[p]], q2 = |u|2 = u2π + u2n, (4.11)

A

A
T

S

B

B

wA

wB

Fig. 4.3. Vortex layer behind a curved shock wave. Reproduced from Kármán (1954)
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where [[·]] = (·)1 − (·)0, with subscripts 0 and 1 referring to quantities ahead
of and behind the shock, respectively. Then by using (2.82a) and (2.83a,b) it
can be shown

−n×∇[[p]] = mn×∇[[un]] + [[un]]n×∇m,

n× [[ρω × u]] = m[[ω]]− (mn+ [[ρ]]uπ)ωn,
n× [[ρq∇q]] = [[ρ]]uπn×∇uπ +mn×∇[[un]].

Thus, from (4.11) we obtain a general formula for the vorticity jump behind
a curved shock in steady flow (Hayes (1957), who also addresses the unsteady
effect):

[[ω]] = [[ωπ]] =
(
n+

[[ρ]]
m

uπ

)
ω0n +

[[un]]
m

n×∇m− [[ρ]]
m

uπn×∇uπ. (4.12)

Specifically, if ρ0 and u0 = U are constant, there is m = ρ0Un = ρ1u1n and
ω0n = 0, and since n×∇U2 = 0 we have n×∇U2

π = −n×∇U2
n , so (4.12) is

simplified to

ω1 = ω1π =
1
m
(ρ0[[un]] + Un[[ρ]])n×∇Un,

where
ρ0[[un]]
m

=
u1nρ0
u1nρ1

− Unρ0
Unρ0

= − [[ρ]]
ρ1

,
Un[[ρ]]
m

=
[[ρ]]
ρ0

.

Thus,

ω1π =
(1− ε)2

ε
n×∇Un, ε ≡ ρ0

ρ1
≤ 1. (4.13)

Finally, let K ≡ −∇πn be the curvature tensor of the shock surface, since

∇π(U · n) = ∇πU · n+U · ∇πn = −U ·K

due to ∇πU = 0, (4.13) can also be written as (Hayes 1957; Lighthill 1957)

ω1π = − (1− ε)2

ε
n× (U ·K). (4.14)

Remarkably, the newly produced tangent vorticity ω1π depends only on the
velocity in front of the shock and shock curvature as well as the density ratio
across it, but completely independent of the theromodynamic process inside
the shock layer. Note that while the entropy increase across a shock is of
O([[ρ]]3) (e.g., Serrin 1959), now (4.13) or (4.14) indicates that the vorticity
generated by a curved shock is of O([[ρ]]2).

A shock is a strong compressing process. The vorticity generation across
a curved shock is a byproduct of the nonuniform density jump [[ρ]], which is
a good example of the nonlinear coupling of the two fundamental processes
through the Lamb vector as discussed in Sect. 2.4.3.
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Another interesting strong baroclinic effect occurs when a highly concen-
trated energy is suddenly deposited into a narrow channel of the fluid, say
by laser and electric discharges in ambient air. Any asymmetry of the energy
deposition will cause a nonzero ∇ρ × ∇p and create vortices, which signifi-
cantly accelerate the mixing of the air. Consequently, following expansion to
pressure equilibrium, the hot channel cools down at a rate which is several
orders of magnitude faster than that due to thermal conduction (Picone and
Boris 1983). This phenomenon has been used to explain, for instance, the fast
production of atmospheric nitrogen oxides by lightning (Picone et al. 1981;
Kurzweil et al. 2002).

4.1.3 Viscosity Diffusion, Dissipation, and Creation at Boundaries

The viscosity has multiple effects in vorticity dynamics, each deserving an
in-depth analysis. For incompressible flow without nonconservative body force,
(3.157) is reduced to

∇× a = ν∇2ω. (4.15)

The first effect of viscosity is causing the vorticity diffusion. The Kelvin
circulation formula (2.32) now gives

dΓ
dt

= −ν
∮
(∇× ω) · dx. (4.16)

To understand how the right-hand side changes the circulation, we generalize
an argument of Lamb (1932) to examine the vorticity diffusion across the side
surface S of a sufficiently thin vorticity tube with outward unit normal n, in
which the vorticity lines are all parallel. At a point x on S, let e2 = ω/ω be
the unit vector along the vorticity line through x such that e1 = e2×n defines
a unit vector tangent to S. Based on the triple decomposition of Sect. 2.4.2,
e1 is actually along the direction of shear force τ = µω×n. Let x move along
the e1-direction around the tube once to form a closed line C; see the sketch
of Fig. 4.4.

We now apply (4.16) to loop C. For this thin tube, the curvature of S
along the tube direction e2, i.e., e2 ·K · e2, is negligible. The variation of the
orthonormal triad (e1,e2,n) as x moves over S is given by the Frenet–Serret
formula (A.39a,b,c). It can then be shown that

(∇× ω) · dx = −e2 ·
∂ω

∂n
ds,

and hence (4.16) yields
dΓ
dt

=
∮
C

σ · e2 ds,

where
σ ≡ νn · ∇ω = ν

∂ω

∂n
(4.17)
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e1
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C

Fig. 4.4. Intrinsic frame e1, e1,n on the side surface S of a vorticity tube

defines the vectorial vorticity diffusion flux (similar to the scalar heat flux
across a surface) through the side surface of the tube, which measures how
much vorticity is diffused in or out of S per unit area and unit time. If ω
increases along the n direction, vorticity will be diffused from outside into the
tube to enhance its circulation, and vice versa. A very important effect of vor-
ticity diffusion occurs when two pieces of thin vortex filaments are sufficiently
close, which causes the cut and reconnection of the filaments and hence alter
their topology (Sect. 8.3.3).

The relation between σ and the more intrinsic vorticity diffusive-flux ten-
sor ν∇ω is the same as that between the surface stress t and stress tensor
T, and ν∇ω is a tensor potential of ∇ × a = ν∇2ω (Sect. 2.3.5). An ob-
servation similar to this has led Hornung (1989, 1990)) to develop a general
tensor formulation of vorticity sources applicable to any continuum (see Wu
and Wu (1998) and Kolár (2003) for further discussion). We just mention that
for incompressible flow the Helmholtz equation (2.168) can be written

Dω

Dt
= ∇ · J, J ≡ ωu+ ν∇ω, (4.18)

so J is the tensor potential of the material rate of change of vorticity. In
two dimensions ∇ω degenerates to the vorticity gradient vector ∇ω to be
discussed in Chap. 12.

While diffusion simply transfers vorticity from a point to another, the
vorticity is also dissipated by viscosity. This can be understood by examining
the change of total enstrophy E (Sect. 3.5.3). By (4.15) and since

ωiωi,jj = (ωiωi,j),j − ωi,jωi,j ,

integrating (3.124) over a material volume V leads to the rate of change of
total enstrophy E in V:
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dE
dt

= 2α(t)E +
∫
∂V

η dS −
∫
V
Φω dv, (4.19)

where α(t) is a mean value of the vorticity stretching rate α in V,

η ≡ ν
∂

∂n

(
1
2
ω2

)
= ω · σ (4.20)

is the enstrophy diffusion flux , and

Φω ≡ µ∇ω : ∇ω ≥ 0 (4.21)

is the enstrophy dissipation rate analogous to the kinetic-energy dissipation
rate (2.54). In particular, for a two-dimensional unbounded viscous flow which
is uniform at infinity, E must monotonically decrease until Φω = 0 everywhere.
This state will be arrived when either the vorticity distribution becomes uni-
form, while the kinetic-energy dissipation continues with a constant rate, see
(2.155); or the flow becomes irrotational so that the initial vorticity is entirely
dissipated.

The defining equations (4.17) for σ and (4.20) for η do not tell the rela-
tive importance of vorticity diffusion and dissipation in a flow region under
consideration, compared to the advection. To know this we observe that, like
ν∇×ω, the form of (4.17) suggests that σ must join the momentum balance
on any surface S, making it expressible by other dynamic quantities thereon.
This enables identifying various physical mechanisms that affect σ (and η) on
any surface S. Thus, consider the tangent components of the incompressible
version of (2.134) on S. By combining vector identities (the first is (2.28))

(b×∇)× c = (∇c) · b− b(∇ · c),
b× (∇× c) = (∇c) · b− b · ∇c,

we obtain
(b×∇)× c− b× (∇× c) = b · ∇c− b(∇ · c),

so there is
−νn× (∇× ω) = νn · ∇ω − ν(n×∇)× ω. (4.22)

Therefore, we arrive at a general expression for σ (Wu 1986a; Wu and Wu
1993):

σ = n×
(
a− f +

1
ρ
∇p

)
+ ν(n×∇)× ω

= σa + σf + σp + σvis, (4.23)

where

σa = n× aB, σf = −n× f , (4.24a)

σp =
1
ρ
n×∇p, σvis = ν(n×∇)× ω (4.24b)
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are the diffusive fluxes caused by the tangent components of the fluid
acceleration a, the external body force, the pressure gradient, and a viscous
vortical effect, respectively. Note that σvis ≡ 0 in two dimensions. In three
dimensional flow, like (2.137), σvis can be expanded by identity (A.69):

σvis = ν(∇πωn + ωπ ·K− n∇π · ω), (4.25)

where K is the curvature tensor of S. Therefore, the tangent and normal
components of σ are given by:

σπ = σa + σf + ap + νωπ ·K+ ν∇πωn, (4.26a)

σn = −ν∇π · ω. (4.26b)

Note that (4.23)–(4.26) express normal derivatives by tangent ones: on their
right-hand side all quantities take values on S. Evidently, σn is a purely kine-
matic effect of ∇ · ω = 0; if the tangent vorticity ωπ has a two-dimensional
source or sink on S then a normal vorticity flux will be formed. Moreover,
by (2.134), for compressible flow with constant dynamic viscosity µ, the only
change of the earlier formulas is to replace σp by (Wu et al. 1988a)

σΠ =
1
ρ
n×∇Π, Π = p− (λ+ 2µ)ϑ. (4.27)

The preceding analysis indicates that the relative importance of σ and η
depends on the Reynolds number Re and the location of surface S. They are
weak when Re 1 and S is in the interior of the fluid, because to the leading
order the inviscid terms (the three terms in the bracket on the right-hand
side of (4.23)) are self-balanced via the Euler equation. But when Re 
 1
the diffusion and dissipation are crucial. On the other hand, if S = ∂B is a
solid-body surface, since the fluid elements sticking to it cannot freely respond
the pressure gradient, the on-wall momentum balance is mainly established
between the pressure gradient and σ, implying |σ| = O(1) generically at any
Re. This coupling was already observed at the end of Sect. 2.4.3 and will be
further explored later.

In the interior of a homogeneous fluid the viscosity never produces new
vorticity but only diffuses and dissipates it. However, across a material bound-
ary B the vorticity diffusion flux σ is generically discontinuous, implying that
there must be a mechanism to create new vorticity at B. This is the third
effect of the viscosity, unique to vorticity. The vorticity creation is the most
active event that occurs at material boundaries of all viscous flows and has
profound influence to the entire flow evolution.

The on-wall mechanism of vorticity creation is the no-slip condition. It
creates only new tangent vorticity at B, which is then diffused into the fluid
by σ. Therefore, σ gains a new important physical implication: it measures
the rate at which the vorticity is created at the boundary and diffused into the
fluid per unit area and time. Thus, on a boundary, we specifically call σ the
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boundary vorticity flux . Equations (4.22)–(4.27) still hold, applicable to any
deformable solid wall or interface of two fluids including free surface. Since
a and ωn are continuous across B (Sect. 2.2.4), if the wall is rigid and has
angular velocity W (t), in (4.17) we may replace ω by the relative vorticity
ωr = ω−2W with n ·ωr ≡ 0. Meanwhile, by (4.26a), the tangent component
of σvis is reduced to the sole contribution of wall skin-friction τw = µn× ωr

via curvature:
σπvis = νωr ·K =

1
ρ
(τw × n) ·K, (4.28)

where τ or ωr is in turn a temporal-spatial accumulated effect of the entire σ
as will be demonstrated in Sects. 4.1.4 and 4.2.3.

On a boundary B, σn represents a kinematic tilting of the vorticity lines
on B toward the normal direction. This mechanism can be very significant at
a solid wall as seen in tornado-like vortices (Fig. 3.5a), and is an ingredient
of three-dimensional flow separation (Chap. 5). Figure 4.5 shows a pair of σn-
peaks with opposite signs on a channel wall and a hairpin vortex above the
wall in the sublayer of a turbulent flow, indicating the correlation between the
σn-pair and hairpin vortex.

For a flow with given wall acceleration and external body force, σa and
σf in (4.24) are known. As the measure of vorticity generation rate, these
two boundary vorticity-flux constituents can be viewed as the roots of the
vorticity field in the flow. In contrast, the stress-related constituents σp and
σvis are the result or footprints of the entire flow and boundary condition.
But once they are established through the momentum balance, they become

z

xy

Fig. 4.5. A local plot of instantaneous σn (contours) on the wall and vorticity lines
right above the wall in a turbulent channel flow. The two dark spots on the wall are
a pair of σn peaks of opposite signs. From a direct numerical simulation of Zhao et
al. (2004)
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the root of the vorticity field. Distinguishing σa and σf from σp and σvis is
very important for understanding the force and moment acting to the wall
(Chap. 11) and for near-wall flow control (Zhu 2000; Zhao et al. 2004). For
example, if in a conducting fluid an imposed near-wall electromagnetic field
can effectively control the vorticity generation through a Lorentz force f (Du
and Karniadakis 2000), then by (4.23) the on-wall effect of f can in principle
be replaced by an equivalent wall tangent acceleration so that the control
could be applied to nonconducting fluid (Zhao et al. 2004). But it will be
hard (if not impossible) to impose a distributed σp as control means.

The relative magnitudes of the four constituents of the boundary vorticity
flux vary from one specific problem to another. For an incompressible flow
over a three-dimensional stationary body without body force, only σp and
σvis exist. Naturally and as will be seen in the following sections, they are of
the same order when Re 
 1, but σp becomes much stronger and the most
fundamental mechanism of vorticity creation when Re 1. In particular, for a
two-dimensional flow in the (x, y)-plane over a stationary wall with σ = σpez,
(4.24b) and (2.172b) form a pair of Cauchy-Riemann relations:

µ
∂ω

∂n
= −∂p

∂s
,

∂p

∂n
= µ

∂ω

∂s
. (4.29a,b)

Lighthill (1963) was the first to interpret (4.29a) as the measure of vortic-
ity creation and emphasize the role of tangent pressure gradient. His pioneer
insight was followed by many workers who added other constituents and ex-
tended the theory to two-fluid interface, see the review of Wu and Wu (1996).
The physical implication of (4.29a) can be easily understood from Fig. 4.6.
Replacing the pressure gradient by a wall acceleration from right to left or
a body force from left to right, the mechanisms of σa and σf can also be
easily understood. Notice the difference of Figs. 4.6 and 3.2. The mechanism
of vorticity creation should not be confused with that of boundary vorticity
ωB.

We stress that although (4.23) is derived for viscous flow with acceleration
adherence, the form of (4.29a) shows that the amount of σ is independent of
viscosity. Thus, as µ→ 0 there must be ∂ω/∂n→∞ to ensure the momentum

High pressure

Low pressure

u

Fig. 4.6. Schematic illustration of vorticity generation by pressure gradient and
no-slip condition
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balance and no-slip condition. At this asymptotic limit the newly created
vorticity forms a vortex sheet adjacent to the wall.

Corresponding to the boundary vorticity flux, we also have boundary en-
strophy flux η defined by (4.20). In terms of this scalar flux the flow boundary
B can be divided into three different parts: B0, where η = 0 due to the absence
of boundary vorticity and/or its flux; B+, where η > 0; and B−, where η < 0.
Thus ∫

B
η dS =

∫
B+

|η|dS −
∫
B−

|η|dS. (4.30)

It can then be said that B+ (or B−) is a vorticity source (or sink), where the
existing vorticity is strengthened (or weakened) by the newly created one.

4.1.4 Unidirectional and Quasiparallel Shear Flows

In this subsection we illustrate the basic physics of vorticity diffusion and
generation from boundaries by some simple unidirectional and quasiparallel
viscous shear flows.

Unidirectional Flow Driven by Pressure Gradient
and Wall Acceleration

Consider a flow on the half plane y > 0 with ρ = 1 and

u = (u(y, t), 0, 0), ω = (0, 0, ω(y, t)), ω(y, t) = −∂u
∂y

. (4.31)

The fluid and boundary are assumed at rest for t < 0, and at t = 0 let there
appear a tangent motion of the boundary with speed b(t), and a uniform, time-
dependent pressure gradient ∂p/∂x = P (t). In this case, the Navier–Stokes
equation and vorticity transport equation are linearized:

∂u

∂t
= −P (t)− ν

∂ω

∂y
= −P (t) + ν

∂2u

∂y2
, (4.32)

∂ω

∂t
= ν

∂2ω

∂y2
. (4.33)

Applying (4.32) to the wall gives

σ =
db
dt

+ P (t) at y = 0, (4.34)

which is evidently independent of viscosity. Equation (4.33) under the New-
mann condition (4.34) has solution

ω(y, t) =
∫ t

0−

σ(t′)√
πν(t− t′)

exp
[
− y2

4ν(t− t′)

]
dt′. (4.35)
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The flux σ can be regular or singular. If at t = 0 there is an impulsive P (t) and
db/dt, they will cause a suddenly appeared uniform fluid velocity U = (U, 0, 0)
and wall velocity b0, respectively. This yields

σ(t) = −(U − b0)δ(t) = γ0δ(t) for 0− ≤ t ≤ 0+, (4.36)

where γ0 = −(U − b0) is the initial vortex-sheet strength. Separating this
singular part from (4.35) yields

ω(y, t) =
γ0√
πνt

exp
(
− y2

4νt

)
+
∫ t

0+

σ(t′)√
πν(t− t′)

exp
[
− y2

4ν(t− t′)

]
dt′. (4.37)

With a finite ν, the initially singular vorticity in the sheet γ0 is soon diffused
into the fluid as reflected by the first term of (4.37). This problem is referred
to as the generalized Stokes problem. Setting y = 0 in (4.37) gives

ωB(t) =
γ0√
πνt

+
1√
πν

∫ t

0+

σ(t′)√
t− t′

dt′, (4.38)

indicating clearly that in this example ωB is a temporal accumulated effect
of σ. On the other hand, by (4.37) one may verify that the rate of change of
total vorticity is

d
dt

∫ ∞

0

ω(y, t)dy = σ(t), (4.39)

which confirms the physical meaning of σ.
Two special cases of (4.37) were first studied by Stokes. The Stokes first

problem or Rayleigh problem is that the flow is entirely caused by an impulsive
start of the wall from rest, with P = 0 for all t and σ = 0 for t ≥ 0+. Hence

ω(y, t) =
b0√
πνt

exp
(
− y2

4νt

)
. (4.40)

The Stokes second problem is that the wall makes a sinusoidal oscillation, say
b = b0 cosnt (or b0 sinnt, the difference being that the former contains an
impulsive start). The full solution has been studied by Panton (1968). If only
the transient boundary vorticity is considered, with b = b0 cosnt the integral
in (4.38) can be carried out analytically:

ωB(t) =
γ0

(πνt)1/2
+ b0

(
2n
ν

)1/2 [
S(
√
nt) cosnt− C(

√
nt) sinnt

]
, (4.41)

where S(x) and C(x) are Fresnel’s integrals (e.g., Abramowitz and Stegun
1972). As t→∞ this solution degenerates to a stationary oscillating state

ωB(t) = b0

(n
ν

)1/2
cos

(
nt+

π

4

)
. (4.42)
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At this stage, inside the fluid the vorticity field also has a stationary oscillation,
which is a viscous transverse wave propagating along the y-direction:

ω(y, t) = b0

(n
ν

)1/2
e−y/δ cos

(y
δ
− nt− π

4

)
, δ = k−1

r =
(
2ν
n

)1/2

. (4.43)

The length scale δ = k−1
r , with kr being the real part of the complex wave

number, characterizes the diffusion distance of the wave or the thickness of
a shear layer in which the flow has significant transverse wave. This layer
is known as the Stokes layer . The phase speed c and group speed cg of the
transverse wave are

c =
n

kr
=
√
2νn, cg =

dn
dkr

= 2
√
2νn > c, (4.44)

which are frequency-dependent, so the wave is dispersive.

Unidirectional Interfacial Flow

As an extension of the Stokes first problem, we now insert a flat interface S
at y = 1 into the preceding unidirectional flow at y > 0 (Wu 1995). A flat
interface of water and air may occur when the gravitational force is much
larger than inertial force. Both flow 1 (e.g., the water) at y ∈ [0, 1] and flow 2
(e.g., the air) at y = (1,∞) are governed by the same equations as (4.32)
with P = 0 and (4.33), and the matching condition of two flows is velocity
adherence and surface-force continuity (2.68), which yields an integral equa-
tion for the unknown interface velocity u1 = u2 = v at y = 1. The only
surface force on S is the shear stress µω × n, which by (2.68) implies a vor-
ticity jump ω1/ω2 = µ2/µ1. Thus, the impulsively started bottom wall drives
flow 1, which drives flow 2 that in turn reacts to flow 1.

The velocity profiles in water and air at different times are shown in
Fig. 4.7a. The interface vorticity is initially zero, then increases to a posi-
tive peak due to the diffusion of ω1 > 0 (entirely generated at t = 0) to S,
and then decreases to zero as it diffuses into fluid 2, see Fig. 4.7b. In addi-
tion to the singular generation of ω1 at the wall, at S there also appears a
boundary vorticity flux on both sides:

σ1 = ν1
∂ω1
∂y

= −dv
dt

= −σ2 = ν2
∂ω2
∂y

at y = 1. (4.45)

Initially there is σ1 = 0. When ω1 > 0 is diffused to S to induce a tangent
interface acceleration dv/dt, σ1 starts to become negative, reaching a peak
value and then returns to zero, see Fig. 4.7c. σ2 follows a similar trend but
with opposite sign and different magnitude (not shown).

Since ρ2/ρ1 
 1, the effect of the air motion on the water can be ignored
and the interface problem can be simplified to a free-surface problem. Then
the interface vorticity will be identically zero and flow 1 alone can be solved.
A remarkable difference of this free-surface model and interface flow is that,
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Fig. 4.7. Generalized Stokes’ first problem for interacting water–air system. (a) Ve-
locity profiles at different times. (b) Time variation of water vorticity on the inter-
face. (c) Time variation of vorticity flux at the interface. Solid lines are water–air
coupled solution and dash lines are obtained by free-surface approximation. Quan-
tities are made dimensionless by the bottom-plate initial velocity, the water depth,
and water density. Reproduced from Wu (1995)

for the former the boundary enstrophy flux η defined by (4.20) is zero both
at y = 0 for t > 0 due to σ = 0, and at y = 1 due to ω = 0, respectively.
Consequently, the enstrophy of the water cannot “escape” out of the free
surface at all, although it eventually decays to zero. This can only be explained
by a σ ≤ 0 at S found in both interface and free-surface flows, which generates
opposite vorticity that diffuses downward to cancel that generated at the wall.
Despite the difference of interface vorticity (Fig. 4.7b), the prediction of free-
surface model on the velocity profile of flow 1 and its boundary vorticity flux
on S agree very well with that of the interface.

Acoustically Created Vorticity Wave from Flat Plate

As an extension of Stokes’ second problem, we replace P (t) in (4.32) by a
harmonic traveling pressure wave (a sound wave):

p = Aeik(x−ct), A = ρu0c, c =
n

k
, (4.46)
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where u0 and ρ are constant. Then instead of (4.34) there is

σ =
1
ρ

∂p

∂x
= Re

{
inu0 eik(x−ct)

}
= −nu0 sin(kx− nt), (4.47)

which excites a Stokes layer of thickness δ defined in (4.43). Let ζ = y/δ be
the rescaled normal distance. Then the velocity field inside the layer is

u = u0

{
1− e(i−1)ζ

}
eik(x−ct), (4.48a)

v = ku0δ

{
−iζ + 1− i

2

(
e(i−1)ζ − 1

)}
eik(x−ct), (4.48b)

indicating that the flow is no longer unidirectional when k �= 0. The ω-wave
produced by the p-wave is

ω = (i− 1)
u0
δ
e−ζ ei(kx−nt+ζ) +O(k2δ), (4.49)

where the contribution of ∂v/∂x is ignored. The associated boundary enstro-
phy flux is

η =
(n
2

)3/2 u20√
ν

{
1 +
√
2 sin

[
2(kx− nt)− π

4

]}
, (4.50)

which has a positive average.
Lin (1957) has shown that for any external flow (even turbulent), if the

frequency is so high that δ is much smaller than the boundary-layer thickness,
then inside the Stokes layer the linear approximation (4.48) and (4.49) still
holds. A direct numerical simulation of channel-turbulence control by flexible
wall traveling wave confirmed Lin’s assertion (Yang 2004).

Sound-Vortex Interaction in a Duct

According to the vortex-sound theory outlined in Sect. 2.4.3, the sound-
generated vorticity in the earlier example 3 will in turn produce sound, which
may have strong effect when the sound wave is confined in a duct. Thus,
consider a weakly compressible flow with disturbance velocity u = (u, v) and
dilatation ϑ = ∇ · u in a two-dimensional duct, bounded by parallel plates
at y = 0 and 2. Assume the mean flow has unidirectional velocity U(y) that
satisfies the no-slip condition. Due to the nonuniformity of U , a sound wave
having a plane front at x = 0, say, must be refracted towards the walls, and
only a part of modes can reach far downstream. This is a closed-loop coupling
between shearing and compressing processes as well as sound propagation by
U(y) in the duct. Both processes should be solved simultaneously, governed
by a pair of linear equations derived from (2.168) and (2.169):
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(D0 − ν∇2)ω = U ′′v + U ′ϑ, (4.51a)

D0ϑ+∇2p = −2U ′ ∂v

∂x
, (4.51b)

under boundary conditions (4.29). Here, D0 ≡ ∂t+U∂x and (·)′ = d(·)/dy. In
example 3 the pressure wave is specified and only (4.51a) was used; while the
inviscid problem (4.51b) alone with homogeneous boundary conditions (an
eigenvalue problem) has also been well studied (e.g., Pridmore-Brown 1958;
Shankar 1971). But now the fully coupled problem is nonlinear. A simplified
approach was given by Wu et al. (1994a), who split this closed-loop interaction
into two subprocesses and solved them sequentially. First, an inviscid refracted
pressure field was computed by (4.51b) as an eigenvalue problem, which then
produces a vorticity wave by (4.51a) and (4.29a). Second, (4.51b) was cast
to a linearized vortex-sound equation in terms of the total enthalpy H as
a special case of (2.170). With the mean-flow Mach number M = U/c, the
dimensionless H-equation reads

∇2H − (D2
0H +MM ′D0v) = M ′′u− 2M ′ω −M

∂ω

∂y
, (4.52)

from which the p-field due to the acoustically created ω-wave can be calculated
and added to the initial inviscid p-wave solution. In solving (4.52) a viscous
boundary condition derived from (4.29b) has to be imposed even though the
equation is inviscid.

For a parabolic mean flowM(y) = M∞(2y−y2), the amplitude of vorticity
wave produced by the refracted p-wave obtained by this sequential approach
is shown in Fig. 4.8a, and the wall sound pressure level (SPL) at different
wave number k and Reynolds number Re is shown in Fig. 4.8b. Note that
Fig. 4.8b shows that the effect of viscosity may be nonmonotonic. When a
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Fig. 4.8. Sound–vortex interaction in a duct at M = 0.3. (a) The amplitude of
sound-generated vorticity wave at x = 20, k = 5, and Re = 1,000 (real part: solid
line; imaginary part: dash line). (b) The wall SPL at x = 20 and different k and Re.
From Wu et al. (1994a)
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p-wave excites an ω-wave through the no-slip condition, it loses some kinetic
energy; but, (4.51a) indicates that there is an interior unsteady source U ′′v
for disturbance vorticity, which makes the acoustically created ω-wave able to
absorb enstrophy from the mean flow and becomes a self-enhanced source of
sound.

4.2 Vorticity Field at Small Reynolds Numbers

It has been asserted in Chap. 2 that the dominating parameter of the shear-
ing process is the Reynolds number. The effect of this parameter on vortical
flows is very complicated, as demonstrated by the well-known photographs
of flow over a circular cylinder of diameter D at different RD = UD/ν (Van
Dyke 1982; see also Fig. 10.42). If RD = O(1), we have the full Navier–Stokes
equation and no simplification can be made. But both RD 
 1 and RD  1
provide a small parameter, and the matched asymptotic expansion (e.g., Van
Dyke 1975) can lead to approximate solutions. We take this convenience to
discuss the behavior of incompressible vorticity field at small Reynolds num-
bers in this section, and at large Reynolds numbers in the next two sections.

Small Reynolds-number flows are called Stokes flows. The viscous length
scale of a flow is ν/U , where U is the oncoming velocity. Compared to the
body length scale D, RD 
 1 implies that

Viscous length scale
Body length scale

 1.

This occurs if either (a) U 
 1, or (b) D 
 1. To the leading order, case
(a) implies that the inertial force can be ignored, while case (b) implies that the
flow is almost uniform. These two views led to different approximate solutions
studied by Stokes (1851) and Oseen (1910), respectively. They had not been
unified until 1950s, when Kaplun (1957) realized that the Stokes solution is
effective only near the body surface while the Oseen solution is effective for
far field, and they should be matched to form a uniformly effective solution.

We illustrate the situation by a steady incompressible flow Uex over a
sphere of radius a, examined in the spherical coordinates (R, θ, φ) shown in
Fig. 4.9. This problem has extensive applications in many fields of science and
technology, such as artificial raining, air dust removing, boiling heat transfer,
powder transportation, measurements of fluid viscosity and charge of electron,
and the motion of blood cells, etc. From now on we use a to define the Reynolds
number Re = aU/ν. When Re = ε
 1, the steady governing equations read

εu · ∇u = −ε∇p−∇× ω. (4.53)

4.2.1 Stokes Approximation of Flow Over Sphere

We first follow Stokes’ approach to simply set ε = 0, which leads to four
component equations from ∇ × ω = 0 and condition ∇ · u = 0 for three
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Fig. 4.9. Flow over a sphere at small Reynolds number

unknown variables. To make the problem solvable we retain the pressure term
by setting P ≡ ε(p − p∞). Then by (4.53), the lowest-order approximation
(the Stokes approximation) is

∇P +∇× ω = 0. (4.54)

Hence, both P and ω are harmonic:

∇2P = 0, ∇2ω = 0, (4.55a,b)

which and (4.29) indicate that in two-dimensional flow P + iω is a complex
analytic function. Although the inviscid coupling of shearing and compressing
processes via nonlinearity inside the flow field is absent, the viscous linear cou-
pling is strong on the body surface via the adherence condition (Sect. 2.4.3).

In the spherical coordinates, after scaled by a and U , the boundary con-
ditions read

u = ex, P = 0, R→∞, (4.56a)
u = 0 at R = 1. (4.56b)

The flow occurs on the (R, θ) plane and is rotationally symmetric. As argued
by Batchelor (1967), because the form of (4.55) is independent of the choice
of coordinates, by inspecting the form of (4.56) one finds that P and ω can
only depends on x, ex, and R. P must take on the form x · exF (R), while ω
must be along the eφ-direction and only depends on ex ×xF (R). Then since
1/R is a fundamental solution of Laplace equations (the origin is singular but
outside the flow field), the proper P should be found in the series solution (cf.
Sect. 3.2.3)

P =
∞∑
n=0

Cn

(
∂

∂x

)n( 1
R

)
.
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In fact, only the term n = 1 in this series fits (4.56), so we have

P =
C

R2
cos θ, ω = eφ

C

R2
sin θ.

Both P and ω have full fore-and-aft symmetry, and have the same constant
C due to (4.54).

There remains using (4.56b) to fix a scalar constant C. To this end we
only need to apply the Biot–Savart formula to a single convenient point, say
the origin where u = 0. Since ω �= 0 for R ≥ 1, it follows that

ex = −
C

4π

∫ π

0

dθ
∫ ∞

1

eR × eφ
R2

sin2 θ dR = −2
3
Cex,

which gives C = −3/2. This simple approach is possible because of the sym-
metry of the flow. Return to the dimensional form with density ρ, the desired
solution is

ω = −3
2
aU

sin θ
R2

eφ, (4.57a)

p− p∞ = −3
2
µaU

cos θ
R2

. (4.57b)

From (4.57a) we obtain the velocity u = (ur, uθ, 0), where

ur =
3
4

(
2R− 3 +

1
R

)
sin θ cos θ, (4.58a)

uθ = −
3
2
(R− 1) sin2 θ. (4.58b)

Therefore, the entire flow is fore-and-aft symmetric or wake-free, of which
the streamlines are plotted in Fig. 4.9. The vorticity created from the sphere
surface spreads to the flow field solely by diffusion. But the dissipation makes
the total drag nonzero. The pressure drag and skin-friction drag can be easily
obtained by applying (4.57a) and (4.57b) to r = a and integration. This gives
the Stokes drag law , which agrees with experiments up to Re ∼ 1:

D = 6πµUa or CD =
D

1
2ρU

2πa2
=

12
Re

. (4.59)

Another way of deriving the drag with more flavor of vorticity dynamics is
combining (2.76) and (2.159). Because in this wake-free steady flow the kinetic
energy is completely dissipated in the near field, the total kinetic energy K is
time-invariant and −B · u = u · ∇u = 0 at infinity. Thus, we simply have

D =
1
U

∫
ΦdV =

µ

U

∫
ω2 dV =

2πµ
U

∫ π

0

dθ
∫ ∞

a

ω2R2 sin θ dR,

which by (4.57a) returns (4.59).2

2 More methods of calculating force and moment will be given in Chap. 11.
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Finally, from (4.57a) the boundary vorticity flux σπ = σeφ defined by
(4.26a) can be easily obtained. Since the curvature of unit sphere is K =
eθeθ + eφeφ, we have σvis = ε−1ωBeφ and σp = σ − σvis. It then turns
out that the pressure gradient and boundary vorticity have exactly the same
contribution to σ:

σp = σvis =
1
2
σ = −3νU

2a2
sin θ eφ on sphere. (4.60a)

Moreover, the boundary enstrophy flux defined by (4.20) is, by (4.60a) and
(4.57a),

η =
9νU2

2a3
sin2 θ. (4.60b)

One may check that the surface integral of η over the sphere equals exactly
the total dissipation, which is possible only when the flow is wake-free. Note
that σ and η are of O(ε−1)  1 although |ω| = O(1). This is in contrast to
the flow at large Reynolds numbers dominated by advection (Sect. 4.3 below),
which has |σ| = O(1) and η = O(Re1/2).

4.2.2 Oseen Approximation of Flow Over Sphere

In the earlier Stokes solution the entire inertial force u ·∇u = ω×u+∇q2/2
was ignored. While ∇q2/2 can be absorbed by P , for fixed Re 
 1 we have
a very slow decay of ω × u as R → ∞, which is the main source of far-field
inertial force. Because at far field |u| = O(1), from (4.57a) we find that the
inertial force is of O(R−3). On the other hand, the viscous force is ε−1∇×ω =
O(ε−1R−2). Thus,

Inertial force
Viscous force

= O(εR/a) for R→∞, ε = Re =
Ua

ν
.

Therefore, the error of the Stokes approximation is O(ε) when R/a = O(1),
but becomes O(1) when R/a = O(ε−1). One is just lucky to get (4.56a)
satisfied.3 To describe the far-field behavior, we need a different approximation
and match the two solutions somewhere between near and far fields.

A far-field observer will see a sphere of very small radius, so the flow is
almost uniform. This is the view (b) mentioned in the beginning of the section,
which led to the Oseen Approximation. Thus, set u = Uex+u′ with |u′| 
 U
for R = O(ε−1a). Then the dimensional form of (4.53) with ρ = 1 is linearized
to

U
∂u′

∂x
= −∇p− ν∇× ω, (4.61)

from which follows ∇2p = 0 as in (4.55a), but instead of (4.55b) there is

3 It will be not so lucky if one considers the Stokes approximation of a flow over a
circular cylinder (e.g., Van Dyke 1975).
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∇2 − 2k

∂

∂x

)
ω = 0, k =

U

2ν
=

ε

2a
, (4.62)

of which the solution has been well known (Lamb 1932; Milne-Thomson 1968):

ω = A(1 + kR)
sin θ
R2

e−kR(1−cos θ). (4.63)

This is an outer solution effective for R a. To fix the constant A we match
(4.63) and the inner solution (4.57a) at R = O(a). To this end we notice that
at R = O(ε−1) (4.63) suggests a natural rescaling ρ = 2kR, such that the
outer and inner solutions read

ωout(ρ, θ) = ε2A

(
1 +

1
2
ρ

)
sin θ
ρ2

e−(1/2)ρ(1−cos θ),

ωin(ρ, θ) = −
3
2
ε2
sin θ
ρ2

.

Then the asymptotic matching principle requires the two solution to connect
smoothly at R = O(1) or ρ = O(ε) in the limit ε→ 0:

lim
ρ→0

ωout(ρ, θ) = lim
ρ→∞

ωin(ρ, θ), ρ = O(ε), (4.64)

yielding A = −3/2. Hence, the far-field solution becomes

ω = −3
2
sin θ
R2

(
1 +

ε

2
R
)
e−kR(1−cos θ), R 1. (4.65)

If we expand this solution to O(ε) at R+O(1), there is

ω = −3
2
sin θ
R2

(
1 +

ε

2
R
)
+O(ε2), R = O(1), (4.66)

indicating an O(ε) error. Although on the sphere this solution does not exactly
satisfy the boundary condition (4.56b) but the Stokes solution does, the latter
still has an error of O(ε) at R = 1, no better than the former. Therefore,
after matching with the Stokes solution the Oseen solution is the lowest-order
uniformly effective solution.

The disturbance velocity u′ can be solved from ∇×u′ = ω, which consists
of both potential and vortical parts.4 Then the pressure is obtained from
(4.61), and the drag can be computed by considering the normal and shear
stresses on the sphere (e.g., Milne-Thomson 1968). The result is

D = 6ρU2πa

(
1 +

3
8
Re

)
, or CD =

12
Re

(
1 +

3
8
Re

)
, (4.67)

which will be compared with (4.59) in Fig. 4.14 below. For more discussions
see Proudman and Pearson (1957) and Chester (1962).
4 This decomposition can be explicitly written because (4.61) is linear. For the
unsteady version of (4.61), then, the potential and rotational parts of the distur-
bance velocity represent longitudinal and transverse waves, respectively (Lager-
strom 1964).
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4.2.3 Separated Vortex and Vortical Wake

From the point of view of vorticity dynamics, a remarkable feature of the
Oseen approximation is that its solution permits a standing vortical bubble
(a vortex ring) behind the sphere. The two-term singular perturbation solution
of Proudman and Pearson (1957) gives the Stokes stream function in the
vicinity of the sphere of unit radius, satisfying the adherence condition:

ψ = ψ(0) + εψ(1)

=
1
4
(R− 1)2 sin2 θ

[(
1 +

3ε
8

)(
2 +

1
R

)
− 3ε

8

(
2 +

1
R

+
1
R2

)
cos θ

]
.

(4.68)

One sees that ψ = 0 not only on the sphere but also along the revolutionary
surface

cos θ =
(

8
3Re

+ 1
)

2R2 +R

2R2 +R+ 1
, (4.69)

which may enclose a ring-like separated vortex bubble. The downstream end
of the bubble is at

l =
1
4
(
√
1 + 3Re− 1). (4.70)

A real bubble exists when l > 1 or Re > 8. The bubble shape is shown in
Fig. 4.10, and its length vs. Re is shown in Fig. 4.11. Surprisingly, the agree-
ment with experiments persists up to Re = 60, far beyond the assumed effec-
tive range of (4.61).

For incompressible flow, the vorticity is solely created at the body surface
(Sect. 4.1.3), always with a precise rate as needed for the satisfaction of the
no-slip condition. But once generated and diffused into the flow, except a part
that diffuses to the front of the body, more vorticity is advected downstream
as well as diffusion, and hence accumulated in the rear part. The flow can
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From photograph by
Taneda (1956), Re=36.6

4
8

12 20
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Fig. 4.10. Separation bubble for small Reynolds-number flow over sphere. Repro-
duced from Van Dyke (1975)
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Fig. 4.11. Bubble length vs. Re for sphere flow. Reproduced from Van Dyke (1975)

no longer be completely attached as the accumulated vorticity reaches a sat-
uration level at a critical Reynolds number; then a vortex bubble starts to
appear at the rear stagnation point and grows as Re increases. The forma-
tion of the bubble represents a bifurcation of the Navier–Stokes solution from
attached flow to separated flow. This bifurcation process is known as flow sep-
aration and will be extensively studied in Chap. 5; but as the first quantitative
prototype, the present example deserves a further analysis.

The basic physics of flow separation can be made clear in terms of the
boundary vorticity ωB = ωBeφ and boundary vorticity flux σ = σeφ =
σp + σvis. From ω = −∇2ψ with ψ = (0, ψθ, 0) there is

−ω =
1
R2

∂

∂R

(
R2 ∂ψθ

∂R

)
+

1
R2 sin θ

∂

∂θ

(
sin θ

∂ψθ
∂θ

)
,

where ψθ = ψ/R. Then from (4.68) it follows that, in dimensionless form,

ωB = −3
2
sin2 θ

[
1 +

3ε
8

(
1− 4

3
cos θ

)]
, (4.71a)

σ = −3
ε
sin2 θ

[
1 +

3ε
8

(
1− 13

2
cos θ

)]
, (4.71b)

σp = − 3
2ε

sin2 θ
[
1 +

3ε
8
(1− 3 cos θ)

]
. (4.71c)

Thus, ωB, σ, and σp change sign at

cos θ1 =
3
4

(
1 +

8
3Re

)
, cos θ2 =

6
13

(
1 +

8
3Re

)
, cos θ3 =

1
3

(
1 +

8
3Re

)
,

(4.72)
respectively. While θ1 > 0 exists for Re > 8 as said before, θ2 and θ3 appear
for Re ≥ 16/7 and 4/3, respectively. These critical angles move upstream as
Re increases.

Unlike the Stokes approximation, now σp is slightly stronger than στ , im-
plying that the advection driven by pressure gradient cannot be completely
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balanced by diffusion. Since θ1 < θ2 < θ3, as one moves from the front stagna-
tion point (θ = π) to the rear stagnation point (θ = 0), the tangent pressure
gradient becomes adverse first at θ3 and then overcomes an opposite στ at
θ2 such that the vorticity of opposite sign starts to be created. This vorticity
weakens the existing boundary vorticity, and its continuous generation even-
tually forces ωB to vanish, where separation occurs, and then take opposite
sign in the separation bubble. In contrast, the Stokes approximation (4.60a)
indicates that no flow separation can occur.

The above order of θ1, θ2, and θ3 can be observed in many other situations.
For two-dimensional viscous flow over a flat plate along the x-direction, the
same order x1 > x2 > x3 for the sign change of σp, σ, and ωB holds as
the pressure gradient changes from favorable to adverse. Figure. 4.12 shows
schematically the velocity and vorticity profiles, and the x-variation of σ and
enstrophy flux η, for such a flow before and after separation. The sign change
of boundary vorticity ωB signifies the separation point, while the appearance
of vorticity sink (η < 0) warns that the separation may soon happen.

Velocity profile

Vorticity profile

Boundary vorticity flux

Boundary enstrophy flux

w

s

h

y

x

x

x

x

(a)

(b)

(c)

(d)

Fig. 4.12. Sketch of the profiles of velocity (a) and vorticity (b), and the variations
of the fluxes of vorticity (c) and enstrophy (d) on the wall, for a flat-plate flow in a
pressure gradient changing from favorable to adverse
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It is conceptually useful to divide the vorticity field created by a moving
body into two parts. One part is dragged along by or attaches to the body,
and the other detaches and shed into the wake. Of course the attached part
does not consist of the same set of fluid particles; it is a dynamic balance
between the continuous creation, diffusion, and downstream advection.5 Due
to the no-slip condition, the attached part is inevitable and sometimes useful;
the aerodynamic lift (Chap. 11) is a typical example. The detached part can
be very favorable (e.g., additional vortex lift on a slender wing or mixing
enhancement in a combustion chamber) or useless and even hazardous, and
once detached the vortices can hardly be controled. How to design a body
shape such that its motion can create exactly the desired attached or detached
vorticity field for one’s purpose, and how to further control it under wider
working conditions and to minimize its unfavorable effect, have been a major
challenge to applied fluid dynamics.

Now, for an observer located at |x|  1, the body is very small and only
causes a small disturbance to the uniform flow, independent of the Reynolds
number based on body size. Consequently, the Oseen approximation describes
the far-field asymptotic behavior of an incompressible viscous flow at any
Reynolds number. The larger the Re is, the narrower is the wake, see Fig. 5.4.1
of Batchelor (1967). This being the case, let us revisit the issue of the far-field
vorticity in steady flow over a body. As explained in Sect. 3.2.1, the steadiness
may hold at most to a finite downstream distance of the body, and so do
various estimates of steady far-field vorticity decaying rate. Further far down-
stream the flow is inherently unsteady and (3.18) still holds. The following
discussions should all be understood in this sense.

It can be shown that (e.g., Serrin (1959), Sect. 77) for any three-dimensional
viscous and steady incompressible flow at any Reynolds number, there is

|ω(x)| = O(|x|−n) as |x| → ∞, n ≤ 3.

This estimate is quite conservative because it does not take into consideration
of the fore-and-aft asymmetry of the vorticity field. The Stokes solution (4.57)
just corresponds to the case n = 2, but it is not effective for large |x|. The
Oseen solution (4.65) improves this estimate, indicating that only inside the
wake region there is |ω| = O(|x|−2), otherwise it decays exponentially. Then,
for a body experiencing only a drag, the velocity behavior in a far wake
can also be easily analyzed based on the Oseen approximation (4.61),6 e.g.,
Crabtree et al. (1963) and Batchelor (1967). In this far wake the direct effect
of the moving body disappears, and the vorticity is diffused laterally; but
the pressure has recovered approximately uniform as that outside the wake.
Consequently, in the Cartesian coordinate system with x along the freestream
direction, one has u = U + u′ with |u′| 
 U , so the acceleration in the

5 This vorticity balance for both steady and unsteady separated flows, either lam-
inar or turbulent, will be revisited in Sect. 10.6.3.

6 The wake associated with lift will be addressed in Chap. 11.
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x-direction is approximately U∂u/∂x. Hence, in dimensional form, (4.61) is
reduced to a diffusion equation for u:

U
∂u

∂x
= ν

(
∂2u

∂y2
+

∂2u

∂z2

)
. (4.73)

It will be seen in Sect. 4.3.1 that (4.73) is a linearized boundary-layer equation.
In other words, the boundary layer theory at large Re may also serve as the
far-wake theory at small Re. Now, under the boundary condition u → U as√
y2 + z2 →∞, the solution of (4.73) is

U − u =
QU

4πνx
exp

{
−U(x2 + y2)

4νx

}
, Q =

∫
W

(U − u) dS, (4.74)

where W is a wake plane perpendicular to the x-axis, which cuts through the
wake and extends to arbitrarily large distance in y, z directions. The form
of Q suggests that it must be related to the drag of the body, and hence
is independent of the x location of W . Indeed, since at far downstream the
pressure recovers to p∞ outside the wake, to the leading order (2.74) is reduced
to

D = ρU

∫
W

(U − u)dS = ρUQ > 0. (4.75)

Thus, in the wake there must be a velocity deficit, i.e., u′ = u−U < 0, which is
balanced by an entrainment of fluid into the wake. A more accurate near-wake
theory will be introduced in Chap. 11.

4.2.4 Regular Perturbation

It is worth digressing from vorticity dynamics to some observation on the per-
turbation methods for small-Re flow. Compared with (4.59), (4.67) does not
improve the agreement with experiments, see Fig. 4.14 below. Several higher-
order approximations have been obtained with more complicated expansions,
but still unable to significantly improve the drag prediction. Van Dyke (1975,
p. 234) points out that the basic reason for the very limited success of these
efforts lies in the use of singular perturbation method. Regular perturbations
may lead to agreement with experiments at Reynolds numbers considerably
larger than unity.

A significant progress on regular-perturbation solution for flow over sphere
has been made by Chen (1975), who seeks the analytical solutions of the
successive approximation of the Navier–Stokes equations

um−1 · ∇um−1 + U
∂um
∂x

= −1
ρ
∇pm + ν∇2um, m = 1, 2, . . . , (4.76)

with ∇ · um = 0 and u0 = 0. Thus, m = 1 is the Oseen solution, which is
solved by separation of variables. The solutions for m > 1 can in principle be
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obtained recursively without small-Re expansion. After very lengthy algebra,
for m = 2 Chen obtains a new formula for the drag coefficient of the sphere:

CD1 =
12
Re

4−Re2 − (2 +Re)2e−Re

1− 1
2Re

2 − (1 +Re)e−Re
, (4.77)

which for Re
 1 is reduced to

CD1 =
12
Re

(
1 +

3
8
Re− 19

320
Re2

)
+O(Re2), (4.78)

the same as that obtained by Lamb (1911) up to O(Re) (in bracket) and that
by Goldstein (1929) up to O(Re2), who calculated six terms of a series. Chen
(1975) has gone further to m = 3 by very tedious algebra (by hand), which
predicts

CD = CD1F (Re) +
41
160

Re2 e−Re, (4.79a)

F (Re) = 1 +
3
40

Re2
[
5Ei(−2Re)− 2Ei(−Re)−

319
60

e−Re
]

+
27
320

Re3[2Ei(−2Re) + Ei(Re)], (4.79b)

where CD1 is given by (4.77) and

Ei(−Re) =
∫ Re

∞

e−r

r
dr, Ei(−2Re) =

∫ Re

∞

e−2r

r
dr.

A comparison of this formula with experimental data shows excellent agree-
ment up to Re � 6 (or RD = 12), see Fig. 4.13.

For small Re, (4.79) is reduced to

CD =
12
Re

{
1 +

3
8
Re+

9
40

Re2
(
ln Re+ γ +

5
3
ln 2− 323

360

)
+

27
80

Re3 lnRe+ · · ·
}
, (4.80)

where γ = 0.5772... is the Euler constant, exactly the same as the prediction
of Chester and Breach (1969) by using the matched asymptotic method.

Chen (1983, 1989) has extended his successive approximation to small-Re
flow over circular and elliptic cylinders, respectively. The result for the former
agrees with experiment up to Re � 5, and an extremal case of the latter yields
the flat-plate solution.

In addition to the unified effectiveness in the flow domain, regular per-
turbation also permits using computer to expand a series to very high or-
ders. Van Dyke (1970) extends Gold’s (1929) series to Re23. A systematic
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Fig. 4.13. Drag coefficient of a sphere derived from (4.76) for m = 1 (dashed line)
and m = 3 (solid line), compared with the experiments of Maxworthy (1965, dots)
and Pruppacher and Steinberger (1968, circles). Reproduced from Chen (1975); also
Yan (2002)

“homotopy analysis method” (HAM) for obtaining the analytical solutions
of a class of nonlinear partial differential equations without small parame-
ter, by computer-aided series expansion, has been developed by Liao (1997,
1999a,b). The basic idea is to cast the original nonlinear problem to an infinite
sequence of linear subproblems of which the analytical solutions can be
found. Using this method, Liao (2002) has obtained the tenth-order analytical
approximation of the Navier–Stokes solution for flow over sphere at small Re.
The drag curve is shown in Fig. 4.14 for a few choices of an adjustable control
parameter h, compared with experiments and previous perturbation solutions.
The agreement is excellent for RD = 2Re < 30.

4.3 Vorticity Dynamics in Boundary Layers

Opposite to the Stokes and Oseen approximations, at large Reynolds numbers
the small parameter becomes ε = Re−1 
 1. The dimensionless incompress-
ible Navier–Stokes equation now reads

∂u

∂t
+ u · ∇u = −∇p− ε∇× ω. (4.81)

To the leading order we ignore the viscous force and obtain the Euler equation,
just like in the Stokes approximation we ignored the inertial force, so that a
large portion of the flow is effectively inviscid. But in regions near boundaries,
in particular near a solid wall, the no-slip condition implies that the viscous
force must be comparable to the inertial force and strong shearing process
must occur.
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Fig. 4.14. Comparison of the tenth-order HAM drag formulas for h = −1/3 (dash-
dot-dot line), −1/3 exp(−RD/30) (dash-dot line), and −(1 + RD/4)

−1 (dash line)
with previous theoretical results (solid lines) and experimental data (black squares).
RD is the Reynolds number based on diameter. From Liao (2002)

Effectively inviscid flow can well be vortical and highly unsteady with very
complicated patterns as will be exemplified in Sect. 7.4. In this introductory
section we consider only the simplest cases in which the flow is fully attached,
such that a one-to-one correspondence between Euler solution (ε = 0) and
viscous solution (ε 
 1) exists, and the vorticity is confined in a thin layer
adjacent to the wall. Namely, we come to the boundary layer theory established
by Prandtl (1904) in his seminal paper. As the most successful and typical
approximate theory at large Reynolds numbers, the boundary layer theory
on a solid wall, both two- and three-dimensional, steady or unsteady, has
been well documented in all books on viscous flows (e.g., Schlichting 1978;
Rosenhead 1963). Our focus here is the behavior of the vorticity field in a
boundary layer, illustrated by a two-dimensional wall boundary layer and the
less familiar free-surface boundary layer.

4.3.1 Vorticity and Lamb Vector in Solid-Wall Boundary Layer

Consider a two-dimensional steady incompressible flow u over a semiinfinite
solid wall located at y = 0, x ≥ 0, where x is the coordinate along the wall
and y along the normal. For y ≥ 0 the dimensionless component form of (4.81)
and continuity equation reads
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u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ε

(
∂2u

∂x2
+

∂2u

∂y2

)
, (4.82a)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ε

(
∂2v

∂x2
+

∂2v

∂y2

)
, (4.82b)

∂u

∂x
+

∂v

∂y
= 0. (4.82c)

We first briefly review the derivation of boundary-layer equations.
The Euler solution (denoted by suffix e) by setting ε = 0 is simply a

potential flow ue, having a Bernoulli integral. At y = 0 the integral reads

pe(x) +
1
2
u2e(x) = p∞ +

1
2
q2∞, (4.83)

where ue(x) is the slip velocity as only an outer solution. Once again we need
to match it with an inner solution, which by nature must be viscous and
form a smooth transition from u = 0 on the wall to ue within a thin layer
of thickness O(δ) = O(δ(ε)) 
 1. Inside the layer the y-variation of the flow
must be much stronger than its x-variation. In order to estimate the order
of magnitude of each term in (4.82) so that all retained terms are of O(1),
we rescale the inner independent variables as (X,Y ) = (x, y/δ(ε)), such that
limε→0 δ(ε) = 0 and X,Y = O(1). Then (4.82c) becomes

∂u

∂X
+ δ−1 ∂v

∂Y
= 0,

which requires rescaling (U, V ) = (u, δ−1v) = O(1). On the other hand, from
(4.82a) the balance of inertial and viscous terms requires

δ = ε1/2, (4.84)

i.e., the boundary-layer thickness is of O(Re−1/2). If the wall curvature radius
is much larger than δ, the rescaled boundary-layer equations follow:

U
∂U

∂X
+ V

∂U

∂Y
= − ∂p

∂X
+

∂2U

∂Y 2
+O(ε), (4.85a)

∂p

∂Y
= O(ε), (4.85b)

∂U

∂X
+

∂V

∂Y
= 0. (4.85c)

While the continuity equation is exactly satisfied as it always should, the
momentum equation is greatly simplified. First, (4.85b) implies p = pe(X)
across the layer, so that in (4.85a) one can replace ∂p/∂X by the known
dpe/dX = −ue(x)u′

e(x) at the outer edge of the layer. Second, (4.85a) degen-
erates from an elliptic equation to a parabolic one, which is the only equation
to be solved.
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Many exact or approximate solutions of (4.85a) have been investigated.
The simplest one has ue = Uex and dpe/dX = 0. As is well known, in terms
of similarity variable η = Y/

√
X, 0 ≤ η < ∞, this boundary layer can be

solved for the stream function ψ(X,Y ) =
√
Xf(η), which casts (4.85a) to the

nonlinear Blasius equation for f :

f ′′′ +
1
2
ff ′′ = 0, (4.86a)

which should be solved under boundary conditions

f(0) = f ′(0) = 0, f(∞) = 1, (4.86b)

but there is no closed-form solution. Blasius (1908) presented a series solution

f(η) =
∞∑
k=0

(
−1
2

)k
Akσ

k+1

(3k + 2)!
η3k+2, (4.87)

where A0 = A1 = 1 and A2, ... can be found recursively; but unfortunately
σ ≡ f ′′(0) cannot be determined by the series, which measures the skin fric-
tion. Besides, the convergence range of (4.87) is restricted to η < 5.69. Hence,
numerical method has to be used, and the computed velocity and vorticity
profiles are shown in Fig. 4.15.

Here again, Liao’s homology analysis method (Sect. 4.2.4) has led to an
explicit and totally analytic series solution (Liao 1999a,b). What he obtained
is a modification of (4.87):

f(η) = lim
m→∞

m∑
k=0

[(
−1
2

)k
Akσ

k+1

(3k + 2)!
η3k+2

]
Φm,k(h), (4.88)

where h ∈ (−2, 0) is a parameter and Φm,k(h) are well-defined power series of
h. It can be shown that (4.88) converges in the whole η ∈ [0,∞) when h→ 0.

y

U

W

-0.4 0.20.0 0.4 0.6 0.8 1.0-0.2

Fig. 4.15. Velocity and vorticity in Blasius boundary layer
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As a result, Liao used computer-extended series to obtain the approximate
analytical solutions up to the 35th order, with averaged error of 1.6 × 10−4

compared to the numerical solution. The value of f ′′(0) = 0.33206 was also
analytically obtained.

Having reviewed the basis of the boundary-layer theory near a solid wall,
we now turn to the vorticity dynamics in such a boundary layer, which is
nothing but an attached vortex layer (recall the remark of Lighthill (1963)
quoted in Sect. 1.2). We start from the vorticity definition ω = ∇× u, which
now reads

ω =
∂v

∂x
− ∂u

∂y
= δ

∂V

∂X
− 1

δ

∂U

∂Y
= O(Re1/2). (4.89)

To obtain the rescaled vorticity of O(1), we set

Ω = δω = −∂U

∂Y
+O(ε), (4.90)

so U is simply the y-integral of Ω. By (4.85c) and (4.90) as well as the adher-
ence condition, there is

U(X,Y ) = −
∫ Y

0

Ω(X,Y ′) dY ′, (4.91a)

V (X,Y ) =
∂

∂X

∫ Y

0

dY ′
∫ Y ′

0

Ω(X,Y ′′) dY ′′, (4.91b)

which is a simplification of the Biot–Savart formula (3.29). Note that according
to the asymptotic matching principle

lim
y→0

ue(x, y) = lim
Y→∞

U(X,Y ), ε→ 0,

there must be
ue(x) = −

∫ ∞

0

Ω (X,Y ′) dY ′. (4.92)

By (4.90), the boundary-layer vorticity equation simply follows from the
Y -derivative of (4.85a) along with using (4.85b,c):

U
∂Ω

∂X
+ V

∂Ω

∂Y
=

∂2Ω

∂Y 2
+O(ε). (4.93)

The kinematic boundary condition for solving Ω is (4.92), which is of integral
type as expected. But, applying (4.85a) to the wall yields a local dynamic
condition

−∂Ω
∂Y

=
∂pe
∂X

= −ue(X)
∂ue(X)
∂X

at Y = 0, (4.94)

which is precisely the boundary vorticity flux σ. Note that the boundary-layer
equations are effective only if x  δ. This excludes the leading edge of the
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wall where there is a singularity. In particular, for the Blasius solution, the
boundary vorticity flux is zero for all x  δ, implying no new vorticity is
produced therefrom. Actually, as the flat plate starts moving at zero tangent
pressure gradient, the vorticity in the transient boundary layer is created
solely by σa defined in (4.24a) and illustrated by (4.34). But once the starting
process is over and a steady boundary layer is established, the entire new
vorticity in a Blasius boundary layer is exclusively created from the region near
the leading edge, which is continuously advected downstream. Equation (4.94)
ensures the acceleration adherence on the wall and can replace (4.92), provided
that the no-slip condition is imposed at an upstream point, see Sect. 2.2.4.

Moreover, the boundary enstrophy flux defined by (4.20) and its dissipa-
tion rate defined by (4.21) are very strong:

η = Re1/2
∂

∂Y

(
1
2
Ω2

)
, Φω = Re

(
∂Ω

∂Y

)2

. (4.95a,b)

In contrast, the kinetic-energy dissipation rate is Φ ∼ νω2 = O(1).
Owing to the simplified local relation (4.90), solving the boundary-layer

flow from (4.93) is operationally redundant. However, the physical purpose
of solving the vorticity equation is to separate the shearing process from the
momentum balance and focus on it; and this can also be achieved by project-
ing the momentum equation onto the solenoidal and curl-free spaces without
raising the order of equations, see Sect. 2.3.1. Thus, we now consider this pro-
jection in the boundary-layer approximation. The special feature is that the
decomposition can be made locally and analytically.7

The key quantity to be decomposed is the Lamb vector l ≡ ω × u. We
start from its kinematic Helmholtz–Hodge decomposition l = l‖ + l⊥, such
that

l‖ = ∇φ, l⊥ = ∇×ψ, l⊥y = 0 at y = 0.

Since ψ = ezψ (here ψ is not the stream function), there is

l = ex

(
∂φ

∂x
+

∂ψ

∂y

)
+ ey

(
∂φ

∂y
− ∂ψ

∂x

)
= −exωv + eyωu,

which in boundary-layer scales gives, by (4.90),

lx =
∂φ

∂X
+

1
δ

∂ψ

∂Y
= V

∂U

∂Y
+O(δ2),

ly =
1
δ

∂φ

∂Y
− ∂ψ

∂X
= −1

δ
U
∂U

∂Y
+O(δ).

7 This was first observed by S. Malhotra (1997, private communication). Any flows
with scale separation along different directions, not necessarily boundary layers,
can be similarly decomposed locally. Examples include free vortex layers and thin
vortex filaments at large Reynolds numbers.



4.3 Vorticity Dynamics in Boundary Layers 167

Thus, the term balance requires rescaling ψ = δΨ and (lx, ly) = (LX , δ−1LY ),
such that

LX =
∂φ

∂X
+

∂Ψ

∂Y
= V

∂U

∂Y
+O(δ2), (4.96a)

LY =
∂φ

∂Y
= −U ∂U

∂Y
+O(δ2). (4.96b)

From (4.96b) we obtain

φ = −1
2
U2 + C(X) +O(δ2);

hence
L‖X =

∂φ

∂X
= −U ∂U

∂X
+ C ′(X) +O(δ2), (4.97)

and L‖Y = O(δ2). Since L = 0 at the outer edge of the boundary layer, in
(4.97) there must be C ′(X) = ue(X)u′

e(X). Then, subtracting (4.97) from
(4.96a) yields

L⊥X = U
∂U

∂X
+ V

∂U

∂Y
+

∂pe
∂X

+O(δ2) (4.98)

and L⊥Y = O(δ2), indicating that L⊥ is indeed parallel to the wall.
We now introduce dynamics. Splitting the steady version of (4.81) into

transverse and longitudinal parts gives

l⊥ = ε∇2u, l‖ = −∇
(
p∞ +

1
2
q2∞

)
, (4.99)

which is already a Helmholtz–Hodge decomposition for the Blasius boundary
layer with σ = 0. After rescaling, (4.99) reads

L⊥X =
∂2U

∂Y 2
+O(δ2), (4.100a)

L‖X = − ∂

∂X

(
1
2
U2 + pe

)
+O(δ2). (4.100b)

Therefore, equating (4.98) and (4.100a) recovers (4.85a), while equating (4.97)
and (4.100b) recovers the Bernoulli integral (4.83) outside the layer. Note that
although generically L = 0 at Y = 0, this is not so for L⊥ and L‖ unless
σ = 0. Indeed, (4.100a) indicates that

L⊥X = −∂Ω
∂Y

or ey × l⊥ = −ezε
∂ω

∂y
at Y = 0, (4.101)

which is the boundary vorticity flux.
The preceding analysis shows that the boundary layer equation is already

only the transverse part of the momentum balance, and the longitudinal part
degenerates to the Bernoulli integral outside the layer. In other words, opposite
to the close viscous boundary coupling between the shearing and compress-
ing processes at small Re, the two processes are approximately decoupled for
attached flow at large Re.
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4.3.2 Vorticity Dynamics in Free-Surface Boundary Layer

If on an air–water interface the effect of the air motion on the water is
negligible but only imposes a constant pressure on the surface, one obtains
a free surface.8 The free-surface motion has long been studied within the
potential flow theory, in which one imposes the kinematic boundary condition
(2.66) and normal dynamic condition (2.68a). The prediction of potential the-
ory agrees well with experiment for long waves (e.g., Stoker (1958); Wehausen
and Laitone (1960)). However, a free surface also has a boundary layer in
which the flow is rotational and the shearing process is active; the difference
from solid-wall boundary layer is that the former is strong only for short
waves. In this case the water viscosity has to be retained and the Reynolds
number is again very large. Our interest is the special physical features of the
vorticity in a free-surface boundary layer and where they come from.

Let S be a free surface. We use a reference velocity U∗ (say, a mean velocity
of S) and a characteristic wave length L to nondimensionalize the equations,
in which three parameters are involved: the Reynolds number Re, the Weber
number We, and the Froude number Fr:

We =
T

ρU∗2L
, Fr−1 ≡ g∗ =

gL

U∗2 , (4.102)

which measure the relative importance of surface tensor T (assumed a con-
stant) and gravitational force compared to the inertial force, respectively. We
first show that on a curved S there must be a distributed vorticity. This is a
direct result of the stress continuity condition (2.68) and the triple decompo-
sition (2.147) on S. In dimensionless form, this gives

p+Weκ+ n · ts = 0, n× (εω × n+ ts) = 0, (4.103a,b)

where κ = −∇π · n is twice of the mean curvature of S, and ts the surface-
deformation stress. The suffix π denotes tangent components, and the constant
air pressure has been set zero. Let U = Uπ + nUn be the velocity of S and
use (2.150), (2.151), and (2.137), from (4.103a,b) it follows that (Wu 1995;
Longuet-Higgins 1998)

p = −Weκ− 2ε∇π ·U , (4.104a)
ωπ = −2n× (∇πUn +U ·K). (4.104b)

These are the primary dynamic boundary conditions for a viscous free-surface
problem, which is a typical situation where all three processes in (2.147) enter
into the play and are coupled. Along the normal direction the water pressure
8 This does not mean that the air motion itself is weak. From the tangent-stress
continuity (Sect. 4.5) on a flat air–water interface with uniform velocity, one may
find that the vorticity in the air is 56 times stronger than that in the water. But
this does not conflict the neglect of its influence on water motion.
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p is balanced by the surface mean curvature through the surface tension,
plus a very weak correction due to the viscous resistance to the change of
surface area. In contrast, the change of surface shape (and hence the change
of n) is solely balanced by a tangent boundary vorticity, which is twice of the
angular velocity of n. It should be stressed that although (4.104b) does not
contain viscosity, it holds for viscous flow only. The normal vorticity, if any,
remains continuous due to no-slip, and is not involved in the stress continuity
condition.

In two dimensions with U = (Us, Un) (4.104b) is reduced to

ω = 2
(
∂Un

∂s
+ Usκ

)
. (4.105)

If in addition S is stationary, there must be Un = 0; so one simply has

ω = 2Uκ, (4.106)

found by Longuet-Higgins (1953).
It is now clear that as long as S is curved and in motion, adjacent to

it there must be a boundary layer. If U and κ are both of O(1) then so is
ωπ, weaker than the vorticity in wall boundary layer by a factor of O(ε1/2).
Moreover, unlike the solid boundary ∂B where the boundary vorticity can be
known only after the boundary-layer equation is solved, now ωπ is completely
determined by the surface shape and motion, which to the leading order can
be obtained by inviscid theory.9 These differences from a solid-wall boundary
layer are due to the arbitrary-deformation ability of free surface, which makes
it possible to achieve a dynamic balance on S mainly within inviscid and
irrotational interactions. This key character can be further observed from the
free-surface boundary layer equation, as derived in the follows.

In the incompressible version of the Navier–Stokes equation (2.134), the
effect of gravity can be absorbed to a modified pressure or enthalpy h̃ = p+g∗z,
so

a = −∇h̃− ε∇× ω, ∇ · u = 0. (4.107)

As we did for solid-wall boundary layer, the outer solution is inviscid, of which
the quantities are denoted by suffix 0. We have seen that ωπ is a viscous
product but ωn is not. Thus in general we allow the inviscid outer solution
has a normal vorticity ω0n, which happens, e.g., when a strong vertical vortex
appears in the sea. Now, set

U = U0 + u′ = U0 +∇×A,

∇ ·A = 0, ω′ = ∇× u′ = −∇2A, (4.108)
h̃ = h̃0 + he

where he is an excess enthalpy. Then the inviscid and irrotational solution u0

is self-balanced on S:
9 The boundary vorticity flux on S is still the measure of vorticity creation rate.
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D0U0

Dt
= −∇h̃0, h̃0 = −Wκ+ g∗z on S, (4.109)

where D0/Dt = ∂/∂t+U0 · ∇. It is in this self-balance of inviscid solution on
S where lies the very root of the difference between a free-surface boundary
layer and its solid-wall counterpart. It explains why the former is weak, and
indicates that the viscous perturbation is regular, being only a correction to
the inviscid solution.

The governing equation for a three-dimensional free-surface boundary
layer, in terms of the vector potential A, was derived by Lundgren (1989).
Denote δ = ε1/2 as the boundary layer thickness. When κ 
 δ−1, an order-
of-magnitude analysis shows that

u′
π = O(δ), u′

n = O(δ2),
Aπ = O(δ2), An = O(δ3),
ω′
π = O(1), ω′

n = O(δ).

Then it is easily shown that the boundary-layer equation can be linearized,
yielding

D0A

Dt
−Aπ · ∇πU0 − 2Aπ∇π ·U0 + ω0nn×A = ε

∂2Aπ
∂n2

+O(δ3). (4.110)

This is a homogeneous equation and has nontrivial solution only if there
exists a forcing mechanism provided by the free-surface condition following
from (4.104b):

∂2Aπ
∂n2

= −ω′
π = 2n× (∇πU0n +U0π ·K0) +O(δ) on S, (4.111)

where we recall that the right-hand side comes from n × ts. Therefore, the
free-surface boundary layer is driven by the leading-order surface-deformation
stress .

Moreover, the excess enthalpy he is found to be

he = −ω′
π ·Aπ +O(δ3) on S,

which is only an O(ε) correction to the surface shape. Finally, up to O(δ), the
boundary vorticity flux is given by

σπ = n×
(
D0u

′

Dt
+ u′

π · ∇πU0

)
+O(ε), (4.112)

indicating that the leading-order source of vorticity on a free-surface is the
viscous correction of the surface acceleration.

A simple example of free-surface boundary layer is viscous two-dimensional
linear water wave sketched in Fig. 4.16. The problem was solved by Lamb
(1932, Sect. 349) for a freely decaying wave, to which we impose an applied
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Fig. 4.16. A water wave

stress to maintain a constant amplitude. Lundgren (1989) has shown that this
solution satisfies (4.111) and extended it to three-dimensional flow.

Assume the free-surface elevation is

y = f(x, t) = a cos(kx− γt), γ2 = gk + T ′k3, ak =
2πa
λ

 1,

where T ′ = T/ρ. The Cartesian components of the potential velocity are

u = aγ eky cos(kx− γt), v = aγ eky sin(kx− γt), y ≤ 0.

In this problem (4.111) is reduced to a linear equation for the scalar stream
function, and the inviscid potential flow satisfies the Bernoulli equation. The
resulting linearized vorticity solution is

ω � 2akγ eβy cos{kx− (γt+ βy)} = O(k), (4.113)

where β ≡ (γ/2ν)1/2. The boundary vorticity flux and enstrophy flux are

σ � ν
∂ω

∂y

∣∣∣∣
y=0

= 2akν1/2γ3/2 sin
(
kx− γt+

π

4

)
= O(kν1/2), (4.114)

η � a2k2ν1/2γ5/2
{√

2 + 2 sin
[
2(kx− γt) +

π

4

]}
= O(k2ν1/2). (4.115)

Like (4.50), η has a nonzero positive average, showing that the overall enstro-
phy in a forced water wave is increasing.

If the wavelength is small or k is large, the Froude number will be large, so
by (4.113) there will be a nonnegligible vorticity in a thin boundary layer. The
gravity-capillary wave belongs to this case, of which the vortical structures
have been observed by many experimental and numerical studies (e.g., Lin
and Rockwell 1995; Dommermuth and Mui 1995). Figure 4.17 shows a direct
numerical simulation (DNS) of the surface vorticity ω on a two-dimensional
unsteady near-breaking gravity capillary wave. The Reynolds number based
on wavelength (5 cm) is of O(104). The figure also shows the error of the DNS
result compared with the prediction of (4.105). It is remarkable that, although
in general on a free surface ωπ = O(1), in gravity-capillary waves its peak
value can be as large as O(Re1/2), like the solid-wall case but confined to very
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Fig. 4.17. Instantaneous surface vorticity for a two-dimensional unsteady near-
breaking gravity-capillary wave, computed by DNS with a grid of 16, 384 × 4, 097
along the length and depth of the wave. The dotted line is 10 times the difference
of the DNS result and (4.105). From Dommermuth and Mui (1995)

narrow regions of troughs. This is a sign that the traditional potential wave
theory is insufficient for capturing the detailed structure of stiff short waves,
since the created strong vorticity must reversely affect the surface motion.

Note that in the example of Fig. 4.17 the boundary-layer thickness is about
1mm, but the required grid is extremely dense. Provided no boundary-layer
separation occurs, such a thin layer can well be approximated by a vortex
sheet, see Sect. 4.4. The distributed vorticity in the interior of the fluid and
the free vortex sheet representing the free surface may coexist in the same
theory. In this case a general result is worth noticing: the total vorticity is
conserved if the vorticity contained in the sheet is included (Lundgren and
Koumoutsakos 1999). Namely, there is∫

V

ω dV +
∫
S

γ dS = 0 for n = 3, (4.116a)

d
dt

∫
V

ω dV +
d
dt

∫
S

γ dS = 0 for n = 2, (4.116b)

which are the extension of (3.15) and (3.16), respectively. Therefore, if some
vorticity moves out of V and appears to be lost, then it is really gained by
the vortex sheet.

4.4 Vortex Sheet Dynamics

We now proceed from the boundary-layer approximation at Re  1 to the
asymptotic state of a viscous fluid as Re → ∞, which was called the Euler
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limit of viscous flow in Sect. 2.2.5.10 Due to (4.84), in this asymptotic state a
wall boundary layer becomes an attached vortex sheet, while on an interface
there is an interfacial vortex sheet. When the attached vortex sheet leaves the
body which generates it, the wake is also sheet-like. The vorticity is confined
in the sheets as a Dirac delta function. This state exists even if after taking
Re → ∞ the limit t → ∞ is then taken. Being the asymptotic theory of
shearing process, the vortex sheet dynamics has an important place in vorticity
and vortex dynamics.

If the order of the earlier double-limit procedure is reversed, however, the
situation can be different. At a large but finite Re, a closed flow bounded by
thin vortex layers will be fulfilled by the vorticity via diffusion as t→∞, and
then taking Re→∞ only makes the distributed vorticity obey a simpler law,
see Sect. 7.2. Similarly, a thin vortex layer may roll many turns to form a tight
spiral (Sect. 4.4.3), in which the diffusion will eventually smear out the layer
structure so that the spiral becomes a concentrated vortex with disturbuted
vorticity in its core (Chap. 6–8).

4.4.1 Basic Properties

We start from the basic jump conditions (2.81a) and (2.81b) and allow [[ρ]] �= 0
as in density-stratified or interface flow for generality. As said in the context
of (2.81), to distinguish a vortex sheet S from a shock we require the mass
flux across S be zero. Thus

n · [[u]] = 0, [[u]] = u1 − u2, (4.117)

i.e., [[u]] must be along a tangent direction. We use the convention that the
unit normal vector n is pointing from side 2 to side 1 of S. Then the sheet
strength γ and velocity jump [[u]] are related by (Fig. 4.18)

γ = n× [[u]], [[u]] = γ × n. (4.118a,b)

Let uγ(x, t) be the velocity of the vortex sheet itself. Since [[uγ ]] = 0,
(4.117) can be rewritten

[[un − uγn]] = 0. (4.119)

We now impose the mass conservation condition (2.81a) and momentum bal-
ance (2.81b). By identity (2.82a) and using (4.119), it follows that

[[ρ]](un − uγn) = 0, (4.120)
[[ρu]](un − uγn) = −[[p]]n, (4.121)

10 As stressed there, this asymptotic state should not be identified as an ideal fluid
flow governed by the Euler equation and permitting slip velocity at boundaries.
But, except within very thin sheets the flow is irrotational and indeed satisfies
the Euler equation.
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Fig. 4.18. A vortex sheet

where the overline denotes averaged value. Therefore, if [[ρ]] = 0 so that [[ρu]] =
ρ[[u]], the left-hand side of (4.121) will have vanishing normal component and
hence so must the right-hand side, implying

[[p]] = 0, (4.122)

i.e., unless there is a surface tension, a free vortex sheet cannot stand any
pressure jump. Then (4.121) yields

uγ · n =
1
2
(u1 + u2) · n = ū · n. (4.123)

Alternatively, if [[ρ]] �= 0 but the surface tension is zero (this happens if the
flow is density-stratified but the stratification is concentrated in a thin layer
that can be approximated by a singular surface), from (4.120) we still obtain
(4.123), which by (4.121) implies (4.122). Hence, the two basic features of a
vortex sheet, (4.122) and (4.123), are quite general.

There remains the determination of the tangent velocity of the sheet, which
is meaningful only when the sheet is a material surface as we identified in
Sect. 2.2.5. Denote v = uγ −u such that by (4.123) v is a tangent vector. Wu
(1995) has proved that if and only if ωn ≡ 0 all over the sheet then v = 0, so
we simply have

uγ = ū if ωn = 0. (4.124)

This result applies to any two-dimensional vortex sheet. But more generally
v satisfies a tangential vector equation:

n×∇(v · [[u]]) = ωn[[u]], (4.125)

which can be solved for the two components of v along the directions of γ
and [[u]]. This may happen in some three-dimensional flows.

Suppose now S is an interface of two different fluids with surface tension T
or a very thin solid surface (e.g., a thin wing with negligible thickness known
as lifting surface) with velocity us, and on each side of S there is an attached
vortex sheet of strengths γ1 and γ2, forming a sandwich structure. Then

γ1 = n× (u1 − us), γ2 = n× (us − u2). (4.126)
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This sandwich structure is often modeled by a single net vortex sheet inside
S with strength γ = γ1 + γ2. If S is a lifting surface, the net vortex sheet
is conventionally called a bound vortex sheet . We use the same name for the
net vortex sheet in an interface. In both cases a bound vortex sheet is no
longer free, because across it there can be a pressure jump [[p]], which is either
balanced by T on an interface or provides a normal force to a lifting surface.
Note that a bound vortex sheet by no means simply sticks to S; rather, as
the net effect of γ1 and γ2 it is continuously produced from S to update itself
and advected downstream, becoming a free vortex sheet. Therefore, a bound
vortex sheet also has a velocity uγ . But since now (4.122) is invalid, so is
(4.123); thus, this uγ has to be defined. When ωn = 0, a consistent choice is
to still set uγ = ū. Note that by (4.118a) there is

us − ū =
1
2
n× (γ1 − γ2), (4.127)

indicating that generically a bound sheet does not move with S.
In the rest of this subsection we assume the flow is incompressible and away

from vortex sheets the flow is irrotational with velocity potential φ(x, t). Let
P be a point on S, and take a curve C to connect P+ and P−. If the sheet
has an edge, the curve can be made go across S only once, see Fig. 4.19. Then
the circulation along C is∮

C

∇φ · dx =
∮
C

dφ = [[φP ]] ≡ Γ. (4.128)

Unlike the circulation along a generic loop, now this Γ is a point function
independent of the shape of C so that we can consider DΓ/Dt. This [[φ]] or
Γ is nothing but the strength of doublet or dipole distributed on S. Then by
(4.118b) there is

γ = n×∇π[[φ]] = n×∇πΓ, ∇πΓ = γ × n. (4.129a,b)

Moreover, we define the vortex-sheet Lamb vector

lγ ≡ γ × ū. (4.130)

P+

P-

S

C

Fig. 4.19. A loop across the vortex sheet once
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Set ū = ūπ + unn, by (4.129) and noticing that ∇Γ = ∇πΓ since ∂Γ/∂n =
[[un]] = 0, it follows that

n(lγ · n) = γ × ūπ = −n(ūπ · ∇Γ ), (4.131a)
n× (lγ × n) = γ × unn = un∇πΓ. (4.131b)

Thus, the normal and tangent components of lγ are from the tangent and
normal components of ū, respectively.

Now, we further assume that the potential flows at both sides of a vortex
sheet come from the same upstream flow.11. Then, applying the Bernoulli
equation (2.177) to both sides of a bound or free vortex sheet and taking the
jump, one has

ρ

(
∂Γ

∂t
+

1
2
[[q2]]

)
=
{
−[[p]] for bound sheet,

0 for free sheet, (4.132a)

where

1
2
[[q2]] =

1
2
(u+ + u−) · (u+ − u−) = ū · [[u]]

= ū · ∇πΓ = −n · (γ × ūπ) (4.132b)

due to (4.131a). Therefore, one finds

ρ

[
∂Γ

∂t
− n · (γ × ūπ)

]
= ρ

DΓ
Dt

=
{
−[[p]] for bound sheet,

0 for free sheet. (4.133)

This equation contains rich information. First, for free vortex sheet it con-
firms that Γ = [[φ]] is Lagrangian invariant as asserted by Kelvin’s circulation
theorem. Second, if the flow is steady, then there must be un = 0 and hence
lγ can only has normal component; but (4.133) implies that if the sheet is
free this component must vanish. Therefore, the Lamb vector of a steady free
vortex sheet must vanish, or γ and ū must be aligned (cf. Lighthill 1986b,
p. 204). In contrast, when the flow is unsteady, by (4.131a) and (4.133) one
has

γ × ūπ = n
∂Γ

∂t
. (4.134)

Thirdly, since dynamics enters (4.133) via the Bernoulli equation, a close
relation between the pressure jump across a thin wing and the behavior of
bound and free vortex sheet is established. This is the very basis of the lifting-
surface theory in classic aerodynamics, see Chap. 11.

Before closing this subsection, let us consider some vorticity integrals over
the entire sheet S. In this case using (4.129) to express γ by n × ∇Γ is
convenient as it permits useful transformations by the Stokes theorem. The
simplest example is
11 Thus, the vortex sheets considered here cannot be a free surface or the boundary

of a closed separated bubble. For the latter case see Sect. 7.2
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S

γ dS =
∫
S

n×∇Γ dS =
∮
∂S

Γ dx = 0 (4.135)

because Γ must vanish at the sheet boundary. In three dimensions (4.135)
is a simplified version of the Föppl vorticity conservation theorem, indicating
that the vector field γ must form closed loops on S.

Next, the integrals of the vector moments of γ are the vortical impulse
and angular impulse of a vortex sheet, which by (3.78) and (3.79) read

I =
1

n− 1

∫
S

x× (n×∇Γ )dS, L = −1
2

∫
S

x2n×∇Γ dS.

An integration by parts, see formulas in Sect. A.2, casts each of these integrals
to a boundary integral plus a surface integral. The former vanishes since Γ = 0
along ∂S; so we have a pair of neat formulas

I = −
∫
S

ΓndS = −
∫
S

[[φ]]ndS, (4.136)

L = −
∫
S

Γx× ndS = −
∫
S

[[φ]]x× ndS, (4.137)

which by (2.177) and (2.178) are precisely the jumps of potential impulse
and angular impulse, respectively (the sign depends on the definition of the
direction of n).

The rate of change of I is

dI
dt

= −
∫
S

DΓ
Dt

ndS −
∫
S

Γ
D
Dt

(ndS).

Here, by (4.133), DΓ/Dt �= 0 only if S contains a bound vortex sheet of area
Sb, say; and the rate of change of ndS is given by (2.29) with u = ū now.
But

−Γ (n×∇)× ū = −(n×∇)× (Γ ū) + (n×∇Γ )× ū,

of which the integral is (again a line integral vanishes)

−
∫
S

Γ (n×∇)× ūdS =
∫
S

γ × ū dS =
∫
S

lγ dS.

If all vorticity is in S, by (3.72) the Lamb-vector integral vanishes. A similar
transformation can be made for (4.137), leading to an integral of x×nDΓ/Dt
over Sb and an integral of x× lγ that also vanishes. But, these Lamb-vector
integrals will be nonzero if ū contains a possible potential velocity ue induced
by other vortex systems. Thus, the final result is

dI
dt

=
∫
S

ue × γ dS +
1
ρ

∫
Sb

[[pγ ]]ndS, (4.138)

dL
dt

=
∫
S

x× (ue × γ)dS +
1
ρ

∫
Sb

[[pγ ]]x× ndS, (4.139)
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where the suffix γ stresses that this pressure jump is caused by circulatory
vortex sheets. These formulas are the Euler-limit form of (3.118) and (3.119),
applied to an isolated vortex-sheet system.

4.4.2 Kutta Condition

In a viscous flow the velocity field is automatically free from singularity. But
in the Euler limit the regularity has to be imposed, known as the Kutta
condition: The flow cannot turn around any corner with a nonzero velocity.
The condition is necessary for determining not only the strength of a bound
vortex sheet but also the initial strength and orientation of a free vortex sheet
as it just leaves the body. In other words, it determines how an attached
vortex sheet becomes a free vortex sheet due to separation.

Assume a free vortex sheet γ leaves the body surface along a separation
line L thereon, which can be a sharp edge or on a smooth surface due to
early separation. Let e1 be the unit tangent vector along L, and e2 be the
unit vector tangent to the body surface and orthogonal to e1, such that u± =
u±
1 e1+u±

2 e2, see Fig. 4.20a. We examine how the Kutta condition determines
the initial behavior of the free vortex sheet.

First, if the sheet leaves the wall not in a tangential direction, then the
Kutta condition implies that there must be u±

2 = 0 and hence the flow can
only be along the ±e1-directions. If the flow is steady, by (4.132) there must
be [[q2]] = 0 or u+ = ±u−. If u+ = u−, we have [[u]] = 0, implying no vortex
sheet at all; while if u+ = −u−, we have ū = 0 and hence even a vortex
sheet exists it cannot shed off from the body. Thus, a steady vortex sheet can
leave the body surface only along the tangential direction (e.g., Smith (1984)).
Then, for unsteady flow with u+ �= u−, we will have ū = u1e1, which however
is along L and still cannot send any vortex sheet into the flow. Therefore, in
any case, a free vortex sheet must leave a solid body tangentially.

To put this conclusion in mathematic form, let u− be on the inner side,
so that u− = u−

1 e1 but u+ = u+1 e1 + u+2 e2. Thus,

[[u]] = (u+1 − u−
1 )e1 + u+2 e2,

ū =
1
2
[(u+1 + u−

1 )e1 + u+2 e2].
(4.140)

+ +-
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S
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S
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Fig. 4.20. Vortex sheet separating from a smooth surface. (a) Three dimensional
flow; (b, c) two-dimensional flow
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Then, let n = e2 × e1 point from the − side to the + side, we also have

γ = u+2 e1 + (u−
1 − u+1 )e2, (4.141a)

q+2 = u+2
1 + u+2

2 = u−2
2 − 2

∂Γ

∂t
. (4.141b)

Therefore, given L, u1, and ∂Γ/∂t, the initial free vortex is completely deter-
mined.

In two dimensions (Fig. 4.20b,c) there is no velocity component along the
e1 direction. Hence, for steady flow u+ = ±u− = ±u2e2, and by the same
reasoning, if all streamlines are from the same upstream flow, then no steady
vortex sheet can shed off from a two-dimensional body. This result permits an
attached vortex bubble as a portion of the body, which is also enclosed by a
vortex sheet. The reattachment point can be on the wall (Fig. 4.20b) or in the
wake (Fig. 4.20c). But inside the bubble the flow is not from infinity and has
lower total pressure or a smaller Bernoulli constant. Moreover, with minor
modification of the argument, it can be shown that the bubble sheet must
still leave the wall along a tangential direction, with the inside flow sitting in
the cusp region (for more discussion see Sect. 7.2).

The classic application of the Kutta condition is to determine the circula-
tion Γ around a two-dimensional airfoil in a steady potential flow and hence
the lift (Chap. 11). However, within the strictly inviscid potential flow theory,
a flow can have Γ �= 0 only if the body is multiply-connected, for which there
exist irreducible loops surrounding the body. Since no surface lying within the
fluid can span such a special loop, the circulation along it can be nonzero with-
out violating the potential-flow condition. This is the case of two-dimensional
airfoil flow. In and only in two dimensions, not only a potential flow can have
Γ �= 0 but also a supplementary condition is necessary to fix it along an irre-
ducible loop, and hence the force. In contrast, for three-dimensional flow over
a single-connected body, there is no room for an indeterminate Γ . However,
the Kutta condition does exist in three dimensions as just given.

Finally, it should be stressed that on a smooth surface the location of
separation line L cannot be determined in the Euler limit, so (4.140) and
(4.141) are still insufficient. An asymptotic viscous theory on the boundary-
layer separation will be given in Sect. 5.2.

4.4.3 Self-Induced Motion

The velocity induced by a vortex sheet has been given by (3.31) or (3.35).
When the flow is entirely induced by the sheet, these Biot–Savart formulas
completely determine the flow including the motion of the vortex sheet itself,
and the problem is purely kinematic. To compute this self-induced motion we
let the point x remain on the sheet. In two-dimensional flow x = x(s), where
s is the arclength of the sheet (a plane curve). Then (3.35) yields

∂

∂t
Z∗(s, t) =

1
2πi

pv
∫

γ(s′)ds′

Z(s, t)− Z ′(s′, t)
, (4.142)
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where pv means taking Cauchy principal value. Then, since γ(s′)ds′ = dΓ ′ is
the infinitesimal circulation increment, we may reversely view s, s′ as functions
of Γ and Γ ′. Therefore, (4.142) becomes

∂

∂t
Z∗(Γ, t) =

1
2πi

pv
∫ Γe

Γ0

dΓ ′

Z(Γ, t)− Z ′(Γ ′, t)
, (4.143)

with Γ0 and Γe being the circulations at two end points of the sheet. This
integral-differential equation is called the Birkhoff–Rott equation and should
be solved under initial condition

Z = Z(Γ, 0) at t = 0. (4.144)

To ensure the uniqueness of the solution, Γ should vary monotonically along
the sheet. For example, one may impose a constraint

dΓ
ds
≥ 0, Γ0 ≤ Γ ≤ Γe. (4.145)

A classic problem of the self-induced motion of a vortex sheet is the rolling
up of the vortex sheet shed from the trailing edge of a large-span wing. Ap-
proximately, the bound vortex-sheet strength γb equals the spanwise gradient
of the circulation distribution on the wing (e.g., Prandtl and Tietjens 1934;
Glauert 1947; see also Fig. 11.3). Assume that the streamwise velocity behind
the wing is about the same as the uniform velocity U at far upstream, such
that an observer moving downstream with speed U to different x-stations will
see the same picture as the time evolution of the trace of the sheet in a fixed
wake plane, with t = x/U . This reduces the problem to two-dimensional so
that (4.143) applies. Moreover, assume the wing is flat, so on a wake plane
right after the trailing edge the trace of the sheet is a straight line segment
(see Fig. 4.21 later). The large span permits neglecting the mutual influence
of the motion at the wing tips, thus the sheet can be simplified to a semiinfi-
nite one and we only need to consider the rolling up process at one end. This
theoretical model is called the Kaden problem, as Kaden (1931) first derived
a similarity law of the geometry of a tightly rolled semiinfinite vortex sheet
for the elliptical load distribution on the wing. Moore and Saffman (1973)
found that the Kaden law can be neatly obtained by a dimensional analysis
as follows.

Let the circulation distribution near a wingtip be given by

Γ (y) = 2Ay1−n, 0 < n < 1, (4.146)

where y is the spanwise coordinate with origin at the wing tip and A is a
constant. The sheet strength is

γ =
dΓ
dy

= 2(1− n)Γ0y−n, (4.147)
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Fig. 4.21. Early stage of the roll-up. The vortex-blob positions are plotted on the
left and an interpolation curve is on the right. From Krasny (1987)

which approaches infinity at y = 0 and must induce a very fast self-motion to
make it quickly roll into tight spirals with many turns that can be approxi-
mated by concentric circles. In the Euler limit, the Kelvin circulation theorem
implies that inside each circle the total vorticity remains unchanged as time
goes on. Thus, in terms of polar coordinates (r, θ) we may write Γ = Γ (r).
Now Γ and A have dimensions L2/T and L1+n/T , respectively; hence we may
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immediately write

Γ = A
( r
k

)1−n
or r = k

(
Γ

A

)1/(n−1)

(4.148a,b)

with k being a dimensionless constant.
Then, since the equi-Γ lines are concentric circles, there must be

uθ =
Γ

2πr
=

β

rn
, β =

A

2πk1−n
. (4.149)

For a point rp on the vortex sheet, since it moves with the sheet, there is
rpdθ/dt = uθ. Hence, by (4.148b) and (4.149),

θP =
βt

rn+1
+ θ0, θ0 = θt=0,

from which follows the spiral equation representing the similarity law of tightly
rolled sheet :

r =
(

βt

θ − θ0

)1/(n+1)

as θ →∞. (4.150)

For the elliptical wing load (which has minimum induced drag in linearized
wing theory; e.g., Prandtl and Tietjens (1934) and Glauert (1947)) there is
n = 1/2 and (4.150) gives the Kaden similarity law

r = (4π2k)−1/3

(
At

θ − θ0

)2/3

. (4.151)

In principle, the prediction of Kaden’s law can be tested by solving (4.143)
if its solution exists for all t > 0. However, it has been proven that a singularity
of the sheet curvature will spontaneously develop within a finite time T , which
makes the solution for t > T unobtainable (e.g., Saffman 1992). This problem
was bypassed numerically by Krasny (1987) who replaced the singular kernel
in (4.143) by a smoothed regular one. Fig. 4.21 shows his result for elliptical
circulation distribution, of which the tightly rolled part fully confirms the
Keden similarity law.

A vortex sheet in a three-dimensional space is defined by a pair of para-
meters (η1, η2). Naturally, we use the surface-moving frame introduced in
Appendix A3.2. Let x = x(ηα, t) with α = 1, 2 be the sheet point where the
velocity is to be estimated, and x′ = x′(λα, t) be the integration point along
the sheet. The covariant tangent vectors and normal vector of the sheet are

rα =
∂x

∂ηα
, n =

r1 × r2√
g

, g = det{gαβ},

where gαβ = rα · rβ are the covariant metric tensor. Then by (4.129a)

γ =
r1 × r2√

g
×∇Γ =

1
√
g
(Γ,1r2 − Γ,2r1),
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where we used the notation Γ,α = rα·∇Γ . Moreover, we have dS =
√
gdλ1dλ2.

Hence, (3.31) yields the self-induction equation in three dimensions (Caflisch
1989; Kaneda 1990a)

∂

∂t
x(ηα, t) =

1
4π

pv
∫
S

Γ ×R

R3
dλ1dλ2, (4.152a)

R(ηα, λα, t) = x(ηα, t)− x′(λα, t),

Γ =
√
gγ = Γ,1r2 − Γ,2r1. (4.152b)

It is convenient to take the variables ηα as two components of the Lagrangian
label X, since then Γ (Xα, t) = Γ (Xα, 0). Choose the basis vector r2 parallel
to γ at t = 0, so that the Lagrangian invariance of Γ implies that Γ,2 = 0
at any time, and lines on the sheet with X1 = const. are vorticity lines.
Consequently, Γ is a function of X1 only, say Γ,1 = γ(X1). Thus

Γ (X1,X2, t) = γ(X1)r2(X1,X2, t). (4.153)

As a check, in two dimensions r2 is along the direction of e3 and (4.153) is
reduced to Γ = γ(X1)e3. Rewrite X1 = s and Y 1 = s′, integrating (4.152a)
over λ2 gives

∂

∂t
x(s, t) =

1
2π

pv
∫
S

(x1 − x′
1)e2 − (x2 − x′

2)e1
(x1 − x′

1)2 + (x2 − x′
2)2

γ(s′)ds′,

of which the complex-variable form with Z(s, t) = x1(x, t) + ix2(s, t) is pre-
cisely (4.142). Observe that the simplification in two dimensions is due to the
λ2-independence of the sheet or symmetry with respect to a translation along
e3. There can also be a simplification in three dimensions if a symmetry exists,
of which some examples are given by Kaneda (1990b).

In more general cases, (4.152a) has to be solved numerically. A striking
example is the axisymmetric vortex sheet out of a nozzle computed by Nitsche
and Krasny (1994), which evolves to vortex rings due to Kelvin–Helmholtz
instability (Chap. 9) and self-induction. The computed vortex-sheet patterns
at different evolution times are in excellent agreement with experimental flow
visualization, one of which is shown in Fig. 4.22. Numerical computations of
vortex-sheet evolution has recently been advanced to fully three-dimensional
configurations (e.g., Pozrikidis 2000; Sakajo 2001).

4.4.4 Vortex Sheet Transport Equation

We now derive the transport equation of γ by looking at the evolution of
vorticity in a material volume element δv = δnδS with D(δv)/Dt = ϑδv and
ωδv = γδS. By (3.98c) there is

D
Dt

(γ δS) =
Dγ

Dt
δS + γ

D
Dt

δS = (ω · ∇u+∇× a)δv.
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Fig. 4.22. Axisymmetric vortex sheet out of a nozzle. (a) Experimental visualiza-
tion, (b) numerical solution. From Nitsche and Krasny (1994)

Here, three terms need to be transformed. First, by (2.139) and (2.140a)
there is

D
Dt

δS = ∇π · uγ dS,

where we have replaced u by uγ because ∇π involves only tangent derivatives.
Next, ω ·∇u δv = γ ·∇u δS is the stretching and tilting of γ δS by ∇u, where
u can again be identified as uγ since γ · ∇ is a tangent gradient. Thirdly, to
treat ∇× a δv, in the limit δv → 0 we write

∇× a δv =
∫

δv
∇× adv =

∫
∂ δv

n′ × adS,

where n′ is the normal of ∂ δv out of δv, which equals −n on side 2 and
n on side 1. Hence, the vorticity diffusion vector degenerates to the tangent
acceleration jump:

∇× a δv = n× [[a]]δS.

Collecting these results, we obtain the general vortex sheet transport equa-
tion

Dγ

Dt
− γ · ∇uγ + γ∇π · uγ = n× [[a]],

D
Dt

=
∂

∂t
+ uγ · ∇ (4.154a)

first derived by Wu (1995) using the vorticity transport equation (3.107) in
reference space, who showed that it can also follow from the Kelvin circulation
formula (2.32).12 Alternatively, using (A.66), (4.154a) becomes

∂γ

∂t
+∇× (γ × uγ) + γ∇π · uγ + uγ [[ωn]] = n× [[a]]. (4.154b)

12 The unit normal vector used in Wu (1995) is opposite to that defined here.
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The term-to-temathrmcorrespondence of (4.154a) and (4.154b) with the vor-
ticity equation (3.98c) and (3.98a), respectively, is evident.

In what follows we assume the flow is incompressible. The left-hand side
of (4.154a) and (4.154b) represents kinematics and the right-hand side is a
dynamic effect. If n × [[a]] = 0, the equations become purely kinematic and
carry no more information than (4.152), hence one does not need to solve
them. This happens for a vortex sheet inside a homogeneous fluid, since then
[[a]] = −[[∇p]]/ρ = 0. This also happens for a vortex sheet attached to a
stationary solid wall, since then the sheet location is known and its strength
is determined by the external velocity ue obtained from the relevant Euler
solution.

The dynamic source n× [[a]] becomes important and nontrivial only when
the sheet represents an interface, a free surface, or a freely moving singular
layer of density stratification. The location of such a sheet is not known in
advance, and (4.154a) or (4.154b) is necessary for solving its evolution. In this
case, on each side of an interface, say, we have boundary vorticity fluxes σ1 and
σ2, thus the total creation rate of the sandwich-like sheet is σ1+σ2 = n×[[a]].
More specifically, taking the jump of the Euler equation with gravity, one has

n× ([[ρa]] +∇[[p]] + [[ρ]]gk) = 0,

where k is the unit vertical vector. Then, define the Atwood ratio

A =
[[ρ]]

ρ1 + ρ2
(4.155)

such that by (2.82a) there is [[ρa]] = ρ([[a]] + 2Aa) (on a free surface A = 1).
After scaled by U∗, L, and ρ, the dimensionless fomathrmof (4.154a) on an
interface or singular density-stratified surface reads (Wu 1995; Pozrikidis 2000)

Dγ

Dt
− γ · ∇uγ + γ∇π · uγ = n× (2Aa+We∇κ+ 2Ag∗k), (4.156)

where We is the Weber number defined in (4.102). In solving the motion
of such a vortex sheet, this dynamic equation should be used along with
the Biot–Savart formula (3.31) as well as the equation for a. Figure. 4.23
displays a numerical solution for two-dimensional interface instability (the
Rayleigh–Taylor instability) obtained by Tryggvason (1988). Both mushroom-
like interface pattern and vortex-sheet strength are shown at A = 0 and 0.6.
The density difference tends to stabilize the interface, and the sheet strength
γ develops sharp peaks as it rolls into spirals.

4.5 Vorticity-Based Formulation
of Viscous Flow Problem

We now move on to the general vorticity-based formulation of viscous incom-
pressible flow, which is an important part of vorticity dynamics. The formu-
lation not only provides a theoretical basis for developing numerical schemes
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Fig. 4.23. Rayleigh–Taylor instability of an interfacial vortex sheet. (a) A = 0.
(b) A = 0.6. Right : the sheet evolution as time. Left : vortex-sheet strength vs.
normalized arc length. From Tryggvason (1988)

using vorticity as variable to solve the Navier–Stokes equations, but also leads
to deeper understanding of the relevant physics.

Conventionally, one solves the velocity u and pressure p from the Navier–
Stokes and continuity equations. The velocity adherence condition (2.67) on
∂B naturally matches this formulation. A subtle issue is the pressure, which
for incompressible flow is no more than ensuring ∇·u = 0 and has no natural
boundary condition. Another disadvantage is that the skin-friction on a solid
boundary, given by the negative of (2.151b), has to be estimated by a one-
side interpolation of u that often results in a significant loss of accuracy,
due to the O(Re)-large normal gradient of ω near the wall. In contrast, in a
vorticity-based formulation one focuses on the shearing process and solves the
vorticity ω and velocity u (or ω and stream function ψ in two dimensions).
The disadvantages of the (u, p) formulation are precisely the advantages of the
(ω,u) formulation. The need for solving p is removed by keeping u divergence-
free, and the skin-friction follows from the resolved ω field. Since ω is one
order higher than u, an accurate computation of the former usually implies
an even more accurate estimate of the latter. Moreover, since at large Re
the vorticity is highly localized in the narrow wake region and exponentially
decays elsewhere, the computational domain can be greatly reduced.

The advantages of the (u, p) formulation, however, are also precisely the
disadvantages of the (ω,u) formulation. First, one needs to solve u from com-
puted ω simultaneously. Second, the vorticity transport equation is one-order
higher than the Navier–Stokes equation and may have spurious solutions that



4.5 Vorticity-Based Formulationof Viscous Flow Problem 187

are not solution of the latter, which has to be removed by a compatibility con-
dition. But the most difficult issue is how to formulate the boundary condition
for solving the vorticity transport equation.

A variety of vorticity-based numerical methods have been developed, all
making great effort to cast one’s physical understanding of vorticity creation
at boundaries (Sect. 4.1.3; see also Lighthill 1963, Batchelor 1967) to a proper
vorticity boundary condition. The methods fall into two categories. One cate-
gory is grid-free vortex method , which can be traced back to Rosenhead (1931)
and in which the viscous effect was first treated by Chorin (1973); for sys-
tematic presentation see, e.g., Gustafson and Sethian (1991) and Cottet and
Koumoutsakos (2000). Another category uses conventional numerical methods
with grid, in terms of differential or integral-differential formulation. Among
the second category, Wu and coworkers (Wu and Thomson 1973; Wu 1976,
1984) pioneered a thorough study of the integral-differential formulation. For
the kinematic part of the problem, he uses the generalized Biot–Savart for-
mula (3.27) with known ω-field in the interior and full velocity adherence at
the boundary to compute the u-field. As noted in Sect. 3.2.2, this inevitably
leads to a tangent-velocity discontinuity at the boundary, i.e., an attached
vortex sheet γ. The sheet strength is governed by an inhomogeneous Fred-
holm integral equation also derived from (3.27). Solving the integral equation
for γ allows for an approximate estimate of the tangent boundary vorticity
ωπB, which just provides a Dirichlet condition for the kinetic part, i.e., solving
the vorticity transport equation. This integral-differential approach has been
applied to compute some aerodynamic flows (e.g., Sugavanam 1979; Wu and
Gulcat 1981; Wang and Wu 1986; Kim et al. 1996).

Below we mainly present a formulation also of the second category, based
on the work of Wu et al. (1994b) and Wu et al. (1995). As an interesting
contrast to J. C. Wu’s formulation, we will focus on a differential approach,
using a locally derived dynamic Neumann condition for solving the vorticity
transport equation.

4.5.1 Kinematical Well-Posedness

We first address the boundary-value problem for solving the kinematic as-
pect and the compatibility problem. As illustration, consider a laminar flow
past a solid body surface ∂B in an externally unbounded domain V at a large
Reynolds number. The kinematic problem can well be relaxed to include com-
pressible flows; so we return to (3.24) and (3.25) for given (ω, ϑ) distribution:

∇× u = ω, ∇ · u = ϑ in V, (4.157a,b)∫
V

ϑdV =
∫
∂V

n · bdS, ∇ · ω = 0, (4.158a,b)

where b is the velocity of ∂B. As shown in Sect. 3.2.2, the solution of this
problem is unique if only the no-through condition is imposed:
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n · u = n · b on ∂B. (4.159)

In two dimensions (4.158b) is trivial, but in three dimensions it may be vio-
lated by numerical errors. A common practice of enforcing (4.158b) is pro-
jecting the computed vorticity (with ∇ · ω �= 0) into the solenoidal space:

ω =⇒ ω̂ = ω −∇ψ, ∇ · ω̂ = 0. (4.160)

This projection requires solving a Poisson equation, a time-consuming step:

∇2ψ = ∇ · ω in V, n×∇ψ = 0 on ∂B. (4.161a,b)

We have seen that the integral approach of problem (4.157) to (4.159) leads
to the generalized Biot–Savart formula (3.26) and (3.27), which can be di-
rectly used in numerical computation by some fast integration algorithms,
e.g., Wang and Wu (1986) and Koumoutsakos et al. (1994). Here we focus on
the differential approach.

To avoid the inconvenient cross interaction of different components of ω
and u in (4.157a), we replace (4.157a,b) by the curl of (4.157a), which is (2.86)
but now serves as a Poisson equation for u:

∇2u = ∇ϑ−∇× ω. (4.162)

This equation is one order higher than (4.157) and may have spurious solu-
tions. They can be eliminated by proper boundary conditions, for which we
set

n · u = n · b, n× (∇× u− ω) = 0 on ∂B. (4.163a,b)

While (4.163a) is the no-through condition (4.159), (4.163b) is an application
of the tangent components of the original equation (4.157a) to the boundary.
We then have the following theorem (Wu et al. 1995):

Theorem (kinematic well-posedness) . Suppose (4.158a) holds and the
given ϑ and ω are sufficiently smooth. Then problem (4.162) and (4.163) has
a unique solution which satisfies almost everywhere the following equations in
V :

∇ · u = ϑ, ∇× u = ω̂, (4.164)

where ω̂ is defined by (4.160) with ψ given by (4.161).

The theorem implies that u can be solved from (4.162) and (4.163) with
any given ω, which may not be solenoidal. The solution has correct ϑ and
its curl is nothing but the projected ω̂. Consequently, the need for solving
(4.161) is replaced by taking the curl at little cost. This remark also indicates
that one can solve n − 1 components of u in n-dimensional space and then
compute the remaining one by integrating (4.157b).

To prove the theorem, we first notice that the existence of the solution
is a direct consequence of problem (4.157) and (4.158) being well posed, as
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seen clearly from the derivation of (4.162) if ∇ · ω = 0. When ∇ · ω �= 0,
we simply replace ω by ω̂ in (4.157) and (4.158), which still fomathrma well-
posed problem. The solution u satisfies (4.162) because ∇ × ω = ∇ × ω̂. It
also satisfies the boundary condition (4.163b) due to (4.161b).

Next, let v be the difference of two solutions of (4.162) and (4.163), such
that

∇2v = 0, ∇ · v = 0, n× (∇× v) = 0.

Then, we have identity∫
V

[(∇ · v)2 + (∇× v)2]dV = −
∫
V

v · ∇2v dV

+
∫
∂B

[(n · v)∇ · v + (∇× v) · (n× v)]dS, (4.165)

where
(∇× v) · (n× v) = −[n× (∇× v)] · v = 0 on ∂B.

Thus, the right-hand side of (4.165) vanishes, and we have both ∇·v = 0 and
∇×v = 0 (almost everywhere), indicating v = ∇φ for some harmonic φ. But
by (4.159) there must be ∂φ/∂n = 0 on ∂B, so φ = const. and hence v = 0
in V . Therefore, (4.162) and (4.163) has at most one solution.

Finally, from (4.162) we have

∇(∇ · u− ϑ)−∇× (∇× u− ω) = 0,

where the two terms must be orthogonal in the inner-product space (Sect. 2.3.1)
owing to (4.163b):∫

V

∇ (∇ · u− ϑ) · [∇× (∇× u− ω)]dV

=
∫
∂B

[n× (∇× u− ω)] · ∇(∇ · u− ϑ)dS = 0.

Thus, it follows that

∇(∇ · u− ϑ) = 0, ∇× (∇× u− ω) = 0.

This implies ∇×u−ω = ∇ξ for some ξ, of which the divergence is (4.161a);
then (4.163b) implies (4.161b). Similarly, we have ∇ · u − ϑ = const. in V ,
but the constant must be zero due to (4.158a). Thus, the unique solution of
(4.162) and (4.153) is also that of (4.157) and (4.158), which completes the
proof.

From the theorem and its proof, the following corollary (Wu et al. 1995)
is evident.

Corollary. If (4.158a) and (4.158b) hold, then given sufficiently smooth ϑ
and ω, problem (4.162) and (4.163) has the same solution as problem (4.157)
to (4.159).

The boundary condition (4.163b) is the key choice of the entire theorem
and corollary.
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4.5.2 Boundary Vorticity–Pressure Coupling

We now turn to the dynamic aspect of the vorticity-based formulation, con-
fined to incompressible flow with ρ = 1. Define an operator on u:

L(u) = ∂u

∂t
+ u · ∇u− ν∇2u. (4.166)

Then symbolically the (u, p) formulation reads

L(u) = −∇p, ∇ · u = 0. (4.167a,b)

Similar to casting problem (4.157) and (4.159) to problem (4.162) and (4.163),
we take the divergence of (4.167a) and use (4.167a) itself to construct a Neu-
mann boundary condition for p to ensure the compatibility:

∇2p = −∇ · L(u) in V,

(
∂p

∂n

)
B

= −n · L(u)B on ∂B, (4.168a,b)

where suffix B means values on ∂B. Then, the dynamic (ω,u) formulation
is based on the curl of (4.166), for which we impose a dynamic boundary
condition also constructed from (4.167a):

∇×L(u) = 0 in V, n× L(u)B = −n×∇pB on ∂B. (4.169a,b)

Of course the dynamic process must be solved along with the kinematic prob-
lem, say (4.162) and (4.163) with ϑ = 0. In (4.168b) and (4.169b) the accel-
eration no-through and no-slip conditions, (2.70a) and (2.70b), are imposed
respectively. As quantities one-order higher than velocity, the dynamic bound-
ary conditions for the vorticity and pressure gradient match naturally the ac-
celeration adherence, which makes the boundary conditions and compatibility
condition merge into one. This does reflect the correct physics, since as shown
in Sects. 4.1.3 and 4.1.4 the acceleration adherence determines the vorticity
creation (and “pressure creation”) from the boundary.

Wu et al. (1994b) have proved that, after raising the equation’s order,
due to the viscous boundary (ω, p) coupling, solving the pressure differential
equation (4.168a) needs the satisfaction of the vorticity differential equation
(4.169a) as a prerequisite, and vice versa. It is this boundary (ω, p) coupling
that causes the basic difficulty of the vorticity formulation, for which we now
make a further observation.

Recall that the velocity adherence imposes a kinematic integral constraint
to the possible ω-distribution, obtained by applying the generalized Biot–
Savart formula (3.27) to the boundary. To match this fact, dynamically one
should also cast the vorticity transport equation (2.168) to an integral rep-
resentation. For neatness assume that the solid boundary ∂B is stationary.
Then by (3.23) and using the notation there, we have
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ω(x, t) =
∫
V

G∗
0ω0 dV ′ +

∫ t

0

dt′
∮
∂B

(
G∗σ − νωB

∂G∗

∂n

)
dS′

+
∫ t

0

dt′
∫
V

∇G∗ × (ω × u)dV ′, (4.170)

where ωB and σ are the boundary vorticity and its flux. Now the boundary
(ω, p) coupling appears via σ, see (4.24b). Evidently, as long as a boundary-
dependent Green’s function Ĝ∗ with Ĝ∗ = 0 on ∂B can be found, the coupling
will be removed and an integral-type Dirichlet boundary-value problem for the
vorticity follows:

ω(x, t) =
∫
V

Ĝ∗
0ω0 dV ′ −

∫ t

0

dt′
∮
∂B

νωB
∂Ĝ∗

∂n
dS′

+
∫ t

0

dt′
∫
V

∇Ĝ∗ × (ω × u)dV ′. (4.171)

This equation, along with the Biot–Savart formula, shows that in its strict
nature the vorticity boundary condition for a viscous flow can only be of global
type.

Because conducting integrations with known Green’s function does not
need grid, (4.171) has served as a basis of some advanced grid-free vortex
methods (e.g., Cottet and Koumoutsakos 2000), where the nonlinear advec-
tion represented by the last integral of (4.171) is also made grid-free by using
fractional-step approach (see Sect. 4.5.3) and Lagrangian algorithm. However,
finding a boundary-dependent Green’s function Ĝ∗ for complicated bound-
aries, especially in three dimensions, is a difficult task. An alternative ap-
proach is to stay with differential formulation, but seek an approximate local
vorticity boundary condition without coupling with p. We present such an
approach later.

4.5.3 A Locally Decoupled Differential Formulation

The key issue of locally decoupled differential formulation is to estimate the
strength of the coupling, dominated by the Reynolds number. For Stokes flows
it is very strong, see the remark following (4.55a,b). But, in boundary layer
theory at large Re it vanishes approximately; the pressure is completely de-
termined by the external Euler flow with an error of O(Re−1), see (4.85b).
This observation not only strongly suggests that the decoupling of ω and p is
possible for arbitrary (not only attached) viscous flows at large Re, but also
provides a clue to developing a general and rational approach that can lead
to the desired decoupled approximation: splitting the Navier–Stokes equa-
tion into an Euler equation under the no-through condition, and an unsteady
Stokes equation under the no-slip condition. Denoting the corresponding quan-
tities by suffices e and s, respectively, we then have
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∂ue

∂t
+ ue · ∇ue +∇pe = 0, n · ue = 0 on ∂B, (4.172a)

∂us

∂t
+∇ps = ν∇2us, n× us = 0 on ∂B. (4.172b)

Numerically, this splitting implies solving (4.172a) and (4.172b) successively
within each time step ∆t rather than simultaneously. Physically, one conceives
that during the Euler substep a slip velocity uslip of O(∆t) is developed,
which, once entering the Stokes substep with the no-slip condition turned on,
becomes a newly created vortex sheet with strength γ = uslip × n, which is
then diffused into the flow (Lighthill 1963). It has been rigorously proved that
such a fractional-step approach converges to the true physics (the Navier–
Stokes solution) as ∆t → 0, and for finite ∆t the error is of O(ν∆t) (Ying
1992; Beale and Greengard 1992). Corresponding to (4.172), the Helmholtz
equation (2.168) is split to

∂ωe

∂t
+∇× (ωe × ue) = 0, (4.173a)

∂ωs

∂t
− ν∇2ωs = 0. (4.173b)

Since the vorticity boundary condition is not needed at all in the Euler substep
(Sect. 3.2.2), ωe is completely decoupled from pe.13

Note that because the inviscid equations for u and ω are nonlinear, in the
above splitting u �= ue+us and ω �= ωe+ωs. In contrast, the pressure equation
(4.168a) is linear and one simply has p = pe + ps. Since pe is completely
decoupled from ωe, it takes care of the inhomogeneity of the equation. Then ps
takes care of the inhomogeneity of the boundary condition. Thus, the correct
boundary-value problems for pe and ps are

∇2pe = −∇ · (u · ∇u) in V,
∂pe
∂n

= 0 on ∂B, (4.174a)

∇2ps = 0 in V,
∂ps
∂n

= −ν(n×∇) · ω on ∂B. (4.174b)

One may immediately recognize that problem (4.174b) is nothing but (2.100).
The larger the Reynolds number is, the more dominant will pe be and the
weaker the boundary (ω, p) coupling.

Now since the boundary coupling remains only between ωsB and psB, it
will be weak if psB is small. To estimate psB we cast (4.174b) to the integral
formulation in terms of free-space Green’s function G:

αps(xB) = −pv
∫
∂B

∇GB · (npsB + n× νωB)dS′, xB ∈ ∂B. (4.175)

13 It is here that the grid-free Lagrangian vortex methods exhibit most of their
strength. See, e.g., Gustafson and Sethian (1991) and Cottet and Koumoutsakos
(2000).
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Here, taking the Cauchy principal value leads to the factor α depending on
the solid angle at each boundary point; for smooth ∂B one has α = 1/2.
Now, we know ωB = O(Re1/2) for Re 1, and hence the linearity of (4.175)
ensures that globally there must be psB = O(Re−1/2), which in turn implies
that neglecting the (ωs, ps) coupling will bring an error of that order. This
estimate may have a local change in the neighborhood of a separation line or
sharp edge, but since in (4.175) psB affects ωB through a surface integral, the
Re−1/2-dependence is a correct overall estimate.

We are now ready to find a local decoupled Neumann condition for the
vorticity. To this end we estimate the boundary vorticity flux σ during one
time step ∆t 
 1. First, the Euler substep (4.173a) generates an attached
vortex sheet γ = uslip × n as a result of the driving force ∇pe = O(1). It
serves as the initial condition for (4.173b). As a specification of the symbolic
condition (4.169b), we then apply (4.172b) to ∂B and obtain

σ = n× ∂us

∂t
+ σsp + σsvis, (4.176)

where σsp and σsvis are the boundary vorticity fluxes due to psB and ωsB,
respectively, see (4.24b). Since ps has a viscous origin, both σsp and σsvis

belong to the viscous part of σ. Integrating (4.176) over ∆t and requiring
that the resulted σ must ensure no-slip at t = ∆t, there is

σ =
γ

∆t
+ σsp + σsvis, (4.177)

where overline means time-average. The first term on the right is the singular
part of σ caused by advection, and the rest is the regular part caused by pure
diffusion that contains the boundary (ωs, ps) coupling.

Then, since at the end of the Stokes substep the no-slip condition should
be satisfied, there is |γ|/∆t = O(1). On the other hand, we have determined
psp = O(Re−1/2); and, because n × ∇ is a tangent differential operator of
O(1), σsvis should be of the same order as νωsB. Therefore, |σsp|, |σsvis|, and
ν|ωB| are all of O(Re−1/2), so (4.177) leads to a decoupled approximation (Wu
et al. 1994b)

σ =
γ

∆t
+O(Re−1/2). (4.178)

Numerical tests have shown that (4.178) has higher accuracy than the corre-
sponding local decoupled approximations of the Dirichlet condition, of which
a commonly used fomathrmis

∆ωB �
γ

h
, (4.179)

where h is a chosen small normal diffusive distance, say
√
πν∆t.

Note that due to dropping the O(Re−1/2)-order regular part of (4.177),
at the end of Stokes substep there may appear a residual slip velocity. If
necessary, this can be effectively eliminated by a simple iteration procedure.
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However, compared to those schemes which impose global vorticity boundary
conditions (e.g., Wang and Wu 1986), an inevitable expense of the localized
condition (4.178) is that the time step must be small.

Finally, once the (ω,u) problem is solved, the pressure can be computed by
solving (4.168a,b) or using integral-type formulation again, which for known
Green’s function can also be grid-free. But, in practice one’s main concern
is the pressure force on ∂B only; in this case pB can be simply obtained by
integrating σp over ∂B from a reference point with known pB.

Based on the above theoretical analysis, Wu (1994) developed a frac-
tional finite-difference scheme with the approximate local Neumann condition
(4.178) for both two- and three-dimensional flows, using (ω, ψ) and (ω,u)
as variables, respectively. As illustration, we show some two-dimensional nu-
merical results that confimathrmthe efficiency and accuracy of the decoupling
approximation, in particular the ability of accurately capturing the boundary
vorticity (and hence skin friction) and its flux in complicated separated flows.

The first example is the flow over an impulsively started circular cylinder,
for which the very careful experimental results at the Reynolds number based
on cylinder radius up to 9,500 (Bouard and Coutaneau 1980) can be used for
comparison. The scheme is of second order in space and first-order splitting in
time. In the computation a grid of 7.7×104 (stretched in the radial direction)
and time step 0.0025 for Re = 9, 500 were used, and the computation was
conducted on a workstation.

Figure 4.24 shows the computed flow pattern compared with experiment,
which is however not critical; many schemes can produce almost the same flow
patterns but only a few can predict the boundary vorticity or skin friction
accurately. Figure 4.25 and 4.26 are the computed ωB and σ. The violent
oscillations in the plots are due to separated vortices. The result is in good
agreement with that of Anderson and Reider (1996) and Koumoutsakos and
Leonard (1995). The former used a finite-difference scheme of fourth-order in
both space and time, performed on a supercomputer with a uniform grid of
5×105 and time step ∆t = 3.3×10−4. The latter used a grid-free deterministic
vortex method to reach about the same accuracy as Anderson and Reider’s,
also performed on a supercomputer. In this scheme the dynamic Neumann
condition for vorticity was employed, the time step for Re = 9, 500 was 0.01,
and the particle number increases as time, up to more than 106 at t = 6.
Both schemes by Anderson and Reider and by Koumoutsakos and Leonard
retained the global nature of vorticity boundary condition. It is remarkable
that the low-order differencing and a simple use of (4.178) on a coarse grid
can already catch ωB and σ satisfactorily.

Wu et al. (1994b) also tested the error estimate in (4.178), finding that
for this cylinder-flow example it approaches almost exactly Re−1/2 as Re
increases. In fact, Wu (1994) has constructed a nonfractional-step scheme
where this error can well be removed; see also Wu et al. (1995). But this
would be unable obtaining the boundary vorticity flux as a direct output.
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t=4.0

Fig. 4.24. Comparison of the computation of Wu et al. (1994b) and flow visualiza-
tion of Bouard and Coutaneau (1980) on the flow patterns of an impulsively started
flow over a circular cylinder at Re = 9, 500 and t = 4.0

In two dimensions the local Neumann condition (4.178) contains no mech-
anism to ensure the conservation of total circulation (3.16), which is crucial
when one computes an airfoil flow, say, with nonzero and variable circulation.
A local approximation of the constraint imposed to σ by this total-circulation
conservation has been built into a generalized version (called CSOLVER) of
the above frational-step scheme by Zhu (2000).

Figures 4.27 and 4.28 demonstrate the airfoil flows computed by CSOLVER
(a one-equation turbulence model due to Spalart and Allmaras (1992) was
used), compared with both experiment and the prediction of detached-eddy
simulation (DES, see Shur et al. 1998), which combines the large-eddy
simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) computa-
tion and has to include the three-dimensional effect of the turbulence. The
agreement with experiments and DES computation is good up to the stall an-
gle, beyond which the accuracy of the turbulence model can hardly be judged.
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Fig. 4.25. Boundary vorticity of the same flow as in Fig. 4.23. Based on X.H. Wu
(1994)
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Fig. 4.26. Boundary vorticity flux of the same flow as in Fig. 4.23. Based on X.H. Wu
(1994)
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4.5.4 An Exact Fully Decoupled Formulation

The preceding analysis reveals that the vorticity–pressure coupling at bound-
ary via the Navier–Stokes equation is the root of the trouble in formulating
the vorticity boundary condition. A natural way to completely bypass this
boundary coupling is to further raise the order of the governing equations by
taking the curl of the vorticity transport equation(

∂

∂t
− ν∇2

)
ω = ∇× lll⊥, lll⊥ = (ω × u)⊥, (4.180)

where as before (·)⊥ denotes the transverse part with (·)⊥ ·n = 0 at boundary
(assume stationary later). The curl of (4.180) yields a fourth-order equation
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for u: (
∂

∂t
− ν∇2

)
∇2u = −∇2lll⊥. (4.181)

Because of taking curl, a component equation of (4.180) and that of (4.181)
along the same direction must be independent. For example, in a Cartesian
coordinate system the y-component of (4.180) takes care of the flow in the
(x, z)-plane, while that of (4.181) represents the flow along the y-direction.
Consequently, the y-components of (4.180) and (4.181), along with the incom-
pressibility condition and vorticity definition, fomathrma complete description
of the flow field: (

∂

∂t
− ν∇2

)
ωy = −(∇× lll⊥)y (4.182a)(

∂

∂t
− ν∇2

)
∇2v = −∇2l⊥y, (4.182b)

∂u

∂x
+

∂w

∂z
= −∂v

∂y
, (4.182c)

∂u

∂z
− ∂w

∂x
= ωy. (4.182d)

It is convenient to choose the y-axis normal to the boundary, say at y =
0, so that the velocity adherence can be explicitly imposed, which due to
(4.182c,d) is fully reflected by

v =
∂v

∂y
= ωy = 0 at y = 0. (4.183)

The boundary at the other side may be another solid wall as in a channel
flow, or extends to infinity as in a boundary layer. The boundary conditions
there is easily expressed as well, and then the problem is well-posed.

Essentially, (4.182) and (4.183) is the lowest-order formulation where the
pressure is completely removed from both differential equations and boundary
conditions. It demonstrates that for incompressible flow the shearing (trans-
verse) process alone can be solved without any involvement of the compressing
(longitudinal) process. This advantage has made the formulation convenient
for studying incompressible flow bounded by flat walls. In particular, the for-
mulation has been the basis of the classic shear-flow stability theory and the
direct numerical simulation (DNS) of turbulent channel flow (Chap. 9). In the
linear stability problem of parallel shear flow, one assumes the velocity and
vorticity

u = (U(y), 0, 0) + (u, v, w), ω = (0, 0,−U ′(y)) + (ξ, η, ζ),

with lower-case components denoting disturbance. Then the linearized-
disturbance version of (4.182a) and (4.182b) is well known (Thomson 1883;
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Squire 1933) and will be discussed in Sect. 9.2.1:

∇2 ∂v

∂t
+ U∇2 ∂v

∂x
− U ′′ ∂v

∂x
− 1

Re
∇4v = 0, (4.184a)

∂η

∂t
+ U

∂η

∂x
+ U ′ ∂v

∂z
− 1

Re
∇2η = 0. (4.184b)

On the other hand, for DNS of turbulent channel flow, (4.182) is convenient
especially when the boundary condition at x and z directions can be as-
sumed periodic so that the spectral method can be applied. Then (4.182c)
and (4.182d) are simplified to algebraic equations in spectral space that en-
sure the solenoidal condition for u and ω. Hence, only two scalar equations
(4.182a) and (4.182b) are to be solved. This formulation has been used to
obtain the first DNS result of turbulent channel flow by Kim et al. (1987), see
also Sect. 9.2.4.

Summary

1. Kinetics enters vorticity evolution through the vorticity diffusion vector
∇× a, which comes from the effects of nonconservative body force, such
as in rotating fluids and magnetohydrodynamics; baroclinicity, such as
in density-stratified flow and non-isentropic flow; and viscosity. A nonzero
∇×a makes the flow no longer circulation-preserving and become history-
dependent, where the vorticity can be created or eliminated.

2. Due to its universal existence in various fluids, the viscosity plays a cru-
cial role in the evolution of vorticity field, including vorticity diffusion,
dissipation, and creation at boundaries. For incompressible flow of uni-
form density without nonconservative body force, the no-slip condition at
boundaries is the only source of vorticity in the whole flow field. The cre-
ated new vorticity is diffused into the fluid, of which the rate is measured
by the boundary vorticity flux. This flux joins the tangential momen-
tum balance at the boundary, and hence can be caused by the tangent
components of boundary acceleration, external body force, and pressure
gradient, plus a three-dimensional viscous interaction. The boundary vor-
ticity flux has important applications in the diagnosis of flow separation
(Sect. 5.3.4) and aerodynamic configuration design (Sect. 11.4), in devel-
oping vorticity-based numerical methods (Sect. 4.5.3), and in flow control.

3. The key dimensionless parameter governing the dynamic evolution of a
viscous vorticity field is the Reynolds number Re. The coupling between
shearing and compressing processes is progressively weakened as Re in-
creases. At small Re the vorticity diffusion prevails over its advection, as in
a Stokes flow, with the strongest shearing-compressing coupling. For this
flow a match of near-field Stokes approximation and far-field Oseen ap-
proximation yields a uniformly effective approximation. A two-term Oseen
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approximation permits an analytical examination of the flow-separation
mechanism based on vorticity dynamics.

4. At the opposite extremum when advection dominates the flow, vorticity is
confined to narrow regions of which the simplest case is attached boundary
layers adjacent to solid wall, interface, or free surface. These attached
thin vortex layers are approximately described by boundary-layer theory,
within which the shearing and compressing are decoupled and only the
former needs to be solved. A unique feature of interfacial or free-surface
boundary layer is that the surface-deformation process plays a crucial role
and is coupled with both compressing process (as a viscous correction) and
shearing process (to completely determine the surface vorticity).

5. As Re → ∞ in a viscous fluid, the attached and free vortex layers can
be further approximately described by vortex-sheet dynamics. Except for
certain special cases such as closed flow, away from the sheets the flow is
irrotational and governed by the Euler equation.

Of course, to the earlier aspects one should immediately add that at
large Re the hydrodynamic instability, transition, and turbulence are all
inevitable. These topics will be addressed in Chaps. 9 and 10.

6. The vorticity-based formulation of viscous flow aims at solving the shear-
ing (transverse) process alone, without any involvement of the compressing
(longitudinal) process. So far the success has been confined to incompress-
ible flow. The advantages and disadvantages of this formulation are just
complementary to those of the common velocity–pressure formulation. A
key issue in vorticity-based formulation is to bypass the boundary coupling
between the vorticity and pressure, which can be done by integral formu-
lation, local fractional-step approach, or going into higher-order equations
by taking double curls of the momentum equation.
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Vorticity Dynamics in Flow Separation

In the whole life of a vortical flow, if the first milestone is the generation of vor-
ticity from a solid wall by the no-slip condition (Sect. 4.1.3) and the formation
of attached shear flow (which appears as boundary layer at large Reynolds
numbers), then the second milestone is flow separation which very often (not
always) results in separated flow. These notions are closely related, but the
former is a local process of the transition from attached flow to detached flow,
while the latter concerns a global flow development after separation occurs.
We defer the discussion of separated flow to Chap 7.

5.1 Flow Separation and Boundary-Layer Separation

In Sect. 4.2.3 we met an example of flow separation at small Reynolds numbers,
while in Sect. 4.4.3 we revisited the subject at the opposite extreme of infinite
Reynolds number. This chapter considers the general situation at finite and
typically large Reynolds numbers. Before going into details, it is necessary to
distinguish the general concept of flow separation and its subclass boundary-
layer separation, since they will be treated by different theories.

Flow separation has been a quite vague concept.1 In this book we define it
as the process that fluid elements adjacent to the wall no longer move along
the wall but turn into the interior of the fluid. The definition does not care how
deep the “interior” could be. To study flow separation, therefore, one examines
the flow behavior in an infinitesimal neighborhood of a separation point (in
two dimensions) or a separation line (in three dimensions). This is precisely
the approach that has led to the well-known separation criteria for two- and
three-dimensional steady flows, due to Prandtl (1904) and Lighthill (1963)
and others, respectively. Referring to the velocity and vorticity profiles before
and after separation shown in Fig. 4.12, in two dimensions the separation

1 Due to this vagueness, in literature it is often confused with boundary-layer sep-
aration, a situation partially responsible for some controversies.
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point xs on a flat wall can be characterized by the special behavior of the skin
friction τw or boundary vorticity:

τw(s) = µu,y(s) = −µω(s) = 0, (5.1a)
τw,x(s) = µu,xy(s) = −µω,x(s) < 0, (5.1b)

where the inequality ensures τw changes sign across xs. The flows from both
sides of xs are divided by a unique separation stream line initiating from xs,
which serves as the skeleton of the separated shear later. Thus, xs appears
as a semiseddle point (see Sect. 7.1 later). Equations (5.1a) and (5.1b) are
Prandtl’s local criteria expressed by on-wall signatures at xs and sufficient to
describe a steady separation.

Three-dimensional flow separation is more complicated. Figure 5.1 shows
a numerical visualization of fluid particle traces in a laminar flow over an
1:2 prolate spheroid at incidence α = 30◦ and Re = 3.5 × 104 (based on the
length of the short axis). One sees two separated free vortex layers rolling
into concentrated vortices of opposite rotating directions. The upper vortex is
from the primary separation, which induces a secondary separation that leads
to the lower vortex.

Focusing on the process of flow separation, from Fig. 5.1 we may first
identify two separation zones on the wall. Unlike (5.1a), in the major portion
of both zones there is τw �= 0. As the extension of two-dimensional separation,
inside each zone there exists a separation line as the skeleton of the zone,
from which initiates a unique separation stream surface as the skeleton of
the separated free vortex layer. Since the separation line is the intersection of
the separation stream surface and the wall, it must be a special skin-friction
line (τ -line for short). To understand how separation happens, let l be the

Fig. 5.1. A three-dimensional flow separation and separated flow from a prolate
spheroid at incidence. From Wu et al. (2000)
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l h

Fig. 5.2. Three-dimensional flow separation may follow from τ -line converging

distance of two τ -lines, above which we consider a flow tube of rectangular
cross-section l×h with mean velocity u and mass flux ρhlu, see Fig. 5.2. Let x3
be the normal coordinate from the wall. For sufficiently small h the velocity
profile is linear, yielding ∂u/∂x3 = 2u/h and τ = 2µu/h or u = τh/(2µ).
Thus, since the mass flux ρhlu = h2lτ/2ν must be constant, one obtains
(Lighthill 1963)

h = C
( ν

lτ

)1/2
. (5.2)

Therefore, h will grow unboundedly not only as τ → 0 as is in two-dimensional
case, but also as l→ 0. Namely, τ -lines converging toward each other causes
an upwelling of the fluid as seen in Fig. 5.1. This and other similar criteria serve
as either separation warning to pinpoint its location and special behavior, or
separation watch to tell it is about to happen. These criteria are very useful in
flow diagnosis and control. Mathematically, to study a flow separation in an
infinitesimal neighborhood of a separation point or line, a Taylor expansion
of the Navier–Stokes equations around that point or line is sufficient.

The flow-separation process may have different strengths and conse-
quences. We say a strong separation if it causes separated vortical flow to be
addressed in Chap. 7. We have already seen this situation in Sect. 4.2.3, where
the flow separates at small Reynolds numbers to form stationary vortex bub-
bles with distributed vorticity. But a far more important strong separation
is the boundary-layer separation at large Reynolds numbers, a concept intro-
duced by Prandtl (1904) in the same seminal conference lecture in which the
boundary layer theory was established. When a boundary-layer separation
happens, the whole layer no longer moves along the wall but turns into the
main stream and thereby alters the global flow field. This is one’s main concern
in engineering applications. Other weaker consequences of flow separation may
exist, for example a very thin recirculation zone may develop underneath the
main portion of the boundary layer but the entire layer remains attached. Or,
the boundary layer instability may cause small-scale separation which leads
to the formation of small vortices as observed in transition to turbulence, and
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these vortices evolve to the coherent structures in turbulent boundary layer
(Chap. 10).2 In these cases the global feature of the outer flow is unchanged.

The local criteria of flow separation, such as (5.1) and its three-dimensional
counterpart to be addressed later, are necessary but insufficient for fully des-
cribing strong or boundary-layer separation, since they cannot tell whether
or not the whole layer will blow up. The characteristic length scale of the
transition process from attached to detached vortex layer is the boundary-
layer thickness δ = O(Re−1/2) along the normal, and another small scale
δk along the wall (k > 0, to be determined later). To study boundary-layer
separation in two dimensions, therefore, one has to consider the behavior of the
vortex layer in a small but finite local region of O(δ×δk). This behavior can be
obtained from either the full Navier–Stokes solution or proper approximate
theory locally effective in the region. This is much more complicated than
a Taylor expansion, especially when the flow is unsteady. Nevertheless, as
will be seen, the flow separation theory provides a basis for the study of
boundary-layer separation; and, in the Euler limit with δ → 0, the boundary-
layer separation degenerates to the formation of free vortex sheet studied
in Sect. 4.4.2. Note that the local theories alone, either in an infinitesimal
neighborhood for flow separation or in a small but finite region for boundary-
layer separation, cannot fully determine the global flow behavior. The goal of
these local theories is to gain a clear physical understanding of what happens,
and why, in the regions.

The theories of generic steady three-dimensional flow separation and
steady boundary-layer separation in two and three dimensions are introduced
in Sects. 5.2 and 5.3, respectively. In Sect. 5.4 we consider two-dimensional un-
steady separation, including both theories of boundary-layer separation and
generic flow separation. Throughout this chapter the flow is assumed incom-
pressible and the solid wall is stationary. The emphasis will be the relevance of
vorticity and vortex dynamics. Flow separation may also occur at free surface,
for which the reader is referred to Lugt (1996) and references therein.

5.2 Three-Dimensional Steady Flow Separation

Like (5.1), Lighthill’s hureristic argument on three-dimensional flow separa-
tion should be cast to a local quantitative theory in terms of the “roots” and
“footprints” of vorticity dynamics on an arbitrary curved wall. Here we follow
basically the formulation of Wu et al. (2000) but with renewed interpretation
motivated by the very recent exact theory of Surana et al. (2005a) for three-
dimensional steady separation of incompressible and compressible flow. This
theory is based on nonlinear invariant manifold theory, of which a systematic
presentation lies beyond the scope of this book. Thus, only some of its selected
results will be briefly mentioned.
2 Although the appearance of these coherent structures is random, each individual
small-scale local separation process is still deterministic.
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5.2.1 Near-Wall Flow in Terms of On-Wall Signatures

In this subsection we set up a general framework for developing the local flow
separation theory solely in terms of on-wall flow signatures. On an arbitrarily
curved stationary wall ∂B, let n̂nn be the unit normal of the wall pointing out
of the solid and, as before, the suffix π denote tangent components of any
vector. For neatness set ρ = 1. Then, two pairs of orthogonal on-wall vector
fields are of fundamental importance. The first pair is the τw-field and the
boundary vorticity field ωB related by (2.151b),

τw = µωB × n̂nn, µωB = n̂nn× τw. (5.3)

The second pair is ∇πp and σp related by (4.24b):

∇πp = n̂nn× σp, σp = −n̂nn×∇p. (5.4)

At large Re, σp dominates the entire boundary vorticity flux. Owing to (5.3)
and (5.4), the analysis of the (τ ,∇πp)-field can be easily cast to that in terms
of vorticity dynamics. The vector fields (−∇πp, τ ) or equivalently (σ,ω) on
∂B forms the basic on-wall signatures of the flow. For the flow over prolate
spheroid given in Fig. 5.1, the two pairs of on-wall orthogonal vector lines are
shown in Figs. 5.3 and 5.4.

Given an initial flow field, the on-wall flow signatures (σ,ω) are sufficient
for inferring the entire flow field, as can be convinced by inspecting (4.170).
But in the present near-wall local analysis it suffices to use Taylor expansion.
Assume the Navier–Stokes solution is analytic so that spatial derivatives of
u and ω of all orders exist. The pathlines are governed by a set of ordinary
differential equations:

dx
dt

= u(x, t). (5.5)

Due to analyticity, if at t = 0 a fluid element is at x = c (so c is a label of
the element), then the element at later time must follow a unique pathline

SL1

308

SL2 z

x

Fig. 5.3. Orthogonal τ -lines (thick) and ω-lines (thin). From Wu et al. (2000)
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308

z

x

Fig. 5.4. Orthogonal −∇πp-lines (thick) and σ-lines (thin). From Wu et al. (2000)

x(t, c) of (5.5), which depends on c continuously (Sect. 2.1.1). If at a point x̄
there is u = 0, then (5.5) has a solution x(t) = x̄, i.e., the fluid element is
fixed, and point x̄ is called a fixed point or critical point. Otherwise x̄ is an
ordinary point. The same can be said for the on-wall (τw,ωB)-field, but on
the entire wall any xB is a fixed point of the u-field. However, if the flow is
steady, a unified local description of both near-wall u-field and on-wall τ -field
is possible. To see this, let x3 be the normal distance of a point P (x) above
the wall ∂B, and introduce a new independent variable

s =
∫ t

t0

x3(r)dr, (5.6a)

which has dimension of length×time. Then ds = x3 dt and (5.5) becomes

dx
ds

=
1
x3

u(x), (5.6b)

which is an autonomous dynamic system without singularity on the wall.
Obviously, as x3 → 0 (5.6b) yields

µ
dx
ds

= τw(x) on ∂B, (5.7)

which generically has only isolated fixed points with τw = 0. Actually, (5.6a)
represents a normally nonuniform rescaling of time3; as x3 → 0, any finite
variation of s requires an infinitely large variation of t, which reflects the
physical fact that fluid elements move more and more slowly as approaching
the wall. If we drop the constant µ, then (5.7) represents the dynamic system
for limiting streamlines as named by some authors.

We now consider the dynamic behavior of the Taylor expansion of (5.6b)
around the origin O on ∂B for a point P (x) in the flow field near O. The

3 For unsteady flow the right-hand side of (5.6) and (5.7) become undefined.
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approach is based on the operator splitting on a curved wall ∂B:

∇ = ∇π + n̂nn∂3, ∇2 = ∇2
π − κB∂3 + ∂23 , ∂3 ≡

∂

∂x3
, (5.8)

where κB = tr K = −∇π · n̂ is twice of the wall’s mean curvature. Thus, we
have x · ∇ = xπ · ∇ + x3∂3, so that the Taylor expansion operator at O can
be formally written as

T =
∞∑
n=0

1
n!
(x · ∇)n = ex·∇ = exπ·∇ ex3∂3 = TπT3. (5.9)

Here, we always compute normal derivatives first, and

Tπ =
∞∑
n=0

1
n!
(xπ · ∇)n, T3 =

∞∑
n=1

1
n!
(x3∂3)n,

where we used the adherence condition

(xπ · ∇)nu = 0, n = 0, 1, 2, ..., on ∂B.

Then, denoting dx/ds by x′ and substituting (5.9) into (5.6), one obtains

x′
P = T (∂3u) =

[ ∞∑
n=0

1
n!
(xπ · ∇)n

][ ∞∑
m=0

1
(m+ 1)!

(x3∂3)m
]
(∂3u). (5.10)

Here and below all terms on the right take their values at O. If P is on ∂B,
we have T3 = 1 and (5.10) reduces to the Taylor expansion of (5.7).

Just like in (5.3) and (5.4) ∂3uπ and ∂3ω are expressed by on-wall quanti-
ties, by taking the nth-order normal derivatives of the Navier–Stokes equation
along with solenoidal conditions ∇ ·u = 0 and ∇ ·ω = 0, as well as using the
adherence condition, one can obtain a set of recursive formulas by which all
∂n3 u, ∂

n
3 ω, and ∂n3 p for n = 1, 2, ..., are expressible by on-wall quantities and

their tangent derivatives (Wu et al. (1988a)). Namely, any near-wall viscous
flow can be inferred from its on-wall signatures. For example, to the first two
orders there is

x′
P = ∂3u+ xπ · ∇π(∂3u) +

1
2
x3(∂23uπ + n̂nn∂23u3) +O(|x|2), (5.11)

where, by the Navier–Stokes equation, the normal derivatives on ∂B can be
expressed by tangent ones (recall ρ = 1 and hence µ = ν):

∂3u3 = 0, (5.12a)
ν∂23uπ = κBτw +∇πp, (5.12b)
ν∂23u3 = ∂3p = −∇π · τw. (5.12c)
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Figure 5.1 and (5.2) indicate that a major part of three-dimensional flow
separation takes place at ordinary points of the (τw,ωB)-field, where as shown
in Sect. 2.4.1 it is convenient to introduce a τ -frame, which is an intrinsic
surface-moving orthogonal triad (e1,e2,e3) with e1 and e2 being the unit
vectors along the positive directions of τw and ωB, respectively, and e3 = n̂nn.
The corresponding coordinates are denoted by xi, i = 1, 2, 3. For a background
knowledge of curvilinear orthonormal coordinates on surface see Sect. A.3.2.
Following the notation there, we denote

∂i ≡
1
hi

∂

∂xi
, i = 1, 2, 3, (5.13)

with hi being the scale coefficients (h3 = 1). In that appendix two sets of
curvature components are introduced. One set is wall-curvature components
bαβ = bβα, α, β = 1, 2, defined by

bαβ = eα ·K · eβ , or K = bαβeαeβ , (5.14)

with b11 + b22 = κB. The other set is

κ1 = (∂1e1) · e2 = −(∂1e2) · e1,
κ2 = (∂2e2) · e1 = −(∂2e1) · e2,

(5.15a)

which now represent the on-wall curvatures of the τ -lines and ω-lines, respec-
tively, dependent on the flow. Note that (A.81) indicates ∂α and ∂β for α �= β
are not commutative:

∂1∂2 − ∂2∂1 = κ2∂2 − κ1∂1. (5.15b)

Moreover, owing to the orthogonality of the x1-lines and x2-lines, κ1 and κ2
are related by (A.82), for proof see A.3.2:

∂2κ1 + ∂1κ2 = κ21 + κ22 +K, (5.15c)

where K = det{bαβ} is the total curvature of the wall.
It will be seen that the on-wall curvature κ2 of the ω-lines is a key indicator

of flow separation at large Re. Evidently, since τw · e2 ≡ 0 and ω · e1 ≡ 0,
there is

∂n1 ω1 = ∂n2 ω1 = ∂n1 τ2 = ∂n2 τ2 = 0, n = 0, 1, 2, ...

at any ordinary points. Note that although ω1 ≡ 0 on ∂B, by (5.4) the newly
produced vorticity from ∂B, which appears right above ∂B, is dominated by

σp1 = ∂2p, σp2 = −∂1p, (5.16)

in which σp1 is along e1. Like the velocity profile, in a three-dimensional
flow the vorticity profile may be twisted as one moves away from the wall.
Moreover, (5.12c) is cast to
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ν∂23u3 = ∂3p = τκ2 − ∂1τ = ν(ωκ2 − ∂1ω) on ∂B. (5.17)

Then, by (A.83) and (5.15), in a τ -frame (5.11) has component form

νx′
iP = τi +Aijxj , |x| → 0, (5.18a)

where τw = (τ, 0, 0) and

[Aij ] =

 ∂1τ ∂2τ
1
2 (∂1p+ κBτ)

κ1τ −κ2τ 1
2∂2p

b11τ b12τ
1
2 (κ2τ − ∂1τ)

 . (5.18b)

We also need to express the normal derivatives of ω by on-wall signatures.
The first-order derivatives simply follow from the component form of σp and
σvis, see (4.24b) and (4.28):

∂3ω1 = −σp1
ν

+ b12ω, (5.19a)

∂3ω2 = −σp2
ν

+ b22ω, (5.19b)

∂3ω3 = −∂2ω + κ1ω. (5.19c)

Note that (5.19c) is a special form of (4.26b) due to ∇ · ω = 0, which in
τ -frame reads

∂1ω1 + ∂2ω2 + ∂3ω3 − κ2ω1 − κ1ω2 − κBω3 = 0. (5.20)

Moreover, slightly away from the wall one can take the normal derivative
of (5.20) and then apply the result on the wall, expressing the right-hand side
by on-wall signature. By using the formulas given in A.3.2, this leads to

ν(∂33ω3)B = (κ2b12 + κ1b22)τ − ∂1(b12τ)− ∂2(b22τ)− κBσ3.

While on a flat wall the equation simply implies ∂23ω3 = 0, on a curved wall
one can remove (∂23ω3)B by using the vorticity transport equation applied to
the wall:

ν∂23ω =
∂ωB

∂t
− κBσ − ν∇2

πωB. (5.21)

Wu et al. (2000) show that for steady flow this leads to a first-order on-wall
vorticity equation (the suffix B is dropped):

(b12∂1 + b22∂2)ω = (b11κ1 + b12κ2)ω, (5.22)

which is nontrivial only when the wall is curved and the flow is three-
dimensional.
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5.2.2 Local Separation Criteria

We now consider the behavior and cause of a generic three-dimensional flow
separation, in terms of the signatures of vorticity dynamics on an arbitrary
curved stationary wall described in a τ -frame. First, from Fig. 5.3 one observes
that τ -lines will converge (or diverge) if and only if ω-lines have positive
(or negative) on-wall curvature κ2. Therefore, Lighthill’s τ -line converging
criterion is cast to a simple inequality in terms of ω-line behavior:

κ2 > 0. (5.23)

On the other hand, the fluid upwelling is simply expressed by u3P ∼ ∂23u3 > 0
at a point P above the wall. By (5.12c) and (5.3), this condition can be cast
to

∇π · τw < 0 or n · (∇× ω) < 0. (5.24a,b)

By (A.83), in the τ -frame both inequalities become ωκ2 − ∂1ω > 0 or

κ2 − ∂1(lnω) > 0, (5.25)

again in terms of vorticity. Inequality (5.24a) degenerates to (5.1b) in two
dimensions, while in three dimensions it indicates that the on-wall signature
of an upwelling is the sink of the τ -field.

The upwelling condition (5.25) and τ -line converging condition (5.23) dif-
fer by ∂1(lnω), which describes the relative change of τ = νω along τ -lines,
an effect neglected in Lighthill’s (1963) argument. This extra term does not
have a definite sign. In general (5.23) and (5.25) have different physical impli-
cations, and neither alone is sufficient to characterize a separation zone. Thus,
Wu et al. (2000) proposed to take the simultaneous existence of (5.23) and
(5.25) as a criterion for the separation zone. These inequalities have been ob-
tained by Zhang (1985a) in terms of a local Cartesian frame (to be introduced
in Sect. 5.2.3 later).

A more important and subtle issue is to identify a single separation line,
say L, among all τ -lines in a zone where (5.23) and (5.25) hold. This requires
introducing an equality to capture the unique feature of L. While in two-
dimensional flow on the (x1, x3)-plane the separation point is simply fixed by
equality (5.1a), in three dimensions the defining equality of L is less obvious
because τ �= 0 on L except isolated points. In fact, the exact identification
of the separation line cannot be answered by a simple three-dimensional ex-
tension of a local equality like (5.1a), but involves the global behavior of the
τ -field. This issue is deferred to Sect. 7.1.2 as we discuss the topological pro-
perty of the τ -field. Instead, here we return to Figs. 5.1 and 5.3 and make
some further observations.

These figures indicate that the primary and secondary separation zones
satisfying local inequalities (5.23) and (5.25) start to occur much more up-
stream than the separations start to become strong and produce separated
shear layers that roll up into concentrated vortices. In other words, at large



5.2 Three-Dimensional Steady Flow Separation 211

Re, the initial (as well as terminal) location of a strong separation can be in
the middle of the corresponding separation zones. Therefore, it is of interest
to see if there are some criteria more localized than (5.23) and (5.25) which
can pick up the large-Re strong separation from a generic separation zone.

This issue was considered by Wu et al. (2000) in an attempt of identifying
a separation line by a local equality. They conjectured that, compared to
other τ -lines in the separation zone, along a separation line the neighboring
τ -line converging and upwelling would be the strongest, so by (5.23) and
(5.25) ϕ = κ2[κ2 − ∂1(lnω)] takes maximum at that line. But in general
this “ridge” condition cannot exist exactly on a τ -line (Surana et al. 2005a).
Indeed, assume for any scalar ϕ there is ∂2ϕ = 0 at one station x1 = a, say,
then ϕ will be extremum along the τ -line only if ∂1(∂2ϕ) = 0. But by identity
(5.15b), at point a there is

∂1∂2ϕ = κ2∂2ϕ+ (∂2 − κ1)∂1ϕ = (∂2 − κ1)∂1ϕ.

Hence, for ϕ to remain extremum there must be ∂1ϕ = 0, i.e., ϕ is independent
of x1, which cannot hold exactly.

At large Re, however, it can be shown that this extremal behavior does
appear along certain separation lines as the leading-order approximation. Re-
call that in the Euler limit with Re → ∞ the separation zone shrinks to a
separation line, at a large but finite Re the width l of the separation zone
must be small. This implies ∂2 = O(l−1)  1 and so must be κ2, but ∂1
remains of O(1). Consequently, ∂1(lnω) = O(1) can be dropped from (5.25),
making it identical to (5.23) as a single criterion of the separation zone:

κ2  1 in separation zone. (5.26)

It will be seen in Sect. 5.3.4 that in a boundary-layer separation zone κ2 is
scaled to Re3/8. Therefore, one may state

∂2κ2 � 0, ∂22κ2 < 0, ∂1κ2 � 0 (5.27a,b,c)

along an approximate strong separation line. Figure 5.5 confirms this feature
in the secondary separation zone of Fig. 5.1, indicating that condition (5.27c)
is indeed true.

A comparison of Figs. 5.1 and 5.3 indicates that before the formation of free
vortex layer, in the separation zone the τ -line converging is associated with
only modest positive κ2. A data analysis of the spheroid flow indicates that,
before strong separation happens nowhere in the τ -line converging region is
(5.27) satisfied. This is shown in Fig. 5.6, where κ2 has a peak only at stations
1, 2, and 3 but not 4.4

4 The fluctuations in Fig. 5.6b indicate that the numerical resolution across the
primary separation line is insufficient for estimating the on-wall curvature of
vorticity lines, which requires computing second-order derivatives.
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Fig. 5.5. (a) Local (τw,ωB)-lines in the secondary separation zone of Fig. 5.1.
The domain for sample data analysis is within the quadrilateral. (b) The on-wall
curvature κ2 of three ω-lines across the separation line, where the origin of abscissa
for line 3 is shifted by 0.05. From Wu et al. (2000)

This being the case, we may state the following high-Re approximate local
criterion for “strong separation warning”:

Local criterion for strong separation. For a strong three-dimensional
flow separation at large Reynolds numbers, to the leading order the separation
zone is determined by local inequality (5.26), and the separation line therein
can be identified by the occurrence of local maximum condition (5.27).

This criterion is a local phenomenological description of strong flow sep-
aration after it takes place. Interestingly, its prediction is also in qualitative
agreement with the exact theory of Surana et al. (2005a). The basic driving
mechanism of separation is the same as explained in Sect. 4.2.3, see also
Fig. 4.12: a tangent pressure gradient that creates new vorticity with direc-
tion different from the existing one. Note that by (5.12c), inequalities in (5.24)
can be replaced by ∂3p > 0, implying that the upwelling must occur against
an adverse normal pressure gradient. In either two or three dimensions this
can happen only when the tangent pressure gradient is sufficiently strong to
squeeze the fluid up. Therefore, the criterion for “strong separation watch”
should be found from the behavior of ∇πp or σp, which will be visited later
in Sect. 5.3.4.
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Fig. 5.6. (a)Local (τw,ωB)-lines in the primary separation zone. (b) The on-wall
curvature κ2 of the ω-line 3 across the separation line. From Wu et al. (2000)

5.2.3 Slope of Separation Stream Surface

As the skeleton of the separated free shear layer, the separation stream surface
plays a special role in determining the initial behavior of a separated flow. It
intersects the wall at the separation line, so the determination of both separa-
tion stream surface and separation line should be considered simultaneously.
Without going into detailed exact theory, here we follow the approximate
approach of the preceding subsection on large-Re strong separation, to seek
a local expression of the slope of separation stream surface at an arbitrary
x1-station.

This problem cannot be conveniently analyzed in the τ -frame; so we turn
to a local Cartesian coordinate system (x, y, z), with the (y, z)-plane normal
to the τ -line. Thus (x, z) = (x1, x3), but the y-axis is tangent to the ω-line at
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the origin. The two frames are different only in the (y, z)-plane, in which the
corresponding part of (5.18a) and (5.18b) reads

ν

[
y′P
z′P

]
=
[
∂yτy

1
2∂yp

0 − 1
2 (∂yτy + ∂1τ)

] [
y
z

]
. (5.28)

Here, τy = −ωx = 0 at origin only and we have ∂yτy = −κ2τ , but the entry
b12τ in (5.18b) is absent (Wu et al. 2000).

Now, one is tempted to estimate the slope of the intersection line of the
separation stream surface and the normal (y, z)-plane at each x1 station. But,
generically the influence of the flow at other x1 stations cannot be neglected.
In accordance with our approximate local criterion for strong separation, how-
ever, we may again be satisfied with assuming ∂2  ∂1 so that the upstream
and downstream influence can all be neglected. Indeed, it will be proved quan-
titatively in Sect. 5.3.4 that in boundary-layer separation x1 serves merely as
a parameter, and the entire separation pattern can be determined solely on
each cross-sectional normal plane. Therefore, let φ be the angle between that
line and the y-axis, such that

tanφ =
(
dz
dy

)
z=0

=
(
wP
vP

)
z→0

,

then by (5.28) there is

tanφ = − (∂yτy + ∂1τ) tanφ
2∂yτy + ∂yp tanφ

,

of which one solution tanφ = 0 is the wall itself, and the other gives a local
slope formula (Zhang 1985a; Wu et al. 2000)

tanφ = − 1
∂yp

(3∂yτy + ∂1τ) =
ν

∂2p
(3κ2ω − ∂1ω). (5.29)

For two-dimensional flow in the (y, z)-plane, (5.29) reduces to (Legendre 1955;
Oswatitsch 1957)

tanφ = −3∂yτ
∂yp

. (5.30)

In fact, in our approximation ∂1ω can also be dropped from (5.29), so that
the two-dimensional slope is a sufficiently good estimate. Note that unlike
(5.30), (5.29) holds for all stream surfaces growing from any τ -lines in the
separation zone, because no unique condition for the separation line is used.
To pick up the slope of the approximate separation stream surface, one may
simply require κ2 to be maximum.

As a comparison, here we also cite an exact formula found by Surana et
al. (2005a) for the slope of separation stream surface growing from a generic
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closed separation line, applicable to arbitrary separation strength and Re.
These authors start from the dynamic system (5.6b) with s defined by (5.6a)
as independent variable, and rewrite the equations as

x′
π = A(xπ, z), z′ = zC(xπ, z), (5.31)

where

A(xπ, z) =
∫ 1

0

∂zu(xπ, qz)dq,

C(xπ, z) =
∫ 1

0

∫ 1

0

∂2zw(xπ, qrz)dr dq,
(5.32)

which by the incompressibility is related by

∇π ·A+ 2C + z∂zC = 0. (5.33)

Then the linearized version of (5.31), similar to (5.18), is solved analytically.
The separation line is defined by x = x(x0, s), where x0 is a point at the
line and s now varies along the line like a rescaled “arclength” (with dimen-
sion of LT ). For separation from a flat wall, after a lengthy derivation which
is omitted here, Surana et al. (2005a) found, in terms of quantities in the
τ -frame,

cotφ(x0) =
1
2ν

∫ 0

−∞
exp

[
1
2

∫ s

0

(3κ2ω − ∂1ω)dr
]
∂2pds, (5.34)

where s→ −∞ as one approaches the upstream fixed point of the separation
line, which is a saddle (Sect. 7.1). Thus the upstream influence is naturally
included. This formula reduces to (5.29) at fixed point or when the τ -field is
linear and ∂2p is x1-independent, which is precisely the case in leading-order
approximation of strong separation at large Re.

Note that as Re → ∞, since τ = O(Re−1/2) → 0, (5.29), (5.30), and
(5.34) are all in consistency with the asymptotic behavior of a separating
vortex sheet: it must leave the wall tangentially (Sect. 4.4.2).

5.2.4 A Special Result on Curved Surface

It has been observed that along certain separation or reattachment lines
τ = νω is minimum or maximum compared to that at neighboring τ -lines.
Whether this is a general phenomenon and, if not, when this happens, are of
interest. The problem can be examined by applying the first-order equation
(5.22) to a separation zone. Assume ‖K‖ = O(1). When (5.26) and (5.27)
hold at Re 1, we may simplify (5.22) to

∂2ω =
b12
b22

κ2ω. (5.35)
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Thus, if τ = νω takes extremum on a separation line there must be b12 = 0.
But by (A.78b) this happens only if the separation line is aligned to one of
the principal directions (p1,p2) of the curved wall. Assume this is so, then,
by (5.27a) and (5.35) there is

∂22ω = −κ2ω
d
dβ

(
b12
b22

)
∂2β, (5.36)

where β ∈ [0, π/2] is the angle between the separation line and the principal
directions of the wall, measured from p1 to e1 in counterclockwise sense,
see A.3.2. An inspection of the (τ ,ω)-line patterns indicates that across both
separation line and attachment line there must be ∂2β > 0. Then, from (A.78)
it follows that (Wu et al. 2000)

∂22ω =
d
dβ

(
b12
b22

)
=
{
1−K1/K2, if β = 0,
1−K2/K1, if β = π/2, (5.37)

where K1 and K2 are principal curvatures of the wall, for which one can define
a set of sign convention for concave, convex, and concave–convex walls. There-
fore, the sign of ∂22ω solely depends on the sign of two principal curvatures
and can be easily identified.

This result shows that the extremal feature of ω or τ at a separation line
is not unconditional. On a curved wall with K1 �= K2, it happens only if
there exists certain local symmetry due to the alignment of the separation
line to a principal direction. For example, the outboard part of the trailing
edge of a wing is a three-dimensional separation line, and we can judge that
the skin-friction thereon reaches a minimum. Similarly, at a juncture locally
like a saddle surface, if the separation line is aligned to any principal direction
then τ = νω is always minimum. In contrast, for flow along a concave wall like
the case in Görtler instability (Chap. 9), the skin-friction will reach maximum
at alternative separation and reattachment lines.

Figure 5.1 indicates that the secondary separation line from the spheroid is
basically aligned to the principal direction along which the principal curvature
is K1. Thus by the earlier analysis it is expected that ω is minimum and κ2ω is
maximum. This is confirmed by Fig. 5.7. In contrast, the primary separation
line is not aligned to principal direction of the spheroid, and no such extremal
behavior is found.

5.3 Steady Boundary Layer Separation

The preceding results of local analysis on strong separation are useful in the
diagnosis of separating flows based on, say, numerical Navier–Stokes solutions.
But they do not give a quantitative estimate of relevant flow quantities in
the separation zone, nor reveal detailed physical interactions underlying a
steady boundary-layer separation. In fact, once a boundary layer breaks away,
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the problem will involve the flow behavior in the whole layer. Physically, as
Prandtl (1904) explained, since the fluid elements inside the boundary layer
has smaller momentum and kinetic energy, under an adverse pressure gradient
they are more vulnerable to be decelerated. In terms of vorticity dynamics,
the adverse pressure gradient produces new vorticity at the wall with the sign
opposite to the existing one, so to cause a bifurcation of upstream attached
vortex layer into a detached free vortex layer and an attached vortex layer
in the reversed flow (see Fig. 4.12). When this happens, Prandtl’s theory for
attached boundary layer no longer holds.

While this strong separation can be studied based on the full Navier–
Stokes equations as we did earlier, a physically more appealing theoretical
approach is still based on the matched asymptotic method, which has led
to the elegant triple-deck theory as the second generation of boundary layer
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theory. Although solving the full Navier–Stokes equation numerically is now
more convenient than using the triple-deck theory, the latter is indispensable
to a thorough physical understanding of boundary-layer separation, which is
our main concern.5

5.3.1 Goldstein’s Singularity and Triple-Deck Structure

Consider a two-dimensional steady boundary layer. Prandtl’s equations (4.85)
is based on rescaling coordinates, velocity, and vorticity by

(X,Y,U, V,Ω) = (x,Re1/2y, u,Re1/2v,Re−1/2ω) = O(1), (5.38)

derived for attached flow. The boundary layer separation must violate (5.38)
around the separation point xs where (5.1a) and (5.1b) hold as necessary but
insufficient conditions. In particular, instead of the simple upwelling v > 0 for
the general flow separation, there must be a strong upwelling

v(x, y) Re−1/2 as x→ xs. (5.39)

Once this happens, the boundary layer equations (4.85) has neither normal
diffusion nor normal pressure gradient to balance the upwelling, so it grows
unboundedly and thereby causes a singularity. The behavior of this singularity
can be understood by the heuristic reasoning of Landau and Lifshitz (1944).

Since V (x, 0) = 0, by (4.85c) and (5.39) there must be ∂V/∂Y =
−∂u/∂x =∞ or

∂

∂u
x(u, Y )

∣∣∣
x=xs

= 0.

Thus, denoting us(Y ) = u(xs, Y ), when both xs − x and u− us are small one
has expansion

xs − x � (u− us)2
1
2

[
∂2

∂u2
(xs − x)

]
x=xs

≡ f(Y )(u− us)2,

so that

u = us(Y ) + α(Y )(xs − x)1/2, α(Y ) ≡ f−1/2(Y ), (5.40a)

V = β(Y )(xs − x)−1/2, β(Y ) ≡ 1
2

∫ Y

0

α(Y )dY. (5.40b)

Now the finite pressure gradient at the outer edge of the boundary layer
is given, and so is ∂2u/∂Y 2 by (5.40a). Therefore, the unbounded terms in
(4.85a) must be self-balanced:

uu,x + V u,Y = −uV,Y + V
∂u

∂Y
= −u2 ∂

∂Y

(
V

u

)
= 0 for xs − x
 1.

5 The theory also provides a rational estimate for the grid density necessary in
separation computation.



5.3 Steady Boundary Layer Separation 219

1

2

3

0

y

x

Fig. 5.8. Two-layer structure of a boundary layer before separation. After Sychev
et al. (1998)

Since u2(xs, Y ) �= 0, V/u must be independent of Y . But by (5.40a,b) one has

V

u
=

β(Y )
us(Y )

(xs − x)−1/2 − α(Y )β(Y )
u2s (Y )

+O((xs − x)1/2),

so to the leading order there must be β(Y ) = Aus(Y )/2 with A being a
constant. Then by (5.40b) α(Y ) = 2β′(Y ) = Au′

s(Y ), where a prime denotes
derivative with respect to the argument. Thus one obtains

u(x, Y ) = us(Y ) +Au′
s(Y )(xs − x)1/2,

V (x, Y ) =
1
2
Aus(Y )(xs − x)−1/2.

(5.41)

Therefore, since generically A �= 0, as x → xs there is an O(xs − x)−1/2

singularity in V . The same singularity appears in the skin-friction gradient
dτ/dx.

This singularity was analyzed in most detail by Goldstein (1948) and is
known as the Goldstein singularity. Assuming the existence of the singular-
ity, Goldstein showed that, according to (4.85) with given adverse pe(x), as
x → x−

s the boundary layer has a two-layer structure shown in Fig. 5.8. The
sublayer adjacent to the wall has a thickness which decays as Y ∼ (xs−x)1/4,
and the outer (main) layer has Y = O(1). The asymptotic solutions in both
layers were obtained, by which Goldstein proved that in general it is impossible
to continue the solution of the sublayer through the separation point. There-
fore, a generic boundary-layer calculation with given p′e(x) > 0 will blow up
once xs is reached.6

Of course the Goldstein singularity never appears in real flows but is merely
a reflection of the incompatibility of (5.38) and (5.39). Recall that scaling
(5.38) reduces the elliptic Navier–Stokes equations (4.82) to the parabolic
equations (4.85), of which the solution is fully determined by the upstream and

6 The Goldstein singularity is not an inevitable existence. It has been found that
some boundary-layer solutions can still be regular at separation (e.g., Liu and
Lee 1982; Liu and Wan 1985).
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side boundary conditions but is “blind” to any sudden change of downstream
condition. Thus, to remove the Goldstein singularity, in a neighborhood of
xs one should give up (5.38) to recover the elliptic feature of the model flow,
to make it adaptive to the separation process. This adaptation needs a local
interaction with the external flow which also changes the latter. Consequently,
the external pressure gradient cannot be prescribed in advance but has to be
solved from the interaction.

Specifically, recall that the basis of matched asymptotic method lies in
the concept that, in an approximate theory, whenever there appears a singu-
larity in one coordinate direction, one should perturb the singular equation
by introducing a thin layer normal to that direction with different scaling.
In Sect. 4.3.1 we have perturbed the Euler equation to replace the singular
attached vortex sheet by an attached boundary layer; so now we should intro-
duce a layer normal to the wall, of streamwise thickness l
 1 centered at xs,
in which the elliptic nature of the equations should be realized by rescaling
such that the local interaction can be solved. The intersection of this new thin
layer and the attached boundary layer forms a deck-like structure, of which
the scales are the basis of the triple-deck theory and can be derived from the
following simple reasoning.

First, the interaction of strong upwelling (5.39) in the separating flow with
external pressure gradient causes a viscous response in a sublayer adjacent to
the wall. Let this occur in a lower deck of normal thickness y ∼ Re−1/2δ in
global scale, or Y ∼ δ in boundary-layer scale, with δ 
 1 to be determined.
Since adjacent to the wall the streamwise velocity profile can be represented
by a uniform shear flow, we have u(Y ) ∼ ∆u(Y ) ∼ δ. Then by the momentum
equation (4.85a), in the boundary-layer scale the balance between the iner-
tial force and interactive pressure increment ∆p as well as the viscous force
requires that

δ2

l
∼ ∆p

l
∼ δ

δ2
,

which gives ∆p = O(δ2) and l = O(δ3). Finally, to determine δ, we note that
the appearance of the lower deck raises the rest of the boundary layer (the
main deck) up by an additional displacement thickness δ. The slope of this
displacement is of O(Re−1/2δ/l) in global scale. On the other hand, across the
main deck the pressure remains unchanged, so that a ∆p = O(δ2) propagates
all the way to the outer edge of the boundary layer and alters the external
potential flow in a zone called the upper deck. The flow therein is inviscid and
irrotational without preferred direction, so the upper-deck thickness should
be of the same order as its streamwise length l. In the upper deck the dis-
placement slope must be balanced by the interactive pressure. This yields
Re−1/2δ/l ∼ δ2, and hence δ = O(Re−1/8) and l = O(Re−3/8). Therefore, a
triple-deck structure as shown in Fig. 5.9 is established, which should replace
the two-layer structure of Fig. 5.8.
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Fig. 5.9. Triple-deck structure and its scales. After Sychev et al. (1998)

Of the three decks the lower deck causing the displacement is most active,
where the orders of magnitude of various quantities are

∆x = O(Re−3/8), y = Re−1/2δlower = O(Re−5/8),
u = O(Re−1/8), v = O(Re−3/8), ∆p = O(Re−1/4).

(5.42)

To the leading order, the role of the main deck is only passive. It is displaced
by the lower deck so that the slope of the streamlines is transported from the
lower deck to the upper deck. In the upper deck the interactive pressure due
to this slope is to be solved, which eventually makes the triple-deck problem
elliptic. This clear physical picture cannot be obtained by pure numerical
computations. Notice that the thickness ratios of the three decks are

δlower
δmain

∼ δmain

δupper
∼ Re−1/8 → 0 as Re→∞, (5.43)

thus at large Re the thickness of a thinner deck is asymptotically negligible
in the scale of a thicker deck.

An inspection of the earlier derivation of the scales indicates that the same
triple-deck structure exists in any laminar boundary layer which encounters
a sudden change of whatever downstream flow conditions that vary for differ-
ent flow problems. Therefore, the triple-deck structure has certain universal
nature and appears in a variety of problems, see, e.g., the reviews of Smith
(1982), Wu (1985), and Sychev et al. (1998).

5.3.2 Triple-Deck Equations and Interactive Vorticity Generation

We can now rescale the continuity and Navier–Stokes equations in each deck
and match their solutions at each overlapping region of two decks. Here we
consider two-dimensional flow, following basically the formulation of Smith
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(1982) in terms of primitive variables (u, v, p). To see the vorticity dynam-
ics involved, we will also use the vorticity equation and boundary coupling
relation (the boundary vorticity flux σ):

uω,x + vω,y = Re−1(ω,xx + ω,yy), (5.44)
σ ≡ −Re−1ω,y = p,x at y = 0. (5.45)

As before, lower-case letters are used for variables in global scale and capital
letters for variables in respective local scales. The rescaled variables of O(1)
in the main, upper, and lower decks will be distinguished by tilde, overbar,
and asterisk, respectively. The basic small parameter is δ = Re−1/8.

1. Main deck
According to Fig. 5.9, in the main deck we set

x− xs = δ3X̃, y = δ4Ỹ .

The solution should match the upstream boundary layer (see Sect. 4.3.1) at
x−
s , which is function of Ỹ only and denoted by suffix B:

u→ UB(Ỹ ), v → δ4VB(Ỹ ), ω → δ−4ΩB(Ỹ ) = −δ4U ′
B(Ỹ ).

Hence, the perturbation expansion is

(u, v, ω) = (UB, δ
4VB, δ

−4ΩB) + (u(1), v(1), ω(1)) + · · · ,

where the disturbance quantities should be rescaled to match the lower-deck
solution. Since in lower deck u = O(δ), we set u(1) = δŨ , which by the
continuity equation

δ−2Ũ
,X̃

+ δ−4v
(1)

,Ỹ
= 0

yields v(1) = δ2Ṽ . Then there is ω(1) = −δ−3∂Ũ/∂Ỹ = δ−3Ω̃. Hence, the
correct expansion is

(u, v, ω) = (UB, δ
4VB, δ

−4ΩB) + (δŨ , δ2Ṽ , δ−3Ω̃) + · · · .

We substitute this into (5.44) and subtract the attached boundary-layer vor-
ticity equation (4.93). After letting x → X̃ = δ−3(x − xs) and noticing
∂Ω̃B/∂X̃ = 0, we obtain a linear equation

UBΩ̃,X̃ + Ṽ Ω′
B(Ỹ ) = O(δ) or UBṼ,Ỹ Ỹ = Ṽ U ′′

B

due to the continuity equation, of which the solution is

Ũ = Ã(X̃)U ′
B(Ỹ ) = −Ã(X̃)ΩB(Ỹ ),

Ṽ = −Ã′(X̃)UB(Ỹ ),

Ω̃ = −Ã(X̃)U ′′
B(Ỹ ) = Ã(X̃)Ω′

B(Ỹ ),

(5.46)



5.3 Steady Boundary Layer Separation 223

where Ã(X̃) is an unknown function of X̃. Note that in the main deck p = δ2P̃ ,
so by (4.85b) ∂P̃ /∂Ỹ = δ−2∂p/∂Ỹ = O(δ6), which is negligible.

The upper boundary condition of the main deck as Ỹ →∞ is (normalized)
UB → 1 and U ′

B → 0. Thus,

u(1) → 0, v(1) → −δ2Ã′(X̃), ω(1) → 0. (5.47)

We see that −Ã is the additional displacement thickness caused by viscous
motion in the lower deck. As mentioned earlier, its slope

S̃(X̃) ≡ −Ã′(X̃) = lim
Ỹ→∞

Ṽ (X̃)

Ũ(X̃)
(5.48)

will be related to the interactive pressure in the upper deck. On the other
hand, at the lower boundary of the main deck with Ỹ → 0+ and at the upper
boundary of the lower deck (not the wall, see (5.43)), UB(Ỹ ) can be simplified
to a simple shear flow. Denote

λ ≡ U ′
B(0) = −ΩB(0) (5.49)

as the skin friction at x−
s , by (5.46) there is

u = λ[Ỹ + δÃ(X̃)], ω(1) → δ3Ã(X̃)Ω′
B(0) at Ỹ = 0+, (5.50)

which is to be matched with lower-deck solution.

2. Upper deck
In the upper deck the flow is irrotational and isotropic, where

X = X̃ = δ−3(x− xs), Y = δ−3y.

The zeroth-order basic flow is uniform with (u(0), v(0), p(0)) = (1, 0, 0), since
within the length scale l = δ3 any inviscid streamwise variation above an
attached boundary layer is negligible. The viscous motion in lower deck causes
a disturbance (u(2), v(2), p(2)), say, and the matching with the main-deck
solution at Y = 0+ implies v(2) = O(δ2). The isotropy then implies so too
must be u(2) and p(2). Thus the disturbance expansion reads

(u, v, p) = (1, 0, 0) + δ2(U, V , P ) + · · · .

Substituting this into the Euler equation yields a pair of linear potential-flow
equations

U
,X̃

= −P
,X̃
, V

,X̃
= −P ,Y , (5.51a,b)

which by the continuity yields a Laplace equation for P :

P ,X X + P ,Y Y = 0. (5.52a)
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At the upper and upstream boundaries of the deck, both P and its normal
derivative vanish. At the downstream boundary P is a constant that can
be subtracted. The nontrivial boundary condition occurs only at the lower
boundary Y = 0+ due to the matching with the main deck with Ỹ →∞. By
(5.46) and (5.51b) this condition reads

P (X̃, 0) = P̃ (X̃), P ,Y = Ã′′(X̃) at Y = 0+. (5.52b)

Problem (5.52a,b) can be solved using complex-variable method or Green’s
function. In the latter approach, since we are only concerned with the solution
at Y = 0+, the Cauchy principal value is to be taken, yielding

1
2
P̃ (X̃) = p.v.

∫ ∞

−∞
(PG,η −GP ,η)dξ̃,

where G is the free-space Green’s function (2.102) and the integration is along
Y = 0+. Since ∂G/∂η = 0 at Y = η = 0, after an integration by parts one
obtains a pressure-displacement relation

P̃ (X̃) =
1
π
p.v.

∫ ∞

−∞

S̃(ξ̃)dξ̃

ξ̃ − X̃
, (5.53)

where S̃ is the displacement slope defined by (5.48).

3. Lower deck
In lower deck we have

X∗ = X̃ = δ−3(x− xs), Y ∗ = δ−5y = δ−1Ỹ .

The perturbation has magnitude comparable with that of the undisturbed
basic flow. Then by (5.42) the expansion reads

(u, v, w) = (δU∗, δ3V ∗, δ4Ω∗) + · · · ,

of which the substitution into (5.44) yields the same boundary-layer vorticity
equation as (4.93), of which an integration yields the same standard boundary-
layer equation as (4.85). The upper boundary condition follows from (5.50):

U∗ ∼ λ[Y ∗ + Ã(X̃)] as Y ∗ →∞. (5.54)

The adherence requires U∗ = V ∗ = 0 at Y ∗ = 0. It can be shown that
∂P/∂Y ∗ = O(δ7), hence (5.54) holds throughout the entire lower deck as
well.

We have now obtained a basic physical–mathematic picture of the triple-
deck theory. The violation of scaling (5.38) due to a sudden change of bound-
ary condition at xs creates a lower deck where the flow is inherently viscous
and rotational, as well as nonlinear. The lower deck represents an additional
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displacement that is transported into the main deck, adding an inviscid, ro-
tational, and linear disturbance to the upstream attached boundary layer
solution which itself is viscous and rotational. Then the displacement is con-
tinued to be transported to the upper deck, adding an inviscid and irrotational
disturbance to the external flow, which induces a pressure gradient to drive
the lower-deck flow. In terms of our two fundamental processes, the main and
lower decks are dominated by the shearing process, and the upper deck by the
(degenerated) compressing process. Here we see a stronger coupling of both
processes than in attached boundary layer theory.

The main and upper decks only serve as a scaffold in the development of the
theory. Since the linearized solutions in these two decks have been used in the
matching process, what remains is only the boundary-layer equation and
the pressure-displacement relation, both in the lower-deck. These equations
make the whole problem elliptic and can be cast to a canonic form by an O(1)
rescaling

(X̃, Y ∗, U∗, V ∗, P̃ , Ã) = (λ−5/4X,λ−3/4Y, λ1/4U, λ3/4V, λ1/2P, λ−3/4A),
(5.55)

where λ is defined by (5.49). Consequently, one has a set of canonical
triple-deck equations applicable to various problems with different streamwise
boundary conditions at x = x∓

s :

UU,X + V U,Y = −P,X + U,Y Y , (5.56a)
U,X + V,Y = 0, (5.56b)

P =
1
π
p.v.

∫ ∞

−∞

A′(ξ)dξ
X − ξ

, (5.56c)

U ∼ Y +A(X) as Y →∞, (5.56d)
U = V = 0 at Y = 0. (5.56e)

We mention that in supersonic flow (5.56c) is replaced by a much simpler one
(Neiland 1969; Stewartson and Williams 1969):

P = −A′(X). (5.56c′)

Consider now the vorticity-based formulation of the problem. Since (5.56c)
holds at Y = 0, its streamwise derivative is actually the boundary vorticity
flux due to the interaction, see (5.45) and (5.48):

− (Ω,Y )Y=0 = P ′(X) =
1
π
p.v.

∫ ∞

−∞

S′(ξ)dξ
ξ −X

.

The boundary vorticity flux may serve as the Neumann condition for the
vorticity field (Sect. 4.5), but in attached boundary-layer theory the vorticity
formulation is redundant due to the decoupling of the shearing and compress-
ing processes (Sect. 4.3.2). But the two processes are now coupled so a vorticity
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formulation of the triple-deck theory is no longer trivial:

UΩ,X + V Ω,Y = Ω,Y Y , (5.57a)

U = −
∫ Y

0

Ω(η)dη, (5.57b)

V =
∫ Y

0

dη
∫ η

0

Ω,X(X, η′)dη′, (5.57c)

Ω ∼ −1 + S(X) as Y →∞, (5.57d)

Ω,Y =
1
π
p.v.

∫ ∞

−∞

S′(ξ)dξ
X − ξ

at Y = 0. (5.57e)

Here, like (4.91), (5.57b,c) is the simplified Biot–Savart formula. The pressure
is removed as a part of scaffold. Evidently, (5.57) can be equally expressed as
the stream-function equation with a single unknown Ψ , which reads

ΨY Ψ,XY Y − Ψ,XΨ,Y Y Y = Ψ,Y Y Y Y , (5.58a)

Ψ = ΨY = 0, Ψ,Y Y Y = − 1
π
p.v.

∫ ∞

−∞

S′(ξ)dξ
X − ξ

, Y = 0, (5.58b)

Ψ,Y Y ∼ 1 − S(X), S(X) = − lim
Y→∞

(ΨX/ΨY ), Y →∞. (5.58c)

A formulation in terms of both Ψ and P (so Ψ is governed by a third-order
equation equivalent to (5.56a,b)) has been extensively used by Sychev et al.
(1998).

It is now clear that the key vorticity-dynamic event is the self-induced
creation of new vorticity, say ωin, in the lower deck.7 This boundary vorticity
flux is proportional to the curvature of the displacement and very strong as
can be seen by writing (5.57e) in global scale:

∆σ(x) = ∆p′(x) = Re1/8
1
π
p.v.

∫ ∞

−∞

S′(ξ)dξ
ξ −X

. (5.59)

But since ωin occurs only in the lower deck, its total convective flux at the
downstream end of the deck is only O(uωinδ5) = O(Re−1/4) per unit time.
It is diffused into the main deck where by (5.57d) ωin is proportional to the
displacement slope S(X). This ωin joins the vorticity advected from upstream
boundary layer, ωup = O(Re1/2) < 0 with total flux O(uωupδ4) = O(1),
and that from downstream reverse-flow, ωdown > 0, which is weaker than
ωup. Therefore, the separated shear layer is still dominated by ωup, having a
strength γ < 0 of O(1).
7 The self-induced adverse pressure gradient and boundary vorticity flux should
not be confused with their counterparts caused by global flow condition as meant
by Prandtl (1904). The former must and only appear in the narrow separation
zone but with very strong peak.
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5.3.3 Boundary-Layer Separation in Two Dimensions

We now apply the triple-deck theory to boundary-layer separation from a
smooth surface. For this problem, the downstream condition of the triple
deck should be a separated flow. As shown in Sect. 4.4.3, in the Euler limit a
two-dimensional steady separated flow forms a closed bubble. The separated
vortex sheet leaves the wall tangentially, so that between the sheet and the
wall there is a cusp region right downstream of xs. But this information is still
insufficient for fully understanding the separation in the Euler limit. Later in
Sect. 7.2.2 it will be shown that the local flow in the cusp region is a Kirchhoff
free-streamline flow or Helmholtz’s motion (e.g., Birkhoff and Zarantonello
1957; Milne-Thomson 1968). In this flow model the separated vortex sheet
appears as a free streamline along which q = |u| and p are constant, and
the fluid in the cusp region is at rest. It can then be shown that near the
separation point xs the local equation y = f(x) and curvature κ of the free
vortex sheet are given by

y � −2
3k(x− xs)3/2,

κ = − 1
2k(x− xs)−1/2 + κ0, x→ x+s ,

(5.60)

where κ0 is the body curvature and k an arbitrary constant; and, the local
pressure along the body surface is

p

{
� k(xs − x)3/2 for x→ x−

s ,
= 0 for x > xs.

(5.61)

These behaviors should be the external-flow condition of the triple-deck theory
for boundary-layer separation from smooth surface. But the separation point
xs cannot be determined by inviscid theory. Nevertheless, it has been found
that there exists a point x0 on the body surface such that

k


< 0 if xs > x0,

= 0 if xs = x0,

> 0 if xs < x0.

(5.62)

Now, by (5.60) and (5.61), k > 0 has to be excluded since otherwise there
would be κ = −∞ at xs so that the vortex sheet would cut into the body
(Fig. 5.10). k < 0 should also be rejected since it implies an infinitely large
adverse pressure gradient at xs so that separation should have taken place
earlier than xs. Hence, the only choice in the Euler limit is xs = x0 with k = 0,
known as smooth separation. But then at xs there is no adverse pressure at
all, and the flow has no reason to separate.

The earlier dilemma was addressed by Sychev (1972), who proposed that k
is a Reynolds-number dependent negative number and k(Re)→ 0 as Re→∞.
Thus, in the Euler limit the smooth separation is recovered, but at finite
large Reynolds numbers there will be a very large positive adverse pressure
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k = 0

k > 0k < 0

U0

Fig. 5.10. The effect of the sign of k on the separated streamline pattern. After
Sychev et al. (1998)

gradient in a very narrow zone ∆x around xs. Then, repeating the reasoning
in Sect. 5.3.1, Sychev rearrived at exactly the same triple-deck structure as
Fig. 5.9. Substituting (5.42) into (5.61) yields k = O(Re−1/16) = O(δ1/2), so
one may set

k = α̂ Re−1/16, α̂ > 0. (5.63)

By (5.62), this implies that the separation point at finite Re will be shifted
downstream by a distance of O(δ1/2) from the smooth-separation point.

In order to complete the embedding of the triple-deck structure into the
inviscid smooth-separation picture, some further analysis is necessary regard-
ing the asymptotic flow behavior as X → ±∞, of which for details see Smith
(1982) and Sychev et al. (1998). The proper downstream condition is compli-
cated since it must model separated flow. But to the leading order the fluid
in the reverse flow region (in between the separated free vortex layer and the
attached vortex layer) can be assumed at rest. A key observation is that the
well-posed problem contains a single undetermined constant α. If the solution
exists and is unique, therefore, then there must exist one and only one value
of α as a universal constant for various boundary-layer separation problems.

Assuming u = 0 in the recirculation region, Smith (1977) carried out the
first numerical study of Sychev’s proposal, which established the existence
and uniqueness of problem (5.56) and (5.63) with α � 0.44 found by the
calculation. The computed variation of A, P , and skin friction τ are shown in
Fig. 5.11. Smith also made the first comparison of the asymptotic (Re→∞)
pressure and skin-friction with available numerical and experimental results
at low Reynolds numbers. The agreement is fairly good.

Smith’s computation has been improved by others using fully consistent
downstream condition (see the review of Sychev et al. (1998)). Figure 5.12
shows the asymptotic skin-friction computed by Korolev (1980), compared
with the full-Navier–Stokes computation at Re = 100 and 300 by Fornberg
(1980) and experimental measurement at Re = 1.2×104 by Varty and Currie
(1984). Considering that in the asymptotic theory Re−1/16 is assumed much
smaller than one (which for Re = 1.2 × 104 and 200 is 0.556 and 0.718,
respectively), the agreement is satisfactory.
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Fig. 5.11. Triple-deck solution of Smith (1977) for displacement A, pressure P ,
and skin-friction τ for two-dimensional boundary-layer separation. Reproduced from
Smith (1977)
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Fig. 5.12. Triple-deck solution of Korolev (1980) for skin-friction (solid line), com-
pared with Navier–Stokes computation (dashed and dashed-dot lines) and experi-
mental measurement (circles). From Sychev et al. (1998)

5.3.4 Boundary-Layer Separation in Three Dimensions

The formal extension of steady boundary-layer separation theory to three
dimensions is straightforward, if the following conditions are satisfied (here
we use the τ -frame developed in Sect. 5.2.1 and notations therein):

‖ K ‖ 
 Re1/8, (5.64)

∂1 =
1
h1

∂

∂x1
= O(1). (5.65)
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Condition (5.64) implies that the wall curvature effect is negligible in the
analysis. Consequently, a τ -frame with origin at separation line can be consid-
ered orthonormal in the entire separation zone and the scale factors (h1, h2, h3)
are independent of the normal distance x3. Condition (5.65) confines our
analysis to ordinary points of a generic separation line not too close to the
fixed points of the τ -field. Then, in the conventional boundary-layer scale
with X̃3 = Re1/2x3 = O(1) and Ũ3 = Re1/2u3, denoting D̃3 = ∂/∂X̃3, the
continuity equation and momentum equation can be simplified to

∂2u2 + D̃3Ũ3 − κ2u1 = 0, (5.66a)

u2∂2u1 + Ũ3D̃3u1 + κ2u
2
2 = D̃2

3u1, (5.66b)

u2∂2u2 + Ũ3D̃3u2 − κ2u1u2 = −∂2p+ D̃2
3u2, (5.66c)

D̃3p = 0, (5.66d)

where κ2 is the on-wall curvature of the ω-lines defined in Sect. 5.2. A scale
analysis based on (5.64) to (5.66) can be made, which leads to exactly the
same triple-deck scales as in two dimensions, but now the triple-deck width
is along the ω-line direction and perpendicular to the separation line (Wu et
al. 2000). Namely, in the region satisfying (5.64) and (5.65), the separation
zone is a thin strip of width O(Re−3/8) neighboring the separation line, see
the sketch of Fig. 5.13.

In particular, we immediately obtain

κ2 ∼ ∂2 ∼ l−1 = O(Re3/8), (5.67)

which specifies (5.26). Then, from (5.16) and (5.19c) it follows that

σ1 = ∂2p = O(Re1/8), (5.68a)
σ2 = −∂1p = O(1), (5.68b)
σ3 = Re−1∂2ω = O(Re−1/8). (5.68c)

This scaling characterizes the on-wall vorticity-dynamics signature in a
boundary-layer separation zone. Moreover, in the most active lower deck the
two-dimensional scaling (5.42) is extended to

u1 = O(Re−1/8), u2 = O(Re−1/8), u3 = O(Re−3/8),
ω1 = O(Re1/2), ω2 = O(Re1/2), ω3 = O(Re1/4),
x3 ∼ Re−5/8.

(5.69)

Then, if a separation line and its neighboring τ -lines in the separation zone
are given with known κ1, one can infer the corresponding κ2 from the general
relation (5.15c) and thereby establish the curved (x1, x2) grid in the separation
strip.

With the earlier scaling, a set of triple-deck equations can be derived in
terms of the τ -frame. Since all x1-derivatives disappear from (5.66), at each
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Fig. 5.13. Three-dimensional triple-deck structure

x1-station the triple-deck structure is completely determined by the flow varia-
tion in the (x2, x3)-surface. In other words, under condition (5.64) and (5.65),
x1 serves as merely a parameter that gives the asymptotic flow conditions
outside the triple-deck zone.

In fact, for the sake of solving the triple-deck equations, the τ -frame can
even be replaced by the simpler normal-plane frame (x, y, z) mentioned in
Sect. 5.2.2. The reason is that one can well approximate the scale factors
hα(x1, x2), α = 1, 2, by those right at x2 = 0, i.e., hα0 ≡ hα(x, 0), with
error of O(Re−3/8) (Smith 1978). Then all x-lines at different y-locations in
the separation zone are parallel. This reduces (5.66) to a form very close to
the two-dimensional form (5.56). The remaining three-dimensional effect is
confined to the fact that in the boundary layers outside the separation zone
there are two velocity-component profiles U = (U, V ) along the streamwise
and transverse directions, respectively. It is then found that in the matching
conditions between the lower and main decks, and that between the lower deck
and the near-wall approaching boundary layers as X → ±∞, only the stream-
wise component UB(Z) matters; but in the pressure-displacement relation or
boundary vorticity flux-displacement curvature relation, only the transverse
component V (Z) matters (Wu et al. 2000).
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Although so far no numerical solution of fully three-dimensional triple-
deck equations is available, we may combine the preceding triple-deck scaling
and the local vorticity-dynamics theory of general flow separation given in
Sect. 5.2 to examine the boundary-layer separation behavior as a guidance to
practical flow diagnosis. The flow data may well be obtained by numerical
Navier–Stokes solutions.

1. Separation watch criterion
Since by (5.68) there is

|σ1|
|σ2|

= O(Re1/8) in separation zone, (5.70)

the tangent boundary vorticity flux vector σπ (or tangent pressure gradient
∇πp) is almost aligned to the separation-line (or vorticity line) direction. The
alignment is not exact because of the existence of σ2 = O(1); but it is in sharp
contrast to attached three-dimensional boundary layer. In the latter, although
the direction of external potential-flow driven by ∇πp is generically different
from the τ -line direction (the velocity profile inside the boundary layer has
a twist), the difference can hardly be as large as π/2. Condition (5.71) holds
only in the separation zone. Therefore, we may state

Boundary-layer separation watch criterion. A boundary layer is
about to separate as σπ tends to be aligned to the τ -lines.

Figure 5.14a plots both τ -lines and σπ-lines of the flow over inclined pro-
late spheroid studied before, which confirms the criterion. Figure 5.14b plots
the σ1-variation across the primary separation line at a few stations, indi-
cating that when the boundary-layer separates (at stations 1, 2, and 3, see
Fig. 5.6) σ1 reaches a negative peak. In practical diagnosis the boundary-layer
separation watch criterion can be checked more easily than examining the
ω-line curvature κ2.8

2. Formation of streamwise separated vortex layer
A major difference between three- and two-dimensional boundary-layer

separation is that, although by (5.3) the ωB-lines are always perpendicular
to τ -lines, as demonstrated in Fig. 5.1 the vorticity in a separated shear layer
is basically aligned to the separation line so that the layer rolls up into a
streamwise vortex. Behind this feature are the two basic vorticity-dynamics
mechanisms discussed following (5.59): the strong self-induced vorticity cre-
ation and the vorticity advection. But what is new in three dimensions is that
both mechanisms lead to an abrupt change of vorticity direction right above
the wall. For definiteness, in the following discussion assume σ1 = ∂2p > 0.

First, by (5.68a), the newly created ωin = e1ωin 1 + e2ωin 2 with ωin 1 =
O(Re1/8) > 0 is almost aligned to the separation line. This is a very strong

8 In numerical computation with adaptive grid, this criterion could be used to warn
that the grid should be made locally denser for resolving the flow in the triple-deck
strip.
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Fig. 5.14. The strong peak of interactive σ1 in the separation zone. (a) The τ -lines
(thin) and σp-lines (thick) on the prolate spheroid. (b) σ1 vs. x2 at four x1 station
shown in Fig. 5.6. From Wu et al. (2000)

rotation (about 90◦) from ωB = e2ωB on the wall during a very short normal
distance within the lower deck. The rotation must be associated with a strong
normal vorticity above the wall, and this is indeed so as shown by (5.68c) and
(5.69): σ3 and ω3 are both O(Re3/8) times of their counterpart in attached
boundary layer.

Second, the vorticity from the oncoming boundary layers also experiences
an abrupt direction change as it is advected into the separation zone. To see
this consider the transport equation for ω1 in the lower deck. By (5.69) we have
ω1 � −∂3u2, so taking the normal derivative of (5.66c) and using (5.66a,d),
in global scale there is

(u2∂2 + u3∂3 − ν∂23)ω1 = −κ2u2ω2, x3 = O(Re−5/8), (5.71)

where each term is of O(Re3/4). Evidently, the right-hand side serves as the
source of ω1 due to the strong ω-line turning. The vorticity of the approaching
boundary layer with u2 > 0 above the wall no longer follows the e2 direction
but quickly turns to an ω1 = O(Re1/2) < 0, which is also raised up quickly.
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The combined effect of these two mechanisms makes ω1 as strong as ω2
as entering the main deck. The overall vorticity flux budget is the same as in
two dimensions, i.e., the vorticity in the separated vortex layer is dominated
by that from the upstream boundary layer (with ω1 < 0 in this example). The
layer then rolls into a vortex with total circulation Γ1 < 0.

3. Asymptote vs. envelope
In a real flow governed by the Navier–Stokes equation, through a regu-

lar point on the wall there must be one and only one τ -line, including the
separation line. But as Re → ∞ some singular behavior may develop. The
separation zone shrinks to an arbitrarily thin strip, and by (5.67) κ2 →∞ in
the strip. The strong separation-line criterion (5.27) assures that κ2 on the
separation line becomes singular earlier than any other neighboring τ -lines.
This in turn results in a singular behavior of the separation line. In fact,
denoting the curvature of separation line by κ10, for the neighboring τ -lines
there is

κ1 = κ10 + (∂2κ1)0x2 +O(x22),
but by the general relation (5.15c), since ∂1κ2 = O(κ2), we have

∂2κ1 = O(κ22) = O(Re3/4)→ +∞.

Therefore, referring to Fig. 5.5a or Fig. 5.6a, as x2 → ±Re−3/4 and Re→∞,
at each point of the separation line one sees three τ -lines tangent to each other
but with different curvatures: in addition to the separation line itself, on the
left (x2 < 0) κ1 jumps to a finite value smaller that κ10, while on the right
it jumps larger. In other words, as Re → ∞ the separation line degenerates
from an asymptote of neighboring τ -lines to their envelope. An envelope is a
singular line since passing a regular point there are three vector lines.

While the earlier observation is made for real flow, the same degeneration
of separation line occurs at a finite but large Re if one uses three-dimensional
attached boundary-layer equation to compute separating flow, since this
implies that the triple-deck strip already shrinks to a line with κ2 = ∞.
The separation line then becomes a singular envelope where the computation
must blow up. This is the three-dimensional Goldstein singularity. In early
literature a separation line was identified as an envelope of neighboring τ -
lines based on experimental and numerical visualization, but Lighthill (1963)
identifies it as an asymptote. This controversy cannot be clarified solely by
experiments due to the limited resolution of visualization. Zhang (1986b) was
the first to conclude that, at a finite Re, one observes an asymptote in a full
Navier–Stokes solution, but an envelope in boundary-layer approximation.
The above simple argument supports Zhang’s conclusion.

5.4 Unsteady Separation

For unsteady flow separation, one needs to predict not only where the
separation happens but also when. Once again this can be done in two
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categories: generic unsteady flow separation and unsteady boundary-layer sep-
aration at large Reynolds numbers. Despite the possibility of Navier–Stokes
numerical solutions for some special cases at moderate Reynolds numbers, like
the steady case locally effective theories are desired to reveal the key underly-
ing physics and predict the separation character in both space and time. This
section addresses theories in both categories according to the historic order.
We first make an overall examination of the physical phenomena of unsteady
boundary-layer separation, introduce an empirical separation criterion, and
then present a rational theory based on unsteady boundary-layer equation
in terms of Lagrangian description. We end the chapter by a new general
theory of unsteady flow separation. For simplicity, this section is confined to
two-dimensional incompressible flow; generalization of some of the theories
to three-dimensional and/or compressible flow will be mentioned whenever
available.

5.4.1 Physical Phenomena of Unsteady
Boundary-Layer Separation

The most commonly encountered unsteady flows fall into two categories: pe-
riodic oscillating flow and transient flow between two steady states including
starting flow. These are also the prototypes of studies on unsteady boundary-
layer separation. We start from a few examples.

A familiar starting flow is the one over a circular cylinder impulsively
brought into motion, for which rich experimental and numerical results are
available. It is possible to perform a theoretical analysis of the flow shortly
after the start. Scaled by the cylinder’s radius and free-stream velocity, at
t = 0+ the flow is fully attached with potential velocity U(x) = 2 sinx along
the cylinder surface (x is the arclength). For t
 1, the boundary layer is very
thin (of thickness of O(t1/2)) and advection is weak, so ut is balanced by νuyy
as in the case of the Rayleigh flow (Sect. 4.1.4).9 Then |dU/dx| reaches the
maximum at the rear stagnation point (θ = 2π) for the first time at t � 0.35.
This maximum point moves upstream, causing a thin embedded recirculation
sublayer that signifies a weak separation (Sect. 5.1), but the boundary-layer
equation remains valid. Then the boundary layer starts to thicken at θ �
115◦ at t = 1.3–1.4, followed by break-away separation and formation of
separated vortex. This evolution can be seen from the numerical result of Ta
Phuoc Loc and Bouard (1985) shown in Fig. 5.15 for the initial stage (t ≤
1.6) of the flow history at Reynolds number Re = 9, 500 (a later-time state
was shown in Fig. 4.24). The computed flow picture is in excellent agreement
with an accurate experimental visualization of Bouard and Coutaneau (1980).
Note that the separation point defined by (5.1) for steady flow, referred to
as the zero-τ point henceforth, differs significantly from the boundary-layer
separation point.
9 Here and below, whenever no confusion can be caused we neglect the suffix comma
for partial derivatives.
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Fig. 5.15. Early stage of flow separation from an impulsively started circular cylin-
der at Re = 9, 500. From Ta Phuoc Loc and Bouard (1985)

An unsteady boundary-layer separation with high-frequency oscillating
components was carefully studied by Despard and Miller (1971), who also
observed the difference of the zero-τ point and separation point S. The zero-
τ point oscillates along the wall, generating a thin recirculation sublayer that
shoots upstream ahead of S, then moving downstream to meet S again, and
then turning back. This is sketched in Fig. 5.16, where at each station two
envelopes of the velocity profiles during a cycle are shown, and point A is the
farthest upstream end of the zero-τ point during the cycle. The authors found
that S is basically fixed, until which the outer flow remains attached.

The preceding examples clearly indicate that Prandtl’s criterion (5.1) can-
not characterize unsteady boundary-layer separation at all, and generic flow
separation is very different from boundary-layer separation. This is easily un-
derstood by considering the separation from down- and upstream moving walls
(Fig. 5.17a,b), where there must be an attached sublayer below the separation
point and hence no zero-τ point on the wall exists. Consequently, instead of
the zero-τ point as a semisaddle on the wall, the boundary layer separation is
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Fig. 5.16. Envelopes of velocity profiles for periodic oscillations. The dashed lines
and arrows indicate the extreme positions of the tangents to the profile at the wall.
From Telionis (1981)

now characterized by an interior saddle point where the vortex layer bifurcates.
The two separation patterns in Fig. 5.17a,b can be realized at opposite sides
of a single flow past a rotating circular cylinder, as has been confirmed by an
experimental visualization of Koromilas and Telionis (1980). Note that while
the moving-wall separations of Fig. 5.17a,b may still be steady, a Galilean
transformation can cast them to unsteady flows with separation point mov-
ing up- and downstream as sketched in Fig. 5.17c,d, which correspond to the
separation at adverse and favorable pressure gradients, respectively.

A truly unsteady flow with downstream-moving separation point has been
experimentally realized by Didden and Ho (1985), who used a nozzle to pro-
duce a series of vortex rings impinging on a flat plate. Each primary vortex
ring induces a local high-speed and low-pressure flow region near the wall,
downstream which (with increased radial distance r) the pressure recovers to
form an unsteady adverse pressure gradient that thickens the boundary layer
and causes secondary separated vortex rings.10 But the unsteady separation
point is still in the region with dp/dr < 0, where a phase-averaged velocity
profile similar to Fig. 5.17d was observed.

Like the study of steady boundary-layer separation, in unsteady case one
also needs a set of criteria to identify where and when the separation happens.
This was proposed by Moore (1958), Rott (1956), and Sears (1956) based
on the inspection of flow patterns like Fig. 5.17. These authors assert that
the separation point should be a zero-vorticity point inside the layer and
move with local streamwise flow speed. Namely, using s to denote both the

10 The interaction of a vortex ring and a wall can be very complicated. Its two-
dimensional counterpart, the interaction of a vortex couple and a wall, will be
discussed in Sect. 8.4.1.
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Fig. 5.17. Streamline patterns and velocity profiles near separation points viewed
at different frame of references. The upper figures are steady separation over (a)
downstream moving wall and (b) upstream moving wall. The lower figures are un-
steady separation with (c) upstream moving separation point and (d) downstream
moving separation point, compared with the profile (dash lines) at steady separation
point. Based on Telionis (1981) and Didden and Ho (1985)

separation point and its coordinates,

ωs = −uy(s) = 0, us = xt(s). (5.72a,b)

This criterion is known as the MRS criterion.11 Physically, during the sep-
aration the upper part of the boundary layer peels off from the wall with an
attached vortex layer, and in between an irrotational region develops. The on-
set of this process is signified by the appearance of the interior saddle point.
For steady flow this criterion evidently degenerates to (5.1) where the bound-
ary vorticity ωB = 0 at s.

Because near s the boundary-layer thickness is much larger than Re−1/2,
like the Goldstein singularity in steady boundary-layer separation, s is also
a singular point of the unsteady boundary-layer equation (here and later we
denote all variables in boundary-layer scale by lower-case letters)

ut + uux + vuy = uet + ueuex + uyy. (5.73)

Then Sears and Telionis (1975; see also Telionis 1981) show that the unsteady
version of the heuristic reasoning of Sect. 5.3.1 leads to a generalization of
11 One of the original statements of the MRS criterion says that s is stationary in

the frame of reference fixed to it, thus containing a logic cycle. Condition (5.72b)
was derived by Sears and Telionis (1975), see later.
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(5.41), from which (5.72) can be derived. In fact, let s have streamwise coor-
dinate xs(t). The Landau–Lifshitz argument for the singularity with vy →∞
(Sect. 5.3.1) now implies a coordinate expansion

xs − x = f(y, t)(us − u)2 + · · · , (5.74)

where us = u(xs, y, t) = us(y, t). Then let the normal coordinate of s be ys(t),
u can be expanded to

u(x, y, t) = us(y − ys, t) + f0,y(xs − x)1/2 + f1,y(xs − x)3/4 + · · · , (5.75a)

where us and f0, f1, ... are functions of (y − ys, t). From (5.75a) and the
continuity equation ux + vy = 0 it follows that

v(x, y, t) =
1
2
f0(xs − x)−1/2 +

3
4
f1(xs − x)1/4 + · · · . (5.75b)

Substituting (5.75a,b) into (5.73) yields an equation for the coefficients of the
leading term (xs − x)−1/4:

f0(us − Us),y − f0,y(us − Us) = 0,

where Us(t) ≡ dxs/dt is the velocity of s. Thus f0 = A(t)[us(y− ys, t)−Us(t)]
with A indeterminate. Putting this back to (5.75a,b) yields

u(x, y, t) = u0 +Aus,y(xs − x)1/2 +O((xs − x)3/4), (5.76a)

v(x, y, t) =
1
2
A(us − Us)(xs − x)−1/2 +O((xs − x)−1/4), (5.76b)

where u0 and us are functions of (y − ys, t), and Us and A depend on t. For
steady flow over stationary wall all functions are independent of t, so Us = 0,
Vs ≡ dys/dt = 0, and ys is constant that can be set zero. Then since u = 0
on the wall, (5.76a) indicates that there is also uy(s) = −ωs = 0 at y = 0.
This reduces to Prandtl’s criterion (5.1a), and meanwhile (5.76) is reduced to
(5.41).

For unsteady flow, the wall condition is no longer applicable. Because only
the upper layer of the separating boundary layer becomes a free vortex layer,
it can be argued that (5.76a) holds only for y ≥ ys(t). Moreover, assume that
v is regular at s and hence the coefficient of (xs − x)−1/2 in (5.76b) must
vanish. Then we obtain

u(s, t) = U(s, t), (5.77a)

indicating that the separation point is a bifurcation point moving with local
streamwise velocity. Then, taking the derivative of (5.76a) with respect to
xs − x and requiring that ∂u/∂(xs − x) remains bounded at ys, we also have

ωs = −
∂us
∂y

∣∣∣
y=ys(t)>0

= 0. (5.77b)

Evidently, (5.77a,b) is precisely (5.72).
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5.4.2 Lagrangian Theory of Unsteady Boundary Layer Separation

The earlier Sears–Telionis coordinate expansion provides a strong support to
the MRS criterion but still in a heuristic way. One needs to develop a rational
theory, which not only explains the physics behind the MRS criterion but also
yields the time scale when the singularity happens, and furthermore to remove
the singularity in a small space-time zone as was done by the triple-deck theory
of Sect. 5.3 for steady boundary-layer separation. Unfortunately, adding the
time dimension within the Eulerian description makes the required matched
asymptotic expansion extremely complicated. Even in two dimensions such
a task is still incomplete (e.g., Sychev et al. 1998). However, the difference
between steady and unsteady flows disappears in the Lagrangian description,
suggesting that flow separation is essentially a material evolution process.
This observation motivated Van Dommenlen and Shen (1982) to formulate a
Lagrangian theory of unsteady boundary-layer separation in late 1970s, which
is free from many difficulties encountered in the Eulerian description. The
theory has now been developed to cover three-dimensional compressible flow.
Its two-dimensional incompressible version is presented later, mainly following
Shen (1978), Van Dommenlen and Shen (1982), Van Dommenlen and Cowley
(1990), and Cowley et al. (1990).

It has been remarked following (5.39) that in the boundary layer equa-
tion for attached flow there is neither normal diffusion nor normal pressure
gradient to balance a strong upwelling v  Re−1/2, and hence it may grow
unboundedly to cause a singularity. This observation equally applies to un-
steady flow, and implies that a material fluid element can be squashed to
zero thickness in the x-direction but with an infinite length in the normal
direction, as sketched in Fig. 5.18. Consequently, an infinite normal velocity
is generated and the fluid elements above the squarshed one are ejected from
the boundary layer. This is the basic mechanism that causes boundary-layer
separation in both steady and unsteady flow, but for unsteady flow the La-
grangian description of such fluid element deformation is much simpler than
the Eulerian description.12

The fluid element path is described by

x = x(ξ, τ), y = y(ξ, τ), (5.78)

where ξ = (ξ, η) are the initial coordinates of the element (its “labels”) and
τ = t the Lagrangian time. Then the velocity components are

u = xτ , v = yτ . (5.79)

12 Like the Goldstein singularity in steady boundary-layer separation, the singularity
in unsteady boundary-layer separation might not be inevitable either. On the
other hand, it will be seen later (Fig. 5.22) that a sharp spike may develop near
the separation point, but the flow remains regular.
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Fig. 5.18. Fluid element deformation leading to separation. From Cowley et al.
(1990)

The derivatives in the two sets of coordinates (x, y, t) and (ξ, η, τ) are related
by ξx ξy ξt

ηx ηy ηt
τx τy τt

 =

xξ xη xτyξ yη yτ
tξ tη tτ

−1

= J−1

 yη −xη vxη − uyη
−yξ xξ uyξ − vxξ
0 0 J

 , (5.80)

where
J = xξyη − yξxη = 1 (5.81a)

is the Jacobian for incompressible flow, see (2.40), which may then be written
in characteristic form for numerical integration:

dξ : dη : dτ : dy = −xη : xξ : 0 : 1. (5.81b)

Moreover, by using (5.80) there is

∂

∂x
= yη

∂

∂ξ
− yξ

∂

∂η
,

∂

∂y
= xξ

∂

∂η
− xη

∂

∂ξ
. (5.82)

Then, by (5.82), in (5.73) we have

∂yu = −ω = xξuη − xηuξ, (5.83a)

which is also an expression in boundary-layer approximation of the Lagrangian
vorticity Ω(ξ, τ) defined in the reference space spanned by ξ, see (3.133a) and
Sect. A.4, where it is shown that Ω = ω for two-dimensional incompressible
flow. In vector form, let ∇ξ denote the gradient operator in the reference
space, (5.83a) can be written

ω = Ω = ∇ξu×∇ξx. (5.83b)

Then (5.73) is cast to the Lagrangian boundary-layer equation

uτ = ue,t + ueue,x − (xξΩη − xηΩξ), (5.84)

which is a dynamic system to be solved jointly with (5.79) and (5.83b) under
given initial condition
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x = ξ, y = η, u = u0(ξ, η), v = v0(ξ, η) at τ = 0. (5.85)

The boundary conditions are essentially the same as in the Eulerian descrip-
tion:

(x, u) = (ξ, 0), (y, v) = (0, 0) on η = 0, (5.86a)
xτ = u→ U(x, t) as η →∞. (5.86b)

Once the integration of (5.83) to (5.86) gives x = x(ξ, η, τ) at a subsequent
time, one obtains y(ξ, η, τ) from (5.81b), and then velocities from (5.79).

An inspection of this Lagrangian formulation reveals a key simplification:
owing to the approximate nature of (5.73), the streamwise position x and
velocity u can be solved independently from solving the normal position y
and velocity v. Moreover, although a rigorous proof is not available, there has
been strong evidence that the dynamic system (5.83–5.86) remains regular
even after the singularity is formed (but the solution for t > ts may not
be physically realistic). Accepting this as a hypothesis, then, the singularity
develops solely from the continuity equation. In this sense, the theory is entirely
within kinematics. In particular, (5.81a) indicates that the mechanism for the
singularity to occur is similar to the formation of shock in gas dynamics due
to the coalescence of characteristics. In fact, the fluid-element normal location
y can be found by integrating (5.81b) along the curves x = const. in the (ξ, η)
plane. Let l be the arclength along such a curve with l = 0 at the wall η = 0,
then

y =
∫ l

0

dl
|∇ξx|

=
∫ s

0

dl
(x2ξ + x2η)1/2

. (5.87)

Now, at the separation point ux should be unbounded; so if uξ and uη is
bounded then (5.82) implies that yξ and/or yη must be unbounded. Thus, the
mapping between (x, y) and (ξ, η) is singular, which in (5.87) manifests as

∇ξx = 0 at (ξ, t) = (ξs, ts). (5.88)

This singularity condition has two effects. First, all infinitesimal deformations
δξ of fluid element do not cause any change of the streamwise position of the
element in physical space:

δx = δξ · ∇ξx = 0 at (ξ, t) = (ξs, ts). (5.89)

Namely, as fluid elements move along their pathlines, they are blocked and
squashed at a vertical barrier at some x, and hence must extend unbound-
edly along the normal as schematically shown in Fig. 5.18, resulting in the
separation.

Second, by (5.83b) we see at once that (5.88) implies the first part of the
MRS criterion, (5.72a) or (5.77b). Therefore, when the fluid-element squashing
process reaches the singular state, it reaches zero-vorticity state too. Because
the Lagrangian description does not distinguish steady and unsteady flow,



5.4 Unsteady Separation 243

Shen (1978) points out that the same mechanism as sketched in Fig. 5.18
is also responsible for the Goldstein singularity in steady separation within
boundary-layer approximation, and the MRS version of the Prandtl condition
(5.1) is derivable from (5.87) that is “no more than a formalized expression
of the Prandtl concept — that the boundary layer must break away when a
packet of fluid particles are stopped in their forward advance along the wall.”

The second part of the MRS criterion can also be derived from (5.88). In
fact, denote the Lagrangian coordinates of the singularity point by ξMRS, of
which the propagation speed is (a dot denotes d/dt), owing to (5.88),

d
dt
x(ξMRS, t) = ẋ+ ξ̇MRS · ∇ξx = ẋ, (5.90)

which is indeed the local streamwise velocity of the element, in agreement
with (5.77a). Therefore, the MRS criterion is rationalized.

Van Dommenlen and Shen (1982) conducted a numerical calculation based
on the earlier theory for flow over impulsively started circular cylinder. As
sketched in Fig. 5.19, the singular point was found to appear at θ = 111◦

and t = 3.0045, which moves upstream with u = −0.52U . The separation
location differs from the full Navier–Stokes solution (Fig. 5.15) since the former
is for Re → ∞ asymptotically rather than at a finite Reynolds number. The
separation location is also different from that of the Goldstein singularity for
steady flow, θ = 104.5◦. After the singularity is formed, the upper part of
the boundary layer turns to a free separated vortex layer. On top of Fig. 5.19
are the profiles of velocity and vorticity (normalized by wall vorticity) close to
separation, from which it is evident that as the bifurcation tears the boundary
layer apart the irrotational region in between is enlarged.

We now introduce local scales in the neighborhood of (ξs, ts) so that the
singularity can be removed. Assume ts is the first time for a singular boundary-
layer separation point to form. Since x(ξ, t) is a regular function of ξ and t
around (ξs, ts) one can perform a Taylor expansion of x and form the deck
structure thereby. Meanwhile, (5.88) should also be expanded to a Taylor
series since it may not be satisfied anywhere for δt = t − ts < 0. To simplify
the expansion, let δξ = ξ − ξs, and make a proper shift and rotation of the
previous arbitrarily chosen Lagrangian coordinate system to a new system
(l1, l2, t) . The Jacobian J is invariant under the coordinate transformation,
and has characteristics

dl1
dy

= −x,22l2 + · · · ,
dl2
dy

=
1
2
x,111l

2
1 + ẋ,1δt+ · · · , (5.91a,b)

which results in a singularity when both right-hand side expressions vanish.
Although at t = ts the boundary-layer approximation blows up, at times
shortly before ts a rescaled asymptotic expansion can be conducted to describe
the flow field. After some algebra, it can be found that the proper scales are

l1 = |δt|1/2L1, l2 = |δt|3/4L2, (5.92a,b)
x̄ ≡ x− x(ξs, t) = |δt|3/2X, y = |δt|−1/4Y, (5.93a,b)
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Fig. 5.19. Vorticity contours obtained from the Lagrangian boundary-layer equa-
tion for impulsively started circular cylinder. t = 3.0045. On top are the profiles of
velocity and vorticity (normalized by wall vorticity) close to separation. Reproduced
from Van Dommenlen and Shen (1982)
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O (|dt |-1/4)
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Fig. 5.20. Scales of unsteady boundary-layer bifurcation at δt before singularity is
formed. Reproduced from Cowley et al. (1990)

where L1, L2,X, Y = O(1). These scales at a δt < 0 are shown schematically
in Fig. 5.20.

Then, integrating (5.91) yields an analytical solution for Y , and a further
O(1) transformation (L1,X, Y )→ (L∗

1,X
∗, Y ∗) similar to (5.55) can scale out

all coefficients. In terms of the variables with asterisk, the analytical solution
takes canonical form
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Y ∗ ∼
∫ L∗

0

−∞

dL∗

(2X∗ − 3L∗ − L∗3)1/2
±
∫ L∗

0

L∗
1

dL∗

(2X∗ − 3L∗ − L∗3)1/2
, (5.94)

where L∗
0 is the real root of the cubic polynomial in the square root of the

denominator. The solution (5.94) can be cast to elliptic integrals of the first
kind. The signs of the square roots and the limits of integration are determined
by the topology of the lines of constant X∗ that consists of three segments
shown in Fig. 5.20. Leaving the mathematic details aside, the scaled vorticity
contours of the nearly separated boundary layer is shown in Fig. 5.21, which
also shows the sudden thickening of the boundary layer.

Finally, similar to the steady case where the scaling is closed by find-
ing the relation of the lower-deck thickness δ and Re, we now need to close
the theory by finding the relation of δt and Re. Once again, since the MRS
criterion implies the shearing is vanishingly small near S, the only possible
mechanism to balance the normal extension of fluid elements is the normal
pressure gradient ∆py ∼ ∆px in an irrotational upper deck. In the separation
zone shown in Fig. 5.20, as a fluid element moves past a streamwise extent
O(|δt|3/2) but climbs up a thickness (in global scale) O(Re−1/2|δt|−1/4), it
experiences a upwelling velocity v of O(Re−1/2|δt|−7/4). The balance in the
normal momentum, ∂v/∂x = −∂p/∂y, together with the fact that x ∼ y in
the upper deck, indicates that the locally induced pressure reads

∆p ∼ v ∼ Re−1/2|δt|−7/4.

So the pressure gradient is

∆px ∼ Re−1/2|δt|−7/4 · |δt|−3/2 = Re−1/2|δt|−13/4.

Then an unsteady triple-deck interaction (strictly, it is a quadruple structure)
appears if ∆px is of the same order as the acceleration xtt = O(|δt|−1/2) in
the expanding central region. This balance occurs when

Re−1/2|δt|−13/4 = |δt|−1/2, i.e. |δt| = O(Re−2/11). (5.95)

-10 0
0
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10

10
X*

Y*

20

Fig. 5.21. Canonical vorticity contours near separation. From Cowley et al. (1990)
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By (5.93b), at this time the scaled boundary-layer displacement thickness has
grown to O(Re1/22).

The earlier scalings are in agreement with the analysis in terms of Eulerian
description (e.g., Elliott et al. 1983) as well as some numerical tests. How-
ever, the very small power of Re may lead to large difference between theory
and experiment at moderate Re. A more fundamental problem of unsteady
boundary-layer separation theory, in either Lagrangian or Eulerian descrip-
tion, is that the unsteady triple-deck structure itself turns out to terminate
at yet another finite-time singularity. While it is possible to rescale the vari-
ables at times close to this new singularity in an even shorter time-scale, the
rescaling process may have to go on as a cascade. It remains an open issue
on whether this situation reflects the physical cascade process in tranasition
to turbulence associated with successive instabilities at a series of decreasing
scales, or simply due to the limitation of the matched asymptotic theory itself.

5.4.3 Unsteady Flow Separation

We now turn to generic unsteady separation. Although some of the results
of Sect. 5.2 are equally applicable to unsteady flow, a complete, general, and
local unsteady separation theory had not been available until a very recent
work of Haller (2004), who obtained an exact two-dimensional theory for both
incompressible and compressible unsteady flow with general time dependence,
applicable to arbitrary stationary or moving wall. The theory is essentially of
kinematic nature, in which the separation point (to be defined later) can be
either fixed on the wall or moving along the wall. The consistency of the the-
ory with both Prandtl’s theory for two-dimensional steady separation and the
Lagrangian theory unsteady boundary-layer separation has been confirmed.
The theory has been further improved by Haller and coworkers, and extended
to three dimensions (Kilic et al. 2005; Surana et al. 2005b,c). Therefore, we de-
vote this subsection to an introduction to Haller’s unsteady separation theory
based on Haller (2004) and Kilic et al. (2005), focusing on the simplest case.
Namely, we assume the flow is incompressible with ρ = 1, and the separation
point is fixed to a no-slip wall ∂B at y = 0, referred to as fixed separation.
Its results turn out to apply to any unsteady flow with a mean component,
including turbulent boundary layers and flows dominated by vortex shedding.

The assertion made in Sect. 5.4.2, that flow separation is essentially a ma-
terial evolution process, can be clearly demonstrated by the time evolution
of a fixed separation and reattachment for an analytical periodic flow model
shown in Fig. 5.22 (see (5.111) later). Similar to Fig. 5.19, a set of mater-
ial lines initially aligned to the wall evolves to form an upwelling, then a
singular-looking tip, and then a sharp spike. More crucially, there appears
a distinguished material line, which attracts fluid particles released from its
both sides and ejects them into the main stream. This special material line
signifies the separation profile, of which a rational identification is the key
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(a) (b) (c)

(d) (e) (f)

Fig. 5.22. Time evolution of material lines and streamlines for a periodic separation
bubble model (5.109) with circular frequency 2π. (a) t = 0, (b) t = 8.2, (c) t = 9.95,
(d) t = 15.0, (e) t = 18.65, (f) t = 25. The time-dependent curve initially cutting the
material lines but then serving as their approximate asymptotic line is the separation
profile (up to quadratic order) to be identified later. From Haller (2004)

of a general separation theory. Note that Fig. 5.22 shows that instantaneous
streamlines are irrelevant when the separation is unsteady.

This being the case, we start from the dynamic system (5.5):

ẋ = u(x, y, t), ẏ = v(x, y, t), (5.96)

which due to the no-slip condition and continuity can be cast to, similar to
(5.31),

ẋ = yA(x, y, t), ẏ = y2C(x, y, t), (5.97)

where

A(x, y, t) =
∫ 1

0

uy(x, sy, t)ds,

C(x, y, t) =
∫ 1

0

∫ 1

0

vyy(x, sqy, t)q dq ds.
(5.98)

The incompressibility further requires

Ax + 2C + yCy = 0. (5.99)

Now, denote the material line signifying the separation profile byM(t), which
as seen in Fig. 5.22 is “anchored” to the fixed separation point (x, y) = (γ, 0)
for all t by the no-slip condition. In dynamic system terms,M(t) is an unstable
manifold for a fixed point on the wall, locally described by a time-dependent
path

x = γ + yF (y, t). (5.100)
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While generic material lines emanating from the wall converge to the wall as
t→ −∞,M(t) is an exception, with the following properties:

1. it is unique, i.e., no other separation profile emerges from the same bound-
ary point;

2. it is transverse, i.e., does not become asymptotically tangent to the wall
in backward time;13 and

3. it is regular up to nth order (n ≥ 1), i.e.,M(t) admits n derivatives that
are uniformly bounded at the wall for all t.

Then, substituting (5.100) into (5.97), one finds thatM(t) satisfies a par-
tial differential equation (the separation equation)

Ft = A(γ + yF, y, t)− yC(γ + yF, y, t)(F + yFy), (5.101)

from which unsteady separation criteria can be deduced. By (5.100), approx-
imate separation profile can be expressed by series expansion

x = γ + f0(t)y + f1(t)y2 +
1
2
f2(t)y3 +

1
6
f3(t)y4 + · · · , (5.102)

where f0(t) and f1(t) are the slope relative to the y-axis and curvature of
M(t) at (x, y) = (γ, 0), respectively.

Consider separation criteria first. Setting y = 0 in (5.101) yields a linear
equation ḟ0(t) = a(t), thus (t0 is an arbitrary reference time)

f0(t) = f0(t0) +
∫ t

t0

A(γ, 0, τ)dτ. (5.103)

Since by the earlier property (2)M(t) cannot become asymptotically tangent
to the wall, f0(t) must be uniformly bounded. By (5.98) and uy = −ω on the
wall, therefore, a necessary separation criterion is

lim
t→−∞

sup
∣∣∣ ∫ t

t0

uy(s, τ)dτ
∣∣∣ = lim

t→−∞
sup

∣∣∣ ∫ t

t0

ω(s, τ)dτ
∣∣∣ <∞, (5.104)

where and below s denotes the separation point (γ, 0). For steady separation
the integral becomes ωs(t−t0), so (5.104) is reduced to Prandtl’s first criterion
(5.1a).

Then, as the generalization of (5.1b), by using vyy = −uyx = ωx on the wall
and after some algebra, it can be proved that the second necessary separation
criterion is ∫ −∞

t0

uxy(s, τ)dτ = −
∫ −∞

t0

ωx(s, τ)dτ =∞, (5.105)

13 All other material lines that start to be transverse remain so for any finite time,
but become tangent to the wall as t → −∞ (G. Haller, 2005, private communi-
cation).
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which for steady flow becomes (t0 +∞)ωx =∞ and hence ωx > 0, equivalent
to (5.1b). In particular, for periodic flow with period T , the integration interval
in (5.104) can be replaced by (0, T ); while in (5.105) one splits the integrand
into a mean and an oscillating part, with the former having to be negative.
Thus, the two necessary separation criteria are simply reduced to∫ T

0

ω(s, t)dt = 0,
∫ T

0

ωx(s, t)dt > 0. (5.106a,b)

In general, criterion (5.104) can be expressed in a form more suitable for
computations. Recall that any material lines emanating from any wall points
near s will align with the wall as t → −∞, which by (5.103) is possible only
if, for sufficiently small |x− γ|,∫ −∞

t0

uy(x, 0, τ)dτ =
{
+∞ if x > γ,
−∞ if x < γ.

Thus, the backward integral of uy = −ω at s admits a sign change arbitrarily
close to s for sufficiently large |t− t0|. Then, since the integral

it(x) ≡
∫ t

t0

uy(x, 0, τ)dτ (5.107)

is a continuous function of x at any t, it must have at least one zero that
approaches s as t → −∞. Therefore, we may define an effective separation
point γeff(t, t0) by∫ t

t0

uy(γeff , 0, τ)dτ = 0 such that γ = lim
t→−∞

γeff(t, t0), (5.108)

see Fig. 5.23. The reattachment point can be similarly defined.
Moreover, while criteria (5.104) and (5.105) permit weak separation by

which particles near s may turn back towards the wall for a finite period of
time, a slight revision of (5.105) can give a sufficient condition for stronger
monotonic separation by which particles near s move away monotonically
from the wall without turning back. Haller (2004) proves that this is simply
ensured by

−uxy(s, t) = ωx(s, t) > c0 > 0, (5.109)

of which the physical implication is obvious (cf. Fig. 4.12).
Haller (2004) has used the earlier theory to derive explicit general formulas

for the time-dependent coefficients f0(t), f1(t), ... of (5.106) up to quadratic
order. In particular, for steady flow the slope ofM reduces to

f0 = − uyy(s)
3uxy(s)

= − px(s)
3τx(s)

,
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it(x )

geff(t1,t0)

geff(t2,t0)

g

t = t2>t1 t = t1

x

Fig. 5.23. The convergence of γeff to γ

in agreement with (5.30) where φ is the angle of the separation line relative
to the x-axis. The second equality uses the Navier–Stokes equation as we did
in Sect. 5.2, except which all the earlier results are evidently kinematic; use
was made of only the continuity equation.

The fixed separation conditions (5.104) and (5.105) have been improved
by Kilic et al. (2005), assuming that the unsteady velocity fields under con-
sideration admit a finite time asymptotic average in time. After some lengthy
algebra, the authors show that (5.104) and (5.105) can be replaced by

lim
T→∞

1
T

∫ t0

t0−T
ω(s, t)dt = 0, (5.110a)

lim
T→∞

1
T

∫ t0

t0−T
ωx(s, t)dt > 0, (5.110b)

which are a direct generalization of (5.106) to aperiodic flow.
As an analytic example, consider a periodic separation bubble model de-

rived by Ghosh et al. (1998),

u(x, y, t) = −y + 3y2 + x2y − 2
3y

3 + βxy sinnt,

v(x, y, t) = −xy2 − 1
2βy

2 sinnt.
(5.111)

Substituting this model into (5.108) yields (γ2 − 1)T = 0 and 2γT > 0,
T = 2π/n. Thus, the fixed separation point is at γ = −1 and the reattach-
ment point at γ = +1, as shown in Fig. 5.22 for n = 2π and β = 3, which
is in agreement with the numerical observation of Ghosh et al. (1998). The
expansion coefficients f0(t), ..., f3(t) can also be derived, which gives the ap-
proximate separation profile also shown in Fig. 5.22.

The preceding unsteady separation theory indicates that the final results
on the separation definition and criteria are fully Eulerian that do not require
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the advection of fluid particles. This is a unique advantage of the theory. Like
the general three-dimensional steady separation theory of Sect. 5.2, this un-
steady theory meets three highly desired requirements proposed, respectively,
by Sears and Telionis (1975), Cowley et al. (1990), and Wu et al. (2000),
and summarized by Haller: independent of our ability to solve the boundary-
layer equations accurately; independent of the coordinate system selected; and
expressible solely by quantities measured or computed along the wall.

Summary

1. Phenomenologically, flow separation is a local process in which fluid ele-
ments adjacent to a wall no longer move along the wall but turn to the
interior of the fluid. In its strong form and at large Reynolds numbers, the
process may evolve to boundary-layer separation where the whole layer
breaks away and thereby significantly alters the global flow field. Physi-
cally, flow separation is due to the boundary coupling of the two funda-
mental dynamic processes. A near-wall adverse pressure gradient yields a
boundary vorticity flux σp, which creates new vorticity with direction dif-
ferent from that of existing one, so the accumulation of the former in space
and time causes a transition of the near-wall vorticity from being carried
along by the wall to shedding off. Thus, a vorticity-dynamics description
of separation is especially illuminating, which can be obtained from the
conventional momentum considerations owing to the on-wall equivalence
between the τw-field and its orthogonal ωB-field, and that between the
∇πp-field and its orthogonal σp-field.

2. A general flow-separation process without any specification to its strength
can be studies in an infinitesimal neighborhood of a separation point or
separation line, by using a Taylor expansion of the continuity and Navier–
Stokes equations. The criteria for separation zone and separation line at
large Reynolds numbers can be formulated in terms of the earlier two
pairs of orthogonal on-wall vector fields. For steady separation and in two
dimensions, the criteria amount to those well-known ones due to Prandtl.
In three dimensions, the separation zone is characterized by the strong
converging of τ -lines or large positive on-wall curvature of ω-lines. If the
separation starts at a fixed point of the τ -field (“closed separation”), a
generic separation line can be uniquely determined. But at large Re a
significant separated free shear layer may start to form and/or cease to
shed off at ordinary points of a τ -line; for which the separation line may
be approximately identified as the line with maximum ω-line curvature in
the separation zone.

3. Boundary-layer separation at large Re involves the flow behavior in the
whole layer and its interaction with external flow in a small but finite
zone. Although this process is governed by the Navier–Stokes equation,
the matched asymptotic expansion has contributed an elegant triple-deck
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theory that clarifies the underlying physics and represents the second gen-
eration of the boundary-layer theory. The triple-deck theory has been fully
developed for steady separation, but becomes difficult for unsteady sep-
aration due to the involvement of different time scales at different stages
of separation process. So far the only successful theory for this situation
is based on the Lagrangian description, which confirms the MRS criterion
and extends it to three dimensions.

4. Both generic flow separation and boundary-layer separation are essentially
material evolution processes, and hence favors the use of Lagrangian de-
scription when the flow is unsteady. This explains the success of the La-
grangian approach and difficulty of the Eulerian approach to unsteady
boundary-layer separation. For generic unsteady flow separation, a com-
plete local theory can be developed also by starting from the Lagrangian
description, of which however the final results on the separation criteria
and separation profile can still be expressed by on-wall Eulerian variables.
The on-wall signatures of separation can be used as a convenient tool in
complex flow diagnosis and separation control.



Part II

Vortex Dynamics



6

Typical Vortex Solutions

In Chap. 4 we have studied attached and free vortex layers, and seen that
the rolling up of a free vortex layer forms a vortex which has the highest
possible vorticity concentration as mentioned in the beginning of Sect. 1.3
(the formation process of vortices will be further discussed in Sect. 8.1). In this
chapter we start the dynamics of vortices by presenting a number of typical
exact viscous and inviscid vortex solutions, and asymptotically approximate
vortex solutions, followed by a basic open issue on how to rationally define a
vortex.

Exact solutions can provide a thorough physical understanding, serve as
the testing bed of the accuracy of approximate approaches and as the basic
flow in their stability analyses (Chap. 9). However, exact Navier–Stokes vortex
solutions, mostly confined to incompressible flow (see reviews of Wang 1989,
1991), are obtainable only under highly idealized conditions. In certain aspects
they behave quite unrealistic, and some solutions may correspond to real flows
only in a local region and/or a finite period of time.

In reality there is no single isolated straight vortex with nonzero total
circulation. Vortices always appear as loops (in three dimensions) or in pairs
(in two dimensions), and hence each vortex is in the strain field caused by
other vortices and boundary conditions. For a thin-core strained vortex one
may find asymptotic solutions analytically, which complement the shortage of
exact solutions and may also play similar roles as the exact solutions.

Unless stated otherwise, throughout this chapter we assume the flow is
incompressible flow with ρ = 1.

6.1 Governing Equations

The geometric characters of columnar vortices and vortex rings makes it often
convenient to use a cylindrical coordinate system (r, θ, z) with u = (u, v, w)
and ω = (ωr, ωθ, ωz). By the general formula for any vector A
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∇×A =
1
r

∣∣∣∣∣∣∣
er reθ ez

∂r ∂θ ∂z

Ar rAθ Az

∣∣∣∣∣∣∣ , (6.1)

the vorticity components are given by

ωr =
1
r

∂w

∂θ
− ∂v

∂z
, ωθ =

∂u

∂z
− ∂w

∂r
, ωz =

1
r

∂(rv)
∂r

− 1
r

∂u

∂θ
. (6.2)

The continuity equation reads:

1
r

∂(ru)
∂r

+
1
r

∂v

∂θ
+

∂w

∂z
= 0, (6.3)

and the Crocco–Vazsonyi equation (2.163) along with (2.164) gives

∂u

∂t
+ (wωθ − vωz) = −

∂H

∂r
− ν

(
1
r

∂ωz
∂θ
− ∂ωθ

∂z

)
, (6.4a)

∂v

∂t
+ (uωz − wωr) = −

1
r

∂H

∂θ
− ν

(
∂ωr
∂z
− ∂ωz

∂r

)
, (6.4b)

∂w

∂t
+ (vωr − uωθ) = −

∂H

∂z
− ν

r

(
∂(rωθ)
∂r

− ∂ωr
∂θ

)
, (6.4c)

where H = q2/2 + p is the total enthalpy. Whenever needed, substituting
(6.2) to (6.4) yields the common component momentum equations in terms of
velocity and pressure. One of the component forms of the vorticity transport
equations is

Dωr
Dt

= ω · ∇u+ ν

(
∇2ωr −

ωr
r2
− 2

r2
∂ωθ
∂θ

)
, (6.5a)

Dωθ
Dt

+
vωr
r

= ω · ∇v + ωθu

r
+ ν

(
∇2ωθ +

2
r2

∂ωr
∂θ
− ωθ

r2

)
, (6.5b)

Dωz
Dt

= ω · ∇w + ν∇2ωz, (6.5c)

where

D
Dt

=
∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z
, (6.6)

∇2 =
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
+

∂2

∂z2
. (6.7)

We now focus on axisymmetric flow, for which H does not enter the
azimuthal momentum balance. An inspection of (6.1.5) with ∂/∂θ = 0 in-
dicates that if u = (0, v(r, t), 0), then ω = (0, 0, ωz(r, t)) has only one nonzero
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component. This kind of vortices are called pure vortices, with all vorticity
lines being along the axis and all streamlines are closed circles centered at the
z-axis. Then, if w is nonzero and r-dependent, ωθ will appear too such that
the velocity and vorticity lines become helical. This kind of vortices are called
swirling vortices, having nonzero helicity density ω · u.

We have seen in Sect. 3.3.1 that a Stokes stream function ψ can be in-
troduced to ensure the continuity, which expresses u and w by (3.57) but
not v:

u = −1
r

∂ψ

∂z
, w =

1
r

∂ψ

∂r
. (6.8)

Thus, the velocity and vorticity, and hence their governing equations, can be
expressed in terms of two scalar functions, ψ and Γ = rv (differing from the
circulation around a circle centered at r = 0 by a factor 1/2π). Consequently,
(6.2) and (6.8) yield

ωr = −
1
r

∂Γ

∂z
, (6.9a)

ωz =
1
r

∂Γ

∂r
, (6.9b)

ωθ = −
[
∂

∂r

(
1
r

∂ψ

∂r

)
+

1
r

∂2ψ

∂z2

]
. (6.9c)

The role of Γ for ωr and ωz is exactly the same as that of ψ for u and
w. Contours of Γ and ψ on an (r, z)-plane are the intersections of vorticity
surfaces and stream surfaces with the plane, respectively. Then (6.4b) and
(6.5b) can be cast to

DΓ
Dt

= ν

[
r
∂

∂r

(
1
r

∂Γ

∂r

)
+

∂2Γ

∂z2

]
, (6.10a)

D
Dt

(ωθ
r

)
= ν

(
∇2 +

2
r

∂

∂r

)(ωθ
r

)
+

1
r4

∂Γ 2

∂z
, (6.10b)

which govern the azimuthal and meridional motions, respectively. Γ and ωθ
may serve as the basic variables to be solved, all other quantities can be
inferred therefrom. They are coupled solely through the z-dependence of v,
which happens, e.g., if the vortex hits a boundary at z = 0 as sketched in
Fig. 3.5a.

Most of existing exact vortex solutions, either viscous or effectively in-
viscid, were found when (6.5) can be linearized. That is, when the flow is
generalized Beltramian satisfying (3.63). It is therefore appropriate here to
examine when this happens in general (not confined to two-dimensional or ro-
tationally symmetric flows where ω or ω/r is a function f(ψ, t)). We consider
inviscid steady flow and viscous unsteady flow separately.
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Any incompressible, effectively inviscid, and steady flow must be general-
ized Beltramian, since then (2.163) is reduced to

ω × u = −∇H. (6.11)

In this case (6.10a) and (6.10b) are reduced to

u · ∇Γ = 0, (6.12a)

u ·
(ωθ
r

)
=

1
r4

∂Γ 2

∂z
. (6.12b)

Thus, the circulation along any circle around the vortex axis is conserved.
Since the flow is steady, a fluid particle moves along a streamline, and all fluid
motion occurs on the revolution surfaces generated by the family of curves
ψ = constant around the z-axis. Therefore, by (6.12a) there is Γ = C(ψ),
from (6.9a,b) and (6.12b) it follows that:

ωr = −
1
r

dC
dψ

∂ψ

∂z
= u

dC
dψ

, (6.13a)

ωz =
1
r

dC
dψ

∂ψ

∂r
= w

dC
dψ

, (6.13b)

ωθ
r

=
C

r2
dC
dψ
− dH

dψ
. (6.13c)

The expression of ωθ/r can be more directly obtained by considering the
z-component of (6.11):

uωθ − vωr =
∂H

∂z
;

then since by (6.11) u · ∇H = 0, we also have H = H(ψ), and hence (6.13c)
comes from (6.8). Therefore, there remains only a single differential equation
to be solved for steady inviscid axisymmetric flows:

r
∂

∂r

(
1
r

∂ψ

∂r

)
+

∂2ψ

∂z2
= r2

dH
dψ
− C

dC
dψ

. (6.14)

This equation is called the Bragg–Hawthorne equation (Bragg and Hawthorne
1950) or Squire equation since Squire (1956) re-derived it independently.

In passing, we note that (6.14) can be extended to nonaxisymmetric case
by using the transformation (2.112), a special form of the Helmholtz decom-
position:

u = ∇φ+∇ψ ×∇χ.

Since the two stream functions ψ and χ define two families of stream surfaces,
their intersections are streamlines along which H is constant. Thus, we have
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H = H(ψ, χ), and (6.11) becomes

ω × (∇ψ ×∇χ+∇φ) + ∂H

∂ψ
∇ψ +

∂H

∂χ
∇χ = 0

of which the projection to the directions of ∇ψ and ∇χ yields a pair of sym-
metric equations (Keller 1996)

ω · ∇χ+
∂H

∂ψ
= 0, ω · ∇ψ − ∂H

∂χ
= 0, (6.15a,b)

along with ∇2φ = 0. This set of equations are applicable to any three-
dimensional steady inviscid flows (still generalized Beltramian) and has been
used by Keller (1996) to study axisymmetric vortices with helical waves and
other relevant flows. When the flow is nonaxisymmetric, Γ = rv is no longer
an integral of the motion and the flow cannot be expressed by ψ alone.

On the other hand, by directly looking at the Lamb-vector components in
(6.4), we find that a viscous axisymmetric vortex with ωz �= 0 will be general-
ized Beltramian if and only if

u = 0 , v = v(r, t), w = w(r, t). (6.16a)

ωr = 0, ωθ(r, t) = −
∂w

∂r
, ωz(r, t) =

1
r

∂(rv)
∂r

. (6.16b)

In fact, (6.16) implies the three components of the Lamb vector are

lr = −
1
2
∂

∂r
(v2 + w2)− v2

r
, lθ = 0, lz = 0.

But now (6.4a) can be reduced to ∂p/∂r = v2/r with H = p + (v2 + w2)/2
even for viscous flow. Conversely, after rewriting (6.5) to make ∇ × (ω × u)
appear explicitly, an inspection of its component form indicates that with
ωz �= 0, for the flow to be generalized Beltramian it is necessary that u, v, w
are independent of z. Then (6.3) implies that u = C(t)/r, which would lead
to a singularity at the vortex axis if C �= 0. Hence (6.16) follows.

Once (6.16) holds, in (6.5) for ω = (0, ωθ, ωz), the viscous terms are solely
balanced by the unsteady terms

∂ωz
∂t

=
ν

r

∂

∂r

(
r
∂ωz
∂r

)
, (6.17a)

∂ωθ
∂t

= ν

[
1
r

∂

∂r

(
r
∂ωθ
∂r

)
− ωθ

r2

]
. (6.17b)

Note that although for a generalized Beltrami vortex (6.5) is linearized
and one has more chance to find analytical solutions, the most important
physical feature of a vortex, the stretching, is missing. The significance of
these generalized Beltrami vortices should not be overestimated.
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6.2 Axisymmetric Columnar Vortices

6.2.1 Stretch-Free Columnar Vortices

We start from the simplest stretch-free vortex solutions of the form (6.16). In
this case (6.4) is reduced to

∂p

∂r
=

v2

r
, (6.18a)

∂Γ

∂t
= νr

∂

∂r

(
1
r

∂Γ

∂r

)
, (6.18b)

∂w

∂t
= −∂p

∂z
+

ν

r

∂

∂r

(
r
∂w

∂r

)
. (6.18c)

Unlike (6.12b), v and w are now decoupled. If the flow is effectively inviscid,
the only equation we can use is (6.18a) in which the pressure can automatically
adjust itself to balance whatever centrifugal acceleration. Thus, a stretch-free
inviscid vortex can have arbitrary radial dependence, providing a big freedom
for constructing various inviscid vortex models. The most familiar example is
the q-vortex, which fits many experimental data pretty well

u(r) = 0, v(r) =
q

r

(
1− e−r

2
)
, w(r) = W0 ± e−r

2
, (6.19a)

ωz(r) = 2qe−r
2
, ωθ(r) = ±2re−r

2
. (6.19b)

In Chap. 8 it will be seen that (6.19) is actually the canonical form of an ap-
proximate viscous solution suitable to describe a wake vortex far downstream
of an aircraft, found by Batchelor (1964). So the q-vortex is also called the
Batchelor vortex. Evidently (6.19) satisfies (6.11). On the other hand, the vor-
ticity has a Gaussian distribution, and hence the q-vortex is one of the family
called Gaussian vortices.

In contrast, for viscous flow, if ωθ = 0 as in the case of pure vortices, we
have (6.18a) plus (6.17a). If the flow is steady, (6.17a) implies that ωz must
be a constant (can be zero), which by (6.2) leads to

v(r) = Ar +
B

r
, (6.20)

where A and B are arbitrary constants. For a flow between two rotating
coaxial circular cylinders with inner and outer radii R1 and R2 and angular
velocity Ω1 and Ω2, respectively, the constants can be determined as

A = −Ω1
1− µη2

1− η2
, B = Ω1

R2
1(1− µ)
1− η2

, (6.21)

where µ = Ω1/Ω2 and η = R1/R2. This flow is known as the Couette–Taylor
flow. But if the flow domain is unbounded as our present concern, (6.20)
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implies either the well-known line vortex with A = 0 and constant Γ = 2πrv or
a solid rotation with B = 0. There is no smooth and steady stretch-free viscous
solution in an unbounded domain, because to maintain a steady viscous flow
a constant driving force is necessary. The best one can do is to artificially
combine a solid core of radius a and a potential outer flow, to form a Rankine
vortex

v(r) =


ωr
2 , if r ≤ a,

ωa2

2r , if r > a,
(6.22)

where ω and a are the constant core vorticity and core radius, respectively.
Obviously, this is also an inviscid solution.

As we allow the flow to decay freely, (6.17a) permits uniformly effective
viscous solutions. A complete set of similarity solutions has been given by
Neufville (1957), who sets

τ = νt, η =
r2

4τ
, (6.23)

which cast (6.17a) to

η
∂2ω

∂η2
+ (η + 1)

∂ω

∂η
− τ

∂ω

∂τ
= 0.

A further transformation ω = τ−(n+1)e−ηL(η) then yields the Laguerre equa-
tion

ηL′′ + (1− η)L′ + nL = 0,

of which the solutions are the Laguerre polynomials (e.g., Abramowitz and
Stegun, 1972):

Ln(η) = eη
dn

dηn

(
ηn

eη

)
.

Therefore, the general solution of (6.17a) is

ω(η, τ) =
∞∑
n=0

Cnτ
−(n+1)e−ηLn(η). (6.24)

The exponential decay of ω as η indicates that the vorticity is concentrated
in a region with η 
 1. Note that Ln(η) has n zeros and can be inferred from
recursive formulas:

L0(η) = 1, L1(η) = 1− η,

Ln+1(η) = (2n+ 1− η)Ln(η)− n2Ln−1(η).
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Two special modes of (6.24) are well known. The mode n = 0 is the
Oseen–Lamb vortex (Oseen 1912; Lamb 1932):

v(r, t) =
Γ0
2πr

[
1− exp

(
− r2

4νt

)]
, (6.25a)

ωz(r, t) =
Γ0
4πνt

exp
(
− r2

4νt

)
. (6.25b)

It represents the viscous decay process of a singular line vortex from t = 0,
having a finite circulation Γ = 2πrv that satisfies the following initial-
boundary conditions:

Γ (0, 0) = Γ0, Γ (0, t) = 0, Γ (∞, t) = Γ0.

The behavior of (6.25) for r  4νt approaches that of line vortex. For small r,
there is v � Γ0r/(8πνt), similar to a solid rotation. These two regions merge
around r0 ∼

√
4νt, which represents an expanding core radius, see Figs. 6.1a

and b. Note that the v(r) distribution of the q-vortex, (6.19), is essentially
the same as an Oseen vortex if the latter is “frozen” at a time t0 with radius
rescaled by

√
4νt0.

The Oseen–Lamb vortex may also be viewed as the axisymmetric counter-
part of the Stokes first problem analyzed in Sect. 4.1.4. But, it is easily verified
that in unbounded domain an isolated Oseen–Lamb vortex has infinite total
kinetic energy and angular momentum.

Second, the mode n = 1 in (6.24) leads to the Taylor vortex (Taylor 1918):

v(r, t) =
Mr

8πνt2
exp

(
− r2

4νt

)
, (6.26a)

ωz(r, t) =
M

2πνt2

(
1− r2

4νt

)
exp

(
− r2

4νt

)
, (6.26b)

where M represents the total angular momentum about the axis

M =
∫ ∞

0

2πr2vdr. (6.27)

This solution has zero total circulation (because ω changes sign once) and
finite M . Note that (6.26) is nothing but the time derivative of (6.25). The
velocity profiles of Oseen–Lamb vortex and Taylor vortex are compared in
Fig. 6.1c. All higher modes with n > 1 in (6.24) have zero total circulation
and zero total angular momentum (Neufville 1957).

Any pure vortices are two-dimensional generalized Beltrami flow, for which
by (3.64) ωz(r, t) = f(ψ, t). While for the Rankine vortex we simply have f =
constant, for Neufville’s vortex family f(ψ, t) is nonlinear.
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Fig. 6.1. The decay of the circumferential velocity (a) and vorticity (b) of the
Oseen–Lamb vortex, and its comparison with the Taylor vortex in similarity vari-
ables (c). In (c) V ∗ ∝ v/t−1/2 and v/t−3/2 for the Oseen–Lamb vortex and Taylor
vortex, respectively. Reproduced from Panton (1984)

6.2.2 Viscous Vortices with Axial Stretching

Vortex stretching occurs if the axial velocity w(r, z, t) is z dependent. The
simplest z-dependence of w is linear and uniform

w(r, t) = γ(t)z, u(r, t) = −1
2
γ(t)r, γ > 0, (6.28)

where u(r, t) is derived from (6.3). The vorticity has only a z-component. The
flow can take this form only locally (r < ∞, |z| < ∞). From (6.5c) and
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(6.28), the vorticity equation reads:

∂ω

∂t
=

ν

r

∂

∂r

(
r
∂ω

∂r

)
+

1
2
γr

∂ω

∂r
+ γω. (6.29)

On the right-hand side, the second term is a radial advection, while the third
term is a uniform stretching. If at t = 0 a vortex element has unit length,
then at time t its length will be

S(t) = exp
(∫ t

0

γ(t′)dt′
)

(6.30)

or eγt if γ is a constant. Once again, we seek similarity solutions of (6.29).
Following Lundgren (1982; see also Kambe 1984), we introduce new stretched
variables:

ρ ≡ S1/2(t)r, τ ≡
∫ t

0

S(t′)dt′, (6.31)

such that (6.29) is cast to

S
∂ω

∂τ
= γω + ν

S

ρ

∂

∂ρ

(
ρ
∂ω

∂ρ

)
.

But since
∂S

∂τ
=

∂S

∂t

dt
dτ

= γ,

we finally obtain the same equation as (6.17a) but in terms of (ρ, τ) variables:

∂ω∗

∂τ
=

ν

ρ

∂

∂ρ

(
ρ
∂ω∗

∂ρ

)
, ω∗ ≡ S−1ω,

Therefore, from any pure vortex one can generate a uniformly stretched vortex
by the Lundgren transformation

ω(r, t) = S(t)ω∗
(
S1/2(t)r,

∫ t

0

S(t′)dt′
)
. (6.32)

The two flows before and after transformation have similar behavior.
Because S(t) > 1 implies r < ρ, t < τ , and ω > ω∗, the velocity and vorti-
city of stretched vortex flow are enhanced, with shorter distances and faster
rotation time, in agreement with the kinematics discussed in Sect. 3.5.3. For
example, from the Oseen–Lamb vortex and a constant γ, we find a new
solution

ω(r, t) =
γΓ0

4π(1− e−γt)
exp

(
− βr2

1− e−γt

)
. β ≡ γ

4ν
. (6.33a)

Integrating this with respect to r yields the circumferential velocity profile

v(r, t) =
Γ0
2πr

[
1− exp

(
− βr2

1 + αe−2νt

)]
, (6.33b)

where α is an integration constant. This solution was studied by Rott (1958)
and Bellamy-Knights (1970).
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Then, let t → ∞ in (6.33), we obtain an asymptotic steady solution of
stretched vortex of radius δ ∼ (ν/γ)1/2, which exists only if γ > 0:

ω(r) =
γΓ0
4πν

e−βr
2
, (6.34a)

u(r) = −γ
2
r, v(r) =

Γ0
2πr

(
1− e−βr

2
)
, w(z) = γz. (6.34b)

This is the famous Burgers vortex (Burgers 1948). It can be directly obtained
from the steady version of (6.29). If γ < 0, the vorticity will run away from
the axis. If the time in (6.25) is frozen at t = 1/γ, the velocity distribution
will be the same as that of the Oseen–Lamb vortex. This is because the radial
flow −γr/2 brings the far-field vorticity to the vortex core, which exactly
compensates the viscous diffusion. But we have ∂u/∂r|r=0 = −γ/2 and hence
u is not smooth at r = 0.

The Burgers vortex is the first stretched vortex solution to model turbulent
eddies. As a remarkable feature, its total dissipation per unit length in the
z-direction is finite but independent of ν

ρν

∫ ∞

0

2πrω2(r)dr =
ργΓ 2

0

4π
. (6.35)

Thus, the dissipation remains finite as ν → 0, which is a fundamental as-
sumption of turbulence theory (e.g., Frisch 1995). This vortex has served as
a building block of various vortex models for fine-scale turbulent structures
and starting point of searching for more complex vortex solutions (Sect. 6.5).

The Lamb vector of the Burgers vortex is

l(r) = −ω(r)
[
v(r)er +

1
2
γreθ

]
(6.36)

from which it follows that

∇ · l‖ = −1
r

∂

∂r
(rvω), ∇× l⊥ = −ez

1
2r

∂

∂r
(γr2ω).

Equating ∇ · l‖ to ∇2φl, by using (6.7) we find

φl =
∫ ∞

r

vω dr + C log r,

where there must be C = 0. Thus, from the r-momentum equation

u
∂u

∂r
− v2

r
= −∂p

∂r
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and using (6.4c), we can obtain l‖ and then l⊥ from (6.36)

l‖ = −v(r)ω(r)er = −∇
(
H − 1

2
w2

)
, (6.37a)

l⊥ = −1
2
γrω(r)eθ = −

1
2
γ
∂Γ

∂r
eθ, Γ = rv(r). (6.37b)

While l‖ is independent of γ and has the same form as nonstretched vortices,
l⊥ is completely caused by the stretching as it should. Remarkably, l‖, l⊥,
and ω are geometrically orthogonal.

Moreover, the strain-rate tensor of the Burgers vortex is

D =
1
2

−γ R 0

R −γ 0

0 0 2

 , R = r
∂

∂r

(v
r

)
. (6.38)

The deformation principal axes are the z-axis (stretching) and any pair of
orthogonal axes on the (r, θ) plane, where shrinking occurs. As the vortex
stretches at a rate γ, l⊥ shrinks at rate γ/2. Based on the transport equa-
tion for l, Wu et al. (1999b) have shown that vortex stretching is generically
associated with the Lamb-vector shrinking.

In this simplest model of stretched vortices, the nonlinearity caused by
l⊥ �= 0 can be made disappear by the Lundgren transformation (6.32). When
the axial velocity is nonuniform, one may consider more general families of
semi-similarity solutions, in which if the nonlinear coupling between different
components can be artificially removed then the solutions may have closed
form. To this end, we seek steady solutions of the form

ψ = g(r)z + f(r), rv = Γ (r),
(6.39)

∂ψ

∂z
= g(r) = ru,

∂ψ

∂r
= g′(r)z + f ′ = −rw.

Substitute these into the dynamic equations (6.4b) for v and (6.5b) for ωθ, as
well as the kinematic relation (6.9c), we obtain a set of ordinary differential
equations. Recall that v and ψ determine the motion along the azimuthal
direction and on the axial plane, respectively. The equations are decoupled,
of which the ones for g and f can be integrated once, and the one for Γ can
be integrated twice

g
d
dr

(
g′

r

)
− g′2

r
= ν

d
dr

[
r
d
dr

(
g′

r

)]
+ C1r, (6.40a)

g
d
dr

(
f ′

r

)
− g′

f ′

r
= ν

d
dr

[
r
d
dr

(
f ′

r

)]
+ C2r, (6.40b)

v(r) =
Γ0
2πr

[∫ r

0

s exp
(∫ s

0

u(τ)
ν

dτ
)
ds+ C3

]
, (6.40c)
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where C1, C2, C3, and Γ0 are integration constants. Then, if f ≡ 0, (6.40a)
permits a simple solution g′/r = constant, which includes the Burgers vortex.
If f(r) �= 0, a combination of the simple solution g′/r = const. of (6.40a) and
(6.40b) makes the latter have solution (f ′/r)′ = C4r, and hence

u(r) = A1r +A2r
−1, f(r) = B1r

4 +B2r
2. (6.41)

By different choices of the constants, one finds a linear superposition of some
elementary vortices and axial flows, including (Xiong and Wei 1999): a super-
position of a circular-pipe Poiseuille flow and a forced vortex and/or a line
vortex; that of a circular-pipe Poiseuille flow and a Burgers vortex; and a
swirling flow with singular sink (a simple model for bathtub vortex ) or source.

Now, assume instead an r-dependent axial velocity with an exponential
decay, similar to that in (6.19)

w = γz
(
1− b e−βr

2
)
.

Substituting this profile into (6.39) and (6.40a), and equating terms, we find
that a special solution exists if and only if

C1 = −γ2, β =
γ

4ν
, b = 3.

The velocity profiles are found to be

u(r) = −1
2
γr +

6ν
r

(
1− e−βr

2
)
, (6.42a)

v(r) =
Γ0H

(
βr2

)
2πrH(∞)

, (6.42b)

w(r, z) = γz
(
1− 3e−βr

2
)
, (6.42c)

where

H(x) ≡
∫ x

0

exp
(
−η + 3

∫ η

0

1− e−ζ

ζ
dζ

)
dη, H(∞) = 37.905. (6.43)

Sullivan (1959) wrote down this solution without giving derivation. The vor-
ticity components of this Sullivan vortex are

ωr = 0, (6.44a)

ωθ = −
3γ2

2ν
rze−βr

2
, (6.44b)

ωz =
γΓ0

2νH(∞)
exp

(
−βr2 + 3

∫ βr2

0

1− e−ζ

ζ
dζ

)
. (6.44c)
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Like the Burgers vortex, u is not smooth at r = 0 either with ∂u/∂r|r=0 = γ.
But the most striking property of the Sullivan vortex is that it permits a
two-cell structure. From (6.42a), there will be u(r0) = 0 at an r0 = 3.36

√
ν/γ

that satisfies βr20 = 3(1− e−βr
2
0 ), and u changes sign across r0. Thus, r = r0

is a limit circle (see Sect. 7.1.1): fluid outside r0 will move inward to r0, while
that inside r0 will move outward to r0. Therefore, near r0 there must be a
strong axial flow, which in turn requires an axial flow of opposite direction
near r = 0. So w(r, z) has to change sign somewhere between r0 and the axis as
well. The one-cell Burgers vortex and two-cell Sullivan vortices are compared
in Fig. 6.2. The two-cell structure has been observed in some hurricanes, so
the Sullivan vortex is of special interest in meteorology.

6.2.3 Conical Similarity Swirling Vortices

In both Burgers vortex and Sullivan vortex the coupling of three velocity
components are arbitrarily constructed rather than derived from reasonable
boundary conditions. Thus, some behaviors of these vortices are lack of phys-
ical background. In seeking for fully nonlinear solutions of stretched swirling
vortices one should avoid this arbitrariness.

The first step toward this goal is the Long vortex. Instead of assuming an
axial flow of the form of w = zf(r), Long (1958, 1961) assumes rv approaches
a constant for r  1. Then, the similarity consideration gives a combined vari-
able x = Kr/(

√
2νz), and the dimensional analysis plus continuity equation

leads to the following form of velocity components and pressure:

u = K

(
− ε

r
f(x) +

1√
2z

f ′(x)
)
,

v =
K

r
Γ (x), w =

K√
2r

f ′(x), (6.45)

p

ρ
+ gz = − K2

ε2z2
s(x),

where g is the gravitational acceleration and ε ≡ ν/K = Re−1 
 1. This
implies u/w =

√
2ε(x− f/f ′)
 1, and thus the flow is asymptotically cylin-

drical. Substituting (6.45) into (6.4) and neglecting O(ε2) terms, Long obtains
coupled equations for f(x), Γ (x), and s(x):

Γ 2 + 2x3s′ = 0,

xf ′′ + (f − 1)f ′ − 4x3s = 0, (6.46)

xΓ ′′ + (f − 1)Γ ′ = 0.

This approximation is called the quasi-cylindric approximation, which is
the counterpart of boundary-layer approximation in studying concentrated
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Fig. 6.2. The velocity profiles of one- and two-cell vortices. (a) One cell (Burgers
vortex); (b) two cells (Sullivian vortex); (c) the circumferential velocity, where V0 =
Γ/2πr0, R0 = (ν/γ)1/2



270 6 Typical Vortex Solutions

vortices and will be further explored in Sect. 8.1. By requiring a finite velocity
at x = 0, Long solved these equations numerically. This vortex is also widely
used in meteorology.

Inspecting Long’s similarity variable x, it is clear that before making the
quasi-cylindrical approximation the flow has conical similarity, i.e., any func-
tion of x, such as f(x), Γ (x), and s(x), will be invariant along a ray from the
origin with constant r/z. According to Wang (1991), Slezkin (1934) was the
first to note that when velocities are inversely proportional to R =

√
r2 + z2

the Navier–Stokes equation permits conical similarity solutions. Yih et al.
(1982) have proved that among all axisymmetric solutions of the Navier–
Stokes equation, only conical similarity solutions have finite (actually, zero)
velocity at infinity. This avoids the divergence of the flow field as z → ∞ as
in the Burgers and Sullivan vortices.

Conical similarity solutions are best analyzed in spherical coordinates
(R, θ, φ), where φ is the azimuthal angle about the vortex axis θ = 0. Let
x = cos θ, so that x = 0 and 1 correspond to the equator plane and the vortex
axis, respectively. Assume

uR =
F ′(x)
R

, uθ =
F (x)
R sin θ

, uφ =
Ω(x)
R sin θ

, (6.47)

where the form of uR is from the continuity equation. Substituting (6.47) into
the axisymmetric momentum equation and eliminating pressure, one obtains
a pair of coupled second-order equation for Ω and fourth-order equation for
F . Integrating the latter three times and denoting F = 2ν(1 − x2)f , a pair
of elegant coupled nonlinear integral-differential equations for f(x) and Ω(x)
follows:

f ′2 + f2 =
G(x)

(1− x2)2
, (6.48a)

Ω′′ + 2fΩ′ = 0, (6.48b)

where

G(x) ≡ −
∫ x

0

dx
∫ x

0

dx
∫ x

0

4ΩΩ′

1− x2
dx+ Px2 +Qx+R, (6.48c)

with P,Q,R being integration constants to be determined by boundary con-
ditions. The Reynolds number has been normalized to unity. When Ω = 0
(6.48a) describes a conical similarity momentum jet, and Ω �= 0 is a swirling
vortex with all components coupled in a way determined by the equations
and boundary conditions. Both cases have been studied by many authors as
briefly reviewed by Wang (1991), see also Sozou et al. (1994).

If we require that at vortex axis there is no source or sink and all velocity
components are finite, and if there is a solid wall at x = 0 (θ = π) where the
adherence condition holds, then the boundary conditions for (6.48) would be
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Ω = F = 0, and F ′ finite, at x = 1, (6.49a)

Ω = F = F ′ = 0 at x = 0. (6.49b)

However, by (6.48b), Ω′(x) cannot change sign for x ∈ [0, 1], implying that
for a swirling vortex with nonzero Ω(x) one of (6.49a) and (6.49b) has to
be relaxed. If we relax the former, there can be a viscous boundary layer
induced by the vertical vortex near the solid wall x = 0, but the vortex core
is singular like a line vortex. If we relax the latter, the vortex core can be
regular but on the plane x = 0 there must be a slip. These alternative choices
have been studied by Goldshtik (1960) and Serrin (1972), and by Yih et al.
(1982), respectively. The solutions for each choice can exhibit both one-cell
and two-cell vortices, see Fig. 6.3 as an example.

Wu (1986b) attempted a fully regular solution by allowing the viscosity
to be function of x, but unfortunately his modified Ω-equation is incorrect
as pointed out by Goldshtik and Shtern (1988). These authors conclude that,
with any variable ν(x), conditions (6.49a) and (6.49b) still cannot be simul-
taneously satisfied. Therefore, the conical similarity vortex solutions cannot
mimic the interaction of a tornado-like vortex and the ground, which is ac-
tually more complicated than any similarity solution can simulate, as will be
seen in Sect. 8.4.

While concluding this section, we stress again that none of the exact so-
lutions presented herein is completely realistic. The vorticity in the Rankine
vortex has a discontinuity which is impossible when ν is finite. The Burgers
and Sullivan vortices have infinite u,w as |z| → ∞, nonsmooth u at r = 0,
and a nonphysical decoupling between the motions in the azimuthal direction
and on the meridional plane. After all, as long as the total circulation is finite
there must be v ∼ r−1 as r → ∞, which immediately implies that the total
kinetic energy and axial angular momentum is infinity, see (6.27). The only
exception is the Taylor vortex, which has two counter-rotating fluid bodies

Re = 5, P = 0.442 Re = 10, P = 0.3

(a) (b)

Fig. 6.3. Conical similarity vortices interacting a no-slip flat plate with singular
core. Reproduced from Serrin (1972)
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with one surrounding the other. Except some geophysical vortices (Chap. 12),
however, such a vortex is seldom encountered due to instability (Chap. 9).
Therefore, all these solutions can at most represent some local behavior of
real vortices.

The lacking of “realistic” analytical solution for isolated axisymmetric vor-
tices is also a reflection of the very basic physics. If the flow domain is bounded,
there must be a boundary layer with distributed vorticity, and a columnar vor-
tex solutions can be effective at most in a limited subdomain (e.g., in a circular
vortex tube). Alternatively, if the fluid is unbounded at rest at infinity and
the vorticity is created from a nonrotating moving body, say a flying wing,
then vortices never appear as a single isolated one but form closed loops or
in pair to ensure the total-vorticity conservation (3.15) or total-circulation
conservation (3.16) in two dimensions. Therefore, none of the above isolated
vortex solutions can be globally effective. It is therefore necessary to examine
wider classes of vortex solutions that are more realistic. We pursue this task
in Sects. 6.3–6.5.

6.3 Circular Vortex Rings

Due to the first Helmholtz theorem, in unbounded space a vortex must form
a loop with compact support. The simplest vortex loop is a circular vortex
ring, which in a sense is a more fundamental vortex structure than columnar
vortices and can be easily produced experimentally (e.g., by an impulsive
motion of a piston), see Fig. 4.22. Because of their frequent appearance in
nature and technology, vortex rings have been a subject of active studies (see,
e.g., the reviews of Shariff and Leonard 1992 and Lim and Nickels 1995). In this
section we discuss incompressible axisymmetric circular vortex-ring solutions
sketched in Fig. 6.4. If along the ring’s circular axis r = r0 the velocity is
nonzero, the ring has a swirl.

6.3.1 General Formulation and Induced Velocity

Unlike a columnar vortex, a circular vortex ring in a fluid at rest at infinity
will move along its axis due to its self-induction at r = 0, to which all ring
elements of unit arclength have the same contribution, in contrast to nonuni-
form self-induction of noncircular loops, e.g., Fig. 3.15. It is then convenient
to observe the ring in a comoving frame of reference, so that at infinity there
is an opposite translational velocity. Consider a swirl-free vortex ring first. In
cylindrical coordinates (r, θ, z) the total velocity is Uez + u with u = 0 at
infinity. u and ω have components

u = (u, 0, w), ω = (0, ωθ, 0), (6.50)

indicating that the flow is rotationally symmetric and complex lamellar as
observed in Sect. 3.3.1. Thus, kinematically, the flow field is fully described by
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Fig. 6.4. Vortex-ring geometry and cylindrical coordinates

a Stokes stream function
Ψ = −1

2
Ur2 + ψ (6.51)

with u and ωθ being solely determined by ψ through (6.8) and (6.9c).
Dynamically, (6.5b) is reduced to

Dωθ
Dt

=
ωθu

r
+ ν

(
∇2ωθ −

ωθ
r2

)
(6.52)

of which a neater form is (6.10b):

Df
Dt

= ν

(
∇2f +

2
r

∂f

∂r

)
, f ≡ ωθ

r
. (6.53)

If in addition the flow is generalized Beltramian, then (3.63) and (3.67)
hold. While (3.67) and (6.4) imply a Bernoulli equation

p+
1
2
q2 +

∫
f(ψ) dψ = const., (6.54)

condition ∇ × (ω × u) = 0 along with (6.3) simply leads to u · ∇f = 0,
indicating that the advection of ωθ is always balanced by the vortex-tube tilting
which occurs everywhere in a circular vortex ring. Then (6.52) or (6.53) are
linearized, yielding

∂ωθ
∂t

= ν

(
∂2ωθ
∂r2

+
1
r

∂ωθ
∂r
− ωθ

r2
+

∂2ωθ
∂z2

)
, (6.55a)

∂f

∂t
= ν

(
∂2f

∂r2
+

3
r

∂f

∂r
+

∂2f

∂z2

)
. (6.55b)
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Unlike two-dimensional flows, now the second-order differential operators
in the kinematic relation (3.66) of f(ψ, t) and its viscous dynamic constraint
(6.55b) are different. This makes it much harder to find a viscous solution
of generalized Beltrami vortex ring, except the simplest case f = const., for
which (6.53) or (6.55b) is trivially satisfied. This special case yields a family of
solutions with ωθ = Cr and different vortex-core radii, known as the Fraenkel–
Norbury family (Fraenkel 1970; Norbury 1973). Remarkably, the results agree
very well with experimental measurement and viscous numerical solutions,
see the comment of Fukumoto (2002). This solution family will be addressed
in Sect. 6.3.2. Then in the next two sections we discuss the asymptotic thing-
ring theory, where the viscous effect will also be introduced. Note that any
inviscid and steady axisymmetric vortex ring is also generalized Beltramian
due to (6.11), even if it has a swirl rv �= 0. In this case, the flow is governed
by the Bragg–Hawthorne equation (6.14) along with the three component
expressions for ω given by (6.13).

As a preparation of the these discussions, in the rest of this subsection we
consider the vortex-ring induced Stokes stream function ψ and especially its
self-induced translation. The ψ for given ωθ is obtained from the inversion of
(6.9c), which is a special form of (2.104b) in unbounded domain with ψ =
(0, rψ, 0):

ψ(r, z) =
1
4π

∫
rω′
θe

′
θ · eθ
R

dV ′, R = |x− x′|. (6.56)

Using the notations defined in Fig. 6.4, (6.56) takes the form

ψ(r, z) =
∫

ωθG(r, r′, z − z′) dr′ dz′, (6.57a)

G(r, r′, z − z′) =
rr′

4π

∫ 2π

0

cosβ
R

dβ, β = θ − θ′, (6.57b)

R =
√
(z − z′)2 + r2 + r′2 − 2rr′ cosβ. (6.57c)

Let the moving point x′ be along a circle with varying θ′ and fixed (r′, z′).
By (6.57c) and Fig. 6.4, in this circle

r1 =
√
(z − z′)2 + (r − r′)2, r2 =

√
(z − z′)2 + (r + r′)2 (6.58)

are Rmin and Rmax, respectively. We set

φ =
β

2
− π

2
, k2 = 1− r21

r22
=

4rr′

r22
, (6.59)

then in (6.57c)

R2 = r22(1− k2 sin2 φ),

2rr′ cosβ =
1
2
r22(2− k2)− r22(1− k2 sin2 φ).
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Hence, (6.57b) can be integrated to yield

G(r, r′, z − z′) =
√
rr′

2π

[(
2
k
− k

)
K(k)− 2

E(k)

]
, (6.60)

where

K(k) =
∫ π/2

0

dφ√
1− k2 sin2 φ

, E(k) =
∫ π/2

0

√
1− k2 sin2 φdφ (6.61)

are the first and second kinds of complete elliptic integrals, respectively.
As a simple but fundamental application of the Biot–Savart integral (6.57),

consider a circular line vortex of circulation Γ and radius r0 at the z = 0 plane,
with singular vorticity distribution

ωθ = Γδ(r − r0)δ(z). (6.62)

Then, by (6.60), (6.56) becomes

ψ(r, z) = Γ

√
rr0
2π

[(
2
k
− k

)
K(k)− 2

k
E(k)

]
,

so by (6.8) the motion on the axial plane is given by

u(r, z) = − Γk

4πr0
z

r0

(r0
r

)3/2 [
−K(k) +

2− k2

2(1− k2)
E(k)

]
, (6.63a)

w(r, z) = − Γk

4πr0

(r0
r

)1/2 [
K(k) +

r0
2r

k2

1− k2
− 2− k2

2(1− k2)
E(k)

]
, (6.63b)

k = 2
√

r0r

z2 + (r + r0)2
. (6.63c)

In particular, at the ring center (r, z) = (0, 0) there is

u0 = − Γ

2r0
ez, (6.64)

indicating that the circular line vortex moves with constant velocity along the
−z direction without changing its shape. After imposing U = Γ/2r0 to make
the flow steady, the streamlines are shown in Fig. 6.5.

Equation (6.64) is the simplest example of the self-induced motion of a
single vortex ring. A general method of determining the translation velocity
for a circular viscous and unsteady ring has been given by Saffman (1970, see
also Saffman 1992), who makes use of both the vortical impulse I given by
(3.78) and Lamb’s second formula (3.93) for kinetic energy K. The circular
vortex ring is allowed to have arbitrary cross-sectional shape and vorticity dis-
tribution as well as swirl, so that all components of velocity and vorticity can
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z

Fig. 6.5. Streamlines of a circular line vortex

be nonzero. Recall that the total velocity of the flow viewed in the comoving
frame is Uez + u, by (3.93) and (3.78) there is

K = 2UIz + 2π
∫
[ωθ(rw − zu) + v(zωr − rωz)]r dr dz,

where the second term is the vorticity-induced kinetic energy Kv, which by
definition also reads:

Kv = π
∫
(u2 + v2 + w2)r dr dz

= π
∫ (

w
∂ψ

∂r
− u

∂ψ

∂z

)
dr dz + π

∫
rv2 dr dz

= π
∫

ωθψr dr dz + π
∫

rv2 dr dz

by using integration by parts. The first integral is also derivable from Lamb’s
first formula (3.92). On the other hand, by using (6.2) there is

2π
∫

v(zωr − rωz)r dr dz = π
∫

rv2 dr dz

plus line integrals that vanish due to u = 0 at infinity. Thus, this integral is
cancelled from K, yielding an exact relation

π
∫

ωθψr dr dz = 2UIz + 2π
∫

ωθ(rw − zu)r dr dz, (6.65)

Iz =
1
2

∫
ωθr

2 dr dz dθ. (6.66)
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Therefore, U will be known if so are the rest parts of (6.65). To simplify
the second term on the right-hand side of (6.65), Saffman (1970) appeals to
the Lamb transformation (Lamb 1932, Sect. 162). Suppose the ring motion is
already steady with a well-defined U . Then for inviscid axisymmetric flow we
use (6.3) to transform (6.5b) to

∂(uωθ)
∂r

+
∂(wωθ)

∂z
=

1
r

∂v2

∂z
.

Multiplying both sides by zr2, we obtains

(r2w − rzu)ωθ = rv2 − 3rzuωθ +
∂

∂r
(zr2uωθ) +

∂

∂z
(zr2wωθ − zrv2)

of which the integration over the entire flow field gives the desired relation

2π
∫

ωθ(rw − zu)r dr dz = 2π
∫
(rv2 − 3rzuωθ) dr dz. (6.67)

Saffman (1970) further found that the Lamb transformation also holds for
unsteady flow, provided U is replaced by the axial velocity dZ/dt of the vortex-
ring centroid, which is defined by

X = (X,Y,Z) =
1
2

∫
I · (x× ω)
|I|2 x dV. (6.68)

In this way, the viscous decay of thin vortex ring can be included even if the
core has no sharp boundary or definite radius a.

6.3.2 Fraenkel–Norbury Family and Hill Spherical Vortex

As remarked in the context of (6.3.6), generalized Beltrami vortex rings with
ωθ = Ωr in the core form the Fraenkel–Norbury family of steady Euler solu-
tions, which also satisfy the Navier–Stokes equation inside the core region A
with its shape to be solved. The problem can be stated as (Norbury 1973):
given the free-stream axial velocity (0, 0, U), the vorticity constant Ω, and a
constant k > 0, find the Stokes stream function Ψ and boundary ∂A of the
core cross-section A such that(

∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

)
Ψ(r, z) =

{
−Ωr2 in A,

0 outside A,
(6.69a)

and
Ψ and ∇Ψ are continuous across ∂A,

Ψ = k on ∂A,

Ψ +
1
2
Ur2 → 0 as r2 + z2 →∞.

(6.69b)
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Fig. 6.6. Fraenkel–Norbury vortex rings. (a) Core shapes. (b) Dividing streamlines.
After Norbury (1973)

Using the radial distance L of the midpoint of the core at z = 0 as length scale,
and introducing a single parameter α > 0 by defining the area of A = πL2α2,
one can choose a velocity scale U∗ = ΩL2α2. Then the dimensionless form of
the problem (6.69b), scaled by L and U∗, amounts to solving the boundary
integral equation along ∂A with a single parameter α:

k(α) = −1
2
U(α)r2 +

1
2πα2

∫
∂A(α)

G(r, r′, z − z′) dr′ dz′ for (r, z) ∈ ∂A(α),

(6.70)
where G is given by (6.60).1 Fraenkel and Burgers (1974) have proved that for
each α ∈ (0,

√
2] only one solution set {k, U, ∂A} of (6.70) exists, in agreement

with Norbury’s (1973) numerical calculation. Figure 6.6 shows the computed
core boundary ∂A and dividing streamline Ψ = 0 of the family for different
α. The dividing streamline encloses a fluid body carried along by the vortex
ring.

Of the Fraenkel–Norbury ring family, the case α =
√
2 is the well-known

Hill spherical vortex (Hill 1894) and has closed-form solution. In this case one
sets ωθ = Ωr inside a spherical region:

ωθ
r

= f(ψ) =

{
−Ω if r2 + z2 < a2,

0 if r2 + z2 > a2.
(6.71)

Thus, as mentioned following (6.55), the vorticity has no diffusion, and its
adnvection is balanced by tilting. The problem is reduced to pure kinematics,
1 This problem is a special case of contour dynamics of Sect. 8.3.2.



6.3 Circular Vortex Rings 279

and (6.69b) has a solution in the sphere

ψ =
1
10

Ωr2(r2 + z2 − a2),

(6.72)
u = −1

5
Ωrz, w =

1
5
Ω(2r2 + z2 − a2).

On the sphere surface ψ = 0, the tangent velocity is

q =
√
u2 + w2 =

1
5
Ωar, r2 + z2 = a2. (6.73)

The Hill spherical vortex is the “fattest” circular vortex ring. Its streamlines
and vorticity lines are sketched in Fig. 6.7. On the plane z = 0 we have u = 0
while w has the same magnitude but opposite signs at r = 0 and r = a.
In the upper and lower hemispheres divided by the plane z = 0, the radial
velocity u has opposite signs. At the intersectional circle of the plane z = h
and the sphere, there is w = Ω(2r2 + h2 − a2)/5, which has opposite signs
inside and outside the circle r =

√
(a2 − h2)/2. Moreover, from (6.54), (6.71),

and (6.73), the pressure is determined up to a constant p0 = p(0, 0):

p =
1
50

ρΩ2[r2(r2 − a2) + 2z2a2 − z4] + 2ρΩνz + p0. (6.74)

In the above analysis our coordinate system is fixed to the spherical vor-
tex. Outside the sphere the flow is irrotational. By (6.72), at the vortex center

z

Vorticity lines

Fig. 6.7. The Hill spherical vortex. Based on Panton (1984)
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(r, z) = (0, 0) there is a self-induced velocity u0 = −Ωa2ez/5, which is bal-
anced by a potential flow with free-stream velocity Uez while keeping its shape
unchanged. Then the continuity of velocity and pressure at the sphere can de-
termine the constants Ω and p0. For potential flow over sphere, the velocity
and pressure at the surface r2 + z2 = a2 are given by (e.g., Milne-Thomson
1968)

q =
3
2a

Ur, p =
1
8
ρU2

(
9z2

a2
− 5

)
+ p∞. (6.75a,b)

Comparing (6.3.26a) and (6.73) gives Ω = 15U/(2a2), which also ensures the
continuity of normal vorticity ω · n. Then (6.74) yields

p =
9
8a2

ρU2z2 + 2ρΩνz + p0 on the sphere,

of which the comparison with (6.3.26b) gives, in the Euler limit ν → 0,

p0 = p∞ −
5
8
ρU2. (6.76)

Thus, p0 is smaller than p∞ by an amount proportional to ρU2.
Since like the Rankine vortex the vorticity inside the sphere jumps from

−Ωa to zero across the boundary, the shear-stress continuity cannot be sat-
isfied at the boundary. Hence, although inside a spherical boundary the Hill
vortex is both exact generalized Beltrami Navier–Stokes solution and Euler
solution, after combining with the external potential flow the global flow is
no longer a smooth viscous solution.

Then, as an Euler solution, the Hill spherical vortex can be extended to
allow for a swirl with nonzero circumferential velocity v that causes a circu-
lation C = rv around the z-axis. In this case the inviscid steady flow is still
generalized Beltramian but no longer solely depends on ψ. Moffatt (1969; see
also Saffman (1992)) has found a closed-form solution of the Bragg–Hawthorne
equation (6.1.14) with C = ±αr as well as H = −Aψ, which in spherical co-
ordinates (R,Θ, φ) reads

Ψ = R2 sin2Θ
[
− A

α2
+ c

( a

R

)3/2
J 3

2
(αR)

]
, (6.77)

where c is a constant. By setting C = 0 outside the sphere, the solution can
match the external potential flow

Ψ = −1
2
U

(
R2 − a3

R

)
sinΘ (6.78)

with U = (0, 0,−U) at infinity. To ensure the velocity continuity across the
sphere, the gradients of (6.77) and (6.78) must be equal at R = a, which
determines
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U =
2Aa
3α

J 5
2
(αa)

J 3
2
(αa)

, c =
A

α2
J 3

2
(αa). (6.79)

Thus, with the swirl a global Euler solution is still possible. If αa is larger
than the first zero of J 5

2
(about 5.6), then U changes direction.

6.3.3 Thin-Cored Pure Vortex Ring: Direct Method

Asymptotic approximations to the Fraenkel–Norbury vortex-ring family have
been studied for those rings with α→

√
2 (close to the Hill spherical vortex)

by Norbury (1973), and for α→ 0 (thing rings) by Fraenkel (1970, 1972) and
Fukumoto (2002). We now consider the thin-ring asymptotics with α = ε ∼
a/L
 1 in (6.70). Our main concern is the steady inviscid thin ring in a fluid
with uniform velocity −Uez at infinity.

Fraenkel (1970) has developed a systematic expansion scheme in ε. To
illustrate how the line vortex solution of Sect. 6.3.1 is modified to have a finite
core, we consider the simplest case: the core has circular cross-section and
ωθ = ω0 is constant, so the core circulation is Γ = πa2ω0 with a being the
core radius. We use the coordinates (σ, α) shown in Fig. 6.4 to find geometric
relations. The approach is to integrate the stream function under the thin-core
approximation, which is called the direct method.

We follow the algebra of Tong et al. (1994). From Fig. 6.4 there is

z = σ cosα, r = r0 + σ sinα,

and similarly for z′ and r′. Then (6.58) is cast to

r1 =
√
σ2 + σ′2 − 2σσ′ cos(α− α′),

r2 =
√
4r20(1 + 2δ) + σ2 + σ′2 − 2σσ′ cos(α+ α′),

where
δ =

1
2r0

(σ sinα+ σ′ sinα′)
 1.

When the field point P is inside the core, r1 and r2 satisfy k′2 ≡ r21/r
2 =

1− k2 
 1. The asymptotic form of (6.60) is

G =
r0
2π

(1 + δ)
(
ln

8r0
r1
− 2

)
− δ +O

(
r2

r20
ln

r0
r

)
. (6.80)

On the other hand, for a circular core with uniform vorticity ω0, there is

ω′
θ = ω0

r′

r0
= ω0

(
1 +

σ′ sinα′

r0

)
, dr′ dz′ = σ′ dσ′ dα′.

These results simplify (6.57a), of which the leading-order approximation can
be integrated by using the identity
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0

ln r1 dα′ =

{
2π ln r′ if r′ > r,

2π ln r if r′ < r,
(6.81)

yielding

ψ(σ, α) =
Γr0
2π

{
ln

8r0
a
− 3

2
− σ2

2a2
+

σ

2r0
sinα

(
ln

8r0
a

+ 1− 5σ2

4a2

)

+ O
(
a2

r20
ln

r0
a

)}
.

Now, the total streamfunction is

Ψ(σ, α) = −1
2
Ur20

(
1 +

2σ
r0

sinα
)
+ ψ(σ, α),

and at the core boundary Ψ(a, α) = constant for any α, where

r2

r20
= 1 +

2σ
r0

sinα+O
(
σ2

r20

)
but r0 and a are constant. Hence, to determine U we only need the coefficients
of sinα in Ψ to vanish. This gives

U =
Γ

4πr0

(
ln

8r0
a
− 1

4

)
+O

(
Γa2

r30
ln

R

a

)
. (6.82)

This well-known formula relating the thin-ring translation velocity to its cir-
culation and size was first obtained by Kelvin (1867). It is evident that if two
coaxial vortex rings 1 and 2 have the same Γ but r01 < r02, then U1 > U2.
Hence, if initially ring 1 is behind ring 2, then ring 1 will catch up and run
through ring 2. Then their mutual induction will increase r01 but reduce r02,
so ring 2 will run through ring 1 and the process may be repeated a few times.
This phenomenon known as leap frog has been well observed in experiments.

Finally, substituting (6.63) for σ ≤ a into the expression of Ψ and set Ψ =
const., we find the streamline shapes

σ2

a2
− 5σ

4r0
sinα

(
1− σ2

a2

)
= const. =

σ20
a2

,

of which the leading-order approxiamtion is

σ = σ0 +
5
8
a2 − σ20

r0
sinα, 0 ≤ σ ≤ a. (6.83)

This is a family of nonconcentric circles whose centers are a distance r0 +
5(a2 − σ20)/(8r0) away from the z-axis. When σ0 = 0, the streamlines shrink
to a stagnation point at r0 + 5a2/(8r0). Note that in obtaining this result we
have assumed r21 
 r22 which is true only in the near field.

Higher-order expansions have been carried out by Fraenkel (1972), in which
the cross-section of the thin ring is no longer a circle. A further higher-order
asymptotic theory of the Fraenkel–Norbury family with ωθ = Ωr has been
obtained by Fukumoto (2002).
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6.3.4 Thin-Cored Swirling Vortex Rings: Energy Method

In the preceding analysis the translation velocity U of the ring was obtained
by integrating the stream function. We now use (6.65)–(6.67) to calculate U .
Since to the leading order the ring cross-section is a circle of radius a, we may
set ωθ = ω(σ). In the derivation some relations and notations will be useful:

Γσ(σ) = 2π
∫ σ

0

ωθ(σ′)σ′ dσ′, ωθ(σ)σ dσ =
1
2π

dΓσ, Γσ(a) ≡ Γ,

(6.84)
u =

Γσ
2πσ

cosα, v = v(σ) ≡ Cσ(σ)
2πσ

.

First, by (6.66), in the thing-ring approximation we have

Iz = π
∫
(r0 + σ sinα)2ωθ(σ)σ dσ dα � πΓr20.

Second, on the left-hand side of (6.65) ψ is given by (6.57a), in which to the
leading order G is given by (6.80) with δ = 0. Hence, there is

ψ � ψ(σ) = r0

∫
ωθ(σ′)(ln 8r0 − 2− lnσ∗)σ′ dσ′,

where σ∗ = σ if σ > σ′ and σ∗ = σ′ otherwise. Thus, an integration by parts
yields

ψ(σ) =
r0Γ

2π

(
ln

8r0
a
− 2

)
+

r0
2π

∫ a

σ

Γs
s

ds,

and hence

π
∫

ωθψσ dσ dα � 1
2
r0Γ

2

(
ln

8r0
a
− 2

)
+

r0
2

∫ a

0

Γ 2
σ

σ
dσ.

Thirdly, to the leading order, on the right-hand side of (6.67) there is

2π
∫

rv2 dr dz = r0

∫ a

0

C2
σ

σ
dσ, 6π

∫
rzuωθ dr dz =

3
4
r0Γ

2.

Therefore, substituting these results into (6.65), we finally obtain

U =
Γ

4πr0

(
ln

8r0
a
− 1

2
+

1
Γ 2

∫ a

0

Γ 2
σ − 2C2

σ

σ
dσ
)
, (6.85)

and, for the kinetic energy associated with the vortex ring,

K =
1
2
r0Γ

2

(
ln

8r0
a
− 2 +

1
Γ 2

∫ a

0

Γ 2
σ + C2

σ

σ
dσ
)
. (6.86)
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It is seen that U and K depend on the core structure. The swirl enhances the
kinetic energy but slows down the translation velocity U . For swirl-free thin
vortex ring with Γσ/Γ = σ2/a2, the above result is reduced to

U =
Γ

4πr0

(
ln

8r0
a
− 1

4

)
, K =

1
2
r0Γ

2

(
ln

8r0
a
− 1

4

)
, (6.87)

with Iz = πΓr20, which returns to Kelvin’s result (6.82).
Finally, for a viscous and unsteady vortex ring, Saffman (1970) found that

if the ωθ-distribution is assumed as the Oseen–Lamb vortex (6.25b) then the
speed of the ring is

U =
Γ

r0

[
ln

8r0√
4νt
− 0.558 + O

(
νt

a2

)1/2
]
, (6.88)

which corrects a numerical error of an earlier result by Tung and Ting (1966;
see also Ting and Klein 1991) by matched asymptotic expansion method to
be introduced in Sect. 6.5.

In reality a viscous vortex ring has quite complicated structure, see, e.g.,
Maxworthy (1972). When two viscous rings of about the same radius move
toward the same direction, in most cases one will entrain another to become
a single vortex ring rather than making leap frog.

6.4 Exact Strained Vortex Solutions

Since no single straight vortex can be isolated in an unbounded space and
each vortex is in the strain field induced by others, the cross-section of a
generic vortex is not circular. For example, a row of vortices can be formed
in a mixing layer or boundary layer due to the instability, where each vortex
is in a background flow field which may contain both symmetric strain and
antisymmetric shear. Figure 6.8 is a flow visualization photo that shows a row,
where the vortices are approximately elliptic. Having discussed vortex rings,
therefore, we now return to solutions of columnar vortices with noncircular
cross-section. This section is confined to closed-form exact solutions, including
elliptic vortex patches, vortex dipole, Stuart “cat-eyes” and viscous Taylor–
Green vortex lattice. Except the last example they are Euler solutions. More
realistic solutions with small viscosity can only be obtained asymptotically,
which is the subject of Sect. 6.5.

Fig. 6.8. A row of strained elliptic vortices. From Van Dyke (1982)
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6.4.1 Strained Elliptic Vortex Patches

As the simplest extension of axisymmetric vortices, we first consider an invis-
cid vortex in an irrotational strain field, with elliptic cross-section and uniform
vorticity ω in the ellipse. This kind of models are called vortex patches, of which
a general treatment with arbitrary and variable boundary shape of the patch
will be presented in Sect. 8.3.2. We start from the classic Kirchhoff elliptic
vortex (e.g., Lamb 1932, Art. 159) without background strain, see Fig. 6.9.

Once an isolated circular vortex patch (a Rankine vortex) is deformed to
an elliptic one with semi-major and minor axes a and b, it will rotate under
self-induction. Let (x, y) be the coordinates along the major and minor axes
which rotate with the ellipse, such that the patch contour is defined by

x2

a2
+

y2

b2
= 1. (6.89)

Then by ∇2ψ = −ω there is

ψ = −1
2
ω(Ax2 +By2), A+B = 1. (6.90)

This solution should be matched with an external potential flow, which can
be conveniently done in terms of elliptic coordinates (ξ, η) with

x = c cosh ξ cos η, y = c sinh ξ sin η, (6.91)

where c =
√
a2 − b2 is the focal distance from the origin, and ξ = const.

defines elliptic lines. The patch contour (6.89) is then given by ξ = ξ0 = a/c
with sinh ξ0 = b/c. The solution of ∇2ψ = 0 for the irrotational motion of the
fluid, otherwise at rest, produced by an elliptic cylinder rotating with angular
velocity Ω is (Lamb 1932, Art. 72)

ψ = −1
4
Ω(a+ b)2 e−2ξ cos 2η − κ

2π
ξ, ξ > ξ0, (6.92)

where κ is an arbitrary circulation since the domain is doubly-connected,
which is now fixed by the circulation πabω of the Kirchhoff vortex. Thus the

y

z

x

Fig. 6.9. An elliptic vortex
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second term of (6.92) is −ωabξ/2. Comparing (6.90) and (6.92), then, the
continuity of ψ and tangent velocity ∂ψ/∂ξ leads to Aa = Bb = ab/(a + b)
and (a dot denotes derivative with respect to time)

θ̇ = Ω =
abω

(a+ b)2
. (6.93)

For a different method to obtain the solution see Saffman (1992).
To the motion of this isolated Kirchhoff vortex we now add a three-

dimensional uniform strain, which causes a velocity field

us = γ1xex − γ2yey + γ3zez, (6.94)

γ1 − γ2 + γ3 = 0. (6.95)

Then the vortex will be deformed by (γ1, γ2) and stretched by γ3 as it rotates,
so that a, b, as well as its area πab and vorticity ω are all time-dependent.
The exact solution of this three-dimensionally strained elliptic vortex-patch
problem has been studied by Neu (1984a), which includes earlier solutions as
special cases. Thus, here we follow Neu’s analysis.

A material point on the contour (6.89) has a path x(t) = x(t)ex + y(t)ey.
Like the three-dimensional quadratic form that defines the deformation ellip-
soids (Sect. 2.1.2), we define the ellipse by the matrix equation (where x is a
column matrix and the superscript T denotes transpose)

xTE(a, b, θ)x = 1, (6.96)

where θ(t) is the angle of the major axis with respect to a fixed x′-axis and

E = R(θ)

[
1/a2 0

0 1/b2

]
R(−θ) (6.97)

with

R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
(6.98)

being the rotation matrix. Since x(t) satisfies (6.89) at any t, we may differ-
entiate it to obtain

ẋTEx+ xTĖx+ xTEẋ = 0, (6.99)

where the particle velocity u = ẋ is a linear function of x (cf. (2.24))

ẋ = U(a, b, θ)x, (6.100)

with matrix U(a, b, θ) determined by the self-induced velocity plus (6.95)

U(a, b, θ) = − ω

a+ b
R(θ)

[
0 a

−b 0

]
R(−θ) +

[
γ1 0

0 −γ2

]
. (6.101)
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Substituting (6.100) into (6.99) yields the equation

xT(UTE + Ė + EU)x = 0,

which we satisfy by requiring

Ė + UTE + EU = 0. (6.102)

Then, substituting (6.97) and (6.101) into (6.102), we obtain a dynamic system

ȧ + (γ2 sin2 θ − γ1 cos2 θ)a = 0,

ḃ + (γ2 cos2 θ − γ1 sin2 θ)b = 0, (6.103)

θ̇ − ωab

(a+ b)2
+

1
2
(γ1 + γ2)

a2 + b2

a2 − b2
sin 2θ = 0.

The system is autonomous if ω is constant. This happens when the vortex has
no axial stretching, i.e., γ1 = γ2 ≡ γ and γ3 = 0, so that the total vorticity
πabω is preserved. Elliptic vortex patches in such a general two-dimensional
strain field were studied first by Kida (1981a), and then by Neu (1984a) and
Bertozzi (1988) using neater approaches. Let us now consider in detail the
evolution modes of this Kida elliptic vortex based on Bertozzi’s approach.

Using r ≡ log η = log(a/b) and φ ≡ 2θ as new variables, and τ = ωt as
the dimensionless time, (6.103) can be cast to

dr
dτ

= 2
γ

ω
cosφ, (6.104a)

dφ
dτ

=
2er

(er + 1)2
− 2

γ

ω

e2r + 1
e2r − 1

sinφ. (6.104b)

The evolution modes of the vortex can be clearly visualized from the phase
portraits on the plane with (r, φ) as polar coordinates, of which the results
for a few typical values of parameter γ/ω are shown in Fig. 6.10. Note that φ
varies from 0 to π implies that the trajectory goes a cycle, which is possible
only in the shaded region.

To read these plots, we first notice that if γ/ω = 0 (no strain), then there
is r = const., i.e., all trajectories form concentric circles and the vortex just
rotates with constant angular velocity given by the first term of (6.104b) or
(6.93). Namely, we return to the Kirchhoff elliptic vortex, of which a special
case is r ≡ 0, i.e., all trajectories shrink to the origin, corresponding to a
stationary Rankine vortex.

Then, for γ/ω �= 0, we see two fixed points, a saddle and a center, where the
solution is unstable and neutually stable, respectively.2 Right at these fixed

2 For the general definition, classification, and stability of fixed points see
Sect. 7.1.1.
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Fig. 6.10. Phase portraits for the evolution of the Kida vortices on the (r, φ)-plane

points the vortex does not move and the solution is steady, as was first dis-
covered by Chaplykin in 1899 (see Meleshko and van Heijst (1994), which
also describes Chaplykin’s contributions to other two-dimensional vortex
solutions). This special case is of great interest in modern vortex dynamics as
mentioned in the context of Fig. 6.8. Motivated by the need for understanding
the stability of these vortices, the steady solution of the Chaplykin vortex was
re-investigated independently by Moore and Saffman (1971).

Away from the saddle and center, for 0 < γ/ω < 0.1227 there are three
evolution modes (Fig. 6.10a): rotation (in the hatched region), oscillation (in-
side the shaded region, where θ = φ/2 varies periodically but in an interval
less than 2π), and elongation (the remaining regions). As t → ∞, the elon-
gation mode reaches an asymptotic state with a/b → ∞, θ → 0 or π, and
ω →∞; but 2ωb remains finite, corresponding to a vortex sheet of length 2a
along the x-axis. The sheet strength has an elliptic distribution and vanishes
at ±a.3

As γ/ω inceases from zero, the phase portrait bifurcates first at γ/ω =
0.1227 (Fig. 6.10b) where the rotating mode ceases to exist. Away from the
fixed points only oscillating and elongating modes are possible until the second
bifurcation at γ/ω = 0.15 (Fig. 6.10d), where the two fixed points merge to a

3 The roll-up of a vortex sheet as in the Kaden problem of Sect. 4.4.2 is because the
sheet strength at the wing tip is nonzero, implying a force normal to the sheet.
The present vortex sheet does not roll up since no such force exists at its end
points (cf. Saffman 1992).
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higher-order one, beyond which no steady solution exists and any vortex will
be continuously elongated.

Finally, in a three-dimensional strain field with γ3 �= 0 and γ1 �= γ2, (6.103)
gives

d
dt

(ab) = (γ1 − γ2)ab,

so there is
πab = πa0b0e(γ1−γ2)t, ω = ω0e(γ2−γ1)t, (6.105)

which shows explicitly the axial-stretching effect. The time-dependent ω(t)
makes the system (6.103) nonautonomous. Further complexity of the evolution
modes have been discussed by Neu (1984a).

6.4.2 Vortex Dipoles

Straight vortex pairs with the strength of the same magnitude but opposite
sign are also called vortex dipoles. Lamb in 1895 and 1906 (the second and
third editions of Lamb 1932) and Chaplykin in 1903 (see Meleshko and van
Heijst 1994) independently found an effectively inviscid circular vortex dipole
with distributed vorticity. Following both authors, we assume that outside the
dipole the flow is irrotational and the dipole moves with a constant velocity
−Uex. Then imposing a uniform flow Uex to make the dipole stationary,
the potential solution over a circular cylinder reads, in the polar coordinate
system (r, θ) with

u =
1
r

∂ψ

∂θ
, v = −∂ψ

∂r
, (6.106)

ψir = U

(
r − a2

r

)
sin θ, r > a. (6.107)

Inside the circle ψ must satisfy (6.11) since the flow is inviscid and steady,
again a generalized Beltrami flow. Thus we may linearize (3.65) by setting
ω = k2ψ and obtain

∂2ψ

∂r2
+

1
r

∂ψ

∂r
+

1
r2

∂2ψ

∂θ2
= −k2ψ. (6.108)

To match (6.107), there should be ψ ∝ sin θ; so the solution of (6.108) is
ψ = CJ1(kr) sin θ. The first zero of J1(ka), ka = 3.8317, gives a closed circular
streamline ψ = 0 at r = a that matches ψir in the circle. Then the velocity
continuity requires v = vir = −2U sin θ at r = a, implying that

C =
2U

kJ ′
1(ka)

=
2U

kJ0(ka)
.

Hence, it follows that:

ψ =
2UJ1(kr)
kJ0(ka)

sin θ, r ≤ a. (6.109)
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Fig. 6.11. The streamlines of the Chaplykin–Lamb dipole

Figure 6.11 shows the streamline pattern of this Chaplykin–Lamb dipole as a
two-dimensional counterpart of the Hill spherical vortex ring. Moreover, the
vorticity is

ω =

2Uk
J1(kr)
J0(ka)

sin θ for r < a,

0 for r ≥ a.
(6.110)

The circular-dipole streamlines (6.109) and its vorticity distribution (6.110)
have been found in good agreement with two-dimensional experiment using
soap film and numerical solution of the Navier–Stokes equation made by
Couder and Basdevant (1986).

Chaplykin has further determined that inside the dipole the vorticity
reaches maximum and minimum at

r0 =
c

b
a = 0.48a, θ = ±π

2
,

where c = 1.8412 is the smallest positive zero of J ′
1(c). At these points ψ also

takes maximum value. Then, since by (3.67) we now have

ω × u = ω∇ψ =
1
2
∇(k2ψ2)

from (3.145) we find a Bernoulli integral for this generalized Beltrami flow

p = p∞ +
1
2
[U2 − (u2 + v2)]−

{ 1
2
k2ψ2 for r ≤ a,

0 for r > a.
(6.111)

Hence, at the extrema of vorticity, Chaplykin found that

pmin = p∞ +
1
2
U2

[
1− 4

J2
1 (c)

J2
0 (ka)

]
= p∞ − 3.69U2, (6.112)

so the condition pmin > 0 imposes an upper bound for the dipole speed U .
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Because the Chaplykin–Lamb dipole moves with a constant velocity in a
fluid otherwise at rest, they must be force-free. This means that the rate of
change of the total fluid momentum is zero, which by (3.80) implies a constant
vortical impulse I (for systematic analysis see Sect. 11.3.1). Indeed, one finds

I = ex

∫ ∫
yωr dr dθ = Ck2πex

∫ ∞

0

r2J1(kr) dr = −2πa2Uex. (6.113)

More complicated dipoles, either circular or noncircular, which do not
move with constant velocity, can be found in, e.g., Saffman (1992) and
Meleshko and van Heijst (1994). Dipoles are of particular importance in large-
scale geophysical vortical structures influenced by the variation of Coriolis
force as latitude (Sect. 12.3).

6.4.3 Vortex Arrays

We now consider an array of infinitely many vortices of equal strength and
distance, periodic in at least one direction. The simplest models are the sin-
gle and double rows of point vortices well documented in relevant textbooks
which, although not our main concern here, are briefly reviewed for later ref-
erence.

On a plane z = x+ iy, for a single row of vortices at z = nl (n = 0, 1, ...),
each having strength Γ , the complex velocity potential reads:

W (z) =
Γ

2πi

∞∑
n=−∞

ln(z − nl) =
Γ

2πi

∞∑
n=0

ln(z2 − n2l2)

=
Γ

2πi
ln sin

πz
l

(6.114)

from which one easily confirms that the whole row is stationary. As y → ±∞,
there is uniform velocities u = ∓Γ/2a, representing parallel flows of opposite
directions, see Fig. 6.12. Near each vortex the streamlines are closed, known
as “cat-eyes”. Therefore, for remote fluid the vortex row behaves as a straight
vortex sheet, while at moderate distance one sees a set of discrete “fluid roller
bearing”.

If we add the second row with vortices of strength −Γ located at z = nl+h,
h = a+ ib, then

W (z) =
Γ

2πi
ln

sin(πz/l)
sin[π(z − h)/l]

,

and the velocity of one row induced by the other (it suffices to compute the
velocity of the vortex at z = 0) is

(u− iv)z=0 =
(
dW
dz

)
z=0

= −Γ

2l
sinh(2πb/l) + i sin(2πa/l)
cosh(2πb/l)− cos(2πa/l)

. (6.115)
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Fig. 6.12. Single vortex row (a) and associated streamlines (b)

b

a

Fig. 6.13. Streamlines of Kármán vortex street, viewed in the frame of reference
moving with vortices. From Oswatitsch (1959)

Each row will move parallel to itself only if sin(2πa/l) = 0. In this case the
rows will be symmetric or staggered if a = 0 or l/2, respectively. Kármán
(1911,1912) found that only for the staggered configuration with

cosh
(

πb
l

)
=
√
2, i.e.,

b

l
= 0.28055, (6.116)

the rows are linearly stable (the stability boundary is shown in Fig. 8.20a), of
which the streamline pattern viewed in the frame of reference moving with
the vortices is shown in Fig. 6.13.

The staggered double-row point vortices are the simplest model of the
observed vortex street shed from a buff body (Sect. 7.4). But Kochin et al.
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(1964) have proved that the staggered rows of point vortices satisfying (6.116)
are still unstable to nonlinear disturbance. The point-vortex arrays of either
single or double row can be better modeled by vortex-patch arrays, which will
be discussed in Sect. 8.3.2.

Our main concern is the exact solutions of vortex arrays with finite core.
The only known exact inviscid and globally smooth solution of this kind is
the steady single vortex row found by Stuart (1967). In this case (6.11) holds
and the flow is generalized Beltramian with

∇2ψ = −ω = f(ψ), (6.117)

where Stuart takes f(ψ) = e−2ψ. To seek the solution of this nonlinear equa-
tion for ψ, let ψ = ln[f(x) + g(y)] so that (6.117) is cast to (prime denotes
the derivative with respect to the argument)

ff ′′ + gg′′ + fg′′ + gf ′′ − f ′2 − g′2 = 1,

which holds if f(x) = C coshx and g(y) = A cos y with C2−A2 = 1. Therefore,
we obtain an x-periodic solution, of which the stream function, velocity, and
vorticity are given by

ψ = log(C cosh y +A cosx), C > 0, A =
√
C2 − 1 > 0, (6.118a)

u =
C sinh y

C cosh y +A cosx
, v =

A sinx
C cosh y +A cosx

, (6.118b)

ω = −e−2ψ = −(C cosh y +A cosx)−2. (6.118c)

For any value of C between 1 and ∞, the streamlines have the cat’s eye
pattern qualitatively similar to Fig. 6.12, typical for periodic disturbances of
a shear layer. Stuart (1967) has shown that the total vorticity of each vortex is
Γ = −4π, independent of C; so a change of C only results in a re-distribution
of vorticity.

In the extremal case of C = 1, A = 0, the cat’s eye pattern degenerates to a
shear layer u = tanh y, a profile often used in shear-layer instability analysis.
Then, if A/C = ε 
 1, we have a small perturbation to the shear layer. The
linear approximation of (6.118a) is

ψ = log cosh y + ε sinh y cosx+O(ε2), (6.119)

which satisfies the Rayleigh equation that is the basis of the inviscid linear
stability theory for parallel shear flow (Sect. 9.2.1):

(U − c)(φ′′ − α2φ)− U ′′φ = 0. (6.120)

In fact, with U = tanh y, c = 0, α = 1, and under the boundary condition
φ → 0 at y = ±∞, the solution of this equation is exactly φ = sinh y. The
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relation between (6.118) and linear-instability theory is therefore established.
On the other hand, if C →∞, (6.118a) takes on the form

ψ − logC = log(cosh y + cosx). (6.121)

Meanwhile, from (6.118c) we see that ω → 0 unless x and y are so chosen that

C cosh y +A cosx→ 0.

This happens if and only if

y = 0, x = (2n+ 1)π, n = 0,±1, . . . ,

because C cosh y and A cosx cannot cancel each other due to the fact that

C > A > 0, cosh y ≥ 1, | cosx| ≤ 1.

Therefore, (6.121) returns to the single row of point vortices.
Finally, let us make a more general examination of the possibility of finding

exact Navier–Stokes solution of strained vortices in two dimensions, within
the range of generalized Beltrami flow. In addition to the kinematic condition
(6.117), now f(ψ, t) has to satisfy simultaneously the dynamic equation

∂f

∂t
= ν∇2f, (6.122)

which can be cast to

q2
∂2f

∂ψ2
+ (∇2ψ − ν−1ψt)

∂f

∂ψ
= 0,

where q2 = u2 + v2 = ψ2
x + ψ2

y. Hence, denote

β(ψ, t) ≡ 1
q2

(∇2ψ − ν−1ψt), (6.123a)

we have

f(ψ, t) = C

∫ ψ

e−
∫ ξ
β(η,t) dη dξ +D(t), (6.123b)

which represents the general dynamic functional constraint on possible f(ψ, t)
for viscous flow and should be compatible with (6.117). The simplest solution
of (6.123) is C = 0, which is the case of the Rankine vortex or other possible
steady vortex patches that however oversimplifies the viscous effect. Next to
C = 0, since (6.122) implies ∇2(ψt − ν∇2ψ) = 0 which is consistent with
β = 0, we get

f(ψ, t) = Cψ +D(t). (6.124)

Substituting this into (6.117), a separation of variables yields a general solu-
tion (Wang 1989, 1990)
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Fig. 6.14. Streamlines of a Taylor–Green vortex. Adapted from Sipp and Jacquin
(1998)

ω(x, y, t) = eaνt
∑
α

Cαe±αxe±
√
a2−α2y, (6.125)

where α and Cα can be complex. So far no viscous solution has been known
for β �= 0.

A special case of (6.125) is the Taylor–Green vortex lattice

ψ = ω0(t)
sin ax sin by
a2 + b2

, ω0(t) = e−(a2+b2)νt. (6.126)

This vortex array is freely decaying, with the vorticity

ω = ω0(t) sin ax sin by (6.127)

satisfying (6.122). In each cell, the vorticity reaches the maximum value ω0(t)
at the center and reduces to zero at the boundary; the flow in such a cell may
be viewed as a vortex confined by a rectangular free-slip boundary. The flow
pattern is periodic with respect to both x and y, with periods A = 2π/a and
B = 2π/b. The streamlines in four cells of total length A and height B are
shown in Fig. 6.14. Note that a Taylor–Green vortex is also in a background
strain field, and its stability character is of interest (e.g., Sipp and Jacquin
1998).

6.5 Asymptotic Strained Vortex Solutions

A common approach to approximate vortex solutions is the matched asymp-
totic method (and other singular perturbation methods if necessary). In this
section we first outline its general formulation applied to a viscous vortex
in a nonuniform flow, pioneered by Ting and Tung (1965). We then discuss
a few typical asymptotic solutions for single columnar vortex in a two- or
three-dimensional irrotational strain field. Some material on the solutions of
strained vortices and vortex layers, complementary to this section, can be
found in Rossi (2000).
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6.5.1 Matched Asymptotic Expansion and Canonical Equations

Consider a vortex of finite circulation Γ > 0 in a nonuniform irrotational back-
ground flow U(x, t) with a Reynolds number defined as RΓ = Γ/2πν. Once
R−1
Γ 
 1, the matched asymptotic expansion can be used as in the boundary

layer theory (Sect. 4.3.1). Recall that the outer solution there is inviscid with a
singular vortex sheet on the wall, which in the matched asymptotic expansion
is replaced by a thin viscous vortex layer of thickness δ = O(Re−1/2) as the
inner solution. In contrast, the outer solution here is an inviscid global strain
field U plus a singular line vortex (point vortex in two dimensions), and the
matched asymptotic expansion will replace it by a thin viscous vortex with
core radius δ = O(R−1/2

Γ ) as the inner solution. Just like in determining the
boundary-layer solution at an x-station, we match it to the outer solution at
the same x and y = 0, now in determining the inner solution we match the
viscous vortex to the strain field of outer flow at the point where the line vor-
tex goes through. Consequently, for the inner solution the outer flow simply
appears as a constant strain field.

Note, however, that, unlike a vortex sheet associated with only a finite
jump of finite tangent velocities, a line vortex is more singular with infinite
velocity at its axis. This makes the perturbation theory more complicated.
One has to expand the series to higher orders to obtain the strained viscous
vortex solution.

Two-Dimensional Flow
A two-dimensional strained vortex can be described by vorticity ω and stream
function ψ. By (3.55), (3.56), and the two-dimensional version of (6.5c), the
governing equations are

∂ω

∂t
+ [ω, ψ] = ν∇2ω, (6.128a)

∇2ψ = −ω, (6.128b)

where

[ω, ψ] ≡ ∂(ω, ψ)
∂(x, y)

=
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
(6.129a)

=
1
r

∂(ω, ψ)
∂(r, θ)

=
1
r

(
∂ω

∂r

∂ψ

∂θ
− ∂ω

∂θ

∂ψ

∂r

)
(6.129b)

denotes the Jacobian of ω and ψ in Cartesian and polar coordinates. We follow
the approach of Ting and Tung (1965) to lay down a common basis of later
analysis.4

4 Ting and Tung (1965) include the fast unsteady motion of the line vortex around
the origin, which involves multiple time scales and is beyond our concern.
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Let the line vortex of circulation Γ be at a saddle point of the exter-
nal strained field U = ∇Ψ × ez. For the global outer solution (the external
strained field U plus a line vortex) we use Γ and a global length scale L to
nondimensionalize the stream function. Then

ψ = Ψ(x, y)− 1
2π

ln r, u = ∇Ψ × ez +
1

2πr
eθ, (6.130)

where |∇Ψ | = O(1). To seek the inner solution in terms of a stretched radial
coordinate due to the smallness of the core radius δ, we set

x = δr cos θ, y = δr sin θ, r =
r

δ
. (6.131)

With the stretched r, flow variables will still be denoted by ψ, ω, and u for
neatness. Equation (6.128a,b) is cast to

[ω, ψ] = −δ2Lω, L ≡ ∂

∂t
−∇2

, (6.132a)

∇2
ψ = −δ2ω. (6.132b)

Here, the derivatives in the gradient operator and Jacobian [ω, ψ] are with
respect to (r, θ), so the order of magnitude is raised by O(δ−2). At the vortex
center we require

ψ = 0,
∂ψ

∂r
= 0 at r̄ = 0, (6.133)

while for r  1 the solution must match (6.130) with r 
 1, where we can
make a Taylor expansion about the origin. Hence, the matching condition is

δ−1∇ψ × ez|r→∞ = ∇ψ × ez|r�1

= δ−1 1
2πr

eθ + [(∇Ψ)0

+ δr · (∇∇Ψ)0 + · · · ]× ez. (6.134)

We now make regular inner power expansion for ψ. It turns out that the
odd powers of δ are involved only in fast-time unsteady flow (Ting and Tung
1965), so by (6.132b) we set

ψ = ψ0 + δ2ψ2 + · · · , ω = δ−2ω0 + ω2 + · · · . (6.135)

Then we find the leading-order inner solution must be axisymmetric and gen-
eralized Beltramian:

[ω0, ψ0] = 0, ω0 = ω0(ψ0), (6.136)

satisfying
∂ψ0

∂r
→ 1

2πr
as r →∞. (6.137)
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Next, we substitute (6.135) into (6.132a,b) and the boundary conditions
(6.133) and (6.134). Equating coefficients of like power of δ leads to the desired
equations. First, from (6.132b) and (6.134) there is

∇2
ψn = −ωn with ψn = 0 and

∂ψn
∂r

= 0 at r = 0. (6.138)

Then, (6.132a) yields

O(δ−1) : D{ω1, ψ1} = 0, (6.139a)

O(δ0) : D{ω2, ψ2} = −[ω1, ψ1]− Lω0, (6.139b)

etc., each being a linear equation. Here, we have used (6.138) to simplify the
sum of Jacobians and introduced the notation

D{ωn, ψn} ≡ [ω0, ψn] + [ωn, ψ0] =
1
r

∂

∂θ

(
∂ω0
∂r

ψn −
∂ψ0

∂r
ωn

)
, (6.140)

of which the θ-average vanishes. It can then be proved that (Ting and Tung
1965, Ting and Klein 1991, p. 63) the θ-average of [ω1, ψ1] also vanishes.
Therefore, the θ-average of (6.139b) implies that, as a solvability condition
there must be

Lω0 = 0, i.e.,
∂ω0
∂t

=
1
r

∂

∂r

(
r
∂ω0
∂r

)
, (6.141)

precisely the dimensionless form of (6.17a). The matching condition (6.134)
implies that the only permitted solution in the Neufville family (6.24) is the
Oseen–Lamb vortex evolving from a point vortex at t = 0 (ω0 must freely
decay since no mechanism can balance its diffusion):

ω0 =
1
4πt

e−r
2/4t. (6.142)

Therefore, unlike the boundary layer, now the leading-order inner solution
is determined by an expansion to the second order rather than a leading-
order analysis alone; the latter only gives (6.136) and (6.137). The nth-order
solution for n = 1, 2, ... is no longer axisymmetric, of which the specific form
depends on the outer flow Ψ(x, y).

Moreover, by (6.141), from (6.139b) and (6.140) there is

(∇2
+G)ψ2 = 0, (6.143a)

where

G(r, t) ≡ ∂ω0/∂r

∂ψ0/∂r
= −∂ω0/∂r

v0(r, t)
. (6.143b)
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Here, ψ2 is θ-dependent due to the matching with the outer solution. Thus,
it is natural to set

ψ2 =
∞∑
k=0

[f (1)k (r) cos kθ + f
(2)
k (r) sin kθ], (6.144a)

which casts (6.143) to[
∂2

∂r2
+

1
r

∂

∂r
+
(
G− k2

r2

)]
f
(β)
k = 0, β = 1, 2, (6.144b)

The inner boundary condition is

f
(β)
k = 0,

∂f
(β)
k

∂r
= 0 at r̄ = 0. (6.145)

Note that by requiring that near the center the core is solid-like and smooth
to the leading order, the function G must be finite as r → 0. On the other
hand, by (6.134) the matching condition of ψ2 with the outer flow reads

∇ψ2 → r · (∇∇Ψ)0, r →∞, (6.146)

implying that, due to the irrotational condition ∇2Ψ = 0,

ψ2 →
1
2
r2
[(

∂2Ψ

∂x2

)
0

cos 2θ +
(

∂2Ψ

∂x∂y

)
0

sin 2θ
]
, r →∞. (6.147)

Except k = 2, the boundary conditions for all other f
(β)
k ’s have to be ho-

mogeneous, permitting zero solution only. Therefore, we finally arrive at the
canonical equation for a two-dimensional viscous strained vortex (Ting and
Tung 1965)

d2f
dr2

+
1
r

df
dr

+
(
G− 4

r2

)
f = 0, (6.148a)

f(r) = 0,
df
dr

= 0 at r = 0, (6.148b)

f(r)→ 1
2
r2 as r →∞. (6.148c)

Once f(r) is solved for a known ω0, the inner solution for the stream function
follows:

ψ = ψ0 + δ2f(r)(A cos 2θ +B sin 2θ), (6.149a)

A =
(
−∂U
∂y

)
0

, B =
(
∂U

∂x

)
0

. (6.149b)
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Owing to its central role in studying strained vortices and their stability, after
Ting and Tung (1965) the canonical equation (6.148) has been re-obtained
independently (e.g., Moore and Saffman 1975, see also Saffman 1992). Its
application will be exemplified in Sect. 6.5.2.

Three-Dimensional Flow
The matched asymptotic method of Ting and Tung (1965) can be directly
extended to three dimensions (Moffatt et al. 1994; Jiménez et al. 1996). As-
sume the vortex axis (the z-axis) is aligned to a stretching principal axis of
D. The inner solution experiences a constant strain rate D with ‖D‖ = O(1)
and principal values (α, β, γ)

U = (αx, βy, γz), α+ β + γ = 0, α < 0 ≤ γ, β ≥ α. (6.150)

This background flow is called triaxial strain. The vorticity is ω = (0, 0, ω),
which induces a velocity field uv = (u, v, 0). Thus, the vorticity transport
equation reads

∂ω

∂t
+ (αx+ u)

∂ω

∂x
+ (βy + v)

∂ω

∂y
= γω + ν∇2ω. (6.151)

A two-dimensional stream function ψ can be introduced on cross-plane, such
that

∇2ψ = −ω, u =
∂ψ

∂y
, v = −∂ψ

∂x
. (6.152)

Different value ranges of the principal strain rates can be characterized by a
single parameter, the strain ratio

λ =
α− β

α+ β
=

β − α

γ
≥ 0, (6.153a)

so that

α = −1
2
γ(1+λ), β = −1

2
γ(1−λ), ‖D‖ = αβγ =

1
4
γ3(1−λ2). (6.153b)

Then several types of strain can be identified:

(i) λ = 0: α = β = −γ/2, axisymmetric axial strain;
(ii) 0 < λ < 1: α < β < 0, nonaxisymmetric axial strain;
(iii) λ = 1: α = −γ, β = 0, plane strain;
(iv) 1 < λ < 3: 0 < β < γ, biaxial strain;
(v) λ = 3: α = −2γ, β = γ, axisymmetric biaxial strain;
(vi) λ > 3: β > γ, extreme biaxial strain;
(vii) λ→∞: −α � β  1, γ → 0, two-dimensional strain limit.

We have just examined the two-dimensional case (vii). For case (i), (6.151)
has closed-form solution (6.33), of which the asymptotic steady state is the
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Fig. 6.15. Axial strain (a) and biaxial strain (b). From Moffatt et al. (1994)

Burgers vortex (6.34). In contrast, for case (iii) there is a layer-like steady
solution known as the Burgers vortex layer :

ω = ω0 exp
(
−γx

2

4ν

)
(6.154)

with ω0 being the maximum vorticity. On the other hand, if α ≤ β < 0 and
if RΓ → 0 so that the vortex-induced velocity is negligible compared to U ,
(6.151) has a nonaxisymmetric steady solution

ω =
(αβ)1/2Γ

2πν
exp

(
αx2 + βy2

2ν

)
. (6.155)

For all other cases only asymptotic solutions can be obtained. The strain field
for cases (ii) and (iv), i.e., the axial strain and biaxial strain, respectively, are
sketched in Fig. 6.15.

While for types (i) and (ii) there is a tendency to form a concentrated vor-
tex aligned with the z-axis, for types (iv), (v), and (vi) there is a tendency to
form vortex sheets in the (y, z) plane. The statistics of homogeneous isotropic
turbulence has revealed that the ensemble average of αβγ is negative, indicat-
ing that there would be a bias towards biaxial strain. But the presence of the
strained vortex modifies the local strain field, and as shown in Fig. 6.8 vortex
sheets may tend to roll into concentrated vortices.

We focus on the asymptotic steady solution of (6.151), which is possible if
the diffusion can be balanced by the strain. As in two dimensions, we make the
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inner radial coordinate and stream function dimensionless by δ = R
−1/2
Γ and

Γ . Besides, we use γ to rescale α and β such that λ = β−α, α = −(1+λ)/2,
and β = −(1−λ)/2. Then, in polar coordinates (r, θ), the dimensionless form
of (6.152) can be cast to

1
r

∂(ω, ψ)
∂(r, θ)

= δ2(L0ω + λL1ω), (6.156a)

L0 = 1 +
r

2
∂

∂r
+∇2, (6.156b)

L1 =
1
2

(
cos 2θr

∂

∂r
− sin 2θ

∂

∂θ

)
. (6.156c)

We now seek a solution of (6.156a) in the form

ψ = ψ0 + δ2ψ2 + δ4ψ4 + · · · , (6.157)

and corresponding expansion for (u, v) and ω. Substituting these into (6.156a)
and equating terms of like power of δ, for O(δ0) one recovers the two-
dimensional result (6.136), which now describes only the cross-plane behavior.
Then for O(δ2) it follows the three-dimensional counterpart of (6.139b)

1
r

∂

∂θ

(
∂ω0
∂r

ψ2 + v0ω2

)
= L0ω0 + λ1L1ω0. (6.158)

Due to the explicit form (6.156b) of L1, the θ-average of (6.158) evidently
yields the solvability condition L0ω0 = 0, implying that the Burgers vortex
(6.34) is the leading-order inner solution at large RΓ . Its dimensionless form
is

ω0(r) =
1
4π

e−r
2/4, (6.159a)

v0(r) =
1

2πr
(1− e−r

2/4). (6.159b)

This being the case, by using (6.156b), the θ-integral of (6.158) yields

(∇2
+G)ψ2 = −1

4
λr2G(r) sin 2θ + g(r), (6.160)

where G(r) is still defined by (6.143b) and it can be shown that g(r) =
0 by higher-order solvability condition (Moffatt et al. 1994). This equation
differs from (6.143a) by the inhomogeneous term on the right-hand side, which
appears because the Burgers vortex is no longer generalized Beltramian. Now
set

ψ2 = λf(r) sin 2θ, (6.161)
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from which and (6.160) follows the canonical equation for triaxially strained
vortices (Moffatt et al. 1994):

d2f
dr2

+
1
r

df
dr

+
(
G− 4

r2

)
f =

1
4
r2G(r), (6.162a)

f(r) = 0,
df
dr

= 0 at r = 0, (6.162b)

f(r) ∼ r2 as r →∞. (6.162c)

Before closing this section, we make a further comparison of (6.143) and
(6.160). Let ω0(ψ0) be perturbed to ω = ω0+ εω∗ with any ε
 1. Then since
[ω0, ψ0] = 0, there is

[ω, ψ] = ε([ω0, ψ∗] + [ω∗, ψ0]) = εD{ω∗, ψ∗}.

Thus, whenever D{ω∗, ψ∗} = 0, the perturbed flow (ω, ψ) will be generalized
Beltramian as well, with ω = F (ψ) for some F which has Taylor expansion

F (ψ) = ω0 − ε∇2ψ∗ = F (ψ0 + εψ∗) = F (ψ0) + εψ∗F ′(ψ0) + O(ε2).

Hence, if there is also ω0 = F (ψ0), i.e., ω0 and ψ0 are related by the same
functional F as ω and ψ:

ω0 = F (ψ0)⇐⇒ ω = F (ψ), (6.163)

then there will be

∇2ψ∗ + ψ∗F ′(ψ0) = 0, where F ′(ψ0) =
(
dF
dr

dr
dψ

)
0

= −ω
′
0(ψ0)
v0

.

Therefore, (6.143a) is recovered in a more general setting. This neat argument
is due to Moore and Saffman (1975; see also Saffman 1992).

6.5.2 Strained Solution in Distant Vortex Dipole

As an application of the two-dimensional Ting–Tung theory, we return to
the dipole problem. Opposite to the Chaplykin–Lamb dipole where the two
vortices are very close to each other, now consider a pair of vortices of large
distance 2L, with circulation ±Γ and RΓ = Γ/ν  1. The distant vortex
dipole is the prototype of aircraft wake vortices, of which the instability is of
great interest (Sect. 9.4.3).

At one vortex of core radius δ 
 L , the strain field of the other can be
considered as caused by a point vortex. For the point-vortex pair located at
(x0, y0) = (±L, 0), the velocity of each vortex is −eyΓ/4πL. The dipole will
be stationary if there is an upward uniform velocity V = Γ/4πL at infinity to
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cancel the downward motion of the dipole. Then the two-dimensional stream
function ψ(x, y) of the dipole is

ψ(x, y) = − Γ

4π

[
x

L
+ ln

(x− L)2 + y2

(x+ L)2 + y2

]
. (6.164)

Like the circular Chaplykin–Lamb vortex dipole, there is a closed streamline
which separates the fluid extending to infinity and that carried along by the
dipole; the latter is known as the Kelvin oval. By (6.164), the oval boundary
ψ = 0 is given by the equation

(x− L)2 + y2

(x+ L)2 + y2
= e−x/L (6.165)

from which one finds that, if L = 1 then the semi-major and minor axes of
the oval are (L1, L2) = (2.087,

√
3), and the oval area is A � 11.4.

Consider now the right-side vortex, which is allowed to have a z-independent
axial velocity profile. The global scales are L and Γ > 0. Introduce polar coor-
dinates (r, θ) to the vortex center (1, 0) and denote r = δr as before. In terms
of (r, θ), near the vortex center the outer solution (6.164) has dimensionless
expansion

ψ = − 1
4π

[
1 + δr cos θ + ln

(
δ2r2/4

1 + 4δr cos θ + δ2r2/4

)]

= − 1
2π

(
ln r +

1
8
δ2r2 cos 2θ + C

)
+O(δ3), (6.166)

where the constant C = 1/2+ ln(δ/2) can be removed by re-defining the zero
streamline. The first term is caused by the right-side vortex alone, and the
second term represents the O(δ2) effect of the left-side vortex. The effect of
uniform stream has been cancelled, which removes terms linear to δr cos θ.

The presence of the left-side vortex makes the right-side one no longer
axisymmetric in the second-order inner solution (ω2, ψ2) via (6.166). To mimic
the continuous vorticity feeding from wing tip instead of the decaying viscous
vortex we seek an inviscid steady inner solution in cylindrical coordinates
(r, θ, z) with velocity

u = δu2, v = δ−1V + δv2, w = W + δw2, (6.167a)

ωr = ωr2, ωθ = ωθ2, ωz = δ−2Γ
′

r
+ ωz2, (6.167b)

where Γ ≡ rV (r). We have used (V,W ) = O(1) to denote (δv0, w0) which as
shown in Sect. 6.2.1 can be arbitrarily prescribed, provided that V ∼ r−1 and
W decays exponentially. The solution depends on both r and θ but not z.
This is again a generalized Beltrami flow satisfying (6.11), and is quasi two-
dimensional having a stream function ψ to determine (u, v). As to w, since H
is independent of z, by the inviscid and steady version of (6.4c) there must be
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vωr − uωθ =
1
r

∂(w,ψ)
∂(r, θ)

= 0,

implying that w = w(ψ). Thus, we can use the same assumption as (6.163),
with merely replacing ω by w. Then by the same Taylor expansion and noticing
now (

dF
dψ

)
0

=
dW/dr
dr/dψ0

= −W
′

V

it follows that (Saffman 1992)

w2 = −W
′

V
f(r)ψ2. (6.168)

This result can be verified by substituting (6.167) into the inviscid and steady
version of (6.5a) and integrating twice.

Now that everything is determined by a single ψ, which was already solved
in the preceding subsection. To match with (6.166), the stream function must
be

ψ = ψ0 + δ2ψ2 = ψ0 +
δ2

4
f(r) cos 2θ, (6.169)

where f(r) satisfies canonical equation (6.148a). The function G therein de-
fined by (6.143b) can be written

G(r) = − r

Γ

(
Γ ′

r

)′
. (6.170)

Then the solution directly follows (Zhu et al. 1999):

u = − δ

2r
f(r) sin 2θ,

v = δ−1V (r)− δ

4
f ′(r) cos 2θ, (6.171)

w = W (r)− δW ′

4V
f(r) cos 2θ;

ωr =
W ′

2Γ
f sin 2θ,

ωθ = −δ−1W ′ +
1
4

(
W ′

V
f

)′
cos 2θ, (6.172)

ωz = δ−2Γ
′

r
+

1
4
Gf cos 2θ.
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Finally, by (6.171) and the r-component of the steady Euler equation, one
finds

p = δ−2

(
p∞ −

∫ ∞

r

V 2

r
dr
)
− 1

2
cos 2θ

∫ ∞

r

1
r3

V (r2f)′ dr +O(δ2), (6.173)

where p∞ is the pressure of the background potential flow at vortex center.
For example, let (V,W ) be a q-vortex given by (6.19) with q = W0 = 1,

and taking the positive sign for W . Then (6.170) gives (the overbar for radial
coordinate is dropped)

G(r) =
4r2

er2 − 1
> 0. (6.174)

The core size r = a is defined as where V (r) reaches the maximum, which is
the solution of a2 = 2 ln a. By (6.19) and (6.174), near the axis (6.148a) is
reduced to a Bessel equation:

f ′′ +
1
r
f ′ + 4

(
1− 1

r2

)
f = O(r2)

with solution
f(r) = CJ2(2r) + O(r4) =

C

2
r2 +O(r4),

where constant C has to be determined numerically by the entire solution
satisfying (6.148c). Hence, we write

f(r, θ) =
r2

2
(1 + β cos 2θ) + O(r4), β ≡ Cδ2, r 
 1,

or, in terms of Cartesian coordinates with origin at the vortex center,

f(x, y) =
1
2
[(1 + β)x2 + (1− β)y2] + O(r4).

Thus, for r 
 1 the sectional streamlines are ellipses, but no longer so for
r = O(1). Since Γ ′ > 0, G > 0, and ψ ≤ 0, (6.172) indicates that the strain
field tends to reduce the axial vorticity for |θ| < π/4 and |π − θ| < π/4, but
enhance it elsewhere. The streamlines and vorticity contours are no longer
overlapped in this kind of strained vortices.

6.5.3 Vortex in Triaxial Strain Field

Motivated by the observed vortex patterns in turbulence, the asymptotic vor-
tex solution and surrounding flow patterns in a triaxial strain field has been
analyzed by Moffatt et al. (1994), Jiménez et al. (1996), and Prochazka and
Pullin (1998), of which the main findings are outlined.
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We start from the canonical equation (6.162). By using (6.159), the func-
tion G defined by (6.143b) now reads

G(r) =
r2

4(er2/4 − 1)
(6.175)

from which the asymptotic behavior of f(r) satisfying (6.162b,c) is further
determined by Moffatt et al. (1994)

f(r) = ar2 +
1
12

(
1
4
− a

)(
r4 − 5

64
r6 + · · ·

)
as r → 0,

r2f(r) ∼ C+ ∼ 1
4
r2e−r

2/4 as r →∞, (6.176)

where a = −0.381475 . . . and C = −17.4723 . . . . Thus, by (6.161) one obtains

u(r, θ) = −1
2
r +

(
λ

2
r +

2ε1
r
f(r)

)
cos 2θ,

v(r, θ) = v0(r)−
(
λ

2
r + ε1f

′(r)
)
sin 2θ, (6.177)

ω(r, θ) = ω0(r) + ε1Ω(r) sin 2θ,

where ε1 = λ/RΓ is the characteristic small parameter for strained vortices
and

Ω(r) =
(
f − r2

4

)
r2

4(er2/4 − 1)
. (6.178)

The contours of vorticity and dissipation of strained vortices at different
λ has been extensively studied by Moffatt et al. (1994), who found that the
peaks of enstrophy ω2 and dissipation rate Φ are dislocated. This occurs in two
dimensions as well. Fig. 6.16 displays one of their asymptotic solutions for the
contours of dissipation Φ with ε1 = 0.00656, which has a pair of maximal peaks
and a pair of minimal peaks aligned to the major and minor axes, respectively.
This pattern has been found in other direct numerical simulations, e.g., Fig. 3b
of Su et al. (2002).

In contrast, the ω2 distribution (not shown) is nearly elliptic, with a pair of
peaks located aligned to the minor axis. As mentioned following (2.155), the
characteristic distribution of ω2 and Φ are good indicators of vortex structures
in a complex flow, and their peak-value dislocation can be easily understood.
In fact, even for an axisymmetric vortex these peaks are already dislocated:
while the peak of ω2 is at the vortex center forming a “spaghetti structure”,
that of Φ is at the edge of the vortex core forming a “macaroni structure”
(Wu et al. 1999a).

We remark that once f(r) is solved, the Lamb vector of the vortex in
triaxial strain can be readily obtained. Then the longitudinal and transverse
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Fig. 6.16. Dissipation contours of an asymptotic strain vortex solution. The maxima
and minima are marked with ∗ and ×, respectively. Reproduced from Moffatt et al.
(1994)

parts of l, lll‖ and lll⊥, can be expressed analytically in terms of f(r). The
patterns of the magnitude contours and vector lines of ω, l, lll‖, and lll⊥ on the
(r, θ) plane at λ = 5 are shown in Fig. 6.17. The topology of the vector fields
of l, lll‖, and lll⊥ in the entire plane is quite complex (not completely shown).
While the center of a Burgers vortex is a stable spiral point of l-field, it is
now a saddle.

A special problem occurs for biaxially strained vortex when λ  1. As
sketched in Fig. 6.18, in this case the flow is divided to a few characteristic
regions. In the vortex-core region I the vorticity diffusion is balanced by its
enhancement due to stretching, which was just discussed. Outside the core
region there is a “cat-eye” region II bounded by streamlines from two saddle
points where r  1, but the asymptotic theory developed in Sect. 6.5.1 is
effective only for r = O(1). To fill this gap, Jiménez et al. (1996) apply the
Lundgren transformation (6.32) and a singular perturbation technique called
coordinate stretching (Van Dyke 1975) to delay the disordering to r = ε

−1/2
1 .

Then, Prochazka and Pullin (1998) construct a simple solution for region II,
along whose bounding streamline the weak vorticity takes a constant value,
and there is a weak vorticity leakage across that streamline to region III.
Having determined these, the description of region II is complete.

All the theoretical predictions in this subsection have been confirmed
by the numerical computation of Prochazka and Pullin (1998) with good
accuracy.
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Fig. 6.17. The contours of vorticity (a), contours of magnitude and vector lines
of Lamb vector (b), and its longitudinal (c) and transverse parts (d) for biaxially
strained vortex at λ = 5. Courtesy of W.-D. Su, Q.-D. Cai, and H. Zhao
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Fig. 6.18. Four regions for biaxial strained vortex with λ � 1
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6.6 On the Definition of Vortex

Having studied various typical vortex solutions, we now visit a controversial
but fundamental problem in vortex dynamics: the definition of a vortex in vis-
cous flow. This issue turns out to be surprisingly difficult, although intuitively
a vortex can be easily recognized (e.g., Lugt 1979). So far in this book we have
only qualitatively identified a vortex as a connected fluid region with relatively
high concentration of vorticity. But the need for a rational and quantitative
definition has become increasingly pressing since the discovery of coherent
vortical structures and their key role in turbulent flows (see Chap. 10). The
lack of a consensus on vortex definition has caused considerable confusion in
visualizing and understanding the coherent vortical structures, their evolution,
and interaction. Currently the issue is still open.

In this section we follow a recent work of Wu et al. (2005b) to analyze
the physical root of the controversy. We compare different invariant criteria
for defining an incompressible vortex proposed in the past by an analytical
diagnosis, exemplified by the Burgers vortex and Sullivan vortex. This analysis
disqualifies some commonly used criteria and leads to a requirement that any
generally applicable definition should satisfy.

6.6.1 Existing Criteria

One recognizes the existence of vortices first by their intuitive streamline
patterns, which are however not Galilean invariant (Sect. 2.1) and cannot be
used to define a vortex. A natural invariant approach could be based on the
vorticity, from which one can extract vorticity lines and vorticity magnitude.
A bundle of vorticity lines can ensure the correct topological property of
the vortices, but does not tell the strength of the vortex. A better concept is
vorticity tube, which has been used by Lamb (1932, p. 202) to define a vortex.

More precisely, we could define a vortex as a vorticity tube surrounded by
irrotational flow, similar to the definition given by Saffman and Baker (1979).
But the vortex boundary becomes fussy in viscous flow, and even some invis-
cid vortex models (say the q-vortex) may have exponentially decaying “tail”
without sharp boundary. In that case one usually talks about the vortex core
as we did for axisymmetric vortices in this chapter, of which the outer bound-
ary is the radius r0 where the circumferential velocity is maximum. However,
this criterion cannot be generalized to more complex and nonaxisymmetric
vortices.

A simple alternative to the vorticity-tube definition would be choosing a
threshold magnitude, say |ω0|, and identifying the fluid region with |ω| ≥ |ω0|
as a vortex. But the choice of |ω0| is subjective, and the side boundary of a
vorticity tube may significantly differ from an isovorticity surface. This |ω|-
criterion is also inadequate.

A natural basis for developing possible rational criteria is the symmetric–
antisymmetric decomposition ∇u = D+Ω, which suggests that a vortex may
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be defined as a flow region where the vorticity prevails over the strain rate.
This requires the calculation of the invariants of∇u through its representative
matrix, say A; which in cylindrical coordinates reads

A =

 u,r v,r w,r

(u,θ − v)/r (v,θ + u)/r w,θ/r

u,z v,z w,z

 . (6.179)

The first criterion along this line was proposed by Weiss (1981) for two-
dimensional flow (u, v) based on the eigenvalues σ of ∇u, of which the char-
acteristic equation is

σ2 +Q2D = 0, (6.180a)

where

Q2D =

∣∣∣∣∣u,x v,x

u,y v,y

∣∣∣∣∣ = 1
2
(‖Ω‖2 − ‖D‖2) = 1

4
ω2 − 1

2
‖D‖2. (6.180b)

is the second invariant of ∇u (and also the negative of the discriminant ∆2D;
the first invariant is tr(∇u) = 0). Here we have used the notation ‖S‖ ≡
[tr(S · ST)]1/2 for any tensor S. When Q2D > 0 at a point, we have purely
imaginary eigenvalues ±iσi = ±i

√
Q2D and the flow there is called elliptic

(otherwise is hyperbolic), which can measure how much the vorticity prevails
over the strain rate. Thus, a vortex is defined as a connected fluid region with

Q2D = −∆2D = σ2i > 0, (6.181)

known as the Weiss criterion. In particular, for a two-dimensional axisym-
metric vortex, by (6.179) there is

Q2D =
1
4

{[
1
r

∂

∂r
(rv)

]2
−
[
r
∂

∂r

(v
r

)]2}
=

v

r

∂v

∂r
(6.182)

and (6.181) precisely defines the vortex as the fluid within r = r0 where
v = max, in consistency with our common concept of vortex core. The Weiss
criterion has successfully passed the DNS tests for various two-dimensional
turbulence (e.g., Brechet et al. 1988; Basdevant and Philipovich 1994).

Controversy on defining a vortex appears once we enter three-dimensional
flow. The characteristic equation for the eigenvalues of ∇u is

σ3 +Qσ −R = 0, (6.183)
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where

Q ≡ −1
2
ui,juj,i =

1
2
(‖Ω‖2 − ‖D‖2)

=
1
2

(
1
2
ω2 − ‖D‖2

)
= σ1σ2 + σ1σ3 + σ2σ3, (6.184a)

R ≡ det(ui,j) =
1
3
ui,juj,kuk,i

=
1
3
(DijDjkDki + 3DijΩjkΩki) = σ1σ2σ3 (6.184b)

are the second and third invariants of ∇u, respectively. The discriminant of
(6.183) is

∆ =
(
Q

3

)3

+
(
R

2

)2

. (6.185)

Consequently, in three dimensions the question on how much the vorticity
should prevail over the strain rate may have two possible answers, both being
within kinematics: either

∆ > 0 (6.186)

or
Q > 0. (6.187)

These are known as the ∆-criterion (Dallmann 1983; Chong et al. 1990)
and Q-criterion (Hunt et al. (1988)), respectively. The Q-criterion can be
equally expressed in terms of the kinematic vorticity number m introduced
by Truesdell (1953) in both two and three dimensions:

m ≡ ‖Ω‖‖D‖ =
ω√
2‖D‖

> 1. (6.188)

Moreover, in an axisymmetric stretch-free vortex, (6.18a) indicates that
the centrifugal acceleration can only be balanced by the radial pressure gradi-
ent, so in each (r, θ)-plane the pressure is minimum at the vortex center. This
sectional pressure-minimum has been observed in some (not all) complicated
vortices. One remarkable example is strong vortex filaments in turbulence with
sectional diameter of the smallest possible turbulence scale, the Kolmogorov
dissipation scale (Chap. 10). Thanks to the low-p property, such vortex fila-
ments can be experimentally visualized (Douady et al. 1991). This property
has also been considered as a dynamic criterion for defining at least a class of
low-pressure vortices.

To assure the low-pressure feature in an axial vortex, Hunt et al. (1988)
proposed to add the low-pressure condition to (6.187). Jeong and Hussain
(1995) proposed a replacement of these two conditions by a single one, that
the vorticity-induced pressure is sectionally minimum in a vortex. They start
from the gradient of the incompressible Navier–Stokes equation
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aj,i = −
1
ρ
p,ij + νuj,ikk, (6.189)

where aj,i can be decomposed into symmetric and antisymmetric parts

aj,i =
(

D
Dt

Dij +ΩikΩkj +DikDkj

)
+
(

D
Dt

Ωij +ΩikDkj +DikΩkj

)
.

(6.190)
While the antisymmetric part just leads to the vorticity transport equation,
the symmetric part yields

−1
ρ
p,ij =

D
Dt

Dij − νDij,kk +ΩikΩkj +DikDkj . (6.191)

In a plane the local pressure reaches a minimum at a point if the tangent
gradient of p vanishes there, and the second-order derivatives along two or-
thogonal tangent directions are both positive. Since p,ij is a symmetric tensor,
the objective choice of the plane can be made in a principal-axis coordinate
systems, where the plane is spanned by the two eigenvectors of p,ij and for p to
be minimum the associated two eigenvalues must be both positive (the third
eigenvalue is the smallest). The eigenvalues of p,ij can be found from the right-
hand side of (6.191), but for picking up the vorticity-induced pmin the effect
of the material derivative of Dij (invariant following a fluid element) and its
viscous diffusion should be excluded. Thus, the problem amounts to the real
eigenvalues λ1 ≥ λ2 ≥ λ3 of the symmetric tensor

G ≡ D ·DT −Ω ·ΩT, (6.192)

and the sectional pressure-minimum induced by a vortex is ensured by requir-
ing the second eigenvalue of G be negative:

λ2 < 0. (6.193)

This is known as the λ2-criterion. In two dimensions, one simply has Gαβ =
−Q2Dδαβ , so (6.192) returns to (6.180b) and the ∆-, Q-, and λ2-criteria are
all identical.

In their study of educing low-p vortices, Kida and coworkers (e.g., Kida and
Miura 1998) reconsidered the sectional pmin problem directly based on tensor
p,ij . The sectional plane was chosen to perpendicular to the third eigenvector
associated with the smallest eigenvalue of p,ij , say ep. These authors then
apply the sectional minimum-pressure criterion to obtain the candidate of a
vortex axis. To pick up pmin caused by vortices only, on the sectional plane
the elliptic condition (6.181) is applied simultaneously. Then, the vortex core
is defined as a radially concave region (∂2p/∂r2 > 0) around each axis so that
the core boundary is given by the inflection surface (Makihara et al. 2002).

Extensive numerical tests of the above three-dimensional invariant criteria
have been conducted by many authors (e.g., Jeong and Hussain 1995; Kida
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and Miura 1998; Cucitore et al. 1999; Dubief and Delcayre 2000) for various
vortices, including exact isolated vortex solutions (some have been given in
this chapter) and complex turbulent coherent vortices. These authors reported
that, roughly speaking, the ∆-criterion sometimes covers too much vortical
flow region; the Q- and λ2-criteria educe quite similar vortex plots in most
tested cases, but the former may miss a part of vortex; the λ2-isosurfaces
cannot always capture the pressure minimum and also sometimes covers too
much space to visualize the coherent vortex structure neatly, while in some
other cases it may cut a connected vortex into segments as well. No commonly
agreed conclusion has been reached.

6.6.2 An Analytical Comparison of the Criteria

In searching for a rational definition of a vortex, numerical tests are insuf-
ficient, because without knowing what is a vortex a priori the judgment of
which criterion educes the best vortex patterns in complex flows cannot be
completely objective. What is needed is a clear insight on the physical root
of the difference between various proposed criteria, which can be gained only
by theoretical diagnosis. We do this later, based on the canonical matrix of
the tensor ∇u introduced by Chong et al. (1990).

Since among various proposed criteria (6.186) is a condition that the others
all satisfy, we proceed under the assumption that (6.183) has a pair of complex
conjugate roots σ1,2 = σr ± iσi and a real root σ3 = −2σr. Then there exists
a transforming matrix P such that after transformation (x and y are column
matrices)

A→ B = P−1AP, x→ y = P−1x, (6.194a,b)

the matrix representation A of ∇u in an orthonormal coordinate system
(e1,e2,e3) is transformed to the canonical form

B =

σr −σi 0

σi σr 0

0 0 −2σr

 . (6.195)

Then the linear dynamic system

dyi
dt

= Bijyj , i, j = 1, 2, 3

can be invariantly decomposed into the direct sum of a two-dimensional sys-
tem and a one-dimensional system

dx′
α

dt
= A′

αβx
′
β , α, β = 1, 2,

dx′
3

dt
= σ3x

′
3 i.e., x′

3 = Ceσ3t.
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It then suffices to study the system in the invariant plane spanned by the
complex eigenvectors w = p± iq associated with σr ± iσi, where p and q are
real vectors. We denote the normal of the w-plane by e′

3. The transforming
matrix P is constructed by taking (q,p) as its columns (e.g, Hirsch and Smale
1974). In general, the transformation (6.194b) is skewed with e′

3 �= e3, and
hence B does not represent any real velocity-gradient tensor in physical space.
However, B retains the same σ, Q, and ∆, which is all what we need. An
elliptical fixed point on the w-plane has polar-coordinate expression (Chong
et al. 1990)

r = Cekθ, k ≡ σr
σi

, (6.196)

where C > 0 depends on initial conditions.
Now, in terms of σi and k we have

∆ =
σ6i
27

(1 + 9k2)2, Q = σ2i (1− 3k2).

Hence, the ∆- and Q-criteria amount to

∆-criterion : σ2i > 0; (6.197)

Q-criteron : σ2i > 0, − 1√
3
< k <

1√
3
. (6.198)

Namely, the ∆-criterion is not affected by the axial-strain ratio k and always
equivalent to (6.180b) with effective ingredient Q2D = σ2i , but now the sub-
script 2D stands for the invariant two-dimensional subspace. In contrast, the
Q-criterion sets an upper bound for k, beyond which a swirling flow is not
supposed to be a vortex.

Unlike the ∆- and Q-criteria, the λ2-criterion is based on a different in-
variant set of G defined by (6.192). To compare it with the preceding two,
therefore, we re-express the eigenvalues of G by those of A. For simplicity,
assume the vortex axis is normal to the w-plane, so that we only need to
consider a 2× 2 matrix of (6.179), symbolically denoted by

A =

[
a b

−c d

]
(6.199)

with complex eigenvalues

σ1,2 =
1
2
(a+ d)± i

2

√
4bc− (a− d)2, (a− d)2 < 4bc. (6.200)

In this case

G =

[
a2 − bc (b− c)σr
(b− c)σr d2 − bc

]
. (6.201)
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But by (6.200) there is

bc = σ2i +
1
4
(a− d)2, σ2r =

1
4
(a+ d)2,

which enables writing the characteristic equation of (6.201) as

λ2 − 2(σ2r − σ2i )λ+ (σ2r − σ2i )
2 − σ2r [(a− d)2 + (b− c)2] = 0. (6.202)

Consequently, under the assumed condition (6.193) yields an inequality equa-
tion

−σ2r − σr
√

(a− d)2 + (b− c)2 + σ2i > 0,

of which the solution is

σ2i > 0, −(
√

1 + β2 + β) < k <
√
1 + β2 − β, (6.203a)

where
β ≡ 1

2|σi|
√

(a− d)2 + (b− c)2. (6.203b)

We can now explore the physical root of the difference between the Q-,
∆-, and λ2-criteria. As seen from (6.196), for fixed σi the larger |k| is, the
faster the streamlines merge into or diverge out of the fixed point, owing to
the stronger strain rate −2σr = −2kσi along the the principal direction e3
of ∇u. If the vortex axis has unit vector ev and ev = e3, k reflects the axial
strain ratio. But, there is no physical reason to set any upper bound to the
axial strain; in particular, an axial stretching with k < 0 will enhance the
vortex, even if it makes ||D|| exceed ||Ω||. Alternatively, if ev �= e3, since they
are not orthogonal in a generic vortex, permitting an arbitrary axial strain
must requires permitting an arbitrary σr or k. This key observation explains
why some educed vortices based on the Q-criterion (6.187) may exhibit hollow
or broken regions (Jeong and Hussain 1995). Then, the λ2-criterion imposes
unequal bounds for k, more stringent for shrink (k > 0) and looser for stretch
(k < 0). Thus, the criterion is somewhat superior to the Q-criterion, and in-
deed it has helped study near-wall coherent structures (Jeong et al. (1997);
Schoppa and Hussain (2002)). But, by (6.203), the λ2-criterion may also break
a vortex at locations with strong axial stretching (e.g., Kida and Miura 1998
and Figs. 6.19, 6.21). In contrast, the ∆-criterion solely in terms of the pro-
jected flow pattern on the w-plane is free from this trouble.

The Kida pmin-criterion is not convenient to diagnose based on the invari-
ant w-plane but its performance will be exemplified later.

6.6.3 Test Examples and Discussion

We now illustrate the preceding diagnosis by considering two familiar vor-
tices, both belonging to necessary tests that any general criterion should pass
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through. Consider the Burgers vortex first. From (6.34) and (6.179) one easily
finds

σr = −
γ

2
< 0, σ2i = Q2D =

v

r

∂v

∂r
. (6.204a,b)

Since e3 = ev = ez, (6.203) can be applied. The ∆-, Q-, and λ2-criteria are
then specified to

∆ =
Q2D

27

(
Q2D +

9
4
γ2
)2

> 0, (6.205a)

Q = Q2D −
3
4
γ2 > 0, (6.205b)

−λ2 = Q2D −
1
4
γ2 − γ

2

∣∣∣ r d
dr

(v
r

) ∣∣∣ > 0, (6.205c)

respectively, which can also be directly derived from (6.34). Now, by
(6.204a,b), only the∆-criterion predicts the correct core radius r0 = 2.24

√
ν/γ

with v(r0) = vmax for any γ. The core radius variation as γ predicted by the
three criteria are compared in Fig. 6.19 for β = 10, indicating that the Q- and
λ2-criteria may underestimate or even nullify the core radius.

On the other hand, the pressure distribution is

p

ρ
= −1

8
γ2(r2 + 4z2)−

∫ ∞

r

v2

r
dr,

2.5

2.0

1.5

1.0

0.5
25 50 75 100

g

Q2D, D

Q

Kida

l2

Fig. 6.19. Vortex-criteria test by a Burgers vortex with β = 10. Four predicted
core radii r0

√
γ/ν vs. γ. From Wu et al. (2005b)
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so the cross-plane Laplacian of p is

1
r

∂

∂r

(
r
∂p

∂r

)
= 2

(
Q2D −

γ2

4

)
.

Since Q2D = (Γ0γ/8πν)2 at r = 0, Kida’s pmin-criterion requires

RΓ =
Γ0
ν

> 4π, (6.206)

otherwise the pressure takes maximum. This imposes a constraint not to γ
but to the Reynolds number, because at small Re the centrifugal acceleration
is mainly balanced by diffusion rather than pressure gradient. Unfortunately,
as Kida and Miura (1998) have noticed and is plotted in Fig. 6.19 as well,
the proposed concave condition ∂2p/∂r2 > 0 yields a core radius 1.48

√
ν/γ,

smaller than the correct value by 34%.
The Burgers vortex is quite special since it has ev = e3 = e′

3 and given axis
location. In general, as a preferred direction permitting arbitrary strain, the
vortex axis and its location must be clearly identified. This issue is nontrivial
for those vortices with complicated shapes (Robinson 1991b). To further test
the criteria, we need a vortex solution with both axial stretching and multiple
vorticity components. Thus, let us turn to the two-cell Sullivan vortex (6.42)
to (6.44). Its invariant w-plane is found to coincide with the (r, θ)-plane, i.e.,
ev = e′

3; but the ω-lines and e3 form different spirals. Owing to (6.205a), it
suffices to use the Q2D-criterion to represent the effective part of (6.186). ∆
or Q2D and Q are functions of r only, and numerical calcuation indicates that
λ2 is almost independent of z except a small neighborhood of (r, z) = (0, 0).

We set β = 10 again in calculation. In Figs. 6.20 and 6.21 we plot the
r-dependence of Q2D, Q, and −λ2 at z = 1, resepctively, with γ being a
parameter. The sign of Q2D depends on the local competition of fluid rotation
and radial strain, and takes a local minimum common to all γ at r = 0.
For small γ, while the Q2D- and λ2-criteria educe a single vortex with outer
boundary larger than the limit cycle r0 = 3.36

√
ν/γ2, the Q-criterion educes

a hollow vortex. As γ increases, the Q2D-criterion educes a hollow vortex
surrounding a thin vortex centered at the z-axis, but the region with Q > 0
disappears first, and then that with −λ2 > 0. Therefore, as predicted by
(6.198) and (6.203), the Q- and λ2-criteria suffer from the same qualitative
limitation. On the other hand, the Q2D-criterion divides the Sullivan vortex
into three subclasses as γ varies but never denies the existence of the vortex.

Note that Q2D is not affected by the azimuthal vorticity ωθ on the
w-plane, which alone does not forms any axial structure. In other words,
a swirling flow is recognized as a vortex due solely to its axial vorticity.5 Thus
one sees a general fact that, as a result of allowing for the arbitrariness of axial
strain, the azimuthal and radial vorticity components should also have certain
arbitrariness (subjected to some kinematic and dynamic constraints) and not
5 This is also true for a swirling vortex ring, see Sect. 6.3.4.
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Fig. 6.20. The r-dependence of Q2D (solid line) and Q (dashed line) for β = 10 and
different γ (values marked in the plot). To make the plot compact, the Q2D curves
for γ = 2 and 40 are scaled down by 10 and 5 times, respectively. The upper-left
zoom-in plot shows the behavior of Q2D at small r in original scale. For γ < 2 and
γ > 60 the qualitative feature of the curves in this and the next figures remain
unchanged. From Wu et al. (2005b)
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Fig. 6.21. The r-dependence of −λ2 at z = 1 for β = 10 and different γ (values
marked in the plot). The straight segments are due to the interchange of λ2 < 0 and
λ3 < 0 as the intermediate eigenvalue. From Wu et al. (2005b)
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enter the vortex definition.6 When the vortex axis ev is aligned to neither the
local vorticity nor e3, it seems that a natural kinematic choice would be to
define the axis as normal to the invariant w-plane or take ev = e′

3.
Finally, it should be stressed that any inequalities like (6.186), (6.187),

and (6.193) cannot identify a single line as the vortex axis but only a region
as a vortex, in which ev forms a bundle of axial directions. An equality is
necessary for identifying a single axis as Kida’s criterion does for low-pressure
vortices by an extremal condition. Again, a natural kinematic choice would
be Q2D = maximum in the vortex region. If this is accepted, then the axis of
the Burgers vortex (and Batchelor vortex) would be retained, but the Sullivan
vortex would be identified to have an annular core with its radius dependent
on γ.

The preceding analysis and discussions can be summarized as a general
requirement for any vortex definition:

A generally applicable vortex definition should be able to identify the vortex
axis and allow for arbitrary axial strain. What matters in the definition should
be only the axial vorticity component or rotational motion of the fluid on a
cross-plane, compared to the strain rate on that plane.

Summary

1. Axial vortices are the existence form of the highest concentration of vor-
ticity. The study of these vortices is considerably benefited by examin-
ing a small number of typical vortex solutions of the Navier–Stokes and
Euler equations, including single cylindrical vortices without and with
axial strain, circular vortex rings, inviscid and viscous strained vortices,
and vortex pairs or arrays. These theoretical models are widely used for
understanding the basic physics and stability of vortices in reality.

2. A major part of exact vortex solutions were found when the nonlinearity in
vorticity transport equation is absent, which is the case if the flow is gen-
eralized Beltramian. In particular, for inviscid generalized Beltrami flow
there is a big freedom to construct exact vortex solutions. However, this
simple class excludes some key effects such as nonuniform axial stretching
(a vortex with uniform axial stretching can be cast to a vortex without
axial stretching by the Lundgren transformation). Only a few truly nonlin-
ear analytical vortex solutions are available, but in most of them different
components are still artificially decoupled. The known nonlinear solutions
with naturally coupled components as required by boundary conditions
are even rarer.

6 The Batchelor vortex (or q-vortex) (6.19) also has both axial and azimuthal vor-
ticity components with helical vorticity lines. But due to the absence of axial
strain, all the four considered criteria yield the correct core radius, because their
effective ingredients are all simply (6.182).
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3. The exactness of viscous or inviscid vortex solutions does not ensure that
they are physically realistic, because they can hardly satisfy all physical
conditions, such as the finiteness of the total kinetic energy and angular
momentum. No isolated straight columnar vortex with nonzero total cir-
culation is realistic. In reality, a vortex (or a segment of a curved vortex)
is constantly in a strained field induced by other vortices (or other seg-
ments of the same curved vortex). In most cases the solutions for strained
vortices can be found only approximately, for example by matched asymp-
totic expansion or other singular perturbation methods.

4. How to define an axial vortex in three dimensions is a subtle issue. While
in many studies of vortex dynamics a qualitative definition is sufficient,
quantitative criteria becomes necessary in understanding vortex struc-
tures, their evolution and interactions in very complicated flows especially
in turbulence. A rational criterion must be invariant under Galilean and
coordinate transformations, free from artificially defined threshold values,
and should also be able to identify the vortex axis and allow for arbitrary
axial strain. So far the definition problem still remains an open issue.
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Separated Vortex Flows

This chapter discusses global separated flow. We first introduce a general the-
ory in Sect. 7.1 on the topological behavior of separated flow as well as the
structural stability and bifurcation of the separated flow, where a discussion
on the classification of flow separation will also be made. We then address
two basic types of steady separated flow, the separated bubble flow and free
vortex-layer separated flow, in Sects. 7.2 and 7.3, respectively. In a separated
bubble flow, the separation stream surface (defined in Sect. 5.1) and a part of
the solid wall from which the separation occurs form a closed boundary of the
separated vortex bubble. Hence, the flow inside the bubble is isolated from
external free stream and has only weak distributed vorticity. In contrast, in
a free vortex-layer separated flow the fluids at both sides of the separation
stream surface come from the same free stream. Thus, the separated vortices
formed thereby are much stronger than that in closed bubbles. This difference
makes the latter more important in engineering applications.

Unsteady separated flow is far more complicated than either type of steady
separated flows, which we discuss in Sect. 7.4 with focus on its rich phenomena
and relevant vorticity-vortex dynamics mechanisms.

7.1 Topological Theory of Separated Flows

In Sect. 5.2.1 we have mentioned the concept of fixed points or critical points
of a the vector field. Like the knottness and tangledness of a vector field dis-
cussed in Sect. 3.3.2, the number and types of fixed points and closed pathlines
as well as their connection by trajectories are the topological property of the
flow, which for a given solid body may change as the flow condition varies,
from simple to complex. Thus the flow topology is a powerful tool to rationally
interpret separated-flow patterns over various configurations, obtained exper-
imentally or numerically. This approach, based on Poincaré’s (1882) qualita-
tive theory of ordinary differential equations, was introduced to the studies
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of three-dimensional separated flows by Legendre (1956) and Lighthill (1963);
for reviews see Tobak and Peake (1982) and Délery (2001).

Like the flow separation theory of Sect. 5.2, the topological theory of sep-
arated flow is also based on the full Navier–Stokes equation with assumed
analytic property, so that the Taylor expansion (5.10) exists. Although it can
be applied to instantaneous unsteady flow (e.g., Srygley and Thomas 2002),
the main development of the topological theory is for steady and incompress-
ible flow which we assume in this section.

7.1.1 Fixed Points and Closed Orbits of a Dynamic System

Consider a general dynamic system (say, in three-dimensional space)1

ẋ = f(x), (7.1)

where the dot denotes d/dt (in (5.6) t is replaced by rescaled variable s) and
f does not contain t explicitly, as in the case of steady flows. Such a system is
said to be autonomous. A fixed point or critical point x̄ is a stationary solution
of (7.1), i.e., f(x̄) = 0 or x = x̄ for all t. If x̄ is the unique fixed point in
its neighborhood, it is said to be isolated. In addition, if (7.1) has a solution
x(t+ T ) = x(t), then the pathline (trajectory, orbit) forms a closed orbit.

We have seen that a general flow separation can be studied by the low-
order Taylor expansion of the governing equations, especially the linearization
of (5.6), in a small neighborhood of an on-wall point. Now the linearization
of (7.1) around a fixed point x̄ is also the basis of studying the topologi-
cal property of the nonlinear system (7.1). In a convenient coordinate frame
(x1, x2, x3), this linearized system reads

ẋ = Df(x̄)x, (7.2a)

where

Df(x) ≡ ∂(f1, f2, f3)
∂(x1, x2, x3)

(7.2b)

is the Jacobian matrix of f at x. The solution behavior of (7.2) is completely
determined by the eigenvalues λk of the Jacobian matrix Df(x̄), and can be
constructed from eigenvectors eλktxk. Then, if (7.2) has no eigenvalue with
real part zero, it is called a hyperbolic linear system, and its fixed points
are called hyperbolic (or nondegenerate) fixed points. Hyperbolic fixed points
are robust, and we have the following theorem (e.g., Hirsch and Smale 1974;
Guckenheimer and Holmes 1983):

1 For clear definitions and a detailed index of relevant terminology of this section
see, e.g., the textbook of Hale and Koçak (1991).



7.1 Topological Theory of Separated Flows 325

Hartman–Grobman Theorem . If x̄ is an isolated hyperbolic fixed point of
(7.1), then there is a neighborhood of x̄ in which f is topologically equivalent
to the linear vector field (7.2).

Depending on whether neighboring trajectories will approach, leave, or
stay around a fixed point or closed orbit as t→∞, we may classify the fixed
points or closed orbits as asymptotically stable, unstable, or stable, respec-
tively. A hyperbolic fixed point can only be unstable or asymptotically stable,
which repels or attracts neighboring trajectories. A closed orbit attracting or
repelling neighboring trajectories is called a limit cycle. If a limit cycle is not
surrounded by another one, it is said to be single. A single limit cycle is seen
in Fig. 6.2.

A three-dimensional system (7.1) can be decomposed into three two-
dimensional systems on three orthogonal planes, of which the behavior is
easier to examined. In a two-dimensional (x, y)-plane, we write (7.1) as

ẋ = ax+ by + P2(x, y),
ẏ = cx+ dy +Q2(x, y),

(7.3)

where P2, Q2 = O(r2) with r =
√
x2 + y2 are analytic near the origin. The

locally linearized system of (7.3) is familiar:

ẋ = ax+ by, ẏ = cx+ dy, (7.4)

of which the eigenvalues λ1, λ2 are determined by characteristic equation λ2−
pλ + q = 0, where p = λ1 + λ2 = a + d and q = λ1λ2 = ad − bc. According
to the sign of the discriminant ∆ = p2 − 4q, the feature of λ1 and λ2, and
hence the behavior of various fixed points of (7.4), can be inferred. The result
is summerized in Fig. 7.1, the p–q diagram.

From the figure one sees the following types of fixed points:2

1. Hyperbolic fixed points. p �= 0 and q �= 0, so both eigenvalues λ1 and λ2
have nonzero real part:
– q < 0: λ1, λ2 are real roots of opposite signs, and the fixed points are

unstable saddles.
– 0 < q < (p/2)2: λ1, λ2 are different real roots of the same sign, and the

fixed points are nodes, which is stable if p < 0 and unstable if p > 0.
– q > (p/2)2: λ1, λ2 are conjugate complex roots with nonzero real part,

and the fixed points are spirals. They are stable if p < 0 and unstable
if p > 0.

2 The terminology for the classification of fixed points of a two-dimensional vector
field is not completely unified in literature. Due to the intuitive analogy with
quadratic plane curves, saddles and centers are sometimes called hyperbolic and
elliptic fixed points, respectively, while the fixed “points” with q = 0 are called
parabolic fixed points (e.g., Tabor 1989).
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p = l1+l2

p2 = 4q
q = l1l2

D < 0
D = 0

D > 0

Fig. 7.1. The fixed points of two-dimensional linear systems

– q = (p/2)2 and p �= 0: λ1, λ2 are the same nonzero real root. In this
case, we have stars (critical nodes) or inflected nodes depending on
the form of the coefficient matrix being

either
[
λ 0
0 λ

]
or

[
λ 1
0 λ

]
,

respectively. In the latter case, the trajectories approach the fixed point
along a single direction, and tend to be parallel to the same direction
again at infinity.

It is easily seen that node, spiral, and star or inflected node are
topologically the same. We refer all of them to as topological nodes.
An unstable node is called a source, while an asymptotically stable
node is a sink.

2. Nonhyperbolic fixed points:
– q > 0 and p = 0: λ1, λ2 are pure imaginary roots, and the fixed points

are centers which are merely neutrally stable.
– q = 0 and p �= 0: One of λ1 and λ2 is zero and the fixed points form

a straight line rather than being isolated. The trajectories are a set of
parallel straight lines.

By the Hartman–Grobman theorem, nonhyperbolic fixed points cannot
retain their topological classes in (7.3). On the other hand, the nonlinear
system (7.1) may have more kinds of nonhyperbolic fixed points, called higher-
order or multiple fixed points. One such example is the saddle–node, consisting
half saddle on one side and half node on the other side.
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7.1.2 Closed and Open Separations

The above classification of fixed points enables a further classification on the
local flow separation as a supplement to our discussion in Sect. 5.2. For a
fully attached flow over a three-dimensional body surface, there can only be
a front stagnation point where the oncoming flow hits the body first, and a
rear stagnation point where the flow leaves the body. They are source and
sink of the τw-field, respectively. But, if the τw-field has a saddle O, the two
special τ -lines leaving O will attract neighboring τ -lines and satisfy the con-
verging condition (5.23), but repel neighboring streamlines above the wall and
satisfy the upwelling condition (5.25). These special τ -lines are identified as
separation lines by Lighthill’s (1963). Then, as sketched in Fig. 7.2, from each
separation line grows a separation stream surface, on which all streamlines
must emanate from O (Wu et al. 1988a), so O is a seminode on this stream
surface. On the normal plane perpendicular to the separation stream surface
the projected velocity field will see O as a semisaddle. This type of separation
pattern initiating at a saddle of the τw-field is called the closed separation.

If in Fig. 7.2 the direction of all τw-lines and streamlines is reversed, and
meanwhile the qualifiers “attracting” and “repelling” are exchanged, then one
obtains possible patterns of closed reattachment.

In Sect. 5.2 we left the exact identification of a separation line, say L, an
open issue. Now since for closed separation L must uniquely initiate from a
saddle of the τ -field, it can be unambiguously identified. What remains is to
find the end point of L. Still in terms of the fixed points of the τ -field, Zhang
(1985a) has shown that a closed separation line starting from a saddle must
terminate at an attracting node or spiral. To this list Surana et al. (2005a)
added that a closed separation line may also terminate at an attracting limit

O

O

(e1,e2) (e1,e3) (e2,e3)

(a)

(b)

∂B

O O

e1

e2

e3

Fig. 7.2. Closed separation initiated from a saddle of the τw-field
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Fig. 7.3. The four robust closed separation patterns S1–S4. The separation line is
denoted by γ. In terms of the fixed points of the τ -field on the wall, for S1 and S2
γ initiates at a saddle p and terminates at a spiral (q in S1), a node (q in S2), or
a limit cycle Γ in S3. In S4 γ is simply a stable limit cycle Γ . From Surana et al.
(2005a)

cycle or just be such a limit cycle. Based on the invariant manifold theory,
these authors proved that any robust closed separation patterns, which deform
smoothly but survive under small disturbance to the flow field, can only be
these four kinds, see the sketches in Fig. 7.3. The corresponding separation
stream surfaces can then be determined, with the exact formula (5.34) and its
extension to curved wall describing their slope. Therefore, within the range of
closed separation, the theory of generic steady flow separation is complete.

In addition to the closed separation, however, one cannot exclude the sit-
uation where the τ -lines emanating from the front node gradually turn from
diverging to converging, causing a separation zone on halfway along the tra-
jectories. Namely, inequalities (5.23) and (5.25) may start to hold at ordi-
nary points of a bundle of τ -lines. This separation pattern has indeed been
observed first by Wang (1970), who named it the open separation. The vortex
formed due to a strong primary open separation may also induce a secondary
open separation, with an open reattachment in between. This is actually the
case shown in Fig. 5.1 and analyzed in Sect. 5.2 without concerning any fixed
point of the τw-field. The flow-visualization experiment of Wang et al. (1990)
demonstrates that for the flow over such a prolate spheroid, when the in-
cidence gradually increases from zero, the separation pattern changes from
closed type to open type and back to closed type again. Two situations are
shown in Fig. 7.4.

The existence of open separation has been confirmed by several experi-
ments as reviewed in Wang (1997). However, in contrast to closed separation,
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(a) (b)

Fig. 7.4. (a) Open and (b) closed separation from prolate spheroid. From
Wang (1982)

open separation is a stranger to the dynamic system theory and the topo-
logical theory. Surana et al. (2005a) argued that, within the invariant mani-
fold theory, an open separation line segment is no more distinguished than
any other segments in the separation zone. This makes it impossible to
uniquely identify an open separation line and associated separation stream
surface with well-defined slope. Moreover, the appearance of an open sep-
aration at ordinary points of some τ -lines emanating from the front node
does not alter the topology of the separated flow to be discussed later (e.g.,
Tobak and Peake 1982), which makes it less certain to identify the quali-
tative behavior of a specific separated flow by its global topological struc-
ture.

So far the only available criteria applicable to open separation zone and
separation line is the approximate relations (5.26) and (5.27). The slope of
open separation stream surface may be approximately expressed by (5.30).
Fortunately, the observed evidence of open separation has been exclusively
for large-Re boundary-layer separation, characterized by the boundary layer
breaking away and formation of separated free shear layer. This is likely the
only circumstance for open separation to occur. As a physical reality, a further
theoretical study of open separation is highly desired.

The approximate relations (5.26), (5.27), and (5.30) may be equally ap-
plicable to closed separation if it becomes strong away from the upstream
saddle.

The concepts of closed and open separation only involve the initial behav-
ior of a separation line, which are less global than the concept of separated flow
in the entire flow field. In particular, closed and open separations should not
be confused with bubble-type and free vortex-layer types of separated flows,
respectively, defined in the beginning of this chapter. While any sufficiently
strong open separation must lead to free vortex-layer separated flow and hence
is always associated with strong separated vortices, a closed separation may
lead to a separated flow of either bubble type or free vortex-layer type. The lat-
ter may equally result in strong separated vortices; of which examples include
the prolate-spheroid separated flow in Fig. 7.4b, the leading-edge vortices to
be shown in Fig. 7.7, the necklace vortices to be shown in Fig. 7.29, and the
hemisphere–cylinder separated flow to be shown in Fig. 10.45.

On the other hand, free vortex-layer type of separated flow can be either
steady (in three dimensions only) and unsteady (e.g., the Kármán vortex street
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behind circular cylinder to be addressed in Sect. 7.4); but most of bubble-type
separated flows only exist under special conditions and are steady.

It should also be stressed that the concepts of closed and open separation
as well as both types of separated flow apply well to turbulent flow, at least
in certain averaged sense (e.g., Reynolds or ensemble average). Thus, when
we discuss complex turbulent shear flow in Sect. 10.6, these concepts will be
revisited and further clarified.

7.1.3 Fixed-Point Index and Topology of Separated Flows

Rewrite system (7.2) as

ẋ = P (x, y), ẏ = Q(x, y), (7.5)

which defines a two-dimensional vector (P,Q). Let C be a sufficiently small
single closed curve that does not meet any fixed point of (7.5). Let a point
move along C a cycle counterclockwise, see Fig. 7.5, such that the vector (P,Q)
turns j rounds over an angle 2πj. The integer j can be expressed by

j =
1
2π

∮
C

d
(
tan−1 Q

P

)
=

1
2π

∮
C

PdQ−QdP
P 2 +Q2

. (7.6a)

From Fig. 7.5 it is evident that, if C is a closed path of (7.5) enclosing (P,Q) =
(0, 0) then j = ±1, while if C does not enclose any fixed point then j = 0.
This assertion is independent of the shape of C since it can be continuously
changed to another closed curve. We call j the index of the fixed point, which
is a topological feature.

To compute j for various isolated fixed points, let the origin be at a hy-
perbolic fixed point so that it suffices to consider the linearized system (7.4).
Take a small circle of radius δ surrounding the origin, such that x = δ cos θ

(b)

(a)
(2)

(2)
(2)

(2)

(3)
(4)

(4)

(4)

(4)

(1)

(1)
(1)

(1)

P

P

C

C

(3) (3)

(3)

Fig. 7.5. Schematic interpretation of the index of a fixed point
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and y = δ sin θ, and substitute into the linearized version of (7.6a). We then
obtain

j =
ad− bc

|ad− bc| , (7.6b)

where a, b, c, and d are the coefficients in (7.4). Thus, Fig. 7.1 shows that the
index of any nodes (source, sink, or spiral) is +1, while that of saddles is −1.

On a two-dimensional surface in the three-dimensional space, the sum of
the indices of fixed points of a vector field must obey certain rules. For ex-
ample, on a sphere

∑
j = 2, and on a torus it is 1, etc. Any closed surface

topologically equivalent to these typical shapes have the same
∑

j. For sepa-
rated flows, this allows us to identify the possible number and nature of fixed
points of the τw-field on the body surface and the u-field in the space.

The topological rule of
∑

j implies a simple relation between the total
number of nodes and saddles, denoted by

∑
N and

∑
S, respectively, (Hunt

et al. 1978; Tobak and Peake 1982; Xia and Deng 1991). First, consider the
τ -field and ωB-field on body surface. For the simplest attached flow over a
single-connected closed surface which is topologically equivalent to a sphere,
there is

∑
N = 2 and

∑
S = 0. But if a closed separation from a saddle point

happens and hence the flow topology is altered, the general topological rule
is ∑

N

−
∑
S

= 2. (7.7a)

Since open separation is not associated with saddles, the flow topology can
be the same as that of fully attached flow.3

Next, if a three-dimensional body B is connected to a plane P extending
to up- and downstream infinity (e.g., a half-wing model mounted on a flat
plate in a wind tunnel), then on the surface similar consideration implies(∑

N

−
∑
S

)
B+P

= 0. (7.7b)

Moreover, let N′ and S′ be the seminode and semisaddle as those appeared
on the boundary in a cross section of the flow field (Fig. 7.6). Then, assume
a plane cuts one or more solid bodies in the flow field so that the sectional
flow on the plane has m isolated and finite holes and the connectivity of the
sectional flow is n = m+1. Their j must be ±1/2. Again starting the reasoning
from the simplest attached flow, we find on the plane there is(∑

N

+
1
2

∑
N′

)
−
(∑

S

+
1
2

∑
S′

)
= 1− n, (7.7c)

3 For this reason Tobak and Peake (1982) call open separation as “local separation”,
in contrast to the “global separation” with saddles.
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Fig. 7.6. Fixed points on a sectional plane of a three-dimensional flow

which for a single hole is −1. On the other hand, if a sectional plane cuts a
surface that extends to infinity in all directions, there is(∑

N

+
1
2

∑
N′

)
−
(∑

S

+
1
2

∑
S′

)
= 0. (7.7d)

The index of higher-order fixed points can be estimated as if they are combi-
nations of low-order ones.

In experimental visualization of complex separated flows, one paints the
model surface with a thin layer of thick oil, puts it into a wind tunnel, and
observes the residual oil trace after the test as the footprint of the flow. The
trace approximately reflects τ -lines. But since near fixed points τw approaches
zero, the trace there is very fussy. With the help of (7.7), a rational determi-
nation can be made on the types of fixed points. In so doing any sharp edges
and apex should be made rounded to avoid singularity. The oil-flow method
can be combined with other visualization techniques inside the flow field to
gain a three-dimensional picture.

For example, Fig. 7.7 shows schematically a typical flow pattern over a
slender delta wing at a large angle of attack, of which the visualized pattern
is clarified by the topological interpretation based on (7.7a) and (7.7c). At the
smoothed apex the separation line still initiates from a saddle, indicating a
closed separation. Figure 7.8 compares the visualized cross-flow pattern with
topological interpretation for asymmetric vortices over an elongated body at
high incidence, and Fig. 7.9 is a similar comparison of unsteady vortex shed-
ding behind a plate. Note that in two-dimensional flows to ensure the mass
conservation the spirals like those in Fig. 7.9 must vary periodically between
sources and sinks, otherwise there must be flow component along the third
dimension.

7.1.4 Structural Stability and Bifurcation of Separated Flows

A further topic of the topological theory is how the topological structure varies
as flow parameters. This question leads to the concept of structural stability
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Fig. 7.7. Separated flow on a slender delta wing, (a) schematic stream sur-
faces, from Délery (2001), (b) skin-friction line topology, where the wing apex
is rounded off to show the saddle point there (cf. Lighthill 1963), (c) cross-flow
topology

and bifurcation. Let λ = (λ1, λ2, ..., λn) be a set of flow conditions (e.g., Mach
number, Reynolds number, geometric parameters, angle of attack, etc.). If for
a fixed λ0, an infinitesimal change δλ does not change the topological structure
of the phase portrait, then we say this portrait is structurally stable, otherwise
it is structurally unstable. Note that the structural stability is different from
the flow stability to be addressed in Chap. 9. A flow may be unstable under
disturbance and evolve to another flow of the same topology, during which
there is no structural instability. On the other hand, as a flow parameter goes
across a critical value, the flow topology can change but during this process the
flow remains hydrodynamically stable (e.g., Yin and Sun 2003). Once again,
the concepts discussed here can be applied to both laminar and turbulent
flows, at least the time average of the latter.
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Fig. 7.8. Cross flow pattern of asymmetric vortices over an elongated body at high
incidence. (a) Air-bubble visualization, (b) topological interpretation. From Délery
(2001)

For two-dimensional vector fields, the structural stability is answered by
the following theorem (e.g., Hirsch and Smale 1974), showing again the im-
portance and robustness of hyperbolic fixed points:

The Peixoto Theorem . A two-dimensional vector field has stable topologi-
cal structure if and only if (1) the vector field has only finite number of hyper-
bolic fixed points and single limit cycles, and (2) there is no saddle-to-saddle
trajectory.

Here, the saddle–saddle connection includes closed loop emanating from
and returning to the same saddle. The theorem is a powerful tool for identi-
fying possible real vortical flows which are constantly exposed to some distur-
bances.

For example, in literature one often sees simple plots of two-dimensional
or rotationally symmetric separated flow with saddle–saddle connection as
sketched in Fig. 7.10a. So is in this book, such as small-Re separated flow over
sphere (Figs. 4.10 and 4.11) and large-Re steady separated flows (Figs. 7.15
and 7.17 later). Some carefully controlled visualization photos of steady sep-
arated flows (e.g., Fig. 10.42b later; for more see Batchelor (1967) and Van
Dyke (1982)) also tempt one to draw the corresponding topological portraits
with saddle–saddle connection. Even the simplest two-dimensional, steady,
and attached flow (e.g., Fig. 10.42a or Fig. 11.2 later) has inevitably a saddle–
saddle connection, where no separation occurs at all. Now the Peixoto theorem
asserts that these patterns are all structurally unstable. A small disturbance
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Fig. 7.9. Vortex shedding behind a plate, (a) dye filaments visualization, (b) topo-
logical interpretation. From Délery (2001)

may break the saddle–saddle connection of Fig. 7.10a to a robust saddle–node
connection, as sketched in Fig. 7.10b or c. For more examples of breaking
saddle connection see Bakker (1991).

In experiments, as long as disturbances cannot be completely eliminated,
any observable nominally two-dimensional and steady flow patterns must be
structurally stable. By the Peixoto theorem, if there appear any saddles or
semisaddles, the flows should have Fig. 7.10b or c as building block but not
a, although the latter could be a theoretical solution. Then, as argued before,
if the flow is incompressible, Fig. 7.10b or c in turn implies that it must be
unsteady with alternative periodic spiral sink and source, associated with a
fluctuating velocity component along the third dimension.

The Peixoto structural stability theorem is equally applicable to the two-
dimensional τ -field of a three-dimensional steady flow. In this regards it is
of interest to note that, for a nominally two-dimensional steady flow over a
cylinder, either fully attached or with separated bubble, the zero-τ points
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Fig. 7.10. Sketches of nominally two-dimensional and steady separated flow, (a)
structurally unstable with saddle–saddle connection and a center; (b) structurally
stable with a spiral sink; (c) structurally stable with a spiral source

on the cylinder surface seen in a flow plane are actually the degenerate fixed
“points” of the τ -field, i.e., the p-axis of Fig. 7.1 along the span direction. They
are structurally unstable. Therefore, what has been observed in experiments
of nominally two-dimensional flows (including turbulence) is a τ -field having
some spanwise periodic structures with alternative saddle and node distrib-
ution. To see this, consider a disturbance which alternatively stretches and
compresses the fluid along the span. Then if a nominally two-dimensional sep-
aration point is in the stretching phase, it will be a saddle of the τ -field; while if
it is in the compression phase, it will become a node. The situation is opposite
for an attachment point. Therefore, the analysis of the two-dimensional τ -field
and that of the two-dimensional flow field complement each other. They a lso
explain why in a three-dimensional space any nominally two-dimensional or
rotationally symmetric flows and vortices always have a tendency to become
fully three-dimensional.

Unfortunately, it has been shown that there can be no analogue of the
Peixoto theorem for dimensions greater than two. It is known that a saddle–
saddle connection is still structurally unstable in three dimensions (e.g., Guck-
enheimer and Holmes 1983, p. 50), but all other flow patterns need to be
studied on a case-by-case basis. Observing a three-dimensional flow by its
projected patterns in three orthogonal planes, as we did in Fig. 7.2, cannot
be used in the study of structural stability. The invariant direct-sum decom-
position of matrices, as we used in Sect. 6.6.2, can well be applied to linear
systems but not nonlinear ones. The latter may admit invariant subspaces,
which however typically do not span the whole space, and hence the full
dynamics of a three-dimensional system cannot be inferred from them. Ac-
tually, the fact that even a steady three-dimensional flow can have chaotic
streamlines (the ABC flow, Sect. 3.3.1) has sufficed to exclude the possibility
of constructing a general three-dimensional flow solely from the observations
of lower-dimensional subspaces (Haller 2005, private communication).
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Nevertheless, the spatial dimensions of the flow is reducible in some special
cases, if the flow has a symmetry or a conserved quantity. For a recent a gen-
eral coordinate-free theory for such an incompressible and inviscid flow, see
Mezić and Haller 1998, which gives a unified geometric treatment of the in-
tegrability of three-dimensional steady Euler flows, two-dimensional unsteady
Euler flows, as well as quasigeostrophic flows (Sect. 12.2.2) and magnetohy-
drodynamic flows (Sect. 4.1.1).

Once a flow field is structurally unstable, a small disturbance may cause a
topological bifurcation. If the bifurcation is induced by a change of parameter λ,
we say a parametric bifurcation. A bifurcation can be local if its consequence is
confined to a local region. This happens when λ (say the Reynolds number) is
near a critical value corresponding to a nonhyperbolic fixed point, for example
the splitting of a saddle-nodal point into a saddle and a node. Or, it can be
global if its consequence is not local, for example opening a bubble to a free
vortex layer. Flow analyses based on Taylor expansions as exemplified later
can only handle local bifurcation.

To demonstrate some basic concepts of bifurcation, consider a one-
dimensional “vector field” (Guckenheimer and Holmes 1983; Bakker 1991)

dx
dt

= f(x) = −x3, (7.8)

which has only a third-order nonhyperbolic fixed point x0 = 0 and is struc-
turally unstable. Such a high-order fixed point behaves as if several hyperbolic
fixed points fold together. To study the bifurcation of a nonhyperbolic system,
one can introduce a minimum number of parameters (i.e., adding some per-
turbations) to “unfold” the high-order fixed point. The resulting perturbed
system is called an unfolding of the nonhyperbolic system. For (7.8), a para-
metric perturbation f(x) → fλ(x) may create one, two, or (at most) three
fixed points in a neighborhood; thus a full unfolding is obtainable by adding
two lower-order perturbations to (7.8), say

dx
dt

= fλ(x) = λ1 + λ2x− x3. (7.9)

If x0 is a fixed point, one may first study the local linearized system

dx
dt

= f ′
λ(x0)(x− x0) +O(|x− x0|2),

where f ′
λ(x0) plays a role like the characteristic polynomial λ2 − pλ + q of

(7.3): if the characteristic value of f ′
λ(x0) has a zero real part, then the

fixed point is nonhyperbolic, and otherwise is hyperbolic. From fλ(x0) = 0
(which determines x0) and f ′

λ(x0) = 0 (which determines the character-
istic values) one can eliminate x0 to obtain a set of bifurcation parame-
ters and the corresponding phase portrait and bifurcation diagram. Now, for
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Fig. 7.11. The bifurcation diagram and phase portrait of perturbed system (7.9).
Reproduced from Bakker (1991)

(7.9) there is f ′
λ(x) = λ2 − 3x2, thus from fλ(x0) = 0 and λ2 − 3x20 = 0

it follows that (
λ2
3

)3

−
(
λ1
2

)2

= 0,

of which the bifurcation diagram and phase portrait are shown in Fig. 7.11.
From Fig. 7.11a we see that on the curve (λ2/3)3 = (λ1/2)2, above it, and
below it, respectively, there are two, three, and one fixed points. The relation
of the x0-location and λ1, λ2 is shown in Fig. 7.11b.

Returning to separated vortical flows, assume that in the steady version
of (5.6b) there are some parameters, such that

dx
ds

=
1
x3

uλ(x), λ = (λ1, λ2, ..., λn). (7.10)

We assume that the solution of (7.10) for a given λ is asymptotically stable in
fluid-dynamics sense, i.e., an initial disturbance to the solution will eventually
vanish (Chap. 9; note that a separated flow may be structurally stable but
asymptotically unstable). Then, let λ increases to a fixed value λ0, making
the solution asymptotically unstable and evolves to a new steady solution. Let
ψ be a quantity characterizing the solution. Then the solution evolution as λ
changes can be expressed as Fig. 7.12a. For λ < λ0, we have original solution
denoted by ψ = 0; when λ exceeds λ0, the new solution only slightly differs
from the original one. Thus, the structural stability may still be retained; the
appearance of this new solution does not imply a topological bifurcation. Such
a bifurcation is called supercritical bifurcation. Only as λ further increases to
a higher level, could a new topological structure occur.

For example, for a flow over a round-nose revolutionary body with zero
angle of attack α, on the body surface there are only an attached node and
a separation node, and the flow is highly symmetric. At a small α the flow is
no longer symmetric but can still be attached without changing topological
structure. Then, further increasing α may create a pair of saddles and a pair
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Fig. 7.12. Supercritical bifurcation (a) and subcritical bifurcation (b)

of nodes. During the transition process, it often happens that at first an even-
order fixed point (e.g., a saddle–nodal) occurs, or an original hyperbolic fixed
point becomes a third-order fixed point; then these high-order points split into
new hyperbolic ones. As indicated by this example, in general the stronger
is the symmetry, the smaller the energy content. The less symmetric steady
solution, therefore, should exactly absorb the extra energy brought in by the
change of parameter.

Figure. 7.12b shows a subcritical bifurcation. As λ passes λ0, the asymp-
totically stable new solution suddenly jumps to a state with a finite difference
from the original one. This bifurcation may simultaneously break the struc-
tural stability of the original solution and lead to a new flow topology. A
subcritical bifurcation has a hysteresis: if the bifurcation already occurs, to
recover the original solution one has to reduce λ to a value not only smaller
than λ0, but further smaller than λc < λ0.

In theoretical study of the topological structure and bifurcation of three-
dimensional, steady, and separated vortical flows, a basic tool is the high-order
Taylor expansion in a neighborhood of the fixed point under consideration,
based on (5.10), e.g., Dallmann (1983, 1984, 1988) and Perry and Chong
(1986). A systematic background knowledge along with comprehensive case
studies is given by Bakker (1991). In contrast to local analysis of Sect. 5.2.2,
high-order expansion is necessary to include sufficiently many fixed points in
the determination of topological structure.

7.2 Steady Separated Bubble Flows in Euler Limit

Separated flows with closed vortex bubbles can exist if the flow is strictly two-
dimensional or axisymmetric, as well as steady. This kind of flows have simple
topology and, in the limit of infinite Reynolds number, can be described by an
asymptotic theory. Although we have just seen that these flows are structurally
unstable, a more realistic flow may appear as a perturbation of these highly
symmetric flows.

The study of steady separated flow in the Euler limit has long history,
started from the free-streamline theory of Helmholtz (1868) and Kirchhoff
(1869), of which some result was used in Sect. 5.3.3, where we saw that the
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theory has to be combined with the viscous boundary-layer separation theory
to determine the separation point and flow behavior nearby. For the global
behavior of steady separated bubble flow, our concern is the Euler-limit be-
havior of the vorticity inside the bubble and the vortex layer enclosing the
bubble. For the former the central result is the Prandtl–Batchelor theorem
initiated by Prandtl (1905) and thoroughly examined by Batchelor (1956a);
while for the latter the issue is solving a cyclic or recirculating vortex layer.

7.2.1 Prandtl–Batchelor Theorem

We are concerned with the Euler limit and steady state. The smaller the
viscosity ν is, the longer time is needed to reach a steady state after the motion
starts. Batchelor (1956a) points out that the correct Euler limit of a steady
flow, that corresponds to practical experimental procedure, is established by
first taking t → ∞ such that the unsteadiness vanishes; and then setting
ν → 0. Thus, in the final steady state the flow is governed by (assume ρ = 1)

−ν∇× ω = u · ∇u+∇p, (7.11a)

= ω × u+∇H, H = p+
1
2
q2. (7.11b)

In fact, except the highly viscous regions near the closed vortex layers, the
flow is circulation-preserving and generalized Beltramian (Sect. 3.3.1):

u× ω = ∇H, (7.12)

which is to be solved in the region away from viscous layers. If the sheet is
open to oncoming flow, the boundary condition necessary for solving (7.12)
is obtainable from the vorticity or stagnation enthalpy on each streamline
that extends to infinity. However, for a bubble flow surrounded by a closed
vortex sheet, one has to find different conditions for the solution. The unique
nature of these conditions is: they come from the viscous (7.11) and exist only
when ν is not identically zero, but ν does not appear explicitly. Consequently,
the conditions are invariant in the sense that they are valid for arbitrary ν,
so that in the Euler limit they still hold and provide additional information
to the solution of (7.12) in the inner region of the bubble not very close to
the surrounding vortex layers (core region for short). The solution of (7.12)
obtained thereby is certainly the limit at ν → 0 of the Navier–Stokes solution
rather than any other purely inviscid Euler solutions. This solution is called
the relevant Euler solution.

The desired conditions have been found by Batchelor (1956a), who then
obtained the relevant vorticity solution of (7.12) in the core region up to a con-
stant factor to be determined by matching with the above-mentioned cyclic
vortex layer solution. This result is stated as
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Prandtl–Batchelor Theorem . Under the steady Euler limit, for two-
dimensional flow enclosed by vortex sheets, away from the sheets the vortic-
ity is constant. For axisymmetric flow enclosed by vortex sheets, if the closed
projected streamlines can shrink to a point at the center of the bubble, i.e.,
the bubble is not internally bounded by a torus, the vorticity must be along
the azimuthal direction and proportional to the distance to the symmetry axis.
Namely,

ω = ω0 for two-dimensional flow, (7.13)
ω

r
= αeθ for axisymmetric flow, (7.14)

where ω0 and α are constant.
Note that (7.13) and (7.14) are a direct extension of the Rankine vortex

and the Fraenkel–Norbury vortex-ring family (Sect. 6.3.2) to arbitrary core
shape, respectively. If the closed boundary is entirely stationary, the asymp-
totic steady state in the bubble must be u = 0 and ω = 0. In a nontrivial
Prandtl–Batchelor flow, therefore, at least a part of boundary vortex sheet
must be in tangent motion, which can have a variable velocity.

We now prove the theorem. For steady two-dimensional flow and rota-
tionally symmetric flow (axisymmetric flow without swirl) in a bubble, there
exists the stream function and Stokes stream function ψ, respectively, so that
in the Euler limit (7.12) implies H = H(ψ), and (3.64–3.67) hold where the
scalar function f(ψ) is nothing but −dH/dψ. Namely,

ω(ψ) =
{
−H ′(ψ) for two-dimensional flow,
−rH ′(ψ) for rotationally symmetric flow. (7.15)

Hence, a single additional scalar condition is needed to solve (7.12). Because
the streamlines are closed, provided ν �= 0, integrating (7.11b) along any
streamline Cs yields ∮

Cs

(∇× ω) · dx = 0. (7.16)

Having obtained this invariant condition, we can combine it with the Euler-
limit behavior (7.15). For two-dimensional flow, we use intrinsic frame (t,n)
along Cs, with unit vectors (t,n) being tangent and normal to the line, see
Fig. 7.13. Then since dψ = qdn, a straightforward algebra gives

∇× ω = u
dω
dψ

= −u
d2H
dψ2

.

Substituting this into (7.16), since ψ is constant along Cs, we simply obtain

dω
dψ

∮
Cs

u · dx =
dω
dψ

Γs = 0.

If Γs = 0, there must be q = 0 at all points of Cs; such a streamline, if exists,
must be in the near-boundary viscous region. Therefore, inside the bubble
and away from boundary there must be dω/dψ = 0, which proves (7.13).
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Fig. 7.13. The orthogonal curvilinear coordinates (s, ψ)

For rotationally symmetric flow, we consider an axial plane and introduce
intrinsic orthonormal frame (t,n,eθ) thereon, with s being the arc length
along the streamlines ψ = constant. The flow pattern is about the same as
that in Fig. 7.13 with (x, y) being replaced by (z, r). In this frame u = (q, 0, 0),
ω = (0, 0, ωθ), dψ = rqdn, and dx · (∇× ω) = (t×∇) · ωds. Then,

(t×∇) · ω =
(
eθ∂n − n

1
r
∂θ

)
· (eθωθ) =

∂ωθ
∂n

+
ωθ
r

cosφ, (7.17)

where, by (7.15) and referring to Fig. 7.13,

∂ωθ
∂n

= −dH
dψ

cosφ− r2q
d2H
dψ2

,

cosφ = ez · t = er · n =
∂r

∂n
.

Hence, (7.17) is cast to

(t×∇) · ω = −2dH
dψ

ez · t− r2q
d2H
dψ2

.

But since
∮

tds ≡ 0, see (A.18), (7.16) simply yields

d2H
dψ2

∮
Cs

r2qds = 0. (7.18)

Therefore, dH/dψ must be constant. This proves (7.14).
There remains extending (7.14) to steady axisymmetric bubble with swirl.

In this case both streamlines and vorticity lines are spiral in the bubble,
and Cs in (7.16) is the closed projection of a streamline on an axial plane
(“projected streamline” for short). Besides, (6.13) indicates that, in the Euler
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limit, in addition to H(ψ) we need also C(ψ) = Γ , the circulation along a
circle of radius r from the axis. Hence one more condition is necessary to
solve (7.12), which Batchelor (1956a) chose as the integral of (7.11b) along
the closed projection Cω of a spiral vorticity line on the axial plane:∮

Cω

(∇× ω) · dx = 0.

But the proof is lengthy and needs some heuristic argument. We now fol-
low a simpler proof with sufficient rigor due to Chernyshenko (2003, private
communication).

We use intrinsic frame (t,n,eθ) along a closed projected stream line Cs as
before. The velocity and vorticity are now u = (us, 0, v) and ω = (ωs, ωn, ωθ),
where v is the azimuthal velocity. The (r, z)-components of the vorticity in
cylindrical coordinates, given by (6.9a,b), now yield

ωs =
1
r

∂Γ

∂n
, ωn = −1

r

∂Γ

∂s
. (7.19a,b)

Assume us �= 0 except at the center of the core region where Cs shrinks to
a point. The two desired invariant conditions can be constructed from two
tangent components of (7.11). Due to the axial symmetry, the eθ-component
of (7.11a) along with an inspection of (6.4b) and (6.10a), and the inner product
of u and (7.11b), yield, respectively,

u · ∇Γ = −νreθ · (∇× ω), u · ∇H = −νu · (∇× ω),

where u on the left-hand side of both equations can be replaced by ust due
to axial symmetry. Hence it follows that

∂Γ

∂s
= −ν r

us
eθ · (∇× ω),

∂H

∂s
= −ν u

us
· (∇× ω), (7.20a,b)

of which the integral along Cs immediately yields the invariant conditions∮
Cs

r

us
(eθ ×∇) · ω ds = 0, (7.21a)∮

Cs

[(
t+

v

us
eθ

)
×∇

]
· ω ds = 0. (7.21b)

Now, as ν → 0, (7.19a,bb) and (7.19a,ba) indicate ωn = 0, i.e., the stream
surfaces are also vorticity surfaces (Lamb surfaces). In this case we have (6.13),
so in terms of the intrinsic frame with dψ/dn = rus there is

ωs = us
dΓ
dψ

, ωn = 0,
ωθ
r

=
Γ

r

dΓ
dψ
− dH

dψ
. (7.22a,b,c)
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Thus, in (7.21), for the term with t we still have (7.17a,b), while for the terms
with eθ we have, noticing ∂st = κn with κ being the curvature of Cs,

(eθ ×∇) · ω = (n∂s − t∂n) · (tωs + eθωθ) = κωs − ∂nωs

= us(κ− ∂n log us)
dΓ
dψ
− ru2s

d2Γ
dψ2

.

Therefore, (7.21a) yields

d2Γ
dψ2

∮
Cs

r2us ds−
dΓ
dψ

∮
Cs

r(κ− ∂n log us) ds = 0,

where the integrals are functions of ψ only. It thus follows that

dΓ
dψ

= Ce
∫ ψ

g(η) dη, g(ψ) =
∮
r(κ− ∂n log us) ds∮

r2us ds
. (7.23)

But, as Cs shrinks to the core center as assumed, since n points toward the
center there must be us → 0+ with ∂nus < 0 and κ→ +∞. Hence, Γ would
be singular if C �= 0. The permissible solution is thus simply Γ = constant,
implying that ωs = 0 and v = C/r (C = 0 if the bubble flow extends to
the z-axis). On the other hand, this removes the eθ-component in (7.21b),
making it the same as (7.18) and recovering (7.14). The proof of the theorem
is therefore completed.

We make two remarks on the theorem and closed bubble flow. First, the
formation mechanism of these bubble flows is very different from that of con-
centrated vortices by the rolling up of free vortex layers. For the former the
viscous effect has to take sufficient time to fully act on the motion, sending the
vorticity from the sheet to the interior, which finally reaches an equilibrium
steady state. The sheet vorticity is supplemented by the outer flow. But for
the latter there is no sufficient time for diffusion to reach equilibrium state.
Goldstein and Hultgren (1988) have pointed out that in this case the vorticity
can have variable distribution in closed streamlines.

Second, the physical explanation of the theorem is simple. For steady two-
dimensional flow, the viscous vorticity equation

u · ∇ω = ν∇2ω

is a diffusion equation. If ω changes across streamlines, there must be an
inward or outward vorticity diffusive flux. But at the center of closed stream-
lines there is no vorticity source or sink (Sect. 4.1); so in steady state this
diffusion cannot exist. The only possibility is, therefore, a constant vorticity,
which implies no vorticity diffusion. In contrast, for rotationally symmetric
flow, in cylindrical coordinates (x, r, θ) by (7.15) one finds a uniform axial
viscous force

ν(∇× ω) = −2ανex, (7.24)

which is balanced by a uniform pressure gradient. Thus, the inviscid velocity
distribution is not altered. Both this physical interpretation and the proof



7.2 Steady Separated Bubble Flows in Euler Limit 345

procedure of the theorem stress the key role of vorticity diffusive flux σ =
ν∂nω defined by (4.17) in the formation of the bubble’s core region. In fact,
that flux was precisely introduced from examining the line integral of ν∇×ω,
and can well replace ν∇× ω in the invariant conditions. To see this, we use
the notation of (4.23) so that on a surface S

−νn× (∇× ω) = σ − σvis.

Then by (7.11) one easily obtains

(σ − σvis)× n = (u · ∇u)π +∇πp = (ω × u)π +∇πH, (7.25)

where again suffix π denotes tangent components. Now let S be a stream
surface with un = 0. Then for two-dimensional flow with both σvis and (ω ×
u)π vanishing, along an open segment of a streamline Cs we simply have

HB −HA =
∫ B

A

σ ds (7.26)

at any Reynolds number, indicating that the difference of stagnation en-
thalpy at ends points is solely due to vorticity diffusion across the streamline
(Chernyshenko 1998). This is why in the Euler limitH becomes constant along
the streamline. The corresponding invariant condition for closed streamlines
is, evidently, ∮

Cs

∂ω

∂n
ds = 0, (7.27)

which is an alternative form of the two-dimensional version of (7.16).
For axisymmetric flow, from (7.20) it follows that

r(n× eθ) · (σ − σvis) = us
∂Γ

∂s
,

(n× u) · (σ − σvis) = us
∂H

∂s
,

which are the alternative form of (7.21a,b) and yield, along a segment of a
projected streamline,

ΓB − ΓA =
∫ B

A

r

us
t · (σ − σvis) ds, (7.28a)

HB −HA = −
∫ B

A

eθ · (σ − σvis) ds+
∫ B

A

v

us
t · (σ − σvis) ds, (7.28b)

which explains the physical source of the variation of Γ and H along Cs at
any Reynolds numbers. The invariant conditions alternative to (7.22a,b) are
obvious. We just note that in the Euler limit with ωn = 0 (4.25) gives

1
ν
σvisπ = ω ·K = −ω ·

(
t
∂

∂s
+ eθ

1
r

∂

∂θ

)
n

= −ω ·
(
ttκ− 1

r
eθeθ cosφ

)
= tκωs − eθ

ωθ
r

cosφ.

Thus the preceding component results can be recovered.
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7.2.2 Plane Prandtl–Batchelor Flows

This subsection discusses the Euler limit of two-dimensional flow over a sta-
tionary body with steady separated vortex bubble of area S bounded by C.4

By (7.13), outside and inside the bubble the vorticity is zero and constant,
respectively. We have Bernoulli integral not only outside the bubble but also
in the core region of the bubble, since in (7.12) there is ω × u = ∇(ω0ψ),
yielding

1
2
(∇ψ)2 + p

ρ
+ ω0ψ =

pc
ρ

+ ω0ψc in the core region, (7.29)

where the suffix c denotes the bubble center where q2 = |∇ψ|2 = 0. Therefore,
let ψ = 0 along C with ψ > 0 and n > 0 in the bubble as in Fig. 7.13, the
Euler limit of the flow is a solution of the following problem:

∇2ψ = 0 for ψ < 0, (7.30a)
∇2ψ = −ω0 for ψ > 0, (7.30b)[[

|∇ψ|2
]]
= 2[[H]] = const. along ψ = 0, (7.30c)

∇ × (ψez)||x|→∞ = U∞, (7.30d)

where [[·]] = (·)|ψ=0− − (·)|ψ=0+ denotes the jump across C. While in this
inviscid formulation ω0 and [[H]] (or the separation point) are arbitrary pa-
rameters, only the relevant Euler solution is our concern, which is the limit
of the true viscous solution as ε ≡ Re−1 → 0 and in which ω0 and [[H]] are
specially determined. Here the Reynolds number is defined based on the body
size R and U∞. As said in the beginning of this section, this is achieved by
returning to viscous analysis, where the boundary vortex sheet is replaced by
a cyclic vortex layer of finite thickness. This issue will be addressed later after
discussing some general properties of the solution of (7.30).

Let Ue = ψ,n|ψ=0− be the potential velocity at C, by (4.118a) the vortex
sheet strength γ = u− Ue is given by

γ = − [[H]]
Um

, Um =
1
2
(Ue + u). (7.31)

The stream function can be written as ψ = U∞y + ψ1 + ψ2, where the first
term is the stream function of uniform oncoming flow, and by the Biot–Savart
law

ψ1(x) =
ω0
2π

∫
S

log r dS(x′),

ψ2(x) =
1
2π

∫
C

γ(s) log r ds(x′), r = |x− x′|,
(7.32)

4 Analyses of axisymmetric Prandtl–Batchelor flow are relatively rare. One example
is the Hill spherical vortex with swirl (Sect. 6.3.2).
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are the contributions of ω0 and γ, respectively. Moreover, since ω0 depends
on U∞, we need a compatibility condition

U∞ =
√

2[[H]]− ∂

∂y
(ψ1 + ψ2) at the upstream end. (7.33)

Then the inviscid problem amounts to finding the shape and strength of the
sheet for given ω0 and [[H]], including the separation and re-attachment points.

A closed vortex bubble carried by a body will produce a lift. Let S and
ω0 be the dimensionless area and vorticity of the bubble, respectively, scaled
by R and U∞. Then by the well-known (dimensional) Kutta–Joukowski lift
formula L = ρU∞Γ (for more discussion see Chap. 11), with Γ = ω0S being
the total vorticity or circulation of the bubble , the additional lift coefficient
due to the bubble (not including the lift caused by vortex sheet γ) simply
reads

∆Cl =
∆L

1
2ρU

2
∞R

= 2ω0S. (7.34)

The small region near the separation point A needs special consideration. As
argued in Sect. 4.4.2, in order to have a shedding vortex sheet, at A there must
be [[H]] �= 0 and the external potential flow must be tangent to the surface, see
Fig. 7.14 later. Thus, in a small neighborhood of A, in terms of local Cartesian
coordinates (x, y) the sheet equation y = f(x) must satisfy f(0) = f ′(0) = 0,
i.e., y = o(x). The flow inside the cusp varies mainly along the y-direction, so
that (7.30b) is reduced to ∂2ψ/∂y2 � −ω0, of which the solution satisfying
ψ = 0 along y = f(x) is

ψ � −1
2
ω0y[y − f(x)], x
 1.

Thus, as x → 0 we have q = o(x) and by (7.30c) Ue =
√

2[[H]] + o(x2).
Therefore, near the separation point the fluid in the cusp is indeed stationary
as we inferred from the Kutta condition in Sect. 4.4.3. This being the case,
the local flow is nothing but a Kirchhoff free-streamline flow, which gives

f(x) = ax3/2 + bx5/2 + · · · , x
 1. (7.35)

B A

U

ym

2L

w

Fig. 7.14. Sadovskii flow
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Fig. 7.15. Streamlines for airfoil with a trapped vortex. ω0 = −20, [[H]] = 0.53.
Adapted from Bunyakin et al. (1998)

Several Prandtl–Batchelor bubble flows with the above common features
have been studied. Sadovskii (1971) was the first to solve the problem for the
flow of Fig. 7.14, where a pair of Prandtl–Batchelor vortices of length L are
symmetrically in touch, known as the Sadovskii flow. He derived a pair of
integral equations for the sheet shape f(x) and strength γ(x) with a given
constant [[H]]. The equations were solved numerically. The computation was
improved by Moore et al. (1988) who gave a complete set of the solutions for
Sadovskii flow.

Other investigated Prandtl–Batchelor flows include corner flows (e.g.,
Chernyshenko 1984; Moore et al. 1988) and flow over a flat plat with a
forward-facing flap (Saffman and Tanveer 1984). The latter was motivated
by the concept that if at a large angle of attack a stationary vortex can be
captured, then the lift will be greatly enhanced. The most interesting config-
uration along this line is to capture a vortex by an airfoil with a cavity on
its upper surface, studied by Bunyakin et al. (1996). Owing to (7.34), such
an airfoil may have additional lift but avoid early separation under strong
adverse pressure gradient on the upper surface, where the original solid wall
is replaced by a free shear layer like a flexible moving belt.5 The authors
found that due to the structural instability 3 of closed bubble flow, the bubble
shape is very sensitive to the given ω0 and [[H]], and only in a certain range
of these parameters can a meaningful solution be obtained. Figure 7.15 plots
the configuration and flow pattern.

We now turn to the cyclic viscous vortex-layer. Squire (1956) was the first
to exemplify that a matched asymptotic expansion can be applied to fix the
flow within the layer as well as ω0 and [[H]]. We use the same intrinsic frame
(t,n) as in Fig. 7.13, and let quantities be made dimensionless by body size R,
density ρ, and U∞. Assume now Fig. 7.14 represents a bubble on a flat wall.
Let s move from A (s = 0) to B (s = sB) along the separated vortex sheet

5 As remarked in Sect. 7.1.2, the vortex in the cavity is much weaker than that
formed by the rolling-up of a free vortex layer. The latter was proposed by Wu
and Wu (1992). Such a strong vortex must have axial flow and is expected to be
more stable as well.
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(in free shear layer) and returns A (s = sA > sB) along the wall (in attached
boundary layer). Let u(s, ψ) be the streamwise velocity in the vortex layer
such that dψ = udn. Both free vortex layer and attached boundary layer are
governed by a boundary-layer type of equation:

u
∂u

∂s
= Ue

∂Ue
∂s

+ ε
∂2u

∂n2
, ε = Re−1.

Introduce the well-known Mises transformation (e.g., Rosenhead 1963)

∂2u

∂n2
=

dψ
dn

∂

∂ψ

(
dψ
dn

∂u

∂ψ

)
=

1
2
u
∂2u2

∂ψ2

and a rescaled stream function Ψ = Re1/2ψ, and denote the total enthalpy
inside the viscous vortex layer by

g(s, Ψ) ≡ ps +
1
2
u2(s, Ψ).

Then the above boundary-layer equation reads

∂g

∂s
= u

∂2g

∂Ψ2
. (7.36)

Assume the inviscid flow in the core region has been solved, so that at s = 0−
there is a known potential flow with g = g0(ψ), and on the wall there is
a known p(s). Then the upstream condition, periodic condition, and wall
condition for (7.36) are, respectively,

s = 0, Ψ < 0 : g = g0(ψ); (7.37a)
Ψ > 0 : g(0, Ψ) = g(sA, Ψ); (7.37b)
Ψ = 0, sB < s < sA : g = p(s). (7.37c)

Besides, since ψ = 0+ corresponds to Ψ →∞ in the Euler limit, (7.30c) gives
the matching condition

Ψ →∞ : g → H(ψ)|ψ=0+ = H|ψ=0− − [[H]] <∞, (7.37d)

which ensures the uniqueness of the solution.
Generically, the boundary-layer approximation cannot be applied to re-

gions near A and B, referred to as turn regions. But when a turn region has a
cusp, only the normal variation is important, and the inviscid cusp flow away
from the viscous free vortex layer and boundary layer is stationary. In fact,
the characteristic flow rate Q in the turn region must be of the same order as
that in a boundary layer: Qturn ∼ Re−1/2, so that locally there is

Return ∼ UturnLturnRe ∼ QturnRe ∼ Re
1
2 →∞.
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Fig. 7.16. Velocity profile as a function of ψ in the cyclic layer of Fig. 7.15 for the
relevant Euler solution of flow over an airfoil with trapped vortex. Adapted from
Bunyakin et al. (1998)

Thus, to the leading order the flow is inviscid and Bernoulli integral holds. In
this case it can be shown that when using (7.36) as the governing equation the
turn region can be ignored (see Bunyakin et al. (1998) for references). Thus
the formulation for the cyclic vortex layer is completed.

For example, by solving (7.36) under condition (7.37), as well as the con-
ventional boundary-layer equation for flow over a wall, Bunyakin et al. (1998)
extend their inviscid solution shown in Fig. 7.15 to include the viscous attached
and free vortex layers. Then the whole flow field is determined. Figure 7.16
shows the velocity profiles in the cyclic vortex layer. The airfoil was carefully
selected to avoid any smooth-surface separation other than the fixed front
and rear points of the cavity. To make the airfoil look more realistic, tangent
blowing was introduced at three points of the cavity wall (arrows in Fig. 7.16).
This requires an extension of boundary conditions (7.37) and is omitted here.

7.2.3 Steady Global Wake in Euler Limit

The preceding discussion on plane Prandtl–Batchelor flows is for the situa-
tion where the bubble size is of the same order of the body size. A different
and more challenging problem relevant to the Prandtl–Batchelor flow is the
asymptotic form of the entire vortical wake behind a bluff body. It will be
seen in Sect. 7.4 that as the Reynolds number Re = UD/ν (based on diame-
ter D) increases to about 50 the wake behind a circular cylinder starts to be
spontaneously unsteady and vortex shedding occurs. However, the mathemat-
ical existence of a steady but unstable wake cannot be excluded. Numerically,
careful Navier–Stokes calculations (Fornberg 1985) which specifically elimi-
nate the possibility of unsteadiness and asymmetry have shown that steady
wake is a Navier–Stokes solution. Theoretically, such a mathematical solution
has been obtained in the Euler limit. Roshko (1993) remarks that, while this
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solution is mainly of academic interest, “it is an intriguing and important
one for theoretical fluid mechanics and it provides perspective on the ‘real
problem’.”

The classic Kirchhoff free-streamline wake, which is open at downstream
end and the fluid therein is stationary, was criticized by Batchelor (1956b).
The dilemma is: if the wake is open, how can the downstream boundary con-
dition that the flow resumes uniform be satisfied? And, if the wake is closed,
then the Prandtl–Batchelor theorem requires that the wake has a uniform
vorticity rather than being stationary. Thus, Batchelor (1956b) proposed that
the steady wake in the Euler limit is a closed bubble with ω0 and [[H]] as para-
meters. It has been found that the wake length increases linearly as Re; and
its width increases initially as O(Re1/2), but after Re > 150 turns to be O(Re)
as well, see Fig. 7.17. Moreover, in such a big pair of separated bubbles the
vorticity is basically constant as predicted by the Prandtl–Batchelor theorem;
and at the outer boundary of the bubbles there is a thin vortex layer, which
tends to vanish as the characteristic velocity increases toward downstream.

After many researchers’ effort, a complete asymptotic theory of steady
separated flow has been established and supported by numerical tests. For
comprehensive reviews see Sychev et al. (1998, Chap. 6) and Chernyshenko
(1998); a few major points are briefly outlined here.

First, in the global bubble scale the flow is a uniquely determined inviscid
Sadovski flow (where the cylinder shrinks to a point as Re→∞), of which the
width-to-length ratio is h/L = 0.300 and the area is S = αL2 with α � 0.44.
The vorticity ω0 is fixed such that, by the Bobyleff–Forsythe formula (2.159)
and from (2.76), the total dimensionless dissipation rate and the total drag
coefficient Cd (nondimensionalized by ρU2

∞R) are, respectively,

C = ω2
0S � 0.73, (7.38)

Cd =
C

Re
. (7.39)

Secondly, in addition to the global bubble-scale flow, special care is needed
for the flow in turn regions, cusp, and at the body scale, as well as their
matching. In the body scale, the velocity in the bubble is found to be much
less than outside, so that one returns to the inviscid Kirchhoff free-streamline
flow with drag coefficient

Cd = 2kd[[H]], (7.40)

Fig. 7.17. Schematic flow pattern of steady global wake behind a circular cylinder
(the small semicircle at the left end of the plot). From Chernyshenko (1998)
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where kd is drag coefficient in the Kirchhoff flow with the velocity magni-
tude on the free streamline equal to unity, depending on the body shape and
separation point. Comparing (7.39) and (7.40) yields

[[H]] =
C

2kdRe
. (7.41)

Thirdly, to ensure the existence of the viscous solution in the cyclic vortex
layer, there must be an equality among parameters (Chernyshenko 1988):

[[H]] =
1

2D0

√
Cω0
2Re

, (7.42)

where D0 is a constant; for flow past an isolated body D0 � 0.235. The key
physics behind (7.42) is the vorticity balance. The vorticity diffuses toward the
symmetry line where it vanishes, and also diffuses across the bubble boundary.
This loss of vorticity must be compensated by that produced from the body
surface and advected into the flow. In this problem one only needs the net
effect of vorticity discharged from the body rather than the detailed diffusion
and advection process; so it suffices to know the sum of vorticity diffusive
flux σ and advective flux unω across any line segment, which is nothing but
the end-point difference of the total enthalpy. Indeed, as an easy extension of
(7.26), by applying (7.25) to any line segment there is (Chernyshenko 1998)

HB −HA =
∫ B

A

(unω − σ) ds. (7.43)

This is why [[H]] enters (7.41), which also shows that the jump must vanish
in the Euler limit. The four equations (7.38–7.40) and (7.42) then determine
the four unknowns ω0, S, Cd, and [[H]], with only kd depending on the body
shape. Namely, in addition to (7.39) for the drag and (7.41) for [[H]], there is

ω0 =
2CD0

k2dRe
, S =

k4dRe
2

4CD4
0

, L =
k2dRe

2D0

√
αC

, α � 0.44. (7.44)

7.3 Steady Free Vortex-Layer Separated Flow

Closed-bubble separated flows discussed in Sect. 7.2 are relatively rare in re-
ality. The common situation is free vortex-layer separated flow, in which a
separated vortex layer rolls into a vortex and the flows at both sides of the
layer come from the same main stream. As said in Sect. 7.1.2, the free vortex-
layer may come from both closed separation initiating at a saddle point of the
τw-field, for example at the apex of a slender delta wing as shown in Fig. 7.7b,
and open separation initiating at an ordinary point of the τw-field, as seen
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in Fig. 6.1. A prototype of free vortex-layer separated flow is a pair of vortex
sheets shed from a slender wing, which roll into vortices above the wing and
greatly enhance the lift. Being steady and stable in a range of parameters, this
kind of detached-vortex flow has become the second generation of aeronautical
flow type in practical use (after the attached flow type over streamlined body;
e.g. Küchemann (1978)).

No general theory is available for free vortex-layer separated flow even
in the Euler limit, because as seen in Sect. 4.4.4 the self-induced rolling-up
process of a vortex sheet is inherently nonlinear. One has to appeal to approxi-
mate theories or numerical simulation. The simplest theory in the Euler
limit is fully linearized, in which the vortex-sheet rolling up is completely
ignored so that the sheet location is known. This is the case in Prandtl’s
classic lifting-line theory for a thin wing of large aspect ratio (e.g., Prandtl
and Tietjens 1934; Glauert 1947; see also Chap. 11). But here we need to ad-
dress the nonlinearity of the self-induction, with the expense that in some
other aspects significant simplification has to be made. This is the case of
the slender-body theory to be used throughout this section.6 We consider the
slender approximation of vortex-sheet conditions first, then review methods
for computing the self-induced evolution of leading-edge vortex-sheet and free
wake vortex sheet. Finally, we analyze the stability of a class of slender free
vortex-layer separated flow.

7.3.1 Slender Approximation of Free Vortex Sheet

Consider a steady flow over a point-nose slender body shown in Fig. 7.18. In
a body coordinate-system Oxyz with the body axis along the x-direction and
z-axis vertical up, let the local angle of attack at x be α(x) = O(ε) 
 1, so
that the constant oncoming velocity U has (x, z) components

U = (U cosα,U sinα) = (U,Uα) +O(ε2), (7.45)

and the disturbance velocity components are (u′, v, w) = O(εU). Due to
the slenderness, the x-wise disturbance of the body to the fluid is much
smaller than those in cross directions. Consequently, a three-dimensional flow
problem is reduced to a cross-flow Uα over two-dimensional sections of the
body at different x, and away from the vortex sheet we only need to con-
sider a two-dimensional disturbance velocity potential ϕ(y, z;x). The three-
dimensionality of the flow lies in the x-dependent boundary condition, with

6 This section could be shifted to Chap. 11 on aerodynamics. We put it here for
understanding the basic physics of free vortex-layer separated flow as the coun-
terpart of closed-bubble separated flow. Although in engineering applications the
slender-body theory has now been replaced by more numerically oriented meth-
ods, it provides an opportunity to demonstrate how the general theory of three-
dimensional vortex sheet dynamics is specified to concrete problems of significant
practical value.



354 7 Separated Vortex Flows

U
O

O �

y

x

z

Fig. 7.18. Free vortex-layer separated flow from a slender body

x being a parameter. Since Uα 
 U , the cross flow can always be assumed
incompressible, so that

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 at each x station, (7.46)

implying that the general method of conformal mapping can be applied. Al-
though (7.46) holds for both subsonic and supersonic oncoming flows, the
accuracy is poorer for the former because the upstream influence of the after
body cannot be taken into account. The usefulness of slender-body theory lies
in its generality: for attached flow over a complicated configuration it is the
only analytical method, and for separated flow it is the simplest semianalytical
method.

The cross-flow potential ϕ is to be superposed to potentials due to the
uniform oncoming flow, angle of attack, and the body volume. Let the cross
area of the body be A(x) which for a remote observer appears as a source
distribution b0(x) along the x-axis. The relation between A(x) and b0(x) varies
from subsonic to supersonic oncoming flows. The total potential and far-field
boundary condition read

Φ = U [x+ b0(x) + α(x)]z + ϕ(y, z;x), (7.47a)
ϕ

U
∼ α(x)z +

A′(x)
2π

ln r, r2 = y2 + z2 →∞. (7.47b)

Slender-body theory was developed first for airship aerodynamics, and then
applied to attached flow over slender wing and body, wing-body combination,
etc., based on (7.47); e.g., Nielsen (1960) and Ashley and Landahl (1965). In
extending the theory to separated flow with slender free vortex sheets, the
key issue is to ensure the vortex-sheet conditions. For steady flow, two of the
conditions can be stated as

u+ · n = u− · n = ū · n = 0, ū · [[u]] = 0, (7.48a,b)

Equation (7.48a) tells not only the continuity of normal velocity across any
vortex sheet, but also the fact that the sheet must be a stream surface in steady
flow. Equation (7.48b) is from the Kelvin circulation theorem D[[ϕ]]/Dt = 0,
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which by (4.132) and (4.133) is equivalent to the pressure continuity. What
we need now is to find the slender-approximation of (7.48a,b), the steady
version of the Kutta condition (4.141), and the Biot–Savart formula (3.31) in
convenient component form. The following algebra is based on the work of
Clark (1976) and J.H.B. Smith (1978).

As shown in Fig. 7.19a, let a slender vortex sheet Σ intersect a cross-plane
π with unit normal ex at a curve C, which has unit tangent vector t. Then
ex × t = nc is the unit vector normal to C, and (ex, t,nc) form a local
orthonormal “C-frame”, where by (7.45) we write

u = (U + ux)ex + ust+ unnc +O(ε2). (7.49)

Alternatively, one can use a polar coordinate system (r, θ), see Fig. 7.19b,
which leads to an orthonormal “P -frame” (ex,er,eθ), by which we can define

On vortex sheet Σ : r = r(x, θ) (7.50a)
Along separation line : θ = g(x), r = f(x, g(x)). (7.50b)

The two frames are related by a rotation about the x-axis by an angle φ:[
t
nc

]
=
[

cosφ sinφ
− sinφ cosφ

] [
er
eθ

]
.

Now, since (7.48) is expressed in the vortex-sheet intrinsic frame, we need to
use both C- and P -frames to construct that frame under slender approxima-
tion. By (7.50a) we have

dr =
∂r

∂x
dx+

∂r

∂θ
dθ =

∂r

∂x
dx+ r cosφdθ;

thus the vector increment dx tangent to Σ can be expressed as

dx = exdx+ erdr + eθrdθ = edx+ tr cscφdθ +O(ε2),

t e z

eq

er
C t

y

ex
C

(a) (b)

S

p

q

f

- +x
n nc

nc

Fig. 7.19. Local coordinate systems for slender-approximation analysis, (a) the
“C-frame”(ex, t, nc), (b) the “P -frame” (er, eθ) on a cross plane. The unit normal
vector n of Σ is generally not aligned to nc
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where
e = ex +

∂r

∂x
er = ex + t

∂r

∂x
cosφ− nc

∂r

∂x
sinφ (7.51)

is also a unit vector tangent to Σ, generally not perpendicular to t. Then by
(7.49) and (7.51), the normal of Σ is given by

n =
e× t

|e× t| = ex
∂r

∂x
cosφ+ nc. (7.52)

The triad (e, t,n) is the desired intrinsic frame on slender Σ, which casts the
exact vortex-sheet condition [[u]] · n = 0 to

[[un]] = −[[ux]]
∂r

∂x
sinφ = O(ε2).

Thus, un is approximately continuous across Σ, and hence

[[u]] = [[ux]]ex + [[us]]t+O(ε2). (7.53)

Therefore, by (7.52) the slender stream-surface condition (7.48a) reads

1
U

∂ϕ

∂n
= − ∂r

∂x
sinφ. (7.54)

On the other hand, because ux = U , (7.48b) and (7.53) yield

[[ux]] = [[u]] · ex = −
us
U

[[us]] = O(ε2);

thus, actually [[un]] = O(ε3). But [[us]] has to be retained here since there is no
O(ε) term. Note that [[u]] ·ex cannot be simply identified as ex ·∇[[ϕ]] = [[ϕ]],x,
because ex is not a tangent vector and the resulting gradient will no longer
be tangent to Σ. Rather, one has to express ex by e via (7.52), which yields

[[u]] · ex =
∂[[ϕ]]
∂x
− [[us]]

∂r

∂x
cosφ, [[ϕ]] = Γ.

Hence, the slender pressure-continuity condition reads

∂Γ

∂x
= [[us]]

(
∂r

∂x
cosφ− us

U

)
. (7.55)

Then, the Kutta condition (4.143) requires that in the “downstream side”
of the vortex sheet Σ (the cusp side is denoted by superscript bar, see
Fig. 7.19b) the flow must be along the separation line. Since by (7.50b) the
directional ratios of the separation line are

1 :
∂r

∂x
: r

∂θ

∂x
= 1 :

(
∂f

∂x
+

∂f

∂g

dg
dx

)
: f

dg
dx

,
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the same should be U + u−
x : u−

r : u−
θ . This yields, ignoring O(ε2) terms,

u−
r = U

(
∂f

∂x
+

∂f

∂g

dg
dx

)
, u−

θ = Uf
dg
dx

. (7.56)

Then, since us = ur cosφ+ uθ sinφ, and since by ∂r/∂θ = r cotφ and (7.50b)
there is ∂f/∂g = f cotφ, from (7.56) it follows that

u−
s = U

(
∂f

∂x
cosφ+ f

∂g

∂x
cscφ

)
.

On the other hand, from the definition of [[us]] and us there is [[us]] =
2(us − u−

s ); so applying (7.55) to the separation line yields

1
U

dΓ
dx

= 2
(
us
U
− ∂f

∂x
cosφ− f

∂g

∂x
cscφ

)(
us
U
− ∂f

∂x
cosφ

)
,

from which one solves, dropping O(ε2) terms,

us = U
∂f

∂x
cosφ+

√
U

2
dΓ
dx

at θ = g(x), (7.57)

where the positive square root is taken to ensure us is toward downstream.
This is the slender Kutta condition, which determines the total circulation of
free vortex sheets shed from the separation line. The two terms represent the
speeds needed for turning the free stream to the separation-line direction and
feeding the circulation into the vortex sheet, respectively.

Finally, by (7.52) and (7.53), and recall that [[ux]] = O(ε2), the slender
vortex-sheet strength reads

γ = n× [[u]] = −ex[[us]] +O(ε2),

which causes an induced velocity uπ on the cross plane only, in consistency
with the slender approximation (7.46). Therefore, it suffices to use the two-
dimensional complex-variable form of the Biot–Savart formula:

dW
dZ

= v − iw = − 1
2πi

∫
[[us]]dZ ′

Z − Z ′

=
1
2πi

∫ Γe

Γ0

dΓ ′

Z − Z ′ , Z = y + iz, (7.58)

where Γ0 and Γe are the values of the circulation at initial and terminal points
of the vortex sheet. When Z → Z ′, the Cauchy principal value is implied in
the integral and we return to the Birkhoff–Rott equation (4.143).

The above slender-body formulation can be simplified when the flow has
conical similarity, which will be so when the body model is conical and ex-
tends infinitely long. In the body-axis frame (Fig. 7.18), a steady conical flow
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(cf. Sect. 6.2.3) depends on only (y/x, z/x) and keeps the same along each
ray from the point nose. The body shape and separated vortices are all along
rays. The lateral size of a slender conical body is characterized by its semiapex
angle ε or semispan s = kx with k ≡ tan ε � ε 
 1. The flow can be conve-
niently described by conical coordinates (y′, z′) = (y/s, z/s) in the cross-flow
plane and it suffices to examine the flow in a single (y′, z′) plane. Then in the
preceding vortex-sheet conditions we simply have ∂r/∂x = k, dg/dx = 0. At
a spatial point x, the ray has length R = |x| and unit vector eR = x/R given
by

R = x
√
1 + k2(y′2 + z′2) = x+O(ε2), (7.59a)

eR =
ex + k(y′ey + z′ez)√

1 + k2(y′2 + z′2)
= ex + k(y′ey + z′ez) +O(ε2). (7.59b)

Therefore, up to O(ε), a spherical surface R = const. can be replaced by a
(y′, z′) plane; but the difference between ex and eR has a non-negligible effect.
A slender conical vortex can be approximated by a quasi two-dimensional
point vortex only on a spherical surface with normal eR.

As indicated by (7.45–7.47), on a cross plane with normal ex, a slender
conical-flow problem is the superposition of an angle-of-attack problem uα
caused by a cross-flow Un � Uα, and a thickness problem ua = us(y′, z′) +
Uex caused by an axial flow Ux � U at α = 0, where us represents a two-
dimensional source distribution due to the body thickness. Here, an important
consequence of eR �= ex is: the axial flow Uex should be further decomposed
to Uex = UeR + uc, where by (7.59b)

uc(y′, z′) = −kU(y′ey + z′ez) = −
Un
K

(y′ey + z′ez), (7.60)

with
K ≡ α

ε
(7.61)

being a conical similarity parameter that measures the relative magnitude of
α. Obviously, the linear velocity field uc exists in any slender conical flow,
and represents a uniform sink everywhere in the (y′, z′) plane. The boundary
condition for the thickness problem has to be jointly satisfied by us and uc:

n · us = −n · uc =
Un
K

(y′ny + z′nz) on C, (7.62)

where n now denotes the unit normal vector of the cross-flow contour C.
Consequently, what matters is the total cross-flow with free-stream velocity
Un (Cai et al. 2003):

eyv(y′, z′) + ezw(y′, z′) = uα(y′, z′) + us(y′, z′) + uc(y′, z′). (7.63)
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7.3.2 Vortex Sheets Shed from Slender Wing

The quasi two-dimensional feature of the slender approximation naturally
suggests extending the conformal-mapping method from body contour to the
contour C of a separated vortex sheet in a cross-flow plane Z = y + iz,
where C is treated as a cut. This approach was mainly developed at Royal
Aeronautical Establishment (RAE) of the United Kingdom in 1960s and 1970s
so we call it the RAE method. In this method (7.54), (7.55), (7.57), and (7.58)
are all necessary input. A major difficulty is that once the vortex sheet rolls
into a vortex with distributed vorticity and spiral arms (Chap. 8), inside the
vortex core the conformal mapping can no longer be used. In the RAE method
(Smith 1968) the tightly rolled-up part of the sheet is replaced by a single line
vortex of circulation Γv(x) at Zv on each cross plane, which is connected to
the unrolled sheet by a cut that can satisfy (7.53) but not (7.54). The best
one can do is to impose (7.54) in averaged sense, i.e., the total force acting on
the point vortex plus the cut is zero. This condition determines Zv.

Smith (1968) applied the RAE method to a slender flat-plate delta wing at
incidence. The wing has infinite downstream extension so the flow is conical.
On a cross plane the wing semispan is s = kx. Figure. 7.20 is the calculated lo-
cation of vortex sheet and line vortex (appearing as a point) on the Z-plane at
different α. The agreement of computed spanwise pressure distribution with
experimental data is reasonably good. The main discrepancy is due to the
incapability of computing the secondary separation from the upper surface
of the wing, induced by the primary leading-edge vortex (Fig. 7.7a). The sec-
ondary vortex has opposite circulation and weakens the suction peak caused
by the primary vortex.

By using the RAE method, Fiddes (1980) calculated the symmetrically
separated vortex sheets from a cone of elliptic cross section at incidence,
which happens at the nose of aircrafts and missiles. In the Euler limit the
location θs of separation line is indeterminate, which in Fiddes’ calculation
was taken from experimentally observed values. Fiddes (1980) also imbedded
the triple-deck structure (Sect. 5.2) into the calculation to iteratively deter-
mine the separation line from an initially assumed θs. The results are in
reasonable agreement with experiments.

Most of the role of the RAE method has now been replaced by more
efficient numerical methods.7 Numerical computations can also be greatly
simplified within the slender approximation (7.45) and (7.46). Write the local
axial velocity as U = x/t, a steady three-dimensional flow problem at different
x-stations is reduced to an unsteady two-dimensional cross-flow problem at
different t.

7 In numerical approaches the vortex-sheet conditions (7.48a) and (7.48b) are auto-
matically satisfied, but the Kutta condition and Biot-Savart formula or its equiv-
alence remain necessary.
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Fig. 7.20. Location of vortex sheet (solid curve) and line vortex (circle) over a
slender delta wing for different K = α/k (marked by numbers), calculated by the
RAE method. From Smith (1968)

Figure. 7.21a shows the pattern of a leading-edge vortex sheet from a slen-
der delta wing of finite chord length (so the flow does not have conical simi-
larity) at a typical cross-plane, computed by Ma and Jin (1991) using the
viscous vortex-in-cell method. According to the Kutta condition, the vortex
sheet is set to leave the leading edge tangentially. By carefully adjusting the
grid, Ma and Jin were able to capture not only the global pattern but also
the tendency of the sheet to break into discrete vortices due to the Kelvin–
Helmholtz instability (Chap. 9).

Then, as the leading-edge vortex layer travels downstream to the wake,
it must meet the trailing-edge vortex layer and merge to a single and
complicated structure. The rolling-up of wake vortex-sheet alone has been
beautifully computed by Krasny (1987) also within the same U = x/t approx-
imation, as already exemplified by Fig. 4.21; but the evolution of the merged
leading- and trailing-edge vortex sheets is of particular interest. This has also
been computed by Ma and Jin (1991), see Fig. 7.21b at a typical wake plane.
Figure. 7.21c is the sketch of the vortex-sheet pattern by Küchemann (1978)
for comparison.

It should be stressed that although numerically one can compute the
tightly rolled-up part of a vortex sheet, this part cannot be accurately simu-
lated on a cross plane. In the preceding analysis we have neglected the con-
tribution of [[ux]] = ex · ∇Γ to the vortex sheet strength γ, which for an
isolated vortex sheet is of O(ε2). However, when many layers of the sheet
squeeze together, [[ux]] may have an O(1) integrated effect and cause a strong
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(a)

(c)

(b)

Fig. 7.21. The evolution of vortex sheets shed from a slender delta wing at α = 20.5◦

and Re = 106 based on root-chord length, computed by Ma and Jin (1990), (a) a
leading-edge vortex sheet upstream the trailing edge, (b) a merged leading- and
trailing-edge vortex sheet in the wake, (c) is reproduced from Küchemann (1978)

axial velocity inside the vortex core (for an example see Sect. 11.5.4). This will
make the flow inevitably three-dimensional, beyond the ability of any slender
approximation.

7.3.3 Stability of Vortex Pairs Over Slender Conical Body

We now shift our focus from the rolling up process of vortex sheets shed from a
slender body to the slender vortex pair formed thereby, which is the strongest
structure in a free vortex-layer separated flow. As the angle of attack α in-
creases to a critical value, an originally steady, stable, and symmetric vortex
pair above a slender wing or body may become unstable, leading to asymmet-
ric or unsteady structures, or both. The asymmetric vortices will cause a large
rolling moment in the case of slender wing, or a large side force in the case of
slender smooth body, even at zero roll and yawing angles, respectively. The
underlying physical mechanism has been a controversial issue for long time.
But, within the slender conical-flow approximation, simple inviscid analyses
may explain the phenomenon quite well at least qualitatively, without the
need for systematic knowledge of hydrodynamic stability.

The occurrence of the asymmetric vortex-flow solution besides the sym-
metric one over a circular cone at high enough angles of attack has been
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found by Dyer et al. (1982) using the simplest cross-flow point-vortex model.
They observed that at a critical similarity parameter K defined by (7.61)
the vortex flow has a bifurcation to a symmetric solution and an asymmet-
ric solution even when the separation lines are postulated as symmetric. A
systematic analysis of the instability of the symmetric and asymmetric vortex
pair under small conical disturbances has been carried out by Cai et al. (2003,
2004) for various slender conical flows. In their analysis the feeding sheet is
ignored which, although important in estimating the total force (e.g., Fiddes
and Smith 1982), has negligible effect on vortex stability due to much weaker
vorticity concentration.

In what follows we present the main analysis of Cai et al. (2003) for the
stability of symmetric vortex pairs. Our concern is not the incompressible and
potential flow field but the motion of point vortices in the (y′, z′) = (y/x, z/x)
plane, which is a discrete dynamic system constrained by the flow boundary
conditions (for a general discussion of point-vortex system see Sect. 8.3.1). For
example, with vortices 1 and 2 behind a slender cone of radius a = kx, the
system has 4 degrees of freedom. By (7.62) and (7.63), the velocity of one such
vortex is determined by the sum of the vortex-induced velocity uα (excluding
the self-induction), the source-caused velocity us, and the velocity uc caused
by the sink. In terms of complex variable Z = y′ + iz′, therefore, for vortex 1
we may write

dZ1

dt
=

dZα
dt

+
dZs
dt

+
dZc
dt

= F (Z1, Z1, Z2, Z2)

= Un

(
1− a2

Z2
1

)
+

iΓ

2π

(
1

Z1 − a2/Z2

− 1
Z1 − Z2

− 1
Z1 − a2/Z1

)
+

Una

KZ1
− UnZ1

aK
. (7.64)

The point-vortex velocity defined in this way represents the velocity at which
the vortex would move, and will be called vortex velocity to be distinguished
from the flow-field velocity. Note that the uniform sink flow is not an analytic
function of Z. In general dZ/dt = F (Z,Z) may not be two-dimensionally
divergence-free although the flow is incompressible. This is not only due to the
existence of variable axial velocity in three-dimensional slender-body theory,
but also because we are dealing with a discrete system even for truly two-
dimensional point vortices.

Now return to real variables, assume at t = 0 the vortex at x0 is stationary
with u0 = 0 (a fixed point), and a disturbance shifts it to x0 + δx at t = 0+

(δx is constrained by boundary conditions), such that similar to (2.13) or
(7.3) but now for discrete vortices, the linearized system and solution read

d
dt
δxi = δxju0i,j so that δxi(t) = δxi(0)eλ1,2t,

where λ1 and λ2 are the eigenvalues of vortex velocity gradient tensor ∇u0.
Thus, within the linearized theory, the vortex system will be stable (necessary
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for nonlinearly stable), neutrally stable, and unstable (sufficient for nonlin-
early unstable) if both λ1 and λ2 have negative real parts, are imaginary, and
at least one of λ1 and λ2 has positive real part, respectively. It is easily verified
that

λ1,2 =
1
2

(
D0 ±

√
D2

0 − 4J0

)
, (7.65a)

in which

J0 ≡
∂(v, w)
∂(y, z)

∣∣∣∣
x0

, D0 ≡ ∇ · u|x0 (7.65b)

are the Jacobian of the gradient and divergence of the vortex velocity at x0,
respectively. While the stability character can be readily identified if one of
D0 and J0 vanishes, it is also easy to see that if both are nonzero then

Unstable if

{
D0 > 0 for any J0,

J0 < 0 for any D0;
(7.66a)

Stable if D0 < 0 and J0 > 0. (7.66b)

In complex variable the disturbance displacement reads (δZ1, δZ2) for vortices
1 and 2. Since for any disturbance there is

(δZ1, δZ2) = (δZs, δZs) + (δZa,−δZa) with

δZs =
1
2
(δZ1 + δZ2), δZa =

1
2
(δZ1 − δZ2),

it suffices to consider the stability under symmetric and antisymmetric dis-
turbances separately.

We now apply the above simple theory to examine the stability of some
symmetric slender vortex pair. As comparison, consider first the truly two-
dimensional flow over a circular cylinder with a pair of symmetric separated
vortices, for which the source and sink terms in (7.64) are absent, and there is
Un = U and Z2 = Z1, see Fig. 7.22. The stationary condition for undisturbed
vortices is obtained by letting the right-hand side of (7.64) vanish, which
leads to the famous Föppl vortices (Föppl 1913)8: stationary vortex pair must
be located on a pair of special curves (Föppl line, see Fig. 7.22) with special
circulations

z0 = ±1
2

(
r0 −

a2

r0

)
, Γ = ∓4πUz0

(
1− a4

r40

)
, r0 =

√
y20 + z20 . (7.67)

Then, Cai et al. (2003) have given a general proof that, for any two-
dimensional flow fields obtainable from the circular-cylinder flow through a
8 The Föppl vortices are the first theoretical model of closed-bubble separated flow,
which we now see is very different from the corresponding Euler-limit.
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Foppl line

x

z0

z0

Fig. 7.22. Stationary vortex pair behind a circular cylinder and the Föppl line

series of conformal mappings, if the vortex system is initially placed symmet-
rically then there must be D0 = 0, and hence (7.65a) is reduced to

λ1,2 = ±
√
−J0.

It is then easily seen that for antisymmetric disturbance there is J0 < 0, and
hence the flow is unstable (first proved by Föppl (1913)); while for symmetric
disturbance there is J0 > 0, and hence the flow is linear neutrally stable
(first proved by Smith (1973)). Therefore, for an arbitrary small disturbance,
a symmetric point-vortex pair in any two-dimensional incompressible flow
cannot be stable.

In contrast to truly two-dimensional flow, the uniform sink (7.60) plays
a crucial role in the slender-conical vortex stability, since solely by this term
there is

D0 = −2Un
aK

< 0, (7.68)

no matter where the vortices locate. By (7.66b), the appearance of this sink is
necessary for a pair of vortices to be stable. It reflects a basic stabilizing mech-
anism (in a highly simplified manner, of course): the vorticity continuously
generated from the body surface and entering slender free vortices can be bal-
anced by its continuous axial advection, so the over-saturation and shedding
of vorticity, typical in truly two-dimensional flow, can be avoided or delayed.
Topologically, a vortex in a background sink-flow appears as a stable spiral on
the (y′, z′) plane rather than a center (Sect. 7.1.1). Note that since by (7.68)
D0 is inversely proportional to K, for fixed ε an increase of α always tends
to make the flow less stable or more unstable. So does the thickness effect,
which pushes the vortices away from the body. The thickness effect overrides
the sink effect when J0 < 0, for which the vortex will appear as a saddle point
in the (y′, z′) plane and is unstable.

Cai et al. (2003) have analyzed the stability property of several typical con-
ical configurations as function of K and the separation point (the semisaddle
on the contour C). For slender circular cones the stationary symmetric vortex
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flow is stable under small symmetric disturbances, but unstable under small
antisymmetric disturbances as demonstrated by Fig. 7.23. Hence, an initially
symmetric vortex flow tends to become asymmetric. The instability is mainly
from the thickness effect.

In contrast, for slender flat-plate delta wing with us = 0 in (7.63), the
angle-of-attack problem is obtainable from (7.64) by conformal mapping. It is
found that J0 > 0 for both symmetric and antisymmetric disturbances with
0 < K ≤ 10, see Fig. 7.24, and hence the symmetric vortex pair is stable. This
confirms and extends an earlier result of Huang and Chow (1996). In between
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Fig. 7.23. D0 and J0 for symmetric vortices above slender circular cones of differ-
ent K, under symmetric and antisymmetric disturbances. The separation angle is
θ = 34◦ (counted from the real total point). Reproduced from Cai et al. (2003)
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Fig. 7.24. D0 and J0 for symmetric vortices above slender delta wing of different
K, under symmetric and antisymmetric disturbances. Reproduced from Cai et al.
(2003)
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the circular cones and flat-plate delta wing, slender elliptic cones with different
thickness ratio τ and separation points have also been examined. For example,
for antisymmetric disturbance, as τ increases from zero, the flow changes from
stable to unstable. The stable spiral and saddle patterns in the (y′, z′) plane
for a stable and unstable vortex, respectively, are also illustrated.

Cai et al. (2003) have also studied the stabilizing effect of fins on cone and
delta wing. Their predictions based on this simple model have been compared
with available experimental results with reasonable agreement. Using the same
approach, Cai et al. (2004) have further studied the stability of asymmetric
vortex pair.

Needless to say, the conical-flow assumption employed in the preceding
analysis cannot follow the development of disturbances along a vortex axis as
in the case of convective instability (Chap. 9), which has been considered by
some authors a preferred mechanism for certain vortex asymmetry problems
(see the review of Cai et al. (2003)). Another possible mechanism for the
appearance of asymmetric vortices having been argued is the asymmetry of
flow separation/reattachment on both sides of the body (Ericsson 1992).

7.4 Unsteady Bluff-Body Separated Flow

Unlike steady separated bubble flow behind a bluff body discussed in Sect. 7.2,
unsteady separated flow from bluff bodies is a very common existence and of
great significance in engineering applications. It causes fluctuating drag and
lateral force to the body and is a major source of flow-induced structural
vibration and noise. Of various transient or periodic separated flows, the in-
compressible flow past a stationary and nominally two-dimensional bluff cylin-
der of cross-flow length D is most important. It already possesses almost the
entire complexity of shearing process, such as flow separation, free shear layer
and its rolling up, vortex interactions, various shear instabilities, transition to
three-dimensional flow and to turbulence, and unsteady turbulent separated
flow. After over a century of effort since Strouhal (1878) observed that the fre-
quency f of vortex shedding is proportional to U/D with the proportionality
constant now being known as the Strouhal number St = fD/U , and Kármán
(1912) constructed the vortex street model (Sect. 6.4.3) and estimated the
drag, “the problem of bluff body flow remains almost entirely in the empir-
ical, descriptive realm of knowledge.” (Roshko 1993). The great complexity
and importance in applications of bluff-body flows are well demonstrated by
the comprehensive two-volume manograph of Zdravkovich (1997, 2002).

Nevertheless, the formation mechanism of vortex shedding has been clar-
ified, and some of the mechanisms that cause sudden changes of the flow
patterns, Strouhal number St, and drag coefficient CD at different Reynolds
numbers Re = UD/ν have been identified. For the latest comprehensive
review see Williamson (1996). In this section we review the basic phenom-
ena, discuss the formation process of the vortex shedding, and introduce a
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model to predict the basic Re-dependence of St and CD in which the inte-
grated vorticity and energy balances are incorporated.

7.4.1 Basic Flow Phenomena

Bluff bodies with smooth-surface separation and fixed separation are typified
by circular cylinder and flat plate normal to the oncoming flow, respectively. In
both cases the flow is characterized by high CD and periodic vortex shedding,
of which the quantitative behavior depends on the Reynolds number. The key
issue of bluff-body flow is the Re-dependence of St and CD, and the underlying
mechanisms. In Fig. 7.25 we plot the curves of St, the time-averaged CD,
and the time-averaged base suction coefficient −Cpb versus Re for circular
cylinder, based on experimentally measured data.9 The −Cpb is defined as
negative of the pressure coefficient at the downstream end b of the body:

−Cpb = −pb − p∞
1
2ρU

2
, (7.69)

which reflects the sensitivity of the flow pattern to Re more adequately than
that of CD. The −Cpb for Navier–Stokes solutions of the steady attached and
separated flow (Dennis and Chang 1970; Fornberg 1985) at Re < 700 are also
shown for comparison, of which the trend is opposite to the realistic unsteady
flow.

Figure 7.25 reveals that there are different regimes divided by some crit-
ical Re marked by A, B,...., J. Each regime has its special flow pattern, as
summarized schematically in Fig. 7.26 for side view and top view. A few typi-
cal visualization photos are shown in Fig. 10.42 of Chap. 10; for more see Van
Dyke (1982). In each regime, both St and −Cpb have corresponding special
features. The physical events behind Figs. 7.25 and 7.26 are briefly outlined
below (Roshko 1993; Williamson 1996; Noack 1999).

1.Steady flow (regime before A, Re < 49).
Similar to the separated bubble flow over a sphere seen in Sect. 4.2.2, at Re =
4 a pair of standing vortices appears behind the circular cylinder due to a
local topological bifurcation at the rear stagnation point, characterized by
the appearance of new fixed points (Bakker 1991). But, no hydrodynamic
instability occurs (Yin and Sun 2003); so we say a kinematic bifurcation. Then,
in the steady separated-bubble regime (4 < Re < 49) the flow is globally stable
with respect to all three-dimensional disturbances.

2.Laminar parallel and oblique shedding (regime A–B, 49 < Re < 140–194).
At the first critical Reynolds number Recr1 � 49 the flow becomes linearly
9 The real measured data have certain diversity due to the difference of experimen-
tal conditions such as cylinder roughness, amplitude and spectra of free-stream
turbulence, aspect ratio of the cylinder, end conditions, and blockage ratio, etc.
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Fig. 7.25. The variation of (a) St, and (b) −Cpb (solid and dashed lines) and CD

(dashed-dotted line) as Re. Based on Schewe (1983), Roshko (1993), Norberg (1994),
and Williamson (1996)

unstable with respect to two-dimensional disturbances and experiences a (dy-
namic) supercritical Hopf bifurcation, leading to laminar and parallel vortex
shedding, which forms a Kármán vortex street that is linearly stable to three-
dimensional disturbances.

The experimental conditions at the spanwise ends of the cylinder always
cause some three-dimensional disturbances, which when Re > 64 will propa-
gate to the midspan region of the cylinder and lead to oblique shedding (vor-
ticity lines make an angle θ �= 0 to the cylinder axis) with lower frequency
Stθ = St0 cos θ. In different spanwise regions the oblique shedding may have
different Stθ, as sketched in Fig. 7.26, so as Re increases at the measurement
point the measured signal may jump from one mode to another to manifest as
a discontinuity in the St-curve. This was observed at Re � 75 (not shown in
Fig. 7.25). The end-conditions can be carefully controlled to resume parallel
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Fig. 7.26. Schematic patterns of unsteady bluff-body flow in different regimes.
Based on Noack (1999)

shedding, and a “universal” smooth St-curve can be obtained if for oblique
shedding one plots Stθ/ cos θ.

3.Three-dimensional wake (regime B–C, 190 < Re < 260).
The wake becomes intrinsically three dimensional (not associated with end-
effect) due to two bifurcations at Recr2 = 190 and Recr3 = 260 (Henderson
and Barkley 1996; Barkley and Henderson 1996). At Recr2 the flow is linearly
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unstable with respect to a spanwise wavelength of λs/D = 4, called “mode A”
instability, leading to a slightly subcritical onset of three dimensionality. Flow
visualization shows the inception of vortex loops and formation of streamwise
vortex pairs (Fig. 7.27a). This instability causes the discontinuity of both St
and −Cpb curves at Recr2. Then for Re in 230–260 there is a graduate en-
ergy transfer from the mode A shedding to a “mode B” shedding in which
finer-scale streamwise vortices of λs/D ∼ 1 appear (Fig. 7.27b) due to a super-
critical bifurcation at Recr3. In this regime of transition to three-dimensional
wake, the local shedding-phase difference along the span also causes some
large-scale dislocations of the shed vortices.

The formation mechanism of wake vortices changes in this regime. We
have seen that at small Re the wake vortices are formed due to a kinematic
topological bifurcation. Only when Re−1/2 
 1, i.e., Re = O(102) and above,
can a boundary layer and its separated shear layer be sufficiently thin, and
wake vortices be formed by shear-layer rolling-up.

Flow

(a)

(b)

fe
fL

fU
fL

fL

fe

fefe

Fig. 7.27. Sketch of oblique shedding, (a) periodic mode with a chevron-shaped
oblique vortex pattern (64 < Re < 178), (b) quasi-periodic mode (Re < 64). From
Williamson (1989)
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Re=200 Re=270(a) (b)

Fig. 7.28. Flow visualization of (a) mode A instability at Re = 200 and (b) mode
B instability at Re = 270. From Williamson (1996)

4.Transitional and turbulent flow (regimes C–D to H–J, Re > 260).
To gain a complete idea of the complicated Re-dependence of unsteady sep-
arated flows in the full Re range, we continue our discussion on the physics
behind Fig. 7.25 to transitional and turbulent flow that may also be a part
of Chap. 10. As Re increases from 260, the flow starts the transition process
to turbulence. The transition first occurs in the wake, where fine-scale three-
dimensional structures are more and more disordered. This causes a reduc-
tion of the base suction, associated with an increase of St and the length
of vortex-street formation region. Then, in regime D–E the free shear layer
transition starts at about Re ∼ 1, 300 due to the Kelvin–Helmholtz instability
(Sect. 9.2.2), where St and −Cpb reach a minimum and maximum, respec-
tively. As the shear layer becomes turbulent, −Cpb and CD increase, while St
and the length of formation region are gradually reduced.

Then, for Re < 3×105, the boundary layers at both sides are still laminar
although the wake and free shear layers have become turbulent. Around point
E (Re � 3× 105) the boundary-layer at one side starts transition and hence
can remain attached at stronger adverse pressure gradient. This shifts the
separation much further downstream. The transition does not occur simulta-
neously at the other side, implying an asymmetric state with nonzero mean
lift. At higher Re the boundary layers at both sides are turbulent, causing a
drastic drop of the CD and −Cpb down to 0.2 (“drag crisis”) and rise of St
(up to 0.5), and a reduction of the vortex-street formation region. But the
flow is not completely random. Roshko (1961) has discovered the reappear-
ance of periodic turbulent vortex shedding in the H–J regime, indicating that
the alternative fully turbulent shear-layer rolling-up mechanism reappears at
very large Re.
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(b)(a)

Fig. 7.29. Necklace vortices, (a) side view, (b) top view. From Van Dyke (1982)

Note that all the flow patterns over the circular cylinder so far discussed
at different Re cannot be applied to the portion near the ends of the cylin-
der, which always exist in reality, e.g., a free end or bounded by a flat plate.
Once the end effect is considered, inherently three-dimensional new vortex
structures must occur that are very different from those observed in the nor-
mally two-dimensional mid-portion of the cylinder. A familiar example is the
necklace vortices at the juncture of the cylinder and a perpendicular flat
plate (the prototype of wing-fuselage juncture), see Fig. 7.29. The oncoming
attached boundary layer along the wall encounters a strong adverse pressure
gradient as approaching the cylinder and separates ahead of it, forming a sep-
arated vortex of which the two legs are advected downstream at both sides. As
Re increases the primary necklace vortex may induce a secondary one, which
could causes a tertiary one, etc., so that the vortex system at the juncture is
increasingly complicated and finally become turbulent.

7.4.2 Formation of Vortex Shedding

At the critical value Recr � 49, one observes disturbance waves traveling
downstream on the sides of the steady closed separated bubbles. The velocity
fluctuation causes a Reynolds stress, which makes the base suction start to be
higher than that it would take in steady flow at the same Re, see Fig. 7.25b. A
further increase of Re then causes a sudden inception of the wake instability
and growth of fluctuations, making the bubble break into vortex-shedding
mode. This happens in a near-wake vortex formation region, which is crucial
for the entire wake since it is the region where vortex shedding is initiated at
all Reynolds numbers.

At Re  1, the interaction of the upper and lower separated shear lay-
ers plays an important role in this vortex-formation region (Gerrard 1966).
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Consider the upper shear layer which rolls into a vortex with ω < 0 of in-
creasing strength due to the continuous feeding of vorticity from the upstream
boundary layer. Suppose the vortex is stronger than that from the lower shear
layer due to an asymmetric disturbance. It then entrains the lower-side fluid
with positive and zero vorticity across the wake to enter the upper side. This
causes a vorticity cancellation, which eventually cuts off the feeding sheet so
that the vortex with ω < 0 has to shed downstream. The lower shear layer will
then roll into a stronger vortex and the process is repeated to form a cycle.

Gerrard (1966) further proposed that the entrained fluid from opposite side
may enter different regions of the other side in a delicate balanced manner, see
the sketch of Fig. 7.30. Fluid a enters the vortex and weakens it; fluid b enters
the feeding shear layer and plays the key role to cut it; and fluid c moves
back toward the cylinder where it is cancelled in the next half of the cycle.
Therefore, the vorticity in the formation region and shed vortices (denoted
by V in the figure) is considerably weaker than that in the shear layers. This
overall picture has been confirmed and refined by Green and Gerrard (1993)
for Re > 500.

According to Green and Gerrard (1993), the end-point location of the
vortex formation region coincides with the overall location in the wake where
the vortex strength is a maximum. As Re increases, the vortex formation
region shrinks, while the base suction coefficient grows (a larger drag) as seen
from Fig. 7.25, which is progressively dominated by the Reynolds stress in the
shear layers.

The above qualitative understanding of the vortex street formation process
via shear-layer interaction can be enriched by topological analysis of the type
of Sect. 7.1. In two-dimensional steady separated flow there can only be sad-
dles and centers, and the saddle–saddle connection is structurally unstable.
As the energy level increases and saturated, the closed bubble opens and in-
stantaneous “alleyways” of fluid can penetrate the separated flow region. A
series of instantaneous streamline patterns in different phases of a period,
from an impulsively started cylinder motion and viewed in the frame fixed to
the cylinder, is analyzed by Perry et al. (1982) based on the flow visualization
movie made under the direction of Prandtl, and Fig. 7.31 reproduces their
sketch. The strength of vortex A with ω < 0 is growing in (a)–(d); but in

c

b a

V

Fig. 7.30. Sketch of vortex formation region behind bluff body. Arrows show reverse
flow (c) and entrainment (a) and (b). Reproduced from Gerrard (1966)
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Fig. 7.31. Sketch of vortex shedding by the topology of instantaneous streamlines.
Plotted are only those streamlines which leave or terminate at saddle points. From
Williamson (1996). Note the generation and evolution of vortex A

(e) a new saddle forms at the lower side, which cuts off the vorticity feeding
to vortex A, making it shed away, and meanwhile forms a new vortex with
ω > 0. Actually steps (e)–(h) are just half-cycle difference from (a) to (d),
respectively.

The preceding qualitative picture needs to be quantitized by careful insta-
bility analysis, which will be briefly mentioned at the end of Sect. 9.1.1. While
the stability analysis has now been able to predict very precisely the most
unstable frequencies at which small disturbances have the highest growth
rate, these frequencies are not identical to the vortex shedding frequency or
St that is still beyond the capability of stability theories. Moreover, the stabil-
ity analysis neither identifies the basic mechanisms that limit the amplitude
of large transverse displacement of fluid elements in the vortex street, nor
reveals the forces that drive the system back toward equilibrium. As a com-
plement to the preceding detailed local analysis, a global vorticity balance in
the formation region can be easily obtained, by which one may gain further
insight to the overall physical picture.

Consider a two-dimensional incompressible flow on the (x, y)-plane past
a cylinder, with wake vortices shedding alternatively from upper and lower
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Fig. 7.32. The flow region where the vorticity generated at the lower surface is
forming a counterclockwise wake vortex

sides of the cylinder surface contour ∂B. As shown in Fig. 7.32, we focus on
the process in which the vorticity is generated from the lower part of ∂B and
forms a new wake vortex during half period T/2 (cf. Figs. 7.31e–h). Let D be
a flow domain bounded by C that includes the vorticity-generation region as
well as the whole newly formed vortex but not any earlier ones. A segment of
C coincides with ∂B from the front stagnation point a to the downstream end
b of the cylinder. The normal and tangent unit vectors along C are denoted by
(n,es), with n pointing out of D and es along the counterclockwise direction
so that n× es = ez. Then by the vorticity equation

Dω
Dt

= ν∇2ω,

the rate of change of the total vorticity in D is

d
dt

∫
D
ωdS =

∮
C

σds,

where σ is the vorticity diffusive flux defined by (4.17), which on the station-
ary ∂B becomes boundary vorticity flux given by σ = ρ−1∂p/∂s, see (4.29).
Therefore, by using (7.69) and the fact pa = p∞+ρU2/2, we obtain (Ahlborn
et al. 1998)

d
dt

∫
D
ωdS =

U2

2
(1− Cpb) + ν

∫ b

a

∂ω

∂n
ds. (7.70)

Here, the term with base pressure Cpb is the result of vorticity generation by
on-wall tangent pressure gradient, which as said in Sect. 4.1.3 is independent
of the Reynolds number Re = UD/ν; and the integral of the diffusive flux
σ is taken along the contour ab in the fluid. σ will be strong at a segment
of ab where the vorticity is cancelled by the diffusive mixing with opposite
vorticity entrained from the upper side. Thus (7.70) provides a clear global
interpretation of the Hopf bifurcation at Re > Recr1. The vorticity generated
at the cylinder surface by a strong adverse pressure gradient (characterized
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Fig. 7.33. Flow past a bluff body with splitter plate, (a) instantaneous flow, (b)
wake defined by zero streamline of the mean flow. From Roshko (1993)

by base suction −Cpb) is too much to be balanced by diffusion and steady
advection, so the flow has to become unsteady which in turn significantly
alters the vorticity generation process to achieve a new periodic balance.

The key role of shear-layer interaction in the formation region implies that,
as the pioneer work of Roshko (1955) first discovered, vortex shedding can be
suppressed if one places a sufficiently long splitter plate along the oncoming
flow at the lee side of the cylinder to block this interaction. In that case the
upper and lower shear layers will evolve separately due to Kelvin–Helmholtz
instability (Sect. 9.2.2), see Fig. 7.33a; and the mean flow will be a pair of long
symmetric closed bubbles sketched in Fig. 7.33b (the mean flow with vortex
shedding is a much shorter pair of bubbles). This control effect can also be
interpreted by (7.70), in which D should now be extended to the downstream
end of the splitter plate, where p recovers nearly to p∞ and hence Cp � 0. The
base suction is thereby removed, and the integrated vorticity generation from
the bluff-body surface is significantly weakened ( the new σ along the splitter
plate should be even much weaker). Therefore, in lower half of Fig. 7.33b, since
ω > 0 and hence σ < 0 at the outer edge of the vortex bubble where un = 0,
by (7.70) and (7.26) a mean steady integral balance (Fig. 7.33b) is possible:

U2

2
� −

∫ b

a

σds = H(b)−H(a),

where H is the total enthalpy.

7.4.3 A Dynamic Model of the (St, CD, Re) Relationship

Once the vortex shedding mode is established, downstream of the formation
region (near wake) the fully developed vortices in the far wake vortex street
are no longer sensitive to the cross-sectional shape of the body that generates
the wake, but evolve as a self-excited periodic system with a single dominant
frequency. In fact, numerical experiments have shown that a Kármán vortex
street can be produced without really computing the cylinder flow, as long
as the upstream flow condition is set as the most unstable mean velocity
profile of a circular-cylinder wake (Triantafyllou and Karniadakis 1990), or
even simply an absolutely unstable Gaussian wake profile (Maekawa et al.
1992). Therefore, some quite universal laws on the Re-dependence of St and
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CD or −Cpb (or the St–CD or St−Cpb relationship) should exist in a large
range of Re for buff cylinders of various cross sections. The Kármán vortex-
street model is the first and most famous example.

Since Strouhal’s (1878) pioneer work, it has long been known that the
Strouhal number St due to vortex shedding is almost a constant around 0.2
at large Reynolds numbers (till Re 2×105 according to Fig. 7.25), and several
empirical models for the St–Re relation have been proposed based on fitting
with experimental data. At the low Re end, Roshko (1954a,b) was the first
to discover the vortex-street similarity behind cylinders of different sectional
shapes and to extract an empirical relation from a large data base for the
universal St–Re relationship for different bluff cylindrical bodies:

St = 0.212
(
1− b

Re

)
, (7.71)

where b = 21.2 for 45 ≤ Re ≤ 200 and 12.7 for 300 ≤ Re ≤ 800. His work
has been modified and extended to a larger range of Re by many authors.
Fey et al. (1998) found a good fitting up to Re < 2× 105 (before drag crisis)
if one assumes

St = St∗ +
m√
Re

, (7.72)

with different constants St∗ and m in different regimes.
Compared to the St–Re relation, less work (even purely empirical) has

been done on the relation between CD or Cpb and Re. In fact, two equa-
tions are needed to relate St, CD, and Re, which may well be coupled;
hence, further refinement of (7.71) and (7.72) should be anticipated. Now, the
appearance of Cpb in (7.70), which was derived by the global momentum and
vorticity balance, suggests that the physics in the formation region is at least
as important as the vortex-street region, and should be included in search-
ing for the universal laws. As stressed in the context of (7.70), the flow at
Re > Recr1 is characterized by a spontaneously periodic balance between the
vorticity creation, advection, and diffusion in the near field, which bears direct
relevance to the force acting to the body.10 The entire cycle is synchronized by
a clockwork, of which the key mechanism should be in the formation region.

The first step from purely empirical relationships toward semianalytical
ones among (St, CD, Re) was made by Ahlborn et al. (1998, 2002) based on
(7.70) and kinetic-energy balance in the vortex-street region. These authors
obtained a dynamic model for the desired relationships (the effects of three
dimensionality and turbulence outlined in Sect. 7.4.1 cannot be treated in the
model), of which the core content is presented below with improved rationality.
Since relevant flow variables can only be estimated by scale analysis, there will
inevitably be a few coefficients to be fixed by experimental data.

10 It will be shown in Sect. 11.5 that this force can well be obtained by the flow data
in this formation region only, and the effect of the Kármán vortex street on the
force is nearly indirect only via its upstream influence.
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We first consider the vorticity balance in the formation region based on the
space-time averaged version of (7.70). Let n = 2πf be the circular shedding
frequency. From the derivation of (7.70) it is evident that the domain D has
to contain both the lower-surface boundary layer and the newly separated
vortex, including possible secondary and tertiary vortices. To avoid dealing
with the average of the advective vorticity flux ωun across ∂D, we assume
D is a material fluid body.11 Thus, D is strongly t-dependent; as suggested
by Fig. 7.31, it deforms and changes shape and area as the boundary-layer
separates, small vortex-bubble forms, grows, detaches, and finally sheds off.
Nevertheless, we may introduce a nominal radius R(t) so that D(t) = πR2(t).

Now, denote the time average over T/2 = π/n and spatial average over D
for any function F (x, t) by

F =
n

π

∫ π/n

0

Fdt, 〈F 〉 = 1
πR2

∫
D
FdS.

Averaging (7.70) over T/2 yields

nR2〈ω〉 − ν

(∫ b

a

∂ω

∂n
ds

)
=

U2

2
(1− Cpb).

Dividing this equation by U2/2 and noticing n = 2πUSt/D, we obtain

πR2St

UD
〈ω〉 − 1

2Re
D

U

(∫ b

a

∂ω

∂n
ds

)
=

1
4
(1− Cpb), (7.73)

where all three parameters St, Cpb, and Re appear. Then, as a material loop,
the curve ab deforms and changes shape during T/2 as significantly as D. But
since ∂ω/∂n < 0 along the curve ab, by the mean-value theorem there must
exist an N(t) > 0 such that∫ b

a

∂ω

∂n
ds = −2πN(t)R(t)

〈ω〉(t)
R(t)

= −2πN(t)〈ω〉(t)

at any t ∈ [0, T/2]. Physically, N(t) measures how much the real ∂ω/∂n along
ab differs from 〈ω〉/R and how much the arclength of the curve ab differs from
2πR. Therefore, (7.73) becomes(

β2

4
St+

N

Re

)
D

U
〈ω〉 = 1

4π
(1− Cpb), (7.74)

where 〈ω〉 is the constant space-time averaged vorticity in the deformable D,
β = 2πR/D is the dimensionless nominal diameter of D, and N > 0 is a mean
11 This fluid body has to extend sufficiently far upstream so that in the entire s T/2

it can cover the lower-surface boundary layer as required in deriving (7.70).
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value of N in T/2 that can hardly be estimated in practice nor is independent
of the cross-section shapes.

We now observe that 〈ω〉 is twice of the mean angular velocity of D, so
2π/〈ω〉 is half of the mean turn-over time of the vortex in D, which should
scale with T/2. Therefore, we are led to setting 〈ω〉 = 2An with A = O(1). By
(ideally) adjusting the domainD, we can set A = 1 without loss of generality,12

obtaining

〈ω〉 = 2n or
D

U
〈ω〉 = 4πSt. (7.75)

From this equation and (7.74), and dropping the overline for neatness, we
arrive at the first dynamic relation (Ahlborn et al. 1998):

St2 +
4N
β2Re

St =
1− Cpb

4π2β2
. (7.76)

Next, consider the balance of work rate and kinetic energy. In the frame of
reference fixed to the undisturbed fluid, the body has speed U and experi-
ences a drag Fx, so the work rate needed for maintaining the body motion is
governed by (2.76):

FxU =
d
dt

∫
D

1
2
ρq2dS +

∫
D
ΦdS, (7.77)

where Φ is the dissipation rate. This formula holds only when D surrounds
the body, and hence we are still working in the vortex-formation region, but
the role of viscosity in (7.77) is different from that in (7.70). It now controls
the dissipation, which however occurs at small scales with large wave numbers
that appear in the wake when Re > 190. Here, the mechanism responsible for
vortex shedding with St < 0.5 in both laminar and turbulent regimes must
be associated with large structures with negligible dissipation. Therefore, in
the present context the dissipation terms in (7.77) should be dropped, so its
spatial average over D and time average over T simply yield

CD =
1
2
πβ2St

〈q2〉
U2

,

where 〈q2〉 scales with U2. Thus, we obtain the second dynamic relation
(Ahlborn et al. 2002)

CD = β2KSt, K ≡ π

2
〈q2〉
U2

= O(1). (7.78)

Having obtained dynamic relations (7.76) and (7.78), Ahlborn et al. (1998)
note that Cpb and CD are related by

1− Cpb = (1− γ)(1 + CD), γ =
CD + Cpb

1 + CD
, (7.79)

12 Ahlborn et al. (1998, 2002) set A =
√
2.
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and experimental data of vertical flat plate with round edge of varying aspect
ratio indicate |γ| = O(10−2)
 1 (for circular cylinder, γ can be inferred from
Fig. 7.25). Hence, as a rough approximation, they replaced 1− Cpb in (7.76)
by 1 + CD. This enables eliminating β2 from (7.76) and (7.78), obtaining an
St–CD relation

St =
K

2π2
CD + 1

CD +Re∗/Re
=

St∞
1 +Re∗/(ReCD)

, (7.80)

where

St∞ =
K

2π2

(
1 +

1
CD

)
, (7.81a)

Re∗ = 4NK (7.81b)

are the asymptotic Strouhal number as Re → ∞ and a finite-Re correction
coefficient, respectively.

We have obtained two dynamic relations (7.78) and (7.80) for the three
parameters (St, CD, Re), along with three empirical coefficients K, β2, and
Re∗ that need to be fixed by fitting with experimental data. A simple way to
obtain K and β is to drop Re∗/Re in (7.80), which and (7.78) then yield

K = 2π2
CDSt

1 + CD
, (7.82a)

βSt =
1
π

√
1 + CD

2
. (7.82b)

Thus, K and β2 are as universal as St and CD. Note that

βSt ≡ St∗ =
2fR
U

(7.83)

is the universal Strouhal number in terms of the wake width, first introduced
by Roshko (1954b). By using the experimentally measured St and CD for a
circular cylinder in a very large range of Re from 2 × 104 to 107 (Fig. 7.25),
and for cylinders of various cross sections, Ahlborn et al. (2002) have found
that (7.82a) gives K � 1.53 as almost a universal constant (even in the “drag
crisis” regime in Fig. 7.25b where CD drops significantly), and (7.82b) indeed
leads to a universal weak dependence of βSt on CD.

Some previously known results can be recovered and interpreted by the
present dynamic model. For example, if CD roughly takes constant in the
considered Re regimes and b = Re∗/CD, (7.80) recovers (7.71). Thus, using
Roshko’s values for 45 ≤ Re ≤ 200 and with CD = 1.1 at Re ∼ 100, it
follows roughly that Re∗ ≈ 23, and N ≈ 3.8 by (7.81b). The former is close
to the upper bound of diffusion-dominated regime Re < 25, and the latter
implies that the diffusion layer is Re-independent (recall that N measures the
dimensionless vorticity gradient at the outer edge of a newly formed vortex).
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Since it is more plausible that this diffusion layer scales with the boundary-
layer thickness δ, a better estimate is N ∼ D/δ ∝

√
Re in laminar regime.

Consequently, to the leading order of 1/
√
Re, (7.80) modifies (7.71) to

St = St∞

(
1− η

CD
√
Re

)
,

which will recover (7.72) if St∞ = St∗ and coefficient η is properly chosen.
This conveys a little physics to (7.72), but still cannot explain its effectiveness
in turbulent regimes.

Summary

1. The topological theory provides a general tool to rationally analyze the
overall qualitative structure of a separated vortex flow, in terms of criti-
cal points and their connections on body surface and inside the fluid. It
has mainly been applied to steady flow but in principle can also be used
to study unsteady flow. The theory helps distinguish closed separation
(separation line initiates from a fixed point) and open separation (sepa-
ration line initiates from an ordinary point). It also leads to the concept
of structural stability and topological bifurcation of the flow.

2. Under certain special conditions, a separated vortex flow takes the sim-
plest form, confined in a steady laminar bubble enclosed by a shear
layer. In the Euler limit of two-dimensional and axisymmetric flows, the
Prandtl–Batchelor theorem gives constant and linear vorticity distribu-
tion, respectively, in the core region of the bubble. For some simple cases,
the cyclic vortex layer surrounding the bubble can be solved asymptoti-
cally, so a complete solution is obtained. This Prandtl–Batchelor flow has
been applied not only to the study of closed vortex bubbles of body scale,
but also to the construction of an asymptotic model for steady global wake
as Re→∞. This global-wake model is of academic interest since it leads
to a well-posed problem with unique solution; but it is too far from any
realistic separated vortex flow at large Re, which are inherently unsteady
with various instabilities and transition to turbulence (item 4 later).

3. In the steady-flow regime, the counterpart of bubble-type separated flow is
free vortex-layer separated flow, typically associated with moving vehicle
at large Reynolds numbers. To such a flow only the highly simplified
slender-body theory can provide a general treatment, including useful yet
simple models for the rolling-up process of separated free shear layers.
The shear layer rolling-up results in strong vortices near a vehicle and has
considerable influence on the vehicle’s performance. When the flow has
conical similarity as well as being slender, the stability problem of these
vortices can be analyzed by a simple inviscid and two-dimensional theory.

4. The unsteady separated flow with periodic or quasiperiodic vortex shed-
ding occurs widely in various external and internal viscous flows with solid
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boundaries, either laminar or turbulent. The physics involved in such a
flow covers almost every aspect of vorticity and vortex dynamics, and so
far one’s understanding of the flow has largely been based on experimental
observations even for the simplest body geometries. On the other hand, in
wake-flow properties some universality has been observed in the empirical
relationships among St, CD, and Re, regardless the cross shape of bluff
bodies. A preliminary step is made toward basing these relations on a
more rational dynamic background.



8

Core Structure, Vortex Filament,
and Vortex System

8.1 Vortex Formation and Core Structure

The analysis in Sects. 4.4.2 and 7.3 has indicated that, in a fluid of small
viscosity, the most fundamental mechanism for the formation of a vortex is
the rolling-up of vortex layer. Indeed, if one wishes to produce a vortex by a
solid-body motion relative to the fluid, the first naive idea could be rotating
a thin rod in the fluid about its axis (or letting the fluid container rotate).
The essence of this mechanism is to transfer the angular momentum of the
solid to a fluid layer adjacent to the solid via the no-slip condition, and then
let the vorticity diffuse into the interior of the fluid. However, as µ → 0, the
required time for such diffusion would be infinity, and hence it would take
very long time to form a vortex. But in reality once the solid is in motion the
vortex appears very quickly. Producing vortices by an oar during boat rowing
is a common experience. This fast formation mechanism of vortex can only be
the rolling-up of the separated vortex layer at its free end (Betz 1950). Owing
to the singularity of a flat vortex sheet, the smaller the fluid viscosity is, the
thinner will be the vortex layer, and the faster will the vortex be formed.

Based on this understanding, the present section discusses the core struc-
ture of vortices formed from the rolling-up of vortex layers. We assume the
vortex axis is straight. It is then convenient to use cylindrical coordinates
(r, θ, z), so we have (6.2) for vorticity components (ωr, ωθ, ωz) in terms of
velocity components (u, v, w). The corresponding continuity and Navier–
Stokes equations for incompressible fluid are (6.3) and (6.4), respectively.

Now, in the rolling process, the distance between two neighboring turns
of the vortex layer must eventually be reduced to the same order of the layer
thickness. Then the viscous diffusion will smear out the spiral structure in the
tightly rolled-up region to form a vortex core with smooth vorticity distribu-
tion, to which the Euler theory no longer applies. On the other hand, inside
the vortex core the axial velocity in general has a strong radial variation,
so any two-dimensional model will not be appropriate either. While it will
be too complicated to study the entire vortex core by three-dimensional and
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nonaxisymmetric viscous flow, we may divide problem into two phases: the
vortex-core formation phase and its matured phase, to which we can employ
different approximations as presented later.

8.1.1 Vortex Formation by Vortex-Layer Rolling Up

The phase of vortex-core formation by vortex-layer rolling up may be fur-
ther subdivided into two stages: the early stage characterized by vortex-layer
rolling up, and the late stage characterized by the formation of viscous vortex
core. In order to cover both stages by a single theoretical model, we abandon
the axial-flow effect and assume the flow is two-dimensional, but retain the
unsteadiness, nonaxisymmetry, and viscosity. In this case ω = ωez, so (6.4b)
is reduced to

∂v

∂t
+

1
r

∂

∂θ

(
1
2
q2
)
+ uω +

1
ρr

∂p

∂θ
= ν

∂ω

∂r
. (8.1)

To eliminate one more variable, we may take average of (8.1) for θ varying
from 0 to 2π. A physical model for the vortex formation within this approx-
imation has been introduced by Kurosaka (see Dang 1986) and is presented
here (see the sketch of Fig. 8.1).

In the early stage, we consider inviscid flow first and simplify the first few
turns of the vortex layer outside the core to a single vortex sheet. Away from
the sheet the flow is assumed irrotational and governed by

∂v

∂t
+

1
r

∂

∂θ

(
1
2
q2
)

= − 1
ρr

∂p

∂θ
. (8.2)

Taking the θ-average at fixed r, since p is continuous across the sheet but
tangent velocity us has discontinuity, there is

∂v

∂t
= − 1

4πr
[[u2s]]. (8.3)

Viscous core

q

us
- us

+

n

r0

Fig. 8.1. Vortex-core structure
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Let es and en be the unit tangent and normal vectors of the sheet, respectively.
Let us thicken the sheet to a vortex layer of thickness δ. The Lamb vector of
the layer is

ω × u = ωez × (uses + unen) = ωusen − ωunes,

so that en · (ω × u) = ωus. Thus, let Q be the vorticity flux advected by us
into the vortex, there is

Q =
∫ δ

0

usω dn =
∫ δ

0

(ω × u) · en dn, (8.4)

which by (6.11) with H = p+ q2/2 is cast to

Q =
∫ δ

0

(ω × u) · ndn = −
(
p+

1
2
q2
) ∣∣∣δ

0
= −1

2
[[u2s]], (8.5)

so that
∂v

∂t
=

1
2πr

Q(t).

We now add the viscous term, which can only smear out but never produce
new discontinuities. Thus, after averaging over θ, the viscous equation reads

∂v

∂t
=

1
2πr

Q(t) + ν
∂ω

∂r
. (8.6)

Assume the vortex layer is disconnected from its generating body at t = τ
such that Q vanishes by then. Denote the viscous core radius by r = f(t),
then (8.6) is modified to

∂v

∂t
=

1
2πr

Q(t)H(τ − t)H(r − f(t)) + ν
∂ω

∂r
, (8.7)

where H is the step function. The θ-averaged vorticity equation reads

∂ω

∂t
− ν

r

∂

∂r

(
r
∂ω

∂r

)
=

1
2πr

Q(t)δ(r − f(t))H(τ − t), (8.8)

which is an inhomogeneous and axisymmetric heat equation, with a source
term from the input vorticity flux. Under the initial-boundary conditions

ω(r, 0) = 0, ω(∞, t) = 0,

we find the solution

ω(r, t) =
1

4πν

∫ T

0

Q(η)
t− η

exp
(
−r

2 + f2(η)
4ν(t− η)

)
I0

(
rf(η)

2ν(t− η)

)
dη, (8.9)
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in which T = t if t < τ , otherwise T = τ , and I0 is the zeroth-order modified
Bessel function of the first kind. By using the integral formula∫ ∞

0

r exp(−p2r2)I0(ar) dr =
1
2p2

exp
(

a2

4p2

)
, (8.10)

we can also find the total vorticity of this vortex (the circulation along a circle
with r =∞) from (8.9):

Γ∞ =
∫ ∞

0

2πrω dr =
∫ T

0

Q(η) dη. (8.11)

This is a result that can physically be anticipated: at the early stage T = t < τ ,
the circulation comes from the input vorticity flux through the feeding sheet
from t = 0 to t; while at the later stage T = τ , the circulation comes from
the entire vorticity flux of the early stage. The unique feature of the Kurosaka
model is the combined consideration of vorticity transport, vortex-layer rolling
up, and viscous diffusion. At the early stage of the rolling up, both the vorticity
flux Q(t) and core radius f(t) increase as t, so we can set f(t) = αtm and
Q(t) = 2πβtn, with m,n being constants. Then, Kurosaka has proved that,
in the limit of ν → 0, (8.9) is reduced to

ω̄ =


β

mα2

( r
α

)(n+1)/m−2

, r < αtm

0, r > αtm
(8.12)

v̄ =


β

(n+ 1)α(n+1)/m
r(n+1)/m−1, r < αtm

β

n+ 1
tn+1

α
, r > αtm.

(8.13)

Therefore, inside the viscous core the flow is rotational, with vorticity
and circumferential velocity depending only on r but not t; while outside
the core the flow is irrotational, with averaged circumferential velocity being
enhanced as t. This result is similar to the Kaden similarity law (Sect. 4.4.4),
but no assumption is made here on the initial distribution of the vortex-sheet
strength.

At the late stage when the feeding vortex layer has been disconnected from
its generating body, the flow can be assumed axisymmetric with relatively
small radial velocity u. Then (8.1) is reduced to

∂v

∂t
= ν

∂ω

∂r
. (8.14)

By using (8.9) with T = τ and t→∞, one obtains

ω(r, t) ∼ Γ∞
4πνt

exp
(
− r2

4νt

)
, (8.15)
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which is the familiar Oseen vortex. Both asymptotic results (8.12) and (8.15)
are satisfactory. Although the Kurosaka model is confined to two-dimensional
flow, it does capture the main physics of the dynamic evolution process from
vortex-layer rolling up to the formation of viscous core of a vortex.

8.1.2 Quasicylindrical Vortex Core

We now move on from the formation phase of a vortex to its matured phase,
where any vortex layer disconnected from its generating body has entirely
rolled into the vortex core, and the unsteadiness due to viscous diffusion
is basically canceled by the energy supplement from outside flow. Then we
can make simplified assumptions opposite to those of Sect. 8.1.1: The flow is
steady and axisymmetric, but the three dimensionality is retained to allow
for variable axial flow in the vortex core. Moreover, for an infinitely extended
straight vortex, the axial variation of the flow is much smaller than its radial
variation. Therefore, like the boundary-layer approximation, the continuity
equation (6.3) implies that the radial velocity is much smaller than axial ve-
locity, namely

∂

∂z

 ∂

∂r
, u
 w.

This leads to the quasicylindrical approximation used in studying the Long
vortex (Sect. 6.2.3). Now the governing equations are reduced to

v2

r
=

1
ρ

∂p

∂r
, (8.16a)

u
∂v

∂r
+ w

∂v

∂z
+

uv

r
= ν

(
∇2v − v

r2

)
, (8.16b)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν∇2w, (8.16c)

and

∇2 =
∂2

∂r2
+

1
r

∂

∂r
. (8.17)

A vortex core under this approximation is called a quasicylindrical vortex
core, which has two significant simplifications: similar to (6.18a), (8.16a) is
independent of viscosity, so the centrifugal force is entirely balanced by the
radial pressure gradient; and, the Laplace operator ∇2 is degenerated to a
parabolic operator, requiring only three boundary conditions at vortex axis,
outer edge of the core, and upstream flow. At the vortex axis, the viscous-flow
condition requires

u = 0, v = 0,
∂w

∂r
= 0, (8.18)
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where ∂w/∂r = 0 is due to the smoothness. Correspondingly, the vorticity at
the axis should satisfy

ωr = 0, ωθ = 0,
∂ωz
∂r

= 0. (8.19)

The other two boundary conditions vary as specific vortices. For a trailing
vortex (the vortex formed from the rolling up of the vortex layer separated at
the trailing edge of a wing), after the vortex layer is fully rolled into the core,
the external flow can be assumed irrotational; but for a leading-edge vortex
with feeding vortex-layer that is not tightly rolled (Sect. 7.3.1), the flow at the
outer edge of the core is rotational and inviscid. There is a bigger variety for
the upstream condition.

To this axisymmetric flow we introduce the Stokes stream function. Recall
that the Euler limit of a steady axisymmetric flow has circulation rv = C(ψ)
and stagnation enthalpy H = p/ρ + q2/2 = H(ψ), governed by the elliptic
Bragg–Hawthorne equation (6.14). The quasicylindrical approximation casts
this equation to

∂2ψ

∂r2
− 1

r

∂ψ

∂r
= r2

dH
dψ
− C

dC
dψ

. (8.20)

We now follow the analysis of Hall (1966) to examine a few basic characters
of a quasicylindrical vortex core. First, as r →∞ there is p = p∞, so by (8.16a)
we have

p∞ − p

ρ
=
∫ ∞

0

v2

r
dr =

∫ ∞

0

C2

r3
dr. (8.21)

If all fluid comes from the far-upstream uniform flow (0, 0,W ), as in the case
of free vortex-layer separated flow of Sect. 7.3, then by the Bernoulli equation,
after neglecting the small amount u2/2 at a point in the core there is

p

ρ
+

1
2
(v2 + w2) =

p∞
ρ

+
1
2
W 2 −∆H, (8.22)

where ∆H is the loss of the stagnation enthalpy due to viscosity. Thus, by
(8.21) there is

w2 = W 2 − C2

r2
+ 2

∫ ∞

0

C2

r3
dr − 2∆H,

i.e.,

w2 = W 2 +
∫ ∞

0

1
r2

∂C2

∂r
dr − 2∆H. (8.23)

Let us examine the physical implication of this equation. Rayleigh (1916) and
Synge (1933) have proved that the inequality

1
r3

dC2

dr
> 0,
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i.e., the magnitude of the circulation is a nondecreasing function of r, is the
sufficient and necessary condition for a two-dimensional, axisymmetric, steady,
and inviscid flow to be stable with respect to axisymmetric disturbances (see
Sect. 9.3.1). At large Reynolds numbers the same conclusion should hold.
Hence, for a stable vortex flow the second term on the right-hand side of
(8.23) should be positive. We then see that inside the vortex core the vis-
cous effect always causes an axial-flow deficit, while the radial variation of
circumferential velocity always results in an axial-flow increment (Batchelor
1964). Equations (8.16a) and (8.22) indicate that this axial-flow increment
comes from the radial pressure gradient necessary for balancing the centrifu-
gal force. The centrifugal force leads to a low pressure at the axis and hence
larger axial velocity.

For example, for the Rankine vortex (6.22) with rigid (and inviscid) core
of radius a, we have ∆H = 0 for r ≤ a. Let the core angular velocity be Ω,
(8.23) then implies

v = Ωa2/r, w = W, r ≥ a

v = Ωr, w = [W 2 + 2Ω2(a2 − r2)]1/2, r ≤ a
(8.24)

where the second expression shows clearly the coupling between w and v.
The second basic character of a quasicylindrical vortex core is the sensi-

tivity of the axial velocity at vortex center to that at the outer edge of the
core (Hall 1966). Denote by subscripts 0 and a the flow quantities at r = 0
and r = a. In the inviscid approximation, the Bernoulli equation yields

p∞ − p0
ρ

=
1
2
(w2

0 − w2
a)−

1
2
C2
a

a2
.

Differentiating this equation with respect to z and neglecting the small amount
dC/dz, we obtain

d
dz

(
p∞ − p0

ρ

)
=

1
2

(
dw2

dz
− dw2

a

dz

)
+

C2
a

a3
da
dz

. (8.25)

On the other hand, setting r = 0 and replacing∞ by a in (8.21), we also have

d
dz

(
p∞ − p0

ρ

)
=
∫ a

0

1
r3

∂C2

∂z
dr +

C2
a

a3
da
dz

.

A comparison of these two equations yields

dw2
0

dz
− dw2

a

dz
= 2

∫ a

0

1
r3

∂C2

∂z
dr. (8.26)

But, from the inviscid version of (8.16b)

∂v

∂z
= − u

w

(
∂v

∂r
+

v

r

)
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one easily obtains

∂C2

∂z
= − u

w

∂C2

∂r
,

so (8.26) becomes

dw2
0

dz
− dw2

a

dz
= −2

∫ a

0

1
r3

u

w

∂C2

∂r
dr. (8.27)

Now, if the vortex core is expanding in the z-direction such that u > 0, the
axial flow at r = a will usually be decelerated, i.e., dw2

a/dz < 0. Thus, because
∂C2/∂r > 0 and w > 0, (8.27) implies that the rotation effect reduces the
axial acceleration dw2/dz at the axis to below dw2

a/dz. On the contrary, if the
vortex core is shrinking, dw2/dz will be increased to above dw2

a/dz. Therefore,
the variation of axial velocity at the outer edge of the core always causes a
magnification effect at the vortex axis.

8.1.3 Core Structure of Typical Vortices

Having discussed the general formation process and some thin-core characters
of vortices, we now focus on the core structures of two typical types of vortices
formed by vortex-layer rolling up: the trailing vortices and leading-edge conical
vortices.

The core structure of a trailing vortex at far downstream has been exam-
ined by Batchelor (1964), who obtained the first asymptotic solution of the
viscous core. After a long-time diffusion, at far downstream the axial flow
cannot have large radial gradient. So if the axial velocity w takes a constant
value W outside the core, we may set | w−W |
W and meanwhile u � 0 by
continuity. Hence, the steady quasicylindrical equations (8.16b) and (8.16c)
are further linearized:

W
∂C

∂z
= ν

(
∂2C

∂r2
− 1

r

∂C

∂r

)
, (8.28a)

W
∂w

∂z
= −1

ρ

∂p

∂z
+ ν∇2w, (8.28b)

with boundary condition

C(z, 0) = 0, C(z,∞) = Γ, w(z,∞) = W. (8.29)

Equation (8.28a) is an axisymmetric heat equation which has an asymptotic
similarity solution independent of the initial condition:

C = rv = Γ (1− e−η), η =
Wr2

4νz
. (8.30)
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After a rescaling of r, this solution is the q-vortex or Batchelor vortex of
Sect. 6.2.1. Substituting it into (8.16a) gives

p∞ − p

ρ
=

Γ 2W

8νz
P (η), (8.31a)

P (η) =
∫ ∞

η

(1− e−ξ)2

ξ2
dξ (8.31b)

=
(1− e−η)2

η
+ 2ei(η)− 2ei(2η), (8.31c)

where ei(η) =
∫∞
η

(e−ξ/ξ) dξ is the exponential integral.
Then, substituting (8.31a) into (8.28b), it follows that

W
∂w

∂z
− ν

(
∂2

∂r2
+

1
r

∂

∂r

)
w = −Γ

2W

8νz2

(
P + η

dP
dη

)
.

After some algebra, Batchelor (1964) obtained

w = W −
(
Γ 2

8νz
ln

Wz

ν

)
e−η +

Γ 2

8νz
f(η)− BW 2

8νz
e−η, (8.32)

where B is a constant determined by upstream condition, while

f(η) = e−η[ln η + ei(η)− 0.807] + 2ei(η)− 2ei(2η).

For sufficiently large z, the leading terms of (8.32) is

W − w ∼ Γ 2

8νz
ln
(
Wz

ν

)
e−η. (8.33)

The solutions (8.30), (8.31a), and (8.32) have been independent of the
upstream condition. This result indicates that even if there is an axial-flow ex-
cess (w > W ) at upstream, it must eventually become a deficit due to viscous
dissipation.

The above analysis applies to the case with η = O(1), which by (8.30)
implies the core radius

a ∼ O

(√
νz

W

)
, (8.34)

comparable to the boundary-layer thickness.
Now, assume that the trailing vortex is caused by a wing with span b

and one may estimate a ∼ 0.1b. Then since the Reynolds number based on
the chord length c is Rec = Wc/ν, (8.34) implies that Batchelor’s linearized
vortex-core theory is applicable at

z ∼ 0.01cRecA2,
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where A = b2/Sw is the aspect ratio of the wing, with Sw being the wing area.
The water-tank experiment of Olsen (1971) indicated that the axial-velocity
deficit at the trailing-vortex core starts to appear at 10c ∼ 60c downstream
the trailing edge, but the above estimate requires several thousands of c under
that experimental condition. Thus, Batchelor’s model is oversimplified.

An improved core model for trailing vortices has been introduced by Moore
and Saffman (1973). They proved that, at near-wake region, in most part of the
trailing-vortex core the viscosity can still be neglected, and hence there is an
axial-flow excess. But there exists a viscous subcore where the axial flow tends
to become deficit. Outside the subcore the flow is not yet a uniform stream as
set in (8.29), but an inviscid vortex solution suggested by the Kadan similarity
law. The asymptotic solution (8.15), i.e., the Oseen vortex, indicates that the
size of viscous subcore is of the order of (νt)1/2; while by (4.150) the radius
of the surrounding inviscid core should be

a(t) ∝ (γt)1/(n+1), 0 ≤ n ≤ 1

where γ is a constant. Thus, to ensure the viscous subcore is much thinner
than a(t), there must be

(νt)1/2 
 (γt)1/(n+1),

i.e.,

t 
(
ν1+n

γ2

)1/(1−n)
. (8.35)

For a wing with elliptic load distribution we have n = 1/2 and γ = Γ0b
−1/2,

so if we set z = Wt, (8.35) will imply

z  Wb2ν3

Γ 4
0

=
16cA2

C4
l Re

3
c

,

where Cl = 2Γ0/(Wc) is the sectional lift coefficient at wing root. For a
typical wing, the right-hand side of this relation is much smaller than the
chord length c, so (8.35) holds right at the trailing edge, indicating that a
model with inviscid outer core fits better the realistic flow.

The viscous subcore is still governed by the linear equation (8.28a) and
(8.28b), but cast to unsteady form by z = Wt:

∂C

∂t
= ν

(
∂2C

∂r2
− 1

r

∂C

∂r

)
, (8.36a)

∂w

∂t
= − 1

ρW

∂p

∂t
+ ν∇2w. (8.36b)

The inner boundary condition is the same as before:

r = 0 : v = 0, w finite, (8.37)
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but the boundary condition at the outer edge of the viscous core (i.e., the
“boundary-layer variable” r/(νt)1/2 →∞) should be matched with the invis-
cid trailing-vortex solution in the limit r → 0. Once again this is a problem
of matched asymptotic expansion. Substituting (4.149) into (8.16a) yields

p

ρ
∼ − 1

2n
β2

r2n
, as r → 0 (8.38)

where β is a constant. This is then substituted into the approximate Bernoulli
equation between two neighboring turns of the vortex sheet,

p∞ − p

ρ
= Ww +

1
2
v2

(where it is assumed that u
 w and |W − w |
W ), yielding

w ∼ β2

2W

(
1
n
− 1

)
r−2n > 0, as r → 0. (8.39)

Along with the limiting form of (4.149) itself,

v ∼ β

rn
, r → 0, (8.40)

the three equations give the asymptotic matching condition of the inner solu-
tion determined by (8.36a), (8.36b), and (8.37) at r/(νt)1/2 →∞. Note that
(8.39) has singularity at r = 0, indicating at the outer edge of viscous subcore
there is a strong axial flow.

Equations (8.38) and (8.40) represent an already smoothed inviscid vor-
tex core. One should check if the matching between the viscous subcore and
smoothed inviscid core is reasonable. By (4.150), the distance between two
neighboring turns of the vortex sheet is 2πrn+2/[(n + 1)γt]. Thus, as long
as r 
 (γν1/2t3/2)1/(n+2) ≡ a, this distance will be much smaller than the
vortex-layer thickness (νt)1/2, or the radius of the smoothed inviscid core is
much larger than that of viscous subcore. Hence the above matching condition
is correct. In this way, we obtain a trailing-vortex core structure consisting of
three regions as shown in Fig. 8.2. Moore and Saffman (1973) show that the
viscous subcore in a trailing vortex will have axial-velocity deficit if n > 0.44.

Consider now the core structure of a leading-edge conical vortex, which
was first studied by Hall (1961) using matched asymptotic expansion method.
Then Stewartson and Hall (1962) improved the solution of the viscous sub-
core. Similar to the trailing-vortex solution of Moore and Saffman (1973), the
leading-edge vortex core can also be divided into an inviscid outer region and
a viscous inner region. Due to the conical similarity, (u, v, w, p) are functions
of only a single variable r/z, and the outer edge of the core is r = az. Thus,
we can introduce a similarity variable η = r/(az) to cast the quasi-cylindrical
equation (8.16a) and (8.16b), along with the continuity equation (6.3) to a
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Fig. 8.2. The core structure of a trailing vortex

set of ordinary differential equations. For the inviscid outer core (ui, vi, wi, pi)
with boundary condition

η = 0 : ui = 0; η = 1 : (vi, wi, pi) = (V,W,P ),

where V,W,P are given constants, Hall (1961) obtained

ui = −
1
2
Wαη, (8.41a)

vi = (V 2 −W 2α2 ln η)1/2, (8.41b)

wi = W (1− α ln η), (8.41c)

pi − p

ρ
= V 2 ln η − 1

2
W 2α2 ln η, (8.41d)

where

α =
(
1 +

2V 2

W 2

)1/2

− 1 > 0. (8.42)

Ludwieg (1962) also obtained this solution. Guiraud and Zeytounian (1977)
have applied the multiscale expansion to the rolling-up solution of a leading-
edge conical vortex sheet, and found that (8.41) corresponds to the lowest-
order smooth approximation of their solution.

As η → 0, singularity appears in (8.41), implying a need for introducing
viscous subcore. By the substitution of (8.41) into (8.16), it can be found that
the viscous effect becomes important once

r ∼ z

(
Wαz

ν

)1/2

or ν ∼ Wαr2

z
. (8.43)

By the principle of matched asymptotic expansion, the boundary condition
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for the viscous inner solution is

r = 0 : u = v =
∂w

∂r
= 0;

r

z

(
Wαz

ν

)1/2

→∞ : (u,w, p)→ (ui, wi, pi). (8.44)

However, a further analysis indicates that the order of magnitude of terms
in (8.16) depends on two factors Wα/z and ln(r/z) rather than a single one
as so far we have met. It is necessary to introduce new variables based on
these factors and using them to expand the outer solution, and then establish
the corresponding inner expansion. The desired equations then follow from
substituting the outer and inner expansions into (8.16) and collect terms of
the same orders. Stewartson and Hall (1962) found that the proper inner
variables are

ζ =
r

z

(
Wαχz

ν

)1/2

, χ = ln

[
α

(
Wαz

ν

)1/2
]
. (8.45)

In terms of these variables, the edge of viscous subcore becomes ζ/χ1/2 →∞,
while the edge of the entire core is at ζ = χ1/2eχ. By (8.45), the viscous
subcore radius is ζ = O(χ1/2) instead of O(1) in an ordinary boundary layer.

8.1.4 Vortex Core Dynamics

In Sects. 8.1.1–8.1.3 we discussed the models for different phases in the for-
mation of vortices and typical core structures. We now discuss the dynamic
evolution of a vortex core itself, which can be named vortex-core dynamics. Re-
call that the helical-wave decomposition introduced in Sect. 2.3.4 is a further
sharpening of the Helmholtz decomposition, which splits a vector potential
into the left- and right-handed components, and thereby introduces an addi-
tional intrinsic degree of freedom. Consequently, in the helical-wave spectral
space a flow evolution problem appears as a dynamic system. This decompo-
sition is a natural tool in the study of vortex-core dynamics, as demonstrated
by Melander and Hussain (1993a). But their analysis is in the physical space.

Consider an axisymmetric columnar vortex in the cylindrical coordinates
(r, θ, z). A helical-wave decomposition splits ω into a right-handed polarized
component ωR and a left-handed polarized vorticity component ωL, along
with corresponding polarized velocity distribution; for the orthogonal helical-
wave basis vectors in terms of cylindrical coordinates see (2.127). The vector
lines of (ωR,uR) and (ωL,uL) are right-handed and left-handed spirals, re-
spectively. The two sets of spirals move along the vortex axis toward opposite
directions: the right-handed spirals move right and vice versa. The core vortic-
ity field is therefore the superposition of the two polarized vorticity fields, see
Fig. 8.3. To study the core dynamics, we introduce a sinusoidal disturbance
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w wR wL

Fig. 8.3. Left and right polarized vorticity components of a vortex column. Adapted
from Melander and Hussain (1993a)

to the columnar vortex and examine its evolution. Assume an initial vorticity
distribution

ωr(r, θ, z) = Ω

(
r

s(z)

)
r

s(z)3
ds
dz

, (8.46a)

ωθ(r, θ, z) = 0, (8.46b)

ωz(r, θ, z) = Ω

(
r

s(z)

)
1

s(z)2
, (8.46c)

where Ω is the axial vorticity and s(z) defines the boundary shape of the ax-
isymmetric vortex. Melander and Hussain (1993a) adopt a distribution func-
tion

Ω(ζ) =

ω0 exp(−
4ζ2

1− ζ2
) exp(4ζ4 + 4ζ6 + 4ζ8), 0 ≤ ζ < 1

0, 1 ≤ ζ

(8.47)

s(z) = r0(1− µ cos(2πz/λ)), (8.48)

where ω0 is the peak value of vorticity, r0 is the radius of the undisturbed vor-
tex core, and λ and µ are, respectively, the disturbance wavelength and ampli-
tude of the disturbance wave along the core. Obviously, when ζ = r/s(z)
 1
the vorticity distribution is nearly Gaussian.

Melander and Hussain (1993a) used a three-dimensional spectral method
to conduct a numerical computation under periodic boundary condition, of
which the main results are as follows.

Consider first the time-variation of the vorticity magnitude. The computed
vorticity contours at a sequence of times during the core evolution are shown
in Fig. 8.4a, where the variation of the core boundary is marked by thick
lines. Here, the core boundary is defined by the kinematic vorticity number
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Fig. 8.4. (a) The instantaneous isovorticity contours of the vortex column. Along
the axis some local minima and maxima of ω are indicated. (b) The evolution of
four typical vortex lines. From Melander and Hussain (1993a)

m =
√

(ω2/2SijSij) = 1, see (6.188). In order to see the three-dimensional
evolution of the core, Fig. 8.4b shows the twisting deformation of four typical
vorticity lines.

From these figures we see that the main character of the vortex-core evo-
lution is the propagation of wave packets and the formation of low enstrophy
bubble. The wave pockets propagating toward opposite axial directions carry
opposite polarized vorticities. The core evolution can be interpreted by the
propagation of polarized wave packets and their interaction. It is known that
the opposite polarized vorticities distribute separately. Some regions are dom-
inated by ωR, while some others by ωL. The twisting of the vorticity lines
in Fig. 8.4b is determined by the dominance of certain polarized vorticity.
In a region dominated by ωR, the vorticity lines twist to the right-hand di-
rection, and vice versa. Meanwhile, the right-polarized vorticity moves right
and vice versa as well. The trend of moving toward opposite directions of the
helical-wave decomposed polarized vorticity-wave packets is a result of the
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nonlinearity of the vorticity equation. More precisely, as will be seen below,
it is a result of the helical-wave decomposed transverse Lamb vector.

Associated with their motion, there is also a deformation of wave packets,
including elongation, broadening, and low enstrophy bubble formed behind the
wave packets. While the wave-packet broadening is a viscous diffusion effect,
the other two kinds of deformation are due to the interaction of left- and right-
polarized vorticity. To see this, we just observe the evolution of a single isolated
polarized wave packet and then their interaction. The former is exemplified by
ωR shown in Fig. 8.5. There, the wave-packet simply translates slowly toward
right, with a much smaller speed than the case with both polarized vorticities.
Therefore, the nonlinear character of vortex-core evolution must be from the
interaction of left- and right-polarized vorticities. For convenience, introduce
a pair of projection operators P+ and P−, which define the right- and left-
handed components of a vector, respectively. Then the vorticity transport
equation can be decomposed into a pair of coupled evolution equations for
two polarized vorticities (Melander and Hussain 1993a):

∂ωR

∂t
= −∇× (ωR × uR) +∇× P−(ωR × uR)− P+[(uL · ∇)ωR]

+P+[(ωR · ∇)uL]−∇× P+(ωL × u) +
1
Re
∇2ωR, (8.49a)

∂ωL

∂t
= −∇× (ωL × uL) +∇× P+(ωL × uL)− P−[(uR · ∇)ωL]

+P−[(ωL · ∇)uR]−∇× P−(ωR × u) +
1
Re
∇2ωL. (8.49b)

t  = 2.0

t  = 3.0

t  = 4.0

t  = 5.5

t  = 1.0

t  = 0.5

t  = 0

Fig. 8.5. Evolution of ωR in the absence of the initial left-handed component ωL.
The letters on the left-hand side of figure show the different time of evolution. From
Melander and Hussain (1993a)
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In (8.49a), the six terms on the right-hand side are, respectively, the inviscid
self-evolution of ωR, the production of left-polarized vorticity due to the right-
polarized vorticity, the advection of ωR by the velocity uL of the left-handed
vorticity, the stretching of ωR due to the gradient of uL, the production of
ωR due to the evolution of ωL, and the viscous diffusion of the right-polarized
vorticity.

The numerical result of Melander and Hussain (1993a) indicates that the
second term is quite weak, but the third term, i.e., a polarized vorticity ad-
vected by the opposite polarized velocity, plays a dominant role. Next to this
is the self-evolution of the polarized vorticity. Therefore, to a big extent the
evolution of ωR may amount to these two mechanisms. The self-evolution
effect tends to move the ωR-wave packet to the right, adding enstrophy in
front of the wave packet but subtracting enstrophy behind it. On the other
hand, the uL associated with the ωL tends to advect ωR to the left. Because
the rightward self-induced motion of the ωR-packet is slower than the leftward
advection by uL, the net effect is a left drift of the packet although the ωR-
packet has a self-induced motion to the right. Thus, there is a backward drift
of the polarized wave packets caused by the advection of opposite polarized
velocities, leading to the wave-packet elongation.

The formation of low enstrophy bubble is also due to the wave-packet
advection by opposite polarized vorticities. This advection reaches a maximum
at the axis, so the wave-packet is dragged at maximum velocity near the axis.
The mutual dragging of the wave packets of opposite polarized vorticity results
in an overlap near the axis, leading to the formation of low enstrophy bubble.

8.2 Dynamics of Three-Dimensional Vortex Filament

The quasicylindrical vortex-core theory provides a detailed understanding of
the core structure and dynamics at large Reynolds numbers, but is confined to
an isolated and straight vortex core. It cannot deal with a curved vortex and its
interaction with surrounding flow field. One of the essential properties inherent
in vortex motion is its three dimensionality. Once we consider a curved vortex
in three-dimensional space, then, the first remarkable feature is that each
segment of the vortex experiences an “induction” of the rest, known as the self-
induction of three-dimensional vortices.1 The self-induction causes the vortex
not only to move but also, except a small number of special cases such as
circular vortex rings, to deform continuously, including nonuniform stretching
and tilting. Similar effect exists when a curved vortex is in a nonuniform
background flow field as in contrast to the straight-vortex case (Sect. 6.5)
which remains straight. The motion and deformation of a curved vortex due to
self-induction and background-field effect are very important mechanisms and

1 The self-induction of a vortex sheet or layer exists in both two and three dimen-
sions, see Sect. 4.4.4.
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play a key role in many complex flows as exemplified by vortical structures in
turbulence (Chap. 10). During the self-induced motion of a three-dimensional
vortex, the vortex core is a waveguide tube that can support the propagation
of disturbances and even solitary waves along the core. These interesting issues
are the subject of the present section.

As the vortex shape becomes more complicated, the corresponding theo-
retical models have to be cruder approximations. In this section we con-
sider the vortex-filament model, which is an isolated thin vortex with so
small cross-section that the core structure is simplified to have uniform vor-
ticity distribution. The significant role of vortex filaments has been widely
confirmed by numerical computations and experiments; in particular, they
are often observed in turbulence as the strongest coherent structures (e.g.,
She et al. 1990), see Fig 8.6.

The central idea of our analysis in this section is applying asymptotic ex-
pansion to the Biot–Savart formula (3.32) to obtain the self-induced velocity.
The expansion should be compatible with the Navier–Stokes equation at large
Re. Assume the vorticity is concentrated in a vortex tube of local radius a
with Re = Γ/ν → ∞, and meanwhile the curvature of the filament κ < ∞.
Then the balance of a and Re requires a = O(Re−1/2).

We first introduce a local-induction approximation, within which we have
the elegant self-induced solitary-wave theory of Hasimoto (1972) for very thin

Fig. 8.6. Intermittent vortex filaments in a three-dimensional turbulent fluid sim-
ulated on a computer. From She et al. (1990)
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core. We then generalize Hasimoto’s theory to include the effects of finite core
and stretching.

8.2.1 Local Induction Approximation

Consider an isolated and closed vortex filament of strength Γ , of which a
point P (X) experiences a self-induced velocity determined by the Biot–Savart
formula (3.32), which now reads

u(X) = − Γ

4π

∫
r × dl
r3

, (8.50)

where r = X−ξ , with X and ξ being the position vectors of P and a moving
point along the filament, respectively, and dl = t ds is the vector line element
of the filament at ξ. As shown by (3.33), the self-induced circumferential
velocity has a 1/r-singularity at the filament. In three dimensions, the self-
induction will also cause a curvature-related ln r-singularity in the binormal
velocity as will be seen later. To bypass the singularities, we first estimate the
induced velocity at a point Q near the filament, and then let Q approach the
filament asymptotically. We take the intrinsic coordinates along the filament
as shown in Fig. 8.7, with the origin at P and t,n, b being the unit vectors
along tangent, normal, and binormal directions, respectively (see Sect. A.3.1).
Then a point Q on the normal plane of the filament can be expressed as

x = x2n+ x3b. (8.51)

What we need is the asymptotic induced velocity of Q as ρ =
√
x22 + x23 → 0.

In a neighborhood of P (L ≥ s ≥ −L), we may write approximately

ξ ∼ κt+
1
2
κs2n, δl ∼ (t+ κsn)δs,

X (s,t )

b

n

t

b

nP x2

x3

Q

P

s
f

Fig. 8.7. Three-dimensional vortex filament and coordinates
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where s is the arclength. Substituting these relations into (8.50), when ρ→ 0
the entire integral over the closed filament approaches asymptotically (for
details see Callegari and Ting 1978; Ting and Klein 1991)

u =
∂X

∂t
=

Γ

2πρ
eθ +

Γκ

4π
ln
(
L

a

)
b+Qf , (8.52)

where Qf denotes the finite single-valued part of the velocity as r → 0. It is
now evident that to the leading order the velocity at P is dominated by the
induction of its nearby segment L ≥ s ≥ −L bounded by a cut-off arclength L.
The finite part Qf is negligible as compared to the very large local induction
that approaches infinity asymptotically as a, ρ→ 0. This implies the validity of
the localized induction approximation, by which only the induced motion of P
by the local segment of length 2L needs to be taken into account. Note that the
local-induction approximation cannot be applied to short-wave disturbances,
say near a knot of the filament.

Clearly, on the right-hand side of (8.52), the first term is the familiar
self-induced circumferential velocity, which has a 1/r-singularity but does not
change the shape of the filament. The second term is a self-induced motion
along the binormal, of which the magnitude depends not only on Γ but also
on the curvature κ of the filaments, having a weak logarithmic singularity.
Thus, due to the self-induction, an infinitely thin vortex filament will move at
an infinitely large velocity; and in general it will also deform at an infinitely
large rate. It is only the second term of (8.52), therefore, that dominates the
self-induced motion of a vortex filament. An infinitely long straight line vortex
filament has no self-induced motion; but once it is disturbed to deviate from
the straight line, it will deform immediately and this deformation will continue
as time goes on.

We now see that, to the leading order, the self-induced motion of a vortex
filament is given by

u =
Γκ

4π
ln
(L
a

)
b+O(1). (8.53)

If the core radius a is sufficiently small so that the variation of L/a along
the filament can be ignored, (8.53) becomes approximately u = cκb, where
c is a constant. Then a rescaling of time and length casts the self-induction
equation to a very compact form:

Xt = κb, (8.54)

where and below the subscripts t and s denote partial derivatives with respect
to these variables, respectively. Since b = t × n and t = xs, by the Frenet–
Serret formulas (A.39),

ts = κn, ns = −κt+ τb, bs = −τn, (8.55)

with τ being the torsion of the curve, we can rewrite (8.54) as

Xt = Xs ×Xss. (8.56)
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Therefore, the self-induced motion of a vortex filament is completely reduced
to the geometric motion of a spatial curve governed by (8.56).

The most significant results under the local-induction approximation are
due to Betchov (1965) and Hasimoto (1972). Betchov was the first to find that
(8.56) can be cast to a pair of partial-differential equations for the curvature
κ and torsion τ of the filament, with (s, t) as arguments. These equations
are known as the Betchov intrinsic equations. He has used these equations to
study the self-induced motion of helical and planar filaments, and examined
the feature of the equations at two extreme cases, proving that they have
nonlinear wave solutions. Then, on the basis of Betchov’s work, Hasimoto
elegantly transformed (8.56) to the nonlinear Schrödinger equation.

Following Hasimoto (1972), we first combine the second and third formulas
of (8.55) to a complex-variable formula

(n+ ib)s = −iτ(n+ ib)− κt. (8.57)

The form of this formula naturally suggests introducing a complex scalar

ψ = κ eiΦ with Φ(s, t) = i
∫ s

0

τ(s′, t) ds′ (8.58)

and a new complex vector

N = (n+ ib) eiΦ, (8.59)

such that (8.57) is cast to Ns = −ψt. This change of variables is known as the
Hasimoto transformation. Scalar ψ represents a wave function with amplitude
κ and phase τ , called the filament function. The task then is to find the wave
equation satisfied by ψ. To this end, we use ψ, t and their spatial derivatives
to express Ns and Nt, obtaining two expressions for Nst and let them equal
each other. In the derivation the following orthogonal relations are employed:

t · t = 1, N ·N∗ = 2,

N ·N = N∗ ·N∗ = 0,

where the asterisk denotes complex conjugate. After some algebra, we find
that (8.54) yields

−ψt = −i(ψss +Rψ),
1
2
ψψ∗

s = Rs −
1
2
ψsψ

∗. (8.60)

Here, the unknown function R is determined by integrating (8.60):

R =
1
2
(ψψ∗ +A) =

1
2
(|ψ|2 +A),

where A is an arbitrary real function of t and can be removed without loss
of generality (corresponding to a shift of the origin in the integration). Thus,
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we finally arrive at the famous nonlinear Schrödinger equation for curvature
κ and torsion τ :

1
i
∂ψ

∂t
=

∂2ψ

∂s2
+

1
2
|ψ|2ψ. (8.61)

Owing to the Hasimoto transformation, this equation combines two aspects
of the self-induced motion of a vortex filament into a whole: the geometric
aspect governed by the Serret–Frenet formula and the dynamic aspect gov-
erned by the local-induction approximation. The nonlinear Schrödinger equa-
tion has extensive applications in theoretical physics, and has been studied in
depth by many researchers. As a significant implication of Hasimoto’s work,
it represents a completely integrable Hamilton system of infinite dimensions,
permitting solitary-wave solutions.

The simplest example is a solitary wave moving along the filament with
constant speed c. Let κ = 0 at infinity and view the problem in a frame of
reference fixed to the wave. Then κ and τ become functions of ξ = s− ct, so

ψ = κ(ξ) exp
(
i
∫ s

0

τ(ξ) dξ
)
.

Substituting this into (8.61), one finds that the real and imaginary parts yields,
respectively,

−cκ[τ(ξ)− τ(−ct)] = κss − κτ2 +
1
2
κ3, (8.62a)

cκs = 2τκs + κτs, (8.62b)

where (8.62b) can be directly integrated to yield

(c− 2τ)κ2 = 0.

Thus, as long as κ is not identically zero (rectilinear filament), there must be

τ = τ0 =
1
2
c = const. (8.63)

Hence, the torsion τ is invariant along the filament and the solitary wave
propagates with a speed of 2τ . On the other hand, by using the boundary
condition at infinity, the integration of (8.62a) gives

κ = ±2τ0 sech(±τ0(s− ct)). (8.64)

This is a solitary-wave solution propagating along the filament, of which the
shape can be determined by using (8.56). Several different shapes are possi-
ble depending on the value of the torsion; a typical Hasimoto solitary-wave
solution is plotted in Fig. 8.8.

As pointed out earlier, generically a curved vortex filament will move and
deform by self-induction, but in a few special cases the shape can be preserved.
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Fig. 8.8. Hasimoto solitary-wave solution

The above self-induced solitary wave is such an example: it slides along the
filament with constant speed as well as rotates as the filament, but the wave
shape keeps unchanged. In fact, all shape-preserved waves can be expressed
by

Xt = −cXs +Ω ×X + V , (8.65)

where c,Ω, and V are constants. V and Ω represent a translation and a
rigid rotation, respectively; while c is the sliding speed along the filament of a
disturbance of fixed shape. More specifically, from (8.56) and (8.65) follows:

Xs ×Xss = −cXs +Ω ×X + V , (8.66)

which permits the following types of solutions:

1. c = 0, Ω = 0, V = 0: rectilinear vortex.
2. c = 0, Ω = 0: circular vortex-filament ring, along which all points have

the same curvature κ and hence by (8.54) also the same velocity. Thus, it
only translates but never changes shape (Sect. 6.3).

3. Ω = 0: helical vortex filament.
4. c = 0, V = 0, Euler elastic loop.
5. Solitary waves.

For more discussions of shape-preserved vortex filaments the reader is
referred to Kida (1981b).

More important than the integrability of the self-induced motion equa-
tion, Hasimoto’s work confirms that a vortex core is a waveguide tube of
solitary waves. It is this wave-propagation feature that explains many non-
linear phenomena and considerably enriches the vortex-filament dynamics.
This conclusion of Hasimoto has been verified by experiments. Hopfinger et al.
(1982) found that in a rotating circular-cylindrical container a thin vortex may
have twisting deformation, very similar to the shape of Hasimoto’s solitary-
wave solution. Maxworthy et al. (1983, 1985) further found that this twisting
deformation is stable during a collision process, with only a phase shift. Such
a shape-preserved property during collision is exactly a character of solitary
waves. Interestingly, observations have indicated that even a tornado can pro-
duce a solitary wave by twisting (Aref and Flinchem 1984).
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Inspired by Hasimoto’s work, Leibovich and Ma (1983) have extended
the solitary-wave propagation along a vortex filament to a more general
case, taking into consideration of vortex-core structure and axial velocity. By
using singular perturbation method, these authors also derived the nonlinear
Schrödinger equation

i
∂A

∂τ
+ α

∂2A

∂z2
+ βA|A|2 = 0, (8.67)

where τ = ε2t, z = ε(s−Cgt), and ε are the small parameters in perturbation
expansion with Cg being the group velocity of the wave packet. Coefficients
α and β depend on the core structure and axial-velocity distribution. This
work further confirms the existence of solitary waves along a vortex core and,
by a comparison with the experimental results of Hopfinger et al. (1982),
strongly supports a basic fact having been observed in Sect. 8.1.4: being able
to transport waves is a common and intrinsic property of various vortices. For
further references on the solitary-wave propagation along vortex filaments,
see also Lamb (1980) and Newell (1985). The propagation and interaction of
several solitary waves along a vortex filament have been discussed by Aref and
Flinchem (1984) and Fukumoto and Miyazaki (1986, 1991).

It is of interest to look at the motion invariants under the local-induction
approximation. The total length of a vortex filament is invariant (cf. Sect. 8.2.3)
and the total vorticity is preserved. Fukumoto (1987) has shown that both
the angular momentum I(t) and helicity J(t) of a closed vortex-filament loop
are preserved. But, since the far-field influence has been neglected, the global
information about the degree of knottedness of a filament should be lost, and
hence J(0) should be zero (see the context of (3.76)). Besides, although the
total enstrophy is not preserved by the three-dimensional Euler equation, it is
preserved under this approximation (Ricca 1992); and so is the total kinetic
energy. Therefore, all known invariant quantities of the Euler equation remain
effectively invariant under the local-induction approximation. Besides, it can
be proved that the total torsion, i.e., Hasomoto’s phase function Φ defined in
(8.58) is preserved as well:

Φ =
∫
s

τ ds = const.

Having seen the elegance of the Hasimoto theory, its limitation should
also be recognized. First, owing to the neglect of vortex-core structure, the
self-induced motion of very slender vortex filaments contains singular velocity
and deformation, and the L/a in (8.53) is also indeterminate. Second, in the
Hasimoto theory the self-stretching of the filament, a very crucial mechanism
in vortex-filament evolution and instability, is completely absent.

To see the second limitation clearly, we write the general motion of a very
slender vortex filament as

u = Xt = β(s, t)n+ γ(s, t)b, (8.68)
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where the tangent velocity along the filament itself has been dropped without
loss of generality, because this motion can be removed by a reparameterization.
On the other hand, following (2.17), the time-rate of the length δs of a vortex-
filament element δx = t δs is

1
δs

Dδs
Dt

=
1
δs

t · δu = t · us,

where by (8.68) and (8.55), see also (3.127), the only t-component of us is
−κβ = −κn ·Xt. Thus, there is

1
δs

Dδs
Dt

= −κn ·Xt, (8.69)

which by (8.54) is identically zero in the Hasimoto theory. It is these
limitations that have motivated a few extensions of the Hasimoto theory, as
presented later.

8.2.2 Vortex Filament with Finite Core and Stretching

To remove the singularity in (8.53) as a → 0, it is necessary to consider the
internal structure of the vortex core. Local-induction models with inviscid
finite core and axial flow have been studied by Widnall and Bliss (1971) to
the first order, and by Moore and Saffman (1972) to the second order by
using an elegant force-balance procedure. The Moore–Saffman equation for
the motion of a finite-core filament was rederived by Fukumoto and Miyazaki
(1991) more systematically using matched asymptotic expansions. These au-
thors then proceed to apply the Hasomoto transform (8.58) and (8.59) to a
filament with finite core, and thereby extend Hasimoto’s equation (8.61) to
an integrable Hirota equation (Hirota 1973)

iψt + ψss +
1
2
|ψ|2ψ − iW

(
ψsss +

3
2
|ψ|2ψs

)
= 0, (8.70)

where function W (s, t) depends on the core structure. The Hirota equation
reduces to the nonlinear Schrödinger equation when W → 0 and to the modi-
fied K-dV equation when W → ∞. Therefore, within the local-induction
approximation, at least for inviscid fluid the vortex-filament equation is always
integrable even with finite core.

As exemplified in Chap. 6, however, the circumferential and axial velocity
profiles of an inviscid vortex solution may have certain arbitrariness. In gen-
eral, the axial velocity in an inviscid core does not match with the outer flow
and discontinuities may appear. A vortex filament with finite viscous core was
first studied by Ting (1971) and then developed by Callegari and Ting (1978)
to a complete second-order theory with decaying vortex core and axial velo-
city. Their filament-evolution equation reduces to that of Moore and Saffman
(1972) as ν → 0, except for the difference in axial-velocity distribution.
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This work has inspired a series of subsequent developments (e.g., Klein and
Majda 1991a,b, 1993; Klein et al. 1992, 1996; Klein and Ting 1992, 1995; Klein
and Knio 1995), including neater derivation of the Callegari–Ting equation,
extending it to contain the nonlocal effect on filament self-stretching, improv-
ing the theoretical basis of thin-tube numerical method for the computation
of filament motion, and various numerical tests of the theoretical predictions
(e.g., Zhou 1997).

In particular, Klein and Majda (1991a,b) have shown that, under short-
wavelength disturbances of great practical interest, the local self-induction and
nonlocal self-stretching of a slender vortex filament will directly compete. On
the other hand, a theory with nonlocal stretching needs finite-core theory as
a necessary constituent. Therefore, in this case the two limitations mentioned
at the end of Sect. 8.2.1 have to be removed simultaneously.

In this section we focus on the Callegari–Ting theory, following the neater
approach of Klein and Knio (1995) but omit detailed algebra. Before entering
the mechanics, we need to construct a proper coordinate system with origin
O moving along the vortex axis with arclength s, curvature κ, and torsion τ .
Similar to the case of circular vortex ring (Fig. 6.4), we introduce not only
an orthonomal curvilinear triad (t,n, b) at any point O at the axis, but also
polar coordinates (r, φ) on the crossplane spanned by (n, b), with φ being the
angle between er and n, see Fig. 8.9a. However, unlike the circular vortex
ring, the corresponding three-dimensional curvilinear coordinates (r, φ, s) are
not orthogonal in general due to the existence of torsion τ , which makes the
orientation of n and b rotate around the axis. To compensate this effect, we
replace φ by

θ ≡ φ+ Φ(s, t)
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Fig. 8.9. Three-dimensional curvilinear coordinates systems. (a) The (t,n, b) and
(r, φ, s) frames. (b) The orthogonal (r, θ, s) frame, where primed quantities are eval-
uated at s+ ds and θ = φ+ Φ
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as the polar angle (see Fig. 8.9b), where Φ is Hasimoto’s phase function defined
in (8.58) such that Φs = τ . Then the orthogonality of the (r, θ, s) coordinates
is ensured. Indeed, consider a point P away from the vortex axis, we can
describe its position vector x in terms of the above coordinates with origin O
be the on-axis point X(s, t) nearest to P :

x(P ) = X(s, t) + rer. (8.71)

Then there is an orthogonal decomposition (Callegari and Ting 1978)

dx = er dx+ reθ dθ + ht ds, (8.72)

where h = 1− κ cosφ.
Now, in view of the finiteness of the vortex core, we start from the general

vorticity–velocity formulation (Sect. 4.5) with the full Biot–Savart formula
(3.29) and vorticity transport equation as the kinematic and kinetic aspects
of the problem, respectively:

u(x0, t) =
1
4π

∫
ω × r

r3
dV, r = x0 − x, (8.73)

ωt = ∇× (u× ω) + ν∇2ω, (8.74)

where and in the following no super- or subscript is attached to quantities at
the moving point x for neatness.

We take the filament curvature radius R = O(1) as global length scale,
and core radius a as local scale, so a/R ≡ δ = Re−1/2 
 1. Consider the
kinematic aspect (8.73) first. At any point O : s → X(s, t) at the filament
axis under consideration, introduce a ball B of radius δB, with

1 δB  δ1/2,

centered at O to divide the space R3 into a local and a nonlocal part. Let
R3 −B be the nonlocal part, so (8.73) can be split into

u(x0, t) =
1
4π

(∫
R3−B

+
∫
B

)
ω × r

r3
dV.

Then we seek the inner solution in B and outer solution in R3 −B.
Inside B we use stretched radial and axial coordinates

r = δ−1r, z = δ−1(s0 − s).

Since all geometric variations of the filament axis are weak, r can be expanded
to a Taylor series of z around x0. In the (r, θ, s)-coordinates we have

r = x0 −X = δ(zt+ rer) + δ2
(
1
2
z2κb− rz cosφκt

)
+O(δ3), (8.75)
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where we have used identity ∂er/∂s = − cosφκt due to (8.55). Then, as in
Sect. 6.5.1, the vorticity ω = (ξ, η, ζ) permits a perturbation expansion

ω = δ−2(η(0)eθ + ζ(0)t) + δ−1(ξ(1)er + η(1)eθ + ζ(1)t) +O(1)

= δ−2(η(0)eθ + ζ(0)t) + δ−1[ξ(1)er + η(1)eθ + z(η(0)eθ + ζ(0)t)s]

+O(1). (8.76)

We substitute these expansions into (8.73), where the volume element dV
comes from (8.72). In fact, we only need the transverse velocity u⊥ in the
(r, θ)-plane, since it solely causes the filament displacement. Assuming the
leading-order vorticity and velocity are axisymmetric, the resulting asymptotic
inner induced velocity is

u⊥
inn =

κb

2

{
Γ

2π

[
ln
(
δB
δ

)
− 1

]
−
∫ ∞

0

(
1
κ
ζ
(1)
11 + r ln rζ(0)

)
dr
}

+O(1), as δB/δ →∞, (8.77)

where ζ
(1)
11 is the real part of the Fourier component of ζ(1):

ζ
(1)
11 + iζ(1)12 =

1
π

∫ 2π

0

ζ(1)(r, θ, s, t)eiθ dθ.

The above development is confined within kinematics, and so is the entire
outer solution, which amounts to the Biot–Savart integral over R3 − B with
r = X0 −X + δrer. This yields

uout(X0) =
Γ

4π

∫
L−IB

r × t

r3
ds · (1 +O(δ)),

where IB is the interval s0 − δB < s < s0 + δB. Thus, to the leading order
(8.73) indeed reduces to the line-integral version (8.50). The result is already
known to be (8.53) but now reads

u⊥
out =

Γκ

4π
ln
(

L

δB

)
b+Q⊥, (8.78)

where L is a cut-off length comparable with R (Callegari and Ting (1978)
take L/δB = R/δ = (δκ)−1), Q is the finite nonlocal part of the Biot–Savart
integral and, if exists, the contribution of a regular background flow field.
Then an asymptotic matching of inner and outer solutions at δB, as δB →∞,
yields the unified evolution equation for the filament axis:

X⊥
t (s, t) =

Γκ

4π

[
ln
(

L

δB

)
+ C

]
b+Q⊥, (8.79a)

C(t) = −1
2

[
1 +

4π
Γ

∫ ∞

0

(
1
κ
ζ
(1)
11 + r ln rζ(0)

)
dr
]
, (8.79b)
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where C(t) is called the core-structure function, depending on the axial-
vorticity distribution. Note that (8.69) and (8.79) imply

1
δs

Dδs
Dt

= −κn ·Q, (8.80)

clearly indicating that any filament stretching must be a nonlocal effect. Its
special form will be given in Sect. 8.2.3.

There remains solving ζ(r, θ, s, t) from the viscous dynamic equation (8.74)
in the inner region. In this region the temporal variation scales to the very
short “turnover time” of O(δ2/Γ ), during which the core-flow can be assumed
quasisteady. Corresponding to (8.71), the velocity is split to

u(P, t) = Xt + v, v = uer + veθ + wt, (8.81)

with u = v = 0 at r = 0. This condition ensures that the vortex axis is a
material line. We then expand v as

v = δ−1(v(0)eθ + w(0)t) + (u(1)er + v(1)eθ + w(1)t) +O(δ), (8.82)

where by assumption v(0) and w(0) are independent of θ. Substitute (8.76)
and (8.82) into (8.74), it is found that, due to the quasisteadiness,

∇× (v × ω) · (1 +O(δ2)) = 0,

implying a self-balance of the vorticity advection and stretching/tilting. Thus,
to the first two orders the core flow is generalized Beltramian and (8.74)
can be linearized (cf. Sect. 6.5.1). It then turns out that the leading-order
equations can be trivially satisfied by any axisymmetric core structure at a
time instance; but they cannot evolve freely because the core structure should
properly response the filament stretching and viscous diffusion. Before seeking
this core evolution, we first reexpress (8.79b) by the leading-order axial and
circumferential velocities. By (8.74) and using (6.2), the integrand in (8.79b)
can be expressed in terms of leading-order circumferential and axial velocity.
This casts (8.79b) to

C(t) = Cv(t) + Cw(t),

Cv(t) = lim
r→∞

(
4π2

Γ 2

∫ r

0

r′v(0)
2
dr′ − ln r

)
− 1

2
, (8.83a)

Cw(t) = −
8π2

Γ 2

∫ ∞

0

r′w(0)2 dr′. (8.83b)

This result was also first obtained by Callegari and Ting (1978).
Now, regarding to the evolution of the core-structure function C(t), Klein

and Ting (1995) have shown that its time rate can be expressed in terms
of leading-order axial vorticity ζ and velocity w (recall the remark following
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(4.181); superscript (0) is omitted). Let S(t) be the total length of the filament
normalized by its initial value at t = 0, and introduce a dimensionless viscosity

ν̃ =
( ν

Γδ2

)2
=

1
δ4R2

Γ

= O(1), (8.84)

from (8.83) there is (dot denotes d/dt)

Ċv(t) = −
8π2ν̃
Γ 2

∫ ∞

0

r′ζ2 dr′ +
Ṡ

2S
, (8.85a)

Ċw(t) =
16π2

Γ 2

(
ν̃

∫ ∞

0

r′w2 dr′ +
3Ṡ
2S

∫ ∞

0

r′w2 dr′
)
. (8.85b)

Here, from the linearized version of (8.74) it follows that

wt =
ν̃

r
(rwr)r +

r3

2
Ṡ

S

(w

r2

)
r
, (8.86a)

ζt =
ν̃

r
(rζr)r +

Ṡ

S

r2ζr
2r

. (8.86b)

Moreover, we apply the Lundgren transformation (6.32) to (8.85) but with
different meaning for S, i.e., introduce stretched time (not to be confused with
torsion) and radial variables

τ ≡
∫ t

0

S(t′) dt′, ρ ≡ S
1
2 (t)r. (8.87)

Then, let f1 = S(t)w, f2 = S(t)ζ, the two equations in (8.86) are both
transformed to the two-dimensional axisymmetric heat equation, again the
same form as (6.17a):

∂fβ
∂τ
− ν̃

ρ

∂

∂ρ

(
ρ
∂fβ
∂ρ

)
= 0, β = 1, 2,

which as we know from Sect. 6.2.1 has a family of time-decaying solutions
in terms of the Laguerre polynomials, see (6.24). The series coefficients are
determined by initial condition. It is not surprising that the simplest solution
of this family is nothing but an extension of the Burgers vortex, which by the
Ludgren transformation reduces to the Oseen vortex (Sect. 6.2.2). Note that
in the Euler limit with ν̃ → 0, (8.85) reduces to

Cv(t) =
1
2
lnS(t) + Cv(0), Cw(t) = S−3(t)Cw(0). (8.88)
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8.2.3 Nonlocal Effects of Self-Stretch and Background Flow

It is well known that the vortex self-stretching as well as the stretching by
background flow field is an extremely active mechanism in vortex dynamics
at large Reynolds numbers (Sects. 3.5.3 and 6.5.3), in particular in the energy
cascade process of turbulence. Without vortex-filament stretching, neither can
one reveal the physics of kinks and folds during its evolution, nor the formation
of hairpin vortices. In particular, numerical tests (e.g., Chorin 1982, 1994;
Siggia 1985, see Fig. 3.15) have shown that a disturbance to a vortex filament,
of wavelength λ much shorter than the vortex-filament curvature radius but
much larger than core radius a, often causes the appearance of folds and
kinks, and hairpins. This observation suggested Klein and Majda (1991a,b)
to introduce a disturbance of wavelength λ = εR to a straight vortex filament,
such that

1 ε δ ≥ O(Re−1/2). (8.89)

This disturbance implies a rescaled length σ = s/ε and time τ = t/ε4. Now,
specifically, imposing such a disturbance to a straight vortex filament with
fixed tangent vector t0 will lead to a disturbed position vector

X(s, t, ε) = εσt0 + ε2X(2)(σ, τ) + o(ε2) (8.90)

for the filament axis, which has disturbed tangent vector and velocity

Xs = t0 + εX(2)
σ + o(ε), Xt = ε−2X(2)

τ + o(ε−2).

Thus, the leading term of Xt due to the local induction is of O(ε−2), which
by (8.79a) with L/δB being set as ε/δ implies the distinguished limit

ε2 =
1

ln(ε/δ) + C
. (8.91)

Here, as remarked before, the structure function C can be considered constant
over a stretched time period of O(τ). Therefore, normalize the velocity by
Γ/4π, from (8.78) there is

Xt = ε−2κb+Q. (8.92)

To compute the finite nonlocal effect Q, denote the integrand of the line
Biot–Savart formula (8.50) as

F (s) =
X0 −X

|X0 −X|3 × t = F1(s) +O(1) as s0 − s→ 0,
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where X is given by (8.90) and by (8.75)

F1(s) =
κb

2|s0 − s|

is the local-induction effect. Thus, the finite Q can be written as

Q =
∫
[F (s)−H(1− ε−1|s0 − s|)F1(s)] ds,

where H is the Heaviside step function. Substituting this into (8.92), Klein
and Majda (1991a) obtain

Xt = κb+ ε2I[X(2)]× t, (8.93)

where I[w] defines a linear nonlocal operator for any function w(σ):

I[w](σ) ≡
∫ ∞

−∞

1

|h|3
[
w(σ + h)− w(σ)− hwσ(σ + h) +

1

2
h2H(1− |h|)wσσ(σ)

]
dh.

(8.94)

This linear operator incorporates the leading-order nonlocal effect of the Biot–
Savart integral (8.50) under the scale assumption (8.91).

Then, by extending the Hasimoto transformation (8.58) and (8.59) to in-
clude a nonlocal disturbance, the spatial curve X(s, t) can again be expressed
by the filament function ψ(s, t), of which the asymptotic equation reads

1
i
ψτ = ψσσ + ε2

(1
2
|ψ|2ψ − I[ψ]

)
. (8.95)

This is a perturbed nonlinear Schrödinger equation. It is remarkable that the
nonlocal but linear stretching I[ψ] directly competes the local but nonlinear
self-induction at the same order of magnitude. This apparent paradox is ex-
plained by a careful calculation using (8.80), which shows that the rate of
self-stretching of a vortex-filament element is given by

1
δs

∂δs
∂t

=
ε2

4
i
∫ ∞

−∞

1
|h| [ψ

∗(σ + h)ψ(σ)− ψ(σ + h)ψ∗(σ)] dh, (8.96)

namely, the stretching rate is a quadratically nonlinear process. Thus, the
nonlocal term I[ψ] in (8.94) is essentially a nonlinear effect.

Klein and Knio (1995) and Klein et al. (1996) have used their theoretical
results to propose some improvements of a numerical scheme for computing
slender vortex filaments called thin-tube method (Knio and Ghoniem 1990).
As a critical verification of both the asymptotic theory and the scheme, they
compared the prediction of above asymptotic theory and the improved thin-
tube method for some typical filament configurations and obtained convincing
agreement for σ as large as 1/2. A further comparison of the predictions of
the Hasimoto local-induction equation (8.61), the Callegari–Ting equation



8.2 Dynamics of Vortex Filament 415

(8.79) with C(t) given by (8.83), and the Klein–Majda equation (8.93) for the
sideband instability of Kelvin waves on a vortex filament has been conducted
by Zhou (1997), which however indicates that all these approximations still
cannot capture the behavior of turbulent vortices.

Klein and Majda (1993) further proceed to consider the effect of a nonuni-
form background flow field on the asymptotic evolution of a vortex filament.
Introduce a small-amplitude disturbance wave to deform a straight vortex
filament under the above-assumed conditions for asymptotic expansion, but
now the evolution goes on under a background flow field

δvb =
1
ε2
A · x, (8.97)

where

{Aij} =


s11 −1

2
ω + s12 0

1
2
ω + s12 s22 0

0 0 s33


which satisfies the incompressibility condition

trA = s11 + s22 + s33 = 0. (8.98)

Since x3 is along the undisturbed vortex axis,

S2 =

(
s11 s12

s12 s22

)

obviously represents the deformation matrix perpendicular to the undisturbed
axis. By using the asymptotic expansion method, Klein and Majda (1993)
generalize (8.95) to

1
i
ψτ = ψσσ + ε2

(
1
2
|ψ|2ψ − I[ψ]

)
+ ε2

[
ωψ + is33

(
2
5
ψ + σψσ

)
+
(
s12 − i

s11 − s22
2

)
ψ∗
]
, (8.99)

in which the last part in the square bracket is the effect of background flow.
The specific physical roles of its three terms are as follows:

– The first term. ψτ = iε2ωψ, which is the rotation of the background flow
around the vortex axis, corresponding to the rotation of ψ on the complex
plane with angular velocity ε2ω.

– The second term. ψτ = −ε2s33(2ψ/5 + σψσ), which indicates that the
growth or decay of the disturbance amplitude of the filament depends
on the flow convergence or divergence in the normal plane and on the
advection along the x3 axis.
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– The third term. ψτ = iε2 [s12 − i(s11 − s22)/2]ψ∗, which represents the
effect of the planar strain S2 normal to the filament axis. This term has
both damping and growing solutions corresponding to the strain axis of
the background flow field.

Having obtained the filament-evolution equation that contains self-
stretching and hence is able to reveal the formation mechanism of kink, folds,
and hairpins, we can now examine these phenomena frequently seen in exper-
iments and numerical simulations. They are the result of nonlinear instability
of vortex filaments, and actually the interaction between the nonlocal linear
operator on the filament function and the local nonlinear term of the function
in (8.95) and (8.99).

For example, consider a helical vortex filament which is a solution of (8.65).
Introducing a small disturbance to this filament with ε2 = 0.25, and then con-
ducting the numerical resolution of (8.95) under periodic spatial boundary
condition for convenience, one obtains the time evolution of the filament cur-
vature shown in Fig. 8.10. It is seen that as time goes on there appears a big
curvature peak at a location of the filament, indicating the formation of a
kink. The corresponding spatial curves are shown in Fig. 8.11. Therefore, the
formation of the kink is precisely the interaction between the linear operator
reflecting the nonlocal stretching and the local nonlinear term reflecting the
self-induction.

Similarly, the formation of hairpin structure is due to the interaction bet-
ween the background flow field and self-induction as well as self-stretching.
Consider a simple case with a constant strain field γ perpendicular to the
vortex axis. Then (8.99) is reduced to
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Fig. 8.10. Time series of curvature distribution for perturbation of a helical vortex
filament. From Klein and Majda (1991a)
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Fig. 8.11. Time evolution of the vortex filament. From Klein and Majda (1991a)
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Fig. 8.12. The curvature distribution at different times for a vortex filament under
the effect of the background flow field. From Klein et al. (1992)

1
i
ψτ = ψσσ + ε2

(1
2
|ψ|2ψ − I[ψ]− iγψ∗

)
. (8.100)

Assuming spatial periodicity and taking γ = 2, ε2 = 0.25, the numerical so-
lution of (8.100) yields the time-evolution of the filament curvature shown in
Fig. 8.12, in which two local peaks appear at the late stage of the evolution.
Since each curvature peak represents a kink, two peaks are necessary for pro-
ducing a hairpin-like vortex filament. Indeed, the hairpin can be clearly seen
in the time-evolution of the spatial curve shown in Fig. 8.13.
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Fig. 8.13. The hairpin creation. From Klein et al. (1992)

8.3 Motion and Interaction of Multiple Vortices

The motion and interaction of a multiple-vortex system are far more com-
plicated than the motion and self-interaction of an isolated vortex. To such
a system the role of theoretical analyses is quite limited. So far a complete
theory exists only for two-dimensional point-vortex system, which is to be
introduced in Sect. 8.3.1. The problem becomes more difficult once a finite
core is introduced to each vortex, and simplified approach is available for
two-dimensional vortex-patch system only, with uniform vorticity distribu-
tion in the cores; yet the final resolution of a specific problem still has to
rely on numerical computation, see Sect. 8.3.2. The viscous interactions of
three-dimensional vortices, in general, have to be understood by experiments
and numerical computations, of which a typical example will be discussed in
Sect. 8.3.3.

8.3.1 Two-Dimensional Point-Vortex System

We consider a system of infinitely long and parallel straight line vortices in an
irrotational flow. In this model the vortex tilting and stretching are all omit-
ted, so that it can be treated as a point-vortex system on a two-dimensional
cross plane. While the theoretical foundation and classic applications of such
a system are already well known, they have attracted renewed interest. This
is because, on the one hand, the discrete vortex method for solving two-
dimensional Euler equation in computational fluid dynamics is precisely based
on the dynamics of point-vortex systems, and on the other hand some remark-
able new phenomena stemming from computations have motivated deeper ex-
plorations of the dynamic behavior of the systems, in particular the chaotic
property of a set of point vortices as a Hamiltonian system. People have also
attempted to find new clues to the understanding of turbulence from the study
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of point-vortex systems. In fact, the extensive study of point-vortex systems
provides an ideal entry into the field of the nonlinear dynamics (see Newton
2001).

A point-vortex system consists of N point vortices of circulations γk lo-
cated at zk = xk + iyk, (k = 1, 2, . . . , N), with singular vorticity field

ω =
N∑
k=1

γkδ(z − zk), (8.101)

and associated complex velocity potential

χ(z) =
1
2πi

N∑
k=1

γk ln(z − zk). (8.102)

For a free point-vortex system, which experiences no external force and in
which each vortex moves under the induction of others, the governing equa-
tions follow from (3.34):

d
dt
zm(t) = −i

N∑
n=1

′ γn
zm − zn

, (8.103)

where the notation
∑′ implies excluding m = n during summation. Equa-

tion (8.103) can also be derived by using asymptotic expansion as the high-
Reynolds-number limit of the two-dimensional Navier–Stokes solution (see
Ting and Klein 1991). If there is an irrotational background flow, its complex
velocity potential can be added to (8.102).

The Hamiltonian of the point-vortex system is defined as

H =
N∑
m�=n

γmγn ln rmn, (8.104)

where

N∑
m�=n

=
N∑
m=1

N∑
n=1

′, rmn = |zm − zn| =
√
(xm − xn)2 + (ym − yn)2.

By (8.104) there is

∂H

∂zm
=

γm
2

N∑
n=1

′ γm
(zm − zn)

.

Hence, the motion equation (8.103) of the system can be cast to

γm
dzm
dt

= −2i ∂H
∂zm

, (8.105)
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of which the splitting of real and imaginary parts leads to Hamilton’s canonical
equations

γm
dxm
dt

= − ∂H

∂ym
, (8.106a)

γm
dym
dt

=
∂H

∂xm
. (8.106b)

Here, γmxm, γmym correspond to the generalized momentum and coordi-
nates, respectively, in Hamilton’s equations for particle dynamics (e.g., Lanc-
zos 1970). This Hamiltonian structure of point-vortex systems is revealed by
Kirchhoff and Poincare more than a century ago, indicating that a series of
methods and results of classic particle dynamics can well be applied to the
dynamics of point-vortex system.

The Hamiltonian H is the interaction energy of the vortex system. By
the Noether theorem (e.g., Arnold 1989), several invariants of the system
can be deduced from the symmetry of a Hamiltonian system. Because the
Hamiltonian depends only on the relative locations of the vortices, H must
be invariant during the translation and rotation of the entire system. The
translational invariance implies

I = Q+ iP =
N∑
m=1

γmzm = const., (8.107)

where Q and P are the impulses along the x- and y-direction. On the other
hand, the rotational invariance implies

L =
N∑
m=1

γm(x2m + y2m) = const., (8.108)

where the conserved quantity L is the angular impulse. I and L are, respec-
tively, the counterparts of the impulse (3.78) and angular impulse (3.79) de-
fined for a continuously distributed vorticity field, the latter are also invariant
for circulation-preserving flow (see the remark at the end of Sect. 3.6.1).

Now, assume that the distances among the vortices are uniformly changed
by a factor λ, i.e., r′mn = λrmn, λ = 1 + δλ, where δλ is small, so that

δxm = xmδλ, δym = ymδλ,

then

δH =
N∑
m�=n

γmγn(lnλrmn − ln rmn) =
N∑
m�=n

γmγn ln(1 + δλ) = δλ
N∑
m�=n

γmγn.

On the other hand, we have

δH =
N∑
m=1

∂H

∂xm
δxm +

∂H

∂ym
δym = δλ

N∑
m=1

(
γmxm

dym
dt
− γmym

dxm
dt

)
.
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Thus,

N∑
m�=n

γmγn =
∑(

γmxm
dym
dt
− γmym

dxm
dt

)
= const. (8.109)

indicating the conservation of the angular momentum of the system respect
to the origin.

Finally, for the time rate of the Hamiltonian there is

dH
dt

=
N∑
m=1

(
∂H

∂xm

dxm
dt

+
∂H

∂ym

dym
dt

)

=
N∑
m=1

(
γm

dym
dt

dxm
dt
− γm

dxm
dt

dym
dt

)
= 0. (8.110)

Namely, the Hamiltonian itself is also an invariant.
If we introduce the canonical Poisson bracket (Lanczos 1970)

{
f, g

}
≡

N∑
m=1

1
γm

(
∂f

∂xm

∂g

∂ym
− ∂f

∂ym

∂g

∂xm

)
, (8.111)

then it easily follows three involutive conservation relations:

{H,L} = 0, (8.112){
H,P 2 +Q2

}
= 0, (8.113){

P 2 +Q2, L
}
= 0. (8.114)

Meanwhile, we have the following useful relations:

{Q,P} = Γ, (8.115)

{Q,L} = 2P, (8.116)

{P,L} = −2Q, (8.117)

where Γ =
∑N
m=1 γm.

Now, an important observation is that, by the theory of Hamiltonian sys-
tems of finite degrees of freedom, it can be shown that there exists a critical
number Nc of the point vortices, such that the motion of the system is in-
tegrable when N ≤ Nc, but not integrable when N > Nc (for the definition
of integrability see Sect. 3.3.1). It is surprising that the value of Nc for point-
vortex systems is very small, depending on the existence of solid boundary
and background potential-flow field. For unbounded fluid there is Nc = 3. A
four-vortex system will also be integrable if its total circulation is zero. Nc

decreases once there appears solid boundary or background flow. It is now
known that in a half-plane domain or inside a circular boundary we have
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Nc = 2, while for a general boundary we simply have Nc = 1. For exam-
ple, Hasimoto (1985) has computed the motion of two point vortices of equal
strength γ1 = −γ2 = 1 in a semicircular domain. The initial locations of the
vortices were

z1 = i(
√
17− 4)1/4 eiπ/4, z2 = r2 e3iπ/4,

where r2 was given different values. The result is shown in Fig. 8.14. We
see that a small change of the vortex locations and their distances from the
boundary makes the system’s motion vary from double periodic to chaotic,
and then back to double periodic. A slight difference of the initial loca-
tions implies a significant difference in the system’s evolution. This fact con-
firms that the two-vortex system in a semicircular domain is not integrable,
i.e., Nc = 1.

Another example is four point vortices in an unbounded fluid. When the
initial locations have central symmetry (z1 = −z2, z3 = −z4), the motion is
periodic as seen from Fig. 8.15a, but if the initial locations differ slightly from
the above symmetric configuration chaos appears at once, see Fig. 8.15b. This
confirms Nc = 3 for unbounded fluid.

The preceding observation has a deep impact on one’s understanding of
the formation mechanism of turbulence. Actually, a point-vortex system with
N > Nc may be viewed as a highly simplified model for turbulence, of which
the description inevitably requires the introduction of statistic approach; for
details see the review of Aref (1983).

(a) (b)

(c) (d)

Fig. 8.14. The motion of two point vortices in a semicircular domain. The initial
locations z1 and z2 have only one parameter r2, which in (a–d) takes 0.18, 0.10,
0.0817, 0.0815, respectively. From Hasimoto (1985)
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Fig. 8.15. The motion of four point vortices in unbounded fluid. From Aref and
Pomphrey (1982)

In addition to the integrability and chaos, the evolution of the relative
locations rij = |zi − zj | of point vortices is also of interest (Novikov 1975).
From (8.104), (8.106a), and (8.106b) one may derive the evolution equation
of rij :

d
dt
r2ij =

2
π

N∑
k �=i,j

γkεijkAijk

(
1
r2jk
− 1

r2ki

)
, (8.118)

where Aijk is the area of the triangle formed by three vortices at zi, zj , zk, and
εijk is the Kronecker symbol: if zi, zj , zk is ordered clockwise then εijk = 1,
otherwise it is −1. Unless the three vortices are on a straight line, (8.118)
provides a closed set of equations for the evolution of rij , which has only two
motion integrals given by rij , i.e., H itself, and

1
2

∑
i,j

γiγjr
2
ij =

(∑
γi

)
I − (P 2 +Q2). (8.119)

By (8.118), it is evident that the three-vortex system is of fundamental sig-
nificance: The sum of the distance variation of each three-vortex system con-
stitutes the distance variation of the entire vortex system. Therefore, the in-
teraction of the whole point-vortex system can be decomposed into a set of
interactions of three-vortex systems. If the distances between point vortices
are taken as the motion scales in the fluid, then the three-vortex interaction
is the lowest-order dynamic process in which new length and time scales are
produced. Then, since three-vortex systems are integrable, a general noninte-
grable vortex system (N > 3) can be considered the dynamic interaction of
integrable triads. This view means that the three-vortex problem is the basis
of understanding two-dimensional point-vortex systems. For further analysis
see Newton (2001).

For a three-vortex system, (8.118) becomes

d
dt
r2ij =

2
π
γkA

(
1
r2jk
− 1

r2ki

)
, (8.120)
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Fig. 8.16. The point-vortex collapse. From Marchioro and Pulivirenti (1984)

while (8.119) reduces to

γ1γ2r
2
12 + γ2γ3r

2
23 + γ1γ3r

2
13 = const. (8.121)

In particular, when γ1γ2+γ2γ3+γ1γ3 = 0, the triangle formed by the vortices
may remain as a similarity triangle, which shrinks or enlarge monotonically.
In the former case, the three vortices merge to a point in a finite time, called
the point-vortex collapse. For example, let γ1 = γ2 = 2 and γ3 = −1, and at
t = 0 there is z1 = (−1, 0), z2 = (1, 0), z3 = (1,

√
2), then (8.120) becomes

d
dt
r2ij(t) = −

2
3
√
2π

r2ij(0),

so that

rij(t) = rij(0)

√
1− t

3
√
2π

. (8.122)

Hence, rij = 0 at t = 3
√
2π. The triangles at t = 1 and 20 are plotted in

Fig. 8.16.

8.3.2 Vortex Patches

A natural extension of two-dimensional point-vortex system is to consider
a system of two-dimensional vortices, each now having a finite area with
uniformly distributed vorticity called a vortex patch. The simplest vortex
patch is the Rankine vortex, next to which is the Kirchhoff elliptical vor-
tex (Sect. 6.4.1). The vortex-patch model provides a convenient mathematic
means for the studies of the motion and interaction of finite-core vortices,
since as shown by the contour dynamics proposed by Zabusky et al. (1979),
the time evolution of the interaction of vorticity field can be reduced to that
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of the boundaries of the patches, so that the original two-dimensional prob-
lem is reduced to the motion of one-dimensional curves. The velocity of a
system of N vortex patches is the superposition of the velocities induced by
all vortex patches; but the evolution and interaction of the system are more
complicated than point-vortex system. Although the area of a vortex patch
is conserved, its boundary may deform dramatically. The contour-dynamics
method has been applied extensively to the studies of two-dimensional vortex
motions at large Reynolds numbers, especially the evolution and interaction
of vortex cores, such as the dynamic mechanisms in the initial formation of
coherent vortical structures in mixing layers, jets, and wakes, as well as the
geophysical fluid dynamics relevant to the motion of atmosphere and ocean.
For reviews see Dritschel (1989) and Pullin (1992).

Consider a two-dimensional system of N vortex patches, where a typical
patch has vorticity ωi, area Ai, and contour Ci. By (2.104b), for N vortex
patches we have

ψ(x) = −
N∑
i=1

ωi

∫
Ai

G(x,x′) dS′, G =
1
2π

ln r, r = |x− x′|, (8.123)

Thus, in terms of complex variable,

u+ iv = −i(ψ,x + iψ,y) = i
N∑
i=1

ωi

∫
Ai

(G,x + iG,y) dS,

by using the complex-variable form (A.32) of the Stokes theorem, there is

u+ iv = −
N∑
i=1

ωi

∮
Ci

Gdz.

Multiplying both sides by ex, noticing iex = ey, ex dz = dx (see Sect. A.2.4),
and dx = t ds, where t is the unit tangent vector of Ci and ds the arclength,
it follows at once that

u =
1
2π

N∑
i=1

ωi

∮
Ci

ln |x− x′|t ds. (8.124)

We follow the Lagrangian evolution of the patches. In terms of complex vari-
able z = x + iy, if at t = 0 the contours of the patches have material arc
element ds, then (8.124) reads

dz
dt

(α, t) =
1
2π

N∑
i=1

ωi

∮
ln |z(α, t)− z(α′, t)|∂z

∂s
(α′, t) ds, (8.125a)

z(α, 0) = z0(α), (8.125b)

Ci(t) = z(α), α ∈ Ci0. (8.125c)
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This set of equations describes the time evolution of the contour Ci, which
is similar to the Birkhoff–Rott equation (4.143) for the self-induced motion
of a vortex sheet. Both are self-deforming curve equations for the position z
of the curve by use of a Lagrangian parameterization. However, they have
a fundamental difference: while the Birkhoff–Rott equation is ill-posed, the
contour-dynamics equation is not.

One of the basic applications of contour dynamics is the evolution of an
isolated vortex core. For a circular Rankine vortex, it is found that, under a
disturbance exp(i(nθ − σt)) with n being the circumferential wave number,
the patch can still rotate at constant angular velocity. But when σ = 0 the
circular patch may bifurcate to n-fold symmetric noncircular equilibria (e.g.,
Batchelor 1967). The case with n = 2 is the Kirchhoff elliptic vortex, which has
highly robust structure. We have seen that even in a constant strain field the
patch can remain to be elliptic. Numerical computations have indicated that
this evolution trend happens under quite wide initial conditions. This is why
the elliptic vortex-patch model may simulate more accurately the evolution
of a two-dimensional inviscid vorticity field than circular vortices. But the
computation of Deem and Zabusky (1978) has shown that in addition to
elliptic patches, there also exist vortex patches of three, four, and five edges
rotating with constant angular velocity, known as the V-states equilibria of
the patches (Fig. 8.17).

By using the contour dynamics and numerical computation, Saffman and
Szeto (1981) and Pierrehumbert and Widnall (1981) have studied the motion
of a single row of identical elliptic vortex patches of circulation Γ , area A,
and separation L. The motion depends on parameter α = A/L2. Smaller
α implies smaller and nearly circular patches, and at larger α we have more
elliptic ones. Under the assumption that the patches have elliptical symmetry,
it has been found that solutions exist for α < 0.2377 only, see Fig. 8.18. This
value of α is a fold or limit point but not the critical value at which patches

Fig. 8.17. Vortex patches rotating with constant angular velocity. From Deem and
Zabusky (1978)



8.3 Motion of Multiple Vortices 427

0

0.2330

0.203

0.5

0.2377
A/L2

s

a/L
b/L

u

Fig. 8.18. The motion property of a single vortex-patch row. Dotted line is the
family of connected vortices. From Saffman (1992)

touch. The appearance of the fold point implies the existence of neighboring
solutions of the same area, due to the transition from stability to instability
(Saffman 1992). On the other hand, when the system reaches the critical value
α = 0.2330, the patches evolve continuously to a family of connected vortices
or finite-amplitude waves on a vortex layer of finite thickness.

Although the stability of vortical flows is the subject of Chap. 9, we briefly
mention here the stability of single and double vortex-patch rows with respect
to two-dimensional disturbance. This has been discussed by Meiron et al.
(1984; see Saffman (1992)) using normal-mode analysis (see Sect. 9.1) and
Floquet theory. Let the x-periodic streamfunction ψ0 of the basic patch-row
flow be disturbed to

ψ(x, y, t) = ψ0(x, y) + εeσtψ(x, y)eipx(2π/L), ε
 1. (8.126)

Here, ψ(x, y) is the eigenfunction and σ = σr+iσi the eigenvalue, with σr being
the disturbance growth rate. The wave number p is an arbitrary real number.
When p = 0 or is any integer, the disturbance wave has the same wavelength
as the undisturbed vortex-patch row, and is said to be superharmonic. If
0 < p < 1, the disturbance is called subharmonic. In particular, for vortices
with small area, the most unstable disturbance happens when p = 1/2. In
this case every second vortex deforms in the same way, so the disturbance
wavelength is 2L, which is called pairing instability. The instability property
of single-row of vortex patches under subharmonic disturbances is shown in
Fig. 8.19 for four values of α. When p = 1/2, the disturbance propagation
speed is zero, so the pairing instability is stationary. Note that when α = 0.235,
superharmonic disturbance (p = 0, p = 1) is also unstable.

The same method has been applied to the stability of the Kármán vor-
tex street of finite-area vortex patches (Meiron et al. 1984), focusing on the
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Fig. 8.19. The growth rate of subharmonic disturbances for single rows of vortex
patches. From Saffman (1992)
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Fig. 8.20. Stability boundaries for Kármán vortex street consisting of point vortices
(a), and finite-core vortex patches (b). Regions marked by S and U are stable
(hatched) and unstable, respectively. Unless going through crosses at specific kc,
vertical lines for any k will always meet unstable region(s). Based on Saffman (1992)

influence of finite patch area on the stability character of the street. Let
k = H/L be the aspect ratio of the street and p the wavenumber as above,
the numerically obtained stability boundaries on the (k, p)-plane are shown
in Fig. 8.20b. As comparison, also shown in the Fig. 8.20a is the correspond-
ing stability boundaries of the classic point-vortex street (Sect. 6.3.3). For the
latter, except the single cross at (kc, p) = (0.28055, 0.5), for any aspect ratio k
there exists certain range of p with growing disturbances, and hence the street
is linearly unstable as mentioned in Sect. 6.4.3. For the former, the conclusion
remains qualitatively the same. There appear a pair of crosses (kc, pc) with
their location depending on the patch area A, such that except these crosses
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one can always find some range of p with unstable modes. Jiménez (1988) has
shown analytically that for finite-core patches the new crosses appear at

kc = 0.28055 + 0.55536A2 +O(A4),

pc = 0.5± 4.63089A2 +O(A4).

While not all wavenumbers are unstable, only one unstable wavenumber
suffices for the flow to be unstable. Therefore, except kc, in both point-vortex
and finite-patch models there are always unstable wavenumbers, and hence the
flow is unstable. In other words, finite core neither stabilizes nor destabilizes
the vortex street (MacKay and Meiss 1987; Jiménez 1988).

In the study of vortex-core evolution by using contour dynamics, it is nat-
ural to ask whether there exists an asymptotic equilibrium state for an isolated
inviscid vortex core with continuous or piecewise continuous initial vorticity
distribution. Melander et al. (1987) proposed that the axisymmetrinization
should be a general equilibration principle. But a counterexample has been
given by Dritschel (1989), see Fig. 8.21, where an elliptic vortex patch with
continuous vorticity distribution finally evolves to an elliptic vortex core with
surrounding complicated filament debris.

Our main concern here is the evolution of multiple vortex patches. The
simplest multiple-patch system is a vortex pair, of which the nonlinear evo-
lution is shown in Fig. 8.22 computed by contour dynamics for four initial
separations at t = 0. Clearly, between two corotating vortices there exists
a critical separation, below which the vortices will “merge.” So the result
can be viewed as a numerical experiment on vortex merging. Relevant the-
ory has pointed out that, depending on the initial separation, the vortex–pair

0.00 1.00 2.00 3.00 4.00

6.00 6.10 6.80 7.20

8.808.108.007.60

5.00

Fig. 8.21. The evolution of an elliptical distribution of vorticity computed with
contour dynamics. From Dritschel (1989)
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Fig. 8.22. Interaction of a vortex pair. From Zabusky et al. (1979)

interaction may evolve to “merging” (also known as centroid collapse), coro-
tation without merging, nutation, etc. It should be stressed that, however,
the word “merge” here means only the deformation of the pair. The contour
dynamics applies only to two-dimensional inviscid flow, so during such an evo-
lution the topological feature of vortex patches cannot change. The interaction
can only deform the patches but not really make them merge or reconnect.
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8.3.3 Vortex Reconnection

We conclude our discussion on vortex interactions by introducing the visco-
sity. Perhaps the most important viscous vortex interaction is the cut-
and-reconnect process (reconnection for short), which alters the topological
structure of the vorticity field. Vortex reconnection involves many phenom-
ena of fundamental significance in vortex dynamics, such as vortex stability,
dynamics of helicity, selective dissipation in fluid of small viscosity, and the
possible generation of singularity in the vorticity field. The study of vortex
reconnection is of particular importance in understanding the evolution of
vortical structures in turbulence.

One’s attention to vortex reconnection started from the late-stage evo-
lution of the Crow instability (Crow 1970b) of wingtip vortices, since then
there have appeared many systematic experimental, theoretical, and numer-
ical studies. The focus of experiments has been on the simplest case, i.e.,
the collision of two circular vortex rings (Fohl and Turner 1975; Oshima and
Asaka 1977; Schatzle 1987; Oshima and Izutsu 1988). Hussain and Husain
(1989) have also studied the self-collision and reconnection of an elliptic vor-
tex ring which is deformed by its own induction. Progress has also been made
by numerical simulation, e.g., the interactions of two vorticity tubes (Zabusky
et al. 1991; Boratav et al. 1992; Shell et al. 1993), two circular vortex rings
(Kida and Takaoka 1991a; Aref and Zawadzki 1990), and two elliptic vortex
rings (Aref and Zawadzki 1991). Based on their experimental observations,
Lee and Fu (2001) have proposed that the cut-and-reconnect of near-wall vor-
tex structures is a universal process in transitional and turbulent boundary
layers. The very high resolution in numerical visualization has considerably
enhanced our understanding of the cut-and-reconnect process. For review of
this subject see Kida and Takaoka (1994).

As discussed in Sect. 6.6, so far a general and rigorous definition of a vor-
tex is still unavailable, which direct results in the lack of a commonly agreed
clear definition of vortex reconnection, as well as the lack of the consensus
on relevant physical mechanisms. In experiments, one usually identifies a vor-
tex reconnection by the topological change of dye or smoke structures, which
however constitute a scalar field (the density of the medium) that may have
very different behavior from the vorticity field. On the other hand, in numer-
ical simulation one usually identifies a vortex reconnection by the topolog-
ical change of isosurface of vorticity magnitude, which as noted in Sect. 6.6
may differ significantly from the vorticity surfaces that consist of vorticity
lines and form vorticity tubes but on which the vorticity magnitude varies
in general. Therefore, one has to make distinction among scalar reconnection,
isovorticity reconnection, and vorticity-tube reconnection, which are referred
to the topological-structure variations of the isoscalar surfaces, isosurface of
vorticity magnitude, and vorticity tube, respectively. It is well known that
Helmholtz’s vorticity theorems imply that in an inviscid and incompressible
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fluid it is impossible to have vorticity-tube reconnection, but it is possible for
scalar and isovorticity reconnections.

We now look at the process and main mechanisms during vorticity-tube
reconnection. Consider two parallel vorticity tubes with opposite-signed vor-
ticity, which approach each other under mutual induction. As they get closer,
they will deform to a “head–tail” shape (Fig. 8.23a). Then, the viscosity enters
into the play to cancel opposite-signed vorticity (Fig. 8.23b), which changes
the topology of the tubes (Fig. 8.23c). However, the detailed reconnection
process is much richer than viscous cancellation alone. The key mechanism is
called bridging, which involves complicated interactions such as the stretch-
ing, self-induction, and viscous diffusion of the vorticity lines. Referred to
Fig. 8.24a, after the viscous dissipation cancels the closest vorticity lines of
opposite signs in the interaction zone, the remaining vorticity lines are con-
nected with their counterparts in the other tube which, due to the diffusion
and self-induction, will retreat (Fig. 8.24b). Thus, the flow on the crossplane
behaves like a doublet. The doublet induces an advection normal to the plane
of Fig. 8.24, causing a vorticity-line stretching and rotation around the dou-
blet. This process results in a crosslinking of the interacting vorticity lines. As
the process continues, the vorticity is accumulated and a “bridge” is formed.
During the bridging new vorticity normal to the original interaction plane is

(a) (b) (c)

Fig. 8.23. Sketch of vortex reconnection: viscous cancellation. Based on Kida and
Takaoka (1994)

p p
p

q
(a) (b) (c)

q
q

Fig. 8.24. Sketch of vortex reconnection: bridging process. Based on Kida and
Takaoka (1994)
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also formed, which has even stronger intensity than the original one owing
to the stretching. The global topological structure of the vorticity tubes is
thereby altered.

The detailed structural evolution during the bridging process can be re-
vealed by direct numerical simulation. Figure 8.25 exhibits such a structure
during the reconnection of a trifold vorticity tube (Kida and Takaoka 1991b),
where the drawn isosurface of vorticity magnitude is taken as 10% of the
maximum value. The formation of the bridge is clearly seen, near which the
vorticity lines are pulled out of the main tube at the bridge as a hairpin vortex.

Owing to the key role of the viscosity, the above vortex reconnection
process is not circulation preserving. Thus, the change of topology and that of
helicity, see (3.75) and (3.115), no longer have a one-to-one correspondence.
On the left-hand side of (3.75) there is not only the winding number αij but
also circulations κi and κj which are now time dependent due to diffusion.
Hence, the change of one of the three: topology, circulation, and helicity, may
or may not cause the change of the other two. Moreover, the reconnection is
a local process that cannot be fully reflected by integral relations of the type
of (3.75). Therefore, for viscous flow the helicity is not a good indicator of
reconnection.

Nevertheless, it is of interest to look at the variation of helicity due to
viscosity. In an unbounded domain, the rate of change of helicity is given by
the general formula (3.115). Now by (4.15) and Green’s identity∫

u · ∇2ω dV =
∫

ω · ∇2udv = −
∫
(∇× ω) · ω dV,

Fig. 8.25. Numerical simulation of the bridging process of a trifold vorticity tube.
Adapted from Kida and Takaoka (1994)
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(3.115) yields

d
dt

∫
(∇× u) · udV = −2ν

∫
(∇× ω) · ω dV. (8.127)

Therefore, the integrand on the right is of exactly the same form as that on
the left, with u being replaced by ω. One may call (∇× ω) · ω the vorticity
helicity density and its integral the vorticity helicity. For the helicity density
we may use the intrinsic coordinates along a streamline, see (3.2) and (3.3),
such that ω · u = ξq2; while for the vorticity helicity density we use the
intrinsic coordinates along a vorticity line and denoting ω = tωω such that

(∇× ω) · ω = ζω2, (8.128)

with ζ ≡ tω · (∇ × tω) being the torsion of neighboring vorticity lines. Then
(8.127) is cast to a neat form

d
dt

∫
ξq2 dV = −2ν

∫
ζω2 dV. (8.129)

Moreover, corresponding to (3.52) there is

|∇ × ω|2 = ζ2ω2 + |(∇× ω)× tω|,

and the vorticity field will be Beltramian if the “vorticity Lamb vector” (∇×
ω) × ω vanishes. Therefore, (8.127) indicates that the strongest change of
helicity density happens at places where the viscous vorticity field is locally
Beltramian. Note however not all Beltrami vorticity field has this function.
An exception is Trkalian flows, which is a Beltrami flow with constant ξ, so
that ζ = ξ. Then (8.129) degenerates to the balance of the rate of change of
total kinetic energy and dissipation, losing any relevance to the helicity. But
for a linear combination of Trkalian flows with each constituent having its
own ξ, such as the ABC flow met in Sect. 3.3.1, (8.129) is not trivial. Kida
and Takaoka (1991b) have shown that the helicity of the viscous ABC flow
decreases in time due to the diffusion, while no reconnection occurs.

8.4 Vortex–Boundary Interactions

The interaction of vortices and boundaries is a very wide subject. The bound-
ary can be a rigid or flexible wall, and an interface of two fluids or a free
surface. A clear understanding of the interaction mechanisms and, whenever
possible, imposing proper control of the interactions, are extremely important
at both fundamental and applied levels.

Depending on the specific vortex and boundary, the relative scale of
the vortex and body, the interaction orientation, etc., as well as other flow
parameters and boundary geometry, there can be a huge variety of interaction
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patterns, impossible to be examined in a section. However, a vortex–boundary
interaction problem can always be decomposed into several more primary
physical processes, of which most have been or to be addressed in this
book: the vorticity generation from boundaries (Sect. 4.1), interaction-caused
boundary motion and deformation (Sects. 4.3.2 and 4.4.4), as well as un-
steady boundary-layer separation (Sect. 5.4), the rolling-up and evolution of
separated vortex layer (Sects. 4.4, 7.3, 7.4, and 8.1), vertical-flow instabil-
ity and vortex breakdown (Chap. 9), and the interaction-caused aerodynamic
force and moment on the body surface (Chap. 11). In a broad sense, vortex-
boundary interactions also include the formation of near-wall vortical struc-
tures in wall-bounded turbulence (Chap. 10) and their reaction to the wall.
Besides, vortex-induced structure vibration should be within one’s concern as
well, but is beyond the scope of this book. A good knowledge of these primary
physical processes certainly makes it easier to understand various complicated
composite interactions encountered in practice. Therefore, in this section we
only discuss a few typical examples. For further materials the reader is referred
to the reviews of Doligalski et al. (1994) and Rockwell (1998).

8.4.1 Interaction of Vortex with a Body

The examples of vortex–solid wall interactions to be discussed here are: the
interactions between an isolated vortex and a solid wall parallel or perpendic-
ular to the vortex axis, and the rebound of vortices from a solid boundary.

First, consider the interaction of an isolated straight vortex and a parallel
wall. When the vortex scale is much smaller than the body scale, at the sim-
plest approximation level the problem can be modeled by a two-dimensional
point vortex of circulation Γ above an infinitely extended flat wall at hight
a, with a uniform oncoming flow U0. The Reynolds number is defined as
Re = Γ/2πν. To satisfy the no-through condition, we introduce an image
vortex below the wall, which induces a velocity V = Γ/4πa at the real vortex.
Thus, the net advection speed is

Vc = U0 −
Γ

4πa
, (8.130)

which suggests introducing an advection rate

α =
Vc
U0

= 1− Γ

4πaU0
(8.131)

depending on the strength and height of the vortex. A smaller α implies a
stronger vortex–wall interaction.

At low Reynolds numbers, the influence of the vortex–wall interaction on
the surrounding flow is quite weak. In contrast, when Re is large, the in-
teraction can trigger a series of complex responses in the nearby boundary
layer. The vortex induces a reversed flow and an adverse pressure gradient



436 8 Vortex structure

in a local region inside the boundary layer. The fluid elements in this region
are compressed along the streamwise direction, associated with a local vor-
ticity concentration. Consequently, a thin fluid layer is quickly squeezed up
from the interior of the boundary layer, moving through the strong vorticity-
gradient layer near the wall and suddenly erupting into the external flow.
This is precisely an unsteady boundary-layer separation process addressed in
Sect. 6.4.2 in terms of the Lagrangian description. The separated shear layer
carries strong vorticity, often rolls into vortices, and produces a strong inter-
ference to the external flow.

The above interaction process has been confirmed by theoretical analysis
and numerical simulation. The process is hard to be studied experimentally,
because the unsteady boundary-layer separation develops rapidly at very small
spatial scales. But various experiments have verified the late-stage evolution
of the boundary-layer separation, namely the suddenly erupted thin fluid layer
has very strong vorticity and quickly rolls into new vortices, known as sec-
ondary separated vortices. An instantaneous streamline pattern of vortex–wall
interaction obtained by the numerical simulation of Peridier et al. (1991) is
shown in Fig. 8.26. The primary vortex is centered right above x = 0 (beyond
the figure) and rotates in counterclockwise direction, while the secondary vor-
tex rotates in clockwise direction. On the left of the secondary vortex we
see the converging of streamlines that leads to a spike of the boundary-layer
displacement thickness.

Not only the boundary-layer behavior is altered by the vortex–wall interac-
tion, but also the motion of the primary vortex can be significantly changed by
the formation of secondary vortex in a complicated manner. A typical example
is the rebound of a vortex pair or vortex ring from the wall. We consider the
vortex pair rebound phenomenon from a surface. A pair of inviscid vortices of
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Fig. 8.26. Instantaneous streamlines in the boundary layer at t = 0.75 showing a
secondary vortex. From Peridier et al. (1991)
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equal and opposite circulation at the same height above a flat boundary, either
a solid wall or a free surface, may approach the boundary under their mutual
induction. In this process the vortices will separate from each other and never
rebound from the boundary (Lamb 1932; Saffman 1979, 1991). The observed
vortex pair rebounding from a ground has been attributed to the viscous sep-
aration induced by the vortex pair and the formation of secondary vortices
(Harvey and Perry 1971; Peace and Riley 1983; Orlandi 1990). Figure 8.27,
from the direct numerical simulation of Orlandi (1990), clearly explains the
entire interaction process.

We focus on the left part of the vortex pair, which has ω < 0 and induces
a strong vortex layer on the wall with ω > 0. The action of the primary vortex
makes the layer sheds out of the wall and then rolls into a secondary vortex,
which has a strong core and is connected to the near-wall shear layer by a
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Fig. 8.27. Vortex dipole rebound from a wall. The contour plots of vorticity at
Re = 800. From Orlandi (1990)
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feeding sheet. Note that the secondary vortex also induces a weak tertiary vor-
tex. The upward motion of the secondary vortex just blocks the trend of the
primary vortex to move outward parallel to the wall (see the plot at t = 10).
Consequently, the primary and secondary vortices form a vortex couple, whose
interaction results in an upward motion away from the wall (t = 12). This
is the rebounding. In this newly formed vortex couple the circulation of the
primary vortex is larger, and hence the couple follows a circular trajectory
bending toward the primary vortex (t = 14). Consequently, the couple turns
toward the wall again, causing another rebounding. Theoretically, this re-
bounding process may repeat many times, but due to the viscous dissipation
the vortex couple eventually becomes a circular vortex rotating around its
center.

Similar phenomena can be observed in the interaction of a vortex ring
and a solid wall parallel to the ring plane. The vortex ring induces unsteady
boundary-layer separation followed by the eruption of the secondary vortex
ring, and then the appearance of even a series of rings. It is worth noticing
that the circulation of the secondary ring can be comparable with that of the
primary one; thus, their interaction may alter the latter to a significant extent.

A more complicated vortex–wall interaction happens when the vortex axis
is normal rather than parallel to the wall. The primary importance of this ver-
tical interaction lies in the fact that it is the simplest fluid dynamics model for
understanding the mechanisms involved in meteorological tornados. However,
even such an apparently simple model has already contained complicated fluid
dynamic mechanisms, of which a complete knowledge is not yet available. We
have briefly encountered this problem in Sect. 6.2.3 on conical similarity vortex
solutions, where we saw the nonexistence of steady and regular conical simi-
larity solution satisfying both no-slip condition on the wall and the regularity
condition at the vortex axis. The interaction of a tornado-like vortex with the
ground is far more complicated than any similarity solutions can simulate.
The vertical interaction of a vortex and a no-slip wall has been studied by
many investigators, both experimentally and numerically (Maxiworthy 1982;
Lewellen 1993; Arrese and Fernandez-Feria 1996; Lewellen and Lewellen 1997;
Nolan and Farrell 1999b; Hirsa et al. 2000).

Hirsa et al. (2000) have conducted experimental and numerical simula-
tions of the early stage of the vertical interaction of a columnar vortex and
a no-slip wall at low Reynolds numbers. The experiment was carried out in
a water tank which produced a Burgers vortex, and in the numerical simula-
tion the unsteady Navier–Stokes equation was solved in order to capture the
rich mechanisms during the interaction evolves as time. In the computation
the experimentally produced Burgers vortex was used. Both experiment and
computation did show strong unsteadiness of the flow in the early stage of
this vertical interaction. The key character of the flow field is a spatially oscil-
lating boundary-layer structure of the Bödewadt type near the vortex core.2

Typical numerical results of this oscillating structure are shown in Fig. 8.28.

2 On Bödewadt-type boundary layer see Bödewadt (1940) and Lugt (1996).
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(a) (b)

Fig. 8.28. Interactions of a laminar vortex with the ground. (a) Contour of Γ
for Re = 125 at time t = 20. (b) Contour of the azimuthal vorticity η. From
Hirsa et al. (2000)

In Fig. 8.28a are the isocirculation lines (which are actually vorticity lines in
a meridian plane), of which the spatial oscillation is obvious. Figure 8.28b
plots the contours of azimuthal vorticity η on the meridian plane. The basic
physical mechanism behind the figures is as follows.

Due to the induction of the secondary flow in the interaction zone, adja-
cent to the wall there appears a strong inflow from the boundary layer at large
radius, which forms a very thin shear layer (a vortex layer) with azimuthal
vorticity right above the wall. Initially, this thin layer cannot be easily iden-
tified, but the inward radial flow has to turn up near r = 0 and then becomes
an outward radial flow. The advective velocity makes the near-wall vortic-
ity lines tilt away from the wall and form a new shear layer, in which the
azimuthal vorticity is of opposite sign to that in the primary wall layer. The
new layer moves outward and leads to the formation of the third shear layer
with different signed azimuthal vorticity and inward radial velocity. It is this
mechanism of the formation of shear layers with alternative signed azimuthal
vorticity and radial velocity that forms the spatially oscillating boundary-
layer structure. But, as the distance from the wall increases, the amplitude
and strength of azimuthal vorticity are decaying due to viscosity. Besides, the
shear layers may roll up at their edges to form the toroidal vortex structure.
This is the most significant property in the effusive corner region of the verti-
cal vortex–wall interaction. Note that the large toroidal vortex structure does
not develop from the columnar vortex itself as in the case of vortex breakdown
(Sect. 9.4). Rather, it comes from the spatially oscillating boundary layer.

The preceding examples have demonstrated the great complexity of the
vortex–wall interactions, yet they are confined to two-dimensional and axisym-
metric flows. In a fully three-dimensional interaction the situation is further
complicated, including the change of the flow topology. As an illustration of
three-dimensional vortex–body interactions, Fig. 8.29 sketches a complex vor-
tex system observed in a jet in crossflow (Shi et al. 1991). The jet is issued
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Oncoming crossflow boundary layer vorticity
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Fig. 8.29. The near-field vortex system in jet in crossflow. Sketched based on an
experiment: (a) the side view (central plane), (b) the top view, (c) a perspective
view. From Shi et al. (1991)
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normally out of an orifice of a flat plate and interacts with the oncoming
boundary-layer flow. The flow is incompressible, so the vorticity of this vor-
tex system is created entirely from the solid surface, including the flat plate,
the inner wall of orifice, and their juncture. From the figure we first see the
vorticity in the attached boundary layer (on the left). Approaching the jet, an
adverse pressure gradient causes the boundary layer to separate and form a
horseshoe vortex. The separated flow reattaches in front of the jet and there
is a secondary separation and another horseshoe vortex.

Similarly, inside the jet pipe the vorticity in the pipe shear flow eventually
leaves the orifice and becomes a free vortex layer. Then, because along the side
edge of the orifice τw = µn×ω has a nonzero component and the wall curva-
ture is very large, a pair of weak vortex layers is formed near the edge by the
mechanism of σvis defined by (4.25), which is experimentally distinguishable
from the orifice vortex layer. Finally, as the horseshoe vortices are advected
downstream of the jet, some horn vortices appeared. These microtornados are
somewhat similar to the Kármán vortices. However, the fundamental differ-
ence is that, unlike a solid cylinder, no new vorticity can be created from the
jet plume boundary, as stressed by Shi et al. (1991).

8.4.2 Interaction of Vortex with Fluid Interface

As another type of vortex–boundary interaction, the interaction of vortices
and a free surface is again a very complicated nonlinear and unsteady process
involving vortex–vortex and vortex–wave interactions. Understanding this
type of interactions has profound theoretical value and important applica-
tions.

In Sect. 8.4.1 we discussed the rebounding of a vortex pair from a solid
wall. Whether or not a viscous vortex pair rebounds from a free surface is a
more delicate problem. The experiment of Baker and Crow (1977) and low-
Reynolds-number computation of Peace and Riley (1983) intended to support
the rebounding phenomenon, but Orlandi (1990) and Tryggvason et al. (1992)
showed numerically that, on a flat, “free-slip” (in fact, shear-free) surface
the rebound does not occur at high Reynolds numbers. Tryggvason et al.
have attributed the previously observed rebounding to the effect of surface
contamination. However, it seems that most of these discussions can be settled
by the simple analysis of Saffman (1991), who provides a mathematic proof
that on a flat free surface the vorticity centroid does not approach the surface
monotonically. We now present Saffman’s analysis.

Assume the vortex pair initially moves down toward a flat free surface
y = 0, with the vorticity antisymmetric about x = 0. By (4.105), there is
ω = 0 at y = 0. Let

Γ =
∫ ∞

0

∫ ∞

0

ω dxdy > 0, ȳ =
1
Γ

∫ ∞

0

∫ ∞

0

ωy dxdy > 0
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be the total strength and the height of the centroid of the vorticity in the first
quadrant, respectively. The boundary conditions are

u = 0, ω = 0, on x = 0, (8.132a)

v = 0, ω = 0, on y = 0. (8.132b)

Note that no free-slip condition is imposed. The vanishing vorticity on the
free surface is a direct consequence of (4.104b) on a flat and stationary free
surface.

Introduce the horizontal component of the impulse in the first quadrant

Ix = Γ ȳ =
∫ ∞

0

∫ ∞

0

ωy dxdy. (8.133)

Differentiate this and using the vorticity transport equation

∂ω

∂t
= −u∂ω

∂x
− v

∂ω

∂y
+ ν∇2ω,

it follows that

Γ
dȳ
dt

+ ȳ
dΓ
dt

=
∫∫ [

−y
(
u
∂ω

∂x
+ v

∂ω

∂y

)
+ νy∇2ω

]
dxdy

=
∫∫ (

vω + νy
∂2ω

∂x2
+ νy

∂2ω

∂y2

)
dxdy. (8.134)

Let us calculate each terms on the right-hand side of (8.134) by using the
boundary condition (8.132). The first term yields∫∫

vω dxdy = −1
2

∫ ∞

0

v20 dxdy,

where v0 = v(0, y), while the second term is∫∫
νy

∂2ω

∂x2
dxdy = −ν

∫ ∞

0

y
∂ω

∂x

∣∣∣
x=0

dy < 0,

where use has been made of the fact that, due to the vorticity diffusion, at
x = 0 and y > 0 there must be ∂ω/∂x > 0. Then the third term yields∫∫

νy
∂2ω

∂y2
dxdy = −ν

∫∫ [
∂

∂y

(
y
∂ω

∂y

)
− ∂ω

∂y

]
dxdy = 0.

Thus, we obtain

d
dt

(Γ ȳ) = −1
2

∫ ∞

0

(
v2 + 2νy

∂ω

∂x

) ∣∣∣∣
x=0

dy < 0. (8.135)
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But, since

dΓ
dt

= −ν
∫ ∞

0

∂ω

∂x

∣∣∣∣
x=0

dy − ν

∫ ∞

0

∂ω

∂y

∣∣∣∣
y=0

dx < 0, (8.136)

there is no reason to infer from (8.135) the conclusion that dȳ/dt < 0, i.e., to
assume the vorticity centroid ȳ should decrease monotonically.

Apply an analysis similar to the derivation of (8.135), we also obtain

d
dt

(Γ x̄) =
1
2

∫ ∞

0

(
u2 + 2νx

∂ω

∂y

) ∣∣∣∣
y=0

dx > 0. (8.137)

Then, as Saffman argued, as t→∞, (8.137) indicates that the vorticity moves
asymptotically away from x = 0 and hence the right-hand side of (8.135) will
tend to zero. Therefore, there is

Γ ȳ ∼ const. as t→∞.

Thus, along with (8.136), we see that a continuous vorticity reduction due to
dissipation leads to an increase of ȳ, implying a rebound in a way which will
depend upon the value of viscosity and the initial distribution of vorticity.

While the above discussion is limited to highly idealized simple circum-
stances, we now turn to some more complex interaction of vortices with a
free surface, focusing on the vorticity generation from the free surface and
corresponding vortex deformation.

A typical complicated vortex–free surface interaction occurs when a pair of
submerged vortices or a vortex ring moves to a free surface S as revealed by the
experiments of Sarpkaya and coworkers (e.g., Sarpkaya 1992, 1996; Sarpkaya
and Suthon 1991). First, consider a pair of vortices. The experiments have
shown that as a vortex pair approaches the free surface S by mutual induction,
the surface will be humped up to form a Kelvin oval, and at mean time a series
of lateral vortices appears, riding on the quasicylindrical oval (“striations”),
bounded by two rows of “scars” and whirls digging into the water at the roots
of the oval (Fig. 8.30). This interesting finding has excited many numerical
simulations, such as those based on two-dimensional vortex sheet model for
the free surface (e.g., Tryggvason 1989; Yu and Tryggvason 1990) and Navier–
Stokes solver (Ohring and Lugt 1991; Lugt and Ohring 1992), as well as fully
three-dimensional Navier–Stokes simulation (Dommermuth 1993).

Based on the results of these computations, Wu and Wu (1996) outlined
the physics relevant to the vorticity creation in this interacting process. Ini-
tially, the interaction of the rising vortex pair with S is apparently a two-
dimensional inviscid process and can be mimicked by taking the pair as point
vortices and S as a weak boundary vortex sheet. As the Kelvin oval is formed,
the surface tangent vorticity ωπ increases to O(1) as indicated by (4.105), or
equivalently, the sheet strength γ is of O(δ), δ = Re−1/2. Note that the varia-
tion of γ already contains the vorticity creation process as seen from (4.154a)
or (4.154b). Between the vortex pair and S, the flow can still be irrotational.
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Fig. 8.30. Striations and scars. Based on Sarpkaya and Suthon (1991)

Then, at a finite Re, new vorticity produced at S is diffused into the fluid; and
at a certain stage of the early interaction, the vortex sheet needs to be refined
as a free-surface boundary layer. By (4.112), then, the boundary vorticity flux
on S is dominated by the boundary layer correction of surface acceleration;
that is, σ = O(δ). In two-dimensions (4.112) is reduced to

σ = −D0u
′
s

Dt
+ u′

s

{
− ∂

∂s
U0s + κU0s

}
+O(δ2), (8.138)

where u′
s can be solved in boundary-layer approximation (Sect. 4.3.2), pro-

vided that the elevation of S and its velocity induced by the primary vortices
have been known from inviscid calculation. Qualitatively, σ concentrates in
the local region of high curvature, where separation may happen at a suf-
ficiently large Froude number (about 0.5 and larger), so that a pair of sec-
ondary vortices of opposite sign is formed below S. Then, toward the end
of this stage the boundary layer approximation is no longer applicable. This
newly produced secondary vortex pair is responsible for the observed scars
and possible rebounding of the primary vortices.

The preceding two-dimensional picture cannot explain the observed stri-
ation, which are related to the vortex instability along the axis. In a three-
dimensional Navier–Stokes simulation, Dommermuth (1993) has introduced
an initial disturbance of the location and vorticity distribution of the primary
vortices to observe the effect of instability. He finds that, as a vortex tube in-
teracts itself and its neighbors, sheets of helical vorticity are spiraled off. Due
to shortwave inviscid instability, these sheets manifest themselves as a briads
of crossaxis vorticity, a structure independent of the presence of S. But, as
they rotate around and translate with the primary vortices, some braids will
approach S and their open ends become normal to S to form the observed
whirls as the outer boundary of the scars.

The interaction of a vortex ring and a free surface can be similarly ana-
lyzed. In an experimental study of the normal collision process of a horizontal
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vortex ring and an initially flat free surface, Song et al. (1992) have found that
different vortex-ring strengths will produce different wave patterns on the free
surface. In the initial stage of the interaction there appears a single circular
sunken on the free surface; and as the ring strength increases on the free sur-
face there may also appear rapidly developed axisymmetric traveling waves. In
the later stage of the interaction, there will be fully three-dimensional surface
waves with their pattern depending on the core structure. Similar phenomena
can be observed on a density interface, for which Maxworthy (1977), Sarp-
kaya (1983) and Dahm et al. (1989) have carried out experimental studies.
They found that a strong vortex ring can move across the interface, a weaker
one can only go through partially, and a very weak one cannot at all. This
observation has been confirmed by numerical simulation.

Finally, because an interface or free surface may propagate traveling waves,
the vortex–interface interaction can modulate these waves. This is another
unique feature of vortex–interface interactions. We exemplify this modulation
by a numerical study of Fish (1989). At small Froude numbers, Fish applied
the perturbation technique to linearize the governing equations and bound-
ary conditions, and thereby obtained the deformation of the surface traveling
waves due to the interaction with a vortex pair. It is found that, because of the
interaction of the vortex-induced flow and the group velocity of the traveling
wave, on the free surface a part of waves is compressed to have shorter wave-
length, and another part is stretched to have longer wavelength, see Fig. 8.31.
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Fig. 8.31. The modulation of free-surface traveling wave with amplitude η by a
vortex pair. Based on Fish (1989)
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Summary

1. A vortex is typically, though not always, formed due to the motion of
a solid body moving through a fluid of small viscosity. This involves a
sequence of processes, from flow separation and formation of free vortex
layer to the latter’s rolling up into spiral structure, and to the smearing out
of the multilayer structure by viscous diffusion. This sequence of processes
makes the vorticity further concentrate in a thin smooth vortex core.

2. The wide variety of vortex core structures can be seen from those specific
vortex solutions studied in Chap. 6. But generally a vortex core is more
complicated than those analytic solutions under idealized conditions. A
vortex may have a feeding shear layer to continuously send the vorticity
created at solid surface into the core that is then advected by axial velocity
(e.g., leading-edge vortex), or until it is saturated and sheds off from
the body (e.g., newly produced wake vortex behind a cylinder). For a
quasicylindrical vortex core, the radial variation of circumferential velocity
always enhances the core axial-flow velocity, so that the variation of axial
velocity at the outer edge of the core has a magnification effect at the
vortex axis. On the contrary, the viscosity plays a key role in the inner core
and always results in a deficit of the axial velocity. Moreover, the vortex
core itself has special dynamics and evolution processes, as revealed by
using the helical-wave decomposition.

3. Once a generic curved vortex is to be considered, its self-induction (a
purely kinematic effect) becomes a dominant mechanism in its motion.
Bold approximations have to be made for theoretical analysis, and sig-
nificant insight has been gained thereby. The simplest model is a thin
vortex filament of negligible core structure under local-induction approx-
imation (the Hasimoto theory), by which a vortex core was found to be
a waveguide for the first time and can support nonlinear solitary waves
in its curvature and torsion. The Hasomoto theory has been extended to
include the effects of finite core, nonlocal induction, self-stretching, and
background flow, which can explain more phenomena observed in vor-
tex motion. In fact, the aforementioned helical wave propagating along a
finite core indicates that the core may also serve as waveguide of different
kinds of vortical waves.

4. As one proceed to consider the motion and interaction of a system of mul-
tiple vortices, further simplifications have to be introduced. The simplest
vortex-system model consists of two-dimensional point vortices, which is
a Hamiltonian system and has well studied properties such as invariants,
integrability, and chaos. Next to the point-vortex system is the inviscid
vortex-patch system consisting of two-dimensional finite patches of arbi-
trary shape, with a constant vorticity in each patch. The two-dimensional
motion and interaction of the patches can be reduced to the Lagrangian
evolution of the one-dimensional boundary curves of each patch. While
both point-vortex system and vortex-patch system cannot address the
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viscous effect in vortex interaction, this effect is of particular importance
in changing the topology of the system, because it can cause two approach-
ing vortices (or two segments of a single vortex) to be cut and reconnected
(reconnection for short) as observed in the evolution of aircraft trailing
vortices and turbulence. The reconnection process involves many aspects
of viscous vorticity and vortex dynamics, well beyond the reach of any
circulation-preserving theory.

5. The vortex–boundary interactions form another rich category of vortex
dynamics of significant practical importance. The interaction of a vortex
and a solid wall may have various patterns depending on their shapes and
relative orientation, and may cause strong generation of new vorticity
from the wall that forms secondary vortices. The interaction of a vertical
vortex and a flat wall, apparently a quite simple configuration, turns out
to be unexpectedly complicated and likely to be spontaneously unsteady.
This explains in part the full complexity in understanding meteorological
tornados from fluid-dynamics side. In contrast, the interaction of a vortex
and a free surface or interface can be more subtle since the shape of the
surface keeps changing during the interaction process. It is this shape
evolution that forms a detectable trace of the vortex motion and is of
practical interest.



Part III

Vortical Flow Instability, Transition and
Turbulence
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Vortical-Flow Stability and Vortex Breakdown

Flow stability theory is an important area of fluid mechanics that explores
how a flow loses its stability and becomes turbulence eventually. Similarly,
vortex stability theory is an important portion of vortex dynamics. Many
complicated phenomena appearing in vortex motion can only be explained
in terms of vortex instability. Miscellaneous vortices of various scales may
occur in the complicated process as a flow loses its stability and gradually
becomes turbulent. Typical examples include the Taylor vortices between two
concentric circular cylinders, streamwise and hairpin vortices in boundary
layers, the Görtler vortices in concave-wall boundary layers, etc.

The very rich contents and wide variety of vortical-flow instabilities can-
not be fully covered by a single chapter. The choice of materials here is based
on the following considerations. First, the basic concepts of hydrodynamic
instability, mainly that of shear layers, should be introduced as a foundation
of later discussions on the vortical structures in transitional and turbulent
flows (Chap. 10). Second, the priority is given to the new progresses on the
vortex instability theory in recent years, such as the absolute/convective insta-
bility, the nonmodal instability, strained vortex instability, and the improved
theoretical explanation of the mechanisms in vortex breakdown. Throughout
this chapter we assume the flow is incompressible.

Abundant literatures are available related to hydrodynamic stabilities, for
example the books of Drazin and Reid (1981), Schmid and Henningson (2001),
Drazin (2002), and Zhou and Zhao (2004). Detailed materials of vortical-flow
stability can be found in the book of Yin and Sun (2003) and the review
article of Ash and Khorrami (1995); see also the reviews of Huerre and Rossi
(1998) and Rossi (2000).

9.1 Fundamentals of Hydrodynamic Stability

A flow that one is interested in its stability is called a basic flow, which is a
solution of the Navier–Stokes or Euler equation. The velocity and pressure of
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the basic flow are denoted by (U(x, t), P (x, t)), which is subjected to distur-
bances (u(x, t), p(x, t)) under natural or laboratory conditions. The disturbed
flow is

(u∗(x, t), p∗(x, t)) = (U(x, t), P (x, t)) + (u(x, t), p(x, t)) . (9.1)

If the disturbances decay as they evolve in space and time so that the flow
recovers its original basic-flow state, the flow is said to be stable. If the dis-
turbances continuously grow so that the basic flow develops to another state
or becomes turbulent, the flow is said unstable.

Mathematically, a basic flow is stable (in the sense of Liapounov) if for all
ε > 0 there exists δ(ε) such that when

‖u(x, 0)‖, ‖p(x, 0)‖ < δ,

then
‖u(x, t)‖, ‖p(x, t)‖ < ε for all t > 0.

Here the norm ‖·‖ can be chosen in different ways. A flow is said to be
asymptotically stable if it is stable and, moreover,

‖u(x, t)‖, ‖p(x, t)‖ → 0, as t→∞.

In particular, when the norm is the total disturbance kinetic energy

Kv(t) =
∫
D

1
2
|u|2dV (9.2)

with initial value Kv(0), then if

lim
t→∞

Kv(t)
Kv(0)

→ 0 (9.3)

the basic flow is asymptotically stable. If there exists a threshold energy δ > 0,
and the flow is stable for Kv(0) < δ, it is said conditionally stable. If δ →∞,
the flow is unconditionally stable. If

dKv
dt

< 0 for all t > 0, (9.4)

then the flow is said monotonically stable. These concepts in terms of energy
norm are the basis of energy method in stability analysis (e.g., Serrin 1959,
Joseph 1976, Schmid and Henningson 2001).

The stability behavior of a flow usually depends on the critical values of
some characteristic parameters of the flow. Hence, these critical values de-
termine the stability criteria. Since the shearing process is dominated by the
Reynolds number, several critical Reynolds numbers can be defined for differ-
ent types of flow stability. In Fig. 9.1, the abscissa is the Reynolds number
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Fig. 9.1. Sketch illustrating critical Reynolds numbers. Region I : monotonically
stable; region II : globally stable but not necessarily monotonically stable; re-
gion III : conditionally stable; region IV : possibly unstable. Reproduced from Schmid
and Henningson (2001)

and the ordinate, the initial disturbance energy Kv(0). The curve that di-
vides regions III and IV is the stability characteristic curve. Its intersection
with the Re-axis is the critical Reynolds number ReL for linear instability
with Kv(0) → 0. For Re > ReL, the flow is unstable to certain infinitesi-
mal disturbances. For Re = ReL, the flow is at least unstable to infinitesimal
disturbance of one frequency. ReG dividing regions II and III is the critical
Reynolds number of global stability. For ReG < Re < ReL, the flow is condi-
tionally unstable, since the disturbances will decay if Kv(0) is smaller than a
threshold and otherwise the flow is unstable. For Re < ReG, the flow is glob-
ally stable. One may imagine that ReG corresponds to the lowest Reynolds
number for which turbulence can be sustained. The region of Re < ReG can
be further divided into subregions I and II, with their border being ReK. For
Re < ReK the flow is monotonically stable. Note that in a flow that is stable
but not monotonically stable, growing disturbances may exist in some finite
time period, called transient growth.

9.1.1 Normal-Mode Linear Stability

The most mature and popular method in the study of flow stability is linear
analysis for sufficiently small disturbances. A linear theory can give sufficient
condition for instability, since if the flow is unstable to small disturbances it
must be so to large ones. But a linearly stable flow may not be nonlinearly
stable.

In the linear theory, the disturbance equations become homogeneous linear
partial differential equations. For flows with vanishing disturbance at bound-
ary, which is our present concern, the boundary conditions are homogeneous
as well. It is well known that such a boundary-value problem implies an eigen-
value problem.
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Consider a columnar vortex with axis along the z-direction as example. By
the Laplace and Fourier transforms, the following expression can be obtained
in the cylindrical coordinates (r, θ, z):

u(x, t) = Re
∫ ∞

−∞
dk

∞∑
n=−∞

∫
dωû(r, k, n, ω)ei(kz+nθ−ωt), (9.5)

where Re represents the real part, k and n (n is a discrete integer) are the
wave numbers along z and θ directions, respectively. Substituting (9.5) into
the linearized disturbance equations, one obtains a dispersion relation for the
eigenvalues of k, n, and ω

F(k, n, ω;Re, ...) = 0. (9.6)

This approach is usually referred to as the normal-mode analysis, in which
one used to consider either temporal mode or spatial mode. In temporal-mode
analysis, the variation of disturbances as time is the concern, where k and n
are given real values. The eigenvalue ω is complex, ω = ωr + iωi. Thus, for a
given mode, the velocity disturbance can be expressed as

u(x, t) = û(r, k, n)eωit · ei(kz+nθ−ωrt), (9.7)

where ûuu is the amplitude and ωr is the frequency. As time goes on, û will vary
while the disturbance is propagating as a travelling wave. ωi is the growth rate
of the disturbance. The flow is stable or asymptotically stable if ωi < 0, and
neutrally stable if ωi = 0. When ωi > 0, the disturbance grows exponentially
with time and the flow is unstable.

In the spatial-mode analysis, frequency ω and wave number n are chosen
real but eigenvalue k = kr + iki is complex. Then (9.7) is replaced by

u(x, t) = û(r, n, ω)e−kix · ei(krx+nθ−ωt). (9.8)

The flow is linearly stable or neutrally stable in its spatial development if
ki ≥ 0. When ki < 0, the disturbance grows exponentially in space and
the flow is unstable. In a laboratory experiment, a vibrating ribbon is often
used to introduce a small disturbance of given frequency and amplitude so
that the development of the disturbance along the downstream direction can
be measured. This corresponds to the spatial mode. But, the spatial-mode
analysis is mathematically more difficult than the temporal-mode one, so most
of the theoretical works are based on temporal-mode analysis.

Although the temporal-mode analysis can explain certain flow instability
behaviors, one may be more interested in the flow response to an initial and
localized disturbance, i.e., the spatio-temporal development of the response
to an impulsive disturbance (impulsive response), which is more inherently
related to the physical stability concept. This has led to the development
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Fig. 9.2. Sketches of the impulse response. (a) Absolutely unstable; (b) Convec-
tively unstable

of the theory of absolute and convective stability, which has revealed more
comprehensive and profound flow instability behavior both qualitatively and
quantitatively.

Absolute instability (AI) is referred to the situation where local distur-
bances can propagate both upstream and downstream (Fig. 9.2a) so that an
unstable flow is gradually contaminated everywhere by a point-source input.
In contrast, convective instability (CI) is referred to the situation where local
disturbances propagate and develop only in downstream direction (Fig. 9.2b)
so that the flow can eventually recover its original undisturbed state at the
location where the disturbance is initially introduced.

Strictly, the aforementioned spatial-mode analysis is applicable only to a
flow that is convectively unstable. For an absolutely unstable flow, the region
influenced by an impulsive disturbance will be large enough after certain time,
leading to an onset of synchronized self-sustained oscillation, or self-excited
resonance, which can bury the initial disturbances. In this case, observing
spatial propagation of an initial disturbance is obviously meaningless. Thus,
the AI/CI theory is a powerful tool to clearly distinguish the temporal and
spatial development of disturbances.

One of the purposes of stability analysis is for flow control, where the
AI/CI analysis is of crucial importance. Depending on different applications,
in a vortex-control problem it is desired to either enhance a favorable vortex or
disrupt an unfavorable one. Many experimental and numerical studies have
shown that an unsteady forcing with a very small power input may cause
essential changes of the flow state, hence is an efficient method for flow control
(e.g., Wu et al. 1998; Seifert and Pack 1999). Here, to answer the question
such as how to impose the forcing, where to impose the forcing, and what
kind of disturbance modes to pose for the maximum absolute growth rate,
requires a clear understanding of the specific AI/CI character of the flow.

A full presentation of the AI/CI theory involves quite delicate mathematics
and complicated calculations, for which the reader is referred to Huerre and
Monkwwitz (1990), Huerre and Rossi (1998), and Yin and Sun (2003). Here,
we only briefly outline its basic concepts and research methodology. Our task
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is to study the spatial-temporal development of an impulsive response within
the framework of the linear normal-mode analysis. The disturbance velocity
can be decomposed to

u(x, t) = û(r, n)ei(kz+nθ−ωt). (9.9)

Unlike the temporal or spatial mode alone, both the axial wavenumber k and
frequency ω are now complex. Thus, corresponding to (9.9), for the example
of a swirling vortex, (9.6) may take the form

D(k, ω;n, a, s,Re) = 0, (9.10)

where dimensionless parameters a and s characterize the axial velocity profile
and rotation level in a swirling flow (see (9.76)).

To determine the complex k and ω in the spatio-temporal evolution of an
impulsive response, the Briggs–Bers criterion (Briggs 1964; Bers 1975, 1983)
should be applied. Mathematically, based on the steepest-descent integral it
can be shown that to find the asymptotic temporal growth rate (at large time
after the impulse) is equivalent to finding those points with vanishing group
velocity; that is

∂ω

∂k
(k0;n, a, s,Re) = 0, (9.11a)

ω0 = ω(k0;n, a, s,Re), (9.11b)

where k0 is the saddle point of the dispersion relation in the complex k-plane,
or equivalently, the branch points ω0 in the complex ω-plane, see Fig. 9.3.
k0 and ω0 at a saddle point are called the absolute complex wave number
and absolute complex frequency, respectively. The imaginary part of absolute
complex frequency, ω0

i , is the absolute growth rate. An unstable flow will
be absolutely unstable if at least one of the branch-point singularities of the
dispersion relation lies on the upper half of the ω-plane (i.e. some ω0

i > 0);
and the saddle point obtained thereby is the coalescence of a downstream
travelling wave k+(ω) and an upstream travelling wave k−(ω), which can
be judged from the saddle point diagram by checking whether k+(ω) and
k−(ω) are from the upper and lower halves of the complex k-plane. This is

w i
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Fig. 9.3. Sketches for Briggs method. (a) Complex ω-plane; (b) Complex k-plane
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Fig. 9.4. The local stability categories of the spatially developing flow. (a) Uni-
formly stable, (b) convectively unstable, (c) almost absolutely unstable, (d) pocket
of absolute instability

the so-called pinching requirement for the path integral of wave package on
the k-plane. If these conditions do not hold, the unstable flow is convectively
unstable.

The above AI/CI theory is valid for strictly parallel flows. For weakly non-
parallel flows, the simplest approach is to apply local parallel assumption at
several streamwise locations and then perform AI/CI analysis at each location.
For this purpose, the local maximal temporal growth rate and local absolute
growth rate can be defined, respectively, as

ωi,max(z;Re) = ωi(kmax; z;Re), (9.12a)

ω0
i (z;Re) = ω0

i (k
0; z;Re). (9.12b)

Here, kmax corresponds to ∂ω/∂k(kmax; z;Re) = 0, k is real; k0 corresponds
to ∂ω/∂k(k0; z;Re) = 0, k is complex. The maximum of the local absolute
growth rate is denoted by ω0

i,max. According to the distribution of ωi,max and
ω0
i,max, a flow can be divided into four categories as shown in Fig. 9.4, by which

one can make following identifications:

(a) If ωi,max < 0 and ω0
i,max < 0 for all locations, the flow is locally and

homogeneously stable everywhere. Consequently, it is also globally stable.
(b) If ωi,max > 0 for a part of the flow field but ω0

i,max < 0, the flow is
convectively unstable in certain local region. The disturbances will grow
in a finite region but the flow is still globally stable.

(c) If at certain locations ω0
i,max ≈ 0, a region of absolute instability is about

to or already occur, though small. The flow is still globally stable. There
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exits a stable global mode of certain frequency decaying or growing very
slowly. An external excitation close to this frequency can easily lead to an
abrupt growth of the global mode and cause global resonance.

(d) When the region of absolute instability is greater than certain critical size,
the flow becomes globally unstable, and a global self-sustained oscillation
may occur. On the global instabilities for a spatially developing flow, see
Chomaz (2005).

A typical example to which the AI/CI analysis has been successfully ap-
plied is the wake instability behind a blunt body (Triantafyllou and Triantafyl-
lou 1986, Karniadakis and Triantafyllou 1989, Monkewitz and Nguyen 1987,
Monkewitz 1988a). The authors performed AI/CI analysis at various down-
stream locations of a circular cylinder based on the parallel flow assumption
(although the wake flow is already quite far from being parallel). The results
show that even at a Reynolds number lower than the critical one, an ab-
solutely unstable flow region already occurs locally in the wake. However, the
flow field is only convectively unstable and globally stable. For the flow with
Reynolds number greater than the critical one, the flow becomes absolutely
unstable in a region between the cylinder and certain location in the reverse
flow. Downstream of it, the flow is convectively unstable. The Kármán vortex
street is just a phenomenon of self-sustained oscillation in a globally unstable
system. The energy to maintain the oscillation comes from the absolute in-
stability region in the wake. Thus, the AI/CI analysis clarifies the formation
mechanism of the Kármán vortex street, which was discussed qualitatively in
Sect. 7.4.

9.1.2 Linear Instability with Non-normal Operator

In all preceding normal-mode analyses a single representative mode is consid-
ered sufficient for finding linear instability. Despite the simplicity and wide
applications of this approach, however, difficulties have been encountered.
While the critical Reynolds number predicted by normal-mode analysis agrees
very well with experiments in some special flows such as the Benard flow and
narrow-gap Taylor–Couette flow, it fails in most vortical flows. Examples in-
clude the plane Couette flow, plane Poiseuille flow, boundary layers, free shear
layers, and concentrated vortices. The critical Reynolds number predicted by
normal-mode theory in these flows may be much larger (or even infinity) than
the Reynolds number at which experiments found the flow becoming unstable.
To explain the discrepancies, a natural consideration is that real disturbances
are never infinitesimal but a finite-amplitude disturbance is beyond the ability
of linear analysis. Therefore, weakly nonlinear stability theory has been de-
veloped and proved successful (e.g., Stuart 1984, Craik 1985, Zhou and Zhao
2004).

Recent studies have revealed that, however, the linear effect on instabil-
ity is indispensable although nonlinearity is inevitable and necessary in the
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transition from laminar to turbulent flow. In fact, the property of the linear
operator in the disturbance equation, i.e., whether it is symmetric, normal,
or self-adjoint, plays a critical role, is of close relevance to the aforementioned
discrepancies.

Consider a linear operator L defined on a Hilbert space (complete inner-
product space) and its complex-conjugate transverse L†, the later being de-
fined by the inner-product integral relation

〈v, Lu〉 = 〈u,L†v〉

over the same domain D as L for any vectors u and v. A linear operator
is called normal if LL† = L†L, which includes symmetric and self-adjoint
operators.1 If L is normal and compact, its eigenfunctions form a complete
orthogonal set, so that the solution of the linear disturbance equation can be
expanded in terms of the eigenfunctions of L. To know whether a disturbance
will grow, therefore, it suffices to observe the subspace of growing modes: a
single (exponentially) growing mode will imply the linear instability, while
without such modes the flow is linearly stable. This is why the normal-mode
analysis can well predict linear instability. The linear operators in the stability
analysis of the Bernard flow and narrow-gap Taylor–Couette flow are of this
kind.

In contrast, if L is non-normal, although its eigenfunctions may still form
a complete set, they can be nonorthogonal. In this case, even if all individual
disturbance modes decay, a linear combination of some of them may lead
to transient algebraic growth. Thus, one cannot judge the stability simply
through a single-mode analysis.

To see how this happens, we express the disturbance evolution as a linear
dynamic system (e.g., Nolan and Farrell 1999a)

v̇ = Tv, (9.13a)

where v is a (column matrix) function describing the state of the disturbance
and T the time evolution operator. Define a positive-definite Hermitian oper-
ator M such that the energy of the system can be expressed by

E = v∗Mv, (9.13b)

where v∗ is the transpose complex conjugate of v. We transfer v to generalized
velocity coordinates

u = M1/2v, A = M1/2TM−1/2, (9.14a,b)

such that
u̇ = Au, u̇∗ = u∗A†, E = u∗u. (9.15a,b)

1 Boundary conditions should be understood implicitly built in the operator L.
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Since (9.14b) is a similarity transformation, the eigenvalues of A are the same
as those of T . Assume A is an autonomous operator for simplicity, the explicit
solution of (9.15a) is

u(t) = u(0)eAt, (9.16)

where the exponential of operator eAt is called the propagator (for its proper-
ties and calculations see, e.g., Hirsch and Smale 1974, Hale and Koçak 1991).
Then by (9.15) there is

∂E

∂t
= u̇∗u+ u∗u̇ = u∗A†u+ u∗Au = u∗(A† +A)u,

which and (9.16) yield

E(t) = u∗(0)e(A
†+A)tu(0). (9.17)

Now, since the energy operator (A† +A) is always normal no matter whether
or not A is, instead of examining the asymptotic behavior of the eigenvalues λi
of A† +A as t→∞ as we did in normal-mode analysis, we can now examine
the finite-time variation of λi(t′) during (0, t). Then the eigenvector associated
with the largest eigenvalue λmax will have the fastest growth (or least decay)
in energy during this interval, called finite-time optimal:(

1
E

∂E

∂t

)
max

= λmax or
(
E(t′)
E(0)

)
max

= eλmaxt
′
, t′ ∈ (0, t). (9.18)

If A is normal, evidently its eigenvalues are the same of A†+A; otherwise they
will be different, associated with nonorthogonal eigenvectors. Consequently,
even all eigenmodes of A are decaying, the disturbance energy may have a
finite-time transient growth.

For example, let u1 and u2 be two normal modes such that 〈u1,u2〉 van-
ishes due to orthogonality, then their contributions to the kinetic energy can
be superposed

〈u1 + u2,u1 + u2〉 = 〈q21 + q22〉, qα = |uα|, α = 1, 2.

Thus, if the kinetic energy of all normal modes decays, so must be that of any
disturbance. But if these modes are nonorthogonal, then

q2 = |u1 + u2|2 = q21 + q22 + 2q1q2 cos θ,

where θ �= π/2 is the angle between u1 and u2 in functional space. Thus,
assuming θ is time-independent, there is

q̇2 = q̇21 + q̇22 + 2(q̇1q2 + q1q̇2) cos θ.

Thus, if θ > π/2 , q2 may have algebraic growth even if both q̇21 and q̇22
are negative. But this growth can happen only in a finite time, because it
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Fig. 9.5. Sketch illustrating transient growth due to nonorthogonal superposition
of two eigenvectors that decay at different rates as time evolves

will eventually tend to zero as q21 and q22 continue to decay as t → ∞. This
situation is sketched in Fig. 9.5.

In recent years, many researchers have reexamined the linearized Navier–
Stokes equation or Euler equation, of which the operator is intrinsically non-
normal especially for vortical basic flows as to be shown in Sect. 9.1.4. It has
been demonstrated that the early algebraic linear growth of some finite but
small disturbances, known as nonmodal instability, can reach surprisingly large
amplitude on a time scale shorter than that for asymptotically growing mode
encountered in normal-mode analysis, and thereby trigger their nonlinear
growth mechanisms very rapidly. For example, in a Poiseuille flow at Reynolds
number 5,000, Butler and Farrel (1992) found disturbances that could grow
in energy by a factor 4,897, despite the fact that the flow is asymptotically
stable at this Reynolds number. For plane Couette flow, at Re = 4,000 the
disturbance-energy growth can be as large as by a factor of 18,000. This kind
of transient growth is responsible for triggering the transition at a Reynolds
number lower than the critical value predicted by the normal-mode theory.
It is the very reason for subcritical transition to occur in a plan Poiseuille or
Couette flow. This type of transition is also known as bypass transition, i.e. a
transition emanating from nonmodal growth mechanisms. In addition, there
is special concern on the transient growth of disturbances in some fields of
physics, for example, geophysics and meteorology.

For transient growth, since the mode analysis becomes insufficient, the
linear stability theory need to be generalized to include both normal and non-
normal operators. This has been benefited from some theories developed in
matrix analysis, among which the pseudo-spectrum method (e.g., Trefethen
1991, 1997; Reddy et al. 1993; Trefethen et al. 1993) and the singular-value
method (e.g., Noble and Daniel 1988; Golub and van Loan 1996; Farrell and
Ioannou 1996) are of special importance. Chomaz (2005) has discussed the re-
lations between the non-normality and nonlinearity for the global instabilities
in a spatially developing flow.
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The singular-value method deserves a brief outline here, by which both as-
ymptotic modal instability and nonmodal transient instability can be studied
simultaneously. In fact, the method has been generalized to nonlinear oper-
ator by Mu (2000) to study finite-time nonlinear evolution of disturbances.
Return to (9.16), where the propagator eAt of operator A transforms the uni-
tary initial states (the column vectors vi of unitary matrix V , say) of the
disturbance to its final states (column vectors ui of unitary matrix U , say).
During the transformation each initial state Vi realizes a growth σi under the
action of the propagator. Then, finding the complete set of unitary initial and
final states as well as the growths amounts to constructing a singular-value
decomposition of the propagator:

eAt = UΣV †, (9.19)

where Σ = diag(σ1, ..., σn) is a diagonal matrix. As explained by Farrell and
Ioannou (1996), this decomposition can be visualized as the simultaneous
formation of a particular orthogonal basis in the domain and the range space
of a matrix, such that each basis vector vi (the ith domain vector or right
singular vector) in the domain space is mapped to a corresponding basis vector
ui (the ith range vector or left singular vector). Moreover, because

eA
†teAt = V ΣU†UΣV † = V Σ2V †, (9.20)

we see that, given domain vectors, the growth σi of range vector ui is simply
the corresponding element of the diagonal matrix Σ, which is the singular
value of the propagator. σi will be the same as eigenvalues eλit if A is nor-
mal; but more generally it is the σmax rather than λmax that determines the
maximum growth at a given time. In fact, there is (Farrell and Ioannou 1996)

σ2min ≤ e(λi+λ
∗
i )t ≤ σ2max, (9.21)

where λi ranges over all eigenvalues of A. The initial disturbance that gives
the maximum growth at a given t is referred to as the optimal disturbance
at that t, and the maximum growth that occurs when all time intervals are
surveyed is called the global optimal.

9.1.3 Energy Method and Inviscid Arnold Theory

In addition to small-disturbance analysis, the energy method is also often
applied based on (9.2) to (9.4). While small-disturbance analysis usually gives
the sufficient condition for a flow to be unstable, the energy method gives the
sufficient condition for a flow to be stable.

Using the same notation as in (9.1), from the full disturbed Navier–Stokes
equation with ρ = 1

∂u∗

∂t
+ ω∗ × u∗ = −∇

(
p∗ +

1
2
|u∗|2

)
− ν∇× ω∗. (9.22)
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We subtract the basic-flow equation to obtain the nonlinear equation for dis-
turbance dynamics

∂u

∂t
+L = −∇H − ν∇× ω (9.23)

with boundary condition
u = 0 at ∂D. (9.24)

Here, we use notations

H ≡ p+U · u+
1
2
|u|2, (9.25)

L ≡ Ω × u+ ω ×U + ω × u. (9.26)

L is referred to as the disturbance Lamb vector. Note that ω × u is the only
source of all nonlinear instabilities in vorticity evolution. Another nonlinear
term ∇|u|2/2 has been absorbed into the unknown stagnation enthalpy H in
(9.23).

Making inner product of (9.23) and u, and integrating over the domain
D, using (9.24) and identities

u · [(Ω + ω)× u] = 0, u · (ω ×U) = −(ω × u) ·U , u · ∇φ = ∇ · (uφ),

u · (∇× ω) = ∇ · (ω × u) + ω2,

it follows that:

dKv
dt

=
∫
D
(ω × u) ·UdV − ν

∫
D
ω2dV. (9.27)

This equation is the vortical form of the classical Reynolds–Orr equation

dKv
dt

=
∫
D

u ·D · udV − ν

∫
D
∇u : ∇udV, (9.28)

where D is the symmetric strain rate of the basic flow.
Equation (9.28) is the basis of the energy method in stability analysis

(e.g., Serrin 1959; Joseph 1976). On the right-hand side, the second term is
the viscous dissipation of the disturbance kinetic energy and always negative;
while the first term represents the transfer between the basic flow and distur-
bances. If there is certain mechanism that leads to energy transfer from the
basic flow to disturbances and causes a growth of the latter, there may be
dKv/dt > 0 that implies the basic flow is unstable. Obviously, (9.27) provides
a physically more revealing information than (9.28): The net energy-transfer
direction between the basic flow and disturbances depends solely on the mean
geometric relation of the disturbance Lamb vector ω × u and the local basic-
flow velocity U .

Now, (9.28) ensures the existence of a critical Reynolds number ReK, below
which any distrubance decays and the flow is monotonically stable. In fact,
make all quantities in (9.28) dimensionless, we may set ReK = v−1

K , where
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vK = sup
t>0

max
u

−
∫
D u ·D · udV∫

D∇u : ∇udV
(9.29)

is a positive and finite stability limit (Joseph 1976). Here, the incompressibil-
ity implies that the numerator in (9.29), with a minus sign, has a positive
upper bound. For the estimate of νK, Serrin (1959) applied the calculus of
variation to show that the minimum-value problem (9.29) is equivalent to a
linear eigenvalue problem

u ·D− νK∇2u = −∇π, ∇ · u = 0, u|∂D = 0. (9.30)

Here, πK(x, t) and νK are Lagrangian multipliers to ensure divergence-free
condition and normalize the total dissipation, respectively, such that the mini-
mum eigenvalue of νK gives a stability boundary ReK to any disturbance.

We make an observation on (9.27) and (9.28). Since the disturbance energy
is related to quadratic terms of u and/or ω, nonlinear effect, if any, should
appear as cubic terms of the disturbance, which is however absent due to
(ω×u) ·u ≡ 0. To look at this fact in a general operator form, let L and N be
linear and nonlinear operators, respectively, and consider a dynamic system
(u, L, and N stand for column vector and matrices, respectively)

∂u

∂t
= Lu+Nu, u|t=0 = u0, u = 0 at ∂D, (9.31)

of which (9.23) is a specific case. The energy of (9.31) is given by

1
2
d
dt
〈u, u〉 = 〈(L+N)u, u〉. (9.32)

But, (9.27) indicates that the choice of energy norm excludes the effect of any
nonlinear disturbance, leading to

〈Nu, u〉 = 0 (9.33)

for viscous incompressible fluid, although formally the energy method permits
any disturbance of arbitrary amplitude. The energy method has exactly the
same information as that can be obtained from a linear stability analysis.

The above observation, along with the observation made in Sect. 9.1.2, that
the classic energy method only includes the role of the normal part of L, has
been proven rigorously and independently by Galdi and Padula (1990) and
Henningson and Reddy (1994) by different approaches. Together these obser-
vations imply an interesting equivalence of the “nonlinear” energy method
and linear normal-mode method: if the operator is normal, their prediction
of asymptotic stability boundary should be the same, i.e., ReK = ReL. This
has indeed been proven by Padula (1988) and Galdi and Padula (1990), who
extended the classic energy stability method to energy instability method.
Therefore, a fundamental conclusion can be made that linear mechanism
is necessary for transition to turbulence. One more conclusion is that non-
normality is necessary for sub-critical transition at a Reynolds number smaller
than ReL.
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The above energy method studies the growth rate of disturbance energy.
From (9.1) and (9.2), one may also study the total kinetic energy directly
based on the Liapounov formal stability theory. A system is called formally
stable if for the system one can construct a conserved scalar such that its
first variation is zero, while its second variation is positively or negatively
definite. Formal stability implies linear stability because the second variation
of this conserved scalar is invariant in the linearized dynamics. But the for-
mal stability is stronger than the linear one. In a finite-dimensional system
formal stability implies nonlinear stability; whereas in infinite dimensions it
is a necessary prerequisite for nonlinear stability. The condition for formal
stability may not be the same as that for linear stability. The result can be
obtained without considering whether the operator is normal. In this area,
one of the important achievements is due to Arnold (1965b,c; 1969). As seen
in Sect. 3.6.4, Arnold proves that the first variation of total kinetic energy
K for a steady inviscid circulation-preserving flow is zero, i.e. K reaches its
stationary value. Then, the second energy variation is (3.187):

δ2K =
1
2

∫
D

{
(δu)2 + δω · (U × ξ)

}
dV, (9.34)

where δω = ∇ × (ξ × Ω) and ξ is an arbitrary divergence-free vector field
with ξ · n = 0 on boundary, and we have denoted the basic flow by capital
letters. Thus, for a steady and inviscid circulation-preserving flow, if δ2K is
definitely positive or definitely negative, then K is a Liapounov function and
the flow is formally stable.

In two-dimensional flow with ξ = (ξ1, ξ2) and stream function Ψ for basic
flow, since the steady basic flow is generalized Beltramian with Ω = Ω(Ψ),
we have

δω = ∇× (ξ × ω) = −(ξ · ∇)Ωe3,

δω · (U × ξ) =
d(∆Ψ)
dΨ

(ξ · ∇ψ)2,

where ∆ = ∇2. Thus, (9.34) is reduced to

δ2K =
1
2

∫
D

{
(δu)2 +

d(∆Ψ)
dΨ

(ξ · ∇Ψ)2
}
dV, (9.35)

and there must be δ2K > 0 if

d(∆Ψ)
dΨ

≥ 0, (9.36)

which is a sufficient condition for a two-dimensional inviscid and steady flow
to be formally stable. Arnold (1965b,c) has also found a class of stable two-
dimensional steady flow with δ2K < 0 , which is omitted here. We shall
demonstrate the application of the Arnorld theory in the stability analysis of
parallel shear flows in Sect. 9.2.1 and columnar vortices in Sect. 9.3.1.
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Inspired by the Arnold theory, Carnevale and Vallis (1990) introduced a
virtual additional term to the Euler equation to force a monotonic temporal
evolution of K to seek possible formally stable steady vortical flows from vari-
ous initial states. The virtual term was designed to eventually vanish when the
flow approaches steady-state. Thus, only the final state is physically meaning-
ful but the evolution process is not. Examples of their numerical experiments
with periodical boundary conditions are shown in Fig. 9.6.

(1) (2)

(4)(3)

(a)

(b)

Fig. 9.6. Evolution of the two-dimensional vorticity field. (a) Addition of energy
into the vorticity field; (b) subtraction of energy from the vorticity field. From
Carnevale and Vallis (1990)
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The evolution of a vortex system by energy addition is shown in Fig. 9.6a.
The initial vorticity distribution of the system is two elliptical vortex patches
of the same sign. They eventually evolve to a circular vortex with concen-
tric vorticity distribution: the stronger vorticity patch is surrounded by the
weaker one. Opposite to this trend, the evolution of a vortex system by energy
subtraction is shown in Fig. 9.6b. The initial circular vortex patch evolves to
a constant vorticity distribution (“Kelvin sponge”). Note that this nonlinear
stabilizing approach to circulation-preserving flows offers a theoretical guid-
ance for vortex control.

The Arnold theory has now been extended to two-dimensional inviscid,
isentropic, and compressible flow. However, extension of the theory to three
dimensions has never been successful. Recent studies (Rouchon 1991; Sadun
and Vishik 1993) have indicated that in three dimensions the sign of δ2K is
usually uncertain, of which the physical root is vortex stretching.

9.1.4 Linearized Disturbance Lamb Vector
and the Physics of Instability

Since our concern is the instability of free and attached vortex layers and
vortices, it is informative to make a general identification of the vorticity-
dynamic mechanisms responsible for the linear instability, both normal and
non-normal.

The curl of (9.23) yields the disturbance vorticity equation

∂ω

∂t
+∇×L = ν∇2ω, (9.37)

where by (9.26) the only nonlinear term is ∇× (ω×u) = u ·∇ω−ω ·∇u that
represents the convection and stretching/tilting of disturbance vorticity by
disturbance velocity. Within the linear approximation, therefore, in addition
to a viscous diffusion the key to the stability of a vortical flow is ∇ × (Ω ×
u + ω × U). To see the respective roles of these two terms, similar to the
fractional-step approach to the vorticity-based formulation of viscous flow
problems (Sect. 4.5.3), we follow Orszag and Patera (1983; see also Huerre
and Rossi 1998) to split the inviscid and linearized version of (9.37) into two
sub-processes, each being driven by one term

A :
∂ω

∂t
= −∇× (Ω × u) = Ω · ∇u− u · ∇Ω , (9.38a)

B :
∂ω

∂t
= −∇× (ω ×U) = ω · ∇U −U · ∇ω. (9.38b)

From (9.26) and (9.27), it is immediately evident that for process A there is
dKv/dt = 0. Thus, by (9.38a) this process can only redistribute the distur-
bance kinetic energy over the flow via the convection, stretching, and tilting
of Ω by u. In contrast, any increase of Kv must be solely from process B,
which by (9.38b) is the convection, stretching, and tilting of ω by U , during
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which the disturbance may absorb energy from the basic flow to enhance itself
and lead to instability.

To demonstrate these roles, assume the basic flow is in the (x, y)-plane
and along the x-direction

U(x, y) = exU(x, y), Ω = Ωez,

and denote the disturbance velocity and vorticity components by u = (u, v, w)
and ω = (ξ, η, ζ). As always, we denote a vector on the (x, y)-plane by suffix
π. In process A, in addition to the stretching of Ω by ∂w/∂z, the tilting

Ω · ∇uπ = Ω
∂uπ

∂z

produces new disturbance vorticity ωπ = (ξ, η) as a consequence of three-
dimensional disturbance. This process stops once uπ becomes z-independent.
Then, in the context of the secondary instability of a shear flow, Orszag and
Patera (1983) use an elegant argument to prove that process B will cause
a transient increase of the newly produced ωπ and turn it to the basic-flow
direction, which stops once the alignment is complete. Thus, neither A nor
B alone can lead to instability but only a combination of both can, in which
process A continuously produces ωπ from Ωez so that process B is able to
continuously amplify ωπ and tilt it to streamwise direction.

The role of process B can be demonstrated analytically for a unidirectional
shear flow U(y) with Ω = −dU/dy. Then (9.38b) yields

∂ξ

∂t
+ U

∂ξ

∂x
= −ηΩ , (9.39a)

∂η

∂t
+ U

∂η

∂x
= 0, (9.39b)

∂ζ

∂t
+ U

∂ζ

∂x
= 0. (9.39c)

Let ξ + iη = ωπeiθ and τ = x+ Ut such that (9.39a) and (9.39b) become

d
dτ

(lnωπ) cos θ −
dθ
dτ

sin θ = − Ω
2U

sin θ,

d
dτ

(lnωπ) sin θ +
dθ
dτ

cos θ = 0,

which can be cast to

dθ
dτ

= −α sin2 θ,
d
dτ

(lnωπ) =
1
2
α sin 2θ, (9.40)

where α ≡ −Ω/2U . Hence, as long as ωπ �= 0, one obtains

θ = cot−1[α(τ − τ0)], ωπ = ωπ0
√

1 + α2(τ − τ0)2, (9.41)
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where τ0 and ωπ0 are integration constants corresponding to θ0 = π/2. There-
fore, as t and/or x increases unboundedly, θ tends to zero or ωπ is aligned to
the U direction, and |ωπ| increases algebraically. Here, (9.39a) indicates that
the strong shear U ′(y) = −Ω is the major mechanism to form the stream-
wise vorticity ξ by process B; but in so doing there must be η �= 0, which is
prepared by the y-component of (9.38a) in process A

∂η

∂t
= Ω

∂v

∂z
, (9.42)

that tilts the vorticity in basic flow to the y-direction, as long as ∂v/∂z �= 0.
It should be stressed that the linear operators contained in processes A

and B are both non-normal. Indeed, in operator form, we have

−(Ω × u)i = L
(1)
ik uk, L

(1)
ik = −εijkΩj , (9.43)

−(ω ×U)i = L
(2)
ik uk, L

(2)
ik = Uk∂i − δikUj∂j , (9.44)

where L(1) is antisymmetric and L(2) is neither symmetric nor antisymmet-
ric. Therefore, we conclude that the disturbance Lamb vector is the physical
source of various hydrodynamic instability and implies a non-normality of the
stability operator. A complete analysis of linear stability or instability can
be made only if the disturbance Lamb vector is fully considered (along with
the viscous diffusion operator), otherwise certain instability mechanisms may
be missing. The disturbance-energy consideration alone is insufficient, since it
only involves a scalar process but the real physics involves vector processes.

9.2 Shear-Flow Instability

Having reviewed the basic concepts and theories of general flow stability, we
now consider the stability of shear flows and swirling flows by applying some
of those theories, including both normal-mode (temporal and AI/CI) and
nonmodal analyses.

9.2.1 Instability of Parallel Shear Flow

Parallel shear flow is a prototype of various vortex layers with vorticity con-
centration in one spatial dimension, which includes the plan Couette flow, the
plan Poiseuille flow, and the Poiseuille flow in a circular pipe. Nearly parallel
flows include boundary layers, jets, wakes, and free shear layers. In stability
analysis the latter can also be regarded as parallel as first approximation.

Let the basic parallel shear flow be given by

U = U(y)ex, (9.45)
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so that the disturbed flow is

u∗ = (U(y), 0, 0) + (u, v, w). (9.46)

The linearized disturbance equations for normal velocity v and normal vor-
ticity η are (4.184a) and (4.184b)(

∂

∂t
+ U

∂

∂x
− ν∇2

)
∇2v =

d2U
dy2

∂v

∂x
, (9.47)(

∂

∂t
+ U

∂

∂x
− ν∇2

)
η = −dU

dy
∂v

∂z
. (9.48)

The boundary conditions are, taking the channel flow between parallel plates
as example,

v =
∂v

∂y
= 0, η = 0, at y = ±1. (9.49)

Introducing normal modes

v(x, t) = v̂(y, t)eiαx+iβz, η(x, t) = η̂(y, t)eiαx+iβz (9.50)

to (9.47) and (9.48), and denoting D = ∂/∂y and k2 = α2 + β2, in matrix
operator form we obtain

∂

∂t

[
v̂
η̂

]
= −i

[
Los 0
Lc Lsq

] [
v̂
η̂

]
, (9.51)

where, with U ′ = dU/dy,

Los = −
1

(D2 − k2)

[
(D2 − k2)2

iRe
− αU(D2 − k2) + αU ′′

]
, (9.52a)

Lc = βDU, (9.52b)

Lsq = αU − D2 − k2

iRe
(9.52c)

are called the Orr–Sommerfeld operator, the coupling operator, and the Squire
operator, respectively, since the differential equations for v̂ and η̂ are known
as the Orr–Sommerfeld equation and Squire equation, respectively, which are
coupled by Lc for three-dimensional disturbances.

Squire (1933) obtained a transformation that can convert any three-
dimensional normal-mode disturbance to an equivalent two-dimensional one.
He then proved that the parallel shear flows first become unstable to two-
dimensional disturbance wave at a value of the Reynolds number smaller
than any value for which three-dimensional disturbances can grow. Thus, to
find sufficient condition of flow instability, one only needs to consider two-
dimensional disturbance.2 In this case Lc = 0 and η = 0, and hence one only

2 It has to be stressed that since the Squire theorem is proved within the normal-
mode analysis, it is no longer effective whenever the operator non-normality is
involved. But even the Orr–Sommerfeld operator alone is non-normal as well,
as seen from (9.41) and (9.42). This non-normality effect will be discussed in
Sect. 9.2.4.
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needs to work on the Orr–Sommerfeld equation. Then, let the stream function
ψ(x, y, t) take the form

ψ(x, y, t) = ϕ(y) exp(iα(x− ct)) (9.53)

and substitute into (9.51), we obtain the conventional form of the Orr–
Sommerfeld equation

(iαRe)−1(D2 − α2)2ϕ = (U − c)(D2 − α2)ϕ− U ′′ϕ. (9.54)

The boundary condition (9.49) now reads

ϕ = Dϕ = 0 at y = ±1. (9.55)

For inviscid flow, set Re→∞, (9.54) degenerates to

(U − c)(ϕ′′ − α2ϕ)− U ′′ϕ = 0, (9.56)

called the Rayleigh equation. In an inviscid flow where U(y) can be arbitrary
assumed, by (9.56) Rayleigh (1880) stated that an inviscid parallel flow U(y)
is unstable only if there is an interior point ys where U ′′(ys) = 0, i.e., the
velocity profile has an inflectional point or the vorticity Ω = −U ′ has an ex-
tremum (known as the Rayleigh theorem). This condition was later sharpened
by Fjørtoft (1950) by adding a requirement that U ′′(U − Us) ≤ 0 in certain
interval of y, where Us = U(ys) (known as the Fjørtoft theorem). For the proof
of these theorems see Drazin and Reid (1981). Now, it can be shown that the
latter is equivalent to a physically more appealing condition (Yin and Sun
2003), which we state as:

The Fjørtoft theorem. The necessary condition for an inviscid parallel
shear flow to be unstable is that inside the flow the vorticity has a maximum
where Ω > 0 or a minimum where Ω < 0.

To demonstrate these theorems, six types of velocity and vorticity distrib-
utions are shown in Fig. 9.7. In Figs. 9.7a and 9.7b the flows have no vorticity
extremum, so they are inviscidly stable. Fig. 9.7c and 9.7d have vorticity ex-
tremum, and hence by Rayleigh’s condition they should be unstable. However,
according to Fjørtoft, only the flow in Fig. 9.7d is unstable where Ω < 0, and
it has a minimum. The case (e), (f) are similar to (c), and (d). For case (f)
there is Ω > 0, and it has a maximum, so this case is unstable.

Tollmien (1935) has shown that the instability conditions of the Fjørtoft
theorem become sufficient for symmetric profiles in a channel or monotone
profiles in a boundary layer.

More generally, the Fjørtoft theorem can be recovered and extended by
the Arnold stability theorem (Sect. 9.1.3). In (9.33) we now have

U =
dψ
dy

, ω = −∆ψ = −U ′,
d(∆ψ)
dy

= U ′′.
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Fig. 9.7. Velocity and vorticity profiles for the parallel shear flows: (a) stable; (b)
stable; (c) stable according to Fjørtoft; (d) unstable according to Fjørtoft; (e) stable
according to Fjørtoft; (f) unstable according to Fjørtoft

Thus in the flows of Figs. 9.7a and 9.7b, the sign of d(∆ψ)/dψ does not change.
Then one can always make the sign of dψ the same as that of d(∆ψ) through
a Galilean transformation (which does not alter the stability behavior3), such
that (9.34) holds. Hence both flows are stable. Then, in the case of Fig. 9.7c,
one can nullify the velocity at the inflection through a Galilean transformation
so that U − Us = 0 and the sign of dψ is the same as that of d(∆ψ), and
hence the flow is stable according to the Arnold theorem. Thus, the theorem
not only extends the Rayleigh–Fjørtoft theorem to nonlinear regime but also
yields the sufficient condition for a parallel shear flow to be stable. In contrast,
for the case shown in Fig. 9.7d, the sign of dψ is opposite to that of d(∆ψ)
and the flow is inviscidly unstable, as asserted by the Fjørtoft theorem.

9.2.2 Instability of free shear flow

Stability analyses on free shear flows originated from the pioneering works of
Helmholtz (1868) and Kelvin (1871), and thus named as Kelvin–Helmholtz
instability. In recent decades, experimental, theoretical and numerical studies
on the stability of the free shear layers have been extremely active. Organized
spanwise vortex structures have been found in experiments after free shear
flow becomes unstable, followed by vortex pairing and tearing due to their
interactions. These processes are associated with three-dimensional vortical
structures including streamwise vortices. The spanwise vortical structures due
to the Kelvin–Helmholtz instability can survive up to an Reynolds number as
high as 107; and other organized structures can also be observed in mixing

3 But the AI/CI behavior depends on the frame of reference, see Sect. 9.3.1.
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layers. Hence, the investigation on the formation and evolution of the ordered
vortical structures in free shear flows will offer important analogy and hint to
the analysis of coherent structures in turbulence.

Moreover, the interaction between spanwise vortices and streamwise vor-
tices may modify the structure of a shear layer, thickening it, enhancing the
mixing between the fluids with different ingredients or concentrations, or en-
hancing chemical reactions. The study of the stability of free shear flows can
therefore provide important physical insight for flow control and guidance in
fluid machinery design.

To illustrate the instability mechanism of free shear flows, consider the
simplest basic flow, an inviscid incompressible flow consisting of two layers
with different velocities:4

(U , ρ) =

{
U2ex for y ≥ 0,

U1ex for y < 0,
(9.57)

which has a flat vortex sheet at y = 0. Assuming that the flows in both upper
and lower regions are irrotational (reasonable for instability analysis), with
potentials

φ(z) =
{
φ2 : y ≥ ζ,
φ1 : y < ζ,

(9.58)

where y = ζ(x, t) is the elevation of the disturbed vortex sheet. Substituting
the normal mode decomposition

(ζ, φ1, φ2) = (ζ̂ , φ̂1, φ̂2) exp(i(αx+ βz) + st) (9.59)

into the inviscid version of (9.47) and the corresponding boundary conditions,
for the eigenvalue of s one obtains

s = ikU ± 1
2
k[[U ]], (9.60)

where U = (U1 + U2)/2 is the mean basic-flow velocity. Hence,

(ζ, φ1, φ2) = (ζ̂ , φ̂1, φ̂2)e(1/2)k[[U ]]tei(αx+βz+kUt), (9.61)

indicating that a free flat vortex sheet is always inviscidly unstable. Distur-
bance waves with any wavelength must be amplified and will propagate down-
stream with speed of c = U .

The Kelvin–Helmholtz instability of a vortex sheet can well be explained
in terms of vorticity (Batchelor 1967). Introduce transformation

kx′ = αx+ βz, kz′ = −βx+ αz,

4 Here we omit the case with density difference and gravitational effect, which can
be easily added; e.g., Drazin and Reid (1981) and Drazin (2002).
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such that the disturbed flow becomes two-dimensional on the (x′, y)-plane.
Then by using (4.129a) and (e′

x,e
′
z) = (∇x′,∇z′), for the vortex-sheet

strength γ we obtain

γ = γe′
z, γ = −ik[[φ̂]]e(1/2)k[[U ]]tei(kx′+kUt). (9.62)

Notice that (9.61) and (9.62) imply a phase lag of π/2 between ζ fluctuation
and γ. In Fig. 9.8, the thick solid curve shows the periodical deformation of
the vortex sheet, and its varying thickness denotes the accumulation (e.g.,
around point A) or rarefication (e.g., around point C) of the disturbance
vorticity. Thus, according to the Biot–Savart law, the segment of vortex sheet
around A with ζ > 0 must move downward and will induce a negative velocity
component in the x direction. This action is the most obvious at point B to
make it move towards A and hence strengthen the sinusoidal deformation
of the sheet. The more the vortex sheet deforms, the more accumulation of
vorticity disturbance around A will occur. This mechanism develops a positive
feedback and leads to exponential growth of disturbances.

Consider now a vortex layer with finite thickness, a commonly used basic-
flow profile is

U(y) = U
(
1 +Ra tanh

( y

2θ

))
. (9.63)

Here, the velocity ratio Ra = (U1 − U2)/2U represents the shear level of the
basic flow. The flows with Ra = 0 and 1 correspond to a wake and a jet,
respectively. θ is the momentum thickness that is the only length scale that
one can get in the two-dimensional free shear layer. Monkewitz and Huerre
(1982) have calculated the spatial growth rates of disturbances with tanh and
Blasius velocity profiles, and found that the growth rate (−αiθ/Ra) and phase
velocity cr/U = ω/(αrU) are both related to the Strouhal number St = fθ/U
(f is the frequency of disturbance). The most amplified wave corresponds to
St = 0.032, with the corresponding natural frequency fn of the mixing layer.
For all the cases from Ra = 0 to Ra = 1, the variation of Stn is within 5%
only (see Fig. 9.9).

The linear stability theory of free shear flows describes the initial stage
of the Kelvin–Helmholtz instability. Its prediction of the growth rate and the
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Fig. 9.8. The instability of a vortex sheet on the (x′, y)-plane. From Batchelor
(1967)
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phase velocity of the instability waves agrees well with experiments. After that
stage, the shear layer will quickly roll up to form a row of spanwise vortices
as the consequence of Kelvin–Helmholtz instability. The later development of
vortical structures will be addressed in Sect. 10.2.

In reality an unstable free vortex layer is often under a strain field. Neu
(1984b) has studied this interesting and complicated problem.

9.2.3 Instability of Boundary Layer

It is well known that, as the Reynolds number increases, a laminar bound-
ary layer will become turbulent through transition. Reynolds was the first to
realize that transition is caused by boundary-layer instability. He then de-
veloped this concept into a theory, see (9.23). However, the boundary-layer
instability alone does not immediately lead to turbulence; it involves a series
of complicated transitional processes.
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Consider a flat-plate boundary layer in a uniform incompressible free
stream. The flow near the leading edge is laminar, and the local Reynolds
number Rex increases as x. Once Rex passes a critical value, the flow will lose
its stability and there will appear two-dimensional travelling waves, known
as the Tollmien–Schlichting waves, which propagate downstream with certain
frequencies, wavelengths and growing amplitudes. The neutral curve for the
Blasius boundary layer is shown in Fig. 9.10.

Tani (1969) has correctly called the Tollmien–Schlichting wave as vorticity
wave. Indeed, a boundary layer is an attached vortex layer with continuous
vorticity distribution (Sect. 4.3). The vorticity in a shear layer always tends to
organize itself into vortical structures. This tendency is suppressed by the vor-
ticity diffusion. However, toward downstream the boundary layer is thickened,
the vorticity diffusion becomes weaker due to progressively smaller vorticity
gradient. Sufficiently far downstream from the leading edge, the tendency of
forming organized structure will overcome the diffusion effect.

Because only infinitesimal disturbances are considered, the prediction of
linear stability on the growth rate of selective Tollmien–Schlichting waves
is effective only in the region close to the neutral curve. Nonlinear theory is
necessary after the disturbances have grown to certain level, see Stuart (1963),
Craik (1971), Itoh (1974, 1980), Herbert (1975), Zhou (1982) and Zhou and
Zhao (2004).

During the downstream propagation of the Tollmien–Schlichting waves,
two-dimensional disturbances will gradually evolve to three-dimensional ones,
which lead to streamwise vortices in the boundary layer, characterized by their
axes parallel to the free-stream direction and each neighboring pair of vortices
being counter-rotating. The streamwise vortices or rolls have been identified
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Fig. 9.10. The curve of the neutral stability of the Blasius boundary-layer profile.
From Saric and Nayfeh (1975)
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as the dominant vortical structure in the boundary layer. The appearance of
streamwise vortices modifies the mean velocity distribution in the boundary
layer and induces the so-called secondary instability. A detailed description of
the boundary-layer transition process including secondary instability, and the
corresponding vortical structures, will be given in Sect. 10.3.

9.2.4 Non-Normal Effects in Shear-Flow Instability

On the basis of the general discussion of the nonmodal instability, we can
now analyze in more detail the relation between the operator non-normality
and flow instability in parallel shear flow, for which the relevant operators are
given by (9.52). It is known that for the plane Couette flow with U = y, the
normal-mode analysis fails to find any linear instability, contradicting experi-
mental results. Within linear theory, to this paradox there have appeared two
interpretations, both in terms of the operator non-normality.

The first interpretation is the transient growth in the v-equation (9.47),
first studied by Orr in 1907. This Orr mechanism has been thoroughly studied
by Case (1960) for inviscid Couette flow by solving an initial-value problem.
He found that the plane Couette flow has only a continuous spectrum that is
ignored in the normal-mode approach. The disturbance has transient growth
and then decays as t−1 or faster. Case also proves that the solution of the
initial-value problem has just the form of a conventional normal mode ex-
pansion, indicating that the latter is complete as later generally proved by
DiPrima and Habetler (1969).

A more powerful transient-growth mechanism than the Orr mechanism is
in the η-equation (9.48) or (9.51), where the coupling operator Lc connects
the variable v in (9.47) to (9.48) as an inhomogeneous term. It exists for
three-dimensional disturbances only and is the main source of the eigen-mode
non-orthogonality in the linearized Navier–Stokes equations. As a simplified
mathematic model of (9.51) to illustrate this mechanism, Waleffe (1995a)
considers a pair of linear equations

d
dt

[
v
η

]
=
[
−λ 0
1 −µ

] [
v
η

]
, (9.64)

where λ, µ > 0 of O(Re−1) are decay rates. The solution of (9.64) is

v(t) = v(0)e−λt (9.65a)

η(t) = −v(0)e
−λt − e−µt

λ− µ
+ η(0)e−µt. (9.65b)

The first term on the right-hand side of (9.65b) grows algebraically like t at
small times and decays exponentially at large times. The maximum amplifi-
cation is at t∗ = (lnλ− lnµ)/(λ− µ), with

ηmax = v(0)
e−µt

∗

λ
= O(εRe). (9.66)
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The transient algebraic growth caused by the non-normality of linear sys-
tems has been studied by, e.g., Trefethen et al. (1993), Waleffe (1995a,b),
and Baggett and Trefethen (1997). The last paper summarizes various low-
dimension dynamic system models proposed by five research groups for paral-
lel shear flows at various high Reynolds numbers. These models confirm that
when Re→∞, the threshold value for a disturbance to cause subcritical tran-
sition is ε = O(Re−α) with α > 1. Actually, the subcritical transition in a real
flow can be triggered by a very small disturbance, and this kind of dynamic
characteristics does result from the joint effects of linear non-normality and
nonlinearity.

The respective effects on physical turbulence of the linear non-normal and
nonlinear operators in the full Navier–Stokes equation (adding nonlinear op-
erators Nv and Nη to (9.51)),

∂

∂t

[
v̂

η̂

]
= −i

[
Los 0

Lc Lsq

][
v̂

η̂

]
+

[
Nv(v̂, η̂)

Nη(v̂, η̂)

]
, (9.67)

have been examined by Kim and Lim (2000) by a direct numerical simulation
of a fully developed turbulent channel flow at turbulence Reynolds number
Reτ = uτh/ν = 100, where h is the width of the channel. Kim and Lim divided
the channel into upper and lower portions in their simulation. The governing
equation for the upper portion was a modified Navier–Stokes equation, where
the coupling operator Lc was turned off, so that the strong non-normality
mechanism of the operator is absent. The governing equation for the lower
portion remained the full Navier–Stokes equation. The initial condition was a
regular channel turbulence. The variation of mean shear stress with time on
both channel walls is shown in Fig. 9.11. Obviously, without Lc the turbulent
shear stress cannot be maintained.

For further illustration, the left column of Fig. 9.12 shows the contours of
streamwise vorticity on the (y, z)-plane at different times. We see that at large
time the streamwise vorticity in the upper portion disappears. The reduction
of wall shear stress and streamwise vorticity implies a reduction of turbulence
intensity. This example well demonstrates that the operator non-normality
is necessary for maintaining turbulence intensity even in a fully developed
turbulent flow.

Kim and Lim (2000) carried out an even more interesting numerical ex-
periment for the same fully developed turbulent channel flow, but the initial
condition was changed to random disturbances instead of organized turbu-
lence structures. Three cases were simulated as shown at the right column
of Fig. 9.12, of which the streamwise vorticity contours are at t = 80. The
full Navier–Stokes equation was applied for case (a); Lc was turned off for
case (b); and the nonlinear operators Nv and Nη were turned off in case (c).
For case (b), the streamwise vorticity disappears very quickly in particular
near the wall. For case (c) the random vorticity distribution is replaced by
some larger spanwise-scale structures. These simulations clearly emphasize
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Fig. 9.12. Contour of streamwise vorticity on a y-z plane from two numerical
experiments of channel turbulence. Left : Evolution as time, where in the upper
portion Lc is dropped. (a) t = 0; (b) t = 20; (c) t = 200. Right : Effect of different
operators at t = 80. (a) Full Navier–Stokes; (b) linear coupling operator Lc is turned
off; (c) nonlinear operator Nv and Nη are turned off. From Kim and Lim (2000)

the important role of both non-normality and nonlinearity in sustained wall
turbulence. In short, turbulence cannot be formed without nonlinearity and
wall-layer structures cannot be formed without non-normality. Lacking either
mechanism, turbulence would cease to exist.
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9.3 Instability of Axisymmetric Columnar Vortices

Beginning from this section, we discuss the stability character of columnar vor-
tices. Some of these vortices contain axial flow and are also called swirling flow
or swirling vortex. A vortex without axial flow is called a pure vortex (Chap. 6).
In this section, we consider the instability of an isolated and axisymmetric
vortex without axial stretching, mainly its linear normal-mode instability in-
cluding temporal, spatial, and temporal–spatial modes. A formally nonlinear
stability theory for a pure vortex and the nonmodal instability of a vortex
will also be briefly discussed.

Since the basic flow is axisymmetric without axial stretching, its velocity
profiles take the form U = (0, V (r),W (r)) in cylindrical coordinates (r, θ, z).
Then from (6.2) to (6.4) the linearized disturbence equations read

∂u

∂r
+

u

r
+

1
r

∂v

∂θ
+

∂w

∂z
= 0, (9.68a)

∂u

∂t
+

V

r

∂u

∂θ
+W

∂u

∂z
− 2

V v

r
=

−∂p
∂r

+ ν

(
∆u− u

r2
− 2

r2
∂v

∂θ

)
, (9.68b)

∂v

∂t
+ u

dV
dr

+
V

r

∂v

∂θ
+W

∂v

∂z
+

uV

r
=

−1
r

∂p

∂θ
+ ν

(
∆v − v

r2
+

2
r2

∂u

∂θ

)
, (9.68c)

∂w

∂t
+ u

dW
dr

+
V

r

∂w

∂θ
+W

∂w

∂z
= −∂p

∂z
+ ν∆w, (9.68d)

where ∆ = ∂2/∂r2 + 1/r∂/∂r + 1/r2∂2/∂θ2 + ∂2/∂z2.

9.3.1 Stability of Pure Vortices

For normal-mode analysis, we write

(u, v, w, p) = (iF (r), G(r),H(r), P (r)) ei(kz+nθ−ωt), (9.69)

where F (r), G(r),H(r), P (r) are amplitude functions with the factor i of F (r)
expressing the phase difference between the velocity components; k and n
are axial and circumferential wave numbers, respectively. An axisymmetric
disturbance corresponds to n = 0 and a spiral mode has n �= 0.

Consider the inviscid instability of a pure vortexU = (0, V (r), 0). Based on
the angular-momentum conservation, Rayleigh (1916) found that the criterion

dΓ 2

dr
=

d
dr

(rV )2 > 0, Γ = rV, (9.70)
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is a sufficient condition for the vortex to be stable to an axisymmetric distur-
bance. By a more rigorous mathematical analysis, Synge (1933) has proved
that (9.70) is actually a sufficient and necessary condition.

Similar to the Rayleigh–Fjørtoft theorem for parallel shear flows
(Sect. 9.2.1), we can also find that the necessary condition for a pure vor-
tex to be unstable to nonaxisymmetric disturbances is the existence of mean
vorticity extremum, i.e. the mean vorticity gradient becomes zero at certain
location inside the flow field.

Consider the simplest model of an isolated circular pure vortex, consisting
of a core of constant vorticity Ω0 surrounded by a ring of oppositely signed vor-
ticity −Ω0. Flierl (1988) solved the normal-mode stability equation and found
that when Ω0 < 1/3 the vortex is linearly stable. Observations (Kloosterziel
and Heijst 1991) and several numerical and analytical studies indicate that a
critical steepness of the vorticity distribution is needed for a vortex to become
unstable. Kloosterziel and Carnevale (2004) applied Arnold’s stability theory
(Sect. 9.1.3) to investigate the formal stability of such a vortex in unbounded
inviscid fluid. They derived the first and second variations of the angular mo-
mentum M and kinetic energy K for the basic flow, and proved that under
the condition of vortex-area preserving, the first variations of both M and K
are zero. They defined a linear combination of the second variation of M and
K: δ2(K+1/2µM), and proved that if Ω0 < 1/3, there is always a µ such that
δ2(K + 1/2µM) is negatively definite. Then according to Arnold’s theorem,
this flow is formally stable. It is concluded that for this vortex the linear-
stability regime coincides with the formal-stability regime. It should be noticed
that this method can be applied to more complicated circular pure vortices.

9.3.2 Temporal Instability of Swirling Flow

Swirling flows are very often encountered in various applications. Swirling jets
and wakes can be found in internal flows of many industrial facilities and in
the flows around the flying vehicles. In the design of high-efficiency combus-
tion chambers or control of airplane wakes, it is very important to understand
the dynamic characteristics of swirling flows, in particular their stability be-
havior. Besides, swirling flows exist in many atmospheric phenomena, such as
tornadoes and dust devils. While the instability mechanism of a pure vortex
is due to the centrifugal force, the instability of a swirling vortex appears to
be a very complicated coupling of the centrifugal instability and the Kelvin–
Helmholtz instability due to axial shear. For a comprehensive review of the
linear instability of a swirling vortex based on temporal normal-mode analysis,
the reader is referred to Ash and Khorrami (1995).

For a swirling vortex with variable axial flow W (r), Howard and Gupta
(1962) derived an equation for inviscid instability analysis

γ2D [SD∗u]− u
{
γ2 + γrD

[
S
(
Dγ

r
+ 2n

V

r3

)]
− 2kS

V

r2
(krD∗V − nDW )

}
= 0.

(9.71)
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Here, γ(r) = nV/r + kW − ω is the Doppler frequency, S = r2/(n2 + k2r2),
D = d/dr, D∗ = 1/r + D. Then, as an extension of the Rayleigh criterion
(9.70) for pure vortices, they showed that the sufficient but not necessary
condition for a swirling flow to be stable to axisymmetrical disturbances is

1
r3

dΓ 2

dr
≥ 1

4

(
dW
dr

)2

. (9.72)

Unfortunately, no general solution of the Howard–Gupta equation (9.71) can
be found for three-dimensional disturbances. Hence, so far the results obtained
from this equation are either general criteria but under certain simplified
asymptotic limit, or the detailed instability characters for specific swirling
flows.

Based on (9.71) and using an energy consideration, Leibovich and Stewart-
son (1983) have carried out an asymptotic analysis for |n|  1 and achieved a
finite upper limit of the growth rate ωi for inviscid disturbances as −n→ −∞.
Based on this result and within the normal-mode framework, Leibovich and
Stewartson obtained a sufficient condition for a columnar vortex to be unsta-
ble to small disturbance

V
dΩ
dr

[
dΩ
dr

dΓ
dr

+
(
dW
dr

)2
]
< 0, (9.73)

where Ω = V/r, and Γ = rV . Emanuel (1984) has proven that (9.73) is a
direct extension of the Rayleigh criterion (9.70) to the vortex with nonzero
axial velocity and with disturbances not necessarily axisymmetric.

Note that (9.73) is not a necessary condition for instability either; examples
exist where the flow condition does not satisfy (9.73) but the vortex is still
unstable. Similarly, for large k and |n|, Staley and Gall (1984) have found a
sufficient condition for temporal instability, which, in terms of the basic-flow
velocities, can be cast to (Yin et al. 2000)

k
dΓ
dr
− n

dW
dr

< 0. (9.74)

Thus, when kdΓ/dr > 0 as usual, the sign of n for unstable helical mode
depends on that of dW/dr. Namely, there is n < 0 if the swirl is jet-like
(dW/dr < 0) and n > 0 if it is wake-like (dW/dr > 0). But this sign change
(a change of the orientation of the disturbance wave relative to the basic
rotating flow) does not matter in temporal-mode analysis, since a Galilean
transformation can cast a jet-like flow to a wake-like one and vise versa.

Having discussed some general but approximate results deduced from the
Howard–Gupta equation (9.71), we now illustrate its application to a widely
used special vortex model, the Batchelor vortex or q-vortex (6.19). In (6.19a),
the constant W0 and the indefinite sign of the axial velocity permit modelling
both jets and wakes. Similar to what has just been said, in temporal normal-
mode these factors merely change the frequency ωr but not affect whether the
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flow is stable; only the shape of mean axial velocity profile matters. Thus W0

can be removed by a Galilean transformation, yielding

U = 0, V =
q

r

(
1− e−r

2
)
, W = e−r

2
. (9.75)

In consistent with the remark following (9.75), Khorrami (1991) has confirmed
that the inversion of the axial velocity profile lead to a sign change of the
unstable azimuthal wave number n.

Lessen et al. (1974), Duck and Faster (1980), Ma (1984), Yin and Xia
(1991), and Mayer and Powell (1992), among others, have studied the linear
stability character of the q-vortex, in terms of either temporal or spatial mode.
The main results on the temporal mode are as follows.

First, so far it has never been found that to an axial disturbance (n = 0)
the flow can become unstable. For n > 0, i.e., an increase of rotation by
the disturbance, even a weak rotation will stabilize all the modes as long as
q > 0.08. In other words, the rotation increase helps the flow to resist further
disturbances.

In contrast, a swirling flow is unstable to negative azimuthal wave numbers
n < 0, and the temporal growth rate ωi will increase as |n|. For a given n, if q
is gradually increased, the flow will become stable again to all the disturbance
modes after q > 1.5. A typical result is shown in Fig. 9.13.

The maximum unstable region in the parameter (k, q)-plane corresponds
to the flow with n = −1, for which extremely complicated flow pattern may
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Fig. 9.13. Variation of the growth rate ωi as the axial wave number k with different
azimuthal wave numbers n for q = 0.8. From Lessen et al. (1974)
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occur. Leibovich et al. (1986) found two bifurcated branches in the dispersion
relation ωr(k, n, q). One branch is called the fast mode, and the corresponding
phase velocity of the disturbance wave tends to infinity when k → 0. The other
is called the slow mode with frequency

ωr = −
nΓ1
4π

k2
[
ln
(

2
|k|

)
+ c1 − 0.5772

]
,

where Γ1 and c1 are determined by the velocity profile, and the associated
phase and group velocities tend to zero when k → 0,

c =
ωr
k
→ 0, cg =

∂ωr
∂k
→ 0.

The zero group velocity suggests these disturbances tend to become absolutely
unstable.

For most vortex flows of interest in engineering or geophysical fluid dy-
namics, centrifugal force is indeed the source to cause instability and it is
essentially an inviscid mechanism. Therefore, it had long been confident that
viscosity acts only on dissipation as an stabilizing effect. However, Khorrami’s
(1991) calculation revealed two purely viscous instability modes in the
q-vortex, which are different from the viscous instability of plane shear layers
due to the existence of centrifugal force.5

Consider first the viscous instability of an inviscidly unstable swirling flow.
For n = −1 we have the lowest critical Reynolds number. As the Reynolds
number increases, azimuthal instability modes −n of higher and higher orders
will be activated. Both critical axial wave number kc and critical Reynolds
number Rec are not sensitive to swirling parameter q; but Rec grows as n2

when −n grows. Thus, small-scale disturbances decay quickly due to viscosity
and eventually the dominant disturbances should be those modes with small
azimuthal wave numbers.

Then, consider the purely viscous instability modes when the basic flow is
inviscidly stable. Khorrami (1991) worked out two cases, n = 0 and n = +1,
which are known to be both stable according to the inviscid theory. Calcu-
lations for q = 1.0 and Re = 104 yields the results shown in Fig. 9.14, in
which the variation of frequency ωr and the growth rate of disturbance ωi
with wavenumber k are given. Note however that Schmid et al. (1993) have
noticed that the stability operator is highly non-normal for the specific un-
stable mode n = +1. Thus, the transient growth of disturbances plays an

5 Strictly, the purely viscous instability is meaningful only if the basic flow is an
exact Navier–Stokes solution. But the Batchelor vortex is not (see Sects. 6.2.1
and 8.1.3), although the Reynolds-number effect on its inviscid instability modes
and its viscous instability modes have been widely investigated. In fact, in these
studies the Batchelor vortex is used as a fitting model of experimentally observed
vortices or an approximate viscous solution. This makes sense because the linear
instability analysis is also approximate.
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Fig. 9.14. Disturbance growth rate ωi and frequency ωr vs axial wavenumber k
for viscous disturbances with q = 1.0 and Re = 104. Solid line for ωi, and broken
line for ωr. (a) Axisymmetric mode n = 0; (b) asymmetric mode n = +1. From
Khorrami (1991).

important role and the normal-mode approach alone cannot give the whole
scenario for the growth of disturbances.

9.3.3 Absolute and Convective Instability of Swirling Flow

We now proceed from temporal-mode analysis of swirling-vortex instability to
some recent AI/CI analyses. The inviscid and viscous AI/CI characters of a
Batchelor vortex have been studied by Olendraru et al. (1999) and Olendraru
and Sellier (2002) using linear theory, and by Delbende et al. (1998) using
direct numerical simulation. The two approaches may check and complement
each other. On the other hand, Loiseleux et al. (1998) discussed the AI/CI of
a Rankine vortex with a method similar to Olendraru and coworkers, while
Yin et al. (2000) studied the AI/CI of slender vortices for both incompressible
and compressible flows, including high Mach-number effect.

To consider the Batchelor vortex, we return to (6.19a) and write

U(r) = 0, V (r) =
q

r
(1− e−r

2
), W (r) = a+ e−r

2
, (9.76)

which has two parameters

a =
W∞
∆W

, q =
ΩcR

∆W
, (9.77)

where R is the radius of the vortex core, Ωc is the angular velocity at the axis,
and ∆W = Wc −W∞, with Wc and W∞ being the axial velocity at r = 0
and the free-stream velocity at r =∞ respectively. Thus, a and q characterize
the axial velocity distribution and the level of swirl for a Batchelor vortex,
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respectively. Along with these profile parameters, the Reynolds number is de-
fined by Re = ∆WR/ν. We stress that, while for temporal-mode analysis a
can be eliminated by a Galilean transformation, it does have important in-
fluence on the AI/CI behavior and the spatial propagation of disturbances.
As discussed in Huerre and Monkwwitz (1990), it is precisely in the situa-
tion where Galilean invariance is broken that absolute-convective instability
acquires physical significance. Associated with this is the fact that the sign of
azimuthal wave number n of the disturbance matters (see the remark follow-
ing (9.74)).

The azimuthal and axial velocity distributions of a typical swirling flow
are shown in Fig. 9.15, where

a < −1, coflow wake;
a = −1, wake with W (0) = 0;
−1 < a < 0, counter-flow wake or jet;
a = 0, jet with W∞ = 0;
a > 0, coflow jet.
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Fig. 9.15. Batchelor vortex velocity profiles. (a) Azimuthal velocity profile V (r).
Axial velocity profile W (r) for (b) coflowing wakes( a < −1); (c) counter-flowing
wakes or jets(−1 < a < 0); (d) coflowing jets( a > 0 ). From Olendraru et al. (1999)
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In the (a, q)-space, the half planes a > −0.5 and a < −0.5 represent the
jet side and wake side, respectively. Figure 9.16 plots the AI/CI boundaries
for n = ±1,−2, ...,−7 at Re = 667, which divide the (a, q)-plane into three
distinct regions: a stable (S) region, an AI region, and two CI outer regions at
both the jet side and wake side. Recall that if Ωc > 0, then there is q > 0 for
jet flow with ∆W < 0 and q < 0 for wake flow with ∆W < 0. For the latter,
we have mentioned in Sect. 9.3.2 that the temporal-mode unstable azimuthal
wavenumber n is positive. But it can be shown that the instability equation
is invariant under transformation (q,−n)→ (−q, n); so the AI/CI boundaries
with n = 1 for a wake-type Batchelor vortex can still be read off from Fig. 9.16
by taking q > 0 and n < 0.

A close look of Fig. 9.16 shows that the transitional helical mode from CI
to AI is very sensitive to the wake-like or jet-like nature of the flow, as well
as to the level of swirl. For wakes-like flow, the critical transitional mode is
always n = −1. But on the jet side (a > −0.5), the critical transitional mode
may have different azimuthal wave numbers n = −1,−2, ... . Moreover, when
q = 0, there is no swirl and the flow is a pure wake or jet, and there is a
small AI region in a narrow range of a. An increase of q will cause significant
enlargement of the AI region.

Note that the inviscid stability analysis, limited by the numerical method
applied, cannot determine the neutral boundary accurately. Once the viscous
effect is involved the situation is changed. As shown in Fig. 9.17 for the helical
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Fig. 9.16. AI/CI boundaries of the helical mode n = ±1,−2, . . . ,−7 in the (a, q)-
plane for Re = 667. From Delbende et al. (1998)
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Fig. 9.17. AI/CI boundaries of the helical mode n = −1 in the (a, q)-plane at
different Reynolds numbers. From Olendraru and Sellier (2002)

mode n = −1 and different Re, the increase of Re also enlarges the AI region
significantly. But, since both AI and CI regions are subregions of the temporal
instability, and as remarked in Sect. 9.3.2 the Batchelor vortex will be linearly
stable if q > 1.5, the AI regions for any Re have a common upper bound at
q � 1.5.6

The absolute growth rate ω0
i of the Batchelor vortex is illustrated in

Fig. 9.18 for wake-like flow with different (a, q) and n = 1, 2. Initially, an
increase of q leads to a corresponding increase of ω0

i , which then starts to
decrease for larger q. Thus, for each pair of (a, n), there is a maximum ω0

i ,
denoted by ω0

i,max. It is evident that the axial flow has a strong effect on the
absolute growth rate, which reaches the largest value when there is a counter-
flow ( a = −0.8), and this rate reduces as the axial velocity deficit a does.

9.3.4 Non-Modal Instability of Vortices

Finally, having discussed the normal-mode instabilities of a swirling vortex, we
turn to the non-normality effects on the vortex instability. Smith and Rosen-
bluth (1990) and Nolan and Montgomery (2000) have studied the transient
algebraic growth of the disturbance energy in inviscid hollow hurricane-like
vortices.

6 The top boundary of AI/CI for Re = 667 in Fig. 9.17 is beyond q = 1.5, possibly
due to numerical error.
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Nolan and Farrell (1999a) have studied the dynamics of both transient
and exponentially growing disturbances in two-dimensional one- and two-cell
vortices, which are maintained by the radial inflow of a fixed cylindrical
deformation field. Taking the linear evolution of asymmetric disturbances as
a dynamic system like (9.13), they found that the mean-flow shear results in
a non-normal operator that indeed allows for the transient growth of distur-
bances even when all modes of the operator are decaying. While the unstable
modal disturbances convert the mean-flow deformation to disturbance vortic-
ity, the instantaneous optimal disturbances use the mean-flow deformation to
rearrange their own vorticity into configurations with higher energy. A hy-
brid use of these two mechanisms was found to achieve substantial finite-time
energy growth. The authors also found that the radial flow causes vorticity ad-
vection and stretching, which is extremely important in assessing the potential
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for transient growth and instability of the vortices. This phenomenon can be
interpreted based on our general discussion on the key role of the curl of the
disturbance Lamb vector (Sect. 9.1.4).

Miyazaki and Hunt (2000) pointed out that bending waves can be ex-
cited by the interaction between the vortex and three-dimensional external
turbulence through a dominantly linear process. Choosing the Oseen–Lamb
pure vortex (6.25) as their basic flow, Antkowiak and Brancher (2004) have
analyzed in detail the transient growth of vortex energy. This flow is always
stable in temporal-mode analysis, no matter if the disturbance is two- or
three-dimensional. By introducing normal-mode disturbances v(r, θ, z, t) =
v̂(r, t) exp(i(kz + nθ)), the authors looked for the initial disturbance corre-
sponding to maximum gain of disturbance energy (the optimal disturbance)
G(t) = Kv(t)/Kv(0) by optimum control theory. Their work revealed that the
optimal disturbance may involve strong transient growth in the linear regime,
which gradually triggers a nonlinear transition to the originally (linearly) sta-
ble vortex.

Figure 9.19 gives the gain of the optimal disturbance energy with various
wave numbers k for n = 1, where the maximal gain of the energy occurs
at k ≈ 1.4. The gain can be as high as 103 for a high Reynolds number
flow. However, the optimal wave number is found to be independent of the
Reynolds number, indicating that there exists certain size of three-dimensional
disturbed vortex cores that is the most effective for their energy to be trans-
ferred from the mean to disturbance motions. Figure 9.20 shows the structure
of the optimal disturbance. Initially, it is a group of left-handed spiral vortic-
ity sheets (Fig. 9.20a). After a while, they can evolve to strong bending waves
in the vortex core (Fig. 9.20b).

Following Antkowiak and Brancher (2004), the transient growth of dis-
turbance energy in the Oseen–Lamb vortex involves two mechanisms. One
is similar to what has been discussed in Sect. 9.2.4; there is also a coupling
operator similar to Lc in (9.51) for small disturbances. Except for the trivial
case k = n = 0 and the extremely special case like a rotating rigid body,
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Fig. 9.19. Optimal energy growth versus axial wavenumber k for n = 1. From
Antkowiak and Brancher (2004)
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the operator is highly non-normal. With three-dimensional disturbances, one
can extend the Orr mechanism and the lifting-up mechanism discussed in
Sect. 9.2.4 to analyze the transient growth of the disturbance energy caused
by the operator non-normality, but now more complicated dynamic processes
such as vorticity stretching and tilting enter into the play.

The second physical mechanism is closely related to the vortex motion,
i.e., the interaction between the vorticity convection and induction. Taking
two-dimensional disturbances as example, the linearized equation for the dis-
turbance vorticity reads:

∂ω

∂t
+

V

r

∂ω

∂θ
+ u

dΩ
dr

=
1
Re
∇2ω, (9.78)

where ω is the axial disturbance vorticity, u is radial disturbance velocity,
V (r) and Ω(r) = 2 exp(−r2) are the circumferential velocity and axial vor-
ticity of the basic Oseen–Lamb vortex. The second terms on the left-hand
side of (9.78) is the convection effect on ω, while the third one expresses the
axial vorticity transfer from the mean to the disturbance motion due to the
interaction between the mean vorticity gradient and the radial disturbance
velocity.

Now, as just seen in Fig. 9.20a, the initial structure of the optimal distur-
bance is a set of spiral vortex sheets located at the edge of the vortex, where
the induction term is negligible. As time goes on, the spiral sheets are con-
vected and unfolded by an analogy of the Orr mechanism, which leads to a
local reorganization of the disturbance vorticity. The latter in turn enhances
the induction of the vortex at its axis. Thus, the initially occurred Orr mech-
anism at the edge of the vortex core gradually influences the vortex core and
causes bending waves there. The helical vortex-dipole structure in the core
then grows quickly so that most of disturbance energy is concentrated in the
bending waves. This is how the joint effect of the local Orr mechanism and the
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global vortex induction leads to a transient growth of the disturbance energy
in the Oseen–Lamb vortex.

It should be pointed out here that the above phenomenon and physical
mechanisms take place in fact in all flows where shear and swirl coexistence.

An important question in any nonmodel instability analysis is whether
theoretically predicted optimal disturbances (see Sect. 9.1.2) can exist in re-
ality, e.g., a rotational weather system, and what would happen if the initial
disturbance is not optimal. This question has been addressed by Nolan and
Farrell (1999b), who imposed a stochastic asymmetric forcing to the same
one- and two-cell vortex models with radial inflow studied by Nolan and Far-
rell (1999a). The authors found that those structures generated by vortex
instability, that can most effectively induce the energy transfer from mean to
disturbance field, are close to the global optimals defined in Sect. 9.1.2. Physi-
cally, as long as a stochastic forcing contains a constituent that belongs to the
optimal disturbance, it will be rapidly amplified in finite time by the operator
non-normality and become dominant.

9.4 Instabilities of Strained Vortices

It has been stressed in Chap. 5 that in reality a vortex often exists in a strain
field, so that the cross shape of the vortex and surrounding streamlines become
elliptical. The instability of such a vortex is called elliptical instability. This
instability is invariably three-dimensional and has linear growth rates scaled
with strain rate, so that the flow becomes very complicated and leads to
small-scale disorder.

As is known, the linear stability analysis for parallel shear flows can de-
scribe only the initial development of the disturbances after the flow becomes
unstable. The further transition of the flow into turbulence is related to the
secondary instability of the unstable flow where the stream lines of the basic
flow are no longer parallel but usually elliptical due to the strain field. The
elliptical instability on a two-dimensional basic vortex just represents a sim-
ple model for the secondary instability. Moreover, elliptical instability gives
a universal mechanism for two-dimensional large-scale coherent structures to
directly evolve to complicated three-dimensional motions. This direct transfer
mechanism plays a dominant role in transition of the flows like wakes, mix-
ing layers and vortex pairs. On the other hand, since the existence of strong
vortex filaments with various sizes in turbulence has been well established,
and all these filaments are subject to the background strain field caused by
surrounding vortices (Sect. 6.5), one expects that elliptical instability of these
vortex filaments would have important influences on the evolution of coherent
structures and the intermittency of turbulence.

For these reasons, elliptical instability has recently become a new active
research subject in the field of hydrodynamic instability. For more information
see the review of Kerswell (2002).
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9.4.1 Elliptical Instability

The simplest example of elliptical instability is an unbounded strained vortex,
i.e., the basic flow is a superposition of an unbounded fluid at uniform rotation
as rigid body with angular velocity ω/2 = 1 and stagnation potential flow with
stretching in the −45◦ direction

U =

 0 −1− ε 0
1− ε 0 0
0 0 0

x = A · x, (9.79)

where ε > 0 is the strain rate. Craik and Criminale (1986) have proven that
this flow is an exact solution of the Navier–Stokes equation with stream func-
tion

ψ = −1
2
[(1− ε)x2 + (1 + ε)y2] (9.80)

for ε < 1, so the streamlines are elliptical with eccentricity rate

E =
√
(1 + ε)(1− ε). (9.81)

We now introduce a Kelvin-mode disturbance

(u′, p′) = (û(t), p̂(t)) exp(ik(t) · x), (9.82)

which differs from the convential normal modes in that û(t), p̂(t), and wave
number k(t) are all functions of time. Then (9.68) becomes

u̇j + i ˙̂klxlûj + ikmAmlxlûj +Ajlûl = −ikj p̂− νk2ûj , (9.83a)
kj ûj = 0. (9.83b)

The continuity equation (9.83b) implies that the disturbance is a transverse
wave, by which the nonlinear terms in (9.83a) can be cancelled automati-
cally. Thus, (9.83) are equally applicable to nonlinear disturbances of arbitrary
amplitude. Moreover, by setting

û = exp
(
−ν

∫ t

0

k2dτ
)

v̂, (9.84)

the viscous term in (9.83a) can also be eliminated in the equation for v̂. Then,
if the wave vector k is so selected that

dk
dt

= −AT · k, (9.85)

then terms depending on x in (9.83a) can be eliminated as well, yielding

dv̂j
dt

+Ajlv̂l = −ikj p̂. (9.86)
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Multiplying both sides of this equation by kj , and using the time derivative
of (9.83b)

kj
dv̂j
dt

= −v̂j
dkj
dt

= kjAjlv̂l,

one obtain

p̂ = 2ik−2kjAjlv̂l.

Combining this and (9.86) to eliminate p̂, we obtain an important equation

dv̂i
dt

=
(
2k−2kikj − δij

)
Ajlv̂l, (9.87)

or in invariant form

dv̂
dt

= Q(t) · v̂, Q(t) =

(
2kkT

|k|2 − I

)
·A, (9.88)

where I is the unit matrix.
Bayly (1986) has reduced (9.87) to a Floquet problem for v̂ and demon-

strated instability by searching over all possible wave numbers. The so-called
Floquet problem is to express a solution operator with respect to time by a
product of two operators:

A(t) = P(t) exp(Bt),

where P(t) is a time periodic operator and B a time-independent operator. The
eigenvalues of B are referred to as Floquet exponents (Schmid and Henningson
2001).

By a different approach, Waleffe (1990) has casted (9.87) to an equation
for a single component v̂z. Our presentation below follows a slightly different
version due to Yin and Sun (2003). From (9.85) and (9.87) one obtains:

d(k2v̂i)
dt

= −k2Ailv̂l + 2kjAjl (v̂lki − klv̂i)

of which the time derivative yields

d2k2v̂i
dt2

= k2AilAlj v̂j − 4(kmAmlAlj v̂j)ki + 2(kmAmlAljkj)v̂i

−2(kmAmlv̂l)(kjAji) + 2(kmAml)(kjAjl)v̂i + 2(kmAmlv̂l)Aij v̂j .

After some algebra, we find a homogeneous second-order ordinary differential
equation

[1− a cos 2Ω(t− t0)]
d2k2v̂z
dt2

+Ω2 [c− 4a cos 2Ω(t− t0)] (k2v̂z) = 0, (9.89)
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where Ω =
√
1− ε2 and

a =
ε sin2 θ

1− ε cos2 θ
, c =

4(1− ε) cos2 θ
1− ε cos2 θ

.

The coefficients of (9.89) have period π/Ω . From this equation we may obtain
the elliptical instability boundary as shown in Fig. 9.21 on the (a,

√
c)-plane.

Note that Ω
√
c and 2Ω are the natural and forcing frequencies of (9.89),

respectively, implying that subharmonic instability will occur when
√
c = 1.

Thus, in Fig. 9.21 the instability boundary starts from the point (a,
√
c) =

(0, 1).
For small ε, it can be found that the maximum growth rate σ depends

linearly on the strain rate ε:

σ =
9
16

ε. (9.90)

In the above discussion of elliptic instability the basic flow is two-dimensional
unbounded strained vortex. The theory has been extended to three-dimensional
basic flow, where the triaxial instability of a triaxial ellipsoid is analyzed; for
review see Kerswell (2002). Figure 9.22 shows the dependence of σ on ε in the
full range of ε for both two- and three-dimensional basic flows. The left end
of the curve corresponds to rigid rotation, while the right end represents a
Couette flow.

Finally, we remark that the mechanism of linear elliptical instability dis-
cussed here is a parametric resonance where a normal mode, or a pair of
normal modes, of the undistorted rotating flow resonates with the underlying
strain field. Thus, it is also called the co-operative instability (Kerswell 2002).
In particular, since the above simple model assumes an unbounded uniform
rotation and strain as the basic flow that is not altered by the disturbance,
for a vortex with finite core radius a the model is only an asymptotic approx-
imation for ka  1 or the disturbance wave-length is much smaller than a.
Thus, this model represents an unltra short-wave instability (Saffman 1992).
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Fig. 9.21. The stability boundary for the elliptical flow on (a,
√
c)-plane. From

Huerre and Rossi (1998)
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9.4.2 A Columnar Vortex in a Strained Field

We proceed from the simple model of ultra short-wave instability to a more
realistic case, i.e., the instability of a straight vortex filament in a strain field
on the plane perpendicular to its axis. In this case elliptical streamlines occur
only near the vortex core. Moore and Saffman (1975) considered the instabil-
ity of a two-dimensional inviscid vortex in a weak strain field (see the strained
vortex solution in Sect. 6.5.2) with respect to three-dimensional disturbances,
while Tsai and Widnall (1976) considered the instability of a strained Rankine
vortex. These authors found that in this case the most amplified disturbances
have wavelength of k ∼ O(1), namely the vortex is unstable to short-wave
disturbance. Therefore, this “Tsai–Widnall–Moore–Saffman (TWMS) insta-
bility” is a short-wave elliptical instability near the vortex core. It has recently
been extended by Eloy and Le Dizès (1999, 2001) to the Burgers and Oseen
vortices, which we outline later.

The axial vorticity distributions of the Burgers and Oseen vortices have a
common form

ωz =
Γ

δ2
G(r̄), r̄ =

r

δ
, (9.91)

where Γ is the circulation, δ the radius of vortex core, and

G(r̄) =
1
4π

e−r̄
2/4 (9.92)
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is the normalized Gaussian function. For the difference of these vortices see
Sect. 6.2. We now add a background strain field

Uε = (εx,−εy, 0) = (εr cos 2θ,−εr sin 2θ, 0)

perpendicular to the vortex axis, which makes the vortex-core shape become
elliptical. Consequently, (9.80) is no longer a solution of the Navier–Stokes
equation. However, it has been shown in Sect. 6.5 that in the limit of large
Reynolds number Re = Γ/ν, the main features of the vortex is retained near
its core. Referring to (6.172), the axial vorticity reads:

ωz =
Γ

δ2
G (r̄) + εη (r̄)F (r̄) sin 2θ +O

(
εγδ2

Γ
,
ε2δ2

Γ

)
, (9.93)

where γ is the stretched rate of the Burgers vortex, and by (6.175) and (6.148a)
there is

η(r̄) =
r̄2

4(er̄2/4 − 1)
, (9.94)

F ′′ +
1
r̄
F ′ − 4

r̄2
F + η(r̄)F = 0. (9.95)

The function F measures the interaction of the vortex with the strain field.
Then the velocity and pressure distributions of the vortex in the strain field
are given by

Vr = εδ2
4
r
F (r̄) cos 2θ − γ

2
Γ +O

(
ε2δ3

Γ
,
εγδ3

Γ

)
, (9.96a)

Vθ =
Γ

δ
V (r̄)− 2εδF ′ (r̄) sin 2θ +O

(
ε2δ3

Γ
,
εγδ3

Γ

)
, (9.96b)

Vz = γz, (9.96c)

P = − Γ 2

2δ2
[V (r̄)]2 + ε

Γ

δ
F ′ (r̄)V (r̄) sin 2θ +O

(
ε2δ, εγδ

)
, (9.96d)

where γ is the axial stretching rate for the Burgers vortex only and

V (r̄) =
1

2πr̄
(1− e−r̄

2/4) (9.97)

is the azimuthal velocity profile of the Burgers and Oseen vortices. The above
asymptotic results are valid if Γ/δ2  ε, γ. Thus, they can be applied to
analyze the vortex instability in a weak strain field.

First, Eloy and Le Dizès (1999) neglect the effects of stretching and vis-
cous diffusion, and using the same method as TWMS to conduct the stabil-
ity analysis. Since in weak-strain approximation (ε 
 Γ/δ2) (9.92) indicates
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axisymmetry to the leading order, one can superimpose to the basic flow a
Kelvin wave

û = Φ(r)ei(kz+nθ−ωt) + c.c., (9.98)

where c.c. denotes complex conjugate, while ω, k, and n are related by the
dispersion relation D(ω, k, n) = 0. Because the interaction of the n-Kelvin
wave and the strain field can produce two additional azimuthal wavenumbers
n± 2, the n-wave and n+ 2-wave can resonate via the strain field under the
resonance condition

D(ω, k, n) = D(ω, k, n+ 2) = 0.

For this flow the dispersion relation has symmetry D(ω, k, n) = D(−ω, k,−n),
so the resonance condition can be satisfied by the stationary helical waves
(ω, n) = (0,±1), and there is D(0, κ/δ, 1) = 0 for arbitrary dimensionless
axial wavenumber κ. Hence, this special combination of helical modes will
always be amplified by the strain field to make the vortex unstable. This
parametric resonant instability is characterized by a disturbance growth rate
σ = O(ε), a critical wave number κc = O(1), and an instability disturbance
wave-band range ∆κ = O(εδ2/Γ ) around κc.

Next, interestingly, Eloy and Le Dizès (1999) observed that the effect
of axial stretching and viscous diffusion on the elliptical instabilities of the
Burgers vortex and Oseen vortex, respectively, is to make the dimension-
less axial wavenumber κ of the resonant helical waves time-dependent, such
that their instabilities has a transient feature. The core radius of an Oseen
vortex δL grows with time as (νt)1/2 due to viscosity, i.e., on a time scale
tL = O(δ2/ν) = O(δ2Re/Γ ). Thus, if the initial configuration is unstable,
at later times kδ will increase and go out the unstable band centered at the
critical wave number κc, so the helical waves are no longer unstable (see
Fig. 9.23a). The amplitude gain of the instability wave may be estimated as
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Fig. 9.23. Time evolution of kδ for the Oseen vortex (a) and the Burgers vortex
(b). In both cases, kδ remains in the unstable band around k only for a finite time.
From Eloy and Le Dizès (1999)
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G ∼ exp(τσ), where τ is the time during which the wave passes the insta-
bility wave band and σ = O(ε) is the mean disturbance growth rate. Thus,
τ = O((∆κ)tL) = O(εReδ4/Γ 2) and G ∼ exp

(
ε2Reδ4/Γ 2

)
. Therefore, the

vortex can be considered unstable if ε Γ/
(
δ2Re1/2

)
.

In contrast, to a Burgers vortex, the stretching decreases its axial wave
number according to kb = k0 exp(−γt). Hence if a helical wave is initially
unstable, after a finite time τ = ∆κ/γ = O(εReδ4/Γ 2), kδ will decrease and
likewise go out of the unstable band ∆κ (see Fig. 9.23b). Thus, the growth is
also transient, again under the condition ε Γ/(δ2Re1/2).

9.4.3 Instability of a Vortex Pair

A pair of parallel and counter-rotating vortices is one of the basic vortex
structures (Sect. 6.5.2). Their stability behavior are important not only in
academic studies but also for engineering applications.

Motivated by the need for studying the evolution of aircraft trailing vor-
tices, Crow (1970b) was the first to study the long-wave instability (known
as the Crow instability) of a vortex pair. He modelled the vortex pair by two
infinitely long filaments subjected to a harmonic disturbance of wavelength
2π/k  a, where a is the core radius, and used the Biot–Savart formula with
cutoff approximation (see Sect. 8.2.1; the cutoff parameter depends on the core
structure) to calculate the vortex-induced velocities. Then three mechanisms
are involved in the disturbance development (i) the self-induction of each in-
dividual vortex, (ii) the mutual induction between the two vortices, and (iii)
the action of the strain field. Crow found that (i) is a stabilizing factor but
(iii) is destabilizing. The resultant instability is due to the resonance of a long,
bending Kelvin wave on the vortex filament with the external strain field im-
posed by the other vortex filament. The disturbances can be classified into
symmetric and antisymmetric modes. Calculation indicates that the latter is
decaying, while the stability boundary for the former is shown in Fig. 9.24,
where a is the vortex-core radius and b the distance between the vortices.
The flow is unstable only for long-wave disturbances, also called long-wave
cooperative instability (Saffman 1992). In fact, there is a critical wavenumber
k = kc, such that for k > kc the flow is stable, because the filament rotation
due to self-induction exceeds the rate of convection away from the hyperbolic
stagnation point of the strain flow.

Moore and Saffman (1975), Tsai and Widnall (1976), and Leweke and
Williamson (1998, 2000) have further studied the short-wave instability of the
vortex pair and revealed again the same mechanism based on the parametric
resonance. Figure 9.25 shows the flow visualization of the vortex pair at var-
ious evolution stages. In the beginning of vortex-pair formation, the vortices
are straight and uniform along their axes. Later, two different instability be-
haviors occur. The large-scale symmetric deformation with axial wavenumber
of about 6b corresponds to the Crow instability, while the growing disturbance
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Fig. 9.24. Stability boundary for symmetric modes of trailing vortex pair. The
dashed line is the maximum growth rate of disturbances. From Saffman (1992)

with λ 
 b is due to the short-wave instability which, unlike the Crow in-
stability, will change the vortex-core structure. The amplitude is larger in the
regions where the Crow instability brings the two vortices closer with stronger
mutually induced strain rate. A close look at Fig. 9.25c indicates that the ini-
tial reflectional symmetry of the flow with respect to the plane separating the
vortices is lost, and the displacements of the two vortices are out of phase.
Thus, the two instabilities are closely coupled in their evolution.

If only the Crow instability acts, the vortex pair will experience a vortex-
reconnection process (Sect. 8.3.3) to form a periodic array of vortex rings,
which persist for a long time. Hence, most of the initial circulation is retained
in the long-life and large-scale structures. But, when long- and short-wave
instabilities coexist, their mutual interaction significantly complicates the late-
stage evolution pattern. The mutually induced shift velocity of the vortex pair
due to long-wave instability is a constant; but with the existence of short-wave
instability this velocity will shortly become much smaller but finally tend to a
constant again, about only 1/3 of its initial value. This reduction of the shift
velocity is an indication of the breakdown of the complicated and organized
structures formed by both instabilities.

In fact, as just said, in a region where the vortices are brought closer by the
Crow instability, the elliptical instability develops more rapidly, and hence at
these periodic axial locations the primary organized vortical structures break
down first, resulting directly in a mixing through a cross over of the fluid
originally rotating around only one vortex. This process leads to the formation
of an array of transverse counter-rotating secondary vortex pairs. The axial
vorticity is thereby pulled out, and is subsequently tilted and stretched by the
strain field. Therefore, the circulation of the primary vortices is considerably
weakened, which is why the mutual-induction speed is reduced. Obviously,
compared to the Crow instability alone, the interaction of long- and short-wave
instabilities can destroy the large-scale vortex structures more efficiently.

Finally, an important issue in trailing-vortex instability is the AI/CI
character of the counter-rotating vortex pair in the presence of a uniform
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(a)

(b)

(c)

Fig. 9.25. Visualization of vortex pair evolution under the combined action of long-
wavelength and short-wavelength instabilities at different dimensionless time t∗. (a)
t∗ = 1.7; (b) t∗ = 5.6; (c) t∗ = 6.8. From Leweke and Williamson (1998)

axial advection velocity. This spatial-temporal development of trailing vor-
tices has been examined by Fabre et al. (2000a,b). The trailing vortices have
a downstream advection velocity U0 and a mutually induced downwash veloc-
ity W0 = Γ/2πb. The dispersion relation for spatio-temporal mode analysis
has the form

D

(
k, ω;

a

b
,
W0

U0

)
= 0

of which Fabre et al. studied two asymptotic cases.
At the long-wave asymptotic end with (a/b)2 
 1, the AI/CI regions are

shown in Fig. 9.26a in the parametric (W0/U0, a/b)-plane. AsW0/U0 increases
the flow changes from CI to AI, and in the limit of a/b → 0 a finite ratio
W0/U0 > 0.14 is needed to promote the absolute instability. On the other
hand, in the CI region on the left part of the figure one may perform a spatial-
mode analysis. Then the ratio of the spatial and temporal growth rates can



502 9 Vortical-Flow Stability and Vortex Breakdown

0.30

0.25

0.20

0.15

0.10

0.05

0 0.1 0.2 0.3 0.4 0.5

0.30

0.25

0.20

0.15

0.10

0.05

0 0.1 0.2 0.3 0.4 0.5

a/
b

a/
b

1.
01

1.
01

1.
05

1.
05 1.
11.
1

1.2

1.5

1.
2

1.
4

1.
8

2

Absolute
instability Absolute

instability

Wo/Uo Wo/Uo

(a) (b)

Fig. 9.26. The absolute and convective instability regions of a vortex pair.
(a) Short-wave instability; (b) long-wave instability. The ratio of spatial to tem-
poral growth rates is displayed in the convective region. From Fabre et al. (2000b)

be compared, also shown in the CI region of Fig. 9.26. The spatial growth is
seen increasingly larger than the temporal growth as the AI region is closer.

At the opposite short-wave asymptotic end with |ka| = O(1), the AI/CI
boundary is shown in Fig. 9.26b. Qualitatively similar to the long-wave case,
the flow is convectively unstable when W0/U0 → 0, and its spatial growth
rate is larger than the temporal one as W0/U0 increases.

The AI/CI character of trailing vortices is of great value in aeronautical
application. Let the aircraft flight speed be U0, then the downwash velocity
of the trailing vortices is given by (e.g., Prandtl and Tietjens 1934)

W0

U0
=

CL

4πAR

(
b0
b

)2

,

where CL is the lift coefficient of the wing, AR is its aspect ratio, and b0 its
wing span. Assume AR 1 and the wing load has elliptic distribution, then
b/b0 = π/4 and W0/U0 � 0.13CL/AR. For a common transport aircraft in the
lending state there is CL ≈ 2, AR ≈ 10, andW0/U0 ≈ 0.026. Thus, by Fig. 9.26
the trailing vortices are convectively unstable, and spatial-mode analysis can
be applied to study their evolution. The obtained maximum spatial growth
rate of the disturbance is close to the maximum temporal growth rate. But,
for wings with small AR or high-lift devices, the trailing vortices may exhibit
absolute instability.

9.5 Vortex Breakdown

Vortex breakdown is a sudden and abrupt structural change in the evolution
of a concentrated vortex, as a typical appearance of the nonlinear instability
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Fig. 9.27. A bubble-type vortex breakdown. Reproduced from Van Dyke (1982)

of vortex motion. Different patterns of vortex breakdown may occur, such as
nearly-axisymmetric bubble type, spiral type, and double helix type. Fig. 9.27
is a typical photo of the bubble-type vortex breakdown.

At low Reynolds numbers, vortex-breakdown patterns have three most
essential features: the appearance of a stagnation point at the vortex axis; a
finite recirculation zone following the stagnation point; and the sudden ex-
pansion of the vortex core. But at very high Re Sarpkaya (1995) observed a
quite different breakdown pattern in swirling flow: a kink appears in the vor-
tex core, followed by a spiral. The nascent spiral adjacent to the kink directly
bursts into turbulence and quickly rotates. The reminder of the breakdown
transforms into a nominally axisymmetric core of swirling turbulent flow. The
breakdown bubble and recirculation zone are no longer observable.

Vortex breakdown plays an important favorable or unfavorable role in na-
ture and technology. It has been observed in tornadoes, dust devils, and water
spouts. In a combustion chamber the recirculation zone after the breakdown
of the swirling flow may support and stabilize the flame, and enhance the
mixing of the fuel and air. The trailing vortices behind large aircrafts may be
destructed by breakdown, and thereby their threat to a following aircraft is
reduced during take-off and landing. However, the breakdown of the leading-
edge vortices of a slender-wing aircraft at large angles of attack may signif-
icantly decrease the nonlinear vortex lift, increase the drag, and deteriorate
the controllability.

At the fundamental level, as a typical and extremely complicated nonlinear-
dynamics phenomenon, a clear understanding of the vortex breakdown is of
significant value in theoretical studies.

All these explain why the vortex breakdown has become a research area of
vortex dynamics that has been attracting great attention of many researchers
ever since it was first observed by Peckham and Atkison (1957) in the leading-
edge vortex evolution of low-speed flow over a slender wing. Considerable
progresses have been achieved by various experiments, numerical studies and
theoretical analyses during the past five decades. For reviews of experimen-
tal findings, physical observations, and theoretical developments at different
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stages see Sarpkaya (1971), Hall (1972), Leibovich (1978, 1983), Stuart (1987),
Escudier (1988), Althaus et al. (1995), Lucca-Negro and Doherty (2001).

The current status in the researches of vortex breakdown may be roughly
summarized as follows. In experimental studies, the description of its phenom-
ena and basic characters has been gradually completed, and one’s interest has
turned to the breakdown control since 1990s (e.g., the review of Mitchell and
Délery (2001)).

In computational studies, the current focus is the numerical solutions of
the unsteady Navier–Stokes equation with high accuracy and resolution, which
has not only enabled pretty good simulation of experimentally observed flow
patterns but also revealed some new phenomena, and hence promoted relevant
theoretical developments.

In theoretical studies, various models have been proposed toward a rational
understanding of the physical mechanisms involving in vortex breakdown, of
which the basic aspects have now been clarified.

Owing to its inherent complexity, however, so far a unified, satisfactory and
commonly accepted theory on the physics and topological structure of vortex
breakdown has not yet appeared. This situation is also responsible for the
lacking of technical means in achieving effective and efficient control of vortex
breakdown. Therefore, it is still necessary to continue relevant fundamental
researches, of which the recent progresses are outlined in this section.

9.5.1 Vorticity-Dynamics Mechanisms of Vortex Breakdown

The physical mechanism of vortex breakdown can well be qualitatively
understood in terms of vorticity dynamics (Brown and Lopez 1990).

Consider an axisymmetric and steady swirling motion of an incompressible
fluid, and neglect the viscosity first. As shown in Sect. 6.1, in cylindrical coor-
dinates (r, θ, z) with velocity components (u, v, w) and vorticity components
(ωr, ωθ, ωz), this flow is generalized Beltramian and can be described by the
Stokes streamfunction ψ, circulation Γ (ψ), and stagnation enthalpy H(ψ).
In the discussion of vortex-core dynamics of a swirling flow (see (8.25) and
(8.26)), we have shown that the axial pressure gradient (and axial acceleration
w dw/dz at the vortex axis) has two constituents, imposed at the outer edge
of the core by the exterior boundary condition and caused by the rotational
effect of the swirl, respectively. Even under an externally imposed favorable
pressure gradient there can still be an adverse pressure gradient (and axial
deceleration) at the vortex axis. Actually, in practical circumstances where
vortex breakdown takes place, either in a vortex generator with a straight
circular pipe followed by an expanding section (most of experimental studies
of vortex breakdown were conducted in this kind of apparatus) or on the lee
side of a slender wing at large angles of attack. The axial deceleration must
then cause an outward radial flow due to the continuity. Consequently, the
balances of momentum and angular momentum will force a redistribution of
ωz and ωθ, of which the detailed process is as follows.
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First, from the observed velocity distribution upstream the breakdown
point, it is known that in the early stage of the flow evolution the axial vorticity
ωz is dominant, while ωθ takes a weak and positive value. However, to have an
internal stagnation point at the vortex axis that signifies the onset of vortex
breakdown and is followed by a recirculating zone, the axial velocity w must
become negative at the vortex axis r = 0. Then, by the Biot–Savart formula
for axisymmetric flow and applied to the axial velocity at r = 0,

w(0, z) =
1
2

∫ ∞

0

∫ ∞

−∞

r2ωθ
[r2 + (z − z′)2]3/2

dr dz′, (9.99)

it is evident that w(0, z) < 0 must be associated by a change in sign of
the azimuthal vorticity ωθ. Therefore, as pointed out by Brown and Lopez
(1990) based on their numerical simulation, the generation of negative vortic-
ity (hence the swirling flow is of wake-type if u = 0) is a necessary condition
for the appearance of the internal stagnation point and recirculating zone.

Next, to explain how ωθ becomes negative, notice that by (6.12b) there is

D
Dt

(ωθ
r

)
=

1
r4

∂Γ 2

∂z
= − u

r3
∂Γ 2

∂ψ
. (9.100)

But, as sketched in Fig. 9.28, an expansion of the flow tube will cause an
increase of the circulation Γ ; and, in most practical cases with vortex break-
down, one observes dΓ 2/dψ ≥ 0. This is a tilting effect of the vorticity. There-
fore, a positive radial velocity u > 0 as asserted above will cause a decrease
of ωθ. If this trend continues, ωθ will eventually become negative.

Then, the azimuthal vorticity in an axisymmetric flow can be viewed as
a bundle of thin vortex rings, each having a length l = 2πr that is enlarged
by the outward flow u > 0. Therefore, once appears, the negative ωθ will be
enhanced due to stretching, which will in turn induced a stronger negative
axial velocity at the axis.

We thus see a positive-feedback mechanism: an adverse pressure gradient
reduces the axial velocity and causes an outward radial velocity, associated
with a reduction of the azimuthal vorticity due to the vorticity tilting; once
the azimuthal vorticity becomes negative, it is enhanced by the stretching
effect due to the outward radial flow and hence causes a further reduction

r

dz z

G (y +dy)

G (y )

Fig. 9.28. The generation the axial gradient of the circulation
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of the axial velocity and to make the latter become zero and even negative.
This nonlinear positive-feedback mechanism finally leads to the formation of
an internal stagnation point and vortex breakdown.

Only the above positive-feedback mechanism, however, cannot stabilize
the breakdown bubble at an equilibrium position. This mechanism has to
be counteracted by a negative-feedback mechanism. In fact, the latter does
exist, again due to the vorticity stretching and tilting. Once is formed, the
breakdown bubble will force the external fluid to move outward like passing
a bluff body, making the vorticity tubes tilted outward too and stretched as
well. These two effects enhance the outward radial velocity from the vortex
axis, which supplements the fluid momentum far from the axis to suppress
the external axial adverse pressure gradient. It is the coexistence and dy-
namic balance of the positive and negative feedback mechanisms that forms
a complete vorticity-dynamics interpretation of the vortex breakdown.

Recent direct numerical simulations have confirmed the preceding analy-
sis. Darmofal’s (1993) computation demonstrated the variation of axial and
azimuthal vorticities during the vortex breakdown. Ruith et al. (2003) have
applied a high-accuracy scheme to compute the unsteady axisymmetric and
three-dimensional swirling laminar jets and wakes, with flow domains un-
bounded in the downstream and radial directions. They simulated the spa-
tial and temporal evolution of swirling Navier–Stokes flows. The numerical
results agree well with the experiments of Garg and Leibovich (1979), and
show that viscous diffusion of axial vorticity away from the axis starts the
evolution of the flow. It effectively reduces the induced velocity on the vor-
tex axis, thereby increasing the pressure locally. Adverse pressure gradient
and viscous diffusion yield a divergent vortex core. Thus, the preceding invis-
cid feedback mechanisms are extended to viscous flow. Then the flow evolves
toward an axisymmetric, quasi-steady bubble breakdown state, enclosing an
ovoid region of circulating fluid. The axisymmetric breakdown configuration
eventually becomes unstable to helical disturbances in the wake of the bubble,
yielding a helical breakdown (see Sect. 9.5.3).

9.5.2 Onset of Vortex Breakdown: Fold Catastrophe Theory

Theoretically, one approach to the interpretation of vortex breakdown is using
hydrodynamic stability theory, which was first attempted by Ludwieg (1960,
1965). He considered the formation of the breakdown internal stagnation point
at the vortex axis as a result of loosing stability of the vortex core to helical
disturbances. However, linearly stability analysis and experiments (Escudier
1988) indicated that the flow upstream breakdown point is at worst still crit-
ically stable; and, even if it is linearly unstable there exist no sufficient space
and time to allow for any small disturbance to evolve to such a strong one
that can cause the observed abrupt and violent change in the vortex structure.
In fact, according to the linearly stability theory, under certain external-flow
conditions one can find a flow region unstable to helical disturbances, but
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observe no breakdown. Conversely, some axisymmetric breakdown can occur
without loosing stability, as shown for a swirling flow in a sealed cylinder with
a rotating endwall. Thus, the vortex breakdown is not a direct consequence
of the hydrodynamic instability.

The suddenness of vortex breakdown makes some researchers more in-
clined to consider it as a jump from one swirling-flow state to another. This
concept was initiated by Benjamin (1962) in his “conjugate theory”, in which
the breakdown is viewed as a critical state very similar to a shock wave in gas
dynamics or a hydraulic jump in open channel flows. According to the theory,
the flow upstream the breakdown is supercritical, where the disturbance can
only propagate in downstream direction; while the flow downstream the break-
down is subcritical, where the disturbance can propagate in both upstream
and downstream directions. Thus, the breakdown is a transition process from
supercritical to subcritical. Under this critical state, Leibovich and Randall
(1972), Randall and Leibovich (1973), Leibovich and Kribus (1990) have ob-
tained solitary wave solutions of weakly nonlinear and fully nonlinear evolu-
tion equations to mimic axisymmetric bubble-type breakdown.

During this period, several researchers have also considered the vortex
breakdown as a fold catastrophe that cause a sudden transition to a differ-
ent flow state. Batchelor (1967) was the first to notice that the solution for
inviscid swirling flow in a diverging pipe have a fold bifurcation as the swirl
is increased. This concept has been extended by Saffman (1992) and Buntine
and Saffman (1995). The fold catastrophe theory has been further developed
by Wang and Rusak (1997a), Goldshtik and Hussain (1997, 1998), and Rusak
et al. (1998). Meanwhile, numerical simulations of swirling flows in circular
tube and the flow in a rotating, sealed cylinder with a differentially rotating
endwall also confirmed the existence of the nonuniqueness of the solutions
corresponding to the fold bifurcation.

The fold catastrophe theory for vortex breakdown has now become an
active research direction, which provides a new interpretation of the break-
down and serves as a new departure point for its understanding. In what
follows we first review the results of direct numerical simulations of swirling
flow, and then outline the theoretical work of Wang and Rusak (1997a).

In most of early numerical computations on vortex breakdown in a circular
tube, the obtained solutions are unique. But later more accurate computa-
tion indeed found the solution nonuniqueness (Leibovich and Kribus 1990).
Beran and Culick (1992) have conducted a numerical simulation specifically
for testing the uniqueness of the solution. They computed the steady and ax-
isymmetric swirling flow of a viscous incompressible fluid through a circular
pipe of constant radius and circular pipes with throats. The variation of the
solution as a characteristic parameter λ was numerically determined, where λ
is taken as the value q of a q-vortex. The authors found that the axial velocity
at the centerline

wc(z) = w(z, r)|r=0
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Fig. 9.29. A representative solution diagram that relates vortex state to vortex
circulation. A, primary limit point; B, secondary limit point; solid line – nonreversed
flow; dashed line – reversed flow.

is a good measure of the behavior of the vortex-core flow that gives a direct
indication of where vortex breakdown occurs. Furthermore, the quantity

Q ≡ min
z

[wc(z)], (9.101)

was used to represent the computed solution in the presentation of solution
path. A typical numerical result is shown in Fig. 9.29. The figure indicates that
the solution depends on the vortex circulation, and the nonuniqueness comes
about through the formation of two limit points on the path, in between of
which the vortex may have three possible solutions. Along the direction of
circulation increase, for the uppermost branch of solution points there is no
reversed flow. This branch ends at a limit point A. After A is passed, the path
of solution folds, and a solution with reversed flow gradually develops as the
circulation increases. This branch ends at the second limit point B. As the
incoming swirl is further increased, the solutions after passing B have a large
separation zone. Thus, the existence of the solution nonuiqueness and a fold
bifurcation is confirmed.

The studies of Wang and Rusak (1997a,b) have unified the major previ-
ously theoretical and numerical approaches (see also Wang and Rusak 1996a,b;
Rusak et al. 1998). They have obtained the global bifurcation diagram for the
Euler solution of steady and axisymmetric swirling flow, and studied the linear
stability of different branches of the bifurcated solution at the critical state.
In this way, they are able to give a consistent explanation of the axisymmetric
vortex breakdown.

Wang–Rusak’s study includes three main steps. The first step is the global
analysis of Euler equation of the axisymmetric swirling flow in a pipe. Con-
sider the axisymmetric and incompressible swirling flow in a straight circular
pipe of finite length z0. Introduce the Stokes stream function ψ(z, r), so that
the flow is generalized Beltramian and governed by the Bragg–Hawthorne
equation (6.14)(it is also known as Squire–Long equation). For mathematical
convenience, set y = 1/2r2, so that equation becomes

ψyy +
ψzz
2y

= H ′(ψ)− I ′(ψ)
2y

, (9.102)
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whereH = p/ρ+1/2(u2+v2+w2) is the total head and I = Γ 2/2 the extended
circulation function, both are nonlinear functions of ψ. This nonlinearity may
lead (9.102) to have multiple solutions at a given swirling level s, defined as
the ratio of the maximum circumferential velocity and the characteristic axial
velocity.

In order to study the solution bifurcation, it is necessary to find a rep-
resentative scalar of the flow status. WR pointed out that the solutions of
(9.102) are well known to correspond to the stationary points of the following
functional:

E(ψ) =
∫ x0

0

∫ 1/2

0

(
ψ2
y

2
+

ψ2
z

4y
+H(ψ)− I(ψ)

2y

)
dxdy, (9.103)

of which the variational principle had been introduced by Benjamin (1962) in
his vortex-breakdown study.

The global variational analysis determines the topology of the functional
E for various fixed swirl level s. Numerical analysis shows that there exist
two critical swirl levels of the incoming vortex flow, s0 , s1 and s1 > s0. Refer
to Fig. 9.30a, when s < s0, the inlet flow develops as a columnar flow state
all along the pipe and is a global minimizer of E(ψ) and unique solution of
(9.102). When s > s0 (Fig. 9.30b), three possible steady-state solutions of the
problem are found. One is the trivial columnar state ψ0(y) that is now a local
minimizer of E(ψ). The two other states bifurcate at about s0 from a certain
state which is a large disturbance to the columnar solution. One solution is
the global minimizer of E(ψ) and describe an open, stagnant separation zone.
The second solution is the min–max point of E(ψ) which describe a localized
(solitary) wave in the swirling flow. The critical swirling level s1 (Fig. 9.30c)
is corresponding to Benjamin’s critical swirling level, but modified due to the
effect of the finite length of pipe. As swirl is further increased above s1, the
columnar flow solution becomes a min–max point of E(ψ). The third possible
solution is the global minimizer solution, and the separation zone becomes
much large in its size and its leading point moves toward the pipe inlet. It
describes a vortex breakdown state.

The earlier mentioned bifurcation diagram can be plotted in a different
way, see Fig. 9.31, to see more clearly the variation of the solution status as
the swirl level. The characteristic parameter of the solutions is taken as the

E(y ) E(y ) E(y )

yyy
(a) (c)(b)

Fig. 9.30. The function E(ψ) for (a) s > 0 but small; (b) s0 < s < s1; (c) s = s1.
Based on Wang and Rusak (1997a)
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Fig. 9.31. The bifurcation diagram of solutions and the corresponding theoretical
studies. From Wang and Rusak (1997a)

minimum axial velocity along the vortex axis. In this bifurcation diagram
of (9.102) also plotted the predictions of the theories of Benjamin (1962),
Keller et al. (1985), and Leibovich and Kribus (1990). It is evident that the
Wang–Rusak theory coincides well with the reasonable parts of the previous
theories, provides their natural interrelations, and meanwhile fills the gap be-
tween them. It can also be seen that the Wang-Rusak theory is well correlated
to the numerical results of Beran and Culick (1992), indicating that the main
effect of viscosity is to smooth the bifurcation diagram. This has been studied
theoretically by Wang and Rusak (1997b) as well, in good agreement with the
results of Beran and Culik. Therefore, it can be concluded that the bifurcation
of steady and viscous solutions is dominated by that of steady and inviscid
solutions.

While the earlier bifurcation analysis of (9.102) explains the mechanism
of vortex breakdown in terms of nonlinear dynamic system, it is more desired
that the mechanism can be clarified in terms of fluid dynamics. In the second
step of Wang–Rusak’s analysis, they have considered the linear stability of
different branches of the bifurcation solution at critical state to axisymmet-
ric disturbances. They found that when s < s0 the branch of the columnar
flow solutions is unconditionally stable to any axisymmetric disturbance. This
means that any axisymmetric disturbance to a base columnar flow will decay
in time and the flow return to a columnar state when the incoming swirl
in the range of s < s0. In a range of s0 < s < s1, two stable steady-state
solutions coexist, one is a local minimizer solution that describe a columnar
swirling flow and the other is a global minimizer that describe a swirling flow
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with a large open stagnation zone. The two branches of solutions are con-
nected by a branch of min–max solutions that are unstable. This means that
in the range s0 < s < s1 there exist two basins of attraction. In the range of
s > s1 the equilibrium columnar flow state is unstable and it is expected to be
absolutely unstable. If the swirl is relatively large, the global minimizer solu-
tion is a strong attractor, then the flow will develop with time in a nonlinear
dynamics from a columnar state into the vortex breakdown.

In the third step of Wang–Rusak’s analysis, they discuss the effects of
slight viscosity, pipe divergence and the inlet vorticity perturbations. They
have shown that when the flow Reynolds number is relatively high, the pipe
is straight (a small adverse pressure gradient), and there are no vorticity per-
turbation at the pipe inlet, the mechanism of vortex breakdown is dominated
by the loss of stability of the columnar state as the swirl level is increased
above the critical value and the nonlinear transition to a relatively stable
lower energy breakdown state which contains a large open near stagnant sep-
aration zone. On the other hand, if the Reynolds number is lower, the adverse
pressure gradient and the negative inlet azimuthal vorticity perturbation are
strong, the breakdown state develops as a result of those decelerating effects
and breakdown appears as solitary wave disturbance.

Wang–Rusak’s theory is limited to the axisymmetric swirling flow. For a
complete understanding of the vortex breakdown phenomenon a study of the
axisymmetric solutions to the nonaxisymmetric disturbances is necessary to
be developed.

9.5.3 Vortex Breakdown Development: AI/CI Analysis

The AI/CI analysis of vortices introduced in Sect. 9.3.1 enables the hydrody-
namic stability theory to proceed from local temporal-mode to global spatial-
temporal mode. It is reasonable to believe that the theory may reveal the
mechanism of the breakdown development after its sudden onset, especially
the mode selection in the breakdown zone, i.e., under what conditions there
appear axisymmetric bubble breakdown, and helical or double-helical break-
down.

In fact, some elements of the AI/CI concepts have been implied in certain
early theoretical attempts of vortex-breakdown. For example, the CI corre-
sponds to a supercritical flow of Benjamin’s (1962) “conjugate-flow theory”,
while the AI corresponds to its subcritical flow. On the other hand, Bilanin
and Widnall (1973) proposed that in a breakdown region waves are trapped
with vanishing group velocity. This concept may also be considered as the
simplest AI/CI analysis. Therefore, the AI/CI theory of vortex breakdown
is a natural generalization of the in-depth development of the conjugate-flow
theory and group-velocity criterion.

Monkewitz (1988b) has shown the existence of a finite pocket of local
absolute instability in the wake of axisymmetric bluff bodies. Correspondingly,
with a bubble-type breakdown, the upstream flow is decelerated, the stream
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tube is expanded, and an internal stagnation point is formed. These processes
are just like a flow over a bluff body, and hence suggest that the key to
understanding breakdown and its different modes observed in experiments
lies in the consideration of the flow field created by vortex breakdown itself.
Thus, many studies have used the AI/CI analysis to elucidate the physical
evolution in the breakdown zone, e.g., Olendraru et al. (1996, 1999), Delbende
et al. (1998), Loiseleux et al. (1998), Yin et al. (2000), Ruith et al. (2003),
and Gallaire and Chomaz (2003a,b, 2004).

Loiseleux et al. (1998) have examined the relation between vortex break-
down and the AI/CI characters of a prebreakdown vortex, for the latter they
used the Rankine vortex as the basic flow, with axial velocity profile being a
plug flow. The shape of AI domain is qualitatively similar to its counterpart
for the Batchelor vortex (Figs. 9.16 and 9.17). The authors found that for
n = −2, when the external axial velocity becomes zero and the swirl num-
ber S = 1.61 (or the Rossby number Ro = S−1 = 0.62), the flow becomes
absolutely unstable. They compared this prediction with several experimen-
tal data measured in vortex generators and above slender wings, see Fig. 9.32
on the (Re,Ro)-plane, where Ro = 0.62 is marked by a dashed line. Despite
its simplicity, the AI/CI criterion is seen to provide a reasonable estimate of
vortex breakdown onset.

Yin et al. (2000) have used the experimental data of vortex breakdown
obtained by Garg and Leibovich (1979) in a pipe to conduct an AI/CI numer-
ical analysis, where the basic flow is assumed as a Batchelor vortex (q-vortex)
that fits the experimental profiles quite well. The result is listed in Table 9.1,
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Table 9.1. AI character in near wake of breakdown based on experimental profiles
of Garg and Leibovich (1979). From Yin et al. (2000)

Case Re W∞/Wd q ko
r ko

i ωo
r ωo

i

1 9892 1.066 1.140 1.65922 −0.563106 3.556942 0.242629
2 9577 1.094 1.037 1.433490 −0.804143 2.919500 0.244768
3 7196 1.035 1.094 1.630081 −0.547424 3.143451 0.270133
4 5575 1.151 1.182 1.374675 −0.724399 3.766633 0.156573
5 4830 1.036 1.086 1.600400 −0.568426 3.081507 0.264991
6 4684 1.064 0.965 1.144451 −0.705080 2.293895 0.226299

showing that for all tested cases the flow in the near wake of breakdown bubble
is indeed absolutely unstable. Yin et al. also computed the AI/CI character
using the experimental data of Pagan and Solignac (1986) by fitting their ve-
locity profiles by a modified version of the Batchelor vortex. Once again the
flows were found absolutely unstable.

Yin et al. (2000) have further applied the AI/CI theory to predict an
important property of the vortex breakdown: the dominant frequency in a
breakdown bubble. Based on Bilanin’s (1973) concept of vanishing group-
velocity Cg in a breakdown region and noticing that from the AI/CI point of
view Cg should be computed in the complex k-plane, for trapped waves there is

Cg =
dω
dk

=
x

t
= 0 for complex ω, k, (9.104)

which may yield the corresponding absolute frequency f0 for givenW∞, q, and
n. To simplify their analysis, Yin et al. introduced some approximations based
on the experimental data of Garg and Leibovich (1979), and adopted a specu-
lation of Koch (1985) that the dominant frequency could be determined from
an ω0 at the boundary of AI and CI regions, for which ω0

i = 0. Then, in the ex-
perimental low Reynolds-number range, they found that the Strouhal number
(dominant frequency f0 nondimensionalized by the core radius and character-
istic axial velocity of the basic flow) predicted by AI/CI analysis takes about
the same value around 0.17, in reasonable agreement with the experimentally
observed value around 0.15, see Fig. 9.33. All these tests strongly suggest that
the absolute instability should be a common character in vortex breakdown.

Once it is established that in the breakdown zone the flow is absolutely
unstable, the key issue is whether the AI/CI analysis can reveal the physical
mechanism of the mode selection, including the transition from an axisym-
metric bubble-type breakdown to a spiral-type breakdown. This has been
addressed by Ruith et al. (2003) based on their direct numerical simulation
using a two-parameter axisymmetric columnar vortex model as basic flow.
Their computation shows that the basic breakdown form is an axisymmetric
bubble as predicted by the fold catastrophe theory, and in the wake of the
bubble there exists a sufficiently large AI pocket that causes a transition to
helical breakdown modes, giving rise to a self-excited global mode.
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Fig. 9.33. Dominant Strouhal number in a breakdown bubble. St = 0.171: theo-
retical predication. St = 0.15: average of measured values. From Yin et al. (2000)

To clarify the mode selection mechanism, Ruith et al. (2003) approximated
the numerically computed swirling vortex by a Batchelor vortex with varying
swirling level s and parameter a (see Sect. 6.2.1) at different z-stations, so
that the AI/CI characters of the flow at each section can be analyzed using
the AI/CI boundary plots of Fig. 9.16. The results are shown in Fig. 9.34 for
four different swirling level s that quantifies the relative importance of the
swirl velocity with respect to the axial velocity.

For each selected s, the dash-dotted line connects the (a, s) values com-
puted at different z-stations, with the arrow pointing to the direction of z
increase. This figure should be read along with Fig. 9.35, the corresponding
numerically simulated flow pattern at the same S, from which one can find
what physical event happens at the characteristic z-stations marked by the
value of z in Fig. 9.34.

Consider first Figs. 9.34a and 9.35a at a relatively small swirl level s =
0.8944 first. In this case, the velocity profiles at z = 3.0 has entered the AI
region but not deeply, and then retreats to the CI region. Since the AI pocket
in the physical space is not large enough, this low-swirl case is unable to
support self-sustained disturbances, and hence we observe an axisymmetric
bubble-type breakdown.

As s is increased to 1.0, see Figs. 9.34b and 9.35b, one finds the (a, s)
trajectory enters the AI regions twice as z increases and then returns to the
CI region: z = 1.8, in the bubble; and z = 5.3 in the wake of the bubble.
The AI pocket for the latter is considerably larger than that in the bubble
itself, and also much larger than the pocket for s = 0.8944. This indicates that
the critical size able to support a global self-excited mode might be reached
first in the wake of the bubble. Owing to this global self-excited disturbance,
the axisymmetric bubble is unstable to the helical disturbance wave with
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Fig. 9.34. AI/CI transition curves (dash-dotted lines) for a Batchelor vortex with
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vortex axis. Solid lines: the AI/CI boundaries taken from Fig. 9.16. (a) s = 0.8944,
(b) s = 1.0, (c) s = 1.095, (d) s = 1.3. From Ruith et al. (2003)

n = −1 (z=5.3), and thereby starting the transition to spiral breakdown. As
s is continuously increased to 1.095 and 1.3, then, the AI pocket in the wake
region is further enlarged, indicating more pronounced helical breakdown.
And, as seen from Figs. 9.34c,d and 9.35c,d, the AI pockets corresponding
to higher azimuthal wave numbers are even larger, leading to the possibility
of breakdown modes with higher helical wave numbers: for s = 1.3 we have
double-helical (n = −2) breakdown mode.

Summary

1. The products of the shearing process, i.e., free or attached vortex layers
(free shear layers or boundary layers) and vortices, are subjected to vari-
ous hydrodynamic instabilities that form the most commonly encountered
route to transition and turbulence. Many hydrodynamic stability theories
outlined in Sect. 9.1 have been motivated and critically tested by, and
found important applications to, these vortical structures. Within linear
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approximation, the classic local analysis based on normal-mode approach
has now been enriched by the important distinction between the absolute
and convective instabilities (AI/CI), and supplemented by the analysis of
the effect of transient algebraic growth of disturbances due to the non-
normality of the relevant operator, even if the flow is stable with respect
to any nomal-mode disturbances.
As the only active nonlinear term in the momentum and energy balance,
the disturbance Lamb vector plays a key role in the instability mechanisms
of vortical flows, either locally or globally. Inspecting the interaction of
this vector with the basic flow may lead to a clear understanding of the
physical processes that make the flow unstable. This knowledge enriches
the usually computed stability boundaries and disturbance growth rates.

2. Free and attached vortex layers belong to weakly nonparallel flow. The
theories for their instability are developed from the classic results on par-
allel shear-flow instability, notably the Rayleigh–Fjørtoft theorem for in-
viscid flow and Orr–Summerfeld equation for viscous flow.
A free shear layer is subjected to the Kelvin–Helmholtz instability at
any Reynolds numbers, by which the layer rolls into a row of spanwise
vortices. The dimensionless frequency (Strouhal number) associated with
the most amplified disturbance is nearly independent of the detailed basic-
flow velocity profile across the layer, which is a key parameter in free
shear-layer control.
A boundary layer becomes unstable as the Reynolds number passes a
critical value, for which the normal-mode solution of the Orr–Summerfeld
equation, the Tollmian–Schlishting wave, may grow. This wave is a vortical
wave.
In both unstable free shear layer and boundary layer, the spanwise vortical
structures will become three-dimensional due to the secondary instability,
from which streamwise vortical structures are formed as a further step of
transition. In addition, a strong transient growth may trigger nonlinear
instabilities, a mechanism that is necessary for subcritical transition of
laminar shear flows and for wall-bounded turbulence to be self sustained.

3. The instability of a free straight vortex is caused by the interaction of
centrifugal instability and shear instability. Except pure vortices to which
Arnold’s nonlinear stability theory may apply, this interaction is compli-
cated owing to the wide variety of the velocity–vorticity distribution in
a swirling vortex, so that within the linear approximation the governing
Howard–Gupta equation has to be solved case by case. Moreover, in ad-
dition to the swirl ratio, the AI/CI character of the vortex is not Galilean
invariant and depends critically on the axial velocity profile. Besides, the
non-normality effect always exists in a vortex and may cause some differ-
ent route to transition.

4. A strained vortex, including that under the strain field of another neigh-
boring vortex, has abundant instability mechanisms depending on the
ratio of disturbance wave length to the vortex core radius. The ultra
short-wave instability or elliptical instability is found to be a universal
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mechanism for direct transition to turbulence. When the disturbance wave
length is of the same order as the core radius (short-wave), the vortex axis
may be deformed by the bending and twisting modes of disturbance. When
the wave length is long compared to the core radius, the Crow instability
comes into play and is responsible for the aircraft trailing vortex pair to
be cut and reconnected to discrete vortex rings. This process can be accel-
erated by the cooperative effect of the long- and short-wave instabilities.

5. As a sudden and abrupt structural change of the vortex core, vortex
breakdown is a highly nonlinear process and remains one of the most
complicated vortex-dynamics phenomenon not fully understood. Recent
progresses, however, have been so significant that basic aspects of the
breakdown are gradually clarified. Qualitatively, the breakdown involves
the balance of a positive-feedback and a negative-feedback mechanism,
both having root at vorticity stretching and tilting. Quantitatively, the
onset of vortex breakdown is an axisymmetric and inviscid process of fold
catastrophe due to the Euler solution becoming nonunique as the swirl in-
creases, so that the thin-core solution is nonlinearly and globally unstable
that has to jump to a stable one with expanded core region. Then, this
onset is followed by a disturbance enhancement in an absolutely unstable
breakdown region, which forms a bubble or spiral flow depending on the
dominant azimuthal disturbance mode.
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Vortical Structures in Transitional
and Turbulent Shear Flows

Problems related to turbulence phenomena have already been mentioned in
several previous chapters showing that vorticity and vortex dynamics have
made important contributions to turbulence research in many aspects. For
example, the instability of shear flows and formation of concentrated vortices
are closely related to laminar-turbulence transition. The vortex instability,
interaction, and breakdown are closely related to the formation of turbulence.
The fundamental laws in vorticity and vortex dynamics are powerful tools to
describe and explain the very complicated vortical motions in turbulence. On
the other hand, studies in turbulence have in turn enhanced and will continue
to motivate the development of vorticity and vortex dynamics. It is therefore
logically natural to include this chapter in the present book.

Turbulence is the most difficult problem in classical mechanics. As a
complicated, nonlinear dynamic system, a turbulence field consists of many
time-dependent vortical structures of various characteristics, interacting non-
linearly with each other. If one regards vortices as the sinews and muscles of
fluid motions, there is no doubt that vortices should also be the sinews and
muscles of turbulence. The generation, evolution, interaction, and dissipation
of these vortical structures dominate the nature of turbulence fields. To under-
stand, prescribe, and control turbulent flows, we have to discuss these vortical
structures.

Classic turbulence descriptions focusing on the statistic characteristics of
turbulence quantities have made significant contributions to turbulence stud-
ies (Bradshaw 1971; Townsend 1976). However, they cannot look into details
of the specific structures though the statistics is indeed constrained by these
structures. In contrast, we shall focus on the specific motions of the coherent
structures in this chapter. The vortical structures in typical turbulent flows
will be introduced as examples. For better understanding of their historical
evolution, discussions on structures in transitional flows will also be involved
in some cases.

Traditional flow visualization techniques may offer important information
and have made significant contribution to the studies of vortical structures in
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turbulence. However, the results are sometimes confusing and even misleading
due to the fact that the image shows streak lines or time lines, etc. instead of
streamlines (see Figs. 2.2, 2.3, and Sect. 2.1.1). In particular, the flow markers
quite often deviate from the regions of vorticity concentration and accumulate
in regions of lower vorticity, which smears out dynamically significant struc-
tures from visualization. Fortunately, recent developments in particle image
velocimetry (PIV), direct numerical simulation (DNS), and large-eddy sim-
ulation (LES) have revealed much more information in turbulent flows and
made more detailed structural studies possible.

Based on the knowledge of structure evolution, the importance of vorticity
and vortex dynamics in turbulence studies will be addressed. Our purpose is to
attract the readers interested in turbulence into this book. On the other hand,
we also try to attract the readers interested in vorticity and vortex dynamic
into turbulence studies. However, this chapter is not a review article, nor do
we have intention to compress the abundant turbulence phenomena into one
chapter. Only limited typical materials are selected as examples to serve what
we try to address. Besides, due to imperfection of the analytical means of
studying the vortical motions in turbulence, the major materials will be leaned
upon intuitive physical descriptions with some brief analytical explanations
wherever convenient.

10.1 Coherent Structures

10.1.1 Coherent Structures and Vortices

A homogeneous isotropic turbulence field and a typical turbulent shear flow
are compared in Fig. 10.1, where (a) is a turbulence field generated by a grid
and (b) is a turbulent mixing layer formed by two confluent flows with higher
speed on the top and lower at the bottom. No organized structure can be
observed at certain distance downstream of the grid in (a). However, there
appears rolling up of the spanwise vortices in (b) due to the inflectional insta-
bility in the shear region. One can observe that the sizes of individual vortical
structures are significantly different; the small vortical structures are random
motions while the large spanwize structures are fairly well organized. These
relatively organized vortical structures in turbulence are known as coherent
structures. The coherent structures usually contain a major portion of the
turbulence energy and dominate turbulence transport. Thus, they are crucial
for understanding and modeling of turbulence, as well as for controlling tur-
bulence phenomena relevant to mixing, heat transfer, combustion, turbulence
drag, and aerodynamic noise. So far, quite different definitions were given to
the flow structures as coherent. In this book, we suggest the following defi-
nition: coherent structures are groups of evolving structures, mainly vortical
structures in turbulence which are spatially well-organized and contain essen-
tial portion of turbulence energy. They can be identified from the turbulent
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(a)

(b)

Fig. 10.1. Examples of turbulence structures. (a) Homogeneous isotropic turbulence
behind a grid. (b) Large-scale turbulence structures in a turbulent mixing layer.
From Van Dyke (1982)

flow field as quasideterministic structures in the sense that they are more un-
predictable in spatial or temporal phases than in size or in shape.

Special attentions should be paid to some aspects related to coherent struc-
tures. First, the concept of coherent structure is varying with the knowledge
of turbulence gained in the history. During the infancy of revealing coherent
structures, a term “large” coherent structure was often used. However, it was
found later that the size of structures is not necessarily a criterion to identify
the coherent structures; rather, the level of organization is. We shall see later
that the large overturning motion in a turbulent boundary layer is usually
not regarded as a coherent structure or at least its coherence is weak, but the
relatively small streamwise vortices in the wall region of the boundary layer
are coherent. The concept of a coherent structure is based on the common
understanding that this organized portion of characteristic structures can be
identified from the whole turbulent flow field. Their characteristic shapes are
somehow preserved although they are always evolving in space and time.

Associated with the above progress of our understanding, the criteria for
identifying coherent structures or in what sense a structure is regarded as
organized are also varying. Actually, different experimental techniques or dif-
ferent definitions of a vortex (Sect. 6.6) could lead to different identifications
of coherent structures from the same physical flow structures. The phase-
locked components of turbulent fluctuations were once regarded as the only
criterion to identify coherent motions. After the phase jitter was noticed,
it has been realized that the phase relation is not always of crucial to the
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concept of coherence in many flows, and then pattern-matching techniques
became well accepted. To date, there exist many vortex-identification or wave-
decomposition techniques applied to identifying coherent structures. The re-
sults are often quite scattered. For example, vortex identification can be based
on isosurfaces of various scalar fields, such as components of vorticity, enstro-
phy, or pressure (Sect. 6.6). For the last option, although remarkable concur-
rence between pressure minima and vortices was found (Robinson 1991a) the
relation is not necessarily one-to-one (Kim 1989).

Second, exact occurrence of coherent structures is not predictable although
they are quite well organized and quasideterministic. The coherent structures
in turbulence are not like the concentrated vortices in a laminar flow; they al-
ways coexist with its random partners in a turbulence background, i.e., there
is an order underlying the disorder of fluid turbulence (Lesieur 1990, pp. 6–7).
The nonlinear interactions between the coherent and random structures are
always there. Recent studies on the coupling between coherent structures and
fine-scale turbulence show that a coherent structure is not a simple vortex.
Due to the interaction between a coherent vortex and its turbulence surround-
ings, there are always secondary structures (threads) spun azimuthally around
it (Melander and Hussain (1993a,b)). It forms a typical view of internal in-
termittency in turbulence where a group of highly dissipative (high vorticity)
structures embedded into an irrotational flow region. One can also observe
from Fig. 10.1 that those organized large vortical structures are not all the
same in shape, in spacing and in the small structures they are carrying. Up
to now, no one can predict these structures with exact shape or size, at exact
location and exact instance. Instead, the prediction can be made for certain
coherent structures to occur under given condition, and the probability of
its occurrence is certainly greater than others. That is to say that coherent
structures are a sort of organized structures appearing in turbulence with high
probability.

10.1.2 Scaling Problem in Coherent Structure

Scaling of coherent structures is one of the major problems in scaling of turbu-
lence. As is well known, one employs quite often the concept of eddy viscosity
to simulate the effect of turbulence on the mean flow. Similar to the averaged
free path and averaged velocity of the molecule motion, eddy viscosity in tur-
bulence also contains two scales, one velocity scale and one length scale. But in
reality none of the turbulence structures are with fixed size and fixed intensity.
What can be observed in a turbulence field are instantaneous frames of fluid
motions with at least two physical processes involved. One is the formation
and growth of the coherent structures due to instability or self-organization,
where the size and energy involved in the coherent structures are growing.
The other is the process of cascade where the sizes of the individual vortical
structures become smaller and smaller due to the interaction between coherent
structures as well as between coherent and random motions.
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By its very nature, turbulence is a multiscale physical phenomenon. The
well-known Kolmogorov scaling law (Kolmogorov 1941) revealed the physics
that turbulence consists of a continuum of scales from the largest ones deter-
mined by the flow geometry to the smallest ones at the Kolmogorov dissipa-
tion scale (see details explained later). The largest ones are usually coherent.
The smaller ones include cascaded coherent structures and random motions.
Thus, there is in fact no distinct scale separation in most turbulent flows as
large coherent structures and small random eddies. The classical scale sepa-
ration concept can only be regarded as a hypothetical possibility, by which
the fine scales are supposed to be statistically isotropic in any turbulent shear
flows and the coupling between the largely disparate scales is assumed to
be weak.

The universal scaling law (She and Leveque 1994) also revealed the ex-
istence of multiscale structures in turbulence, where the coherent motions
correspond to the most intermittent structures and there exists cascading
similarity in structures with different length scales. Both of the above the-
ories express very well the existence of multiscale structures in turbulence.
The concepts like eddy viscosity or mixing length etc. only reflect statistically
averaged effects of all the scales in oversimplified ways.

Of all length scales in turbulence, quite a few particular ones have been in-
troduced into turbulence studies, such as Kolmogorov scale, Taylor microscale,
integral length scale and viscous length scale, etc. (Tennekes and Lumley
1972; Frisch 1995). The Kolmogorov scale (or dissipation scale) η = (ν3/ε)1/4

(for details see Sect. 10.5.2) represents statistically the smallest possible eddy
structures before being dissipated by viscosity where ε is dissipation rate (see
(2.54)) and ν, kinematic viscosity. Taylor microscale λ represents a statisti-
cal length of the small eddies supposing the turbulence is isotropic, where
(∂u1/∂x1)2 ≡ u21/λ

2. Integral length scale L represents statistically a charac-
teristic size related to the largest coherent structures defined by integration
of correlation. And the viscous length scale ν/uτ is a viscosity-dominated
characteristic length usually used in the wall-bounded layers.

For the scaling of coherent structures, more detailed scales could be in-
volved than those stated above. But, the basic concept of multiscales and
statistical viewpoint remain the same. There are many different definitions of
scales for different coherent structures or in different regions; and all of these
definitions are related to certain structures in statistical sense. For example,
the spatial scales of the spanwise coherent structures in free shear layers are
of the same order of the layer thickness, while the scales of the streamwise
structures in a wall-bounded shear layer depends on the viscous scales. How-
ever, these scales are only in a statistical sense and never mean that there is
no structure of other size. More specifically, any scales obtained by correlation
and spectrum, etc. reflect only the structures with an averaged probability of
occurrence. Once again, the continuous spectrum is a good evidence that in
turbulence fields there exist structures of all the possible sizes ranging from
the maximum (integral) scale to the smallest (dissipation) scale.
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As will be seen later, there are many types of scales for the coherent struc-
tures even for a simple shear layer. There are global scales related to the
whole shear layer and local scales related to the local shear region around
certain coherent structures. In complex shear flows, there will be even more
characteristic scales (Sect. 10.6): the global scales for the whole layer, individ-
ual scales for individual mean shear zones and local scales for the local shear
region inside each mean shear zone. In general, each scale is related to its
own instability mechanism and the production of the corresponding coherent
structure. Apparently, the scale of the largest coherent structures depends on
the boundary condition of the total shear layer.

10.1.3 Coherent Structure and Wave

In turbulence studies, vorticity or vortices are closely related to waves. The
relation between the two deserves a thorough clarification in order to under-
stand many important phenomena. In particular:

(1) Coexistence and interaction of vortices and waves.
As mentioned in Sect. 2.3, there may be two types of waves in a flow field. One
is the dilatation wave or longitudinal wave, by which the energy propagates
via normal stress in a compressing process. The other is the transverse wave or
vorticity wave, by which the energy propagates via the shear stress. Section 2.4
shows further that the Stokes–Helmholtz decomposition of the Navier–Stokes
equation leads to separate equations for stagnation enthalpy and vorticity,
i.e., (2.170) and (2.166). The former, characterizing all longitudinal interac-
tions, is directly related to the acoustic wave and becomes dominant at high
Mach number. The latter, characterizing all transverse interactions, is directly
related to the vorticity wave. It becomes dominant in the high shear region
and is the subject of vorticity dynamics. Under certain conditions, the energy
of the two can transfer to each other. It is the subjects like vortex sound
(briefly mentioned in Sect. 2.4.3, see, e.g., Howe (2003)) and shear flow recep-
tivity (e.g., Goldstein and Hultgren (1989)), which are beyond the scope of
this book.

Vorticity in a flow can be transported by vortex motions or by vorticity
waves. A vortex motion is related to the mass transport while a vorticity wave
is the motion transfer without mass transport such as the T–S waves (Chap. 9).
The vorticity wave is one of the processes to propagate and accumulate vor-
ticity. The distributed vorticity in a shear layer would be accumulated and
concentrated through certain instability mechanism (Fig. 9.8 and Chap. 9) and
eventually role up to become vortices. In general, while the instability wave is
growing, so will be the vorticity concentration; but the distribution of vortic-
ity concentration is still continuous. When a single vortex layer is rolled up,
there is a catastrophe from continuous vorticity concentration to a discrete
one.
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In a turbulent flow, the growth of instability waves and rolling up of vor-
tical structures, as well as their cascade and breakdown, occur everywhere
and all the time. Thus, the vorticity waves are coexisting with the vortical
structures in turbulence. In fact, the unstable vorticity waves prepare them-
selves for rolling up and produce new vortices. The formed vortices, in turn,
generate new local shear region and prepares condition for other instability
waves to grow.

Besides, the formed vortical structures themselves could also be the carrier
of waves. For example, a vortex supports waves that travel along its axis. These
waves may be axisymmetrically traveling along the core of a columnar vortex
(Leibovich and Ma 1983; Melander and Hussain 1994), bending waves of the
vortex axis (Sect. 9.3), or helical waves along the core.

(2) Vortices in one inertial frame of reference can be observed as waves in
another frame of reference.
Here discussed is an important point that often causes confusion in turbulence
studies. One example is shown in Fig. 10.2a where a row of spanwise vortices
is transported by a two-dimensional uniform background flow. An observer
moving with the uniform flow can easily see that the background flow and the
true vortex pattern are steady. However, a measuring probe fixed in space can
sense the periodical velocity signals induced by the vortex row. The frequency
of the wave depends on the length scale of the vortices and the velocity of the
background flow. A row of smaller vortices or a higher uniform velocity leads
to a higher frequency.

Similar phenomena can happen to more complicated traveling structures.
For example, in the intermittency region at the edge of a turbulence boundary
layer, the passing alternative potential regions and turbulence regions would
be observed by the fixed sensor as a wave. It is also true in the region with
internal intermittency where the passing alternative high-shear structures and
low-shear regions would be seen as a wave. In particular, the intermittently

(a) (b)

Relation between advective vortices and wave

Relation between streamwise vortices and wave
Steady

Unsteady
U

U Appearing and disappearing

u�=v�=w�=0

Fig. 10.2. Relation between vortices and waves. (a) Advective vortices. (b) Stream-
wise vortices
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passing small-scale structures in a transitional boundary layer would be
observed as high frequency “spike.”

The above phenomenon exists, however, only if the traveling structures
move with velocity components in the direction perpendicular to the vortex
axis. For the vortices traveling in the direction parallel to their axis, the situ-
ation would be entirely different. An extreme case is shown in Fig. 10.2b with
steady streamwise vortices in the flow. A fixed measuring sensor cannot detect
any velocity fluctuations at all. If the vortices are drifting in space, what the
probe measures is velocity variation due to spatial migration of the vortices
rather than the characteristic quantities of the vortices. This observation is
very important in our later discussion related to by-pass transition and to
flows involving streamwise vortices.

In view of the above discussion, one should pay enough attention to the
difference between temporal waves and spatial waves. For example, if stream-
wise vortices are steady in temporal domain, then no temporal waviness can be
observed by a fixed sensor; but they are related to spatial (spanwise) waves.
Obviously, waves measured by a fixed one-dimensional sensor are just one
aspect of the structures.

10.2 Vortical Structures in Free Shear Flows

We first discuss a nominally two-dimensional mixing layer under zero pressure
gradient as an example of the coherent structures in free shear layers, because
it is the simplest and also one of the best understood free shear layers so far.
In a turbulent mixing layer, there exist vortical structures of various scales,
from the largest, with the length scale comparable to the local thickness to
the smallest, with the length scale of the order of Kolmogorov length scale.

10.2.1 Instability of Free Shear Layers and Formation
of Spanwise Vortices

The fundamental coherent structures in a two-dimensional mixing layer are
sketched in Fig. 10.3. Assume that the incoming flows on both sides of the
splitter plate are laminar with velocities U1 > U2, where the free stream is
from left to right, U1 and U2 are the velocities on the top and bottom sides re-
spectively. As discussed in Sect. 9.2, this flow is subject to Kelvin–Helmholtz
instability. According to the linear stability theory and under parallel-flow

Fig. 10.3. The fundamental coherent structures in a mixing layer
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assumption, two-dimensional disturbances will grow exponentially with down-
stream distance, and the dimensionless spatial growth rate (−αiθ/R) is shown
in Fig. 9.9a (Ho and Huerre 1984). The main conclusion is that this growth
rate is dependent on the Strouhal number St = fθ/U . The most amplified
frequency at St = 0.032 corresponds to the natural frequency fn of the mixing
layer. The associated phase velocity at maximum amplification equals to the
average velocity U of the mixing layer.

Downstream of the region of exponential growth, the instability waves
evolve into a nonlinear region and the amplitude of the fundamental mode
approaches its saturation. Meanwhile, the fundamental instability wave leads
to roll-up of a periodical row of spanwise vortices (Figs. 10.1 and 10.3) moving
at the average velocity U with a wavelength λn = U/fn.

As mentioned in Sect. 10.1, the vorticity in the shear layer is gradually
accumulated and concentrated through the instability mechanism. As the in-
stability wave is growing, so is the fluctuation of vorticity concentration; but
the concentrated vorticity is still continuously distributed (Fig. 9.8). When
the shear layer with concentrated vorticity finally rolls up, there is a catastro-
phe from continuous vorticity to discrete spanwise vortices as sketched in
Fig. 10.4. Experimental observations indicate that the roll-up process is com-
pleted where the fundamental mode reaches its maximum amplitude. The
roll-up process has also been confirmed by numerical simulations (e.g., Aref
1980; Riley and Metcalfe 1980). As will be discussed later, the subharmonic
component of disturbance waves will also start growing that is related to
vortex pairing.

After roll-up, a topological sketch of the mixing layer structure is shown
in Fig. 10.5, indicating a row of vortices with saddle points in between. It is
well known that any structures defining the topology of the velocity field are
not Galilean invariant. Thus, one has to keep in mind its dependence on the
frame of reference in viewing the topology. Figure 10.5 is made in a reference
frame moving at the same velocity as the average velocity of the mixing layer.

Fig. 10.4. Rolling process of a thin wavy vortex layer
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Fig. 10.5. Topology of the fundamental coherent structures in a mixing layer. Based
on Dallmann (1984)
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Fig. 10.6. Relation between Reynolds stress and tilting of the spanwise vortices

The fundamental vortices with wavelength λn are not stable structures.
All the vortices are living in a background of mean shear field and subject
to mutual interactions, so they continue to evolve. They will be deformed,
subjected to pairing or tearing, as well as develop to three-dimensional struc-
tures. These structure evolutions are the dominant mechanism for the growth
of mixing layers. One of the physics showing how the vortex evolution controls
the turbulent momentum transfer is the relation between Reynolds stress and
deformation of the spanwise vortices (Browand and Ho 1983). The qualitative
result indicates that the Reynolds shear stress is positive where the span-
wise vortices are tilted backwards at the top, and negative when they tilted
forward.

One can easily understand this mechanism from Fig. 10.6. The tilted span-
wise vortex array is advected by the flow from left to right. A sensor fixed at
y = y1 will continuously sense the velocity fluctuations caused by the induced
velocity of the passing vortices. When point B passes the sensor, it causes
u′ > 0, v′ < 0 and so (−u′v′)B > 0. For the same reason, (−u′v′)A < 0 when
point A passes the sensor. According to conservation of angular momentum,
the point closer to the vortex center should have larger induced velocity and
so |(−u′v′)A| > |(−u′v′)B|. Thus, the Reynolds stress, i.e., the long time aver-
age of (−u′v′) measured by this sensor, is negative. This relation was further
examined by Zhou and Wygnanski (2001). The tilting angles of the elliptical
spanwise vortices calculated from the measured coherent Reynolds stress in
a forced mixing layer match very well with the experimental observations of
the vorticity contours (Fig. 10.7).
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Fig. 10.7. Calculated orientation of tilted spanwise coherent vortices. (∆) forced
by single frequency (SF), (�) forced by two frequencies – fundamental and subhar-
monic, weaker (TFW), (�) forced by two frequencies, stronger (TFS). From Zhou
and Wygnanski (2001)

During the rolling up of the fundamental vortices, subharmonic component
of disturbance waves also starts growing. The growth of disturbance with half
of the fundamental instability frequency 1/2fn, or with double wavelength
2λn, corresponds to a pairing process (Fig. 10.8). It is one of the major phys-
ical processes in the continuing evolution of the mixing layer. Although more
than two vortices involved in one merging have been observed in unforced
mixing layers (Ho 1982), the amalgamation was most often a pairing between
neighboring spanwise vortices (Winant and Browand 1974).

The location where the pairing occurs can be expressed by a dimensionless
streamwise distance x∗ = Rx/λ0 from the splitter plate, where λ0 = U/f0
is the initial instability wavelength. Experiments in a forced mixing layer
indicate that the first pairing happens at x∗ = 4, the second at x∗ = 8, and
the third, x∗ = 16 (Ho and Huang 1982). However, for a naturally developing
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Fig. 10.8. Pairing process of the spanwise vortices
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Fig. 10.9. Growth rate of a mixing layer forced in various ways. (◦) forced by single
frequency, (�) forced by two frequencies (weaker), (�) forced by two frequencies
(stronger). From Wygnanski and Petersen (1987)

mixing layer, the spatial location where the pairing occurs is fairly random.
This is why the mean velocity profiles in a naturally developing mixing layer
will not show any abrupt thickening. Rather, a linear spatial growth will be
observed.

Pairing, though important, is not the only mechanism that causes the
growth of a mixing layer. The photo in Fig. 10.1 by Brown and Roshko (1974)
on a naturally developing mixing layer reveals that the mixing layer is grow-
ing in the downstream direction due to vorticity diffusion but no obvious
pairing is involved. In contrast, for a forced mixing layer, a rather weak peri-
odical disturbance can dramatically influence the pairing process and result in
significant modification of mixing properties. This is one of the physical back-
grounds of the active flow control. An example is shown in Fig. 10.9, where the
same mixing layer was forced in different ways and the growth rate exhibits
entirely different behaviors (Wygnanski and Petersen 1987).

10.2.2 The Secondary Instability and Formation
of Streamwise Vortices

The roll-up of spanwise vortices and their pairing are not a purely two-
dimensional process. They always coexist with nonuniformity in the span-
wise direction due to three-dimensional disturbances, which eventually leads
to streamwise streaks (Konrad 1976) or counter-rotating streamwise vortex
pairs (Lin and Corcos 1984; Lasheras et al. 1986). Experiments indicate that
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Fig. 10.10. Initiation of streamwise vortices in a strain field

these secondary vortices develop together with the spanwise structures from
the very beginning of the mixing layer (Huang and Ho 1990).

The physical mechanism for initiation of the streamwise vortices in a shear
layer can be explained in Fig. 10.10 intuitively. Consider a large spanwise
vortex consisting of many spanwise vortex filaments. If any of these filaments
is deformed by three-dimensional disturbances and results in a small waviness
in y direction, the humped-up portion of the vortex would be advected faster
than the rest due to the shear field, thus initiating a streamwise vortex pair.
A discussion in Sect. 9.4 on the elliptical instability further gives a universal
mechanism for the two-dimensional large-scale deformed spanwise vortices to
be directly transferred to complicated three-dimensional motions. This direct
transfer mechanism plays a dominant role not only in mixing layer but also
in flows like wakes and vortex pairs. More discussion on the formation of
streamwise vortices will be made in Sect. 10.3.1.

The strain field mentioned above is not only related to the mean shear field
of the mixing layer. Refer to Fig. 10.5, where the strongest stretching and com-
pression exist along the streamline passing through saddle points. Thus, there
is more chance for this mechanism to work near the saddle point. In this re-
gion, the so formed initial streamwise vortex filaments will be further stretched
so that they will be strengthened and wrapped onto the existing large span-
wise vortices. These streamwise vortices are referred to as “braids” and are
sketched in Fig. 10.11 (Bernal and Roshko 1986). The average spanwise spac-
ing of these secondary structures increases in size with downstream distance
and remain to be of the same order of magnitude as the local thickness of the
mixing layer. The thickness of the braid region connecting the spanwise vortex
core is suggested to be of the order of Taylor microscale (Browand 1986).

The occurrence of streamwise vortices is important in the evolution of
mixing layers because it enhances the mixing efficiency. Furthermore, the in-
teraction of the spanwise and streamwise vortices has considerable influence
on the transition to small scales and the further development of the whole
mixing layer.



532 10 Vortical Structures in Transitional and Turbulent Shear Flows

v2

v1

Fig. 10.11. A conceptual sketch of streamwise vortices in a mixing layer. Repro-
duced based on Bernal and Roshko (1986)

10.2.3 Vortex Interaction and Small-Scale Transition

In general, the entire process from occurrence of instability wave in a lami-
nar flow to a fully developed turbulence is regarded as the laminar-turbulent
transition. However, in more detailed structural studies, one can also apply
this concept to local properties in the flow field. For example, the aforemen-
tioned spanwise and streamwise vortices may still be “laminar.” With further
development, including interaction of various structures, these vortices are
stretched, twisted or broken down to be random, small-scale vortices or ed-
dies, and eventually become “real” turbulence. This final stage of transition is
thus referred to as small-scale transition. It belongs to the category of cascade.

From Fig. 10.5, we can imagine that stretching and compression between
two neighboring spanwise vortices would be enhanced during pairing so that
the streamwise vortices will be subjected to stronger strain, which may lead to
the small-scale transition. If one takes Kolmogorov’s 5/3-power law in energy
spectrum (Tennekes and Lumley 1972) as a criterion to identify a fully de-
veloped turbulence, this expectation has indeed been proven by experiments.
As an example, the fine-scale turbulence was first found in the cores of the
streamwise vortices at the point where the spanwise structures rolled around
and were coalesced (Huang and Ho 1990). Then, the asymptotic value of the
−5/3 power law in spectra is reached and the flow becomes turbulence around
the second pairing, x∗ = 8 (Fig. 10.12). The above experiment was carried out
at Reynolds number of (1.3 ∼ 1.9)× 104 based on the local maximum vortic-
ity thickness δν = (U1−U2)/(∂U/∂Y )max . At much lower Reynolds number,
this location could move to approximately the place where the third pairing
occurs.

The small-scale transition involves continuous vortex interaction between
coherent vortices, as well as between coherent and random vortices. The ap-
pearance of small-scale filaments during the onset of transition due to succes-
sive interactions between a large, coherent vortex, and its surrounding smaller
scales has been simulated numerically (Melander and Hussain 1993b; Pradeep
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Fig. 10.12. Power spectra of longitudinal velocity fluctuation. (a) x∗ = 2;
(b) x∗ = 8. From Huang and Ho (1990)
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Fig. 10.13. Iso-vorticity contours illustrating appearance of small scale filaments
during onset of transition. From Pradeep and Hussain (2000)

and Hussain 2000) and a sequence of views is shown in Fig. 10.13. It indicates
vividly how the energy cascade from large to small scales takes place.

Actually, during the whole process of small-scale transition, the vortex
cut-and-reconnection plays a key role in the final formation of small-scale
structures. The physical mechanism and the theoretical background of vortex
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reconnection have been discussed in Sect. 8.3.3. Sketches of the vortex recon-
nection can be seen in Figs. 8.23 and 8.24. A complete process obtained by
numerical simulation is shown in Fig. 10.14, where there are successive steps,
such as continuous formation of bridge and head–tail (c), separation of head
from tail (d), formation of thread (e), successive reconnection of thread, etc.
(Hussain 1992). In this way, smaller secondary structures take energy from
the coherent vortices, and so on.

After the small-scale transition has happened, a global view of the vortical
structures in a mixing layer is shown in Fig. 10.15. The previously formed
large vortical structures still exist; but they are in a turbulent rather than
laminar background. Melander and Hussain (1993b) point out that when a
coherent vortex is embedded in a sea of fine-scale turbulence, the large-scale
coherent structure organizes the nearby fine-scale turbulence into a family
of highly polarized (see Sect. 10.4.3) vortex threads spun azimuthally around
the coherent vortex. They suggest that small-scale polarized structures are
unavoidable components of coherent structures and that an essential part of
the internal intermittency is generated by large-scale coherent structures.

(a)

(d) (e)
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y

(b) (c) bridge

tailcontact zone

threads

Z

Fig. 10.14. Iso-vorticity surface to show the successive steps of small-scale formation
during vortex reconnection. From Hussain (1992)

Fig. 10.15. A global view of the vortical structures in a mixing layer. From Lesieur
et al. (2000)
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The preceding discussion can now be summerized as follows. In a turbu-
lent mixing layer, two physical processes are going on simultaneously. One is
that the large-scale vortices are gradually organized from the concentration of
initially distributed vorticity through the instability mechanism. The other is
that the energy contained in large-scale vortices are successively transferred
to smaller vortices and eventually to small random vortices, or eddies. Both
processes continue in the whole turbulent flow field so that the coexistence of
vortices and waves as well as that of multiscale structurtes can be observed.
These coexisting waves and multiscale vorticies continue to grow or decay, as
well as interact with each other. Thus, any flow structures that one can observe
in experiments or numerical simulations are only snapshots in a continuously
developing field.

10.3 Vortical Structures in Wall-Bounded Shear Layers

The essential difference between a wall-bounded shear layer and a free shear
layer is obvious. In a free shear layer, there is no boundary and hence no
vorticity source for the incompressible flow without nonconservative body
force. In contrast, in a wall-bounded shear layer, the nonslip condition on
the wall generates new vorticity via the boundary vorticity flux (Sect. 4.1).
The wall-produced vorticity will enter the flow field continuously and make
the boundary-layer structures significantly more complicated than a free shear
layer.

Unlike mixing layers, many controversial issues exist in understanding of
the structures in boundary layers. Most of them have been caused by the
limitation to low-Reynolds number flow in laboratory experiments or numer-
ical simulations. The vortical structures in a boundary layer, in particular at
relatively low-Reynolds numbers, are closely related to the boundary layer
transition process with varying details, depending on the specific boundary
condition (e.g., surface roughness, free-stream turbulence) and initial condi-
tion (e.g., upstream forcing).

Fortunately, recent studies have found certain universality in wall-bounded
shear layers. Some dominant transitional vortical structures are independent
of specific type of wall-bounded basic flow (whether it is a boundary layer,
a channel flow, or a pipe flow, etc.) and initial conditions (whether naturally
developed or forced). For example, one may speculate that a hairpin vortex,
either symmetric or asymmetric, is a common element in transition. Then,
certain characteristics of wall turbulence are only weakly dependent on spe-
cific type of outer flow (Kachanov 2002). Furthermore, it is well known that
similarity exists in the mean velocity profiles of the fully developed turbu-
lent boundary layers at high Reynolds number (Fig. 10.16, where y+ = yuτ/ν
and u+ = u/uτ are the viscous length scale and velocity scales, respectively,
uτ =

√
τw/ν is the friction velocity, τw is the wall-shear stress and ν is the

kinematic viscosity). By convention, y+ = yuτ/ν ≤ 100 is considered the wall
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Fig. 10.16. Mean velocity profile of a turbulent boundary layer at high Reynolds
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region, including the sub layer, buffer region and at least part of the logarith-
mic region. The rest of the layer is commonly referred to as the outer region
(Robinson 1991b). The similarity in mean velocity profiles means a similarity
of mean vorticity profiles, thus also implies a possible similarity in the vor-
tical structures. Consequently, though complicated, a brief discussion on the
nature of vortical structures in a typical boundary layer is still possible.

In Sect. 10.2, we took a two-dimensional mixing layer as an example to
discuss the coherent structures of free shear layers, because it is the simplest
and also one of the best understood free shear layers. For the same reason,
we now take a two-dimensional boundary layer on a smooth flat plate in
the absence of streamwise pressure gradient to exemplify the coherent struc-
tures in wall-bounded shear layers. The main discussion below is based on
the Klebanoff-type transition (K-type, where a peak-valley pattern of Λ waves
occurs in transition, Fig. 10.17a,) because it can often be observed in natu-
rally developed boundary layers, although their original studies (Klebanoff
et al. 1962) were performed in a forced boundary layer. Other types of tran-
sition (e.g., H-type and C-type, where staggered pattern of Λ waves occurs in
transition; see Fig. 10.17) mainly found in controlled boundary layers will not
be discussed in this section. The special issues related to by-pass transition
will be briefly addressed in a separate section (Sect. 10.3.5) associated with a
discussion on streamwise vortices.

10.3.1 Tollmien–Schlichting Instability
and Formation of Initial Streaks

In Sect. 9.2.3 we have seen that, when the Reynolds number reaches certain
critical value, the laminar boundary layer will be subjected to Tollmien–
Schlichting (T–S) instability. The neutral curve (Fig. 9.10) can be obtained
by the linear stability theory. Any single disturbance at a frequency within
the unstable region will grow exponentially. If there were any chance to keep
a perfect two-dimensionality of the growing instability waves, the wave would
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Fig. 10.17. Formation of streamwise vortices and streaks. (a) The Λ-waves, from
Saric and Thomas (1983). (b) The Λ-vortices and streamwise vortices

reach a maximum strain rate and the vortex sheet would roll-up to become
spanwise vortices as it happens in a mixing layer. However, there has never
been such a chance in a boundary layer. Even in a laminar boundary layer on a
smooth plate, the flat plate can never be perfectly smooth and the free stream
is never perfectly disturbance-free. This is why streamwise streaks (with the
spanwise fluctuations of the mean velocity) can be observed even in a laminar
flow before the occurrence of T–S waves, no matter how weak they could be.

After the occurrence of T–S waves, even if the T–S waves may shortly
keep its two-dimensionality during the stage of linear growth, they will never
be two-dimensional in nonlinear stage, no matter which type of transition
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they are subjected to (Fig. 10.17a). Considering the most common K-type
transition in a naturally developing boundary layer, the Λ-shaped waves will
appear and are aligned to each other in the streamwise direction. As can be
seen later, the observed growing of the oblique waves is actually related to the
rolling up of vortex sheet to become streamwise vortices and the latter will
produce further streamwise streaks.

Fig. 10.17b indicates that while the two-dimensional instability wave is
growing and the vorticity sheet is rolling up, the three-dimensional disturbance
will cause certain slight bending. Due to the very strong shear at the wall, the
vortex segment at a little farther away from the wall will be transported much
faster than the segments closer to the wall, and the segments connecting them
will be stretched and strengthened to become Λ-shaped vortices (e.g., Fig. 4.5),
and then further stretched to be the streamwise vortices. This mechanism is
similar to the formation of streamwise vortices in a mixing layer (Fig. 10.10);
but the mean shear in the vicinity of the wall as well as three-dimensional
disturbances in a boundary layer is so strong that there is never a chance for
the vortex sheet to roll up to become observable two-dimensional spanwise
vortices in a boundary layer.

Comparing Fig. 10.17 with Fig. 10.10, one can also see a major difference,
i.e., the occurrence of the low-speed streaks beneath the Λ-vortices/streamwise
vortices. The formation of the low-speed streaks is, first, due to momentum
transfer in the mean shear field. In the regions where the vortex legs pump the
near wall low-speed fluid away from the wall, the flow will slow down and form
low-speed streaks (on the contrary, in regions where the vortex pairs pump
the outer high-speed fluid towards the wall, high-speed streaks will form).
Second, even if there is no mean shear normal to the wall, in the region where
the vortex legs cause an induced velocity away from the wall, the flow near
the wall will slow down due to the continuity, and hence form the low-speed
streaks. This is why, more often than not, the streamwise streaks are observed
coexisting with streamwise vortices.

Besides, the two legs of a Λ-vortex, once formed, will be subject to two
opposite actions. On the one hand, they will be tilted further towards down-
stream direction due to the mean shear and become streamwise vortices
(Jiménez and Pinelli 1997). On the other hand, the mutual induction between
the two legs intends to lift both vortex legs upward. Thus, their orientation
depends on the relative intensity of the two. Obviously, the strong shear dom-
inates in the near wall region so that the upstream roots of the legs develop to
streamwise vortices. The downstream portions of the legs farther away from
the wall will be lifted up to become elongated hairpin vortices that asymptot-
ically tend to the direction of maximum production of ω2

x, i.e., ωxωy(∂U/∂y)
(Brooke and Hanratty 1992) or to the direction of maximum stretching (45◦

from the wall). After the heads of the initial λ vortices have swept over, some
portions of their legs or the streamwise vortices could be gradually dissipated
by viscosity; but streaks would still leave behind.
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10.3.2 Secondary Instability and Self-Sustaining Cycle
of Structure Regeneration

After the appearance of the streaks caused by streamwise vortex pairs, there
occurs the secondary instability and the consequent self-sustaining cycle of
structure regeneration.

Swearingen and Blackwelder (1987) are among the earliest who argue that
the low-speed streaks instability is responsible for the turbulence sustaining
cycle. Recent numerical experiments have shown that the dominant physics in
the turbulent sustaining mechanism consists of three steps: streak formation
related to streamwise vortices, streamwise vortex regeneration/re-energizing,
and breakdown of streaks due to streak instability (Hamilton et al. 1995;
Waleffe 1997). There is little argument on the mechanism how the streaks are
produced by the streamwise vortices as was stated in Sect. 10.3.1. However, no
consensus has been reached in how the streamwise vortices are regenerated.
This problem is at least partly due to the fact that three-dimensional vortices
are extremely difficult to characterize in the laboratory. Many possible mech-
anisms were suggested, for example, the “wall cycle” (Jiménez and Pinelli
1997, 1999), the “streak transient growth” (Schoppa and Hussain 2002), etc.
The following picture is one of the possible mechanisms.

Figure 10.18a is a simplified sketch of the secondary instability and the
related vortex generation. Once low-speed streak is formed, the normal and
spanwise distributions of the streamwise velocity cause an inflectional insta-
bility in both directions. Similar to what happens in a mixing layer, the
instability waves will grow around the low-speed streak and the Λ-shaped
vortex will roll up.

As can be seen conceptually in Fig. 10.18b (top and side views) and c
(oblique view), the above mechanism of Λ-vortex formation does not work in-
dividually. Instead, it occurs successively, aligned to each other, and produce
x-dependent waviness of the vorticity layer around the low-speed streak. Com-
bined with the disturbance from the fundamental T–S wave, these periodical
Λ-vortices may occur with a period of (or lock-on to) the fundamental T–S
wave. As a consequence, the upstream roots of the group of Λ-vortices, i.e.,
the group of streamwise vortices, will not only re-energize the original stream-
wise vortices on both sides of the original low-speed streak, but also in turn
strengthen the upward pumping of the low-momentum fluids and strengthen
the low-speed streak.

From Figs. 10.18b and c, one can also see that the streamwise length of
a streak is much longer than the legs of the streamwise vortices. The latter
stays in the near-wall region with a length of around x+ ≈ 200 and each
spacing around x+ ≈ 400, while the former occupies a region of x+ ≈ 1,000
(Blackwelder and Eckelmann 1978). Experiments and numerical studies have
also shown that the spanwise scale of the hairpin vortices and spanwise wave-
length of the streaks are both λzuτ/ν ≈ 100 (Kline et al. 1967). Jiménez and
Moin (1991) regard this dimensionless spanwise scale as a Reynolds number
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and have shown that turbulence cannot be self-sustained at Reynolds num-
bers lower than this value. Thus, it is proposed that this may be a universal
critical Reynolds number for self-sustaining of turbulence.

In a real flow, the vortex structures are much more complicated than what
have been said. For example, secondary streamwise vortices with opposite sign
may also be formed due to inrush fluid (Fig. 10.18c). Furthermore, the Λ- or
horseshoe-like vortices are not necessarily symmetrical with respect to their
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central normal plane (Fig. 10.18d) unless the disturbances develop symmet-
rically. Symmetrical hairpins were observed in some flows (e.g., Head and
Bandyopahyay 1981; Adrian et al. 2000; Kachanov 2002), but found rare in
other studies (e.g., Kline and Robinson 1989; Kim et al. 1987; Spalart 1986).
An analogy between the wake instability and the flow instability caused by
the spanwise velocity distribution around a low-speed streak might be help-
ful. The former indicates that various modes of inflectional instability can
be expected, including fundamental varicose mode, fundamental sinusoidal
mode, as well as the subharmonic modes. The fundamental sinusoidal mode
will likely lead to the typical staggered row of vortices, while the fundamen-
tal varicose mode would lead to symmetrical horseshoe structures (Acarlar
and Smith 1987a,b; Swearingen and Blackwelder 1987; Waleffe 1997). Since
the fundamental varicose mode is expected to be the least unstable, it is rea-
sonable that the numerical simulations rarely found vortices in the shape of
complete horseshoes, i.e., asymmetric structures occur more often.

To summarize, both normal and spanwise inflectional instabilities con-
tribute to rolling up of vortices and breakdown of T–S waves into three-
dimensional turbulence (Blackwelder 1979). The presence of highly inflectional
profiles (high-shear regions) is the key to the secondary instabilities that lead
to the structure regeneration cycle. As one of the evidences, the high-shear
layer shown in numerical simulation (Rist and Fasel 1995) matches the exper-
iments (Kachanov 1994) very well, where a hairpin vortex riding above the
low-speed streak is the main conclusion of their simulation. Moreover, it is
worthy mentioning that when the Reynolds number is low, the regeneration
cycle could be limited in certain local regions and develop turbulent spots. In
a high Reynolds-number field, this regeneration cycle, combining with further
wave interaction and small-scale transition (to be shown later), will become
the major physical background of the self-sustaining turbulence in the whole
turbulence field.

10.3.3 Small-Scale Transition in Boundary Layers

We have mentioned in Sect. 10.2 that the whole process from occurrence
of instability wave in a laminar flow to a fully developed turbulent flow is
regarded as laminar-turbulent transition, and the local breakdown of the “lam-
inar” coherent structures is referred to as small-scale transition. In general,
the occurrence of spikes in the velocity signals is the symbolic starting of the
small-scale transition in a boundary layer. However, it is very difficult to set
up a criterion on when or where the small-scale transition starts. For exam-
ple, while the breakdown of early streaks already produces spikes and small
random eddies, the newborn hairpin vortices could still be “laminar” in the
local sense.

After hairpin vortices are formed, complicated vortex interactions can be
observed up to a fully developed turbulent boundary layer. Various interpre-
tations have been proposed for the formation of spikes and related structure
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interactions. The continuous production of turbulence (or small-scale tran-
sition) in turbulent boundary layers was first considered as bursts by Kline
et al. (1967). They discovered that the low-speed streaks are subjected to
periodical motion of sweep (or inrush), lift (or ejection), oscillate, and burst
with an averaged period of 300ν/u2τ . The corresponding streamwise extent of
the low-speed streak is approximately x+ = xuτ/ν = 300−2000 (Blackwelder
and Haritonidis 1983).

Later studies considered that this quasicyclic process may be logically re-
lated to the self-sustaining cycle of structure regeneration at high Reynolds
number (Kline et al. 1967; Hinze 1975; Landahl 1975). During this sequence,
there are two major events, ejection and sweep. Ejections are associated with
events u′ < 0 and v′ > 0 (marked as u′v′2 in Fig. 10.18d). Sweeps are as-
sociated with u′ > 0 and v′ < 0 ( u′v′4 in Fig. 10.18d). The head portion
of the Λ-vortex will produce an inrush motion on its downstream side and
introduces adverse pressure gradient to its upstream field. The latter, com-
bined with the shear-layer instability caused by the low-speed streak, initiates
the burst (breakdown) of the low-speed streak and breakdown of the parent
vortices into small-scale structures (Fig. 10.19), see Sect. 9.5 for more detail
on vortex breakdown.

It has been found that almost 80% of the turbulence production in the en-
tire boundary layer occurs in the buffer region during intermittent, violent out-
ward ejections of low-speed fluid and inrushes of high-speed fluid toward the
wall (Lu and Willmarth 1973). This near-wall turbulence-production process,
in particular the sweep events, is important for the generation of turbulent
wall-shear stress (Choi 1989; Kravchenko et al. 1993; Orlandi and Jiménez
1994).

More detailed structural studies have shown that many specific vortex
interactions play significant roles in small-scale transition. The formation of
Ω-vortices and the ring-like vortices close to the tip of the Λ-vortex is one
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of the typical phenomena. It is caused by inviscid self-induction followed by
the viscous cut-and-reconnection. The self-induction of the head of a hairpin
vortex will cause its bending and expansion, and narrow its neck (Fig. 10.20).
The neck of two sides will eventually touch each other and a vortex ring
will be separated from the mother hairpin vortex due to cut-and-reconnect
mechanism. This sequence is very much similar to what happens to the Crow
instability of a vortex pair and its eventual breakdown into small vortices
(see Sect. 9.4.3 for more detail on Crow instability). The vortex loop near the
head of the Λ-vortex has been found both numerically and experimentally
(Fig. 10.21) in boundary layers (Kachanov 1994; Rist and Fasel 1995; Rist
and Kachanov 1995), as well as in pipe flows (Han et al. 2000; Reuter and
Rempfer 1999).

Recently, another explanation is proposed on the small-scale transition
based on different observations. Lee (2000, also Lee and Lee 2001) found a
kind of rhombus-shaped coherent structure in the near wall region, called the
soliton-like coherent structure (SCS) that is related to wave resonance during
the development of three-dimensional disturbances. Figure 10.22 is a plan-
view of several soliton-like coherent structures (marked by SCS1 and SCS2)
forming a long streak. These SCSs appear periodically from early transitional
flow and are transported downstream to the later stages of transition. The
rhombus-shaped SCS could be another view of the sub layer phenomenon in
the K-type transition (Fig. 10.17a). However, Lee’s observation gives more de-
tails in the later stage of vortex interaction and small-scale generation (or spike
generation). The SCS causes strong periodical humping up of the low-speed
streak and periodical ejections (Fig. 10.22). The ejection is strong enough to
cause a secondary vortex ring around it, similar to the vortex ring produced
by a pulsed jet. When the secondary vortex ring is advected downstream, it
will interact with the existing hairpin vortices or other vortical structures and
form a series of small-scale vortex loops (Lee and Fu 2001).
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10.3.4 A General Description of Turbulent
Boundary Layer Structures

In Sects. 10.3.1–10.3.3 we did not describe the vortical structures in the tran-
sitional and turbulent flows separately because they are, in many aspects, of
the same nature. The main difference lies in Reynolds numbers and conse-
quently different background flow field, but appearance and dynamics of the
main vortical structures are similar. For example, the Λ-vortices, streamwise
vortices, and low-speed streaks; the secondary instability caused by the inflec-
tional profiles; the growing of oscillations and breakdown into fine turbulence,
etc.

By a scaling argument, Blackwelder (1983) pointed out that there exists
indeed a similarity between transitional boundary layers and turbulent bound-
ary layers. For example, the length scales of the vortical structures near the
wall in transitional boundary layers on either curved or flat plates are similar
to those associated with the bursting process in turbulent boundary layers if
normalized with the viscous scale. Their inflectional profiles and oscillations
both have a spanwise extent of typically z+ ≈ 50ν/uτ . Besides, in both cases
the maximum instantaneous shear appears in the range of 20 < y+ < 70 and
has a maximum comparable to the shear at the wall.

Kachanov (2002) suggested that in both transitional and turbulent wall-
bounded shear flows a common mechanism of turbulent production seems to
exist in the following processes: the warping of the wave front and formation
of the initial vortex loop related to the resonant wave interaction; formation of
the Λ-vortices, high-shear layer, and the first spike; and multiple reconnection
of the Λ-vortex legs leading to formation of a train of very intensive ring-like
vortices attributed to spikes. Here, the high-frequency “spike” is just another
view of the passage of small-scale structure (Sect. 10.1.3).

Figure 10.23 sketches the vortical structures from transitional to turbu-
lent boundary layer. Fig. 10.23a shows the sequence of transition: region (1)
is a low Reynolds-number, stable laminar flow; region (2) is a linear instabil-
ity region with growth of two-dimensional T–S waves; In region (3) nonlin-
ear growth of two-dimensional T–S waves occurs, along with the growth of
three-dimensional disturbances, as well as the rolling up of initial streamwise
vortices and streamwise streaks; region (4), successive production of hairpin
structures due to secondary instability; and region (5), vortex-ring formation
and breakdown of vortical structures due to vortex interaction. Up to here,
these vortical structures occupy only limited local spaces and form turbulent
spots or localized turbulence. It is usually characterized by a group of ob-
servable mushroom-like structures in the cross-section of the vortex pairs (see
Figs. 109 to 111 of Van Dyke 1982). Finally, region (6) is the spatial spreading
of turbulent spots that eventually form fully developed turbulent boundary
layer, in which the main structures are shown in Fig. 10.23b.

In the wall region of a fully developed turbulent boundary layer, there
are spanwisely distributed streamwise vortices (Lesieur et al. 2003) and
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Fig. 10.23. A global view of the vortical structures from transitional to a turbulent
boundary layer. (a) Sequence of transition. (b) Fully developed turbulence

corresponding high-speed and low-speed streaks. The averaged spanwise wave-
length of the streaks in the sub layer is typically 100 viscous lengths (up to
at least Reθ ≈ 6000 based on momentum thickness θ). The streamwise struc-
tures are broken from time to time under influence of vortex interaction with
surrounding. They will also be reformed and strengthened around the high-
shear region through the instability mechanism as stated before. Unlike the
early stage of transition, all the aforementioned structures are now coexisting
with the background of small random eddies produced by vortex breakdown
or burst.

From the wall region to the outer edge of the boundary layer, there ap-
pear hairpin structures inclined to the wall at an angle of approximately
45◦(Fig. 10.23b). At lower Reynolds number, the vortices are less elongated
and more like horseshoe shaped. Low-Reynolds number simulations indicate
that they most often occur asymmetrically or even singly (sometimes named
hooks), with only occasional instances of counter-rotating pairs. At moder-
ate or relative higher Reynolds numbers, the vortices are elongated and more
hairpin-shaped.

There is a controversy on whether the hairpin vortices could remain up to
the fully developed turbulent region downstream and how large an area they
can occupy in the outer region. Head and Bandyopahyay (1981) reported that
a turbulent boundary layer is filled with hairpin vortices in their smoke tunnel
experiment; but it is not so from many other results. Thus, it might be helpful
to discuss the Reynolds-number effect on the hairpin structures.

The viscous dissipation of a vortex pair of separation λz depends on the
viscous cancelation of the vorticity with opposite sign, which happens due
to the vorticity diffusion from both legs at a rate proportional to νω/λz.
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The lifetime of the hairpin votices, tlife, should be proportional to ω, λz and
inversely proportional to the diffusion rate, and thus tlife can be scaled to
λ2z/ν. On the other hand, the lift-up velocity of the hairpin vortices depends on
the induced velocity caused by the mutual induction of the vortex pair and is
proportional to Γ/λz, where the circulation Γ ∼ ωλ2z. Furthermore, ω depends
on the wall shear, ω ∼ ∂U/∂y|w ∼ uτ/δ and so the time tp required for the
hairpin vortices to lift up and penetrate the whole boundary layer of thickness
δ can be scaled to δ2/uτλz. This gives tp/tlife ∼ δ2ν/uτλ

3
z. Then, since λz is

known to be scaled to the viscous length ν/uτ , the ratio tp/tlife is actually
the square of the Reynolds number, (δuτ/ν)2. This argument can at least
qualitatively explain why one observes larger number of horseshoe-shaped
structures and hairpins in transitional or relatively low-Reynolds number flows
than that of hairpin-shaped structures at high Reynolds numbers. For the
latter the time required for the hairpin vortices to lift up and penetrate to
the outer edge of the boundary layer will be much longer than their life time
and most of them would be dissipated before penetrating through the whole
layer.

The outer edge of the turbulent boundary layer consists of three dimen-
sional bulges, the turbulent/nonturbulent interface with the same scale of the
boundary-layer thickness δ. Deep irrotational valleys occur at the edges of
the bulges, through which free-stream fluid is entrained into the turbulent re-
gion (Robinson 1991b). Inside the bulges are slow over-turning motions with
a length scale of δ. They have relatively long life times compared with the
quasistreamwise vortices that form, evolve, and dissipate rapidly in the near-
wall region. These large-scale structures at the outer edge are also related to
the induced velocities of groups of hairpin heads.

The inner–outer region interaction is one of the major controversial issues
in turbulent boundary layer theories. It is now almost a common understand-
ing that the outer-region structures have a definite effect on the near-wall
production process (Praturi and Brodkey 1978; Nakagawa and Nezu 1981)
but not play a governing role (Falco 1983). The large over-turning motions
are weak, though they have influence on bursting and thus on small-scale
transition. Although the outer layer also contains energetic structures, recent
numerical experiments (Jiménez and Pinelli 1999) have confirmed that the
essential inner-layer dynamics (y+ < 60) can operate autonomously.

One of the interesting issues relevant to the inner–outer region interaction
is whether the large over-turning motion has important influence on the for-
mation of streamwise vortices. It was suggested (Brown and Thomas 1977;
Cantwell et al. 1978) that the successive passing of the large over-turning
motions would cause waviness of near-wall streamlines. The Görtler instabil-
ity on a concave boundary layer might have influence on the formation or
growing of the streamwise vortices. This suggestion is similar to the “Görtler-
Witting mechanism,” which conjectured that large amplitude T–S waves will
locally induce concave curvature in the streamlines and hence a Görtler
instability (Lesson and Koh 1985). But, by a computation on a wavy wall,
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Saric and Benmalek (1991) showed that the wall section with convex curva-
ture had an extraordinary stabilizing effect on the Görtler vortex so that the
net result of the whole wavy wall (or the large amplitude T–S waves) was sta-
bilizing. However, the flow waviness caused by the large over-turning motion
is not sinusoidal (or the convex and concave portions of the curvature are not
symmetrical), so the net effect of the overturning motion is still to be clarified
in the future.

10.3.5 Streamwise Vortices and By-Pass Transition

Streamwise vortices are seen in all high Reynolds number shear flows, includ-
ing free shear layers (mixing layer, wake, and jet, etc.) and wall-bounded shear
layers (boundary layer, wall jet, wall wake, etc.). In the former, the inflectional
instability leads to spanwise vortices first. A streamwise vortex is a product
of secondary instability of the existing spanwise structures. In the latter, the
streamwise vortex starts immediately after the nonlinear process starts in the
wall region, so one never sees an observable spanwise vortex. However, the
background mechanism of streamwise vortices formation is in common, both
due to sufficiently strong shear field and three-dimensional disturbances.

The processes described so far are not the only mechanism to form stream-
wise vortices. Corotating streamwise vortices can be formed in the boundary
layer on a sweepback wing due to the crossflow instability. Counter-rotating
streamwise vortices can also be formed due to centrifugal instability, such as
the Dean vortices in curved channels (Dean 1928), the Görtler vortices near
a concave surface (Görtler 1940; Drazin and Reid 1981), the Taylor vortices
between concentric cylinders with the inner one rotating, or the streamwise
vortices in the outer region of the wall jet on a convex wall, etc. Thus, stream-
wise vortices are a popular flow phenomenon in turbulent shear layers.

It has been shown in Sect. 10.3.2 that the streamwise vortices play a domi-
nant role in the self-sustaining mechanism of boundary-layer turbulence. Actu-
ally, the momentum transported by the streamwise vortices not only generates
the streaks but also account for the increase of skin friction in the turbulent
boundary layer (Orlandi and Jiménez 1994). The dominant roles of stream-
wise vortices near the wall in turbulence production and drag generation is
now widely accepted (e.g., Kim et al. 1987). In engineering applications, the
influences of streamwise vortices in mass transfer (e.g., mixing), momentum
transfer (e.g., Reynolds shear stress and skin friction), and energy transfer
(e.g., heat transfer) are also significant. Besides, as will be discussed below,
streamwise vortices is a key mechanism in the by-pass transition to turbulence.
All of these explain why we have to pay enough attention to the specific nature
related to streamwise vortices.

Figure 10.2 has shown that traveling vortices may be detected as and
expressed by waves. This is however not the case for a steady streamwise vor-
tex. Correspondingly, the mechanism of disturbance growth related to stream-
wise vortices cannot be expressed by the growth of normal modes either.
The current understanding of the streak development is the nonmodal growth
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(transient growth) introduced in Sect. 9.1.2 and discussed in Sect. 9.2.4 in the
context of shear-layer instability, which has been shown to have potential im-
portance for studies of by-pass transition (e.g., Gustavsson 1991; Butler and
Farrel 1992).

A pair of counter rotating streamwise vortices in a boundary layer will
cause wall-normal velocity disturbance that accumulates (or grows) alge-
braically along the streamwise direction x (Fig. 10.24). Even if the stream-
wise vortices decay along x, the normal velocity disturbance could still grow
as an integrated effect. The closely related phenomenon is the occurrence of
low-speed streaks and the surrounding high shear layers. Actually we have
already come across similar phenomenon in the discussion of self-sustaining
mechanism in boundary layers (Fig. 10.18). The later breakdown of low speed
streaks occurs through a secondary instability, which is developed on the
local shear layer between high- and low-speed streaks when a critical Reynolds
number based on their size is sufficiently large (Sect. 9.1.2 and Sect. 9.2.4). If
this mechanism overwhelms the normal-mode transition, there occurs by-pass
transition.

Let us discuss in a little more detail. The T–S waves in a boundary layer
on a smooth plate will start when the Reynolds number reaches certain crit-
ical value. The disturbances with frequencies within the unstable region will
grow exponentially in the linear regime. If, by any mechanism, there occurs
a pair of relatively weak streamwise vortices, then their induced velocity dis-
turbances cannot compete with those induced by the T–S waves (the normal
mode) because the former grows algebraically. However, if the flow is stable to
normal-mode disturbances or there are sufficiently strong initial streamwise
vortices for the transient growth to be overwhelming, transition to turbulent
flow will take place without passing through the stage of exponential grow of
T–S waves. This is called by-pass transition.

The transition of the Couette flow and circular-pipe flow are good examples
where the velocity profiles are linearly stable to normal modes. Subcritical
transition in an ordinary boundary layer is another example where the T–S
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Fig. 10.24. Transient growth and counter rotating vortices
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wave is linearly stable due to the low Reynolds number. For all these cases, the
transition scenario can occur only if there is a mechanism other than passing
through the exponential growth of T–S waves.

Besides, if the initial disturbance amplitude exceeds a threshold level, by-
pass transition will take place (Darbyshire and Mullin 1995; Draad et al. 1998),
such as in a boundary layer on a rough surface or a boundary layer under a
surrounding of high turbulence intensity (e.g., a turbine blade). This result is
independent of whether the shear flow is unstable to exponential growth of
wave-like disturbances. As discussed above, a boundary layer subjected to a
free-stream turbulence of moderate levels would develop unsteady streamwise
oriented streaky structures with high and low streamwise velocity. This phe-
nomenon was observed even as early as Klebanoff et al. (1962) who observed
a by-pass of linear stage whenever the initial amplitude of the perturbation
was large, and also discovered the existence of streamwise vortices in the flow
field near the surface by measuring two velocity components. Subcritical tran-
sitions have recently been investigated in more detail for a variety of flows,
for examples, in circular pipes (e.g., Morkovin and Reshotko 1990; Morkovin
1993; Reshotko 1994), in plane Poiseuille flows and in boundary layer flows
(e.g., Nishioka and Asai 1985; Kachanov 1994; Asai and Nishioka 1995, 1997;
Asai et al. 1996; Bowles 2000).

10.4 Some Theoretical Aspects
in Studying Coherent Structures

Having seen the significant role of coherent structures in the development of
the two example flows, their physical understanding, prediction, and control
have become a very active area in turbulence studies. However, a turbulent
flow is full of vortical structures of various scales, which can all cause the
stretching or tilting of local vorticity. It is not an easy job to calculate all
these influences unless a direct numerical simulation is performed, which up
to now is still limited to relatively low Reynolds number flows. Thus, the
traditional way in turbulence studies is the statistical method.

The famous Kolmogorov (1941, 1962) theory and the recent development
of the universal scaling law of cascading (She and Leveque 1994; She 1997,
1998) belong to the statistical method. They both revealed the multiscale
structures in turbulence and contributed firmly to the physical background of
cascading. Recently, the latter theory has made progresses in combining the
knowledge of their universal scaling law with those of coherent structures in
shear flows (Gong et al. 2004). However, there is still a long way to go before it
can help turbulence modeling to solve the problem of turbulence development
in a flow field. So, the most convenient statistical method to date is still based
on the Reynolds decomposition.

As has been pointed out in the context of Fig. 10.2 and Sect. 10.3.5, turbu-
lent disturbances related to steady components of streamwise vortices cannot
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be expressed by the temporal fluctuations of the velocity field. This brings
us to a further discussion on the limitation of the Reynolds decomposition. A
combination of triple decomposition and vortex dynamics has shed light on
building up statistical vortex dynamics and may be a more powerful way out
in turbulence studies. But more detailed studies on the vortical structures in
turbulence require DNS or deterministic theories.

Many achievements have been made on the relevance of vortex dynamics
to turbulence. Theoderson (1952) was the first to predict theoretically the
generation of hairpin-shaped structures in a boundary layer as early as 1952.
Since then, abundant experimental and computational results have been ob-
tained in the past half century, which have prepared a condition for applying
vortex dynamics to predict the coherent structures or explain their evolu-
tion (e.g., Saffman and Baker 1979; Leonard 1985; Hunt 1987; Ashurst and
Meiburg 1988; Virk and Hussain 1993; Hunt and Vassilicos 2000; Lesieur et
al. 2000; Schoppa and Hussain 2002; Lesieur et al. 2003). As mentioned in
Sect. 1.2, these efforts have naturally in turn enriched the content of vorticity
and vortex dynamics (e.g., Melander and Hussain 1993a and 1994, Pradeep
and Hussain 2000; Hussain 2002). We expect that the present section can offer
readers some brief concepts related to the basic theories that are important
in handling coherent structures.

10.4.1 On the Reynolds Decomposition

The Reynolds decomposition has been the most popularly applied statisti-
cal method and has contributed tremendously to turbulence studies. While
extended to triple decomposition of the velocity field, it has shown its poten-
tial also in studies of coherent structures.

In the triple decomposition method, one expresses any instantaneous quan-
tity ϕ as

ϕ = Φ+ ϕc + ϕr, (10.1)

where Φ is its time-mean, and ϕc and ϕr are its coherent and random compo-
nents, respectively.

Neglecting the correlation between the coherent and random motions, the
coherent energy equation can be written as (Hussain 1983)

1 2
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− ∂

∂xj
uci〈uriurj〉 − εc, (10.2)

where ui = Ui + uci + uri.
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The viscous diffusion term and the energy production due to normal
stresses have been neglected in (10.2) due to their little contribution to the
coherent energy balance.

The left-hand side of the equation is the advection of coherent energy
by the mean. The terms on the right-hand side are: (1) the diffusion of the
coherent energy by coherent velocity and pressure fluctuations; (2) the coher-
ent production by the mean shear; (3) the intermodal energy transfer that
expresses the rate of energy transfer from coherent motions to random ones;
(4) the diffusion of the coherent energy by random velocity fluctuations; and
(5) the viscous dissipation of coherent energy that is usually negligible.

Equation (10.2) shows very clearly the energy transfer between mean,
coherent, and random motions and is helpful in understanding, prediction,
and control of coherent structures (see Sect. 10.5.3). However, due to the prob-
lem revealed by Fig. 10.2 and discussed in Sect. 10.3.5, one should be able to
imagine that the existence of streamwise vortices would also cause problem
on both the traditional Reynolds decomposition and the triple decomposition
of the velocity field as discussed later.

The most representative product from the Reynolds decomposition is the
Reynolds shear stress −u′v′ that is a particular correlation function in turbu-
lence studies. For generality, we take the correlation function between veloc-
ity components measured at two separate points to discuss the influence of
streamwise vortices. In a statistically steady turbulence, it is defined as

Rij(xk; r, τ) = u′
i(xk, t)u

′
j(xk + r, t+ τ), (10.3)

where u′
i(xk, t) is the instantaneous value of the ith component of the tem-

poral velocity fluctuation at position xk and time instant t; r and τ are
the spatial and temporal spacing between the measuring location of u′

i

and u′
j respectively. The over-bar expresses time averaging. For example,

−R12(xk; 0, 0) just represents the Reynolds shear stress −u′v′ at location xk.
As is known, the correlation function can usually characterize coherent

structures in turbulent flows. However, it has a fundamental defect if stream-
wise vortices are involved. Without loss of generality, consider the simulta-
neous two-point spatial correlation of spanwise velocity components w with
spanwise spacing ∆z in a statistically two-dimensional flow, i.e., i = j = k = 3
and τ = 0, that is the most characteristic quantity related to streamwise
vortices. Thus, we have:

R33(z;-z, 0) = w′(z, t)w′(z +-z, t), (10.4)

where the velocity fluctuation w′ is a temporal fluctuation.
Now, the problem comes because an ideally steady streamwise vortex will

generate only a steady induced velocity, but no temporal velocity fluctuations.
Even if in real flows the so-called streamwise vortices are not entirely stream-
wise and not ideally steady, at least their steady streamwise component will
generate no temporal velocity fluctuations. Therefore, the above correlation
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function cannot reflect the full contribution of turbulence structures, espe-
cially, the influence of the steady components of streamwise vortices. Thus,
the traditional correlation function has to be reconsidered.

A possible way to express the fluctuations caused by streamwise vortices
in a statistically steady two-dimensional flow is to replace the temporal fluc-
tuations of the velocity components by spatial ones. Namely, instead of (10.4)
we set

g33(z;∆z, 0) = [w(z, t)− 〈w(t)〉][w(z +∆z, t)− 〈w(t)〉], (10.5)

where g33 is an instantaneous value of the spatial correlation and 〈 〉 denotes
the spanwise spatial averaging. In order to obtain a satisfactory statistical
quantity, the procedure used to obtain the instantaneous spatial correlation
function should be repeated for enough times to form an ensemble average.
In statistically steady flows, the ensemble-averaged quantity may be replaced
by a time-averaged value and we obtain

G33(z;∆z, 0) = (w1 − wav)(w2 − wav), (10.6)

where we use the following abbreviations for neatness, w1 = w(z, t), w2 =
w(z +∆z, t) and wav = 〈w(t)〉.

By further decomposing w1, w2, wav into time means and temporal fluc-
tuations, the following expression can be obtained

G33 = w′
1w

′
2 + w1 · w2 + wav · wav − w1 · wav − w2 · wav

+w′2
av − w′

1w
′
av − w′

2w
′
av, (10.7)

where w1 and w2 are the instantaneous values of the spanwise velocity at
location 1 and 2, respectively, w′

1 and w′
2 are the corresponding temporal fluc-

tuations and w′
av is the time fluctuation of wav. This decomposition contains

many additional terms since (10.6) is nonlinear.
In a statistically steady two-dimensional flow, wav = 0 at any time so that

we have

G33 = w′
1w

′
2 + w1 · w2 = w1 · w2, (10.8)

Here w1 and w2 are the instantaneous values instead of the temporal velocity
fluctuations. We suggest that this G33 is referred to as the total correlation
to distinguish it from the traditional one. If and only if the turbulent flow is
ideally two-dimensional with no steady component of w caused by streamwise
vortices, can it then recover to the traditional correlation function:

G33 = w′
1w

′
2. (10.9)

A comparison of the two correlation functions obtained in two extreme
cases is shown in Fig. 10.25 (Xu et al. 2000). The results in figure (a) were
taken in a wall jet at a sufficient downstream distance of the jet exit, where
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X = 150 mm, y = 0.4 mm
b = 5 mm, Uj = 21m s-1, U�= 0

X = 200 mm downstream of vortex generators
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Fig. 10.25. The conventional and total correlation. (a) The correlation coefficient
in a two-dimensional wall jet. (b) The correlation coefficient in a two-dimensional
boundary layer with a spanwise row of symmetrical vortex generators (wavelength =
70mm). From Xu et al. (2000)

the turbulence was almost statistically steady and two-dimensional. The two
curves computed by conventional and total correlations are almost identical. It
indicates that even if there were streamwise vortices in the flow, they migrated
or appeared and disappeared in a random way so that the streamwise vortices
did not cause significant steady component of w. Figure (b) shows the opposite
extreme where the results were obtained in a boundary layer with a row of
symmetrical vortex generators, which were so arranged that all odd-number
generators were tilted to one side at a given angle relative to the x-axis and
those in even numbers were in the opposite side and symmetrical to the former.
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The total correlation reaches the level of O(1) while the conventional one is
very low in spite of the existence of strong streamwise vortices along with
their steady component.

In a real turbulent flow region, the steady component of streamwise vor-
tices could vary between these two extreme experimental conditions. On
the relatively more serious side, for example, Saric (1994) points out that
the Görtler-vortex motion produces a situation in spatially developing flows
where the disturbance is inseparable in three dimensions from the basic-state
motion and that it seems as if all interesting phenomena associated with
Görtler vortices share this three-dimensional inseparability. Actually, they are
only inseparable from the time-mean value because the disturbances them-
selves involve steady components. On the less serious side, for example, in a
turbulent boundary layer, the streamwise vortices have limited lifetime, within
which there would be more obvious steady component, but less or even none
in long time average (Bernard et al. 1993). This is believed to be the rea-
son why this problem did not attract enough attention and people have been
confined to the conventional correlation in turbulence studies for so long.

Since the Reynolds stresses −ρu′v′, −ρv′w′, −ρu′w′, and turbulence
energy −ρu′u′, −ρv′v′, −ρw′w′, etc. are all correlation functions, a logical
extension of the above argument is that inherent defect may exist in the
traditional concept on turbulence quantities based solely on the Reynolds
decomposition. Within that framework, all turbulence quantities are expressed
only in terms of temporal fluctuations and are supposed to represent all the
actions that the turbulence adds to the mean field. The major efforts of the
traditional turbulence modeling have been trying to model these quantities.
However, once the steady component of streamwise vortices appears, the tra-
ditional definition of turbulence energy and turbulent shear stresses will miss
an invisible fraction. This is believed to be one of the basic reasons for the
difficulties in modeling the wall region where the streamwise vortices are so
critical.

One might argue that there is nothing wrong with the Reynolds equation.
The lost fraction of turbulence contained in the steady components of stream-
wise vortices should enter the mean field. This is true. But in doing so the
steady components of the streamwise turbulence structures are not expressed
as turbulence. Many physical and technical problems would then follow. For
example, the entire concept based on the turbulence energy equation has to
be reconsidered. How can one count the turbulence production, advection,
diffusion, and dissipation if the steady component of the streamwise vortic-
ity has to be ruled out from turbulence? Besides, if one tried to absorb the
steady component of the streamwise vortices into mean flow, the traditional
Reynolds-averaged Navier–Stokes (RANS) solution for the mean field of a
nominally two-dimensional turbulent flow would become three-dimensional
and hence lose its simplicity.

As the above total correlation suggests, one of the ways out could be to ap-
ply both temporal decomposition and spatial decomposition in the spanwise
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direction to the velocity. In this way, both temporal fluctuation and the time-
mean effect of the streamwise vortices will be counted into turbulence quan-
tities. Further studies are desired before a full solution of this problem can be
reached.

10.4.2 On Vorticity Transport Equations

An alternative or even more powerful approach in studying coherent structures
might be the statistical vorticity dynamics. Instead of applying the Reynolds
decomposition and triple decomposition to the velocity field only, the statisti-
cal vorticity dynamics applies the triple decompositions to both velocity and
vorticity field:

u(x, t) = U(x, t) + uc(x, t) + ur(x, t),
(10.10)

ω(x, t) = Ω(x) + ωc(x, t) + ωr(x, t),

where u, ω are the instantaneous quantities, U , Ω are time mean quantities,
and subscripts c and r denote coherent and random constituents, respectively.

The instantaneous vorticity equation (2.168) reads

Dω

Dt
=

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∇2ω (10.11)

indicating that the rate of change of the vorticity is due to stretching and
tilting of the vorticity caused by the instantaneous velocity gradient (the first
term) as well as to viscous diffusion (the second term). This equation can be
applied to any instantaneous velocity and vorticity field in both laminar and
turbulent flows (Sects. 3.5.1 and 3.5.3).

As the first step of applying (10.11) to coherent structures, dimensional
analysis may give a simple but important concept. Take the spanwise vortices
in a mixing layer as example. Assuming that the mean velocity difference is
of O(U) and the thickness of the mixing layer is of O(δ), then we have the
estimates:

|ω| = O(U/δ), |∇u| = O(U/δ),

|(ω · ∇)u| = O(U2/δ2), |ν∇2ω| = O(νU/δ3). (10.12)

Hence, the ratio of the first term on the right-hand side of (10.11) to the
second term is of O(Uδ/ν), i.e., the Reynolds number based on the radial size
of large spanwise vortices, which is usually a very large number. Thus, the
development of large coherent structures in the mixing layer can be regarded
as an invicid process.

For statistical analysis, substitute (10.10) into (10.11) and take time aver-
age, we obtain the mean vorticity equation.

DΩ

Dt
= (Ω · ∇)U + ν∇2Ω +∇× (uc × ωc) +∇× (ur × ωr). (10.13)
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Compared to (10.11), the first two terms on the right-hand side of (10.13) are
of the same form, but the stretching and tilting here are caused by the mean
velocity gradient only. Moreover, there occur two extra nonlinear interaction
terms on the right-hand side, which are the curl of the coherent and random
Lamb vectors and have very clear physical meaning. The third term represents
the time-averaged effect of the interaction (i.e., stretching and advection)
between the coherent vorticity and coherent velocity fluctuations. The fourth
term is the time-mean effect of the interaction between the random vorticity
and velocity fluctuations. These terms are very helpful in understanding the
development of a turbulent shear flow.

As an illustration, consider a forced mixing layer (Zhou and Wygnanski
2001). The viscous effect in (10.13) is small as discussed earlier. By assuming
that the time-mean spanwise coherent motion is basically two-dimensional
and that the influence of the random motion is negligible in a mixing layer
under two-dimensional forcing, the first and fourth terms can also be dropped
from (10.13). The rates of change of Ω from direct measurement (expressed
by symbols in Fig. 10.26) and calculated from the third term (by solid line) at
the right side of (10.13) are plotted in Fig. 10.26. The balance of data indicates
that the above assumptions are valid. Thus, DΩ/Dt is indeed dominated by
the curl of the time-mean coherent Lamb vector, including the change in the
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Fig. 10.26. Mean vorticity balance in a forced mixing layer (a) Forced by single
frequency, (b) Forced by two frequencies (fundamental and subharmonic), (c) Forced
by two frequencies but with stronger amplitude. From Zhou and Wygnanski (2001)
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mean vorticity profile along the flow and the spreading of the entire mean
shear field. It also explains why the spreading rate depends on the variation
of the forcing condition.

This example clearly demonstrates the benefit of the mean vorticity equa-
tion as compared to the Reynolds equation combining with the turbulence
energy equation or the Reynolds stress transport equations. The latter can
express the interaction of mean flow field with the turbulence field or that
between turbulent velocity fluctuations themselves. The function of coher-
ent motions is buried in the turbulence fluctuations and cannot be revealed
explicitly.

For analysis of coherent motions, we assume that the coherent quanti-
ties can be represented by the phase-locked ensemble averaged quantities and
further assume that the coherent and random motions are uncorrelated. Sub-
stituting (10.10) into (10.11), taking the phase-locked ensemble average, and
neglecting the higher order quantities, the coherent vorticity equation reads
(based on Hussain 1983)

1 2 3 4
Dωc
Dt

= (ωc · ∇)U + (Ω · ∇)uc + ν∇2ωc +∇ · (ωcuc − ωcuc)

5 6 7
−∇ · (ucωc − ucωc)−∇ · (ucΩ) +∇ · (〈ωrur〉 − ωrur)

8
−∇ · (〈urωr〉 − urωr). (10.14)

where the over-bar denotes the time mean quantities and the bracket 〈 〉, the
phase locked quantities. Compared to the mean vorticity equation, the first
three terms of the right side are of the same form as the first two terms of
(10.13). Instead of the stretching and tilting of the mean vorticity caused by
the mean velocity gradient in the first term of (10.13), here the first and sec-
ond terms on the right side represents the stretching/tilting of the coherent
vorticity by the mean velocity gradients and that of the mean vorticity by
the coherent velocity gradients. The third term is the viscous diffusion of the
coherent vorticity. The fourth and fifth terms represent the residual coherent
interaction (after subtracting the mean) between the coherent vorticity and
the coherent velocity fluctuations, where the summation of the time mean
components is the same as, but of the opposite sign to the third term in
(10.13). It means that while coherent interaction causes an increase of mean
vorticity, the mean coherent vorticity would be reduced by the same amount,
i.e., an energy transfer from the coherent to the mean, or vice versa. The
sixth term represents the advection of mean vorticity by the coherent velocity
fluctuations. The seventh and eighth terms involve special physical mecha-
nisms. They are the residual (after subtracting the mean) coherent interaction
between the random vorticity and velocity fluctuations. The seventh is due to
stretching and tilting, and the eighth due to advection. By these interactions,
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the coherent vorticies may be sliced into random eddies or the latter may be
reorganized into coherent ones (see Sect. 10.5.1).

As has been shown in Figs. 10.10 and 10.17b, the main mechanism of
streamwise vortices formation in a shear layer is due to the three dimensional
deformation of the spanwise vortices in a strong shear field. From the coherent
vorticity equation (10.14), this mechanism can be easily examined. Consider-
ing Dωxc/Dt, a small normal coherent vorticity component ωyc in a region of
strong mean shear ∂U/∂y will lead to a significant value of ωyc(∂U/∂y), and so
to a dominant first term to produce streamwise vorticity (see also Williamson
1996).

10.4.3 Vortex Core Dynamics and Polarized Vorticity Dynamics

The discussions in Sect. 10.4.2 are based on the statistic point of view. Neither
(10.13) nor (10.14) can describe any deterministic structure of the individual
coherent vortices. In order to apply vortex dynamics to study more detailed
coherent structures in turbulence, there are yet two major difficulties: the
influence of internal vorticity distribution in a vortex core on the dynamics
of the vortex is not well understood; and, the structure and dynamics of a
large-scale coherent structure in a turbulent environment are not clear. For
these purposes vortex core dynamics and polarized vorticity dynamics would
be helpful, of which the basic theories have been discussed in Sect. 8.1.2–8.1.4
(see also Melander and Hussain 1994, and Melander and Hussain 1993a).
Here, we only list some results to show their contributions in understanding
turbulence.

Figure 10.27 is a typical result from the core dynamics showing periodical
deformation of a coherent vortex core. Assume that the initial shape of a
vortex core is distorted as (A). The vorticity lines are being uncoiled because
the two ends of the vortex segment in the figure are thinner and rotate faster

Vorticity
surface

Vorticity
line

Streamline

(a) (b)

(d) (e)

(c)

Fig. 10.27. Schematic of the coupling between swirling and meridional flows. From
Melander and Hussain (1994)



560 10 Vortical Structures in Transitional and Turbulent Shear Flows

than the midportion. Meanwhile, the meridional flow induced by the vorticity
lines will continue to distort the shape of a vorticity surface sketched in the
figure further away from that of a rectilinear vortex (B). When the vorticity
lines are entirely uncoiled, the difference in rotating speed between the two
ends and the midportion is even larger so that the differential rotation causes
new coiling of the vorticity line to the opposite direction (C). Then the new
coiling with opposite sign induces a meridional flow of opposite sign and brings
the vorticity surface towards rectilinear (D). When the shape of vorticity
surface becomes rectilinear the vorticity lines are highly coiled and its induced
meridional flow causes distortion of the vortex away from rectilinear, but in
a way opposite to the original one (E), i.e., thicker and rotates slower at the
two ends than the midportion of the vortex. The dynamic procedure can be
continued in the same way as above and an oscillation of vortex shape and
coiling of vorticity lines can be easily seen. This kind of dynamic oscillation
is expected to be one of the typical behaviors of the coherent vortices in
turbulence and affects the collectively induced velocity field in turbulence. It
will also have important influence on the interaction between coherent vortices
and the surrounding random eddies.

The above oscillating mechanism is also an evidence on the coexistence of
vortices and waves in turbulence, as well as an evidence on the vortical struc-
tures as a carrier of vorticity waves (Sect. 10.1.3). While a vortex is associated
with the mass transport, a wave is the motion transfer without mass trans-
port; in many cases they are not separable. We see that generically the core
dynamics involves neither a pure wave motion nor a pure mass transport, but
a combination of both. However, in the above example, the vorticity can be
transported as waves in a vortex core without corresponding mass transport
due to the coupling between swirl and meridional flow (Hussain 1992).

Figure 10.27 has also shown that the vortices are usually polarized,
i.e.,, with a preferred swirling direction (either left-handed or right-handed,
Fig. 10.28a). Thus, the polarized vorticity dynamics (Sect. 8.1.4) becomes
an important tool in quantitative understanding of the evolution of coher-
ent structures. It can handle the problems related to mutual interactions
of the coherent structures, their coupling with fine-scale turbulence and
their break down and reorganization. The polarized vorticity equations are
shown in (8.49a) and (8.49b). Comparing with the usual vorticity equation,
these equations involve additional terms expressing that the evolution of
the one handed mode (say the left-handed) is coupled with the other (say
the right-handed). In developing the polarized vorticity dynamics, the basic
analytical tool is the complex helical wave decomposition (HWD) introduced
in Sect. 2.3.4.

One of the major achievements from the polarized vorticity equation is
the structure of a coherent vortex column in an environment of random
eddies (Fig. 10.28). Due to the interaction between the coherent vortices and
the turbulence surroundings, there are always secondary structures (threads)
spun azimuthally around it. The vorticity in the threads is mostly azimuthal
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Fig. 10.28. Schematic illustration of coherent-random interaction. (a) polarized
structures, (b) primary, (c) secondary. From Melander and Hussain (1993b)

and the threads are highly polarized (Melander and Hussain 1993a and b).
It not only gives a clear view on the turbulence cascade, but also enriches
the concept of a coherent vortex: in a turbulent flow a coherent vortex should
not be only an isolated single vortex. Rather, it is always coupled with a
group of surrounding small-scale, polarized vortices winding around it. This
phenomenon also gives a good explanation of internal intermittency in tur-
bulence – the highly dissipative structures embedded into an irrotational
flow.

10.5 Two Basic Processes in Turbulence

In either a free shear layer or a wall-bounded shear layer, we have seen one
thing in common. The observed vortical structures appear as the instanta-
neous frames of mainly two developing processes. The first process starts
from a laminar/locally laminar, or a random turbulence background. Dis-
turbances of selected modes (not necessary normal modes) are growing and
lead to the formation of vortical structures with larger and larger scales. The
second process is the structural evolution in the opposite direction, i.e., the
cascade. Large coherent structures are getting smaller and smaller due to
vortex interaction and gradually pass their energy to random eddies. As the
cascade continues, the random energy will eventually dissipate to heat. From
the equations in Sect. 10.4, we can easily find out those terms representing
either process.
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10.5.1 Coherence Production – the First Process

This process is the physical source to generate and maintain a turbulence,
without which even an existing turbulence cannot survive. For example, the
turbulence generated by a grid in a uniform flow will eventually disappear
due to dissipation. This process is also the source to cause anisotropy and the
variety of the coherent structures in a turbulence field, without which even
existing coherent structures will eventually pass their energy to isotropic small
eddies.

In terms of energy transfer, this process transfers energy from the mean
to coherent energy (through instability and coherence production – second
term of (10.2)) and from random to coherent (negative intermodal transfer –
third term of (10.2)). The appearance of the organized structures as a result
of an instability mechanism was also emphasized by Prigogine (1980) from
the viewpoint of thermodynamics. As a consequence of self-organization, the
number of degrees of freedom (Lesieur 1990, p. 141) is reduced and thus
it is a procedure that leads to a negative entropy generation. In terms of
synergetics (Haken 1984), it is the process that the orderly motion evolves from
the disordered (molecular motions or random eddies) background, and hence
represents self-organization (the organization of random eddies is related to
the last two terms of (10.14)).

The self-organization of coherent vortices from random ones can be illus-
trated by two examples. One is an experiment in a rotation tank (Hopfinger
et al. 1982) where the preferred orientation of the axes of the high-vorticity
eddies are parallel to the rotation axis due to the Taylor–Proudman theorem
(see Sect. 12.1). Imagine that the rotating tank is similar to the motion of a
tornado and the surrounding eddies are the random atmospheric turbulence,
then the tornado will give the surrounding eddies a preferred orientation and
eventually strengthen the tornado. The other is a numerical study of a coher-
ent structure embedded in the surrounding fine-scale turbulence (Melander
and Hussain 1993b) as has been shown in Fig. 10.28. The small-scale random
eddies in the absence of coherent vortex are isotropic and homogeneous. The
appearance of coherent vortices destroys the isotropy by aligning the random
vortices to the swirl direction of the vortex, thereby giving the random vortices
a preferred direction, and hence increases the coherent vorticity.

We should stress here that the negative entropy generation in a turbulence
field is not in conflict with the second law of thermodynamics. The latter
asserts that the entropy is always increasing in an isolated system, but a given
turbulence region is an open system which exchanges mass and energy with
its neighboring. The given turbulence region may obtain a negative entropy
flux from its neighbor so that its entropy would be locally reduced while the
entropy in the neighboring region is increased. If the two regions add up to
be one isolated system, the total system should still have positive entropy
generation. As an interesting example from a mixing layer experiment, Huang
and Ho (1990) found that the small-scale transition was first produced by the
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strain field of the pairing vortices imposed on the streamwise vortices. The
strained streamwise vortices were unstable and initiated the random fine-
scale turbulence. That is to say, the vortex merging (with negative entropy
generation) is accompanied by the small-scale transition (with positive entropy
generation) and the total entropy generation should still be positive.

In Sects. 10.2 and 10.3, we have seen that the stability mechanism dom-
inates the coherent production. In a mixing layer, there occur typically the
Kelvin–Helmholtz instability and the formation of the spanwise vortices, the
subharmonic instability and pairing etc. In a boundary layer, there occur typ-
ically the T–S instability, the local inflectional instability and the formation of
hairpin structures, etc. They start from laminar or locally laminar background
with distributed mean vorticity (shear) and develop to organized vortices.
The background can even be turbulent; e.g., a flow field with mean shear and
filled with small eddies, where large vortices can also be produced by certain
instability mechanism. Thus, it will be interesting to discuss the similarity and
difference in applying stability theory in a turbulent and in a laminar flow.

The linear stability theory in laminar flows like those presented in Chap. 9
has been well accepted for a long history and is even taken for granted
although a so-called laminar flow is in fact full of random molecular motions.
Only because the length scale of molecular motion are so small compared to
the wavelength of the instability waves, the latter can be regarded as approxi-
mately independent of the details of time-dependent motions of fluid mole-
cules. It is this independence that ensures the physical validity of the entire
continuum mechanics including hydrodynamic stability theory. The molecu-
lar motions do have influence on the instability mechanism; they can usually
be counted by a molecular viscosity – a statistical isotropic time-mean scalar
(if without additives). Consider now a turbulence field. If the wavelength of
the concerned instability waves is much greater than the average length scale
of the background eddies, and if the latter is almost isotropic, then the sit-
uation is similar to the laminar case. The coherent instability waves may be
considered approximately independent of the details of the surrounding time-
dependent motion of the small turbulent eddies, so that the physical nature
of flow instability should work. Of course, small eddies also have influence
on the instability waves; but they could be likewise counted by certain sta-
tistical time-mean quantities such as eddy viscosity. In particular, the mean
velocity field of a mixing layer is subject to an inviscid instability. Thus, the
instability mechanism is independent of the molecular motion, or similarly,
independent of the small-scale isotropic random eddies in turbulence. That
is to say, neither molecular viscosity nor eddy viscosity affects the inviscid
instability mechanism. Thus, it is not surprising that the stability analysis for
laminar mixing layers can work very well also in turbulent mixing layers (see
details explained later).

It should be emphasized here that enough disparity in length scale is essen-
tial for the instability mechanism to be independent of the background turbu-
lence. This is true not only for the case where the length scale of background
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turbulence is much smaller than the wavelength of the instability waves as
stated above, but also for the opposite case where the length scale of the
background turbulence is much larger than the wavelength of the instability
waves. For the latter, one just needs to think about what happens in the at-
mosphere or an ocean. Miscellaneous flow instability phenomena take place
in local regions (local instability) although the whole atmosphere or ocean is
already turbulent.

The linear instability analysis was shown successful to predict the most
amplified frequencies and the amplification rates of the large spanwise vortices
in an externally excited turbulent mixing layer (Oster and Wygnanski 1982;
Monkewitz and Huerre 1982). Gaster et al. (1985) further found that their
measured disturbance matched perfectly with the linear stability calculations
in both amplitude and phase distributions in a forced turbulent mixing layer.
Morris et al. (1990, see also Roshko 2000) made a good progress in modeling
a turbulent mixing layer based on the concept that the turbulence produc-
tion is dominated by coherent production and is caused by the amplification
of the instability modes. This idea was examined by Zhou and Wygnanski
(2002) based on the data measured by Weisbrot and Wygnanski (1988). The
result from the mixing layer excited at moderate amplitude level is shown in
Fig. 10.29, where “forced by two frequencies” means forced by a fundamen-
tal frequency and its subharmonic. Figure (a) indicates that the growth rate
of the mixing layer depends directly on the turbulence production, and fig-
ure (b) indicates that the turbulence production term is indeed dominated by
the coherent production mainly related to the spanwise coherent vortices.

Though successful in the above examples, the applicability of the instabil-
ity theory in turbulence is limited. If the scales of the coherent structures of
interest are close to that of the background eddies and strong interactions hap-
pen between the two, the instability waves can no longer be independent of the
turbulence background, and thus the similarity in the instability mechanisms
between laminar and turbulent flows is no longer valid. It is also important
to mention the role of the isotropic property for the viscosity. Even in a lam-
inar flow, very small amount of the polymer additive may cause a dramatic
change in the stability character because instability wave may cause a feedback
effect on the viscosity tensor so that the growth of the instability wave is no
longer independent of molecular motions. The same is true in a turbulence
field. If the background turbulence eddies cause significant anisotropy, the
conventional stability calculation would not be applicable.

All that stated above will add complexity to a turbulent boundary layer
and make the application of stability theory in its downstream locations dif-
ficult. In a boundary layer, new vorticity is continuously sent into the flow
field and new vortical structures are continuously formed at downstream
locations, similar to what happens in a transitional boundary layer. Kachanov
(2002) described this phenomenon as a continuous transition. The downstream
flow is under the influence of background turbulent structures advected from
upstream, including organized structures like hairpins, streamwise vortices
and random vortex rings, etc. The latter may have the length scales close to
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Fig. 10.29. The relation between growth of mixing layer and the coherent produc-
tion. (a) and (b) Growth rate versus turbulence production. Dashed line – dθ/dx;
solid line – (U2 + U1)/(U2 − U1)

2
∫∞
−∞(−Production)/U2 dy; (c) and (d): Turbu-

lence production versus coherent production, where solid line – total turbulence
production, dash-dotted line – summation of the coherent production, triangle –
fundamental, square – subharmonic, and solid circle – high harmonic. From Zhou
and Wygnanski (2002)

the downstream instability waves. In addition, they are highly anisotropic. It
is believed to be the reason why so far attempts to apply instability theory in
a turbulent boundary layer has had little success except in separated bound-
ary layers, where there is a region similar to a mixing layer so that an inviscid
instability mechanism becomes dominant (see Sect. 10.6.1).

The little success in applying instability theory to analyze the whole tur-
bulent boundary layer, however, does not mean that the stability mechanism
does not exist physically in turbulent boundary layers. For example, the local
inflectional instability mechanism around low speed streaks is still a key point
in the self-sustaining mechanism of turbulence in fully developed turbulent
boundary layers.
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10.5.2 Cascading – the Second Process

This is an entropy generation process, including cascade, intermodal (coherent-
random) energy transfer (the third term of (10.2)), and dissipation. A cascade
process involves complicated iterative operation of vortex stretching, tilting
and folding (Sect. 3.5.3). However, the tendency of cascading can be explained
by a simplified sketch with only stretching involved (Fig. 10.30). Suppose that
a turbulence field is filled with many vortical structures. If a vortex filament
along the x-direction is stretched by the induction of other vortices, this
vortex filament will become thinner and rotates faster, which enhances the
local induced velocity in the y- and z-directions. This in turn increases the
local velocity gradient and causes stretching of neighboring vortices in those
directions. Consequently, the latter also becomes thinner and their rotation is
speeded up. Such a procedure will continue and every step will cause further
decrease of the length scale of the vortices. Accordingly, turbulence energy
will gradually be transferred to smaller and smaller scales.

Note that the probabilities of the cascade process as described above are
uniform in all directions, and thus the turbulent structures will approach
homogeneous and isotropic after several steps of cascade if there is no
anisotropic influence from the first process. In fact, this process exists in all
types of shear flow; and the final products of the cascade, the random eddies,
are almost the same. This is why the background random eddies in turbulent
shear flows are almost not dependent of the boundary conditions but coherent
structures are.

In a real viscous shear flow, the largest scales are usually related to the
production of coherent structures. Below that, there often exists a range of
eddy sizes called the inertial subrange. In the inertial subrange and in average
sense, no energy is added by the mean flow and no energy is taken out by vis-
cous dissipation, so that the energy flux across each wave number is constant
and the energy cascade is conservative (Tennekes and Lumley 1972). If there
is no influence from the first process, both Kolmogorov’s spectrum and She’s
universal scaling law can express the cascading very well. However, where
there is influence from an instability mechanism that causes production and
anisotropy, a variation of the similarity parameter in the She–Leveque scaling
law (She and Leveque 1994) can be seen (Gong et al. 2004).

Besides, this cascading process cannot continue unlimitedly. With the
process of stretching, thinning, and faster rotating going on, the dissipation

z

y
x

Fig. 10.30. A sketch of turbulence cascade. Based on Chen (1986)
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rate due to the molecular viscosity is greatly enhanced. (recall 2.54, 2.155 and
4.21 for the energy and enstrophy dissipation rates, their dependence on the
vorticity and its gradient, respectively). Eventually, eddies smaller than the
dissipation scale or Kolmogorov scale will be entirely dissipated with their
energy being transferred to random molecular motion, the heat, and cannot
be maintained in any turbulence field.

The dissipation scale can be directly obtained from dimensional analysis.
Experimental observations indicate that the dissipation scale η depends on
dissipation rate ε and kinematic viscosity ν. Thus we may write, dimensionally
(denoted by [ ]), [η] = [ν]m[ε]n, where [ν] = L2T−1; [η] = L; [ε] = L2T−3.
This yields m = 3/4, n = −1/4, and so

[η] = [ν]3/4[ε]−1/4, η = k(ν3/ε)1/4. (10.15)

Then the Kolmogorov scale η = (ν3/ε)1/4 by setting k = 1.
Therefore, for a given ε , a smaller ν leads to smaller dissipation scale,

implying that smaller vortices can survive at higher Reynolds numbers. For
example, in a high Reynolds number boundary layer, the order of η can be
as small as tens of microns, and the corresponding timescale is of the order
of microseconds (Karniadakis and Choi 2003). This is why direct numerical
simulations to date are still confined to low Reynolds numbers.

The above discussion only gives an overall mechanism of cascade. Its real
physical details are miscellaneous and very complicated. Not only the vortex
stretching but also more complicated vortex interactions will be involved, such
as vortex pair instability, vortex cut-reconnection etc. as shown in Fig. 10.13
and 10.14. Furthermore, the cascading process happens often simultaneously
with the production process. Let us make use of Fig. 10.28 again to summarize
the last statements. On the one hand, it is a vivid view of fractal cascading
by the successive interactions between a coherent vortex and its surrounding
small scales. When the coherent motion defines a preferred orientation to small
random eddies, the latter are stretched in the expanse of the coherent energy.
The interaction generates further a local shear that can sustain turbulence also
in consuming the energy contained in the coherent vortex. Thus, the energy
is passed from large to secondary and continuously to even smaller scales. On
the other hand, the small scales, aligned and stretched by the coherent vortex
are self-organized into increasingly large scales through vortex merging; thus,
the interaction also involves a negative cascade or self-organization process.

10.5.3 Flow Chart of Coherent Energy and General Strategy
of Turbulence Control

Flow control in a shear layer is important in engineering applications, for
examples, lift augmentation, drag reduction, noise suppression, heat transfer,
mixing enhancement, improving combustion, or other chemical reaction, etc.
All these performances are closely related to turbulence structures. In general,
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the development of a turbulent flow depends on the generation, transfer, and
dissipation of turbulence energy (Bradshaw et al. 1967). It can be seen below,
the flow control in a shear layer is indeed a control of coherent structures,
i.e., a control of the generation, transfer, and dissipation of coherent energy.
Thus, flow control is also of interest for physical studies as a diagnostic tool
in enhancing or destruction of coherent structures.

In the coherent energy equation (10.2) the viscous dissipation of coherent
energy is usually negligible (Sect. 10.4.2). Of the rest terms, the streamwise
diffusion is relatively small, and the integrations of the two diffusion terms (by
coherent – term 1 of 10.2, and random fluctuations – term 4) across the flow
are approximately zero. Thus, the advection of the coherent energy depends
only on the two source terms, i.e., the coherent production (term 2 of 10.2)
and the intermodal (coherent-random) energy transfer (term 3). The former is
usually positive except in some limited narrow regions of certain asymmetrical
turbulent shear layers where the production could be negative (Eskinazi and
Erian 1969; Hinze 1970). The latter is usually negative except in some special
regions where self-organization mechanism becomes dominant (such as a
region where a typhoon is being formed). Thus, the main flow chart of the
coherent energy is clear. While the mean energy is being transferred to coher-
ent energy through instability mechanism, the coherent energy is transferred
to random energy through cascade. The random energy is then transferred
to the heat (the molecular energy) through dissipation. Thus, the level of
coherent energy just depends on the balance of the two processes. Although
the feedback from the random to the coherent energy always exist, such as
the reorganization of surrounding random eddies by the coherent vortices
(Fig. 10.28), it is usually of secondary importance in the energy balance.

Based on the above discussions, the basic energy chart can be expressed
schematically by Fig. 10.31, where solid lines denote the major route and the
dashed lines, the minor feedback. The water level mimics the coherent level
or the negative entropy level. The coherent production or self-organization
process that increases the negative entropy is expressed by pumps. The cas-
cading, dissipation process, and negative production are illustrated by valves.

M
p

p

C

R

H

Fig. 10.31. A flow chart of energy transfer. M – Mean energy, C – Coherent energy,
R – Random energy, H – Heat (molecular energy), P – Pump, Triangle – Valve
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Apparently the level of coherent energy in a flow just depends on how to
adjust the pumps and valves. For examples, stimulating coherent production
can lead to increase of coherent energy; suppressing it or enhancing dissipation
can reduce the level of coherent motion.

Specific methods of flow control depend on nature of the flow, purposes
of application, and techniques available. Detailed techniques are very much
different, from controlling a convectively unstable flow to a globally unstable
flow, from stimulation to suppression of coherent production, from passive to
active, from open-loop to close-loop, etc. For example, a global instability may
be stimulated very efficiently by a single sensor–actuator feedback control;
while using the same technique to suppress the global instability (where all
the global modes have to be attenuated) is difficult (Huerre and Monkwwitz
1990).

In recent two decades, amazingly large amount of studies have been con-
ducted on flow control for various purposes and with various techniques (for
reviews see, e.g., Bushnell and McGinley 1989; Fiedler and Fernholz 1990;
Gad-el-Hak 1996, 2000; Karniadakis and Choi 2003). A detailed discussion
is beyond the scope of this book. It is in order, however, to pick up a few
examples to explain the basic control strategy stated above.

Enhancement of Coherent Production

In this category, a successful example is to introduce periodical blowing on the
knee of a trailing flap to delay separation so that the lift on the wing can be
augmented (Seifert et al. 1993). Since the outer portion of the mean velocity
profile of the separated boundary layer on the flap is similar to a mixing
layer (Fig. 10.36g and Sect. 10.6.1). The periodic forcing enhanced the coherent
production of the spanwise vortices and increases the entrainment of the high-
energy fluid into the separation region. Then, if one regards the separation
region as a reservoir with the solid boundary as its one side, the streamline of
the other side will bend towards the wall due to enhanced entrainment (Katz
et al. 1989). Thus, the separation will be weakened or even eliminated.

Another example is also introducing periodical excitation at the outer edge
of the separation region of an airfoil for lift augmentation. But the physical
idea is different. The introduced disturbance is so controlled that the outer
edge of the mean separation region is bent towards and reattaches at the
trailing edge of the airfoil. The target is not to eliminate separation at large
angle of attack but to enhance the coherent production to form a series of
spanwise vortices traveling through the upper surface of the wing, so that a
strong time-mean vortex is seemingly “captured” (Fig. 10.32a) and the vortex
lift is obtained (Zhou et al. 1993).

The major criterion to distinguish the above two types of separation con-
trol is the skin friction. In the first example, the separation suppression is
targeted so that an increase of skin friction is expected as a measure of suc-
cess. But in the second example, the formation of a strong mean vortex is
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Fig. 10.32. The mean vortex enhancement on an airfoil at large angle of attack by
periodical forcing. (α = 27◦, Re = 6.71 × 105, forced with fU∞/c = 2). (a) Mean-
velocity profile at various streamwise locations on the upper surface of the airfoil.
(b) Distribution of skin friction. In (b) open symbols – unforced; closed symbols –
forced. From Zhou et al. (1993)

expected so that a reduction of skin friction to a strong negative value is a
measure of success (Fig. 10.32b). This idea can be extended to (Zhou 1992)
and has been applied successfully in augmentation of lift in dynamic stall
(Wygnanski 1997), where, judged by the results, the dynamic stall vortex was
actually enhanced and captured in the ensemble averaged sense.

Suppression of Coherent Production

Many studies for drag reduction belong to this category (e.g., Karniadakis
and Choi 2003). Since in wall-bounded flows the sweeps and ejections in
the turbulence regeneration cycle are the major activities related to turbu-
lence production and generation of turbulent wall-shear stress (Sect. 10.3.2),
interrupting the regeneration cycle artificially should lead to large drag
reduction and even flow relaminarization, such as riblets (Walsh (1990)),
opposition control (Jacobson and Reynolds 1998), spanwise wall oscillations
(Jung et al. 1992), and spanwise traveling waves (Du et al. 2002; Zhao et al.
2004).

The opposition control is an example that offers a very clear physical
mechanism to the coherent-structure suppression. As is shown in Fig. 10.33,
the strength of near-wall streamwise vortex would be substantially reduced
by blowing and suction with normal velocities equal and opposite to that
induced by the streamwise vortex. Numerical computations have confirmed
this mechanism (Kim 2003). In experiments, the drag can be reduced by
approximately 25–30% (Choi et al. 1994).

Spanwise wall oscillation is another vivid example for the suppression of
turbulence regeneration process. The key mechanism identified is the con-
trol of the near-wall streamwise vortices and corresponding suppression of the
low-speed streak instability (Dhanak and Si 1999). Note that the spanwise lo-
cations of the low-speed streaks are at the symmetric lines of the streamwise
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Fig. 10.33. A sketch of opposition control. Based on Kim (2003)
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Fig. 10.34. Suppression of normal vorticity fluctuation by the spanwise wall oscil-
lations. Dash-dotted line – no wall oscillation; solid line – spanwise wall oscillation
at T+ = 100. From Karniadakis and Choi (2003)

vortex pairs where the induced velocities of the latter are pumping the low
momentum fluid away from the wall (Fig. 10.18b). Now imagine, when the
wall surface suddenly moves in the spanwise direction, the originally exist-
ing low-speed streaks and streamwise vortices will also be moved in the same
direction due to influence of the Stocks layer caused by the moving wall. Since
the low-speed streaks and streamwise vortices locate at different distances
from the wall, their spanwise displacements caused by the Stocks layer are
different. Assume that the differential displacement between the low-speed
streaks and streamwise vortices equals their half spanwise wavelength, the
spanwise locations of the low-speed streaks are now between different stream-
wise vortex pairs where the latter would pump the high-speed fluid toward
the wall and weaken the low-speed streaks, thereby the process of turbulent
energy production would be disrupted (Baron and Quadrio 1996). Figure 10.34
indicates the effect of spanwise wall oscillation on the wall-normal vorticity
fluctuations. As a result, the skin friction drag reduction in excess of 40% can
be achieved.
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Enhancement of Dissipation

An example of using dissipation enhancement to reduce the coherent energy
was presented by Wiltse and Glezer (1998). The flow was forced by can-
tilevered piezoelectric actuators at a frequency approximately an order of
magnitude lower than the Kolmogorov wave number of the base flow. The
velocity power spectra S(f) measured downstream of the jet exit are shown
in Fig. 10.35, where fr is the resonance frequency of the actuator. Above a
critical frequency of f/fr = 0.05, the turbulence energy of the forced flow is
higher than the unforced flow even though the excitation is applied at fre-
quencies above f/fr = 1. On the contrary, the energy at all frequencies below
that value is lower than the unforced flow. Apparently, the forcing induces
coupling or long-range interactions between small and large scales within the
flow and thus leads to an accelerated energy cascade from the large scales
(Yeung et al. 1995). This phenomenon can be explained by the energy flow
chart in Fig. 10.31. Direct small-scale excitation works as a wider opening of
the dissipation valve and faster draining of the random energy to heat. It
increases the “water” level difference across the valve of intermodal energy
transfer, and in turn increases the energy flux to drain the coherent energy
out to the random. Thus, the coherent energy is reduced.

Following the above discussions, a logical question is whether the coherent
production control and the dissipation control can be combined for particular
purposes. The answer is yes. It has already been demonstrated that large and
small vortical structures between widely disparate scales in turbulent flows
are directly and bi-directionally coupled, which can be stimulated through
coherent narrow-band forcing at either the large or small scales (Wiltse and
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Fig. 10.35. Velocity power spectra of the forced (solid line) and unforced (dashed
line) flow. From Wiltse and Glezer (1998)
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Glezer 1993; Yeung et al. 1995). This phenomenon can also be mimicked by
playing with the pumps and valves simultaneously (Fig. 10.31). Thus, a prop-
erly designed combination of multiple-control toll should be able to control
the turbulence level at desired scale more effectively.

10.6 Vortical Structures in Other Shear Flows

In Sects. 10.2 and 10.3, we have exemplified free shear layers and wall-bounded
shear layers by two-dimensional mixing layer and two-dimensional boundary
layer respectively. In Sects. 10.4 and 10.5 we discussed more general knowl-
edge in transitional and turbulent flows. Now we should be able to extend our
knowledge obtained in Sects. 10.1–10.5 to discuss the vortical structures in
more general turbulent flow fields. The discussions are mainly based on com-
parisons of the particular shear layer with the above simplest examples to find
their similarity and difference. The vorticity budget will be applied to explain
the flow phenomena wherever convenient. A central concept in Sects. 10.1–
10.5 is that coherent structures start from an instability mechanism, which
will still be followed.

10.6.1 Vortical Structures in Plane Complex
Turbulent Shear Flows

Let us call all the plane shear layers other than the mixing layer and boundary
layer plane complex shear layers. Although traditionally the plane wake and
jet are also considered as simple shear layers, it will be made clear that they
actually possess certain characters of complex shear flows.

We first introduce the concepts of partial similarity and local similarity.
Partial similarity means that two flows are dynamically similar only in their
dominant feature but not perfectly similar. A well-known example is high-
and low-speed wind tunnel tests, each taking care of only either the Reynolds-
number effect or the Mach-number effect on the real flow but seldom both.
Thus the tested flow and real flow are only partially similar. In contrast, local
similarity means that the similarity exists in some local regions rather than
globally. For example, the mean velocity profile around the low-speed streak
is locally similar to a mixing layer and is subject to an inflectional instability
(Fig. 10.18a).

In terms of the concept of partial similarity and local similarity, one can
extend the knowledge on vortical structures in Sects. 10.1–10.5 to complex
shear layers. Since these structures are formed from instability mechanisms
of the shear field, one can also expect the coherent structures produced in
certain local regions of the complex turbulent shear flows to be similar to
those in simple shear layers. Figure 10.36 shows the mean velocity profiles of
various kinds of plane complex turbulent shear flows that can, at first glance,
be regarded as the combination of a few simple mixing layers or boundary
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(a)

(d) (e) (f) (g)

(b) (c)

Fig. 10.36. Mean velocity profiles of the complex turbulent shear flows

layers. The plane jet (c) and plane wake (d) can be regarded as combination
of two mixing layers (a) symmetrical with respect to the centerline. The wall
jet (e) can be regarded as combination of a mixing layer (a) and a boundary
layer (b). A weak wall jet or a wake-boundary-layer confluent flow (f) is a
combination of three regions, two mixing layer regions, and one boundary
layer region. Even a separated flow (g) can be regarded as a combination of
mixing layer and a boundary layer but with opposite flow directions close to
the wall.

It is reasonable, therefore, to conceive as the first approximation that each
shear layer might behave independently, and the flow in each shear region
would have a specific instability mechanism and produce corresponding coher-
ent structures. The flow behavior in each region should satisfy its own bound-
ary condition, and hence the development of the structures therein should
have their own scale. Then, the interaction between different regions should
be considered.

The coherent structures sketched in Fig. 10.37 can be taken as an exam-
ple. The coherent vortices in the upper or lower portions of a wake behind
a bluff-body are quite similar to those in a mixing layer. They are subject
to the inviscid instability and develop large spanwise vortices on each side,
wound around by streamwise vortex pairs as in a mixing layer. These coherent
structures also subject to small-scale transition downstream, and afterward
the spanwise vortices still survive but become a component of the structures
in the fully developed turbulent wake.

The separated bubble behind a backward-facing step is a good example of
separated flows, where the outer region is similar to a mixing layer and the wall
region is similar to a boundary layer but with mean flow direction opposite to
the free stream (Fig. 10.36g). Eaton and Johnson (1981) found that the mean
velocity profiles upstream of reattachment are almost identical to a mixing
layer in the outer three quarter of the separated shear layer. They further
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Fig. 10.37. A sketch of plan wake. (a) oblique view and (b) side view (see also
Fig. 7.9b)
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the main text below. From Zhou and Wygnanski (1993) and Weidemann (1996)

found that growth rates of these shear layers in many other experiments are
also comparable to that of the plane-mixing layer, although the turbulence
level is very high in the neighboring boundary layer region.

The scaling of wall jets and wall wakes is another good evidence of the local
similarity. If a complex turbulent shear flow can be viewed as a combination
of simple shear regions, its number of scales should depend on that of these
simple shear regions. This assertion is confirmed by Fig. 10.38. In a strong wall
jet (Fig. 10.36e), two velocity scales (Umax for inner region and Umax−U∞ for
outer) and two length scales (y at Umax for inner and y at (Umax + U∞)/2−y
at Umax for outer) are required to collapse the mean velocity profiles measured
at various streamwise locations (Zhou and Wygnanski 1993). However, three
velocity scales and length scales are necessary in a weak wall jet or wall-wake
(Fig. 10.36f).
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On the instability behavior, it was found that when certain periodical
disturbances are introduced into a wall jet or a separated flow, the response
of the flow in the mixing-layer region is also similar to that in a simple mixing
layer. Therefore, it is a very useful approach to regard complex shear flows as
combinations of simple shear layers as the first approximation.

It should be born in mind, however, that the discussed similarity is not only
local but also partial. The shear regions in a complex shear flow are not really
independent of each other. In the above discussions the border of different
shear regions was taken at the surface with the maximum or minimum mean
velocity, where the Reynolds shear stress is generally nonzero. This implies
inevitable interactions between the two regions. Even if the Reynolds shear
stress is zero in long-time average at the center of a symmetrical shear layer,
say a plan wake or a plan jet, the instantaneous shear stress is still nonzero.
Even if the shear stress is zero the mass transfer may still not be zero. Thus,
the coherent structures in each region of a complex shear flows cannot be
entirely the same as those in a simple shear layer of corresponding type.

In general, to what extent a local similarity holds depends on how well we
can separate the two neighboring regions or how strong their interaction is,
which is closely related to the characteristic scales of the neighboring regions.
If the disparity of scale is significant, the interaction is relatively weak and
different regions can almost be considered as independent. For example, in
a wall-wake flow, if the boundary-layer thickness is very large and the wake
is produced by a thin circular cylinder at the outer region of the boundary
layer, the interaction between the mixing layer region and the boundary layer
region is weak. The vortex street in the wake will keep its own behavior almost
independent of the boundary-layer structures. In the opposite situation, the
interaction will be strong and resonance may even occur. This is the case in a
plane wake (or a plane jet), where the two opposite shear regions have exactly
the same length and velocity scales, so actually there is resonance between the
two. As a consequence of interaction, the two rows of the spanwise vortices
of opposite vorticity have to be staggered. Figure 10.37b clearly shows that
all vortex centers and saddle points are connected to the streamlines of both
sides. Thus, the vortical structures on both sides are coupled and the two
regions are not separable. Moreover, it is well known that in a two-dimensional
far wake the coherent structures appear not only in the characteristic sinuous
mode (antisymmetric), but also, for an appreciable percentage, in the varicose
(symmetric) mode (Fiedler 1988). Thus, the mixing layer region of a wake is
not really the same as a simple mixing layer.

Besides, the development of a complex shear layer is influenced not only
by the individual stability mechanisms in local regions but also by the in-
stability mechanism of its global scale. For example, in the separated flow
shown in Fig. 10.36g, in addition to the thickness of the mixing-layer region
and boundary-layer region, the total thickness of the separated boundary layer
or the total length of the separation bubble is a new length scale, which af-
fects the structures of the separated bubble as a whole. In particular, if the
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flow structure governed by this length scale (say the oscillation of the bubble)
resonates with those governed by the length scales of the individual region (say
the rolling up or pairing of the spanwise vortices in the mixing-layer region),
the effect of global length scale may even be dominant. One of the signifi-
cant examples occurs in the separation control on an airfoil or flap. In order
to increase the mixing between the separated region and the outer high-
momentum free stream, a preferred dimensionless frequency to maximally
amplify the disturbances in the mixing-layer region should be a reasonable
choice. Since the bandwidth of the unstable range in a mixing layer is quite
wide, eventually the frequency able to resonate with the global instability
frequency becomes the preferred frequency. As is well known, the global in-
stability of the separation bubble is governed by the length of the separation
region (the chord of airfoil or flap). Thus, the chord of airfoil or flap becomes
the length scale of the commonly used Strauhal number applied in the sepa-
ration control (Zhou et al. 1993; Wygnanski 1997; Wu et al. 1998).

10.6.2 Vortical Structures in Nonplanar Shear Flows

Many turbulent shear flows in applications are far from being planar. It is of
interest that even for these flows the above discussion can be helpful as long
as the similarity and the difference between the planar and nonplanar flows
can be carefully addressed. The scaling consideration is also a useful tool for
the nonplaner shear layers.

Take an axisymmetric jet as example. In a meridian sectional plane,
the shape of the mean velocity distribution looks similar to a plane jet
(Fig. 10.36c). One might imagine an instability mechanism similar to a plane
jet or the combination of two symmetrical mixing layer regions. The stream-
wise development of this instability would form vortices similar to the spanwise
vortices in the mixing layer, which would be vortex rings (Maxworthy 1977).
Indeed, this seems to be the case close to the jet exit (Fig. 10.39). However,
the finite diameter of the axisymmetric jet offers an additional scale R1/2/θ

Fig. 10.39. Instability of the vortex rings in an axisymmetric jet. From Fiedler
(1988)
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(where θ is the momentum thickness of the mixing layer on one side of the
jet, and R1/2 is the radial distance from the center to the location where the
mean velocity equals half of the maximum velocity) affecting the instability
of the whole flow, which causes the azimuthal instability (Plaschko 1979).

From the linear stability analysis, many meaningful results can be obtained
by solving the eigen problem (Cohen and Wygnanski 1987a,b). As in most ax-
isymmetric flows, mainly the first three azimuthal modes (n = 0, n = ±1, and
n = ±2, i.e., ring, single helix, and double helix, respectively) are of main
interest in the mode analysis. At jet exit, almost all modes are unstable; but,
at certain location in the region where x/D ≥ 3 (R1/2/θ ≤ 4.82), the unstable
helix mode becomes so dominant that the whole flow structures from there
on depend on the growth of unstable helix waves. It is the reason why the
vortex ring at certain distance downstream of the jet exit consists of many
vortex sections at spiral angle relative to the jet cross-section, i.e., the dents-
shaped vortex ring (Fig. 10.39). Then formation of streamwise vortices and
small-scale transition will follow. The continuing development of the axisym-
metric jet was also studied by the polarized vorticity dynamics (Melander et
al. 1991). The result shows that during rolling up of the ring vortex and the
development of azimuthal instability, different polarized vorticity components
start to separate spatially. When the ring structures break down, the jet struc-
ture consists of mainly streamwise vortical structures having the form of lobes
or asymmetric hairpins.

If the jet exit is elliptical, we have two additional length scales instead
of one. The downstream development of the vortex ring is much more com-
plicated due to different self-induction and the consequent mutual induction
at different azimuthal locations (Fig. 10.40). For example, the high curvature
near two ends of the major axis will make these portions of the vortex ring
move faster and twist an originally planar vortex ring to nonplanar. The bent-
forward vortex branch near the major axis will produce an outward induced

Fig. 10.40. Elliptic jet. From Husain and Hussain (1991)
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velocity near the ends of the minor axis. Thus, in the streamwise view, the
major and minor axes of the vortex ring will exchange their positions periodi-
cally (Koshigoe et al. 1989; Zaman 1996; Gutmark and Grinstein 1999); in the
side view, the pairing partners will bend in opposite ways and be entangled
to each other (Husain and Hussain 1991).

Similar to the large spanwise coherent vortices in mixing layers, the zigzag
vortex rings in a jet start from the transition stage but still exist after small-
scale transition occurs. The only difference is that the large coherent ones
exist now in a turbulence background.

The preceding comparison of two- and three-dimensional jets is also useful
for understanding the nature of structures in wakes due to the similarity
between wakes and jets. An axisymmetric wake will also develop vortex ring,
the dents-shaped deformation and streamwise vortices, but with vorticity of
sign opposite to that of the jet. The reader may compare the sphere wake
(Fig. 55 of Van Dyke 1982) and the round jet (Fig. 118 of Van Dyke 1982). One
can also imagine that if the cross-section of the wake is elliptical, the vortex
ring will also be subject to nonuniform self-induction, the consequent three-
dimensional deformations, etc. But, due to the strong disturbances, these
structural developments may not be observable as clearly as in jets.

We should now emphasize that many nonplanar shear layers have other
behavior that cannot be solely accounted by the consideration of additional
scales. Consider the flow around a delta wing at high angles of attack sketched
in Fig. 10.41 (see also Figs. 7.7). According to the slender body approximation
in Sect. 7.3.1 the flow can be decomposed into that parallel to and that normal
to the axis of the slender body. Although the flow is truly three-dimensional, if
one observes the flow on a sectional plane normal to the leading edge, the mean
velocity profile is still similar to that on a two-dimensional separated airfoil,
having a combination of an outer mixing-layer region and an inner boundary-
layer region. Both experimental observations (Gad-el-Hak and Blackwelder
1985, 1986) and numerical calculations (Fig. 7.21a,b) have shown that a
series of discrete vortices are formed in the outer region similar to the span-
wise vortices in a mixing layer. This is why an active flow control, which can
enhance a separated vortex on a two-dimensional wing, may also have chance

Fig. 10.41. The flow around a delta wing. Sketched based on Gad-el-Hak and
Blackwelder (1985)
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to enhance the lifting vortex and delay its breakdown on a delta wing (Gad-
el-Hak and Blackwelder 1986; Teng et al. 1987). But there is an essential
difference between this three-dimensional flow and its two-dimensional coun-
terpart: the three-dimensional vorticity transportation. Due to the axial flow,
a part of the vorticity can be advected downstream. If the sweepback angle is
so large that the rate of the vorticity transportation in the axial direction can
balance the boundary vorticity flux from the wall around the leading edge,
the rolled-up main vortex can remain steady above the upper surface of the
wing and produce a vortex lift, rather than shed off as in two dimensions.
Besides, as is well known, the lifting vortex on the delta wing may breakdown
in the downstream region due to the strong adverse pressure gradient.

10.6.3 Vortical Flow Shed from Bluff Bodies

The transitional and turbulent flow field downstream of a bluff body depends
on the flow pattern around the bluff body. The simplest and most carefully
studied example of the flows around a bluff body is the flow over circular
cylinder (Roshko 1961; Zdravkovich 1997, 2002). A detailed description of the
flow phenomena around a circular cylinder is given in Sect. 7.4.1. Here offers
further a brief explanation of the transition of flow pattern and their influence
on the downstream flow structures based on vorticity balance.

Figure 10.42 shows some typical views in the whole sequence of the flow
patterns at various Reynolds numbers. When the Reynolds number is very
low (Re = 1.54), the vorticity produced by the wall and diffused into the
surrounding laminar flow is transported downstream except for those lost
by the viscous dissipation. Due to this balancing of vorticity, no separation

(a) (b)

(c) (d)

Fig. 10.42. The flow over a circular cylinder. (a) Re = 1.54, (b) Re = 26, (c) Re =
105, (d) Re = 10, 000. From Van Dyke (1982)
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is observed. At relatively higher Reynolds number (Re = 26), the vorticity
produced at the wall is increased due to higher shear and cannot be balanced
by the above mechanism so that the produced vorticity accumulates to become
two symmetrical, steady separated bubbles. These two bubbles reduce the
area where the vorticity of the favorable sign is produced; instead, in the
separated region the wall produces the vorticity of opposite sign. On the mean
while, the transportation of vorticity produced in the region upstream of the
separated bubbles is enhanced due to the larger velocity at outer border of the
bubbles so that the vorticity balance can be kept in a steady flow. If Reynolds
number is increased further (Re = 105), even the second mechanism cannot
be kept, i.e., the production of the vorticity is so large and the vorticity is
accumulated so fast that the vorticity accumulated in the separated bubble
has to shed away in a certain rate to keep the vorticity balance. Thus, a
periodical vortex shedding starts. If the Reynolds number is high enough
(Re = 10,000), the wake becomes turbulent and the vortices shed from the
circular cylinder become a part of the coherent structures in the wake. At even
higher Reynolds numbers, no matter the incoming flow is laminar or turbulent
the major vortical flow patterns are similar, i.e., the major downstream vortex
patterns are usually not Reynolds-number sensitive though the dimensionless
vortex shedding frequency may (Fig. 7.25a).

Based on the same concept of vorticity balance, the flow pattern on an
inclined cylindrical body can also be explained. Consider a slender cylindrical
body with an inclination angle relative to the spanwise direction (Fig. 10.43).
The incoming velocity can be decomposed into two components, normal and
parallel to the cylinder axis. To the leading approximation with the viscous
effect of the axial flow neglected, the normal component would play the similar
role as that of the two-dimensional case. The axial velocity in this flow will
transport away part of the vorticity by advection in the axial direction and
weaken the vortex shedding. By increasing the inclination angle relative to the
spanwise direction, the influence of the axial advection will also increase. At
certain angle this influence may become so large that all the vorticity produced
at the wall can be balanced by the axial advection and the vortex shedding

Fig. 10.43. A slender body at angle of attack. From Van Dyke (1982)
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in the normal direction will stop. Once it stops, the vortex system around the
slender body becomes steady so that the contents of coherent structures in
the wake change dramatically. This is exactly what happens, for example, on
the fuselage of an airplane at large enough angle of attack but not at deep
stall.

Another interesting feature that is closely related to the downstream coher-
ent structures in the wake is how the separation originates. For this purpose,
one has to pay attention to open and closed separation (Sect. 7.1, also refer to
Wang 1982). The closed separation originates from the critical points (termed
as fixed points in Sect. 7.1) of the skin-friction lines and the separation line is
closed in front of the separation region (Figs. 7.3 and 7.4b). On the contrary,
in open separation, the separation line originates from an ordinary point of
a skin-friction line and is not closed in the front leeside surface (Fig. 7.4a).
Apparently the separation on a rectangular wing at high angle of attack is a
closed separation and the flow around the prolate spheroid shown in Fig. 10.44
is an open separation.

The judgment of open and closed separations will help predicting the
coherent structures in the downstream turbulent flow field. For example,
closed separation usually (in particular, in two dimensions) leads to unsteady
vortex shedding into the wake region; and open separation, to steady sepa-
rated flow as seen from the sharp contrast of the flow patterns discussed in
Sect. 7.3 and Sect. 7.4. However, the closed separation is not necessarily related
to the unsteady vortex shedding. A three-dimensional free vortex-layer sepa-
rated flow can start from close separation as well. For example, the necklace
vortex shown in Fig. 7.29 starts from a closed separated vortex at its center.
The strong axial flow on both side transports the vorticity away so that there
is no continuous accumulation of vorticity in the central portion where a sep-
aration bubble would have been formed if it were a two-dimensional forward
facing step. More complicated flows that start from closed separation and
with no unsteady vortex shedding can be found on a hemisphere-cylinder at
large angles of attack (Fig. 10.45). Judge from the surface pattern, both flow
patterns belong to closed separation. In each pattern, there exists a separated
vortex in the central symmetric plane that starts from a saddle point and ends
(reattach) at a node. However, each separated vortex at the center is immedi-
ately combined with a pair of tornado-like vortices that transports away the
vorticity accumulated in the center so that no unsteady vortex shedding can
be observed.

Fig. 10.44. The surface limiting flow pattern of a prolate spheroid at angle of attack
30◦ and U∞ = 45m s−1. From Kreplin et al. (1980)
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a = 288, Re  = 1.83108

Ma = 0.6

a = 33.58, Re  = 1.73106

Ma = 0.6

(a) (b)

Fig. 10.45. The surface flow patterns (a) (Bippes and Turk 1983) and the cor-
responding topological structures (b) (Dallmann 1984) of a hemisphere-cylinder at
large angles of attack

Summary

In this chapter, we choose the mixing layer as an example of free shear layers
and the simple boundary layer as an example of wall-bounded shear layers
to describe the evolution of coherent vortices. After the related theoretical
aspects and the general physics have been summarized, the knowledge intro-
duced in the two examples is extended to more complicated turbulent shear
flows.

The most important viewpoints are listed:

1. The usually observed turbulence phenomena are instantaneous frames
of two physical processes, the coherent production or self-organization
process and the cascading/dissipation process. All the vortical structure
evolution depends on the balancing between the two. Based on the be-
lief that coherent structures are caused by the instability mechanism, the
coherent structures in many flows other than the two simplest examples
can be understood within the local/partial similarity limit.

2. The conventional statistical theory, the statistical vorticity theory, and
the deterministic vorticity theory are three major categories of methods
in turbulence studies. The fact that a steady streamwise vortex cannot
produce any temporal velocity fluctuation has challenged greatly to the
traditional turbulence theory, including the normal mode transition and
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the Reynolds decomposition. Thus, the spatial decomposition approach,
or the statistical vorticity theory may be more powerful ways to study
coherent structures. Considering the statistical theories smear out some
important information on the coherent structures, the deterministic vor-
ticity theory and DNS might be the final solution to study details of
individual vortical structures if necessary.

3. Vorticity balance and coherent energy balance are powerful tools in
explaining the turbulence phenomena. The flow pattern around a bluff
body and the turbulent wake behind it depend on how the separation ini-
tiates and whether vortex shedding occurs, and both can be explained in
term of vorticity balance. Many flow control techniques can be understood
based on the coherent energy balance. The control strategy based on this
point of view may help future development in flow control.
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Vortical Aerodynamic Force and Moment

11.1 Introduction

As an applied branch of fluid dynamics, aerodynamics (and hydrodynamics)
studies the force and moment experienced by solid bodies moving through
the fluid. In order to fully understand relevant mechanisms, aerodynamics
has a task in common to general fluid dynamics: investigating various flow
phenomena generated by the body motion. In addition, the ultimate concern
of aerodynamics, also its unique task, is expressing the force and moment in
a way that can precisely capture the key physical mechanisms contributing to
these integrated performances.

Low-speed aerodynamics is dominated by the shearing process, of which
the necessary physical knowledge has been discussed in preceding chapters.
Therefore, it is natural now to further identify those specific key shearing
processes that contribute most significantly to the force and moment for any
given body motion at low Mach numbers. This task requires developing some
special theories. We focus on incompressible flow, but some theories also cover
compressible flow. It can then be seen that, as the Mach number increases,
the compressing process is progressively important for the force and moment
and becomes dominant in supersonic flow.

The main concern of this chapter is a basic external-flow problem: a mate-
rial body of volume B moves arbitrarily in a viscous fluid. The body may have
arbitrarily deformable boundary, as encountered in several areas such as fish
swimming and insect flight in external biofluiddynamics, nonlinear fluid–solid
coupling, and flow control by flexible walls, etc.1 Thus, we assume the body
surface ∂B has specified velocity distribution u = b(x, t). The fluid volume
Vf is bounded internally by the material surface ∂B and externally by a con-
trol surface Σ. The latter may have arbitrary velocity v(x, t) or extend to
infinity where the fluid is at rest or in uniform translation. The flow domain
is sketched in Fig. 11.1.

1 Some of the theories can also be applied to gas–liquid two-phase flow by adding
the surface tension effect.
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Fig. 11.1. Flow domain to be analyzed and notations

11.1.1 The Need for “Nonstandard” Theories

The general expressions of aerodynamic force and moment are “standard”
formulas (2.71) and (2.72). For an incompressible external flow defined in
Fig. 11.1, by the Reynolds transport theorem (2.37), these formulas take the
following alternative forms, based on (a) direct integrals of surface stresses
and their moments over ∂B, (b) integrals of local balance of momentum and
angular momentum, and (c) the rate of change of total momentum and angular
momentum in a generic control volume:

F = −
∫
∂B

(−pn+ τ ) dS (11.1a)

= −ρ
∫
Vf

adV +
∫
Σ

(−pn+ τ ) dS (11.1b)

= −ρ d
dt

∫
Vf

udV +
∫
Σ

[−pn+ τ − ρu(un − vn)] dS, (11.1c)

M = −
∫
∂B

x× (−pn+ τ ) dS +MsB (11.2a)

= −ρ
∫
Vf

x× adV +
∫
Σ

x× (−pn+ τ ) dS +MsΣ (11.2b)

= −ρ d
dt

∫
Vf

x× udV +
∫
Σ

x× [−pn+ τ − ρu(un − vn)] dS +MsΣ .

(11.2c)

Here, a = Du/Dt is the fluid acceleration and we have used the triple decom-
position of the stress t = −pn+τ+ts, with τ = µω×n and ts being the shear
stress and the stress due to surface deformation, respectively, see (2.149) and
(2.150). We have bypassed the need for calculating the local ts (which may
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be complicated on a deformable surface) as much as possible. The effect of ts
vanishes in (11.1), while that of x× ts in (11.2) has been integrated out, see
(2.153):

MsB = −2µ
∫
∂B

n̂nn× bdS = −2µ
∫
B

ωB dV, (11.3a)

MsΣ = −2µ
∫
Σ

n× udS = −2µ
∫
V

ω dV, (11.3b)

where n̂nn = −n is the outward normal of ∂B and V = Vf + B. The total
vorticity in B or V can evidently be expressed by the total circulation in two
dimensions and by (3.14) in three dimensions. Of these alternative formulas,
forms (b) and (c) will be identical if Vf is a material fluid volume. Form (a)
is most primary but may also be viewed as the special case of (b) or (c): If Σ
shrinks to the body surface ∂B so that Vf = 0, then since the direction of n
on Σ is opposite to that on ∂B, (b) or (c) is reduced to (a).

These formulas, however, are not physically most revealing. What appear
in their integrand are variables like velocity, pressure, and density themselves,
but the mechanisms leading to their specific distribution in a flow field and
at the body surface are hidden. These mechanisms come from local dynamics
governed by

ρa = −∇p+ µ∇2u = −∇p− µ∇× ω, (11.4)

∇× a =
∂ω

∂t
+∇× (ω × u) = ν∇2ω, ν = µ/ρ, (11.5)

where one sees the spatial and temporal derivatives of the relevant variables.
It is the interactions of these derivatives that form various flow structures
which at large Reynolds numbers are highly localized but may dominate the
integrated performance. Thus, there is a theoretical gap between standard
formulas and local dynamics. This gap cannot be eliminated by simply sub-
stituting (11.4) into (11.1b) and (11.2b), because the pressure p is a global
effect of all interactions; it is actually the quantity that one wishes most to
remove or replace by other local dynamic processes.

For example, at large Reynolds numbers, by (11.1a) we know that the
lift on an airfoil is dominated by the pressure difference on its both surfaces,
which is in turn explainable by the Bernoulli equation due to a larger fluid
speed on the upper surface. But a deeper physical question is: Why the fluid
runs faster on the upper surface?

A popular heuristic answer to this question is: The fluid particles that
separate at the front stagnation point have to meet again at the trailing edge.
This story is, however, wrong. The timelines (Sect. 2.1) in Fig. 11.2 indicate
that the fluid on the upper surface runs even faster than needed for meeting
the fluid from the lower surface at the trailing edge. No explanation can be
directly found from (11.1).
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Fig. 11.2. Potential flow over a Joukowski airfoil. Dashed lines are time lines.
Reproduced from Panton (1984)

More generally, the above theoretical gap exists between any integrated
performances and their key local contributors. It makes the physical under-
standing, flow diagnosis, and configuration design lose the most valuable guid-
ance. The awareness of this gap is becoming clearer as one’s strong pursuit
of carefully and optimally designed high-performance configurations. Suppose
one is given a set of finite-domain data for a viscous flow over a body. One can
then calculate the stress on the wall and apply (11.1a) to get the force. Then
one may look at various fields in the domain: streamlines, velocity vectors, the
contours of pressure and vorticity, etc. These together form a quite complete
physical picture of the flow. However, if one wishes to identify the physical
mechanisms that result in that force status, only some qualitative assessments
can be drawn from these plots. They are still insufficient to pinpoint what flow
structures have net contribution to the force, in what way, how, and why.

11.1.2 The Legacy of Pioneering Aerodynamicist

In fact, filling the aforementioned gap has been a long-term effort in the devel-
opment of aerodynamics, where the “standard” formulas are only a starting
point rather than the final form of the theory. Instead, a great milestone in
the development of classic aerodynamics is the well-known circulation theory ,
where the aerodynamic force is expressed by elegant “nonstandard” formulas
in terms of the circulation Γ of a wing section. The historical significance of
the circulation theory has been well described by Wu (2005):

“The task of finding theoretical solutions to practical aerodynamic flow
problems was (and still is) formidably difficult. Bypassing flow details as much
as possible was indeed the only strategy open to the pioneering aerodynami-
cist. Together with simplifications of the inviscid-fluid assumption, this strat-
egy served as the springboard for the dazzling developments of aerodynamics
a century ago by leading scholars in Europe: Kutta, Joukouski, Lanchester,
Prandtl, among others.”

To see how this strategy worked so successfully, let us briefly recall the
circulation theory for steady flow. This includes the Kutta–Joukowski formula
(see Joukowski 1931)

L = −ρUΓ (11.6)
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for the lift of a two-dimensional airfoil, and Prandtl’s lifting-line theory for the
lift and induced drag of a three-dimensional wing (e.g., Prandtl and Tietjens
1934; Glauert 1947)2:

L � ρU

∫ s

−s
Γ (y) dy, (11.7a)

Din � −ρ
∫ s

−s
w(y)Γ (y) dy, (11.7b)

where s is the semi-span and

w(y) = − 1
4π

∫ s

−s

dΓ (y′)
dy′

dy′

y − y′
< 0 (11.8)

is the downwash velocity (usually estimated at the 1/4-chord point, i.e., the
aerodynamic center). Both theories are valid for streamlined wings in the
limit of Re → ∞. Note that Γ does not appear in (11.1) at all; but it is
this quantity that immediately reveals that the physical root of the force and
moment is the vorticity in wing boundary layers and vortical wake formed
thereby. In particular, the key to arriving at (11.7) was the ingenious insight
of Prandtl and Lanchester that, owing to Helmholtz’s vorticity theorems and
in linearized approximation, a finite-span wing produces a horseshoe vortex
system consisting of a bound line vortex (the lifting line) along the 1/4-chord
line of the wing and a flat wake vortex sheet with variable strength3

γ(y) = exγ(y) = −ex
dΓ
dy

, (11.9)

Fig. 11.3.4 Then, (11.8) is merely a simple application of the Biot–Savart for-
mula (3.31) to the horseshoe vortex system.

Evidently, the circulation theory has indeed bypassed the flow details as
much as possible, narrowing the unknowns down to a single circulation Γ to
be solved for calculating the forces. In two dimensions, it is obtainable by
using complex variable and conformal mapping (e.g., Lighthill 1986b). On the
flow plane z = x+iy = reiϕ there exists analytical complex velocity potential
w(z) = φ + iψ, and one maps the airfoil onto a unit circle ζ = eiθ on the

2 For two-dimensional flows we work on the (x, y)-plane, so that a clockwise circu-
lation is negative as in the case around an airfoil with positive lift. But for three-
dimensional flows we follow the convention that, in a wind-axis system, (x, y, z)
are along the oncoming flow, wing-span, and vertical up directions, respectively,
see Fig. 7.18. Thus on an (x, z)-plane a clockwise circulation is positive.

3 In linear approximation the rolling-up of vortex sheet due to self-induction, see
Sects. 4.4.4 and 7.3, is entirely ignored.

4 Ideally, the horseshoe vortex system becomes closed loop by the starting vortex
at downstream infinity that retreats continuously with velocity U .
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Fig. 11.3. The steady horseshoe vortex system of a thin wing

ζ plane. In that plane one considers the flow Ueiα over the circle at incidence
α with arbitrary circulation Γ :

dw
dζ

= u− iv = U

(
e−iα − eiα

ζ2

)
+

Γ

2πiζ
,

which yields

dw
dζ

= −ie−iθ

[
2U sin(α− θ) +

Γ

2π

]
at ζ = eiθ.

The trailing edge of the airfoil can always be managed to map to ζ = 1, thus
the Kutta condition (Sect. 4.4.2) requires dw/dζ = 0 at θ = 0. This gives
Γ = −4πU sinα, so by (11.6) the lift coefficient is

Cl =
L

1
2ρU

2c
=

8π
c

sinα, (11.10)

where the chord length c of the airfoil depends on the specific mapping func-
tion and equals 4 for a flat plate, which is almost true for any thin airfoil as
well. This leads to the well-known simple formula

Cl = 2π sinα � 2πα for α
 1. (11.11)

Then, for a large-span wing, (11.6) holds approximately at every wing section,
so Γ (y) in (11.7) is known. However, the relative downwash w/U implies a
reduction of the effective angle of attack that reduces the circulation and
causes the induced drag (11.7b). This observation leads to an integral equation

Γ (y) = πUc(y)
[
α(y)− 1

4πU

∫ s

−s

dΓ (y′)
dy′

dy′

y − y′

]
, α
 1, (11.12)

of which the solution can be obtained analytically (e.g., Glauert 1947; Ander-
son 1991), with the famous conclusion that a wing with elliptical load distri-
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bution has minimum induced-drag. Note that, remarkably, in the above en-
tire two- and three-dimensional circulation theory one only needs to find the
mapping function ζ = f(z); no flow field needs to be solved at all.

Now, modern aerodynamics is facing many new challenging problems, in
which the flow complexity is far beyond the reach of any analytical solutions.
Meanwhile, advanced experimental and numerical techniques have made it
possible, at least in principle, to obtain detailed and complete data bases for
such complex flows. Thus, the force F and moment M may follow at once
by substituting the data into (11.1) and (11.2) or their compressible version.
This being the case, then, is there still any need for “nonstandard” formulas as
those pioneers did to explicitly reveal the key physical mechanisms responsible
F and M?

The answer is positive. Modern aerodynamics is not merely a simple com-
bination of the flow data and standard formulas like (11.1) and (11.2). The
more complicated the flow is, the more important role will the key physical
factors play. “Bypassing flow details as much as possible” so as to reveal the
key physical factors to F and M is actually the most valuable legacy of the
pioneering aerodynamicists, which should be continued and further enriched.
Modern versions of the “nonstandard” formulas are still highly desired, but
their integrand can now be obtained experimentally or numerically rather
than necessarily by approximate theories. Namely, the formulas should be
exact and general. They can serve not only as a basis for deducing various
approximate theories (including the circulation theory) but also as a powerful
tool in flow analysis, diagnosis, and optimal configuration design.

11.1.3 Exact Integral Theories with Local Dynamics

In order to bridge the theoretical gap between integral performance and local
dynamics, we need systematic approaches able to transform standard integral
formulas to nonstandard forms, so that the local dynamic processes that have
crucial net contribution to the force and moment can stand out explicitly.
Currently, there are two types of theories that fit this need, to which this
entire chapter is devoted.

One type is the projection theory to be presented in Sect. 11.2, which
projects each term of the Navier–Stoke equation onto a vector space spanned
by properly chosen harmonic vectors. The force and moment due to nonlo-
cal pressure effect is replaced by other quantities describing local shearing
and compressing processes. The theory has been formulated for externally
unbounded flow problems.

Another type of theories with wider versatility is based on various deriv-
ative moment transformations (DMT for short), which execute multidimen-
sional integration by parts to cast the original integrand to a moment of its
derivatives (see Appendix A.2), and of which we have seen a few kinematic
examples in Chap. 3. Of this type of DMT-based force and moment theo-
ries, there first appeared the vorticity moment theory, which expresses the
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total force and moment by the rate of change of vortical impulse and an-
gular impulse (the first- and second-order vorticity moments, respectively)
introduced in Sect. 3.4.1. The theory is valid for incompressible flow and con-
tains classic results like (11.6) and (11.7) as its direct corollaries. Then, after
this theory there appeared the boundary vorticity-flux theory , which expresses
the total force and moment in terms of the first and second moments of the
stress-related boundary vorticity fluxes introduced in Sect. 4.1.3. The theory
may cover viscous compressible flow over any deformable closed or open solid
surface or fluid interface, and has been applied to innovative aerodynamic di-
agnosis and configuration design in both external and internal flow problems.
Actually, the boundary vorticity-flux theory is a special case of a more gen-
eral DMT-based theory for an arbitrary domain, whose consistency with the
vorticity moment theory can also be easily verified.

DMT-based theories will be presented in Sects. 11.3–11.5. Typical appli-
cations of the projection theory and DMT-based theories in theoretical de-
velopment and flow diagnosis will be exemplified, and their linkage to classic
aerodynamics will be addressed. Whenever possible, we shall also point out
how to extend the theory to compressible flow with constant or variable µ
governed by (2.134) or (2.160), respectively. Here we just mention that the
vortical form of (2.134) is5

ρu,t + ρω × u− 1
2
q2∇ρ = −∇Π0 −∇× (µω), Π0 = Π +

1
2
ρq2. (11.13)

11.2 Projection Theory

Consider a set of basis vectors ∇ψi satisfying ∇2ψi = 0, i = 1, ..., n, n = 2, 3.
Take the inner product of (11.13) and ∇ψi, and integrate the result over Vf .
By using identities

∇ψi · ∇β = ∇ · (β∇ψi), ∇ψi · (∇×A) = ∇ · (A×∇ψi)
for any scalars β and vector A, we obtain n scalar equations∫

Vf

(
ρ
∂u

∂t
+ ρl− 1

2
q2∇ρ

)
· ∇ψi dV =

∫
∂B

(−Π0n+ τ ) · ∇ψi dS

−
∫
Σ

Π0n · ∇ψi dS, (11.14)

where l ≡ ω × u is the Lamb vector. The control surface Σ is assumed fixed
and sufficiently large with ω = 0 thereon. In (11.14) each term is a weighted
integral of a constituent of inertial or surface force. Depending on the specific
choice of ψi, two versions of the theory have been developed. We focus on the
total force; the total moment can be similarly treated by a different set of
basis vectors as will be briefly mentioned.

5 Unlike the analysis of vorticity evolution and interaction, in considering the force
and moment the equations for momentum and angular momentum have to be
expressed in terms of per unit volume.
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11.2.1 General Formulation

The primary goal of the projection theory is to re-express the integrated pres-
sure force over ∂B by the integrations of vorticity and density gradient. The
approach was first introduced by Quartapelle and Napolitano (1983) for vis-
cous incompressible flow. For compressible flow considered by Chang and Lei
(1996a), we replace the total pressure force by that due to normal stress Π,
denoted by FΠ . Its difference from Fp is small at large Reynolds numbers.

An inspection of (11.14) indicates that to construct the ith component of
FΠ we simply need n · ∇ψi = n · ei on ∂B, where ei is the unit vector along
the ith Cartesian coordinate, since then −Π0n ·∇ψi = −Π0ni. To remove the
integral over Σ or make it able to be explicitly estimated, we need n · ∇ψi
to vanish at infinity. This pair of boundary conditions for ψi is nothing but
(2.185) for the potential φ̂i caused by the body motion with unit velocity
U = −ei. By (2.174), ∇φ̂i decays as O(|x|−n) as |x| → ∞. More precisely,
when the body moves with constant velocity, let Σ be a big sphere of radius
|x| = x = R, then the boundary integral is negligible if (Chang and Lei 1996a)

1
R

max
x=R

(|Π|, ρq2, |tvis|)→ 0 uniformly as R→∞. (11.15)

Chang et al. (1998) demonstrate that this condition imposes no strict limita-
tion to flows of practical interest. When the body has acceleration, somecon-
tribution from Σ will appear due to compressibility(Chang and Lei 1996a).
Thus, for a nonaccelerating body, from (11.14) and (2.185) it follows that

FΠi = −
∫
Vf

(
ρ
∂u

∂t
+ ρl− 1

2
q2∇ρ

)
· ∇φ̂i dV +

∫
∂B

τ · ∇φ̂i dS. (11.16)

Now the integral of u,t is well convergent. This effect can be further localized
in incompressible flow (Howe 1995). For example, for a linearly accelerating
body with velocity U(t), since∫

Vf

u,t · ∇φ̂i dV =
∫
∂B

u,t · nφ̂i dS = U̇j

∫
∂B

nj φ̂i dS,

the first term of (11.16) can be written in terms of the virtual mass tensor
defined by (2.186). Thus the total force due to pressure reads

Fpi = −MijU̇j − ρ

∫
Vf

(ω × u) · ∇φ̂i dV +
∫
∂B

(µω × n) · ∇φ̂i dS.

Moreover, set u = U + v such that v is the relative velocity (the velocity
viewed in the frame fixed to the body), since

(ω ×U) · ∇φ̂i = φ̂i,k(Ujuk,j − uj,kUj) = uk,j(Uj φ̂i,k − Ukφ̂i,j)

= [Ujukφ̂i,k − Ukuj φ̂i,k − Ukukφ̂i,j ],j ,
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the volume integral of (ω ×U) · ∇φ̂i can be cast to surface integral over ∂B
with u = U thereon. Thus, what left is an integral of n · ∇φ̂i dS = ni dS by
(2.185a), which, however, vanishes on closed surface. Therefore, we have

Fpi = −MijU̇j − ρ

∫
Vf

(ω × v) · ∇φ̂i dV +
∫
∂B

(µω × n) · ∇φ̂i dS, (11.17)

indicating that the contribution from the Lamb vector comes from the flow
region away from ∂B. Equation (11.17) decomposes Fp into a virtual mass
effect, an inviscid Lamb-vector integral, and a viscous surface-vorticity inte-
gral. Note that, however, in real viscous fluid the acyclic potential flow and
its associated virtual-mass effect must cause a vortex sheet γac, which holds
exactly in the asymptotic limit of ν → 0 but is only an approximation at finite
Reynolds numbers (for further discussion see Sect. 11.3.3).

The total moment due to the normal stress can be similarly expressed, of
which the details is omitted here. We just observe that since the i-component
of MΠ is

MΠi =
∫
∂B

ei · (x× n)Π dS,

one simply needs to replace the harmonic function φ̂i by a potential χ̂i that
would be induced in an inviscid fluid by rotation of ∂B at unit angular velocity
about an axis through the origin in the i-direction. Namely, χ̂i satisfies the
boundary condition (Quartapelle and Napolitano 1983)

n · ∇χ̂i = (x× n) · ei = n · (ei × x) at ∂B. (11.18)

Note that for rotating and/or deforming body M contains an extra term Ms

due to the surface-deformation stress.
Alternative to the choice ψi = φ̂i, it is natural to consider taking ψi in

(11.14) as the acyclic potential for the idealized irrotational flow over a body
with unit velocity ei = ∇xi at infinity, viewed in a frame of reference fixed
to the center of B which has no angular momentum. The body surface ∂B
may have arbitrary velocity b(x, t). Denote the harmonic basis vectors so
constructed by Xi (not the Lagrangian coordinates in early chapters), then
instead of (2.185) we now have

n · ∇Xi = 0 at ∂B, (11.19a)
n · ∇Xi = ni at infinity. (11.19b)

Evidently Xi and φ̂i are related by

Xi = xi − φ̂i. (11.20)

This set of basis vectors has been used by Howe (1989, 1991, 1995), who
developed a projection theory for the total force F exerted to rigid body by
incompressible flow with uniform density.
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Set ψi = Xi, the incompressible version of (11.14) reads

ρ

∫
Vf

∂u

∂t
·∇Xi dV +

∫
Σ

pni dS = −ρ
∫
Vf

l ·∇Xi dV +
∫
∂B

τ ·∇Xi dS. (11.21)

While (11.16) directly follows from the integral of normal stress over the body
surface, we now use (11.1c) instead, assuming that Σ is large enough to enclose
all vorticity with negligible |u|2:

Fi = −ρ
d
dt

∫
Vf

ui dV −
∫
Σ

pni dS. (11.22)

A combination of (11.21) and (11.22) eliminates the pressure integral and in-
troduces Fi. To simplify the result, we transform the unsteady term in (11.21).
After dropping all surface integrals over Σ, we find∫

Vf

Xi,juj,t dV =
d
dt

∫
Vf

ui dV −
d
dt

∫
∂B

φ̂iun dS −
∫
∂B

un
DXi
Dt

dS,

where φ̂i is the potential used before. Thus, we arrive at a general force formula
found by Howe (1995):

Fi = −ρ
d
dt

∫
∂B

φ̂iun dS−ρ
∫
∂B

DXi
Dt

un dS+ρ

∫
Vf

l ·∇Xi dV −
∫
∂B

τ ·∇Xi dS.

(11.23)
In particular, for a rigid body moving with uniform velocity b = U(t)

the second integral in (11.23) vanishes; thus we obtain a decomposition very
similar to (11.17) but now for the entire total force:

Fi = −MijU̇j + ρ

∫
Vf

(ω × v) · ∇Xi dV −
∫
∂B

(µω × n) · ∇Xi dS. (11.24)

Subtracting (11.17) from (11.24) should give the force due to skin friction,
i.e., the integral of τ over ∂B. This can indeed be verified.

For the total moment, similar to (11.18) but corresponding to Xi, the basis
vectors for projection is taken as (Howe 1995)

∇Yi ≡ ei × x−∇χ̂i. (11.25)

Howe (1995) has applied (11.23) to re-derive several classic results at high
and low Reynolds numbers. These include airfoil lift, induced drag, rolling and
yawing moment (within the lifting-line theory), drag due to Kármán vortex
street and on small sphere and bubble.

11.2.2 Diagnosis of Pressure Force Constituents

Owing to the fast decay of ∇φ̂i, the projection theory for externally un-
bounded flow can be used to practically diagnose flow data obtained in a
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finite but sufficiently large domain. In addition to the replacement of pressure
force by local dynamic processes, this is another advantage of the projection
theory. Equation (11.16) has been applied by Chang et al. (1998) to analyze
the numerical results of several typical separated flows in transonic–supersonic
regime. In the frame fixed to the body moving with U = −Uex, they found
that the dominant source elements of FΠ are

R(x) = −1
2
q2∇ρ · ∇φ, (11.26a)

V (x) = ρ(ω × u) · ∇φ (11.26b)

with φ = Uiφ̂i, which contribute to 95% or more of the total drag and lift.
The positive or negative contributions to the lift and drag of major flow struc-
tures (shear layers, vortices, and shock waves) via V (x) and R(x) can be
clearly identified. We cite two examples here. The first is a steady supersonic
turbulent flow over a sphere, computed by Reynolds-average Navier–Stokes
equations. The key structures are shown in Fig. 11.4.

It was found that the computational domain needs a radius of 17–22 dia-
meters of the sphere to make the contribution to FΠ of the flow outside
the domain negligible. Denote the drag coefficients due to R(x) and V (x)
by CDR and CDV, respectively. Their variation as free-stream Mach number
M∞ is shown in Fig. 11.5. As M∞ increases, R(x) due to density gradient

Separation point

Boundary layer

Sonic layer

Flow

Subsonic/
transonic
region

Recirculation
region

Bow shock wave

Secondary separation region

Shock wavelet

Shear layer
Neck

Wake

Trailing shock-wave

Shock wake
interaction
region

Expansion/compression
inviscid supersonic region

Fig. 11.4. Typical flow pattern of a supersonic flow around a sphere. Reproduced
from Chang and Lei (1996a)



11.3 Vorticity Moments and Classic Aerodynamics 599

0.8

0.6

0.4

0.2

0

-0.2

-0.4
0.9 1.0 1.2 1.4 1.5 1.6 1.7 2.0 2.5 3.0 3.3

M�

CD

CD
CDR
CDV
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sphere. Based on Chang and Lei (1996a)

is progressively important relative to V (x) due to vorticity. It is well known
that the drag reaches a maximum at a transonic Mach number; remarkably,
Fig. 11.5 provides an interpretation of this phenomenon: the decrease of CD

as M∞ further increases is due to the fact that the contribution of the Lamb
vector to the axial force changes from a drag to a thrust.

The second numerical example is steady flow over a slender delta wing
with sweeping angle of 70◦ and an elliptic cross-section of the axis ratio 14:1.
M∞ varies from 0.6 to 1.8, and the angle of attack α varies from 5◦ to 19◦.
The flow relative to the leading edge is still subsonic so in a transonic range
vortices may still be the major source of lift and drag, see the sketch of
Fig. 7.6. Figure 11.6 shows the situation by plotting the variation of CLV

and CLR as α at two values of M∞. Also shown in the figure is the separate
contribution to CLV of the vorticity on windside (CLV(w)) and leeside (CLV(l))
of the wing surface, indicating that V (x) on windside always contributes a
negative vortical lift, which at a special Mach number M∞ = 1.2 just cancels
the positive contribution of V (x) at wing side and leads to CLV � 0. This
behavior involves the relative orientation of u, ω, and ∇φ in different regions
of the flow (for detailed analysis see Chang and Lei (1996b)).

11.3 Vorticity Moments and Classic Aerodynamics

The vorticity moment theory is the first version of the derivative-moment type
of theories in aerodynamics, applied to a moving body B in an incompressible
fluid with uniform density. Assuming the external boundary Σ retreats to



600 11 Vortical Aerodynamic Force and Moment

0.8

0.4

-0.4

0

5 10 15 20
a∞

CL

CLR

CL

CLV

0.8

0.4

-0.4

0

5 10 15 20
a∞

CLV

CLV(W )

CLV(l )

CLV(W )

CLV(l )

0.8

0.4

-0.4

0

5 10 15 20
a∞

CLV

0.8

0.4

-0.4

0

5 10 15 20
a∞

CL

CLR

CL

CLV

M�= 0.6

M�= 1.2

(a)

(b)

Fig. 11.6. Variation of CL, CLV, CLR, and CLV(w) and CLV(l) as α for transonic
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infinity where the fluid is at rest, the theory casts F and M to the rate of
change of the vortical impulse I and angular impulse L defined by (3.78) and
(3.79), respectively. Thus, it represents a global view. Since Vf must include the
starting vortex system (cf. Fig. 3.5c) and as the body keeps moving the wake
region must grow, the flow in Vf is inherently unsteady. In this section we derive
the theory, discuss its physical implication and exemplify its application, and
then show how it reduces to the classic “inviscid” aerodynamics theory. Useful
identities for derivative-moment transformation are listed in Sect. A.2.2.

11.3.1 General Formulation

For generality and better understanding, we first examine the force and mo-
ment under a weaker assumption than that stated above: The flow is irrota-
tional at and near its external boundary Σ, so that ω, ∇×ω, and l = ω×u
vanish on Σ. We then start from the standard force formula (11.1b), where
the acceleration integral can be expressed by identity (3.117a) or (3.117b),
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each representing a derivative-moment transformation. From both we have
obtained the rate of change of the vortical impulse for any material volume
V as given by (3.118). Now, set D = Vf with ∂Vf = ∂B + Σ in (3.117b) and
substitute the result into (11.1b). Since under the assumed condition on Σ
there is ρa = −∇p there, by the derivative-moment transformation identity
(A.25) the pressure term in (11.1b) is exactly canceled. Hence, it follows that

F = −ρ

k

∫
Vf

x× ω,t dV −
∫
Vf

l dV +
ρ

k

∫
∂B

x× [n× (aB − l)] dS, (11.27)

where and below k = n − 1 and n = 2, 3 is the spatial dimensionality, aB =
Db/Dt is the acceleration of the body surface due to adherence, and

n× l = ωun − uωn. (11.28)

Thus, by the Reynolds transport theorem (2.35b), we obtain

F = −ρdIf
dt
− ρ

∫
Vf

l dV +
ρ

k

∫
∂B

x× (aB + bωn) dS, (11.29)

where If is for volume Vf . On the other hand, set D = B in (3.117b) and
notice that the outward unit normal of ∂B is −n (Fig. 11.1), since B is a
material body, by (2.35b) we have

d
dt

∫
B

bdV =
dIB
dt

+
1
k

∫
∂B

x× (n× aB + bωn) dS.

Comparing this with (11.29) yields

F = −ρdIV
dt
− ρ

∫
V

l dV + ρ
d
dt

∫
B

bdV, (11.30)

where V = Vf + B has only an external boundary Σ. This “nonstandard”
formula tells that if Σ does not cut through any rotational-flow region then
the total force has three sources: the rate of change of the impulse of domain
Vf + B, the vortex force given by the Lamb-vector integral (which has long
been known; e.g., Saffman (1992)), and the inertial force of the virtual fluid
displaced by the body.

We now shift Σ to infinity so that V = V∞. In this case the vortex force
vanishes due to the kinematic result (3.72).6 Hence, (11.30) reduces to

F = −ρdI∞
dt

+ ρ
d
dt

∫
B

bdV. (11.31)

6 Recall that in deriving (3.72) and (3.73) use has been made of the asymptotic
far-field behavior of the irrotational velocity.
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A similar approach to the moment based on (11.2b), using derivative-
moment transformation identities (A.24a) and (A.28a) as well as (3.73),
yields

M = −ρdL∞
dt

+ ρ
d
dt

∫
B

x× bdV. (11.32)

When B is a flexible body, its interior velocity distribution may not be easily
known. In that case, it is convenient to replace the body-volume integrals
in (11.31) and (11.32) by the rate of change of identities (3.80) and (3.81a)
applied to B. This yields

F = −ρdIf
dt

+
ρ

k

d
dt

∫
∂B

x× (n× b) dS, (11.33)

M =
ρ

2
dLf

dt
− ρ

2
d
dt

∫
∂B

x2n× bdS, (11.34)

where only the body-surface velocity needs to be known.
Equations (11.31–11.34) are the basic formulas of the vorticity-moment

theory (Wu 1981, 2005). Recall that at the end of Sect. 3.5.2 we have shown
that I∞ and L∞ of an unbounded fluid at rest at infinity is time invariant,
even if the flow is not circulation-preserving. This invariance, however, was
obtained under an implicit assumption that no vorticity-creation mechanism
exists in V∞. Saffman (1992) has shown that a distributed nonconservative
body force in V∞ will make I∞ and L∞ no longer time-invariant. Now, Vf is
bounded internally by the solid body B, of which the motion and deformation
is the only source of the vorticity in V∞; in this sense it has the same effect
as a nonconservative body force. Then the variation of I∞ and L∞ caused by
the body motion just implies a force and moment to B as reaction. A clearer
picture of this reaction to vorticity creation at body surface will be discussed
in Sect. 11.4.

An interesting property of the vorticity moment theory is the linear depen-
dence of F and M on ω due to the disappearance of vortex force and moment.
Hence, they can be equally applied to the total force and moment acting to a
set of multiple moving bodies (Wu 1981), but not that on an individual body
of the set. This property makes the theory very similar to the corresponding
theory for potential flow, see (2.183) and (2.184), which by nature is always
linear. The analogy between (11.31) and (2.183), and likewise for the moment,
becomes perfect if b is constant so that in the former the integrals over B are
absent.

Except the unique property of linear dependence on vorticity, the vortic-
ity moment theory exhibits some features common to all derivative-moment
based theories. Firstly, owing to the integration by parts in derivative-moment
transformation, the new integrands (in the present theory, the first and second
moments of ω) do not represent the local density of momentum and angular
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momentum. Rather, they are net contributors to F and M . The entire po-
tential flow, which occupies a much larger region in the space, is filtered out
by the transformation and no longer needs to be one’s concern (its effect on
the vorticity advection, of course, is included implicitly).

Secondly, the new integrands have significant peak values only in consid-
erably smaller local regions due to the exponential decay of vorticity at far
field. This is a remarkable focusing, a property also shared by the projection
theory.

Thirdly, since the derivative-moment transformation makes the new lo-
cal integrands x-dependent, if the same amount of vorticity, say, locates
at larger |x|, then its effect is amplified, and vice versa. This amplification
effect by x further picks up fewer vortical structures that are crucial to F
and M .7

11.3.2 Force, Moment, and Vortex Loop Evolution

The core physics of vorticity moment theory and its special forms have been
known to many researchers for long time (cf. Lighthill 1986a,b). Because under
the assumed condition the total vorticity (total circulation if n = 2) is zero,
the vorticity tubes created by the body motion and deformation must form
closed loops (vortex couples for n = 2). Thus, if the circulation Γ and motion
of a vortex loop or couple are known, then so is their contribution to the
force and moment. The problem is particularly simple in the Euler limit with
dΓ/dt = 0.

von Kármán and Burgers (1935) have essentially used (11.31) to give a
simple derivation of the Kutta–Joukwski formula (11.6). Consider the two-
dimensional vortex couple introduced in Sect. 3.4.1, see (3.87) and Fig. 3.12.
Let Γ < 0 be the circulation of the bound vortex of the airfoil in an on-
coming flow U = Uex, and assume the near-field flow is steady. As shown
in Sect. 4.4.2, in this case no vortex wake sheds off. Thus, −Γ > 0 must be
the circulation of the starting vortex alone, which retreats with speed U . The
separation r of the vortex couple then increases with the rate dr/dt = U , and
hence (11.6) follows at once.

In three dimensions, as shown by (3.88), (3.89), and Fig. 3.13, the impulse
and angular impulse caused by a thin vortex loop C of circulation Γ are pre-
cisely the vectorial area spanned by the loop and the moment of vectorial

7 The origin of the position vector (which has been set zero here and below) can be
arbitrarily chosen (a general proof is given in Sect. A.2.3). Hence whether a local
vortical structure has favorable contribution to total force also depends on the
subjective choice of the origin. But one can always make a convenient choice such
that the flow diagnosis is most intuitive. See the footnote following (11.54a,b)
below.



604 11 Vortical Aerodynamic Force and Moment

surface element, respectively. Hence a single evolving vortex loop will con-
tribute a force and moment

F = −ρΓ d
dt

∫
S

dS, (11.35)

M = −2
3
ρΓ

d
dt

∫
S

x× dS. (11.36)

For a flow over a three-dimensional wing of span b with constant velocity U =
Uex, a remote observer will see such a single vortex loop sketched in Fig. 3.5c.
Then the rate of change of S equals −bUez, solely due to the continuous
generation of the vorticity from the body surface. Therefore, (11.35) gives

F � ρU × Γ b, (11.37)

which is asymptotically accurate for a rectangular wing with constant chord
c and b → ∞; each wing section of unit thickness will then have a lift given
by (11.6).

Better than (11.37), we may replace the single pair of vorticity tubes with
distance b by distributed ωx(y, z) in the wake vortices, which correspond to a
bundle of vortex loops. This leads to

L � ρU

∫
W

yωx dS, (11.38)

whereW is a (y, z)-plane cutting through the wake (cf. Fig. 11.20). Then, if ωx
is confined in a thin flat vortex sheet with strength γ(y) as in the lifting-line
theory (Fig. 11.3), by a one-dimensional derivative-moment transformation
and (11.9) there is

yγ = Γ − d(yΓ )
dy

.

Substituting this into (11.38) and noticing Γ = 0 at y = ±s, we recover
(11.7a) at once.

The multiple vortex-loop argument has been used by Wu et al. (2002) in
analyzing various constituents of the force and moment on a helicopter rotor.
An interesting application of (11.31) is given by Sun and Wu (2004) in a
simulation of insect flight. Insects may fly at a Reynolds number as small as of
100, for which the lift predicted by classic steady wing theory is far lower than
needed for supporting the insect weight. The crucial role of unsteady motion
of lifting vortices was experimentally discovered only recently (e.g., Ellington
et al. 1996). To further understand the physics, Sun and Wu conducted a
Navier–Stokes computation of a thin wing which rotates azimuthally by 160◦

at constant angular velocity and angle of attack after an initial start, see
Fig. 11.7. Numerical tests have confirmed that to a great extent this model
can well mimic a down- or upstroke of the flapping motion of insect wings,
yielding lift L and drag D in good agreement with experimental results.
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Fig. 11.7. Rotating wing; fixed (x, y, z) frame and rotating (x′, y′, z′) frame. From
Sun and Wu (2004)
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Fig. 11.8. Time evolution of isovorticity surface (left) around the wing and contours
of ωy′ at wing section 0.6R. From Sun and Wu (2004)

Sun and Wu (2004) found that L and D computed from (11.31) is in
excellent agreement with that obtained by (11.1a). Figure 11.8 shows the
isovorticity surface and the contours of ωy′ at wing section 0.6R (R is
the semi wingspan) and different dimensionless time τ . A strong separated
vortex remains attached to the leading edge in the whole period of a single
stroke, which connects to a wingtip vortex, a wing root vortex, and a starting
vortex to form a closed loop. As the wing rotates, the vector surface area
spanned by the loop increases almost linearly and the loop is roughly on an
inclined plane. Therefore, almost constant L and D are produced after start.
The authors further found that the key mechanism for the leading-edge vor-
tex to remain attached is a spanwise pressure gradient (at Re = 800 and
3,200), and its joint effect with centrifugal force (at Re = 200). Similar
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to the leading-edge vortices on slender wing (Chap. 7), now these spanwise
forces advect the vorticity in leading-edge vortex to the wingtip to avoid over-
saturation and shedding.

11.3.3 Force and Moment on Unsteady Lifting Surface

Various classic external aerodynamic theories can be deduced from the vortic-
ity moment theory in a unified manner at different approximation levels. This
theoretical unification is a manifestation of the physical fact that all incom-
pressible force and moment are from the same vortical root. We demonstrate
this in the Euler limit.

The simplest situation is the force and moment due purely to body accel-
eration, for which (11.33) and (11.34) should reduce to (2.183) and (2.184)
but with viscous interpretation. The body acceleration creates an unsteady
boundary layer attached to ∂B but inside Vf , of which the effect is in If and
Lf . Namely, an accelerating body must be dressed in an acyclic attached vortex
layer. Let n̂nn = −n be the unit normal of ∂B pointing into the fluid, in the
Euler limit this layer becomes a vortex sheet of strength

γac = n̂nn× [[u]] = n̂nn× (∇φac − b), (11.39)

where suffix ac denotes acyclic and φac can be solved from (2.173) solely from
the specified body-surface velocity b(x, t). Then

If =
1
k

∫
∂B

x× γac dS =
1
k

∫
∂B

x× [n̂nn× (∇φac − b)] dS.

Here, after being substituted into (11.33), the integral of b is canceled, while
like (3.84) the integral of φac is cast to

1
k

∫
∂B

x× (n̂nn×∇φac) dS = −
∫
∂B

φacn̂nn dS = Iφ.

Thus, along with a similar approach to Lf , in (11.33) and (11.34) what remains
is just (2.183) and (2.184):

Fac = −ρ
dIφ
dt

, Mac = −ρ
dLφ
dt

.

Therefore, denote the impulse and angular impulse of Vf excluding the con-
tribution of γac by If− and Lf− , respectively, the force and moment can be
simply expressed by

F = −ρ d
dt

(If− + Iφ), (11.40)

M = −ρ d
dt

(Lf− +Lφ), (11.41)

with the understanding that φac has influence on the vorticity advection.
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We digress to note that the concept of vortex sheet can well be applied to
flow at finite Reynolds numbers, as explained by Wu (2005). During a small
time interval δt, the body-surface acceleration aB causes a velocity increment
δb = aBδt, which by (11.39) yields a vortex layer of strength δγac, so that the
rate of change of γac is proportional to aB . This picture becomes exact as δt→
0 no matter if Re → ∞. Wu (2005) has demonstrated that, by substituting
this δγac into (11.33), one obtains exactly the same Fac as calculated by the
virtual mass approach based on inviscid potential-flow theory (Sect. 2.4.4).

Having clarifying the role of body-surface acceleration, we now focus on the
rest part of force and moment caused by attached vortex sheet with nonzero
circulation and free vortex sheet in the wake, denoted by suffix γ. We consider
a thing wing represented by a bound vortex sheet or lifting surface as in
Sect. 4.4.1. The interest in unsteady flexible lifting surface theory has recently
revived due to the need for a theoretical basis of studying thin fish swimming
and animal flight (Wu 2002).

In the Euler limit, the expressions of I and L and their rates of change
have been given by (4.136–4.139), with vanishing Lamb-vector integrals. From
these and (4.133) that tells how an unsteady bound vortex sheet induces a
pressure jump [[pγ ]]:

−[[pγ ]]n = ρn
DΓ
Dt

= ρ

(
ūπ × γb +

∂Γ

∂t
n

)
,

we obtain the force and moment on a rigid or flexible lifting surface:

Fγ = −
∫
Sb

[[pγ ]]ndS = ρ

∫
Sb

DΓ
Dt

ndS (11.42a)

= ρ

∫
Sb

ūπ × γb dS + ρ

∫
Sw

∂Γ

∂t
ndS, (11.42b)

Mγ = −
∫
Sw

[[pγ ]]x× ndS = ρ

∫
Sb

DΓ
Dt

x× ndS (11.43a)

= ρ

∫
Sb

x× (ūπ × γb) dS + ρ

∫
Sb

∂Γ

∂t
x× ndS, (11.43b)

where Sb is the area of the bound vortex sheet, i.e., the wing area. These
formulas are the basis of unsteady lifting-surface theory, which clearly reveal
the vortical root of pressure jump on a wing.

Then, in linearized approximation, the vortex sheet has known location as
we saw in the lifting-line theory. This greatly simplifies the above formulas
and leads one back to almost entire classic wing aerodynamics. For exam-
ple, it is easily verified that, the three-dimensional steady version of (11.42)
returns to (11.7), while its two-dimensional unsteady version returns to the
oscillating-airfoil theory. For details of these classic theories see, e.g., Prandtl
and Tietjens (1934), Glauert (1947), Bisplinghoff et al. (1955), and Ashley
and Landahl (1965).
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11.4 Boundary Vorticity-Flux Theory

Opposite to the global view implied by the vorticity moment theory, we now
trace the physical root to the body surface, where the entire vorticity field is
produced. Then, the derivative-moment transformation leads to the boundary
vorticity-flux theory as an on-wall close view.

11.4.1 General Formulation

Return to the incompressible flow problem stated in Sect. 11.1.1 (See Fig. 11.1),
but now start from (11.1a) and (11.2a) where F and M are expressed by the
body-surface integrals of the on-wall stress t and its moment, respectively.
Naturally, the desired local dynamics on ∂B that has net contribution to F
and M should follow from proper transformation identities for surface inte-
grals, which are given in Sect. A.2.3. To employ these identities we have to
decompose the stress t into normal and tangent components first. Because
the effect of ts has been integrated out, it suffices to deal with the orthogonal
components of the reduced stress t̂ = −pn + µω × n, see (2.149). Therefore,
using (A.25) and (A.26) to transform (11.1a), and using (A.28a) and (A.29)
to transform (11.2a), in three dimensions we immediately obtain (Wu 1987)

F = −
∫
∂B

ρx×
(
1
2
σp + σvis

)
dS, (11.44)

M =
∫
∂B

ρ

[
1
2
x2(σp + σvis)− xx · σvis

]
dS +MsB, (11.45)

where σp and σvis are the stress-related boundary vorticity fluxes defined in
(4.24b), and MsB is given by (11.3a). These formulas are the main result
of the boundary vorticity flux theory. If one wishes, MsB can be absorbed
into the first term of (11.45) by using the full normal and tangent stresses on
deformable surface, see (2.151). Therefore, we conclude that

For three-dimensional viscous flow over a solid body or a body of different
fluid performing arbitrary motion, a body surface element has net contribution
to the total force and moment only if the stress-related boundary vorticity
fluxes are nonzero on the element.

For example, for flow over sphere of radius R at Re
 1, the Stokes drag
law (4.59) can be quickly inferred from (11.44) by the vorticity distribution
(4.57a) alone, which has led to (4.60a).8 Thus, (4.59) follows at once, indi-
cating that the pressure force and skin-friction force provide 1/3 and 2/3 of
the total drag, respectively. On the other hand, by (11.45), for flow over any
non-rotating sphere at arbitrary Re, we simply have

M =
1
2
ρR2

∫
∂B

(σp + σvis) dS,

8 This involves only the near-wall vorticity distribution, regardless the failure of
the Stokes solution at far field.
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where by (4.24b) both σp and σvis are under the operator n×∇ and hence in-
tegrate to zero by the generalized Stokes theorem. Thus the sphere is moment-
free as it should. But if the sphere rotates the entire vorticity field will be
redistributed, and there will be a nonzero moment

M = µR2

∫
∂B

eR∇π · ω dS − 8πR3

3
µΩ.

The theory can be easily generalized in a couple of ways (Wu et al. 1988b;
Wu 1995; Wu and Wu 1993, 1996). Firstly, a simple replacement of pressure
p by Π = p− (λ+2µ)ϑ immediately extends the theory to viscous compress-
ible flow with constant µ. Here, expressing F and L by boundary vorticity
fluxes does not conflict the dominance of the compressing process in super-
sonic regime. Rather, due to the viscous boundary coupling via the no-slip
condition (Sect. 2.4.3), a shearing process must appear adjacent to the wall
as a byproduct of compressing process. For example, when a shock wave hits
the wall, the associated strong adverse pressure gradient will enter the bound-
ary vorticity flux through σΠ and hence causes a strong creation of vorticity
opposite to that upstream the shock, somewhat similar to case that the in-
teractive pressure gradient of O(Re1/8) in the boundary-layer separation zone
causes a strong peak of σp (Sect. 5.3). In other words, as an on-wall footprint
of the flow field, the boundary vorticity flux can faithfully reflect the effect of
compressing process on the wall.

Secondly, owing to the transformation identities in Sect. A.2.3, we can
consider the force and moment on an open surface, such as a piece of aircraft
wing or body, a turbo blade, or the under-water part of a ship. This extension
is done by simply adding proper line-integrals, including those due to ts given
by (2.152a,b). Thus, for incompressible flow, we may write

F = Fsurf + Fline, M = Msurf +Mline,

where Fsurf and Msurf are given by (11.44) and (11.45), respectively, while

Fline =
1
2

∮
∂S

x× (pdx+ 2µω × dx) + 2µ
∮
∂S

u× dx, (11.46)

Mline = −
1
2

∮
∂S

[x2pdx+ (x2I− 2xx) · (µω × dx)]

+2µ
∮
∂S

x× (u× dx). (11.47)

Note that with the help of these open-surface formulas, the (p,ω)-distribution
in (11.44) and (11.45) only needs to be piecewise smooth, because the bound-
ary line-integral of each open piece must finally be cancelled. This is useful
when the body surface has sharp edges, corners, or shock waves across which
the tangent gradients of Π and ω are singular.
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Thirdly, when µ is variable as in flows with extremely strong heat transfer,
a simple way to generalize the preceding formulas is to take µω as a whole,
including redefining the boundary vorticity flux as σd = n · ∇(µω) so it
has a dynamic dimension (denoted by superscript d), see Wu and Wu (1993).
Moreover, since now ∇·(2µB) �= 0 and the local effect of ts has to be included,
we should use (2.151) and define

σdΠ ≡ n×∇Π̃, σdvis ≡ (n×∇)× (µωr). (11.48)

Correspondingly, (11.44) and (11.45) are extended to

F = −
∫
∂B

x×
(
1
2
σd
Π̃
+ σdvis

)
dS, (11.49)

M =
∫
∂B

[
1
2
x2(σd

Π̃
+ σdvis)− xx · σdvis

]
dS, (11.50)

where density ρ as well as MsB in (11.45) has been absorbed into σds. This
generalization makes the resulting force and moment formulas have exactly the
same application range as that of the Navier–Stokes equation. Note that for
variable µ the Navier–Stokes equation has an extra term, see (2.160a), which
adds a viscous constituent σdµ ≡ 2n× (∇µ ·B) to the boundary vorticity flux
studied in Sect. 4.1.3. However, σdµ is not stress-related and does not explicitly
enter the force and moment.

Finally, two-dimensional flow on the (x, y)-plane needs special treatment.
We illustrate this by incompressible flow over an open deformable contour C
with end points a and b. The positive direction of a boundary curve is defined
by the convention that as one moves along it the fluid is kept at its left-
hand side. Thus, on body surface we let s increase along clockwise direction
such that (n,es,ez) form a right-hand triad. Then by (A.36) and (A.37), and
noticing that the two-dimensional version of (2.152a,b) is

∫ b

a

ts ds = 2µ(vex − uey)|ba, (11.51a)

∫ b

a

x× ts ds = 2µez

[
(x · u)|ba −

∫ b

a

us ds

]
, (11.51b)

we obtain

Fx = ρ

∫ b

a

(
−yσp + νx

∂ω

∂s

)
ds+ (yp− µxω + 2µv)|ba, (11.52a)

Fy = ρ

∫ b

a

(
xσp + νy

∂ω

∂s

)
ds− (xp+ µyω + 2µu)|ba. (11.52b)
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Moreover, for M = Mzez, as observed at the end of Sect. A.2.4 it is impossible
to express the boundary integral of x × (µω × n) = ezµω(x · n) by ∂ω/∂s.
Thus by (A.38) and (11.51b), the result is

Mz = ρ

∫ b

a

(
1
2
x2σp + νx · nω

)
ds− 2µ(xu+ yv)|ba + 2µ

∫ b

a

us ds. (11.53)

For a closed loop the last term is −2µΓC by our sign convention.

11.4.2 Airfoil Flow Diagnosis

While for Stokes flow the boundary vorticity flux distributes quite evenly, at
large Reynolds numbers it typically has high peaks at very localized regions
of ∂B, see the discussion following (4.94). It is this property in the high-Re
regime that makes the theory a valuable tool in flow diagnosis and control. So
far it has been applied to the diagnosis of aerodynamic force on several con-
figurations at different air speed regimes (Wu et al. 1999c), including airfoils
and delta wing-body combination in incompressible flow, fairing in transonic
flow, and wave rider in hypersonic flow. Zhu (2000) has demonstrated that
the σp-distribution can be posed in the objective function for optimal airfoil
design.

To demonstrate the basic nature of this kind of diagnosis, we now con-
sider the total force acting to a stationary two-dimensional airfoil by steady
incompressible flow. At Re  1 the contribution of skin friction can be ne-
glected. In the wind-axis coordinate system (x, y), (11.52) yields the lift and
drag formulas

L = ρ

∫
C

xσp ds, D = −ρ
∮
C

yσp ds. (11.54a,b)

For convenience let the origin of (x, y) be at the mid-chord point of the airfoil.
Then by (11.54a) a negative σ-peak implies a positive lift for x < 0 and
negative lift for x > 0. If for x < 0 there is a positive σ-peak on the upper
surface, say, it not only produces a negative lift but also tends to cause early
separation since it will be stronger as α increases. Moreover, the vorticity
created by this unfavorable σ adds extra enstrophy to the flow field, implying
larger viscous drag. Therefore, ideally one wishes the sign of σ over the upper
surface to be like that sketched in Fig. 11.9a without front positive σ-peak
and rear negative σ-peak on the upper surface.9 In the figure the sign of σ

9 Whether a boundary vorticity flux peak is favorable depends on the choice of
the origin of the coordinates. For example, shifting the origin to the trailing edge
would imply that negative boundary vorticity flux peaks on upper surface are all
favorable, but by (11.54a) the contribution to the lift of a rear peak is less than
that of a front one. However, this does not influence the net effect on the lift and
drag, and setting the origin at the mid-chord is most convenient.



612 11 Vortical Aerodynamic Force and Moment
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Fig. 11.9. Idealized boundary vorticity flux distribution over airfoil. (a) The bound-
ary vorticity flux is completely favorable on upper surface. (b) An even more favor-
able boundary vorticity flux distribution

over the lower surface is qualitatively estimated by pressure gradient and the
constraint ∮

C

σp ds = −
∮
C

∂p

∂s
ds = 0. (11.55)

Given the favorable sign distribution of σp, however, (11.54a) indicates
that there is still a room to further enhance L by shifting the location of
σ-peaks. On the upper surface, the front negative σ-peak and rear positive σ-
peak will produce more lift if their |x| is larger, while on the lower surface these
peaks will produce less negative L if their |x| is smaller. This simple intuitive
observation suggests a modification of the airfoil shape of Fig. 11.9a to that
of Fig. 11.9b, which is precisely of the kind of supercritical airfoils originally
designed for alleviating transonic wave drag. The present argument indicates
that a supercritical airfoil must also have better aerodynamic performance at
low Mach numbers.

Quantitatively, consider the relation between σ and the airfoil geometry.
For steady and attached airfoil flow at large Re, this relation can be ob-
tained analytically in the Euler-limit by the potential-flow theory. Let C be
any streamline in the potential-flow region, of which the arc element ds has
inclination angle χ with respect to the x-axis, see Fig. 11.10. Thus, in terms
of complex variables z = x + iy and w = φ + iψ as used in deriving (11.10),
we have

dx = cosχds, dy = sinχds, dz = ds eiχ,

u = q cosχ, v = q sinχ,
dw
dz

= q e−iχ.
(11.56)

And, the tangent component of the Euler equation C reads

as =
1
2
∂q2

∂s
= −∂p

∂s
on C. (11.57)

Now, denote

ρ(z) = log q − iχ = log
(
dw
dz

)
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dy
ds

dx

χ

Fig. 11.10. Geometric relation of a contour C

such that
dρ
dz

=
dz
dw

d2w
dz2

=
1
2q2

dq2

dz
− i

dχ
dz

.

Then by using dz = ds eiχ and (11.57) we find eiχdρ/dz = q−2σp − iκ, where
κ ≡ dχ/ds is the curvature of C. But by (11.56) eiχ = q dz/dw, so

as
q3
− iκ

q
=
(
dz
dw

)2 d2w
dz2

on C.

Therefore, as/q3 and −κ/q are the real and imaginary parts of an analytical
function (which is known once so is dw/dz).

Finally, let the streamline C be the airfoil contour underneath the attached
vortex sheet where the no-slip condition still works and as drops to zero. But
the viscosity comes into play, producing a boundary vorticity flux σ to replace
as to balance the pressure gradient. Namely, we have

σp
q3
− iκ

q
=
(
dz
dw

)2 d2w
dz2

on airfoil, (11.58)

indicating that if q ∼ 1 then σp, or pressure gradient, is directly linked to
the local airfoil curvature.10 But strictly the σp–κ relation is nonlinear and of
global nature.

Equation (11.58) can be used to calculate σp over a realistic airfoil as
long as the flow is attached. Figure 11.11a shows the σ-distribution computed
thereby for a helicopter rotor airfoil VR-12 at α = 6◦, compared with the
Navier–Stokes computation at Re = 106 using an one-equation turbulence
model (Zhu 2000). The difference is very small except at the trailing edge,
where the “inviscid” σ approaches ±∞. But it can be shown that this singu-
larity is symmetric and precisely canceled in (11.54).

The VR-12 airfoil has higher maximum lift before stall and larger stall
angle of attack than a traditional airfoil, say NACA-0012. By (11.54a), the

10 This result can be compared with that in the linearized supersonic aerodynamic
theory, where the pressure is simply proportional to the local wall slope, as ex-
emplified by (5.56c′).
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Fig. 11.11. Boundary vorticity flux distributions on VR-12 airfoil (a) and a re-
designed airfoil (b). The design scheme sets a projective boundary vorticity flux
only in the marked local region. From Zhu (2000)
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major net contributor to the total lift is the primary negative σ-peak in a
very narrow region on the upper surface, right downstream of the front stag-
nation point. But the effect of the following positive σ-peak associated with
an adverse pressure gradient is unfavorable. Suppressing this front positive
peak should lead to an even better performance. By (11.55), this suppression
may also cause a favorable positive rear boundary vorticity-flux peak on the
upper surface.

This conjecture has been confirmed by Zhu (2000) using a simple optimal
design scheme, where the objective function includes minimizing the unfavor-
able σ in a front-upper region. Some airfoils with better σ-distributions were
produced thereby, of which one is shown in Fig. 11.11b associated with larger
stall angle and maximum lift coefficient.

11.4.3 Wing-Body Combination Flow Diagnosis

Compared to airfoils, much less has been known on the optimal shapes of
a three-dimensional wing. An interesting boundary vorticity-flux based diag-
nosis of a flow over a delta wing-body combination, see Fig. 11.12, has been
made by Wu et al. (1999c). The flow parameters are α = 20◦, M = 0.3, and
Re = 1.744× 106 ft−1.

The model has an infinitely extended cylindrical afterbody, so the flow
data on the body base were not available. Therefore, the body surface is
open, of which the boundary is a circle C of radius a on the (y, z)-plane at the
trailing edge. The line integrals in (11.46) have to be included; in the body-axis

24
.4

8
in

.

22.83 in.

65�

Fig. 11.12. A wing–body combination. From Wu et al. (1999c)



616 11 Vortical Aerodynamic Force and Moment

coordinate system with origin at the apex, the extended force formula gives
(again ignore the skin-friction and denote σp simply by σ)

Fx =
1
2

∫
S

ρ(zσy − yσz) dS +
a2

2

∫ 2π

0

pdθ, (11.59a)

Fz =
1
2

∫
S

ρ(yσx − xσy) dS, (11.59b)

where S is the open surface of wing–body combination and tan θ = z/y. The
surface integral of (11.59a) is found to provide a negative axial force (thrust),
which is upset by the line integral, resulting in a net drag. The integrand pdθ
is zero except a pair of sharp positive peaks at the wing–body junctures. Thus
a fairing of the junctures would reduce the drag.

On the other hand, (11.59b) traces the normal force Fz to the root of the
leading-edge vortices, i.e., the root of the net free vortex layers shed from
the leading edges. These layers are dominated by the lower-surface boundary
layer but partially cancelled by the upper-surface boundary layer. Thus, the
σ on the upper and lower surfaces should provide a negative and positive
lift, respectively. Indeed, a survey indicates that the lower-surface gives about
200% of Fz, but half of it is canceled by the unfavorable σ on the upper
surface.

Moreover, it is surprising that σ is highly localized very near the leading
edges, as demonstrated in Fig. 11.13 by the distribution of ρ(yσx−xσy)/2 on
the contour of a cross-flow section at x/c0 = 0.24, where c0 is the root-chord
length. The data analysis shows that an area around the leading edges, only
of 1.7% of S, contributes to 104% of the total Fz. The remaining area of
98.3% S merely gives −4% of Fz. This diagnosis underscores the very crucial
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Fig. 11.13. (a) Sectional contour of the wing–body combination at x/c0 = 0.24.
(b)Boundary vorticity flux distribution. Solid line: lower surface, dash line: upper
surface. From Wu et al. (1999c)
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importance of near leading-edge flow management in the wing design. Should
the spanwise flow on the upper surface be guided more to the x-direction, not
only can it provide an axial momentum to reduce the drag but also the shed
vortex layers from the lower surface could be less cancelled. Then stronger
leading-edge vortices could be formed to give a higher normal force.

A different wing-flow diagnosis will be presented in Sect. 11.5.4.

11.5 A DMT-Based Arbitrary-Domain Theory

As a global view, the vorticity moment theory of Sect. 11.3 requires the data
of the entire vorticity field in an externally unbounded incompressible fluid,
but in flow analysis the available data are always confined in a finite and
sometimes quite small domain. As an on-wall close view, boundary vorticity-
flux theory of Sect. 11.4 requires only the flow information right on the body
surface (“footprint” and “root” of the flow field), but is silent about how the
generated vorticity forms various vortical structures that evolve, react to the
body surface, and act to other downstream bodies. The shortages of these
theories can be overcome by considering an arbitrary domain Vf , which has
resulted in the finite-domain extensions of the above two theories, given by
Noca et al. (1999) and Wu et al. (2005a), respectively.

The extension of vorticity-moment theory follows the same derivation of
(11.29) from (11.27), but with all vortical terms retained at an arbitrary Σ.
Like the original version, in this extension the rate of change d/dt is calcu-
lated after integration is performed. The results are convenient for practical
estimate of the force and moment acting to a body moving and deforming
in an incompressible fluid, using measured or computed flow data. A more
convenient formulation, obtained by a different DMT identity, will be given
in Sect. 11.5.4. In particular, these progresses have excited significant interest
in applying the new expressions to estimate the unsteady forces based on flow
data measured by the particle-image velocimetry (PIV).

In contrast, the extension of the boundary vorticity-flux theory to include
the flow structures in a finite Vf is characterized by shifting the operator d/dt
into relevant integrals. This shift permits a direct generalization of the results
to compressible flow, and makes it possible to quantitatively identify how
each flow structure localized in both space and time affects the total force
and moment, from a more fundamental point of view. The convenience of
practical force estimate is not a mojor concern. This formulation is presented
below. Once again we work on incompressible flow; as in Sects. 11.2 and 11.4,
the compressibility effect can be easily added.

11.5.1 General Formulation

The formulation is based on proper derivative-moment transformation of the
full expressions of F and M given by (11.1b) and (11.2b).
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Diffusion Form

We start from identity (3.117a) for the fluid acceleration, and set D = Vf with
∂D = ∂B + Σ. Substitute this into (11.1b) and replace ∇× a by ν∇2ω due
to (11.5). On ∂B, we recognize that n × a is the boundary vorticity flux σa

due to acceleration of ∂B, defined in (4.24a). On Σ, we use (11.4) as well as
identities (A.25) for n = 3 and (A.36) for n = 2 to transform n × a, which
makes the pressure integral in (11.1b) canceled. Therefore, we obtain (Wu and
Wu 1993)

F = −µ
k

∫
Vf

x×∇2ω dV + FB + FΣ , (11.60)

where FB and FΣ are boundary integrals over ∂B and Σ, respectively:

FB =
1
k

∫
∂B

ρx× σa dS, (11.61a)

FΣ = −µ
k

∫
Σ

x× [n× (∇× ω)] dS + µ

∫
Σ

ω × ndS. (11.61b)

Note that (11.61b) consists of only viscous vortical terms.
By using (A.24a), a similar approach to the moment yields

M =
µ

2

∫
Vf

x2∇2ω dV +MB +MΣ , (11.62)

where

MB = −1
2

∫
∂B

ρx2σa dS, (11.63a)

MΣ =
µ

2

∫
Σ

x2n× (∇× ω) dS+µ

∫
Σ

x× (ω × n) dS+MsΣ , (11.63b)

in which MsΣ is given by (11.3b).
Like FB and MB , the integrals of τ in FΣ and x×τ in MΣ can be further

cast to derivative-moment form as well, in terms of vorticity diffusion flux on
a surface given by (4.23) and (4.24). Then (4.22) implies

−n× (∇× νω) =
{
νn · ∇ω = σ for n = 2,
νn · ∇ω − (n×∇)× νω = σ − σvis for n = 3. (11.64)

Thus, for three-dimensional flow, by using (A.26) and (A.29) we obtain

FΣ =
1
2

∫
Σ

ρx× (σ + σvis) dS, (11.65)

MΣ =
1
2

∫
Σ

ρ(2xx · σvis − x2σ) dS +MsΣ . (11.66)

For flow with Re 1, generically |σvis| 
 |σ|.
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Equations (11.60) to (11.66), characterized by the moments of µ∇2ω, can
be called the diffusion form of the arbitrary-domain theory. It is easily seen
that they hold true for compressible flow with constant µ as well. These for-
mulas reveal explicitly the viscous root behind the classic circulation theory.
The direct contribution of the body motion and deformation to the force and
moment amounts to the moments of σa, which is solely determined by the
specified b(x, t) and independent of the flow.

In contrast, for two-dimensional flow on the (x, y)-plane, apply the con-
vention and notation defined in Sect. 11.4.1 to Σ, from (11.64) and a one-
dimensional derivative-moment transformation we obtain the drag and lift
components:

DΣ = µ

∮
Σ

(
y
∂ω

∂n
− x

∂ω

∂s

)
ds,

LΣ = −µ
∮
Σ

(
y
∂ω

∂s
+ x

∂ω

∂n

)
ds,

(11.67)

indicating that the local dynamics on Σ is reflected by the vorticity gradient
vector ∇ω. But, for MΣ = MΣez, due to the same reason as that leading to
(11.53), we stop at

MΣ = µ

∮
Σ

(
1
2
x2

∂ω

∂n
+ x · nω

)
ds− 2µΓΣ . (11.68)

For flow with Re 1, generically |∂ω/∂s| 
 |∂ω/∂n| in (11.67) and (11.68).

Advection Form

Owing to (11.5), ν∇2ω in (11.60) and (11.62) can be replaced by∇×a = ω,t+
∇× l, where (·),t = ∂(·)/∂t and l ≡ ω×u is the Lamb vector. Therefore, the
force and moment can be equally interpreted in terms of the local unsteadiness,
advection, and stretching/tilting of the vorticity field in Vf . But to retain the
vortex force as in (11.30), we switch to identity (3.117b) that has led to the
force formula (11.27). A corresponding formula for the moment can be derived
from identity (A.24a). Consequently, (11.60) and (11.62) can be alternatively
expressed as

F = −ρ
∫
Vf

(
1
k
x× ω,t + l

)
dV − ρ

k

∫
∂Vf

x× (n× l) dS

+FB + FΣ , (11.69)

M = ρ

∫
Vf

(
1
2
x2ω,t + x× l

)
dV +

ρ

2

∫
∂Vf

x2n× l dS

+MB +MΣ , (11.70)
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where n × l is given by (11.28). We call this set of formulas the advection
form of the general derivative-moment theory. The splitting of the moments
of µ∇2ω into three inviscid terms (two volume integrals and one boundary
integral) further decomposes the physical mechanisms responsible for the total
force and moment to their most elementary constituents. The role of the vortex
force and the boundary integral of x× (n× l) will be addressed in Sect. 11.5.4
for steady flow. To have a feeling on the role of x×ω,t, consider a fish B just
starting to flap its caudal fin for forward motion so that |ω| is increasing, as
sketched in Fig. 11.14. Putting the other terms in (11.69) aside, based on the
sign of x and y we can readily infer the qualitative effect of the tail swinging
on the thrust and side force of the fish as indicated in the figure.

Due to the arbitrariness of the domain size, the theory can be applied to
obtain the force and moment acting on any individual of a group of deformable
bodies, which may perform arbitrary relative motions.

Now, as remarked earlier, as long as we use the full expression (11.69)
to replace (11.27) and repeat the same steps there, a fully general version
of (11.29) follows at once as the main result of the finite-domain vorticity
moment theory (Noca et al. 1999). The original vorticity moment theory (J.C.
Wu 1981) is then a special case of it as Σ retreats to infinity where the fluid
is at rest. On the other hand, as Σ shrinks to the body surface ∂B, what
remains in (11.60) and (11.62) is

F = FB + FΣ , M = MB +MΣ ,

where the normal vector n on Σ now equals n̂nn = −n. Hence, substituting
(11.61), (11.63), (11.65), and (11.66) into the above expressions, and using
(4.23) and (4.24), we recover (11.44) and (11.45) of the boundary vorticity-flux
theory for three-dimensional flow at once. The proof for two-dimensional flow
is similar. A unification of various DMT-based theories is therefore achieved.
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D < 0

-yw,t < 0 D < 0

L > 0

xw,t < 0 L < 0

M > 0
1
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2

Fig. 11.14. A qualitative assessment of the effect of unsteady vorticity moments
on the total force and moment
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The Effect of Compressibility

By an inspection of the structure of (11.69) and (11.70) as well as a comparison
of (11.4) and (11.13), we find that to generalize these formula to compressible
flow it suffices to make simple replacements

ρω × u =⇒ ρω × u− 1
2
q2∇ρ, ρω,t =⇒ ∇× (ρu,t).

This leads to

F = −1
k

∫
Vf

x×∇× (ρu,t) dV −
∫
Vf

(
ρl− 1

2
q2∇ρ

)
dV

−1
k

∫
∂Vf

x×
[
n×

(
ρl− 1

2
q2∇ρ

)]
dS + FB + FΣ , (11.71)

M = −1
2

∫
Vf

x2∇× (ρu,t) dV −
∫
Vf

x×
(
ρl− 1

2
q2∇ρ

)
dV

+
1
2

∫
∂Vf

x2n×
(
ρl− 1

2
q2∇ρ

)
dS +MB +MΣ . (11.72)

The analogy between (11.71) and (11.16) is obvious. By using the numerical
scheme developed by Chang and Lei (1996a) in their diagnosis of transonic vis-
cous flow over circular cylinder based on the projection theory (Sect. 11.2.2),
a similar diagnosis has been performed by Luo (2004) based on (11.71), for
which Σ can be quite small. The flow remains steady in the computed Mach-
number range M ∈ [0.6, 1.6]. Among Luo’s results an interesting finding is
that the compressing effect −q2∇ρ/2 prevails over the vortex force ρω × u
at the same subsonic Mach number as Chang and Lei found, and that the
vortex force changes from a drag to a thrust at the same supersonic Mach
number as Chang and Lei found. These qualitative turning points, therefore,
are independent of the specific local-dynamics theories.

11.5.2 Multiple Mechanisms Behind Aerodynamic Forces

In addition to the global view represented by the vorticity moment theory and
the on-wall close view represented by the boundary vorticity flux theory, the
present arbitrary-domain theory further enriches one’s views of the physical
mechanisms that have net contribution to the force and moment. How this is so
has been exemplified byWu et al. (2005a), using the unsteady two-dimensional
and incompressible flow over a stationary circular cylinder of unit radius at
Re = 500 based on diameter. The flow field was solved numerically using a
scheme developed by Lu (2002). An instantaneous plot of vorticity contours,
in which the Kármán vortex street is clearly seen, is shown in Fig. 11.15. Since
the computational domain does not cover the entire vorticity field, the figure
represents a mid-field view.
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Fig. 11.15. An instantaneous vorticity contour (from −20 to 20 with increment
0.25) of flow over circular cylinder. In this and following figures solid and dashed
lines represent positive and negative values, respectively. From Wu et al. (2005a)

It is well known that the unsteady force and moment acting to the cylin-
der are associated with the motion of the vortex street. However, as pointed
out in Sect. 11.1, this common flow-visualization plot (along with the plots of
velocity field and pressure contours, etc.,) does not tell precisely which part of
each vortex in the street has a positive, negative, or zero instantaneous contri-
bution to the total drag and lift. This information can only be found from the
integrand distributions of the derivative-moment formulas (as well as those
of the projection-theory of Sect. 11.2), obtained by a simple postprocessing of
the flow data. Let us focus on the total drag and lift.

Take Σ as concentric circles of varying radius R. In the following expres-
sions the integrands of field integrals are expressed in Cartesian coordinates,
while those in boundary integrals in polar coordinates (r, θ). Then (11.60)
yields

D(t) = −µ
∫
Vf

y∇2ω dS + µR2

∮
Σ

(
∂ω

∂r
sin θ − 1

R

∂ω

∂θ
cos θ

)
dθ

= D1 +D2 +D3, (11.73a)

L(t) = µ

∫
Vf

x∇2ω dV − µR2

∮
Σ

(
∂ω

∂r
cos θ +

1
R

∂ω

∂θ
sin θ

)
dθ

= L1 + L2 + L3, (11.73b)

where and below D1, ..., L3 etc. denote corresponding integrals symbolically.
In these formulas, by (11.69) there is

D1 =
∫
Vf

ρ

(
−y ∂ω

∂t
+ vω

)
dS +R

∮
Σ

ρωur sin θ dθ

= D4 +D5 +D6, (11.74a)

L1 =
∫
Vf

ρ

(
x
∂ω

∂t
− uω

)
dS −R

∮
Σ

ρωur cos θ dθ

= L4 + L5 + L6. (11.74b)
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In particular, when Σ shrinks to the cylinder surface at r = 1, (11.73) reduces
to the boundary vorticity-flux formulas

D = (D2 +D3)r=1, (11.75a)
L = (L2 + L3)r=1. (11.75b)

Equations (11.73–11.75) form a set of derivative-moment formulas for the
force diagnosis, each yielding a special insight into the physics responsible for
D and L. Below we look at the distributions of their integrands.

Mid-Field View

The inviscid decompositions of D1 and L1 given by (11.74) are shown in
Figs. 11.16 and 11.17, respectively. As a mid-field view, these plots exhibit the
same vortex structures as Fig. 11.15. But, due to the sign change of ω,t, v and
y, as a vortex passes a spatial point x the contribution of a single wake vortex
may be split into two or even four pieces. It is this further identification of
the net effect of every piece of a vortex constitutes the additional information
carried by the local dynamics of the wake field. Note that the integrand of L4,
i.e., the unsteady term ρxω,t, does not reduce as x increases (see Fig. 11.16a).
But this does not matter since in a finite domain the integral-convergence
problem does not exist, while when Σ retreats to infinity the theory becomes
the vorticity-moment theory with well-behaved convergence.

Near-Field View

Although mathematically the diffusion form (11.60) is exactly equivalent to
the advection form (11.69), for a flow at large Reynolds numbers that is our
main interest the flow regions where the peak integrands of these alternative
forms are very different. In the well-developed wake vortices µ|∇2ω| has be-
come quite weak, but it is very strong in boundary layers and free shear layers,
across which µ|∇2ω| � µ|ω,nn| reaching O(1). While in the advection form
one already sees highly localized wake-vortex structures, in the diffusion form
the key contributors to F and M are even more compact. Consequently, for
flow with Re 1, switching from the advection form to diffusion form implies
tracking the more upstream vortical structure of those shown in Fig. 11.15.
An observer watching the diffusion form naturally gains a near-field view, as
demonstrated by Fig. 11.18 that shows the field of the integrand of D1 and L1.

It is remarkable that, as a sharp contrast to Figs. 11.16 and 11.17, accord-
ing to (11.73) the near-field boundary layers and separated shear layers right
before the formation of the Kármán vortex street have about 90% of the net
contribution to D and L. Each free vortex layer exhibits a sandwich structure
because across such a layer ω,nn changes sign twice. Once a concentrated wake
vortex is formed and sheds downstream with its feeding sheet being cut off, it
joins the rows of wake vortices which as a whole have only about 10% direct
contribution to the forces.
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Fig. 11.16. Distribution of integrand of (a) D4 from −5 to 5 with increment 0.5;
(b) D5 from −5 to 5 with increment 0.25; and (c) D6 from −2 to 6 with increment
0.2. The θ-variation of the integrand of D6 depends on R, which can be qualitatively
read off in (c) from the intersections of the field distribution and a few concentric
circles. From Wu et al. (2005a)

The vortices in the vortex street are all product of the rolling-up of these
separated shear layers, and Fig. 11.18 convincingly indicates that (11.60) can
indeed trace the key local dynamic structures for the total force toward their
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Fig. 11.17. Distribution of integrand of (a) L4 from −25 to 25 with increment
0.5; (b) L5 from −10 to 10 with increment 0.5; and (c) L6 from −40 to 40 with
increment 2. The θ-variation of the integrand of L6 can be qualitatively read off
similar to Fig. 11.16c. From Wu et al. (2005a)

origin, a task that cannot be achieved by standard formulas. Of course, the
Kármán street does strongly influence the total force; but its major effect is
indirect through its induced unsteadiness of the flow, including the periodic
swing of the peak ∇2ω in near-field vortex layers.
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Fig. 11.18. Distribution of integrand of (a) D1 and (b) L1. Contours from −10 to
10 with increment 0.5. From Wu et al. (2005a)

On-Wall Close View

If the radius of Σ is R0 = 1 + δ with δ 
 1 such that Vf is well within
the sublayer of the boundary layer adjacent to the cylinder and the flow
therein is dominated by diffusion, then FΣ contributes to almost all F and
the Stokes approximation (Sect. 4.2.1) can be applied in a way very similar
to that discussed in Sect. 11.4.1. The result is actually independent of R0

and equal to that obtained by (11.75) since the radius is canceled during
integration. Therefore, to the above physical pictures we may add Fig. 11.19,
which shows the θ-variation of the two terms in (11.75a,b) as the on-wall
close view. Recall that the normal and tangent components of ∇ω are from
respectively the pressure gradient (σ = σp) and skin-friction, and the former
is much stronger than the latter, it is still the moments of σ that dominate the
drag and lift. We have seen in the context of Fig. 4.12 that the sign change of
σp signifies that the boundary layer is about to separate; now x = cos θ and
y = sin θ in (11.75) add additional sign changes of the integrand in D and L,
resulting in their different θ-dependence.

Notice the physical relation between Figs. 11.18 and 11.19. The boundary
layers and their separation in the former are the spatial and temporal accu-
mulated effect of the boundary vorticity fluxes in the latter (Sect. 4.2.3). This
could be clearly seen by comparing a time sequence of both kinds of figures.

The above discussions have shown how different views capture different
stages of the evolution of the same vorticity field, and how the physics of these
stages are consistent and complementary to each other. Taking together, they
form a complete multidimensional picture of the mechanisms responsible for
the force and moment.

It should be stressed that a vortical structure favorable to the force and
moment at one of its evolution stage may become unfavorable at another
stage, although in terms of the flow data at any stage one can always infer
the same force and moment. Therefore, as yet another evolution view, one
may trace the motion of each individual structure (or a group of structures),
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of vorticity-gradient components on the cylinder surface, see (11.75). Solid lines:
total force, dashed lines: contribution of µ∂ω/∂r, dashed–dot lines: contribution of
µ∂ω/∂s. From Wu et al. (2005a)

observing its “role switch,” and assess its merit. Such a thorough quantitative
assessment would be very beneficial in creating new configurations and flow-
control strategy.

11.5.3 Vortex Force and Wake Integrals in Steady Flow

We now return to classic aerodynamics on steady flow over a stationary rigid
body. Assume the Reynolds number is sufficiently large, all the attached
boundary layers of the body are enclosed by Σ which only cuts vortical flow
in the wake. The preceding example of circular-cylinder flow has indicated
that in the fully developed wake region the viscous vorticity gradient is much
smaller than O(1). This is generally true in high Reynolds-number steady
aerodynamics, and right on Σ one can neglect the effect of µ∇ω compared to
the pressure force; namely, the entire FΣ and MΣ in (11.69) and (11.70) can
be dropped.11 Therefore, since FB and MB also vanish, we simply have

F = −ρ
∫
Vf

l dV − ρ

k

∫
Σ

x× (n× l) dS (11.76a)

= −ρ

k

∫
Vf

x× (∇× l) dV = −µ
k

∫
Vf

x×∇2ω dV, (11.76b)

M = −ρ
∫
Vf

x× l dV +
ρ

2

∫
Σ

x2n× l dS (11.77a)

=
ρ

2

∫
Vf

x2∇× l dV =
µ

2

∫
Vf

x2∇2ω dV. (11.77b)

11 This does not imply the neglect of viscosity inside Vf . It is the accumulated effect
of the viscous force in Vf that forms the dominant feature of the wake.
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Fig. 11.20. Control volume V in which the flow is steady, wake plane W , and its
vortical part Wv. From Wu and Wu (1996)

Therefore, for steady flow at large Re, no transverse Lamb vector, no force
and moment.

Let us concentrate on the force given by (11.76) and consider a wing flow
schematically drawn in Fig. 11.20. The oncoming flow has uniform velocity
U = Uex in the wind-axis coordinate system (x, y, z). The flow in a cylindrical
control volume V is assumed steady and symmetric with respect to the (x, z)-
plane. V has sufficiently remote side boundary S and a downstream boundary
W on the (y, z)-plane (a Wake plane) at an arbitrary fixed x location with
n = ex there, such that the vorticity can be set zero over Σ except a small
vortical part of W , Wv 
 W . Hence, in (11.76a) the Σ-integral reduces to a
Wv-integral.

One’s concern in the flow property on a wake-plane is mainly from experi-
mental aerodynamics. It has long been hoped that for steady flow a wake-plane
survey may permit inferring the lift and drag on the body as an alternative to
the balance measurement and the very difficult measurement of body-surface
skin friction. For example, the approximate lift formula (11.38) has been used
for decades. In what follows we use (11.76a) to address three problems of
considerable practical interest. We denote

u = (U + u′, v, w), p = p∞ + p′. (11.78)

On the Distinction of Induced and Profile Drags

In steady flow, the drag consists of induced drag (see (11.7b)) and profile drag.
The latter is associated with the shedding of low-energy viscous boundary-
layer flow into the wake. Unlike the lift and induced drag which exist even in
the Euler limit (Re → ∞), the profile drag appears only at finite Re. How
to rationally distinct the two drag constituents for a general nonlinear and
viscous flow is important, since to alleviate them one has to use different
methods based on their respective physical roots (cf. Kroo 2001).
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Consider the Euler limit first, where the vortex-sheet Lamb vector (Sects.
4.4.1 and 11.3.3) in steady flow is nonzero only in the “bound vortex,” i.e.,
the boundary layers attached to the wing. Thus, in (11.76a) the Wv-integral
disappears, and we see at once that the vortex force must be the only source
of both lift and induced drag:

L = −ρ
∫
V

lx dV = ρ

∫
V

(uωy − vωx) dV, (11.79a)

Din = −ρ
∫
V

ly dV = ρ

∫
V

(vωz − wωy) dV. (11.79b)

In fact, from these formulas one may easily deduce (11.7a) and (11.7b) as
linearized approximation.

We can also recover (11.38) from the vortex force, by using (A.22):

−ρ
∫
Vf

l dV � ρU ×
∫
Vf

ω dV = ρUez

∫
Wv

yωx dS. (11.80)

Note that, as a mid-field view, here the relevant vortex dynamics mechanism is
more upstream than that in deriving (11.38) based on the global view. While
in the latter we focused on the increase of the vortex-loop area, now we are
focusing on the vorticity inside the wing boundary layers. This is evident in
two-dimensional flow, for which (11.5) directly follows from (11.79b) without
appealing to the starting vortex.

The induced drag can also be approximately expressed by a wake-plane
integral. Similar to the derivation of (11.7a) from (11.38), by (11.9) and the
same one-dimensional derivative-moment transformation for Γ used there,
since the integral of wd(yΓ )/dy vanishes due to the symmetry, (11.7b) is cast
to (Wu et al. 2002)

Din = −ρ
∫ s

−s
yw(y)γ(y) dy, (11.81a)

which is the vortex-sheet form of a more general wake integral for distributed
vorticity, in pair with (11.38):

Din � −ρ
∫
Wv

ywωx dS. (11.81b)

We now turn to the finite-Re effect reflected by the boundary integral of
(11.76), which is a wake integral of

x× (n× l) = ex(x · l)− xl = ex(xπ · l)− xlπ,

where the suffix π denotes the (y, z) components tangent to W . On W the
Lamb vector can be replaced by the total-pressure gradient due to the steady
Crocco equation

ρω × u = −∇P, P ≡ p+
1
2
ρq2, (11.82)
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of which both sides approach zero simultaneously in the Euler limit. Since
x = xw is fixed and ∇P = ∇P ′ where P ′ = P − P∞ vanishes at ∂W , the
integral of ρxlπ = −x∇πP ′ over W vanishes. Thus, the wake integral yields
a drag only, which is the profile drag:

Dprof = −
ρ

k
ex

∫
Wv

xπ · l dS (11.83a)

= −ex

∫
Wv

P ′ dS. (11.83b)

Equation (11.83b) is the exact formula for deducing the profile drag from
the measured total-pressure deficit over Wv. Its vorticity-dynamics origin is
revealed by (11.83a): the nonBeltramian behavior of the viscous flow at finite
Re. To see relevant mechanisms explicitly, denote the Euler-limit values of l,
ω, and u by suffix 0 and their residual values at finite Re by a tilde, so that

l̃ = ω0 × ũ+ ω̃ × u0 + ω̃ × ũ.

we may then replace l in (11.83a) by l̃, and find a leading-order cause of the
profile drag

Dprof �
ρ

k
U

∫
Wv

(zω̃y − yω̃z) dS. (11.84)

As shown in Fig. 11.21, the wing boundary layers from upper and lower sur-
faces have positive and negative ω̃y, respectively, which merge at the trailing
edge and form a wake of finite thickness, with zω̃y > 0. This is the entire
Dprof in two dimensions. In three dimensions the side edges of the wing also
have boundary layers, which yields −yω̃z > 0 at both sides.

On the Forces by Vortical-Wake Integrals

It has been highly desired to express, if possible, the forces by integrals only
over the vortical part of the wake plane, Wv 
 W , because the entire W is

a

z y

x

Fig. 11.21. Viscous sources of profile drag according to (11.84)
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often too large to make a velocity survey. We have just seen that the profile-
drag formula satisfies this need. To see to what extent the lift and induced
drag can be likewise expressed, we first notice that the vortex force can be
cast to an integral over a full W . By using the mass conservation one has the
balance of momentum-flux through W and side boundary S (Batchelor 1967):∫

S

uun dS = −ex

∫
W

Uu′ dS,

by which and identity (3.69) one transforms (11.79) to (Yates and Donaldson
1986)

L = −
∫
W

uw dS, Din =
1
2

∫
W

(q2π − u′2) dS, (11.85)

where q2π = v2 + w2. Note in passing that substituting these and (11.83) into
(11.76), we recover the conventional wake integrals for lift and drag, which
are a component form of (2.74) and have been the standard starting point of
flow diagnosis by experimentally measured wake data:

L = −ρ
∫
W

uw dS, (11.86a)

D =
∫
W

[(p∞ − p) + u(U − u)] dS. (11.86b)

However, (11.85) no longer has vortical form nor exhibits local dynamics.
Unfortunately, there is no other way but the kinematic identity (3.69) to cast
the Lamb-vector volume integral to boundary integral. Therefore, in exact
form one has to be satisfied with either the compact vortical form (11.76)
but allowing for volume integral, or wake integrals (11.85) over a large W .
In other words, it is impossible to exactly express the lift and induced drag by
any wake integrals over the vortical region only.

Nevertheless, some approximate formulas solely in terms of integrals over
Wv are available. For the induced drag, so far the best result is the leading-
order approximation (11.81b). For the lift, the best result follows from trans-
forming (11.86b) by identity (A.26) (Wu and Wu 1989):

L = ρ

∫
Wv

y[uωx − (vωy + wωz)] dS + ρ

∫
W

(wv,x − vw,x) dS, (11.87)

of which the leading order is (11.80) or again (11.38). The second integral in
(11.87) represents a small near-field correction to ensure the lift is independent
of x, of which the integrand is not confined to Wv.

Equation (11.87) has been applied to the diagnosis of a steady incom-
pressible flow over a delta wing with leading-edge vortices, based on the
measured data over a wake plane near the trailing edge (Wu et al. 1996).12

12 In Wu and Wu (1989) and Wu et al. (1996) the drag formula is in error.
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Fig. 11.22. Spanwise distribution of normal force and its vortical constituents over
a half delta wing. From Wu et al. (1996)

The wing has sharp leading edge of 76◦ sweeping angle, and is at α = 20◦ and
Re = 1.14× 106 ft−1. With coordinates fixed to the wing, the wake plane W
is at x/c = 0.075 downstream of the trailing edge, on which a set of measured
data of (u, v, w, p, P ) for half wing was utilized to infer the three vorticity
components. The data show a strong leading-edge vortex, of which the core
axial velocity is as high as u = 1.8U . This is the key structure of producing
the normal force along with a negative axial force.

Figure 11.22 shows the spanwise normal load distribution from wing cen-
terline to wing tip (integration along z has been performed) computed from
(11.87). Also shown are separate contributions from ωx, ωy, and ωz in its
Wv-integral. The vortical wake integral of yuωx is dominant, leading to a lo-
cal peak of lift/drag ratio of order 10 at the leading-edge vortex location. A
weaker peak of normal load appears outside the wing tip, which is the place
where boundary layers (dominated by that from the lower surface) leave the
wing, with very low total pressure and hence a large axial force. The local
Cl/Cd there is only of order one. Therefore, a better aerodynamic performance
would be gained if the wing tip is properly cut off, as in many successful wing
designs.

Forces in Terms of Flow Data Downstream of a Wake Plane

There are occasions where the flow-field survey can hardly be done around
the body, and what one can measure is only a downstream wake. Hence, it is
of interest to see whether an observer sitting in such the wake, without seeing
the flow around body at all, can still infer exactly the same F as (11.86). We
show that the answer is positive.

Use a wake plane W to cut the whole space V∞ into a “front” and a
“rear” control volumes, V and R, respectively, see Fig. 11.23. Conceive that



11.5 A DMT-Based Arbitrary-Domain Theory 633

V
W R

Fig. 11.23. The “front” and “rear” control volumes V and R divided by a wake
plane W , with V +R = V∞

a front observer A and a rear observer B can only see the flows in V and R,
respectively. Kinematically, the two observers are linked by relations∫

V

ω dV =
∫
Wv

ωxx dS,
∫
Wv

ωx dS = 0, (11.88)∫
R

l(x, t) dV = −
∫
V

l(x) dV. (11.89)

Dynamically, their bridge can be found from the vorticity-moment formula
(11.48), by which it easily follows that

F = −ρ
(
dIV
dt

+
dIR
dt

)
= −ρ∂IR

∂t
. (11.90)

Shifting ∂/∂t into the integral over R and using (A.23) to manipulate the
result, since viscous terms are dropped on W , (11.90) becomes

F = ρ

∫
R

l dV +
ρ

2

∫
Wv

x× (n̂nn× l) dS, n̂nn = −ex, (11.91)

which is evidently nothing but (11.76) due to (11.89). Physically, the rear ob-
server sees that at the upstream end of R there comes a vortex pair satisfying
(11.88), carrying a flux of vorticity moment into R through Wv via the second
term of (11.91). This vortex pair is connected to the starting-vortex system
to form an unsteady horseshoe vortex, and the area spanned by the vortex
(cut by Wv) is increasing as shown by (11.90), which implies the vortex force
in (11.91).

11.5.4 Further Applications

Before closing this section, we present two more applications of the derivative-
moment transformation. We first extend our discussion on experiment-oriented
force formulas to unsteady flow. We have seen that to obtain exact lift and
drag in steady flow, the minimum requirement is to survey at least a large area
of a wake plane where u′ �= 0. The question now is what is the corresponding



634 11 Vortical Aerodynamic Force and Moment

minimum requirement if the flow around the body is unsteady. Experimental
survey on a wake plane is certainly insufficient since the flow unsteadiness
propagates to all directions. Thus we go to the next: How about on a control
surface enclosing the body?

It has been believed that the answer is negative due to the extra volume
integral of ∂u/∂t. Moreover, even if one can make the flow survey in a finite
domain rather than merely on a wake plane, the gathered data may still be
unable to fulfill the entire Vf . For example, PIV can hardly detect the velocity
distribution adjacent to the body surface.

Contrary to the conventional idea, however, we now show that the force
formula by control-surface integral alone can be easily found once we enter the
DMT-based formulation, as first shown by Noca et al. (1999). Here we follow
Wu et al. (2005d), starting from (11.1c). When the flow is incompressible, an
application of (A.22) to its first term immediately yields the desired result:

F = −ρ d
dt

(∫
∂B

xbn dS +
∫
Σ

xun dS
)
−
∫
Σ

[pn+ρu(un−vn)−τ ] dS. (11.92)

Alternatively, by (A.25) and (11.4) we have

−
∫
Σ

pndS = −ρ

k

∫
Σ

x× (n× a) dS − µ

k

∫
Σ

x× [n× (∇× ω)] dS,

where the second term and the integral of τ in (11.92) just combine to form
FΣ given by (11.65) or (11.67). Therefore, the involvement of pressure can be
replaced by that of acceleration:

F = −ρ d
dt

(∫
∂B

xbn dS +
∫
Σ

xun dS
)
− ρ

k

∫
Σ

x× (n×a) dS+FΣ . (11.93)

For a specified body motion, since the PIV can yield the material acceleration
a (e.g., La Porta et al. 2001; Christensen and Adrian 2002) on Σ, by which
the pressure can be inferred (e.g., Liu and Katz 2004), the unsteady force can
be deduced from (11.92) or (11.93).

Unfortunately, for the total moment a formula corresponding to (11.92)
does not exist, since x×u is not divergence-free even for incompressible flow.

Equations (11.92) and (11.93) have been verified by numerical tests. One
example is a two-dimensional uniform oncoming flow U = Uex past a de-
formable airfoil at Re = 104, of which the centerline oscillates as a traveling
wave

y = a(x) sin[2π(x− ct)], (11.94)

where the amplitude a(x) is a parabolic curve. The deformable airfoil is shown
in Fig. 11.24, along with three different deformable control surfaces. Fig-
ure 11.25 is an instantaneous vorticity contour plot at phase speed c/U = 0.5,
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Fig. 11.24. A flexible airfoil with centerline defined by (11.94). Airfoil shape and
three selected deformable control surfaces Σi, i = 1,2,3. From Wu et al. (2005d)
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Fig. 11.25. An instantaneous vorticity contour plot for c/U = 0.5. Courtesy of Lu

and in Fig. 11.26 we plot the varying drag and lift computed by (11.92) and
(11.93) over a period for the three Σ-locations at this phase speed. For com-
parison the result computed by (11.1a) is also shown. This example confirms
the correctness of the derivative-moment formulas and the Σ-independent of
of the results. The drag will become a thrust when c/U > 1 (not shown).

The second example is a local-dynamics diagnosis of the internal incom-
pressible flow in a turbofan compressor, where the performance is no longer
characterized by force and moment but the derivative-moment transformation
can still be applied. After passing a row of rotor blades of angular velocity Ω
about the z-axis, the fluid gains pressure and is slowed down at the exit. We
analyze the flow in a domain V consisting of a passage between two neigh-
boring blades. Let the inlet plane at z = z0 and exit wake plane at z = z1 be
perpendicular to the z-axis, and denoted by S0 and S1, respectively. Then a
key stationary performance parameter is the total-pressure ratio, which should
be as high as possible:

β ≡ 1
S1P∞

∫
S1

P dS, P ≡ p+
1
2
ρq2, (11.95)
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where q = |u| and the overline denotes the time average over a cycle. Another
stationary performance parameter is the compressor efficiency η, which we
define based on (2.76):

η ≡ 1
ΩMz

(∫
S1

Puz dS − P∞US0

)
, (11.96)

where Mz is the moment acting to the flow by the rotating blade. Since on
both the solid blade/hub surface and the exit plane S1 the work rate done by
pressure force is much larger than that done by viscous stress, the latter is
neglected. Puz represents the total-pressure flux entering into the combustor.
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Now, to find the local flow structures that influence the total-pressure radio
β, we use cylindrical coordinates (r, θ, z) and write dS = r dr dθ in (11.95).
Since for any function f(r, θ, z, t) there is

fr =
1
2
∂

∂r
(fr2)− r2

2
∂f

∂r
,

we can make an one-dimensional derivative-moment transformation:∫
S1

Pr dr dθ =
1
2

[∫ 2π

0

(PsR
2
s − PhR

2
h)z1 dθ −

∫
S1

r2
∂P

∂r
dr dθ

]
, (11.97)

where r = Rs(z) and r = Rh(z) define the generators of the shroud and hub,
respectively, and

Ps ≡ P (Rs, z1, θ) = p(Rs, z1, θ), (11.98a)
Ph ≡ P (Rh, z1, θ) = p(Rh, z1, θ) +R2

hΩ
2 (11.98b)

due to the adherence condition. It is now evident that the local dynamics
enters the last term on the right-hand side of (11.97), through the momentum
equation (11.4). Hence, (11.95) is cast to

β =
1

2S1P∞

[∫ 2π

0

(P sR
2
s − P hR

2
h)z1 dθ +

∫
S1

ρr(ωθuz − ωzuθ) dS
]
, (11.99)

which clearly reveals that, except the boundary line integrals, the key mech-
anism is the r-component of the Lamb vector. A similar derivative-moment
transformation can be made for the integral of Puz in determining the effi-
ciency η, see (11.96):∫

S1

Puz dS =
1
2

∫
S1

r

[
ωθ(ρu2z + P )− ρuzuθωz − P

∂ur
∂z

]
dS. (11.100)

On the other hand, applying (11.45) along with (11.47) to the open surface
of the blade, after neglecting the viscous stresses we obtain

Mz = −
1
2

∫
Sb

ρr2σpz dS +
1
2

∮
∂Sb

pr2 dz, (11.101)

where Sb is the area of the blade surface with ∂Sb being its boundary line at
the juncture with the hub. Therefore, a simultaneous analysis of the integrand
of β, η, and M forms a basis of local-dynamics diagnosis and can fill the gap
between conventional analysis and blade design. the extension to compressible
flow is straightforward.

Li and Guo (2005) have applied (11.99) and (11.100) to diagnose the blade
design of a test model of low-speed compressor. Under the design condition,
the rotational speed is 3000 rpm, total-pressure ratio was 150mm (water),
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total mass flux was 2.4m3 s−1, and efficiency was 85%. They found that
the dominant local-dynamics mechanism in both (11.99) and (11.100) is a
strong ωθ > 0, of which the best favorable effect occurs at large r, i.e.,
near the shroud. By a Reynolds-averaged Navier–Stokes computation, Li and
Guo observed a quite uniform distribution of the total-pressure flux Puz
across a sectional plane at the blade trailing edge, but this performance was
deteriorated under small-flux condition and became the worst when stall
occurred. The corresponding distributions of ωθ indicated that the efficiency
drop is associated with the accumulation of large ωθ toward the region of
smaller r. Based on this diagnosis and using (11.101), then, Li and Guo con-
ducted a redesign of the blade shape, see Fig. 11.27, which improved signifi-
cantly the uniformity of the ωθ-distribution under the off-design conditions.

(a) (b)

x

y
z

x

y
z

Fig. 11.27. (a) The original blade shape of a test model of low-speed compressor,
and (b) the improved shape based on local-dynamics diagnosis. Courtesy of Li
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Fig. 11.28. The performance of the two blade shapes of Fig. 11.27. (a) total pressure
ratio. (b) Efficiency. Dashed line and solid line represent the numerical results for
the original blade and new blade, respectively. The filled circles are the experimental
results of the original blade. Reproduced from Li and Guo (2005)
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The total-pressure ratio and efficiency were accordingly enhanced at small-flux
side, as evidenced by Fig. 11.28. The stall margin is considerably enlarged.

Summary

1. The emphasis of the aerodynamics theories presented in this chapter is to
reveal the local dynamic processes that have net contribution to the total
force and moment. This information is very valuable for understanding the
physics and in flow diagnosis, configuration design, and flow control. The
local dynamic processes are measured by the spatial–temporal derivatives
of relevant flow quantities, which at large Reynolds numbers are highly lo-
calized to a few discrete peaks associated with key flow structures. These
structures have full appearance only in differential equations, but can be
made reappear in integrated force and moment by projection or derivative-
moment transformations (DMT). Both types of approaches arrive at the
same overall physical picture: at low Mach numbers the dominant mecha-
nism in the force and moment is the shearing process, while at supersonic
Mach numbers it becomes the compressing process.

2. The projection theory projects the Navier–Stokes equation onto the vector
space spanned by the unit acyclic potential velocities and then take inte-
gration. In particular, the integrated pressure force is replaced by those
terms in the momentum balance that characterize the shearing and com-
pressing processes, mainly the Lamb vector (vortex force) and density
variation. The theory applies to externally unbounded fluid at rest at in-
finity or having uniform velocity. Due to the fast far-field convergence of
the acyclic potential velocity, the force can be calculated from the flow
data in a sufficiently large but finite domain.

3. The DMT-based theory transforms the integrands of standard force and
moment formulas by the moments of their spatial–temporal derivatives
that represent the local dynamics. In its general form, the theory is for-
mulated for arbitrary domain, of which the outer boundary can extend to
infinity, remain finite, or shrink to the body surface. This flexibility per-
mits a global view, a mid-field view, a near-field view, and an on-wall close
view, respectively. At two opposite extremal views, the theory recovers the
infinite-domain vorticity-moment theory and boundary vorticity-flux the-
ory, respectively. The former is the first systematic DMT-based theory for
the force and moment, with very intuitive vortex-dynamics interpretation.
The classic incompressible aerodynamic theories can be easily deduced
from these DMT-based theories at certain approximate levels.

4. For the same flow field, each view of the DMT-based arbitrary-domain
theory has its own key dynamic mechanism as the net contributor to
the total force and moment. These include the rate of change of impulse
and angular impulse, the Lamb-vector integrals along with unsteady vor-
ticity moments, the vorticity diffusion moments, and the stress-related
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boundary vorticity fluxes, etc. These multiple pictures reflect different
evolution stages or aspects of the same flow; capturing any one of them
can lead to the correct total force and moment. Therefore, a rich “multi-
dimensional” means is available for a thorough flow analysis.

5. High-accuracy estimate of total force by experimentally measured data
also calls for unconventional expressions with easily measurable integrand.
Vorticity dynamics and DMT help achieve this goal and clarify some long-
standing issues. For steady incompressible flow at large Reynolds numbers,
the minimum requirement for the measurement is to survey a wake plane
over the region where disturbance velocity is nonzero. To survey a small
vortical region of the wake plane, one can obtain the profile drag but at
most a good yet still approximate estimate of the lift, and a rough estimate
of the induced drag. For unsteady incompressible flow, the use of a proper
DMT identity permits an accurate estimate of total force by surveying
the flow data on a control surface alone.

6. The application of derivative-moment transformations is not confined to
external flow problems. The theory may well be applied to local-dynamics
diagnosis of internal flows with different performance parameters.



12

Vorticity and Vortices in Geophysical Flows

Geophysical fluid dynamics studies the motion of the atmosphere and oceans
that cover the earth, which is the basis of meteorology and oceanography,
where the vorticity and circulation are also among the most basic concepts
as pioneered by the work of Bjerknes (1898, 1902). The self-rotation of the
earth produces the Coriolis force, which brings in many unique and attractive
topics to the vorticity dynamics and vortex motion in rotating fluid dynamics.
In particular, the conservation of the potential vorticity is so fundamental
that to a large extent the geophysical fluid dynamics may be regarded as the
dynamics of the potential-vorticity conservation.

Moreover, the coherent vortical structures in a rotating fluid are relevant to
large-scale geophysical flows, and hence to the understanding of atmospheric
and oceanic circulations as well as turbulence therein. Thus, it is important
to investigate isolated vortices, including their dynamics, instability proper-
ties, mutual interaction, and motion in rotating fluid. Owing to the Coriolis
force and approximate two-dimensionality of geophysical flows, in several ba-
sic aspects these structures and interactions are quite different from those
in a three-dimensional flow without system rotation as treated in preceding
chapters.

This chapter is an introduction to geophysical vorticity and vortex dy-
namics. We start from the basic equations in rotating and density-stratified
fluid, discussing relevant dimensional parameters, scalings, and a few fre-
quently used simplified models derived thereby. The concept of potential vor-
ticity is then introduced and some of its most significant applications are
illustrated. The evolution process of vortical structures, as well as the struc-
tures of barotropic and baroclinic vortices, are discussed later within the two-
dimensional approximation. We finally discuss the motion of strong large-scale
atmospheric vortices. For more comprehensive and in-depth materials of some
of these topics, the interested reader may consult, e.g. Gill (1982a), Bengts-
son and Lighthill (1982), Hoskins et al. (1985), Pedlosky (1987), Hopfinger
and van Heijst (1993), Voropayev and Afanasyev (1994), Salmon (1998), and
McWilliams (2005).
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12.1 Governing Equations and Approximations

12.1.1 Effects of Frame Rotation and Density Stratification

The fluids in both atmosphere and oceans are weakly density-stratified, with
the density ρ varying as the height when the fluid is at rest. For the atmosphere
we use the perfect-gas equation p = ρRT where R is the gas constant. For
seawater the equation of state can be approximated by

ρ = ρ0[1− α1(T − T0) + α2(S − S0)],

where S is the salinity (grams/kilograms), and α1 and α2 are empirically
determined constants. For large-scale fluid motion under gravity, we may as-
sume incompressibility, but general thermodynamic relations introduced in
Sect. 2.3.3 are applicable whenever necessary. Then, in an inertial frame of
reference (“absolute frame”) Σ, the continuity equation and momentum equa-
tion read, respectively,

Dρ
Dt

= 0 or
∂ρ

∂t
+ u · ∇ρ = 0, (12.1)

Du

Dt
= −1

ρ
∇p+ g + ν∇2u, (12.2)

where g is the gravitational acceleration at the earth surface. In geophysics,
however, the flows are observed in a frame of reference Σ′ fixed to the earth,
which has angular velocity Ω = Ωk, with k being the unit vector along the
rotating axis. To establish the hydrodynamic equations in such a rotating
frame, we first recall the relation between the relative acceleration viewed in
Σ′ and the “absolute acceleration” in an inertial frame Σ.

Let a vector e of constant magnitude rotate with angular velocity Ω, such
that

de
dt

= Ω × e. (12.3)

Thus, if Σ′ rotates about a point O with angular velocity Ω in which the
orthonormal basis vectors are e′

i (i = 1, 2, 3), then the rate of change of an
arbitrary vector b, appearing as b′ie

′
i in Σ′, reads

db
dt

=
db′i
dt

e′
i + b′i

de′
i

dt
=
(
db
dt

)
r

+Ω × b, (12.4)

where (db/dt)r is the relative rate of change of b. Denoting dΩ/dt by Ω̇, and
applying (12.4) to the position vector r of a fluid element from O and the
“absolute velocity” u, we have

dr
dt

=
(
dr
dt

)
r

+Ω × r or u = u′ +Ω × r, (12.5)

Du

Dt
=
(
Du

Dt

)
r

+Ω × u+ Ω̇ × r, (12.6)



12.1 Governing Equations and Approximations 643

W

eq

eφ

er

r

r
P

q

φ

Fig. 12.1. Local orthonormal triad at latitude θ

respectively, where u′ = (dr/dt)r is the relative velocity, which is related to
the absolute vorticity by

ω = ω′ + 2Ω, (12.7)

Conventionally, one calls 2Ω the planetary vorticity. Thus, the “absolute ac-
celeration” a = Du/Dt and the relative acceleration a′ = (Du′/Dt)r are
related by

a = a′ + 2Ω × u′ +Ω × (Ω × r) + Ω̇ × r, (12.8)

where the centrifugal acceleration is independent of the flow and conservative:

Ω × (Ω × r) = ∇φc, where φc =
1
2
[(Ω · r)2 −Ω2r2] (12.9)

is the centrifugal potential. Its sum with the gravitational potential φg =
−GM/r (M and G are the earth’s mass and universal gravitational constant,
respectively), Φ = φc+φg, is called the geopotential. The direction and magni-
tude of ∇Φ are still called “vertical” and the “acceleration g due to gravity”,
respectively.

The form of φc suggests that, at a point P of latitude θ, it is natural
to decompose Ω into components normal and tangent to the spherical earth
surface of radius R. As shown in Fig. 12.1, we introduce spherical coordinates
(φ, θ, r) with basis vectors (eφ,eθ,er) at a point P , pointing to east, north,
and up, respectively,1 so that

Ω = Ω⊥ +Ωπ, Ω⊥ = erΩ sin θ, Ωπ = eθΩ cos θ. (12.10)

1 In conventional spherical coordinates the meridian angle is measured from the
north pole, i.e., 90◦−θ. Note that the earth is not precisely a sphere, and for high-
accuracy analysis more complicated coordinates are necessary (e.g., Gill 1982a).
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Then (12.9) yields

∇φc = Ωπr(eθΩ⊥ − erΩπ), φc = −
1
2
Ω2
πr

2 = −1
2
Ω2r2⊥, (12.11)

where r⊥ = r cos θ is the perpendicular distance to the earth’s rotating axis.
Thus, the centrifugal force is solely due to Ωπ.

Substituting (12.7), (12.8), and (12.9) into (12.2), and neglecting Ω̇, we
obtain the Navier–Stokes equation for the relative motion of the atmosphere
and ocean in the earth’s rotating frame Σ′:

Du′

Dt
= −2Ω × u′ − 1

ρ
∇p−∇Φ− ν∇× ω′, (12.12)

of which the curl yields the transport equation for the relative vorticity:

∂ω′

∂t
+ u′ · ∇ω′ = (ω′ + 2Ω) · ∇u′ +

1
ρ2
∇ρ×∇p+ ν∇2ω′. (12.13)

Note that because ω′
,t = ω,t − 2Ω̇ and ∇ω′ = ∇ω, (12.13) can well be

expressed in terms of absolute vorticity ω = ω′ + 2Ω:

∂ω

∂t
+ u′ · ∇ω = ω · ∇u′ +

1
ρ2
∇ρ×∇p+ ν∇2ω, (12.14)

which enables computing only the absolute vorticity and relative velocity.
Recall the discussions of Sect. 4.1, we see that (12.12) contains two interior

sources of relative vorticity. One is the Coriolis acceleration 2Ω×u′, of which
the curl can be cast to

2∇× (Ω × u′) = 2B′ ·Ω, (12.15)

where B′ = ϑI−(∇u′)T is the surface deformation tensor viewed in Σ′, which
depends on the flow. To see how ω′ is created by the Coriolis force, consider
the rate of change of circulation of a closed material loop C. To isolate this
effect, assume the flow is homoentropic and inviscid. Then in (3.157) we simply
have ∇× a′ = −2B′ ·Ω, so the Kelvin circulation formula (2.32) yields

dΓ ′
C

dt
=
∫
S
(∇× a′) · dS = −2Ω ·

∫
S
dS ·B′ = −2Ω · dSSS

dt
(12.16)

due to (2.26), where SSS is the vectorial surface spanned by C. Therefore, as
sketched in Fig. 12.2, if SSS is reduced due to a velocity component u′

⊥ normal
to C, and if this vectorial area change is not perpendicular to the direction
of Ω, then there will be a net relative-vorticity creation inside the loop C. In
other words, a relative velocity gradient may create new ω′ even if the latter
is initially zero, and then stretch and tilt the created vorticity tubes. This is
a basic property of rotating fluid motion.

The second internal vorticity source is the baroclinicity due to density
stratification, see (3.157) and Sect. 4.1.2, although the fluid is treated as
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incompressible. The density variation in ocean is merely a few percentages, so
the baroclinicity effect occurs mainly in the atmosphere. To isolate this effect,
ignore the Coriolis force and viscosity, so that in the place of (12.16) we now
have (4.10a):

dΓC
dt

= −
∮
C

1
ρ
dp =

∫
S

1
ρ2

n · (∇ρ×∇p) dS. (12.17)

For example, if the air on the right is lighter than that on the left but both
experience the same upward pressure force −∇p, see Fig. 12.3, then the right
part ascends faster, resulting in a counterclockwise circulation. This circula-
tion finally disappears as ∇ρ gradually turns to the direction of ∇p. Note that
the difference of the Coriolis force and baroclinicity is that while the former
creates only relative vorticity but no absolute vorticity at all, the latter creates
both in general.

The earlier exact equations are quite complicated in applications. Since
geophysical fluid dynamics covers very wide range of length and time scales, a
rich hierarchy of simplified models of the Navier–Stokes equation (12.12) and
corresponding vorticity equation (12.13) has been developed and applied to
different problems as surveyed by McWilliams and Gent (1980). A few major
models will be introduced later.
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12.1.2 Boussinesq Approximation

The first significant simplification is the well-known Boussinesq approxima-
tion, which assumes the density variation in the atmospheric region under
study is small compared to a reference density ρ0(z) at each height z from
the earth, which is related to the reference pressure p0(z) by the hydrostatics
equation

dp0
dz

= −ρ0g. (12.18)

Namely, the effect of density stratification amounts to merely causing a buoy-
ancy . Putting the system-rotation effect aside temporarily and letting the real
pressure and density be (p, ρ) = (p0 + p′, ρ0 + ρ′) with dynamic part (p′, ρ′),
(12.12) is cast to

ρ
Du

Dt
= −∇p′ + ρ′g + µ∇2u, g = −gez.

Since by assumption ρ′/ρ0 
 1, ρ can be replaced by ρ0 on the left-hand side:

Du

Dt
= − 1

ρ0
∇p′ + σg + ν∇2u, σ ≡ ρ′

ρ0

 1, ν =

µ

ρ0
. (12.19)

Thus, the dynamic pressure force per unit mass recovers curl-free, but ∇σ×g
replaces the baroclinic term in (12.12) to become a source of vorticity.

In passing, we mention that under this approximation the continuity equa-
tion for stratified incompressible flow and the vertical component of the mo-
mentum equation for slow motion are

∂ρ′

∂t
+ w

dρ
dz

= 0, ρ0
∂w

∂t
= −∂p

′

∂z
− ρ′g,

respectively. Eliminating ρ′ then yields

∂2w

∂t2
+N2w = − 1

ρ0

∂2p′

∂z∂t
, (12.20)

where

±N ≡ ±
√
− g

ρ0

dρ
dz

(12.21)

has dimension [T ]−1 and is referred to as as the buoyancy frequency (com-
monly known as the Brunt–Väisälä frequency), because if p′ = 0 in (12.20)
then a vertical motion of a fluid parcel will be produced solely by the buoy-
ancy as restoring force at frequency N . Under the Boussinesq approximation,
a density-stratified flow will be hydrostatically stable if dρ/dz < 0 and unsta-
ble if dρ/dz > 0.
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Evidently, the Boussinesq approximation of (12.13) is

∂ω′

∂t
+∇× (ω′ × u′) = 2Ω × u′ +∇σ × g + ν∇2ω′. (12.22)

Further approximations require scale analysis to identify the leading-order
mechanisms. To this end we nondimensionalize (12.22). Let L and U be the
characteristic length and velocity scales of the relative fluid motion under
consideration so that the time scale is L/U , we obtain (dimensionless relative
quantities are denoted by the asterisk)

Ro

{
∂ω∗

∂t∗
+∇∗ × (ω∗ × u∗)

}
= 2k · ∇∗u∗ − 1

Fr
∇∗σ × ez + Ek∇∗2ω∗,

(12.23a)

where, with the Reynolds number defined by Re = UL/ν as usual,

Ro =
U

ΩL
, Ek =

ν

ΩL2
=

Ro

Re
, Fr =

ΩU

g
(12.23b)

are the Rossby number, Ekman number, and Froude number, respectively. The
Rossby number measures the relative importance of the relative and planetary
vorticities. Then, since Ek ∼ Ro/Re, except within the terrestrial boundary
layer where the viscous effect is significant, large-scale flows with Ro = O(1)
or smaller all have Ek 
 1 (for ocean there is Ek = 10−14). Thus we ignore
the viscosity in the rest of this chapter.

The orders of magnitude of the Rossby numbers for several typical flows
on the earth, along with their characteristic length and velocity scales, are
listed in Table 12.1. The most intense atmospheric vortices are hurricanes
(typhoons in the North-Western Pacific) and tornados at small and large
Ro, respectively, which are associated with extreme and hazardous weather
events.

Table 12.1. The orders of magnitude of the Rossby numbers for typical geophysical
fluid flows

flow phenomena length scales velocity scales orders of Ro

bath-stub vortex 1 cm 0.1m s−1 105

dust devil 3m 10m s−1 3× 104

tornado 50m 150m s−1 3× 104

hurricane 500 km 50m s−1 1
low-pressure system 1,000 km 1.5m s−1 10−1

oceanic circulation 3,000 km 1.5m s−1 3× 10−3

From Lugt (1983)
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12.1.3 The Taylor–Proudman Theorem

If the inviscid fluid motion is barotropic, the Rossby number will be the only
dimensionless parameter. It is then evident from (12.23a) that a small-Ro flow
has yet another remarkable feature:

lim
Ro→0

2k · ∇u∗ = 0. (12.24)

Namely, any slow steady motion in a rapidly rotating system tends to be in-
dependent of the axial position. This result was first pointed out by Hough
(1897) according to Gill (1982a,b), then by Proudman (1916), and then ex-
perimentally confirmed by Taylor (1923). Taylor’s flow visualization photos
with a rotating dish are shown as Plate 23 of Batchelor (1967). A drop of
colored fluid is quickly drawn out into a thin cylindrical sheet parallel to the
rotating axis. More astonishingly, a short obstacle moving at the bottom of
the dish can carry an otherwise stagnant column of the fluid with it (the Tay-
lor column), see the sketch of Fig. 12.4. Although not in mathematical rigor,
this result is now known as (cf. Batchelor 1967).

The Taylor–Proudman Theorem . Steady motions at small Rossby num-
ber must be a superposition of a two-dimensional motion in the lateral plane
and an axial motion which is independent of the axial position.

The considerable significance of the Taylor–Proudman theorem in geophys-
ical flows was later realized, and since then many experiments and numerical
simulations have confirmed the tendency of the flow to be two-dimensionalized
as Ro→ 0; e.g., Carnevale et al. (1997) and references therein. Recent studies
have explored into the dynamic process toward two-dimensionalization and
into rotating turbulence, e.g., Wang et al. (2004), Chen et al. (2005), and
references therein.

We remark that the Taylor–Proudman theorem can be understood in a dif-
ferent way. If an inviscid and barotropic relative flow is steady with nonlinear

W

Fig. 12.4. The Taylor column in a rapidly rotating fluid
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advection being identically zero, then the motion must be exactly described
by the theorem even if Ro is not small.2

12.1.4 Shallow-Water Approximation

We return to the general inviscid equations and from now on drop the prime for
relative quantities. While for planetary-scale motion the spherical coordinates
(φ, θ, r) of Fig. 12.1 are appropriate (cf. Batchelor 1967), our main concern
will be the motion with characteristic horizontal length L ∼ R∆θ of order of
100 km or larger (∆θ is the latitude variation around a reference value θ0),
but still much smaller compared to the earth radius R. Namely, if D is the
average depth of the atmosphere and oceans, we have

L

R

 1, |∆θ| 
 1,

D

L
= ε
 1, (12.25a,b,c)

by which some further simplifications can be made.
First, inequality (12.25a) implies that the effect of the earth curvature

can be neglected, thus we may replace the spherical coordinates (φ, θ, r) in
Fig. 12.1 by local Cartesian coordinates (x, y, z) on the earth surface, with
velocity components (u, v, w). This simplifies the inviscid version of (12.12) to

Du
Dt

+ 2Ωπw − 2Ω⊥v = −1
ρ

∂p̃

∂x
, (12.26a)

Dv
Dt

+ 2Ω⊥u = −1
ρ

∂p̃

∂y
, (12.26b)

Dw
Dt
− 2Ωπu = −1

ρ

∂p̃

∂z
− g, (12.26c)

whereΩ⊥ and Ωπ are given by (12.10), and p̃ = p + ρφc is the modified
pressure.

Secondly, let U be the characteristic horizontal velocity. Then (12.25c)
implies w = O(εU) and ωx, ωy = O(εωz). Retaining the O(1) terms only in
(12.26) then leads to the shallow-water approximation for large-scale geophysi-
cal flows, where the fluid motion is basically horizontal (horizontal components
are denoted by subscript π). The bottom boundary of the flow is allowed to
have slowly-varying topography z = hB(x, y), and the upper free boundary
z = η(x, y, t) may similarly have slow tidal motions at the scale of L, see
Fig. 12.5.

We now combine the shallow-water model and Bousinnesq approximation.
Let p̃ = p0(z) + p′ as before and denote p′ = ρ0(z)π, such that only the

2 For example, Carnevale (2005, private communication) noticed that this would be
the case if the relative motion is a steady axisymmetric and inviscid pure vortex,
strictly governed by (6.18).
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Fig. 12.5. Shallow-water approximation for large-scale geophysical fluid motion

vertical gradient of p0 balances the gravitational force and that of π balances
the vertical acceleration Dw/Dt. Then integrating (12.18) from z to η yields

p̃(x, y, z, t) = ρ0g[η(x, y, t)− z] + ρ0π(x, y, z, t). (12.27)

But, there is

∇ππ ∼
D

L

∂π

∂z
∼ D

L

Dπw
Dt
∼ ε2

U2

L
,

which can be dropped. On the other hand, in (12.26a) we have |Ωπw| 
 |Ω⊥v|,
so the Ωπ-term can be dropped. Another Ωπ-term in (12.26c) should then be
dropped simultaneously, for otherwise the energy conservation would be vio-
lated (e.g., Salmon 1998). Consequently, the Coriolis force is solely controlled
by

2Ω⊥ = 2ezΩ sin θ ≡ f = ezf, (12.28)

where f is called the Coriolis parameter. In contrast, Ωπ only contributes to
∇φc as a modification of the “vertical” direction and the “acceleration g due
to gravity” (see the context following (12.9)). Therefore, by using (12.27) with
∇ππ dropped, and denoting u = v + wez with horizontal velocity v = (u, v)
independent of z, the momentum equation is simplified to

Dπv
Dt

+ fez × v = −g∇πη = − 1
ρ0
∇πp, (12.29)

where and below Dπ/Dt ≡ ∂/∂t+ v · ∇. Thus, the horizontal fluid motion is
somewhat like a Taylor column.3

3 The quasi two-dimensional feature exists in shallow-water approximation even
without system rotation. This feature is then enhanced by the rotation if the
Rossby number is small.
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Moreover, although w is neglected in (12.28), as in the boundary layer
theory the continuity equation ∇ · u = 0 has to be exactly satisfied:

∇π · v ≡ δ = −∂w
∂z

. (12.30a)

But since δ equals the rate of change of the cross area A of a vertical fluid
column, which is in turn related to that of the column height h(x, y, t) =
η(x, y, t)− hB(x, y), we have

∂w

∂z
= − 1

A

DπA
Dt

or δ = − 1
h

Dπh
Dt

. (12.30b)

Combining this and (12.30a) yields

∂h

∂t
+∇π · (vh) = 0. (12.31)

Equations (12.29) and (12.31) are the primitive equations in shallow-water
approximation. Note that w depends on z only linearly.

Then, (12.25b) implies that, in considering the variation of the Coriolis
parameter at latitude, it suffices to retain the first two terms of the Taylor
expansion:

f(θ) � 2Ω sin θ0 + 2Ω(θ − θ0) cos θ0

= 2Ω sin θ0 + 2Ω cos θ0
y

R
≡ f0 + β0y, (12.32a)

where
β0 ≡

2
R
Ω cos θ0, y = R(θ − θ0). (12.32b)

Then (12.29) is reduced to

Dπv
Dt

+ (f0 + β0y)ez × v = −g∇πη = − 1
ρ0
∇πp, (12.33)

which is called β-plane model although (x, y) vary along the sphere, and is
accurate near x = 0. The motion caused by the variation of f with θ is called
the β-effect. Simpler than this, if L/R is negligible, we may simply take f = f0
and obtain an approximation called the f -plane model.

It is of interest to look at the dimensionless form of (12.29) made by the
horizontal characteristic length L and velocity U , but η is set to be η = Dη∗.
Then

Ro
∂v∗

∂t∗
+ ez × v∗ = − ε

Fr
∇∗
πη

∗, ε =
D

L
, (12.34)

where Fr is the same as in (12.23b) and Ro = U/fL is the local Rossby
number . Sometimes the Froude number is alternatively defined as

F ′ ≡ U√
gD

or F ′′ ≡ U

ND
, (12.35a)
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where N is the buoyancy frequency and, as will be seen in Sect. 12.3.3,
√
gD is

the phase velocity of the gravity wave, which for D = 2km is about 440m s−1.
Then (12.34) can be rewritten

Ro
∂v∗

∂t∗
+ ez × v∗ = −Ro

F ′2∇
∗
πη

∗. (12.35b)

Thus, for a steady flow with Ro
 F ′2, the Taylor–Proudman theorem holds.
Finally, it is often convenient to replace (12.29) by the equivalent equations

for vertical vorticity ζ and horizintal divergence δ. Denote ζa = ez(ζ + f) as
the absolute vertical vorticity and recast (12.29) to

∂v

∂t
+ ζa × v = −g∇π

(
η +

1
2g
|v|2

)
,

so that its curl yields

∂ζa
∂t

+ v · ∇πζa + ζaδ = 0. (12.36)

Thus, along with the horizontal divergence of (12.29) and substituting
h(x, y, t) = η(x, y, t)−hB(x, y) into (12.31), see Fig. 12.5, we obtain the prim-
itive shallow-water equations for three scalar variables (ζ, δ, η):

∂ζ

∂t
+ fδ + βv = −∇π · (vζ), (12.37a)

∂δ

∂t
− fζ + βu+ g∇2

πη = −∇π · (v · ∇πv), (12.37b)

∂η

∂t
−∇π · (vhB) = −∇π · (vη), (12.37c)

where the nonlinear advection terms are put on the right-hand side for clarity.
Of course we may also introduce scalar potential χ(x, y, t) and stream function
ψ(x, y, t) by

v = ∇πχ+ ez ×∇ψ, (12.38)

such that δ = ∇2
πχ and ζ = ∇2

πψ, and use (χ,ψ, η) as dependent variables.

12.2 Potential Vorticity

In geophysical flows the potential vorticity defined by (3.106) plays a key role.
In a rotating system its general definition is

P ≡ 1
ρ
(ω + 2Ω) · ∇φ (12.39)

for any scalar φ satisfying Dφ/Dt = 0. When the absolute flow is circulation-
preserving or ∇φ is perpendicular to the vorticity diffusion vector ∇× a, the
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Ertel potential-vorticity theorem stated in Sect. 3.6.1 holds true and has been
proved extremely useful:

DP
Dt

= 0. (12.40)

Rossby (1936, 1940) was the first to introduce the concept of potential
vorticity to the fluid motion in oceans. Quite soon afterwards Ertel (1942)
established independently the theorem now associated with his name, but
with φ being a meteorological quantity. For a review of this early history and
later developments see Hoskins et al. (1985).

In this section we first introduce the barotropic (Rossby) potential vor-
ticity and illustrate its rich consequences in both atmospheric and oceanic
motions. We then turn to baroclinic (Ertel) potential vorticity and go beyond
the conservation condition, to see in what situation and how the combined
distributions of entropy and Rossby–Ertel potential vorticity can characterize
and uniquely determine the entire atmospheric motion.

12.2.1 Barotropic (Rossby) Potential Vorticity

Consider the shallow-water approximation and observe that (12.36) has
the same form as (3.98c) for two-dimensional compressible and circulation-
preserving flow. Moreover, a comparison of (12.30b) and the general continuity
equation (2.40) clearly indicates that the role of variable density in the latter
is now played by the variable fluid-layer depth. Therefore, by inspecting the
two-dimensional and circulation-preserving version of the Beltrami equation
(3.99), namely (3.137), we see at once that, as the Beltramian form of the
vorticity equation for barotropic flow under the shallow-water approximation,
there is (Rossby 1936, 1940)

Dπ
Dt

(
f + ζ

h

)
= 0. (12.41)

The quantity in the brackets is referred to as the barotropic potential vortic-
ity or Rossby potential vorticity P , of which the corresponding Lagrangian
invariant scalar φ, see (12.39), can be found by inspecting (12.30b) where A
and h are independent of z. Thus, w depends on z linearly :

w = (hB − z)ϑπ + wB,

where wB is the vertical velocity at the bottom z = hB(x, y) determined by
the no-through condition

wB =
DπhB
Dt

= v · ∇hB.

Hence, by (12.30b), it follows that

w − v · ∇hB =
Dπ
Dt

(z − hB) =
z − hB

h

Dπh
Dt

,



654 12 Vorticity and Vortices in Geophysical Flows

from which we find
φ =

z − hB
h

,
Dπφ
Dt

= 0. (12.42)

The simple conservative equation (12.41) has very clear physical meaning
and significant consequence. First, for constant h, if a vertical fluid column
(since the flow is treated as inviscid, the vorticity can terminate at upper
and lower boundaries) on the northern hemisphere moves northward into a
region of larger f , its relative vorticity will decrease, and vice versa if it moves
southward.

Then, for constant f > 0 (say, a column in a rotating tank of fluid or
carried by a west wind), the absolute vertical vorticity ζa in the tube must
be proportional to h. Larger h must be associated with the stretching of the
tube, and vice versa. Thus, assuming |ζ| < |f |, if initially ζ = 0, as the column
moves to a deeper h a ζ > 0 must be produced, just as if it moves southward
with constant h; while at shallower h a ζ < 0 will be created just as if it moves
northward. These relative rotating flows are called cyclone and anticyclone
in meteorology. In short, a vorticity column stretching produces cyclonic vor-
ticity, and its shrinking produces anticyclonic vorticity. Therefore, a proper
choice of the bottom topography in a rotating-tank experiment may lead to
the same dyanamic effect as the Coriolis parameter varies (e.g., Carnevale
et al. 1991a,b; Hopfinger and van Heijst 1993), which provides a convenient
method to experimentally study the motion of barotropic vortices.

Moreover, assume for simplicity the flow is along a latitude line θ0 with
v = 0. Then if at some x-location the air raises up due to a local high tempera-
ture and form a low pressure region at low altitude so that the surrounding air
merges toward this location, then by (12.41) at the low-pressure center a cy-
clone can be formed. But when the up-raising air stream reaches high altitude
to form a local high-pressure region, the air stream will move away to sur-
rounding regions, so by (12.41) an anticyclone can be formed. Therefore, the
cyclone in low-pressure region and anticyclone in high-pressure region appear
in pair, see the sketch of Fig. 12.6.

12.2.2 Geostrophic and Quasigeostrophic Flows

In terms of the streamfunction introduced by (12.38), (12.41) can be cast to

∂P

∂t
+ [ψ, P ] = 0, (12.43)

where [ψ, ·] is the horizontal Jacobian operator similar to that used in
Sect. 6.5.1 for two-dimensional flow. However, this equation alone cannot be
solved for ζ and h which are still coupled with δ in (12.37). In studying
large-scale geophysical flows approximations derived from but simpler than
(12.37) are often used. The relative importance of the inertial force and
Coriolis force depends on the local Rossby number Ro = U/fL. For the
earth we have Ω = 7.29 × 10−5s−1 and f = 1.03 × 10−4s−1 at θ = 45◦. If
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(a)

(b)

(c)

Fig. 12.6. The formation of a cyclone (a) and anticyclone (b) due to the potential-
vorticity conservation, and their connection (c) by vertical airstream. From Lugt
(1983)

L ∼ 1, 000 km, the inertial force could be comparable with the Coriolis force
only if U ∼ 100m s−1, which seldom occurs. Therefore, as a crude approxi-
mation at Ro 
 1, we neglect the relative acceleration so that the pressure
gradient or free-surface elevation is solely balanced by the Coriolis force. The
flow under this balance is called the geostrophic flow, which must be steady :

f0ez × v = −g∇πη or f0v = gez ×∇η. (12.44)

By (12.38), we see χ = 0 so the v-field is incompressible. The streamlines must
be perpendicular to the pressure gradient, or along a streamline the pressure
is constant. Moreover, ψ must be proportional to η up to an additive constant;
so we write

ψ = λ2∆η∗, λ2 ≡ gD

f0
, ∆η∗ ≡ η −D

D
. (12.45)

The scalar λ has the dimension of length and is known as the Rossby de-
formation radius, which characterizes the behavior of rotating flow subject
to gravitational restoring force. The large-scale flows on the earth, such
as the westerly belt at middle latitudes, the atmospheric low-pressure sys-
tem, hurricane or typhoon, and oceanic circulation, all have small Rossby
numbers and to the leading order can be modeled as geostrophic flow.
Note that a geostrophic flow satisfies the condition of the Taylor–Proudman
theorem.

Despite its simplicity, the steady solution (12.44) involves no evolution
and is useless in weather and ocean prediction. To find the the next-order
approximation called the quasigeotrosphic flow, denote h∗

B = hB/D such that

h = D(1 + ∆η∗ − h∗
B), (12.46)
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and assume

Ro =
U

f0L

 1, β∗ ≡ βL

f0

 1, |∆η∗|, |h∗

B| 
 1. (12.47)

Then we can substitute the geostrophic ψ–η relation (12.45) into the potential
vorticity equation (12.41), retain the leading-order terms, to remove η in an
iterative way. Denote y∗ = y/L and replace P by P̂ = DP in (12.43), we find
(Salmon 1998)

P̂ =
D

h
(f + ζ) � f0(1 + β∗y∗ +∇2

πψ/f0)(1−∆η∗ + h∗
B)

� (∇2
π − λ−2)ψ + f + f0h

∗
B = f0 + P ′,

where f0(1 + h∗
B) is a background potential vorticity and

P ′ = (∇2
π − λ−2)ψ + f0h

∗
B + βy (12.48)

is the potential vorticity due to the relative motion. Recall that λ−2ψ = ∆η∗

in geostrophic model represents the stretching effect of vertical vorticity due
to the depth variation caused by the upper-boundary elevation. Then the
governing equation for quasigeotrosphic flow with a single unknown ψ follows
from substituting (12.48) into (12.43):

(∇2
π − λ−2)

∂ψ

∂t
+ [ψ,∇2

πψ + f0h
∗
B] + β

∂ψ

∂x
= 0, (12.49)

which has been widely utilized in studies of large-scale barotropic geophysical
vortices and will serve as the basic equation for most of our analyses in the rest
of this chapter. We stress that solving (12.49) for specified initial and bound-
ary conditions is a typical geophysical vorticity-vortex dynamics problem. An
important example will be given in Sect. 12.3.4.

12.2.3 Rossby Wave

In the atmosphere and ocean there are many types of waves, such as internal-
gravity wave, tropographic wave, Kelvin wave, etc. which are modified by
the system rotation. Weak wave solutions are obtained from the linearized
governing equations. For example, in the shallow-water approximation, by
neglecting the nonlinear advections in (12.37), and using the (χ,ψ) expression
of v given by (12.38), one can obtain coupled wave equations for (χ,ψ, η),
which permitting free traveling waves. If we assume a constant f = f0 and
β = 0 so that it suffices to consider only the x-wise traveling wave of the form
exp[i(kx−ωt)], then for hB = 0 one finds a dispersive relation (e.g., Pedlosky
1987; Gill 1982a,b; Salmon 1998)

ω[ω2 − (f20 + gDk2)] = 0. (12.50)
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Here, ω = 0 corresponds to steady geostrophic flow (no wave), and ω =
±
√
f20 + gDk2 correspond to inertial-gravity waves traveling in opposite di-

rections. In the long-wave limit λ2k2 
 1 we have inertial wave with ω � ±f0,
corresponding to neglecting −g∇πη in (12.29); while in the short-wave limit
gDk2  1 we have gravity wave with ω � ±

√
gDk, corresponding to ne-

glecting the Coriolis force in (12.29). The gravity wave has phase speed
c = ω/k =

√
gD.

While by (12.50) all inertial-gravity waves have ω ≥ |f |, one type of wave
is of extreme importance for large-scale meteorological process. This is the
Rossby wave, a planetary vorticity wave as the direct consequence of the
absolute-vorticity conservation motion caused solely by the β-effect. While
the Rossby wave can be studied by the linearized version of (12.37) by retain-
ing the β-effect, a simple way is to use the quasigeostrophic equation (12.49)
of which the only wave solution is the Rossby wave.4 Here we consider free
plane Rossby wave as an elementary description of the phenomenon. Compre-
hensive reviews on various Rossby waves have been given by Platzman (1968)
and Dickinson (1978).

For flat bottom topography, the linearized form of (12.49) is

(∇2
π − λ−2)

∂ψ

∂t
+ β

∂ψ

∂x
= 0, ψ = λ2∆η∗, (12.51)

which permits plane traveling wave solution ψ = ψ0 exp[i(kx+ ly − ωt)]. Let
l = 0 for neatness, by (12.51) we find the dispersive relation

ω = − βλ2k

1 + λ2k2
, (12.52)

so the phase velocity c = ω/k and group velocity cg = ∂ω/∂k are

c = − βλ2

1 + λ2k2
, cg = −βλ2

1− λ2k2

(1 + λ2k2)2
. (12.53)

Hence, if f = f0 and β = 0, there is no wave again as in steady geostrophic
flow. For β �= 0 not assumed in deriving (12.50), when k = λ−1 ≡ kR we
have maximum frequency ωmax = −βλ/2 and minimum period Tmin = 4π/βλ
(about 4.5 days at midlatitude, longer than the earth-rotation period). Note
that on the northern hemisphere with β > 0 the zonal phase velocity is always
westward, but the group velocity changes from westward to eastward as k
reduces through−λ−1 and reaches cgmax = βλ2/8 at λk = −

√
3. The situation

is plotted in Fig. 12.7. Only in the short-wave limit ω � −β/k is independent
of the deformation radius, corresponding to a simplified potential vorticity
P � ζ + f in (12.41), which is just the absolute vertical vorticity.

If there is a westerly belt along the altitude θ0 with constant basic state
u = U on which a free Rossby wave happens, then the phase speed will

4 As one goes from more refined approximations to rougher ones, less types of waves
can be studied.
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Fig. 12.7. The dispersion relation of the Rossby wave on the (λk, ω/βλ)-plane.
Reproduced from Gill (1982a)
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Fig. 12.8. The Rossby wave in the westerly belt. Solid and dashed marks represent
the ambient potential vorticity f and newly produced relative vorticity ζ, respec-
tively. The larger and smaller sizes of the solid marks indicate f increase or decrease
as altitude. Adapted from Lugt (1983)

be U + c. Assume the variation of h is negligible, then the vorticity-dynamic
mechanism for its formation is solely the conservation of f+ζ or the variation
of f as y. To gain an intuitive understanding, consider fluid columns 1, 2, and
3 as shown in Fig. 12.8, which are initially at the same latitude with the same
f0. Suppose a disturbance shifts column 2 northward as shown, so that its f is
increased. To reserve the potential vorticity, ζ2 must be accordingly reduced,
or a new ζ2 < 0 or clockwise circulation is created. This negative ζ2 will induce
column 1 to move northward where a new ζ1 < 0 must be created too; but
meanwhile induce column 3 to move southward where a new ζ3 > 0 has to
be created. Then, the newly created ζ1 and ζ3 will in turn induce column 2
to move back to the south, but due to the inertia it will go beyond the initial
equilibrium position and gain some new ζ2 > 0. In this way, the oscillation is
continued.

Mason (1971) reported that, to observe the Rossby wave in the westerly
belt, a balloon was released from New Zealand and maintained at about the
height of 12 km, which floated as the west wind. The balloon moved around
the earth by 8.5 cycles during 102 days and its location was recorded by radio



12.2 Potential Vorticity 659

signals which visualized the Rossby wave. The result is qualitatively similar
to the sketch of Fig. 12.8.

12.2.4 Baroclinic (Ertel) Potential Vorticity

Rossby’s concept of potential vorticity was given a full generality by the
Ertel theorem, which holds for any Lagrangian invariant scalar φ in three-
dimensional flow under the assumed condition. A few different special poten-
tial vorticities have then been proposed, of which the most important one that
finds wide applications in meteorology is the isentropic potential vorticity.

Assume the motion of an air parcel is inviscid and without internal heat
addition and conduction. Then by (2.61) the flow is adiabatic with Ds/Dt = 0.
Substituting p = ρRT into (2.64) yields

ds = Cpd ln T −Rd ln p,

of which the integration from state (p, T ) to a reference state (pr, Tr) yields

Tr = T

(
pr
p

)R/Cp

exp [(sr − s)/Cp]. (12.54)

Thus, the temperature that a dry fluid parcel at (p, T ) would have, if it were
compressed or expanded adiabatically to the reference pressure pr, is

θ ≡ T

(
pr
p

)R/Cp

, (12.55)

which is called the potential temperature.5 In an adiabatic process θ and s
are both Lagrangian invariant; a fluid motion along an iso-θ surface must be
isentropic. This observation permits defining an isentropic potential vorticity
(IPV)

P =
ω + 2Ω

ρ
· ∇θ, (12.56)

of which the Lagrangian invariance is the specification of the Ertel theorem
to the inviscid and adiabatic motion of the atmosphere.

Moreover, for the stably stratified atmosphere with ∂p/∂z = −ρg, θ must
be a monotonically increasing function of height z, and hence can serve as an
independent vertical coordinate. Since now a mass element can be expressed
as

δm = ρδAδz = −1
g

δAδp =
δA
g

(
−∂p
∂θ

)
δθ

we see that the “density” in the (x, y, θ) space is

σ ≡ −1
g

∂p

∂θ
. (12.57)

5 Here the notation θ should not be confused with the latitude.
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Then, similar to the horizontal gradient ∇π in Sect. 12.2.1, we may now in-
troduce the isetropic gradient ∇θ, with the subscript θ denoting derivatives
along an iso-θ or isentropic surface. For instance, the isentropic vorticity is
defined as

ζθ = k · (∇θ × u) =
(
∂v

∂x

)
θ

−
(
∂u

∂y

)
θ

. (12.58)

Therefore, the IPV defined by (12.54) can also be written as

P =
f + ζθ

σ
,

DθP
Dt

= 0, (12.59)

which is the commonly used form.
In meteorology, along with the potential temperature and specific hu-

midity, the barotropic (Rossby) or isentropic potential vorticity is the third
Lagrangian marker to identify an air parcel. This is true even diabatic heating
and frictional or other forces are acting, due to the following theorem proved
by Haynes and McIntyre (1987):

Theorem . There can be no net transport of Rossby–Ertel potential vorticity
(PV) across any isentropic surface. Within a layer bounded by two isentropic
surfaces, PV can neither be created nor destroyed.

Starr and Neiburger (1940) were the first to construct IPV maps for the
299–303K isnetropic layer over North America for 21 and 22, November 1939,
and found that for three air parcels the conservation of IPV was approximately
satisfied. However, their work as well as the later important studies by, e.g.
Kleinschmidt (1950a,b, 1951, 1955, 1957), Reed and Sanders (1953), Obukhov
(1964), and Danielsen (1967, 1968), among others, have made it clear that the
significance of PV is far more than being an air-tracer.

Most importantly, PV maps are a natural diagnostic tool for making
dynamic processes directly visible and comparisons between atmospheric mod-
els and reality meaningful. Just like from a given vorticity field one can re-
versely obtain its “induced” entire flow field under proper boundary conditions
(Sect. 4.5.1), there is also an invertibility principle that allows one to deduce
the “induced” stream function and hence the wind field by a given PV map.
In fact, combined with potential temperature maps, the invertibility principle
holds true even for the potential vorticity in baroclinic flow. The situation is
very similar to that in classic aerodynamics as we saw in Chap. 11; to quote
Hoskins et al. (1985):

“Thus one can, if one wishes, think entirely in terms of the (barotropic)
vorticity field, since this contains all the relevant information; and indeed the
simplifying power and general usefulness of this particular mode of thinking
about rotational fluid motion has long been recognized, and made routine use
of, in another field, that of classic aerodynamics” (e.g. Prandtl and Tietjens
1934; Goldstein 1938; Lighthill 1963; Batchelor 1967; Saffman 1981).
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Hoskins et al. (1985) stress that, as in deducing the flow field from a given
vorticity distribution, given an IPV map that by (12.56) is the product of
absolute vorticity and static stability, additional information is necessary for
determining both separately, and hence the wind, pressure, and temperature
fields. This includes:

1. specify some kind of balance condition;
2. specify some reference state, expressing the mass distribution of θ;
3. solve the inversion problem globally with proper boundary conditions

(a purely local knowledge of P cannot determine the local absolute vor-
ticity and static stability separately).

Hoskins et al. (1985) have constructed daily Northern Hemisphere IPV
maps for numerous isentropic surfaces for the 42 days from 20 September to
31 October 1982, and made a detailed analysis to demonstrate the invertibility
principle. Here we illustrate how the principle works by a simple theoretical
model problem (Thorpe 1985; Hoskins et al. 1985).

Let the reference state be a horizontally uniform atmosphere with constant
f . The mass distribution of potential temperature θ is specified by prescribed
static pressure p as a monotonically decreasing function of θ: p = pref(θ), so
the reference state is stable. On each isentropic surface the reference state has
a constant IPV. Assume now that there is a circularly symmetric PV anomaly
on some of the isentropic surfaces, centered at r = 0. Then since the adiabatic
heating and friction are ignored, the flow must be steady, nondivergent and
purely azimuthal with only a circumferential wind velocity v(r, θ), where θ
is the potential temperature. Thus, in polar coordinated (r, θ) the relative
vorticity is

ζθ =
1
r

∂(rv)
∂r

. (12.60)

Denote the absolute vorticity f + ζθ by ζaθ, differentiate (12.60) with respect
to r, and using (12.59) and the constancy of f , it follows that

∂

∂r

(
1
r

∂(rv)
∂r

)
− ζaθ

σ

∂σ

∂r
= σ

∂P

∂r
. (12.61)

Here, by using the isentropic form of the thermal wind equation (e.g. Hoskins
et al. 1985)

floc
∂v

∂θ
= R(p)

∂p

∂r
, floc = f + 2

v

r
, R(p) =

1
ρθ

,

from the definition of σ given in (12.57) there is

−g ∂σ
∂r

=
∂2p

∂r∂θ
=

∂

∂θ

(
floc
R

∂v

∂θ

)
. (12.62)
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Thus, from (12.59) and (12.62), (12.61) can finally be cast to a nonlinear
equation for solving the wind field from given PV distribution:

∂

∂r

(
1
r

∂(rv)
∂r

)
+

P

g

∂

∂θ

(
floc
R

∂v

∂θ

)
= σ

∂P

∂r
, (12.63)

which is the mathematic form of the invertibility principle for this simple
model problem. The isentropic gradient of P appears on the right-hand side as
the driving mechanism. The equation can be linearized by assuming floc � f ,
R � Rref(θ), and σ � σref :

∂

∂r

(
1
r

∂(rv)
∂r

)
+

f2

gσref

∂

∂θ

(
1

Rref

∂v

∂θ

)
= σref

∂P

∂r
. (12.64)

The left-hand side is a linear elliptical operator, which by proper rescaling can
be reduced to the Laplace operator.

A pair of exact solutions of (12.64) “induced” by isolated upper air PV
anomalies of either sign is plotted in Fig. 12.9a,b, under the boundary condi-
tion v → 0 as r → ∞ and θ = constant at 60 and 1,000mb. The qualitative
resemblance of these figures to the observed meteorological structures has
been confirmed.

The earlier potential vorticity inversion method is essentially a time-
stepping approach for weather prognosis. From a given initial map of velocity,
pressure, etc. one computes the Rossby–Ertel PV map, advects it to the next
timestep by (12.40), and then applies an inversion operator to obtain the veloc-
ity field. McIntyre and Norton (2000) have used the primitive shallow-water
equations (12.37) and their hemisphere extension6 to conduct the Rossby-
PV inversion at a few different orders of accuracy and compared the results
with direct numerical simulation of (12.37). The accuracy attained by the
highest-order inversion is found to be surprisingly high in a prognosis period
of 10 days.7 The authors remark that the inversion operator they constructed
has actually been close to the ultimate limitation of the inversion method.

In order to understand what the “ultimate limitation” is, we compare the
situation with a two-dimensional circulation-preserving flow. In the conven-
tional vorticity inversion (Sects. 3.2.2 and 4.5.1), a full velocity field can be
exactly obtained from a given vorticity field only if the flow is incompressible;
then we can make time-march of the vorticity due to Dω/Dt = 0. Once the
flow is compressible, the dilatation ϑ = ∇ · u has to join the inversion at
each time step (e.g., (3.27) and (4.162)) and its evolution equation has to be
used for the purpose of prognosis, which is however not Lagrangian invariant
but depends on the history (Sect. 3.6.2). In particular, unsteady vorticity mo-
tion is a spontaneous source of sound that propagates with finite speed, see
(2.170) and (2.171). Due to the sound emission, therefore, if an inversion was

6 For weather prognosis one has to consider atmospheric motion of scales much
smaller than quasigeostrophic scale, with Rossby number of order one.

7 One result of this chapter has been reported as Fig. 2 of McIntyre and Norton
(1990).
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Fig. 12.9. Circularly symmetric flows “induced” by simple isolated IPV anomalies.
In (a) the sense of the azimuthal wind is cyclonic, and in (b) it is anticyclonic. The
thick line represents the tropopause and the two sets of thin lines are the isentropes
every 5K and transverse velocity every 3m s−1. Reproduced from Hoskins et al.
(1985)

to be made, backward time integration would be necessary, which is however
impossible in practice.

The ultimate limitation of the potential-vorticity inversion has exactly the
same physical root (another trouble is associated with coupled oscillators and
chaos), but the role of acoustic wave is now played by gravity wave with phase
speed c =

√
gD (Sect. 12.2.3), of which the relative strength can be seen from

(12.35):

F ′2
(
Ro

∂v∗

∂t∗
+ ez × v∗

)
= −Ro∇∗

πη
∗, F ′ =

U

c
, Ro =

U

fL
= O(1), (12.65)
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where F ′ corresponds to the Mach number in compressible fluid dynamics.
No spontaneous gravity-wave emission from the evolving potential vorticity
only if F ′ is sufficiently small. Taking F ′ as a small parameter, by improving
a matched asymptotic expansion method devised in developing the theory of
vortex sound, and considering (12.37) on an f -plane (β = 0), Ford et al. (2000)
have proved that the potential vorticity inversion holds up to O(F ′4 lnF ′).
In the worked out examples of potential-vorticity inversion by McIntyre and
Norton (2000), F ′

max has reached about 0.5–0.7.

12.3 Quasigeostrophic Evolution of Vorticity
and Vortices

Sections 12.1 and 12.2 have set a basic framework for large-scale geophysi-
cal vorticity dynamics, of which the key is the concept and conservation of
Rossby–Ertel potential vorticity. This section turns to some selected topics
of large-scale geophysical vortices. The existence of such strong but usually
localized large-scale vortical structures, some with extremely long life, is a
remarkable character of geophysical flows. A primary example is the Great
Red Spot on the Jupiter, which has remained rotating ever since it was first
observed some 300 years ago, despite the strong shear flow and collision of
many small vortices at its boundary. On the earth, a typical example in ocean
is Gulf Stream rings, and that in the atmosphere is hurricanes and typhoons.
These vortices are basically governed by the synoptic-scale dynamics and in
geostrophic balance, with potential-vorticity gradient in their background flow
field.

In Chaps. 4–10 we have discussed almost the whole life of some typical
vortices, from their formation, motion and interaction, instability and break-
down, till becoming small-scale turbulent eddies and being dissipated. But,
those discussions were mostly confined to incompressible flow with uniform
density and without nonconservative body force, observed in an inertial frame
of reference. They cannot be extended in similar detail to typical geophysical
vortices. The detailed formation process of a hurricane, for example, cannot
be included since it involves very complicated thermodynamic processes which
produce absolute vorticity and are closely coupled with three-dimensional fluid
motion, with some issues still to be clarified (interested readers may consult
Bengtsson and Lighthill (1982) and references therein). Neither will a detailed
discussion be included on the interactions of large-scale vortices, for which the
reader is referred to Hopfinger and van Heijst (1993) and a three-dimensional
analysis of Carnevale et al. (1997).

The selected topics in this section are all within quasigeostrophic approxi-
mation. It permits a discussion of the evolution of vertical vorticity and forma-
tion of vortical structures as a purely two-dimensional process (Sect. 12.3.1),
followed by two-dimensional structures and evolution of barotropic vortices
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(Sect. 12.3.2). The baroclinic effect on large-scale vortices will be demon-
strated by a two-layer model of stratified fluid without the involvement of
thermodynamics (Sect. 12.3.3). Finally, in Sect. 12.3.4 we discuss the progno-
sis of the motion of strong tropical cyclones, which is well known to be of
crucial importance in weather forecast.

12.3.1 The Evolution of Two-Dimensional Vorticity Gradient

In quasigeostrophic approximation, we further assume that the variation of
fluid-layer depth h is negligible, and along the vertical direction the fluid is in
hydrostatic balance. Then the flow is fully two-dimensional and incompress-
ible. Thus, we may recover the convention in general fluid dynamics to denote
the vertical vorticity by ω and drop the suffix π for horizontal components.
Now the Rossby potential vorticity is P = f +ω, and for the relative vorticity
(12.37a) is reduced to

Dω
Dt

+ βv = 0. (12.66)

The two-dimensionality simplifies our analysis but also brings in some physical
mechanisms different from those in three dimensions, from the formation of
the structures to turbulence.

In a quasigeostrophic turbulent flow, most of the phenomena can be in-
terpreted by the coexistence and mutual interaction of three mechanisms:
isolated coherent vortices, two-dimensional turbulence, and Rossby waves
(McWilliams 1984). Although the vorticity intensification by stretching does
not exist, the gradient of vorticity, denoted by s ≡ ∇ω, experiences a similar
intensification and reduction as the vorticity does in three dimensions, causing
the formation of isolated vortices. Taking the gradient of (12.66) yields

Ds

Dt
= −∇u · s− β∇v = −D · s+

1
2
ω × s− β∇v. (12.67)

A reduction of s implies that the vorticity is spread more evenly, which hap-
pens in those long-life vortices. The merger of like-sign vortices (as well as the
dissipation of small weak ones) makes the evolution toward a few large like-
sign vortices (coherent production or inverse cascade, see Sect. 10.5.1). In fact,
we have seen such an example in Fig. 9.6a in the context of Arnold’s formal
stability theory. Recall that a two-dimensional vortex can well be identified
by the Weiss criterion (6.181) as an elliptic region with Q2D = det(∇v) > 0.
Figure 12.10 shows an example of this process. As time goes on, the number of
vortices becomes fewer, and each vortex becomes stronger and more isolated
from the others and hence tends to be axisymmetric.

Opposite to the earlier process, an enhancement of s implies that the
vorticity field is compressed in the direction of s and hence must be stretched
in the direction normal to s, evolving toward filament-like structures with
smaller scales (cascade, see Sect. 10.5.2). The filaments (sheets extending along
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Fig. 12.10. Vorticity contours of a two-dimensional homogeneous and isotropic
turbulence at different times. Direct numerical simulation based on (12.66) with
β = 0 but a forcing at low wavenumbers and a hyperviscosity term −ν∇4ω are
added on the right-hand side. The contour interval is 8 for (a) and 4 thereafter.
From McWilliams (1984)

the third dimension) are in the hyperbolic regions according to the Weiss
criterion, located in between isolated vortices as shown in Fig. 12.11.

We now make a closer look at (12.67) regarding the earlier opposite
processes. To simplify our algebra, we convert plane vectors to complex vari-
ables on plane z = x+ iy. The conversion rules are given in A.2.4, see (A.31)
to (A.33). We thus have (φ is any scalar)

∇φ =⇒ 2ex∂z̄φ,

∇ · v = 0 =⇒ ∂zw + ∂z̄w̄ = 0,

ezω =⇒ iez(∂z̄w̄ − ∂zw) = −2iez∂zw, (12.68)

s =⇒ 2ex∂z̄ω = −4iex∂z∂z̄w,

D · s =⇒ exη∂zω,
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x

Fig. 12.11. Log10|ω| of the same vorticity field as Fig. 12.10c at t = 16.5 with
contours step 0.25 between −0.5 and 1.5. From McWilliams (1984)

in which

η = u,x − v,y + i(u,y + v,x) = 2∂z̄w, with (12.69a)
1
4
ηη =

1
2
DijDij = v,xu,y − u,xv,y +

1
4
ω2 = λ2, (12.69b)

where ±λ are the eigenvalues ofD with λ > 0. Therefore, the complex-variable
form of (12.67) easily follows:

D
Dt

∂z̄ω =
1
2
(iω∂z̄ω − η∂zω)− 2β∂z̄v, (12.70)

which was first obtained by Weiss (1981) for β = 0. The first two terms on the
right-hand side are the effects on Ds/Dt by the rotation by angular velocity
ω/2 and coupling with D, respectively, and the third term is the β-effect.

We set s = exs eiα in (12.70) and separate its real and imaginary parts.
The result will be neat in the principal-axis frame of the strain-rate tensor D
with eigenvalues ±λ, where η = ηr + iηi = (2λ, 0). Let p± be the eigenvectors
associated with ±λ, αλ be the angle between s and p+, and φλ = α+ αλ be
the angle between p+ and ex. We then find, since v,y = −u,x,

1
s

Ds
Dt

= −λ cos 2αλ +
β

s
(u,x sinφλ − v,x cosφλ), (12.71a)

Dαλ
Dt

= λ sin 2αλ +
ω

2
+

β

s
(u,x cosφλ + v,x sinφλ), (12.71b)

as obtained by Xiong (2002) for β = 0. We consider this case first. As Xiong
(2002) emphasized, at a small neighborhood of any point, it is the intensifi-
cation or weakening of the magnitude of the vorticity gradient s rather than
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the change of its direction that dominates the direction of cascade (forward or
inverse). More specifically, if αλ = ±π/2 (s is aligned to p−), the strain rate
causes the strongest intensification of s, along with rotation Dαλ/Dt = ω/2.
When this happens, since the isovorticity lines are orthogonal to s, a circular
vortex will be compressed along the p− direction and stretched along the p+

direction. This is the mechanism responsible for the formation of sheet-like
structures. If αλ = 0 or π (s is aligned to p+), there is the strongest weaken-
ing of s also along with rotation Dαλ/Dt = ω/2. Finally, when αλ = ±π/4,
s experiences a pure rotation by D at a rate ±λ plus a rotation by ω/2. The
rotation may cause two or more like-sign vortices to turn around each other
and merge to a larger vortex due to viscosity.

Figure 12.12 confirms the key role of Ds/Dt in the formation of sheet-like
and patch-like structures. Shown in the figure are the sign of Ds/Dt and vortic-
ity contours. In the positive regions the isovorticity lines are highly clustered,
implying large vorticity gradient, while in the negative regions the isovorticity
lines are quite loose. Note that in a similar plot for Dα/Dt (not shown) one
cannot find any correlations between the sign of Dα/Dt and isovorticity lines.
Rather, the former is quite consistent with the sign of vorticity itself. However,
since Dα/Dt and ω are not uniformly distributed, their spatial variation will
inevitably alter the pattern of elliptic and hyperbolic regions of a flow, and
thereby influence Ds/Dt as well.

We stress that D and s in (12.67) or η and seiα in (12.70) are closely
coupled as found in numerical tests (e.g., Xiong 2002), implying that these

Fig. 12.12. An instantaneous plot of a two-dimensional vorticity evolution. Shown
in the figure are the sign of Ds/Dt (white, positive; grey, negative) and isovorticity
lines (solid, positive; dashed, negative). From the direct numerical simulation of
Xiong (2004, private communication)
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equations are highly nonlinear. Thus, in analyzing the evolution of vorticity
gradient, the strain rate cannot be assumed as a prescribed background field.
This coupling can be understood in terms of complex-variable formulation.
First, by (12.68) and (12.69a), the identity 2∇ · D = −∇ × ω = ∇2u has
complex-variable form

∂zη = i∂z̄ω =
1
2
∇2w. (12.72)

Therefore, the strain rate and vorticity have identical power spectrum in
wave space, differing purely in phase (Weiss 1981). Next, by the area the-
orem (A.35), there is

2i
∫
S

∂z̄ω dS =
∮
∂S

ω dz = 2
∫
S

∂zη dS = i
∮
∂S

η dz̄ (12.73a)

or ∮
∂S

(ω dz − iη dz̄) = 0. (12.73b)

Namely, the averaged vorticity gradient in an area S is determined by the
boundary integral of the strain rate, and vice versa.

As the local mechanism responsible for the cascade and inverse cascade
processes in two-dimensional vortical flows, the interaction between the vor-
ticity gradient and the strain field discussed earlier must be constrained by
some global conservative quantities. These constraints are especially impor-
tant in the inertial range (the wavenumber range where the viscosity can be
neglected) of two-dimensional turbulence, which is the leading-order approxi-
mation of geophysical turbulence. In inviscid, unbounded and incompressible
flow, either two or three dimensions, the first conservative quantity is the
total kinetic energy, see (2.52), which is positively definite. Besides, in three
dimensions the helicity is the second conservative scalar, see (3.141), which
can be either positive or negative. In contrast, in two dimensions the second
conservative scalar is the total enstrophy, see (3.124) with both α and ∇× a
vanishing, which is again positively definite.

It is the difference of whether the second scalar has positive definiteness
that makes the cascade process in two-dimensional turbulence very different
from that in three dimensions (Chap. 10). Fjørtoft (1953) was perhaps the
first to prove that for two-dimensional flow on a sphere the kinetic energy is
inversely cascaded up to large scales, who also argued the crucial importance
of the vorticity conservation (β = 0 in 12.66)) in discussing the stability of
steady flow. While the two-dimensional turbulence theory is beyond the scope
of this book (see, e.g., Kraichnan 1967; Leith 1968; Batchelor 1969; Rhines
1979; Kraichnan and Montgomery 1980; Lesieur 1990; Salmon 1998), the basic
conclusion is simple: unlike three-dimensional turbulence, in the inertial range
of two-dimensional turbulence the enstrophy is cascaded down to small scales
but the kinetic energy is inversely cascaded up to large scales. This result has
been confirmed by direct numerical simulations (e.g. Ohkitani 1990; Rivera et
al. 1998 and S.Y. Chen et al. 2003), and is in consistent with the preceding
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analysis on the vorticity gradient. In particular, based on their direct numer-
ical simulation, Chen et al. (2003a,b) calculated the alignment angle between
the enstrophy flux among scales and the vorticity gradient. They found that
the key mechanism for the enstrophy cascade is that the compressing effect
of large-scale strain-rate field steepens the vorticity gradient.

Finally, the β-term in (12.71) has an asymmetric effect on vorticity gra-
dient evolution. As a simple illustration, consider an initially axisymmetric
vortex with azimuthal velocity v = g(r)eα in the polar coordinates (r, α).
Since s = s(r)er for any α, er is always aligned to p+ so that αλ = 0 and
φλ = α. Then, in Cartesian coordinates with (u, v) = g(− sinα, cosα), there is

∂u

∂x
=
(g
r
− g′

)
sinα cosα,

∂v

∂x
= g′ cos2 α+

g

r
sin2 α.

Hence, in (12.71), the rate of change of the vorticity gradient due to the β-
effect reads (

1
s

Ds
Dt

)
β

=
β

s
(u,x sinα− v,x cosα) = −

β

s
g′(r) cosα, (12.74a)

(
Dα
Dt

)
β

=
β

s
(u,x cosα+ v,x sinα) =

β

s

g(r)
r

sinα, (12.74b)

which causes a nonuniform twisting and rotating of the velocity gradient, so
that the vortex quickly becomes asymmetric.

12.3.2 The Structure and Evolution of Barotropic Vortices

We now turn to discuss already formed large-scale geophysical vortices. The
vortices generated in a barotropic flow with negligible buoyancy effect are
called barotropic vortices. In this case the fluid is assumed homogeneous. Un-
der the same quasigeostrophic assumption as in the preceding subsection,
one has freedom to construct various two-dimensional inviscid models for
mesoscale atmospheric and oceanic vortices (see Sect. 6.2.1). Some early mod-
els have been reviewed by Flierl (1987).

In cylindrical coordinates (r, θ, z) the radial component of (12.8) for an
axisymmetric flow reads, cf. (6.18a),

v2

r
+ fv =

1
ρ

∂p

∂r
, (12.75)

indicating that the centrifugal acceleration due to both relative motion and ro-
tating system is balanced by the radial pressure gradient. Thus, if the Coriolis
parameter f is constant, from (12.75) one obtains

v(r) = −1
2
fr ±

[(
1
2
fr

)2

+
r

ρ

∂p

∂r

]1/2
. (12.76)

Solving this equation yields four types of vortices, of which the most im-
portant ones are the cyclonic vortex and anticyclonic vortex surrounding a
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low-pressure and high-pressure center, with the senses of their rotation being
the same of and opposite to the ambient vorticity f , respectively (Sect. 12.2.1).

If the pressure gradient is absent, there simply is

v(r) = −fr, (12.77)

which is called the inertia motion as has been observed in the ocean.
Near the equator with small f , (12.75) is reduced to cyclostropic motion,

v2

r
=

1
ρ

∂p

∂r
, (12.78)

the same as (6.18a) in an inertial frame. The pressure gradient is always
positive no matter what rotating direction is. In this case, some of those basic
vortex solutions introduced in Chap. 5 may be applied to simulate the two-
dimensional geophysical vortices, such as the Oseen vortex, Taylor vortex, and
even the Burgers vortex (with stretching of shrinking due to the variation of
the vortex-column height).

Recall that, in an inertial frame of reference, for the stability of a two-
dimensional and inviscid axisymmetric vortex under axisymmetric distur-
bance we have the Rayleigh criterion (9.70), where V is the azimuthal velocity
of the basic flow. Now suppose the vortex is at the center of a rotating tank
of angular velocity Ω = f/2 such that V = v + Ωr with v being the relative
azimuthal velocity of the basic flow, then (9.70) takes the form

d
dr

(
rv +

1
2
fr2

)2

≥ 0. (12.79)

Kloosterziel and van Heijst (1991) have proved that this stability criterion
holds generally true for two-dimensional inviscid vortices on an f -plane as
well as for vortices that are off-center in a rotating fluid system. Thus, (12.79)
represents a generalized Rayleigh criterion.

The simplest stable vortex structure is monopolar vortex consisting of cir-
cular streamlines about a common center, with positive or negative vorticity.
Its simplest model is circular vortex patch. A more commonly seen but more
complicated monopolar vortex consists of a vortex core of certain rotating
sense surrounded by the vorticity of opposite sign (similar to the Taylor vor-
tex). These large-scale monopolar vortices may come from the inverse energy
cascade or self-organization process as addressed in Sect. 12.3.1 and shown in
Fig. 12.10.

A class of relatively simple isolated vortical structures has often been used
to study the instability of a monopolar vortex (Carton and McWilliams 1989;
Carnevale and Kloosterziel 1994), which has smooth vorticity and velocity
distributions. Its dimensionless form is

ω = ω0

(
1− 1

2
αrα

)
e−r

α

, (12.80)
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where α is the steepness factor that controls the shape of vorticity distribution.
The special case of α = 2 is a Gaussian vortex :

ω(r) =
(
1− r2

)
e−r

2
, v =

1
2
r e−r

2
. (12.81)

A class of structures more complicated than monopolar vortices is dipo-
lar vortices, which is a self-propeled pair of counter-rotating closely packed
patches with opposite vorticities. An exact inviscid dipolar-vortex solution, the
circular Chaplykin–Lamb dipole, has been discussed in Sect. 6.4.2. A dipolar
vortex has nonzero momentum but zero angular momentum. More compli-
cated than this is tripolar vortex consisting of three patches in which the vor-
ticity has alternative signs. For example, an elliptical vortex core with ω > 0
along with two vortices with ω < 0, each on one side, is a tripolar vortex.
Furthermore, there can be quadrupolar vortex, etc. These typical structures
are sketched in Fig. 12.13.

These abundant vortex patterns appear in geophysical flow because the
instability of a monopolar vortex must lead to various compound vortices.
Since the vorticity distribution determined by (12.80) has inflection point,
according to the analysis of Sect. 9.3.1, the vortex will be unstable when α
is sufficiently large. For example, it is unstable to the disturbance with az-
imuthal wave number n = 2 when α > 1.85. Kloosterziel and Carnevale (1999)
have examined a monopolar vortex with α = 3.0 and initial state shown in
Fig. 12.14a. They added a disturbance of the form

ω′ = µ cos(nθ) exp
(
− (αrα − 2)2

2σ2

)
, (12.82)

(a) (b)

(d)(c)

Fig. 12.13. Multipole structures. (a) vortex monopole; (b) vortex dipole; (c) sym-
metrical vortex quadrupole; (d) vortex tripole. Reproduced from Voropayev and
Afanasyev (1994)
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(a) (b)

(d) (e) (f)

(c)

Fig. 12.14. Vorticity evolution of a monopolar vortex with a perturbation of type
(12.46) with n = 2, µ = 0.1, and σ = 0.25. Nondimensional time are (a) t = 0,
(b) t = 25, (c) t = 50, (d) t = 75, (e) t = 100, and (f) t = 200. From Kloosterziel
and Carnevale (1999)

where n = 2 is the azimuthal wave number, and µ and σ are adjustable con-
stants. A numerical calculation was conducted, see Fig. 12.14b–f. In
Fig. 12.14b the vortex core has been elongated, indicating an increase of the
disturbance amplitude. When t = 50, two hemicircular regions with opposite
vorticities start to form, around which tendrils of core vorticity have been
wrapped (Fig. 12.14c). Finally, the unstable monopolar vortex evolves to its
mature stage, forming a tripole vortex (Fig. 12.14f) that can remain for long.
Since it was found in laboratory and numerical simulation, the tripolar vortex
has been an object of intense interest (van Heijst et al. 1991; Flor and van
Heijst 1996). One has also observed tripolar vortex in ocean.

Further increasing the steepness parameter α may excite disturbances
with higher azimuthal wave numbers. Figure 12.15 shows the evolution of a
monopolar vortex with α = 7.0 under an initial disturbance with n = 3 in
(12.82). It eventually becomes a quadrupolar vortex, with a triangular vor-
tex core surrounded by three satellite vortices of opposite vorticity. Then, in
the numerical experiment of Kloosterziel and Carnevale (1999), a disturbance
with n = 4 led the core of the same monopolar vortex with α = 7.0 to be-
come square in shape and four satellites are formed. The square vortex rotates
but is unstable. Eventually, the core becomes elongated and breaks up into
two pieces of dipoles. Beckers et al. (2003) have observed a transitory square
vortex in their laboratory.
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(a) (b)

(d)(c)

Fig. 12.15. Vorticity evolution of a monopolar vortex with a perturbation of type
(12.81) with n = 3, µ = 0.1, and σ = 0.5. Nondimensional time are (a) t = 0,
(b) t = 20, (c) t = 40, and (d) t = 200. From Kloosterziel and Carnevale (1999)

Among various barotropic vortices discussed earlier, dipole solutions have
the most general existence in both the atmosphere and ocean due to the
following observation.

Consider an isolated cyclonic circulating flow at the northern hemisphere,
of which the north side moves westward and experiences a southward Coriolis
force, while the south side moves eastward and experiences a northward Cori-
olis force. Due to the β-effect, however, the latter is weaker than the former,
forming a net north–south force on the flow not balanced by any other forces.
Consequently, as a theorem proved by Flierl et al. (1983), isolated structures
with flat upper and lower boundaries cannot exist and remain isolated unless
they have no net angular momentum.

In other words, an isolated long-life vortical structure in the β-plane cannot
be a simple monopolar vortex. If initially an isolated vortex in the β-plane
has a nonzero net angular momentum, it will break apart rapidly, generating
long barotropic Rossby wave that propagates quickly to the boundary (e.g.,
Flierl 1987). Therefore, the simplest form of isolated vortices in the β-plane
are dipole solutions, also called modons or β-gyres.

The modons are exact, permanent-form, uniformly propagating solutions
to the quasigeostropic potential vorticity equation (12.49) with flat bottom
boundaries (h∗

B = 0), characterized by closed streamlines that transport cer-
tain amount of the fluid with their traveling speed c depending on their
size (e.g. Stern 1975; Larichev and Reznik 1976; Berestov 1979; Flierl et al.
1980; Carnevale et al. 1988). They are actually the generalization of a classic
Chaplykin–Lamb dipoles to geostrophic flow. The motion of modon depends
on nonlinear effects. Rossby wave would tend to flatten out the modon, while
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nonlinear effects would tend to steepen it, resulting in an equilibrium state.
This nonlinear feature enables one to use the modon model to explain the
dispersion and nonlinear phenomena in isolated geophysical flows.

We set h∗
B = 0 in (12.48) which defines the potential vorticity P ′ due to

relative motion, and seek steady solution viewed in the frame of reference
moving with the modon’s traveling speed c along the x-axis. Then P ′ satisfies
(12.43) with ψ therein replaced by ψ + cy. The flow steadiness implies [ψ +
cy, P ′] = 0, and this will be so if P ′ is any functional of ψ+cy. This reasoning
is closely similar to that used in Sect. 6.4.2, where the flow being generalized
Beltramian implied ω = F (ψ) for any F , which permits choosing ω = k2ψ
to linearize the equation for ψ and obtaining the analytical solution of the
Chaplykin–Lamb dipole. Now we can also linearize the equation for ψ by
setting

P ′ = (∇2 − λ−2)ψ + βy = m(ψ + cy),

where m is a constant. Assume ψ vanishes fast enough at large y, we obtain
β = mc and thus the equation becomes

∇2ψ = ρ2ψ, ρ2 ≡ β

c
+ λ−2.

Like the Chaplykin–Lamb dipole, this equation is also solved on the interior
and exterior of a circle r = a in polar coordinates, by separation of variables
and requiring the continuity of ψ and ∂ψ/∂r at r = a. The vorticity field of
this modon solution on the β-plane, propagating due east, is given by

ω(θ, r) = −β′a
J1(kr)
J1(ka)

sin θ, (r ≤ a) (12.83a)

= −β′a
K1(ρr)
K1(ρa)

sin θ, (r > a) (12.83b)

where β′ = β + λ−2 = ρ2c, J1 and K1 are the Bessel functions and modified
Bessel functions, respectively, and a is called the radius of the modon. Obvi-
ously, in the limit of λ−2 = 0 and β → 0, the modon solution reduces to the
Chaplykin–Lamb dipole (6.110).

The traveling speed c and radius a of modons may vary significantly. If
λ−2 = 0, all values of c ∈ [0,∞) are possible. Once a and c are given, so will
be ρ and then the parameter k is derived from a dispersion relation which
assures the continuity of the tangential velocity at r = a:

− J2(ka)
kJ1(ka)

=
K2(ρa)
ρK1(ρa)

. (12.84)

This equation has an infinity of branches, but the customary modon is the one
corresponding to the branch with the lowest value of k, having the simplest
structure. For example, at θ = 45◦ there is β � 0.0014/(kmday), for which
Carnevale et al. (1988) considered a modon with radius a � 1000 km in ocean
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and a special traveling speed c = βa2 � 14 km/day � 16 cm s−1. They found
that the variation of the velocity from its center to r � a will be U � 5βa2 �
70 km/day.

The stability of modon model has been a major concern owing to its im-
portance in geophysical fluid dynamics. Unfortunately, while many numerical
investigations have demonstrated that the modon is stable to rather strong
perturbations, the problem of establishing its entire stability character, as-
suming it exists, remains to be unsolved.

Finally, we make a very brief discussion on the interactions between
barotropic vortices, which is also a complicated issue. Two like-sign vortices
with finite cores may merge into one when their distance r is smaller than
a critical value rc. This merging process is the main mechanism for the tur-
bulence decay in two-dimensional geophysical flow. Zabusky et al. (1979),
Overman and Zabusky (1982), Melander et al. (1988), and others, have per-
formed theoretical and numerical studies on this topic. For two vortex patches
of the same size R with uniform vorticity, the predicted critical distance is
dc/R = 3.2, in good agreement with experimentally observed critical value for
the symmetric merging of anticyclonic vortices.

For cyclonic vortices, however, early experiments (Griffiths and Hopfinger
1986) by rotating tank with free surface found a significant variance from theo-
retical prediction; merging may occurs even when d/R = 4.5. This anomalous
merger was explained by Carnevale et al. (1991b) as due to a topographic
effect caused by the parabolic shape of the free surface in the rotating tank.
Their prediction was confirmed by Fine et al. (1991) using an electron plasma
experiments (which have no such topographic effect), who obtained the origi-
nal merger rule dc/R = 3.2 very accurately; and then by Nuijten and Velasco
Fuentes (1994) using a rotating tank with rigid lid.

The isolated vortex structures presented here, such as monopolar vortices
and modons, provide a simple way to explain many nonlinear phenomena
in the atmospheric, oceanic, and planetary flows. As this explanation is com-
bined with the interactions of coherent vortices, waves, and turbulence, a more
complete physical interpretation of the nonlinear phenomena may be formed
which, in turn, would help a deeper understanding of the role of these isolated
vortices in geophysical fluid dynamics.

12.3.3 The Structure of Baroclinic Vortices

Baroclinic vortices exist in stratified fluid. Due to the coexistence of the
effects of density and rotation, there is a direct and intimate relation be-
tween the structure of the density and velocity fields, characterized by the
Rossby radius of deformation λ, see (12.45), which represents the distance over
which the gravitational tendency to render the free surface flat is balanced
by the tendency of Coriolis acceleration to deform the surface. Here, we con-
sider the stratified fluid motion by a two-layer quasigeostrophic model rather
than continuously stratified fluid. The thicknesses of the two layers are Hα,
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Fig. 12.16. Two-layer model of stratified fluid

with α = 1, 2 for the upper and lower layers, respectively, see Fig. 12.16. De-
spite of its simplicity, this model does reflect the basic characters of stratified
rotating fluid motion. By this simple two-layer model, analytical solutions of
an isolated baroclinic vortex have been found by Pedlosky (1985), Griffiths
and Hopfinger (1986), and Helfrich and Send (1988). In this model the Rossby
radius of deformation is redefined by

Λ =
√
g′H

f
g′ ≡ g

ρ2 − ρ1
ρ2

. (12.85)

If the flow scale L 
 Λ, then the effect of finite Λ is negligible and the
free surface has no difference from a rigid surface. If L  Λ, then the effect
of finite L becomes unimportant, and the horizontal flow velocity is uniform.
Each layer satisfies the conservative equation (12.43) of the potential vorticity
in quasigeostrophic flow:

DPα
Dt

= 0,
D
Dt

=
∂

∂t
+ [ψα, ], α = 1, 2, (12.86)

where ψα are the stream functions, the potential vorticities are

Pα = ∇2ψα + (−1)α f2

g′Hα
(ψ1 − ψ2), (12.87)

and the displacement of the contact surface is

ηα −H = ± f

g′
(ψ2 − ψ1). (12.88)

Consider now a steady vortex of core radius R in the upper layer, which has
uniform potential vorticity P0. Outside the vortex core the relative vorticity
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ω vanishes and the potential vorticity is P = f/H. In the lower layer, there
is no vortex initially. Then

∇2ψ1 +
1
2
λ−2(ψ2 − ψ1) = P1, r < R (12.89a)

∇2ψ1 +
1
2
λ−2(ψ2 − ψ1) = 0, r > R (12.89b)

∇2ψ2 +
1
2
λ−2(ψ1 − ψ2) = 0, (12.89c)

where λ = Λ/
√
2, P1 = ω0 = HP0 − f is the relative vorticity. From these

equations one can solve the azimuthal velocity induced by the baroclinic vor-
tex:

vα
Rω0

=
r

4R
± 1

2
K1

(
R

λ

)
I1

( r
λ

)
, r < R, (12.90a)

vα
Rω0

=
R

4r
± 1

2
I1

(
R

λ

)
K1

( r
λ

)
, r > R, (12.90b)

in which K1 and I1 are modified Bessel functions, signs + and − correspond
to layers 1 and 2, respectively. The velocity distribution is shown in Fig. 12.17,
where solid and dashed lines are the velocities in the upper and lower vortices.
For comparison, the velocity of a barotropic vortex is also shown by short
dashed line.

It is seen from Fig. 12.17 that although initially the lower layer has no
vortex, the baroclinic effect creates an obvious vortical motion as a baroclinic
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Fig. 12.17. The azimuthal-velocity distribution of a theoretical baroclinic vortex
model. Top layer velocities (solid lines), bottom layer (long dashed lines), barotropic
limit (short dashed line). Reproduced from Griffiths and Hopfinger (1987)
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vortex. Its azimuthal velocity profile depends on the characteristic motion
scale of the vortex, i.e., the ratio of the core radius R and the Rossby radius
of deformation Λ. First, let R/λ → 0 so that I1(R/λ) → 1/2R/λ, then for
r > R there is

vα =
1
2
s

r

[
1± r

λ
K1

( r
λ

)]
. (12.91)

where s = (R2ω0)/2 is the vortex intensity. This is the solution obtained by
Hogg and Stommel (1985). In the upper-layer, when r > R the variation of
azimuthal velocity significantly differs from the irrotational rule v ∼ 1/r. In
contrast, in the lower layer, the azimuthal velocity is obviously smaller that
that in the upper layer for r < R, but approaches a constant for r > R.

Next, let λ/R→ 0, for which the effect of density gradient disappears and
the flow tends to the Rankine vortex:

v1 = v2 =


sr

2R2
r < R,

s

2r
r > R.

(12.92)

When r > R, the flow is actually independent of the depth, i.e., the fluid
motion in both layers tends to be the same.

Finally, we briefly discuss the interaction of baroclinic vortices. By (12.92),
owing to the interaction of N vortices, the kth vortex has velocity in the x-
direction

uk =
n=N∑
n�=k

sn
2

(
yk − yn
r2kn

)[
1 + Φ

rkn
λ

K1

(rkn
λ

)]
, (12.93)

where r2kn = (xk−xn)2+(yk−yn)2, and Φ = −1 if the nth and kth vortices are
in different fluid layers, or Φ = 1 if otherwise. The velocity in the y-direction
is similar. This interaction is determined by the modified Bessel function and
hence is of short range. Thus, if the distance between two baroclinic vortices
in the same fluid layer reduces, the velocity by which they propel each other
will be larger than barotropic vortices; and inversely, if the two vortices are
in different layers, then their interaction velocity will approaches zero as their
distance. The integral invariance during the interaction of these vortices has
been given by Hogg and Stommel (1985).

An interesting property of baroclinic–vortex interaction is that it can
transport heat and other scalars. The vortex with negative sign in the
upper layer will make the contact surface move down, and meanwhile so will
the vortex with positive sign in the lower layer, resulting in a downward mo-
tion of hotter fluid. Thus, this couple of vortices, one on top of the other, is
called a hot heton. The situation will be opposite if the sign of the vortices in
upper and lower layers is reversed, for which the vortex couple becomes a cold
heton. When these couples are not aligned, they will have displacement due
to self-propulsion. This is the case when more than one vortex couples appear
in the system, which can make the couple split due to the induction of other
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couples. This interaction weakens the heat conduction and system’s potential
energy. Hogg and Stommel (1985) found that the heat transport by discrete
vortex couples is inversely proportional to r/λ.

The baroclinic–vortex interaction may form interesting paths and partner
exchange, in particular in the case with two hot hetons. If their distance d is
greater than the Rossby radius then hot hetons repel each other; while if d is
smaller than or equal to the Rossby radius, they will cohere together.

Like barotropic vortices, if the distance between two baroclinic vortices
is smaller than a critical value, they will merge. For the latter, however, in
addition to the effect of velocity field, the buoyancy due to density stratifica-
tion also has a strong effect. For the two-layer model of the stratified fluid, if
in the upper layer there are two vortices of the same sign and strength, then
the merge will occur when their distance is smaller than a critical value. But
for baroclinic vortices, the time needed from their initial rolling around each
other to eventual merging will be much longer that the corresponding value
of barotropic vortices. We call a vortex couple stable if the vortices do not
merge, and unstable if they do.

The earlier discussion on vortex merging is for two vortices of the same
strength and core radius. Two baroclinic vortices with similar potential vor-
ticity but different strength and core radii will interact asymmetrically with
larger critical distance, and the weaker vortex was always drawn out to sur-
round the stronger one. Overman and Zabusky (1982) described the asym-
metric interaction as “entrainment” of the region of greater vorticity density
(the stronger vortex core) within the region of small vorticity density.

12.3.4 The Propagation of Tropical Cyclones

So far we have discussed the key role of potential vorticity, the evolution of
two-dimensional vorticity field, and the structures of some barotropic and
baroclinic vortices. Yet another key issue is the propagation of intense large-
scale vortices, such as Gulf Stream rings in the ocean and tropical cyclones
in the atmosphere. Due to the nonlinear advection under the β-effect, these
structures can travel over thousands of kilometers while maintain their iden-
tities. They have very significant influence of the ocean and weather sys-
tems of the earth, and the prediction of their propagation paths is of crucial
importance. We now conclude this chapter by considering the propagation of
tropical cyclones, i.e., hurricanes in the North Atlantic Ocean and typhoons
in the western North Pacific Ocean. The basic mechanisms can be clarified
within quasigeostrophic approximation (12.49), and are about the same for
the motion of of rings in ocean.

Figure 12.18 shows the track of a typhoon observed in 1990 as an example.
Before entering the circled region, the typhoon had an initial tendency to
propagate to the northwest, which is actually in common to all cyclones in the
northern hemisphere. Therefore, we first focus on the theory and underlying
physics of this “northwest rule”.
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Fig. 12.18. Track of Typhoon Flo (1990). The time interval between two successive
positions is 6 h, and the period of the segment within the circle is from 16 September
1990 at 1800 Universal Time Coordinate (UTC) to 17 September 1990 at 1800 UTC
(the four-digit number is ddhh, dd and hh representing date and hour, respectively).
From Chan (2005)

For a feature common to all cyclones, the bottom topography is beyond
our concern. Thus the quasigeostrophic equation (12.49) is reduced to

(∇2 − λ−2)
∂ψ

∂t
+ [ψ,∇2ψ] + β

∂ψ

∂x
= 0, (12.94)

where λ is the deformation radius defined in (12.45) to approximate the vortex
stretching due to horizontal divergence with low Ro. When λ→∞, (12.94) is
valid for arbitraryRo. An inspection of this equation reveals that it is invariant
under the transformation (ψ, y) → (−ψ,−y), thus for any nonzero Rossby
number, if in the northern hemisphere a cyclone moves to the northwest,
an anticyclone will move to the southwest (and vice versa in the southern
hemisphere).8 Since the characteristic size of a tropical cyclone is much smaller
than its distance to another cyclone, each cyclone is assumed isolated.

8 “Cyclonic” implies counterclockwise/clockwise in the northern/southern hemi-
sphere, so the terms cyclonic and anticyclonic can be used without reference to
the specific hemisphere.
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The studies of “northwest rule” were pioneered by Rossby (1948) and
Adem (1956). Adem took λ =∞ in (12.94), expanded the stream function ψ
in a Taylor series in time t, and showed that the combination of the lowest-
order effects, i.e., terms with βt, βt2 and βt3, leads to the northwest rule.
With the advance in satellite and computational technologies, since then the
northwest rule has been repeatedly confirmed and the theoretical analysis
based on (12.94) has been developed (Hopfinger and van Heijst 1993). Here
we present a quite thorough analytical theory of Sutyrin and Flierl (1994),
which is also taken as the unique example in this book to illustrate how to
solve a specific nonlinear vorticity-vortex dynamics problem.

For later convenience, we rewrite the dimensional equation (12.94) in cap-
ital letters. Assume that the background flow is a zonal flow with uniform
velocity Uex, so that the stream function Ψ ′ = Ψ + UY and the associated
potential vorticity P ′ (not Lagrangian invariant) are governed by

∂P ′

∂T
+ [Ψ ′ − UY, P ′] = −β′ ∂Ψ

′

∂X
, (12.95a)

(∇2
π − λ−2)Ψ ′ = P ′, (12.95b)

where β′ ≡ β − Uλ−2 is the effective β-term. Let the vortex center be at
(X0, Y0) with velocity (U0, V0) = (Ẋ0, Ẏ0) relative to the background zonal
flow. We use the characteristic horizontal length scale R and rate of rotation
Ωv of the vortex to nondimensionalize (12.95) and introduce dimensionless
polar coordinates (r, θ) comoving with the vortex. Thus, we set t = ΩvT ,
ω = P ′/Ωv, ψ = Ψ ′/ΩvR

2, γ = R/λ, and ε = β′R/Ωv, such that (12.95) is
recast to

∂ω

∂t
+ [ψ∗, ω] + ε[ψ, r sin θ] = 0, (12.96a)

(∇2 − γ2)ψ = ω, (12.96b)

where

ψ∗ = ψ + εr(u sin θ − v cos θ) (12.97)

describes the fluid motion relative to the vortex center, with (u, v) = (Ẋ0, Ẏ0)/
β′R2 being the dimensionless propagation velocity of the center.

If there were no β effect, the r sin θ term in (12.96a) would vanish and an
initially axisymmetric vortex would remain so. Thus, it is natural to decom-
pose ω into a vortex part and a coupled β-caused residual anomaly, denoted by

ψ = Φ+ εφ, ω = Q+ εq.

Then, Sutyrin and Flierl (1994) simplify the formulation by replacing the
smooth ω-field by nested vortex patches of piecewise constant potential vor-
ticity, so that the vortex patch theory and contour dynamics of Sect. 8.3.2 can
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be applied. Specifically, let r̂j = rj + εηj be the jth contour boundary with ηj
being the distortion from circular shape, we write

Q = (∇2 − γ2)Φ =
∑

∆jH(r̂j − r), (12.98)

in which H is the Heaviside step function and ∆j is the jth jump at r̂j . Since
∇Q gives δ-functions, there is

DQ
Dt

=
∑

∆jδ(r̂j − r)
(
ε
Dηj
Dt
− Dr

Dt

)
.

Equating the coefficients for all the δ-function terms to zero and dividing by
ε yield

∂ηj
∂t

+Ωj
∂ηj
∂θ

+
1
r̂jε

∂Φj
∂θ

= − 1
r̂j

∂φ∗

∂θ
, (12.99)

where
Ωj =

1
r̂j

∂

∂θ
(Φ+ εφ∗

j ), φ∗
j = φj + r(u sin θ − v cos θ).

Subtracting the (Q,Φ) part from (12.96a) yields the the equation for residual
potential vorticity anomaly, the (q, φ) part:

∂q

∂t
+ ε[φ∗, q] + ε(φ, r sin θ) = −[Φ, q + r sin θ] (12.100a)

(∇2 − γ2)φ = q, (12.100b)

which are actually equations for a forced Rossby wave. Physically, like a mov-
ing vorticity field will produce sound wave (Sect. 2.4.3), now a moving quasi-
geostrophic vortex will produce long Rossby wave. Similar to the limitation of
potential-vorticity inversion (Sect. 12.2.4) due to the emission of gravity wave,
the isolated vortex motion solved from the earlier equations is also effective
only in a period in which the Rossby-wave radiation is negligible. Beyond this
time scale the vortex will no longer be isolated but become an “inner solu-
tion” to be matched with the far-field Rossby wave radiation as the “outer
solution”.

Equations (12.98)–(12.100) are still nonlinear. Since β′ is weaker than the
potential vorticity anomaly of an intense vortex, we assume ε
 1 and expand
the solution in ε to linearize the problem. Namely, we write Φ = Φ0(r) +
εΦ1(r, θ, t), where Φ0 is a symmetric part specified by the initial condition
and Φ1 an asymmetric part from the relative shift of the vorticity contours.
This regular perturbation is valid for t 
 ε−1. Then the axisymmetric part
Φ0 is governed by a Helmholtz equation that can be easily solved using the
Green’s function

G1(r, r′) =

{
−r′I1(γr)K1(γr′) for r < r′,

−r′I1(γr′)K1(γr) for r > r′,
(12.101)
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to yield

Ω0(r) ≡
1
r

dΦ0

dr
= −1

r

∑
∆jG1(r, rj). (12.102)

Next, the asymmetric part with nonzero ηj is governed by the linear set

(∇2 − γ2)Φ1 = ∆jηj , (12.103a)

∂ηj
∂t

+Ω0j
∂ηj
∂θ

+
1
rj

∂Φ1j

∂θ
= − 1

rj

∂φj
∂θ
− u cos θ + v sin θ, (12.103b)

∂q

∂t
+Ω0

∂q

∂θ
= −Ω0r cos θ, (12.103c)

where φj = φ(rj , θ, t) and repeated indices imply summation henceforth.
Then, assuming q = 0 at t = 0, the solution of (12.103c) and hence that
of (12.100b) can be easily obtained:

q = r sin(θ −Ω0t)− r sin θ, (12.104a)

φ =
r sin θ
γ2

+ I1(γr)
∫ ∞

r

K1(γr′) sin(Ω0t− θ)r′2 dr′

+ K1(γr)
∫ r

0

I1(γr′) sin(Ω0t− θ)r′2 dr′. (12.104b)

Remarkably, owing to the vortex-patch approximation, the (q, φ) part is
independent of the vortex distortion ηj but simply advected by the plane-
tary vorticity r sin θ and the axisymmetric vortex with rate of rotation Ω0(r).
Note that (12.104a) indicates explicitly that for long times the disturbances
would be unrealistically large, a sign of the aforementioned limitation imposed
by the radiation of Rossby wave.

The coupled equations (12.103a) and (12.103b) can be solved by expanding
relevant variables in azimuthal modes as F (r, θ, t) = F̂ (r, t)eimθ to remove
their θ-dependence. Recall the theorem of Sect. 12.3.2 that only dipoles with
antisymmetric mode m = −1 can persist a long time, we should focus on this
modon or β-gyres mode. Then (12.103a) has solution Φ̂1(r, t) = ∆jηjG1(r, rj),
and (12.103b) reduces to a set of ordinary differential equations:

dη̂j
dt
− iAjkη̂j = ir−1

j φ̂j − (u+ iv), (12.105a)

Ajk = Ω0(rj)δjk + r−1
j ∆kG(rj , rk), (12.105b)

which can be solved by normal-mode expansion in terms of the eigenvectors
of Ajk. We thus see that a β-gyre has two parts. One is expressed by (12.104)
and generated directly by the advection of the planetary vorticity r sin θ,
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and the other part is induced by distortions in the vortex shape (12.103b),
due to the radial advection of contours relative to the vortex center by the
first part.

Once φ̂j and η̂j are known, from (12.105a) we can further obtain the
velocity and trajectory of the vortex center analytically, which are our ultimate
concern. The result depends on the definition of the center of an irregular
vortex, of which a few alternative choices were considered by Sutyrin and
Flierl (1994). They recommend that the most appropriate choice is to let
η = 0 at the innermost contour (assumed at r = 1) of the vortex, implying a
solid-like core. It then follows that

x+ iy = − t

γ2
+ i

eiΩ0(r)t − 1
Ω0(r)

∫
G1(1, r)r dr + i

∑
k

A0k

∫ t

0

ηk dt. (12.106)

In particular, if the vortex is represented by a single patch with j = 0 (a
Rankine vortex at t = 0), for γ 
 1 it is found that x + iy approaches
asymptotically to a northwest accelerating motion

x+ iy � t2

8

(
π

2
+ i ln

1
γ2t

)
, (12.107)

as previously found by Sutyrin (1988) and Reznik (1992) for a geostrophic
point-vortex.

A two-contour vortex model having jumps ∆0 and ∆1 can mimic tropi-
cal cyclones quite well. Typically, the radius of the inner contour with large
vorticity is on the order of 100 km, and the radius of the outer contour that
encloses the cyclonic circulation is an order larger. We thus have r0 = 1 with
the peak rotation rate Ω0(1) = 1, and r1 ∼ 10 with δ ≡ −∆1/2
 1. Assum-
ing the nondivergent limit γ → 0 such that (12.105) can be simplified, Sutyrin
and Flierl derived an explicit universal formula for the highly nonlinear time-
dependence of the propagation velocity of the vortex, in terms of both t and
a slow time τ = tδ:

u+ iv =
1− iτ

8
(1− eit)

+
t+ τ

4

(
i +

τ

2

)
e−iτ [Ei(i(t+ τ))− Ei(iτ)], (12.108)

where Ei(x) is the Eiry function, of which the asymptotic behavior naturally
divides the vortex track into three stages. The initial stage for t < 1 and
τ 
 1 has the track

x0 � −
1
2

[
y0

ln(r1)

]3/2
, (12.109)

so the vortex center accelerates predominately to the north with increasing
westward displacement. Then, in the advanced stage for 1 < t < δ−1 and
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τ < 1, the corresponding length scale is R′ = β′R2/Ωvδ
2, so let (X0, Y0) =

R′(x̂, ŷ)(τ) one has the universal vortex track, depending on the slow time τ
only:

x̂+ iŷ = δ

∫
(u+ iv)dτ = −1

4

∫
τe−iτ

(
i +

τ

2

)
Ei(iτ)dτ, (12.110)

of which a plot is shown in Fig. 12.19. Also shown in the figure is the track
computed without considering the distortion in the vortex shape, for which
the factor i + τ/2 in (12.110) would be absent. The significant difference of
the two curves indicates the crucial influence of the shape distortion. This
advanced stage is followed by a mature stage with τ > 1, which we omit here
(see Sutyrin and Flierl 1994).

The prediction of the earlier analytical theory has been compared with
the motion of typical tropical cyclones by Sutyrin and Flierl (1994), who also
discuss its application to oceanic rings. But for better comparison it seems
necessary to go to at least two-layer modeling of stratification as exemplified
in Sect. 12.3.3 for either atmospheric and oceanic phenomena (Carnevale et
al. 1988), of which for some earlier studies see, e.g., McWilliams and Flierl
(1979) and Mied and Lindemann (1979).

The universal northwest rule for the initial movement of cyclones is of
course insufficient for predicting the specific track of each intense vortex,
although returning to dimensional form with original variables (12.108) al-
ready implies a big variety of cyclone tracks. More physical factors have to be
taken into consideration. First, the bottom topography has a strong influence
on the track, of which a basic model is the quasigeostrophic flow governed
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Fig. 12.19. Universal vortex track (solid line) for the advanced stage of two-contour
vortex, computed by (12.110). The dash-dotted line is the result without considering
the vortex-shape distortion. Crosses denote τ = 1, 2, 3, 4. Adapted from Sutyrin and
Flierl (1994)
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by (12.49) with λ−2 = 0. At the fundamental level, Carnevale et al. (1988)
have used a two-point-vortex model to approximate a modon and conducted
comprehensive numerical experiments on the propagation of barotropic mod-
ons over a variety of topography, such as ridges, valleys, axially symmetric
hills and holes, and randomly generated topographies. For example, cyclones
would climb hills but anticyclones would move downhill.

Carnevale et al. (1991a) have further used rotating-tank experiment to
investigate the effect of topography on the propagation of both isolated
cyclones (with zero total circulation) and nonisolated cyclones (with nonzero
circulation). Briefly, if the horizontal scale of a vortex is much smaller than
that of the topography over which it lies, the latter can be modeled by a con-
stant slope of which the direction defines local compass directions and hence
a local “β-effect”. Thus, a cyclone over such a broad topography will prop-
agate toward the “local northwest” (upslope and toward left), which alters
the direction of the vortex track. For example, a cyclone would climb up out
of a valley in a cyclonic spiral around the center, and up the slope of a hill
in an anticyclonic spiral around the peak. More complicated than this, suffi-
ciently strong topographic disturbances can destroy a modon into two nearly
independent oppositely signed vortices.

At the applied level, among others, Luo and Chen (1995) have used (12.49)
with λ−2 = 0 to perform nine numerical experiments on the topographic effect
of Taiwan island on typhoon tracks, and obtained right deviation of the tracks.

Secondly, baroclinicity implies the appearance of horizontal temperature
gradient accompanied by vertical wind shear in the vortex, resulting in low-
level cyclonic and high-level anticyclonic structure as sketched in Fig. 12.6.
In this case one has to use the isentropic potential vorticity (IPV) defined in
(12.59).

Once the vertical flow enters into the play, however, a thorough theoretical
analysis becomes impossible. Instead, in developing practical forecast methods
one substitutes the observed data into the governing equations more general
than (12.49), to infer the local time derivative of P (∂P/∂t or simply Pt) called
the IPV tendency, and use it to predict the vortex position shortly afterward.
Here, the key issue is to identify the mechanisms or terms that dominant the
IPV tendency qualitatively. This strategy is reviewed by Chan (2005) and
outlined later.

Generically, the IPV tendency can be symbolically expressed by

Pt = HA+VA+DH+ FR, (12.111)

where HA, VA, DH, and FR represent horizontal advection, vertical advection,
diabatic heating, and friction, respectively. The friction is important only in
the planetary boundary layer, so baroclinicity adds two extra mechanisms, the
vertical advection and diabatic heating.9 Then, Wu and Wang (2000) found
9 The diabatic heating in tropics is largely the difference between latent heat release
and radiative cooling, and for the former to happen it is necessary to consider
the moisture field (e.g., Gill 1982b), that makes the problem even more involved.
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that the tropical cyclone tends to move toward the area of max{P1t}, where P1

denotes the azimuthal mode of P with wavenumber 1 (WN-1), which we recall
in the quasigeostrophic model is modons or gyres. Using a projection operator
Λ1 to project both sides of (12.111) into the WN-1 mode, from observed data
the authors diagnosed that the strongest vertical gradient of P1t is near the
eyewall in the tropical cyclone and the tropopause in the tropical atmosphere,
respectively. Therefore, away from these regions the dominant causes of vortex
motion is horizontal advection and diabatic heating. Then the WN-1 mode of
the former can be further decomposed to (Chan et al. 2002)10

Λ1{HA} = −(v1 · ∇Ps + vs · ∇P1), (12.112)

where the first term denotes the asymmetric advection of symmetric potential
vorticity (AASPV) in the vortex and environment, including the contribution
of the β-effect and other asymmetric convection; while the second term is
the symmetric advection of asymmetric WN-1 potential vorticity (SAAPV)
consisting of the β-gyres, vertical shear, and asymmetric convection. On the
other hand, diabatic heating is found strong mainly when the convection is
quite asymmetric and the vortex track is not smooth.

Chan et al. (2002) have applied (12.111) and (12.112) to diagnose the
data of more than 300 typhoons, which led them to propose the following
conceptual framework to interpret their motions (see also Chan 2005):

The potential vorticity tendency of WN-1 determines the motion of a tropi-
cal cyclone, due mainly to the horizontal advection and diabatic heating. While
the former dominates when the motion is steady, a significant contribution of
the latter, especially the rotation of its asymmetric part, can lead to a non-
smooth vortex track. Within this azimuthal mode, changes in the distribution
of one or more of AASPV, SAAPV, and adiabatic heating, lead to subsequent
changes of the vortex motion direction.

Evidently, this conceptual framework has to be supplemented by the afore-
mentioned bottom topography effect. Nevertheless, we can now follow the
analysis of Chan (2005), applying (12.111) and (12.112) to interpret Fig. 12.18,
especially the physics that caused the turn of the track of the Typhoon Flo
from a northwestward to a northeast direction. The turn started at 0000 Uni-
versal Time Coordinate (UTC) on 17 September associated with a maximum
AASPV to the northeast of the vortex and about perpendicular to its motion
direction, see Fig. 12.20a. Thus by (12.112), the large-scale flow had changed,
to advecting the vortex toward the northeast. But the vortex turning is an
integrated effect of maximum relative vorticity tendency over time, and hence
happened later. Meanwhile, the SAAPV caused a significant maxP1t oppo-
site to the AASPV term at the left of the vortex direction, see Fig. 12.20b.
The effect of diabatic heating DH is small (Fig. 12.20c). Thus, both terms in
(12.112) jointly determined the instantaneous direction of the total Pt maxi-
mum as shown in Fig. 12.20d.
10 Advection of WN-1 mode by the WN-1 flow no longer yields a WN-1 mode.
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Fig. 12.20. Contributors to WN-1 potential vorticity tendency P1t in the midtro-
posphere for Typhoon Flo at 0000 UTC on 17 September 1990. (a) and (b) are the
contributions of AASPV and SAAPV terms in horizontal advection, of Pt, and (c)
is the contribution of DH term, and (d) total potential vorticity tendency (PVT).
The contour intervals are 0.5× 10−9m2s−2 Kkg−1. thin solid (dashed) lines are pos-
itive (negative) values. The arrow points to the direction of vortex motion, with the
typhoon symbol at its center. Adapted from Chan (2005)

The vortex track turned toward the north-northeast 18 h later, so the pat-
terns of Fig. 12.20 became those in Fig. 12.21. In WN-1 horizontal advection,
the AASPV pattern (Fig. 12.21a) again rotated clockwise, with maximum
on the southeast side and ahead of the vortex motion, while the SAAPV
pattern (Fig. 12.21b) rotated similarly with different maximum direction and
location. Both horizontal advections were significantly stronger than that in
Fig. 12.20 due to the enhancement of potential vorticity in the vortex. On
the other hand, the diabatic heating (Fig. 12.21c) was also enhanced, with
maximum on the left of the vortex motion direction. Again the vortex motion
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Fig. 12.21. As in Fig. 12.20 except after the track turned (1800 UTC on 17 Sep-
tember 1990). The contour intervals are 1× 10−9m2s−2 Kkg−1. From Chan (2005)

direction was aligned better to the total P1t maximum than any individual
term (Fig. 12.21d), indicating that all the three mechanisms should be con-
sidered especially when the motion changes direction.

Summary

1. Vorticity and vortex dynamics is of considerable importance in atmospheric
and oceanic fluid dynamics. Geophysical vortical structures have some
unique properties. In general, the formation and structures of strong vor-
tices of various scales, from turbulent coherent structures to tornados and
to hurricanes, involve the coupling with density–temperature stratification
as an internal baroclinic source of absolute vorticity.

Specifically, large-scale vortical structures, which is the concern of this
chapter, are influenced by the earth’s rotation through the Coriolis force
with latitude-dependent strength (the β effect), which creates new relative
vorticity.
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On the other hand, large-scale vortices can be treated within the
shallow-water model, and even by two-dimensional approximation due
to both the shallow-water model and the Taylor–Proudman theorem for
slow motion in rapidly rotating system.

2. The concept of potential vorticity and its conservation is the key to
almost the entire geophysical fluid dynamics. In shallow-water approxi-
mation, the barotropic potential-vorticity conservation along with the β
effect directly implies the stretching (vorticity enhancement) and shrink-
ing (vorticity weakening) of vertical vortex columns, and leads to the
existence of dissipative Rossby waves. In meteorology, under certain
balanced-flow condition the global weather map can be constructed from
the isentropic potential-vorticity map and isentropic temperature map
through an inversion principle, just like in incompressible flow the velocity
field can be constructed from the vorticity field through the Biot–Savart
formula.

3. Compared to three-dimensional flow, in two dimensions the vorticity has
no stretching and tilting, but the vorticity gradient vector does have sim-
ilar behavior. Its enhancement generates filament-like structures, and its
weakening implies more evenly distributed vorticity. The vorticity gradi-
ent field and strain-rate field are closed coupled, which governs the entire
evolution of kinetic energy and enstrophy of a two-dimensional turbulence:
while the former is toward larger structures (inverse cascade), the latter is
toward finer structures (cascade). In a rotating system the β-effect joints
this coupling mechanism.

4. Studies of barotropic vortices focus on their two-dimensional instability
under the β effect. The existence of the β-effect implies that the only
isolated vortical structure that can persist and remain isolated is dipoles
(modons, or gyres). Thus, a monopolar vortex must evolve to multipolar
structures as often observed in geophysical flows. In contrast, baroclinic
vortices are more complicated due to the stratification, of which the theo-
retical studies are confined to the simplest models such as two-layer model.

5. In the study of intense tropical cyclones, an issue of great practical
importance is the prediction of their propagation. As a universal rule,
any cyclones have an initial tendency to propagate toward northwest due
to the β-effect, as can be thoroughly analyzed by quasigeostrophic vortex
model. But the initial tendency of each cyclone is subjected to change due
to several complicated factors. The specific propagation track of a tropical
cyclone is determined by the maximum temporal tendency of isentropic
potential vorticity of azimuthal wave-number 1. For steady propagation,
the dominant mechanism of this tendency is horizontal advection includ-
ing the β effect, which can be predicted by barotropic vortex models. But,
the “local β-effect” caused by the bottom topography as well as the baro-
clinic effect, especially diabatic heating, can cause non-smooth cyclone
track with sudden turn.



A

Vectors, Tensors, and Their Operations

A.1 Vectors and Tensors

A spatial description of the fluid motion is a geometrical description, of which
the essence is to ensure that relevant physical quantities are invariant under
artificially introduced coordinate systems. This is realized by tensor analysis
(cf. Aris 1962). Here we introduce the concept of tensors in an informal way,
through some important examples in fluid mechanics.

A.1.1 Scalars and Vectors

Scalars and vectors are geometric entities independent of the choice of coor-
dinate systems. This independence is a necessary condition for an entity to
represent some physical quantity. A scalar, say the fluid pressure p or den-
sity ρ, obviously has such independence. For a vector, say the fluid velocity
u, although its three components (u1, u2, u3) depend on the chosen coordi-
nates, say Cartesian coordinates with unit basis vectors (e1,e2,e3), as a single
geometric entity the one-form of ei,

u = u1e1 + u2e2 + u3e3 = uiei, i = 1, 2, 3, (A.1)

has to be independent of the basis vectors. Note that Einstein’s convention has
been used in the last expression of (A.1): unless stated otherwise, a repeated
index always implies summation over the dimension of the space.

The inner (scalar) and cross (vector) products of two vectors are familiar.
If θ is the angle between the directions of a and b, these operations give

a · b = |a||b| cos θ, |a× b| = |a||b| sin θ.

While the inner product is a projection operation, the cross-product produces
a vector perpendicular to both a and b with magnitude equal to the area of
the parallelogram spanned by a and b. Thus a×b determines a vectorial area
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with unit vector n normal to the (a, b) plane, whose direction follows from
a to b by the right-hand rule. In particular, the inner and cross-products of
Cartesian basis vectors satisfy

ei · ej = δij
ei × ej = ek, i, j, k = 1, 2, 3 and cycles

}
, (A.2a,b)

where

δij =
{
1 if i = j,
0 if i �= j

is the Kroneker symbol.
The gradient operator

∇ = ei
∂

∂xi
(A.3)

is also a vector, which as a single entity is invariant under any coordinate
transformations. Thus, the pressure gradient ∇p is a vector; the divergence
and curl of velocity,

∇ · u = ϑ, ∇× u = ω,

are the dilatation scalar and vorticity vector, respectively.

A.1.2 Tensors

Scalar and vectors can be considered as special tensors of rank (or order) zero
and one respectively. In general, as the immediate extension of vectors, in an
n-dimensional Euclidean space a tensor T of rank m is a geometric entity
independent of the choice of coordinate systems, and has nm components with
respect to a given coordinate system. When n = 3, like the one-form (A.1) for
a vector, these 3m components Tij...k constitute the coefficients of an m-form
of the given base vectors, i.e.,

T = Tij...keiej . . . ek, i, j, . . . , k = 1, 2, 3,

and obey certain transformation rule to keep the invariance of T.1 The neces-
sity of introducing tensors of ranks higher than one can be illustrated by the
following simple example.

Assume the fluid velocity at a spatial point x is u, and consider the velocity
change at any neighboring point x+dx, see Fig. A.1. To the first-order of dx,
there is

du = (dx · ∇)u = dxju,j , (A.4a)

where dxj (j = 1, 2, 3) are Cartesian coefficients of dx. Here and throughout
the book we have used a simple notation (·),j to indicate the derivative with

1 In many books a tensor is defined by requiring their components to obey this
transformation rule, which is the inverse of that of the basis vector, to ensure the
invariance of the tensor.
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du

dx

u(x)

u(x�dx)

x�dx

x

Fig. A.1. A schematic interpretation of (A.4a)

respect to xj ; sometimes we also denote ∂/∂xi by ∂i. So u has three directional
derivatives

u,j ≡
∂u

∂xj
, j = 1, 2, 3,

each being a vector. Thus we may further expand them as

u,j = ekuk,j , j, k = 1, 2, 3. (A.4b)

Then, just as p,j is the jth component of pressure gradient vector ∇p, the
vector u,j is the jth component of a geometric entity, velocity gradient, defined
as

∇u = eju,j = ejekuk,j , j, k = 1, 2, 3, (A.5)

where summation is to be taken twice, once for j and once for k. This is
a two-form of ei (i = 1, 2, 3), an example of tensors of rank 2, can also be
directly obtained from (A.1) and (A.3). Note that in (A.5) the index j implies
the components of ∇ and goes first, while the index k implies the components
of u and goes after j. The order inverse in uk,j is only apparent, because
this component of ∇u is merely an abbreviation of ∂uk/∂xj . Since ∇u is
independent of the magnitude and direction of dx, in comparison with (A.4a)
it is a more general description of the velocity variation at the neighborhood
of a point.

In physical and numerical experiments one always uses certain coordinate
systems, and the direct output is always components of tensors. Using com-
ponent operations is also convenient in deriving formulas, and sometimes only
one typical component is sufficient. For example, for the velocity gradient we
may just write down a representative component uk,j . But writing the final
equations in coordinate-independent tensorial form enables seeing the physical
objectivity of these equations clearly.

Any tensor of rank 2 can be expressed by a square matrix, but not vise
versa. Like any square matrix, the deformation tensor, or generally any tensor
of rank 2, can always be decomposed into a symmetric part and an anti
symmetric part, each being a tensor of rank 2

∇u = D+Ω, (A.6a)
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where
Dij ≡

1
2
(uj,i + ui,j) = Dji (A.6b)

is called the strain-rate tensor, having six independent components, and

Ωij ≡
1
2
(uj,i − ui,j) = −Ωij (A.6c)

is the spin tensor or vorticity tensor, having three independent components.
As illustrated by (A.6a), the addition (as well as differentiation and inte-

gration) of tensors is the same as that of vectors. The multiplication of tensors,
in general, results in a tensor of higher rank. A new operation of tensors is
contraction by summing a pair of components with the same index (“dummy
index”). This reduces the rank by two. The simplest example is the inner
product of vectors: a · b = aibi or ∇ ·u = ϑ. Similarly, for two tensors of rank
2 there is

AijBjk = Cik.

A.1.3 Unit Tensor and Permutation Tensor

The most fundamental symmetric tensor of rank 2 is the unit tensor

I ≡ eiejδij (A.7)

of which the components in any Cartesian coordinates are invariably the Kro-
necker delta. The contraction of two unit tensors gives

δijδjk = δik or I · I = I.

Making contraction again (denoted by double dots) yields

I : I = δii = n (dimension of the space).

Clearly, the contraction of two tensors of rank 2 is the same as the multipli-
cation of two matrices.

With a few exceptions in Sect. 3.2, all tensors we need in this book but
one will be of ranks no more than 2. Like (A.2b), the cross-product of vectors
in three-dimensional space can be expressed by

(a× b)i = ei · (ejaj × ekbk) = ajbkei · (ej × ek) = εijkajbk,

where εijk are the Cartesian components of a tensor of rank 3

E ≡ eiejekεijk. (A.8a)
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To find these components, we use the familiar rule of vector product

εijk ≡ ei · (ej × ek) =

∣∣∣∣∣∣∣
ei · e1 ei · e2 ei · e3
ej · e1 ej · e2 ej · e3
ek · e1 ek · e2 ek · e3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣∣∣∣∣∣∣
=


1 if (ijk) = (123), (231), (312),
−1 if (ijk) = (132), (213), (321),
0. otherwise.

(A.8b)

Therefore, these components in any Cartesian coordinates are invariably the
permutation symbol εijk, completely anti symmetric under exchange of any
pair of its three indices. For this reason, tensor E is called permutation tensor.
It is used frequently whenever there is a cross-product. If more than one cross-
products appear, one need the multiplication of two permutation tensors. In
a three-dimensional space, from (A.8b) there is

εijkεlmn =

∣∣∣∣∣∣
δil δim δin
δjl δjm δjn
δkl δkm δkn

∣∣∣∣∣∣ . (A.9a)

Contraction with respect to k, n yields

εijkεlmk = δilδjm − δimδjl. (A.9b)

Continuing the contraction with respect to j,m then gives

εijkεljk = (3− 1)δil = 2δil, (A.9c)

and continuing again
εijkεijk = 3(3− 1) = 6. (A.9d)

One often needs to handle two-dimensional flow. If a and b are vectors in
the flow plane such that a × b is along the third direction e3 normal to the
plane, then in εijkajbk one of the i, j, k must be 3 due to (A.8b), with the
other two varying between 1 and 2. In this case (A.9b) yields

ε3jkε3lm =
∣∣∣∣ δjm δjn
δkm δkn

∣∣∣∣ , j, k,m, n = 1, 2. (A.10a)

Contracting with respect to k, n yields

ε3jkε3mk = (2− 1)δjm = δjm, (A.10b)

and continuing again,
ε3jkε3jk = 2(2− 1) = 2. (A.10c)
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The particular importance of the permutation tensor in vorticity and
vortex dynamics lies in the fact that

ωi = εijkuk,j = εijkΩjk, (A.11a)

due to (A.3) and (A.6). Inversely, by using (A.9b) it is easily seen that

Ωjk =
1
2
εijkωi. (A.11b)

This pair of intimate relations between vorticity vector and spin tensor show
that they have the same nonzero components and hence can represent, or are
dual to, each other. Note that (A.11b) also indicates that the inner product of
a vector and an antisymmetric tensor can always be conveniently expressed as
the cross-product of the former and the dual vector of the latter; for instance,

a ·Ω =
1
2
ω × a, Ω · a =

1
2
a× ω. (A.12a,b)

Obviously, we also have

∇ ·Ω = −1
2
∇× ω. (A.13)

A.2 Integral Theorems and Derivative Moment
Transformation

The key result of tensor integrations is the extension of the fundamental the-
orem of calculus in one dimension∫ b

a

f ′(x) dx =
∫ b

a

df(x) = f(b)− f(a)

to multidimensional space. We state two classic theorems without giving proof
(e.g., Milne-Thomson 1968), which are then used to derive useful integral
transformations.

A.2.1 Generalized Gauss Theorem and Stokes Theorem

First, let V be a volume, having closed boundary surface ∂V with outward
unit normal vector n and ◦ denote any permissible differential operation of the
gradient operator ∇ on a tensor F of any rank. Then the generalized Gauss
theorem states that ∇ ◦F dV must be a total differentiation, and its integral
can be cast to the surface integral of n ◦ F dS over the boundary surface ∂V
of V , where n is the unit outward normal vector:∫

V

∇ ◦ F dV =
∫
∂V

n ◦ F dS. (A.14)
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In particular, if F is constant, (A.14) yields a well-known result∫
∂V

ndS =
∫
∂V

dS = 0, (A.15)

i.e., the integral of vectorial surface element dS = ndS over a closed surface
must vanish. Moreover, for the total dilatation and vorticity in V we have∫

V

ϑ dV =
∫
∂V

n · udS, (A.16a)

∫
V

ωdV =
∫
∂V

n× udS. (A.16b)

One often needs to consider integrals in two-dimensional flow. In this case
the volume V can be considered as a deck on the flow plane of unit thickness.
Then (A.14) and some of the volume-integral formulas below remain the same
in both two and three dimensions, but care is necessary since in n-dimensions
δii = n is n-dependent. Some formulas for n = 3 need to be revised or do not
exist at all; see Sect. A.2.4 for issues special in two dimensions.

Next, let S be a surface with unit normal n, then without leaving S only
tangential derivatives can be performed and have chance to be integrated out,
expressed by line integrals over the boundary loop ∂S. The tangent differential
operator is naturally n × ∇, and the line element of ∂S has an intrinsic
direction along its tangent, dx = t ds, where t is the tangent unit vector
and ds the arc element. The directions of the normal n of S and t obey the
right-hand rule. Then, as the counterpart of (A.14), the generalized Stokes
theorem states that on any open surface S any (n × ∇) ◦ FdS must be the
total differentiation, and its surface integral can be cast to the line integral of
dx ◦ F along ∂S: ∫

S

(n×∇) ◦ F dS =
∮
∂S

dx ◦ F . (A.17)

Thus, if F is constant, (A.17) shows that the integral of element dx over a
closed line must vanish ∮

t ds =
∮

dx = 0; (A.18)

and if F = x, since

[(n×∇)× x]i = εijkεjmlnlxk,m = −2ni,

we obtain the well-known formula for the integral of a vectorial surface∫
S

ndS =
1
2

∮
∂S

x× dx (A.19)
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with (A.15) as its special case since a closed surface has no boundary. In
general, (A.17) implies∫

S

(n×∇) ◦ F dS = 0 on closed S. (A.20)

The most familiar application of (A.17) to fluid mechanics is the relation
between total vorticity flux through a surface and circulation along the boun-
dary of the surface. Since (n×∇) · u = n · (∇× u), there is∫

S

ω · ndS =
∮
∂S

u · dx. (A.21)

A.2.2 Derivative Moment Transformation on Volume

The Gauss and Stokes theorems permit the construction of useful identities for
integration by parts. In particular, we need to generalize the one-dimensional
formula ∫ b

a

f(x)dx = bf(b)− af(a)−
∫ b

a

xf ′(x) dx,

which expresses the integration of f(x) by the x-moment of its derivative,
to various integrals of a vector f over a volume or surface, so that they are
cast to the integrals of proper moments of the derivatives of f plus bound-
ary integrals. We call this type of transformations the derivative moment
transformation.

We first use the generalized Gauss theorem (A.14) to cast the volume
integral of f to the moments of its divergence and curl. Since

(fixj),i = fj + fi,ixj ,

εijkεjlm(fmxk),l = εijk(εjlmfm,l)xk + εijkεjkmfm,

where x is the position vector, by (A.14) we find a pair of vector identities∫
V

f dV = −
∫
V

x(∇ · f)dV +
∫
∂V

x(n · f) dS, (A.22)

∫
V

f dV =
1

n− 1

∫
V

x× (∇× f)dV − 1
n− 1

∫
∂V

x× (n× f) dS, (A.23)

where n = 2, 3 is the space dimension. The factor difference comes from the
use of (A.9c) for n = 3 and (A.10b) for n = 2. Note that for two-dimensional
flow, (A.22) still holds if f is on the plane (e.g., velocity), but becomes trivial
if f is normal to the plane (e.g., vorticity).2

2 This can be verified by considering a deck-like volume of unit thickness. When
the vector is normal to the deck plane, one finds 0 = 0 from (A.22).
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Then, we need to cast the first vector moment x×f to the second moments
of its curl, say F = ∇× f . When n = 3, F has three second moments x2F ,
x× (x× F ), and x(x · F ), related by

x× (x× F ) = x(x · F )− x2F .

Note that x(x · F ) = 0 for n = 2. Then one finds

2
∫
V

x× f dV = −
∫
V

x2F dV +
∫
∂V

x2n× f dS, n = 2, 3, (A.24a)

∫
V

x× f dV =
∫
V

x(x · F ) dV −
∫
∂V

x(n× f) · x dS, n = 3, (A.24b)

3
∫
V

x×f dV =
∫
V

x×(x×F ) dV −
∫
∂V

x×x×(n×f) dS, n = 3. (A.24c)

Here, (A.24c) is the sum of (A.24a) and (A.24b). The trick of proving the first
two is using (A.14) to cast the surface integrals therein to volume integrals
first. In so doing n becomes operator ∇ which then has to act on both f and
x.

If we make a Helmholtz–Hodge decomposition f = f⊥+f‖, see (2.87) and
associated boundary conditions (2.98a) or (2.98b), then we can replace f by f‖
on the right-hand side of (A.22). Namely, the integral of a vector is expressible
solely by the derivative-moment integrals of its longitudinal part. However,
(A.23) is not simply a counterpart of this result in terms of the transverse
part of the vector. Rather, as long as n×f‖ �= 0 on ∂V , a boundary coupling
with the longitudinal part must appear. For some relevant discussions see Wu
and Wu (1993).

A.2.3 Derivative Moment Transformation on Surface

By similar procedure, we may use the Stokes theorem (A.17) to cast surface
integrals of a vector to that of its corresponding derivative moments plus
boundary line integrals. To this end we first decompose the vector to a normal
vector φn and a tangent vector n×A, since they obey different transformation
rules. Then for the normal vector we find a surface-integral identity effective
for n = 2, 3∫

S

φndS = − 1
n− 1

∫
S

x× (n×∇φ) dS +
1

n− 1

∮
∂S

φx× dx. (A.25)

And, for n = 3 only, the integral of tangent vector can be cast to∫
S

n×AdS = −
∫
S

x× [(n×∇)×A] dS +
∮
∂S

x× (dx×A). (A.26)

In deriving these identities the operator n×∇ should be taken as a whole for
the application of (A.17). Setting φ = 1 in (A.25) returns to (A.19). In fact,
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(A.25) is also a special case of (A.23) with f = ∇φ. Note that the cross-
product on the right-hand side of (A.26) can be replaced by inner product∫

S

n×AdS =
∫
S

x(n×∇) ·AdS −
∮
∂S

x(A · dx), (A.27)

where (n×∇) ·A = n · (∇×A).
Then, for both n = 2 and 3, the integral of the first moment x × nφ can

be transformed to the following alternative forms:∫
S

x× nφdS =
1
2

∫
S

x2n×∇φdS − 1
2

∮
∂S

x2φdx (A.28a)

= −
∫
S

x[x · (n×∇φ)] dS +
∮
∂S

φx(x · dx) (A.28b)

= −1
3

∫
S

x× [x× (n×∇φ)] dS +
1
3

∮
∂S

φx× (x× dx). (A.28c)

Finally, to cast the surface integral of

x× (n×A) = n(x ·A)−A(x · n)

to the second-moment of the derivatives of A, we start from two total deriv-
atives

εijk(n×∇)j(x2Ak) = x2εijk(n×∇)jAk +Akεijk(n×∇x2)j
= x2εijk(n×∇)jAk + 2(xinkAk − nixkAk),

εljk(n×∇)j(xixlAk) = xixlεljk(n×∇)jAk +Akεljk(n×∇)j(xixl)

= xixlεljk(n×∇)jAk + 3xinkAk −Aixknk.

Here, since what matters in x× (n×A) is only the tangent components of A,
we may well drop its normal component nkAk. Hence, subtracting the second
identity from 1/2 times the first yields an integral of x×(n×A). Using (A.17)
to cast the left-hand side to line integral then leads to the desired identity∫

S

x× (n×A) dS =
∫
S

S · [(n×∇)×A] dS −
∮
∂S

S · (dx×A), (A.29a)

where

S =
1
2
x2I− xx or Sij =

1
2
x2δij − xixj . (A.29b)

is a tensor depending on x only.
As a general comment of derivative moments, we note that, since in

(A.22),(A.23), and (A.25)–(A.27) the left-hand side is independent of the
choice of the origin of x, so must be the right-hand side. In general, if I
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represents any integral operator (over volume or surface or a sum of both),
than the above independence requires

I{(x0 + x) ◦ F} = I{x ◦ F}

for any constant vector x0. Thus, we have

x0 ◦ I{F}+ I{x ◦ F} = I{x ◦ F},

which implies that, due to the arbitrariness of x0, there must be

I{F} = 0. (A.30)

Namely, if we remove x from the right-hand side of (A.22), (A.23), and (A.25)–
(A.27), the remaining integrals must vanish. It is easily seen that this condition
is precisely the Gauss and Stokes theorem themselves.

A.2.4 Special Issues in Two Dimensions

The preceding integral theorems and identities are mainly for three-dimensional
domain, with some of them also applicable to two-dimensional domain. A few
special issues in two dimensions are worth discussing separately.

In many two-dimensional problems it is convenient to convert a plane
vector aex+bey to a complex number z = x+iy by replacing ez× by i =

√
−1

(Milne-Thomson 1968), so that

ey = ez × ex =⇒ iex (A.31a)

and hence
aex + bey = (a+ bez×)ex =⇒ ex(a+ ib). (A.31b)

Then the immaterial ex can be dropped. Thus, denoting the complex conju-
gate of z by z̄ = x− iy, for derivatives there is

∂x = ∂z + ∂z̄, ∂y = i(∂z − ∂z̄), (A.32a)

2∂z = ∂x − i∂y, 2∂z̄ = ∂x + i∂y, (A.32b)

so by (A.31)
∇ =⇒ 2ex∂z̄, ∇2 =⇒ 4∂z∂z̄. (A.33)

The replacement rule (A.31) cannot be extended to tensors of higher ranks.
If in a vector equation one encounters the inner product of a tensor S and a
vector a that yields a vector b, then (A.31) can be applied after b is obtained
by common real operations. For example, consider the inner product of a
trace-free symmetric tensor

S = exexS11 +
1
2
(exey + eyex)S12 + eyeyS22, S11 + S22 = 0,
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and a vector a = exa1 + eya2 =⇒ ex(a1 + ia2). After obtaining a · S = S · a
by real algebra, we use (A.31) to obtain

2a · S =⇒ ex(a1 − ia2)(2S11 + iS12), S11 + S22 = 0. (A.34)

In this case S appears as a complex number S11+ iS12/2 but a appears as its
complex conjugate a1 − ia2.

Now, if F = f(x, y) is a scalar function, (A.17) is reduced to

ez ×
∫
S

(
ex

∂f

∂x
+ ey

∂f

∂y

)
dS =

∫
S

(
ey

∂f

∂x
− ex

∂f

∂y

)
dS =

∮
∂S

f dx.

Hence, by (A.31) this formula becomes

i
∫
S

(
∂f

∂x
+ i

∂f

∂y

)
dS =

∮
∂S

f dz,

which by (A.32) is further converted to∮
∂S

f(z, z) dz = 2i
∫
S

∂f

∂z
dS, (A.35a)

∮
∂S

f(z, z) dz = −2i
∫
S

∂f

∂z
dS, (A.35b)

the second formula being the complex conjugate of the first. Milne-Thomson
(1968) calls this result the area theorem.

The two-dimensional version of the derivative-moment transformation on
surface, i.e., the counterpart of (A.25) and (A.26), also needs special care.
We proceed on the real (x, y)-plane. Let C be an open plane curve with end
points a and b, and es and n be the unit tangent and normal vectors along
C so that (n,es.ez) form a right-hand orthonormal triad. Then since

∂x

∂s
= es, n×∇φ = n×

(
es

∂

∂s
+ n

∂

∂n

)
φ = ez

∂φ

∂s

for any scalar φ and tangent vector tA, there is∫
C

nφds = −ez × (xφ)|ba −
∫
C

x× (n×∇φ) ds, (A.36)

∫
C

tAds = (xA)|ba −
∫
C

x
∂A

∂s
ds. (A.37)

The transformation of the first-moment integral of a normal vector nφ has
been given by (A.28). But that of a tangent vector, say x × esA, cannot be
similarly transformed at all, because

x× esA =
∂

∂s
(x× xA)− es × xA− x× x

∂A

∂s
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simply leads to a trivial result. What we can find is only a scalar moment∫ b

a

x ·At ds = −1
2

∫ b

a

x2
∂A

∂s
ds+

1
2
x2A

∣∣∣b
a
. (A.38)

A.3 Curvilinear Frames on Lines and Surfaces

In the above development we only encountered Cartesian components of
vectors and tensors. In some situations curvilinear coordinates are more conve-
nient, especially when they are orthonormal. Basic knowledge of vector analy-
sis in a three-dimensional orthonormal curvilinear coordinate system can be
found in most relevant text books (e.g., Batchelor 1967), where the coordi-
nate lines are the intersections of a set of triply orthogonal surfaces. But,
the Dupin theorem (e.g., Weatherburn 1961) of differential geometry requires
that in such a system the curves of intersection of every two surfaces must
be the lines of principal curvature on each. While the concept of principal
curvatures of a surface will be explained later, here we just notice that the
theorem excludes the possibility of studying flow quantities on an arbitrary
curved line or surface and in its neighborhood by a three-dimensional ortho-
normal curvilinear coordinate system. These lines and surfaces, however, are
our main concern. Therefore, in what follows we construct local coordinate
frames along a single line or surface only and as intrinsic as possible, with an
arbitrarily moving origin thereon.

A.3.1 Intrinsic Line Frame

If we are interested in the flow behavior along a smooth line C with length
element ds, say a streamline or a vorticity line, the intrinsic coordinate frame
with origin O(x) on C has three orthonormal basis vectors: the tangent vector
t = ∂x/∂s, the principal normal n (toward the center of curvature), and the
binormal b = t × n, see Fig. A.2. This (t,n, b) frame can continuously move
along C and is known as intrinsic line frame. The key of using this frame is to
know how the basis vectors change their directions as s varies. This is given
by the Frenet–Serret formulas, which form the entire basis of spatial curve
theory in classical differential geometry (e.g., Aris 1962):

∂t

∂s
= κn,

∂n

∂s
= −κt+ τb,

∂b

∂s
= −τn, (A.39a,b,c)

where κ and τ are the curvature and torsion of C, respectively. The curvature
radius is r = −1/κ with dr = −dn. The torsion of C measures how much a
curve deviates from a plane curve, i.e., it is the curvature of the projection of
C onto the (n, b) plane. For a plane curve τ = 0 and we have a (t,n) frame
as already used in deriving (A.36)–(A.38).
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b

S

n

tO

Fig. A.2. Intrinsic triad along a curve

Now, let the differential distances from O along the directions of n and b
be dn and db, respectively. Then

∇ = t
∂

∂s
+ n

∂

∂n
+ b

∂

∂b
, (A.40)

which involves curves along n and b directions that have their own curvature
and torsion. Then one might apply the Frenet–Serret formulas to these curves
as well to complete the gradient operation. But due to the Dupin theorem we
prefer to leave the two curves orthogonal to C undetermined.

For example, if C is a streamline such that u = qt, then the continuity
equation for incompressible flow reads

∇ · u =
∂q

∂s
+ q∇ · t = 0, (A.41)

where, by using (A.39),

∇ · t = n · ∂t
∂n

+ b
∂t

∂b
. (A.42)

Similarly, there is

∇× t = κb+
(
n× ∂t

∂n
+ b× ∂t

∂b

)
.

Here, since |t| = 1, it follows that:

n ·
(
n× ∂t

∂n
+ b× ∂t

∂b

)
= t · ∂t

∂b
=

1
2
∂

∂b
|t|2 = 0,

b ·
(
n× ∂t

∂n
+ b× ∂t

∂b

)
= −t · ∂t

∂n
= −1

2
∂

∂n
|t|2 = 0.
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Therefore, the second term of ∇ × t must be along the t direction, with the
magnitude

ξ ≡ t · (∇× t) = b · ∂t
∂n
− n · ∂t

∂b
. (A.43)

The scalar ξ is known as the torsion of neighboring vector lines (Truesdell
1954). Thus, using this notation we obtain

∇× t = ξt+ κb. (A.44)

This result enables us to derive the vorticity expression in the streamline
intrinsic frame

ω = ∇× (qt) = ∇q × t+ q∇× t = ∇q × t+ ξqt+ κqb.

The first term of is

∇q × t =
∂q

∂b
n− ∂q

∂n
b,

so we obtain (Serrin 1959)

ω = ξqt+
∂q

∂b
n+

(
κq − ∂q

∂n

)
b. (A.45)

Thus, ξ0 if ω · u �= 0. Note that in a three-dimensional orthonormal frame
there must be ξ ≡ 0, so by the Dupin theorem a curve with ξ �= 0 cannot be
the principal curvature line of any orthogonally intersecting surfaces.

A.3.2 Intrinsic operation with surface frame

Derivatives of tensors along a curved surface S can be made simple by an
intrinsic use of an intrinsic surface frame, which is more complicated than the
intrinsic line frame since now there are two independent tangential directions
on S.

Covariant Frame

At a given time, a two-dimensional surface S in a three-dimensional space is
described by the position vector x of all points on S, which is a function of
two independent variables, say uα with α = 1, 2. Then

rα(u1, u2) ≡
∂x

∂uα
, α = 1, 2, (A.46)

define two nonparallel tangent vectors (not necessarily orthonormal) at each
point x ∈ S, see Fig.A.3. Note that by convention when an upper index
appears in the denominator it implies a lower index in the numerator, and
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n

r1
r 2

r1

r2

Fig. A.3. Covariant and contravariant frames on a surface

vise versa. rα are used as the covariant tangent basis vectors characterized
by lower indices. Their inner products

gαβ ≡ rα · rβ , α, β = 1, 2, (A.47)

form a 2 × 2 matrix which gives the covariant components of the so-called
metric tensor and completely determine the feature of rα. Note that the area
of the parallelogram spanned by r1 and r2 is |r1 × r2| =

√
g = det{gαβ}.

From rα one can obtain the unit normal vector

n(u1, u2) =
r1 × r2
|r1 × r2|

=
r1 × r2√

g
. (A.48)

Then the set (r1, r2,n) form a covariant right-handed surface frame. We stress
that only n is the intrinsic feature of the surface, but rα created by uα are ar-
tificially chosen. If we introduce a variable u3 along the n direction, then since
for the given surface rα and n depends only on u1, u2, there is ∂rα/∂u3 = 0
and ∂n/∂u3 = 0.

Contravariant Frame

A vector f can be decomposed in terms of (rα,n)

f · rα = fα, f · n = f3.

However, to recover the vector from its components, one does not have
f = rαfα + f3n, since then f · rβ = fβ would equal rα · rβfα = gαβfα,
which is possible only if gαβ = δαβ , but in general this is not the case. Thus,
a covariant frame alone is insufficient ; one has to construct another frame
conjugate to it. This is similar to the situation in complex domain, where
a complex basis-vector set, say ai, needs be complemented by its complex
conjugate a∗

i with ai · a∗
j = δij , such that if f · ai = fi then there should

be f = fia
∗
i .
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We therefore introduce the second pair of tangent vectors rα with upper
index, by requiring the hybrid components of the metric tensor be a unit
matrix

rα · rβ ≡ gαβ = δαβ . (A.49)

To this end, we set (see Fig. A.3)

r1 =
r2 × n
√
g

, r2 =
n× r1√

g
. (A.50)

Then obviously rα · rβ = 0 for α �= β, and by (A.48) rα · rβ = 1 for α = β as
desired. Moreover, by using identity

(a× b)× (c× d) = b[a · (c× d)]− a[b · (c× d)] (A.51)

there is

r1 × r2 =
1
g
(r2 × n)× (n× r1) =

1
g
n[n · (r1 × r2)] =

n
√
g
,

so we have
n =

√
gr1 × r2, |r1 × r2| = 1

√
g
. (A.52)

Thus, we have a contravariant right-handed frame (r1, r2,n). Similar to
(A.46), rα can be created by a pair of covariant variables u1, u2:

rα(u1, u2) =
∂x

∂uα
, α = 1, 2. (A.53)

With
gαβ = rα · rβ , α, β = 1, 2, (A.54)

being the contravariant components of the metric tensor. Substituting (A.50)
into (A.54), and using (A.47) and identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c), (A.55)

we find
g11 =

g11
g
, g22 =

g22
g
, g12 = g21 = −g12

g
.

Namely, gαβ are the cofactors of gαβ , or the two matrices are inverse of each
other:

gαβgβγ = δαγ . (A.56)

Since in both frames n is the same and normal to any tangent basis vectors,
the covariant and contravariant component of a vector f along n coincide and
will be denoted by fn. We thus write

f = rαf
α + fnn = rβfβ + fnn. (A.57)
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This time the result is correct

f · rγ = fαδγα = fα, f · rγ = fβδβγ = fγ .

Here we see a hybrid use of the two frames. Accordingly, the summation
convention over the repeated index is implied only if one index is upper and
the other is lower.

Moreover, by (A.57) we have

fα = rα · f = rα · rβfβ = gαβfβ ,

fβ = rβ · f = rβ · rαfα = gβαf
α.

(A.58)

Thus, raising or lowering the index of a component can be achieved by using
the metric tensor gαβ or gαβ , respectively. Actually, in (A.56) we have done
this for the metric tensor itself.

A tensor of higher rank can be similarly decomposed by its repeated inner
products with basis vectors. Depending on the choice of basis vectors, the
components of a tensor of rank 2 can be covariant, contravariant, or hybrid.
For example, if a tensor T has only tangent component, we can write

T = Tαβr
αrβ = T ·β

α· r
αrβ = Tα··β rαr

β = Tαβrαrβ ,

where the dots indicate the order of components which cannot be exchanged
unless the tensor is symmetric with respect to relevant indices.

Tangent Derivatives of a Vector

The most important differential operations on a surface S is the tangent deriv-
atives of vectors and tensors. We split the gradient vector into

∇ = ∇π + n
∂

∂n
, ∇π(·) = rα

∂(·)
∂uα

= rα(·),α, (A.59)

where a hybrid use has been made: rα is not created from uα but from uα.
Now, for the tangent derivatives of a vector f , there is

∇πf = rα(rβfβ + fnn),α

= rα(rβ,αfβ + rβfβ,α + n,αfn + nfn,α).

Here, the derivatives of fβ and fn are merely that of numbers; the key is the
derivatives of basis vectors rα, r

β , and n. These vectors are not coplaner, and
hence their derivatives with respect to uα can be expressed by their linear
combinations. The result is given by the classic Gauss formulas

rβ,α = Γλαβrλ + bαβn, rβ,α = −Γ βαλrλ + bβαn, Γλαβ = Γλβα, (A.60a,b,c)
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and Weingarten formulas

n,α = −bβαrβ = −bαβrβ , bαβ = bβα = bγβgαγ . (A.61a,b)

The six coefficients Γλαβ = Γλβα in (A.60) are called Christoffel symbols of the
second kind. They do not form a tensor since rα are artificially chosen. In
contrast, three coefficients bαβ = gγαb

α
β = bβα are covariant components of

the symmetric curvature tensor, defined by the intrinsic operation

K ≡ −∇πn = −rαn,α = rαrβb
β
α = rαrβbαβ . (A.62)

Intrinsic Operation on Surface

In view of the complicated involvement of nontensorial Γλαβ in the derivatives
of rα or rβ , it is desired to bypass these operations. We call this kind of oper-
ation intrinsic operation. To start, we look at some more intrinsic properties
of the normal vector n. First, the mean curvature κ is defined as half of the
two-dimensional divergence

2κ ≡ −∇π · n = bβαδ
α
β = gαβbαβ = bαα. (A.63)

This result directly comes from the contraction of (A.62. Second, by (A.61a,b)
there is

∇π × n = rα × n,α = −bαβrα × rβ = 0. (A.64)

Finally, (A.61a) implies

n · n,α = 0. (A.65)

From the derivation of (A.64 we can already see the main feature of the
intrinsic operation: (1) The operation is in vector form rather than component
form; and (2) the tangent basis vectors are carried along in the operation but
their derivatives do not appear. The final result will be automatically free from
these vectors. The following examples further show the strategy.

First, we compute the jump of normal vorticity across a vortex sheet

[[ωn]] = n · [[∇× u]] = (n×∇) · (n× γ),

where γ is the sheet strength. Using the surface frame, we have

[[ωn]] = (n× rα) · (n× γ,α + n,α × γ),

which amounts to common vector algebra. Thus, by (A.55),

[[ωn]] = (n · n)(rα · γ,α)− (n · γ,α)(rα · n)

+(n · n,α)(rα · γ)− (n · γ)(rα · n,α),
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where n · γ = 0, rα · n = 0, and we have (A.65). Thus, we simply obtain
(Saffman 1992; where no proof is given)

[[ωn]] = rα · γ,α = ∇π · γ. (A.66)

Second, we show that for any vectors A and B satisfying n ·A = 0 and
B = n×A, there is

∇π ·A = (n×∇) ·B = n · (∇×B). (A.67)

Indeed, since n×∇ = n×∇π, we have

(n×∇) ·B = n · (∇π ×B) = n · [rα × (n,α ×A+ n×A,α)]

= n · n,α(rα ·A)− n ·A(rα · n,α) + rα ·A,α,

in which the first two terms vanish due to (A.65) and assumed feature of A.
The last term gives (A.67).

Third, (n×∇)×A is a tangent-derivative operation and we develop it to
several fundamental constituents. There is

(n×∇)×A = (n× rα)×A,α = rα(A,α · n)− n(rα ·A,α)

= (∇πA) · n− n∇π ·A.
(A.68)

The second term comes from the tangent divergence of A, while the first term
must be related to the normal component of A; but even if An = 0, the surface
curvature may cause ∇πA to have normal components. In fact, we can further
split the first term of (A.68) to

(∇πA) · n = ∇π(A · n)−A · ∇πn = ∇πAn +A ·K,

where K has only tangent components. Thus, it follows that

(n×∇)×A = ∇πAn +Aπ ·K− n(∇π ·A). (A.69)

In all the above examples rα are merely a temporary scaffold for the
convenience of operation. However, if the final result is to be written in terms
of components, then the derivatives of rα become inevitable. For example, in
(A.69) and (A.68) we have

∇π ·A =
1
√
g
(
√
gAα),α, n · (∇π ×B) =

1
√
g
(B2,1 −B1,2), (A.70a,b)

of which the proof requires the knowledge of Γλαβ that is beyond our present
concern.
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Orthonormal Surface Frame

If in the above surface-moving frame the covariant tangent basis vectors r1
and r2 are already orthogonal, then by (A.50) there is rα = rα/

√
g, implying

that there is no need to distinguish covariant and contravariant tangent basis
vectors. Thus, like Cartesian tensors, it suffices to use one pair of tangent
basis vectors and denote the components by subscripts only.

The orthogonality of basis vector implies that

gii = h2i δii (no summation with respect to i),

where

hi =
√
gii =

√
ri · ri (no summation with respect to i) (A.71)

is the length of ri, called scale coefficients or Lamé coefficients. They are still
functions of the moving point x. Nevertheless, we can now introduce a set of
orthonormal basis vectors

eα =
rα
hα

(no summation with respect to α), e3 = n, (A.72)

which form an orthonormal surface frame. For a given curved surface S, hα
depends on its intrinsic geometric feature as well as the orientation of rα, the
latter can be arbitrarily chosen, not restricted by the Dupin theorem as long
as the frame is only defined on a single surface S.

With the ei frame and using the notation

∂i =
1
hi

∂

∂xi
, i = 1, 2, 3, (A.73)

the Gauss formulas (A.60) and Weingarten formulas (A.61) can be cast to

∂1e1 = − h1,2
h1h2

e2 + b11e3

∂1e2 =
h1,2
h1h2

e1 + b12e3

∂1e3 = −b11e1 − b12e2

∂2e1 =
h2,1
h1h2

e2 + b12e3

∂2e2 = − h2,1
h1h2

e1 + b22e3

∂2e3 = −b12e1 − b22e2



, (A.74)

and, of course,

∂ie3 = 0, i = 1, 2, 3.
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Here, bαβ = bβα (α, β = 1, 2) are redefined by

bαβ = eα ·K · eβ or K = bαβeαeβ (A.75)

instead of (A.62). From bαβ one can construct two intrinsic scalar curvatures
which describe the wall geometry and are independent of the choice of e1 and
e2. One is

b11 + b22 = κB = −∇π · n, (A.76)

twice of the mean curvature as already seen in (A.63); the other is

b11b22 − b212 = det{bαβ} ≡ K, (A.77)

the total curvature. Moreover, except some isolated points a curved surface
has a pair of orthogonal principal directions. If e1 and e2 coincide with these
directions then bαβ = 0 for α �= β. In this case b11 = K1 and b22 = K2

are the principal curvatures, which are the greatest and least bαβ among all
orientations of the tangent vectors. The total curvature is simply K = K1K2.
On a sphere any tangent direction is a principal direction.

It is convenient to express bαβ by principal curvatures since the latter are
independent of the choice of (e1,e2). Denote the unit tangent vectors along
the principal directions by p1 and p2 (they define the curvature lines of the
surface), then by (A.75) there is

K = p1p1K1 + p2p2K2.

Thus, if (p1,p2,e3) form a right-handed frame and β is the angle by which
the (p1,p2) pair rotates to the (e1,e2) pair in counterclockwise sense, there
is

b11 = K1 cos2 β +K2 sin2 β, (A.78a)

b12 = −1
2
(K1 −K2) sin 2β, (A.78b)

b22 = K1 sin2 β +K2 cos2 β. (A.78c)

Hence, for a given surface, bαβ depend solely on a single parameter β. Because
reversing the direction of (p1,p2) does not affect K, without loss of generality
we set β ∈ [0, π/2].

On the other hand

κ1 = (∂1e1) · e2 = −(∂1e2) · e1 = − h1,2
h1h2

, (A.79a)

κ2 = (∂2e2) · e1 = −(∂2e1) · e2 = − h2,1
h1h2

(A.79b)

define a pair of on-surface curvatures of coordinate lines x1 and x2, respec-
tively (they are the geometric curvatures of these lines if K = 0). Therefore,
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(A.74) can be written in a geometrically clearer form:

∂1e1 = κ1e2 + b11e3

∂1e2 = −κ1e1 + b12e3

∂1e3 = −b11e1 − b12e2

∂2e1 = −κ2e2 + b12e3

∂2e2 = κ2e1 + b22e3

∂2e3 = −b12e1 − b22e2


(A.80)

Note that since in (A.71) hα (α = 1, 2) are functions of x1 and x2, operators
∂α and ∂β for α �= β are not commutative. Instead, there is

(∂1 − κ2)∂2 = (∂2 − κ1)∂1 or ∂1∂2 − ∂2∂1 = κ1∂1 − κ2∂2, (A.81)

but we still have ∂α∂3 = ∂3∂α.
The orthogonality of x1-lines and x2-lines implies that the variation of κ1

and κ2 are not independent. In fact, by (A.81) and using (A.80), there is

∂2κ1 = ∂2[(∂1e1) · e2]

= (∂1∂2e1) · e2 + (∂1e1) · (∂2e2) + κ21 + κ22

= −∂1κ2 + b11b22 − b212 + κ21 + κ22,

from which it follows a differential identity

∂2κ1 + ∂1κ2 = κ21 + κ22 +K. (A.82)

Finally, by using (A.80), the components of the gradient of any vector
f = eifi in the (x1, x2, x3)-frame read

(∂if) · ej =

 c11 c12 c13

c21 c22 c23

∂3f1 ∂3f2 ∂3f3

 , (A.83a)

where

c11 = ∂1f1 − κ1f2 − b11f3

c12 = ∂1f2 + κ1f1 − b12f3

c13 = ∂1f3 + b11f1 + b12f2

c21 = ∂2f1 + κ2f2 − b12f3

c22 = ∂2f2 − κ2f1 − b22f3

c23 = ∂2f3 + b12f1 + b22f2


. (A.83b)

Thus, bαβ and κα appear in all tangent derivatives.
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A.4 Applications in Lagrangian Description

Tensor analysis is necessary in studying the transformation of physical quan-
tities and equations between the physical space and the reference space (in
Lagrangian description). In this section, we present some materials which are
directly cited in the main text.

A.4.1 Deformation Gradient Tensor and its Inverse

Consider the deformation gradient tensor and associated Jacobian in the ref-
erence space, defined by (2.3) and (2.4)

F = ∇Xx or Fαi = xi,α, (A.84)

J =
∂(x1, x2, x3)
∂(X1,X2,X3)

= detF. (A.85)

First, J has a few explicit forms exactly the same as the determinant of a
matrix

J = εαβγx1,αx2,βx3,γ , (A.86a)

εijkJ = εαβγxi,αxj,βxk,γ . (A.86b)

Next, keeping the labels of particles, any variation of J can only be caused by
that of x. Using (A.86), an infinitesimal change of J is then given by

δJ = εαβγ(δx1,αx2,βx3,γ + x1,αδx2,βx3,γ + x1,αx2,βδx3,γ)

= εαβγx1,αx2,βx3,γ(δx1,1x2,2x3,3 + x1,1δx2,2x3,3 + x1,1x2,2δx3,3)

= Jδxl,l.

Namely,
δJ = J∇ · δx. (A.87)

Then, owing to (2.8), (2.3) is invertible, and hence F has inverse tensor
defined in the physical space

F−1 = ∇X, or F−1
iα = Xα,i, (A.88)

which satisfies F · F−1 = F−1 · F = I, i.e.,

xi,αXβ,i = δαβ , Xα,ixj,α = δij . (A.89)

The Jacobian of F−1 is

J−1 = detF−1 =
∂(X1,X2,X3)
∂(x1, x2, x3)

=
1
J
, (A.90)
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which has expressions symmetrical to (A.86a,b). For example, we have

εijkJ
−1 = εαβγXα,iXβ,jXγ,k. (A.91)

Similar to (A.87), there is

δJ−1 = J−1δXα,α = J−1δXα,ixi,α = J−1∇X · δX. (A.92)

The deformation tensor F and its inverse F−1 have one index in physical
space and one in the reference space. This property can be used to transform
a physical-space vector to its dual or image in the reference space, or vise
versa.

A.4.2 Images of Physical Vectors in Reference Space

We are particularly interested in seeking the image of vorticity ω in the X-
space. To this end consider a general vector f first. Multiply both sides of
(A.86b) by fk,j/J and notice that

fk,jxj,β = fk,β , εαβγxk,βγ = 0.

It follows that:

εijkfk,j =
1
J
εαβγxi,αxk,γfk,β =

1
J
εαβγ(xk,γfk),βxi,α,

of which the vector form is

∇× f =
1
J
[∇X × (F · f)] · F. (A.93)

Taking inner product of this result with F−1, the inverse of (A.93) reads

∇X × (F · f) = J(∇× f) · F−1. (A.94)

The mapping between ∇× f and ∇X × (F · f) is one-to-one, and has three
features: (1) they are identical at t = τ = 0; (2) if one vanishes, so must the
other; and (3) they are divergenceless in their respective spaces. We therefore
identify the latter as the image of the former in X-space. Besides, for two-
dimensional vector field f = (f1, f2, 0) it can be shown that (A.94) is simplified
to

∇X × (F · f) = J∇× f . (A.95)

Note that the above identification naturally leads us to define the image of f
itself in the X-space as F · f .

Now let f = u = ∂x/∂τ be the velocity field. Its image in X-space is

Uα = xi,αui or U = F · u. (A.96)
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Then by (A.94), the image of ω is

Ω ≡ ∇X ×U , (A.97)

which we call the Lagrangian vorticity. By using (A.89) and mass conservation
(2.40), the transformation between ω and Ω is given by

Ω = Jω · F−1 = ω
ρ0
ρ
· F−1, (A.98a)

ω =
1
J
Ω · F =

ρ

ρ0
Ω · F. (A.98b)

For two-dimensional flow there is

Ω = Jω =
ρ0
ρ
ω (A.99)

and, if in addition the flow is incompressible we simply have Ω = ω.
Note that the images of u and ω have opposite structures. In the former F

is used but in the latter, in addition to the factor J , it is F−1. This is related
to the fact that u is a true vector (polar vector) but ω is a pseudo-vector
(axial vector). One might switch the use of F and F−1 for true and pseudo
vectors; which however does not lead to useful result unless U is to be written
as the curl of another vector, which will be used once below.

Once we introduced the Lagrangian vorticity, we may study vorticity kine-
matics in physical space by that of Ω in reference space. First, since

∂

∂τ
(xk,γuk) = xk,γak +

1
2
q2,γ ,

where

Aα ≡ xi,αai = Aα or bF · a = A (A.100)

is the X-space image of acceleration, there is

∂U

∂τ
= A+∇X

(
1
2
q2
)
. (A.101)

This is the X-space image of a = Du/Dt. Its curl gives an elegant equation
at once

∂Ω
∂τ

= ∇X ×A, (A.102a)

where by A.94,

∇X ×A = J(∇× a) · F−1 (A.102b)

is the image of ∇×a. Therefore, the rate of change of the image of the curl of
velocity (Lagrangian vorticity) equals the image of the curl of acceleration. We
stress that this result is not true for Lagrangian velocity U and acceleration
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A: in (A.101) there is an extra gradient term. The implication of this difference
has been made clear in Sect. 3.6.

As an application of utilizing the vector images in reference space, we
extend the content of Sect. 3.6.2 by showing that the circulation preserving is
sufficient but not necessary for having a Bernoulli integral. Rewrite (A.101)
as

∂U

∂τ
= A′ +∇XΨ, (A.103)

where Ψ is defined in (3.152) and A′ is the rotational part of A. Similar to
the approach leading to (3.148), assume there exists a family of material sur-
faces defined by two parameters, say ξ1(X) and ξ2(X), such that the normal
∇Xξ1 ×∇Xξ2 is along A′

A′ × (∇Xξ1 ×∇Xξ2) = 0. (A.104)

Then a Bernoulli integral like (3.155a) along these surfaces can be obtained.
An important example is inviscid baroclinic flow without shock waves, for
which Ds/Dt = 0 or s = s(X) in the X-space. Hence, any material sur-
faces are isotropic. Note that the existence of these surfaces is ensured by
the Crocco–Vazsonyi equation (2.163), in which the rotational term T∇s is a
complex-lamellar vector field according to the definition in Sect. 3.3.1. Then,
by using (A.96) there is

A′(X, τ) = F · T∇s,

which is normal to isentropic surfaces. Therefore, on these surfaces we have
Bernoulli integral (3.155). Correspondingly, those conservation theorems
involves material integrals can survive along these surfaces. For example,
instead of volume integrals (3.132) and (3.134) we may have a similar sur-
face integrals; and the Kelvin circulation theorem (3.130c) will hold if the
loop C is on one of such surfaces.
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Bödewadt U.T. (1940) Die Drehströmung über festem Grunde. Z Angew Math.
Mech. 20: 241–245.

Boratav O.W., Peltz R.B., Zakusky N.J. (1992) Reconnection in orthogonally
interacting vortex tubes: direct numerical simulations and quantifications.
Phys. Fluids, A. 4: 581–605.

Bouard R., Coutaneau M. (1980) The early stage of development of the wake
behind an impulsively started cylinder for 40 < Re < 104. J. Fluid Mech.
101: 583–607.

Boulmezaoud T.Z., Amari T. (2000) Approximation of linear force-free fields
in bounded 3-D domains. Math. Comput. Modell., 31: 109–129.

Bowles R.I. (2000) Transition to turbulent flow in aerodynamics. Phil. Trans.
R. Soc. A 358: 245–260.



References 725

Bradshaw P. (1971) An introduction to Turbulence and its Measurement. Perg-
amon Press, London.

Bradshaw P., Ferriss D.H., Atwell N.P. (1967) Calculation of boundary layer
development using the turbulent energy equation. J. Fluid Mech. 28: 593–
616.

Bragg S.L., Hawthorne W.R. (1950) Some exact solutions of the flow through
annular cascade actuator discs. J. Aero. Sci. 17: 243.

Brechet M.E., Meneguzzi M., Politano H., Sulem P.L. (1988) The dynamics
of freely decaying two-dimensional turbulence. J. Fluid Mech. 194: 333–
349.

Bretherton F.P. (1970) A note on hamilton’s principle for perfect fluids.
J. Fluid Mech. 44: 19–31.

Briggs R.J. (1964) Electron-Stream Interaction with Plasmas. MIT Press,
Cambridge, Mass.

Brooke J.W., Hanratty T.J. (1992) Origin of turbulence-producing eddies in
a channel flow, Phys. Fluids, A5(4): 1011–1022.

Browand F.K. (1986) The structure of the turbulent mixing layer. Physica D,
18: 135–148.

Browand F.K., Ho C.M. (1983) The mixing layer: An example of quasi
two-dimensional turbulence. Journal de Mecanique Theorique et Appliquee,
Numero special, 99–120.

Brown G.L., Lopez J.M. (1990) Axisymmetric vortex breakdown. Part I. Phys-
ical mechanism. J. Fluid Mech. 228: 153–576.

Brown G.L., Roshko A. (1974) On density effects and large structure in tur-
bulent mixing layers. J. Fluid Mech. 64: 775–816.

Brown G.L., Thomas A.S.W. (1977) Large structure in a turbulent boundary
layer. Phys. Fluids, 20: 5243.

Buntine J.D., Saffman O.G. (1995) Inviscid swirling flows and vortex break-
down. Proc. R. Soc. London, A449: 139–353.

Bunyakin A.V., Chernyshenko S.I., Stepanov G.Y. (1996) Inviscid Batchelor-
model flow past an airfoil with a vortex trapped in a cavity. J. Fluid Mech.
323: 367–376.

Bunyakin A.V., Chernyshenko S.I., Stepanov G.Y. (1998) High-Reynolds-
number Batchelor-model asymptotics of a flow past an aerofiol with a vortex
trapped in a cavity. J. Fluid Mech. 358: 283–297.

Burgers J.M. (1948) A mathematical model illustrating the theory of turbu-
lence. Adv. Appl. Mech. 1: 171–199.

Bushnell D.M., McGinley C.B. (1989) Turbulence control in wall flows. Ann.
Rev. Fluid Mech. 21: 1–20.

Butler K.M., Farrel B.F. (1992) Three-dimensional optimal perturbations in
viscous shear flow. Phys. Fluids, A4: 1637–1650.

Caflisch R.E. (1989) Mathematical analysis of vortex dynamics. In: Caflisch
R.E. (ed.) Mathematical Aspects of Vortex Dynamics, SIAM, Philadelphia,
1–24.



726 References

Cai J.S., Liu F., Luo S.J. (2003) Stability of symmetric vortices in two di-
mensions and over three-dimensional slender conical bodies. J. Fluid Mech.
480: 65–94.

Cai J.S., Luo S.J., Liu F. (2004) Stability of symmetric and asymmetric vortex
pairs over slender conical wings and bodies. Phys. Fluids, 16: 424–432.

Callegari A.J., Ting L. (1978) Motion of a curved cortex filament with decay-
ing vortical core and axial velocity. SIAM J. Appl. Math. 35: 148–175.

Cantwell B.J., Coles D.E., Dimotakis P.E. (1978) Structure and entrainment
in the plane of symmetry of a turbulent spot. J.Fluid Mech. 87: 641.

Carnevale G.F., Briscolini M., Kloosterziel R.C., Vallis G.K. (1997) Three-
dimensionally perturbed vortex tubes in a rotating flow. J. Fluid Mech.
341: 127–163.

Carnevale G.F., Cavazza P., Purini R., Orlandi P. (1991b) An explanation
for anomalous vortex merger in rotating tank experiments. Phys. Fluids, 3:
1411–1415.

Carnevale G.F., Kloosterziel R.C. (1994) Emergence and evolution of trian-
gular vortices. J. Fluid Mech. 259: 305–331.

Carnevale G.F., Kloosterziel R.C., van Heijst G.J.F. (1991a) Propagation of
barotropic vortices over topography in a rotating tank. J. Fluid Mech. 233:
119–139.

Carnevale G.F., Vallis G.K. (1990) Pseudo-advective relaxation to stable
states of inviscid two-dimensional fluids. J. Fluid Mech. 213: 549–571.

Carnevale G.F., Vallis G.K., Purini R., Briscolini M. (1988) Propagation of
barotropic modons over topography. Geophys. Astrophys. Fluid Dyn. 41:
45–101.

Carton X.J., McWilliams J.C. (1989) Barotropic and baroclinic instabilities
of axisymmetric vortices in a quasi-geostrophic model. In: Nihopul J.C.,
Jamart B.M. (eds.) Mesoscale/Synoptic Coherent Structures in Geophysical
Tuebulence, Elsevier, Amsterdam, 225–244.

Case K.M. (1960) Stability of inviscid plane Couette flow. Phys. Fluids, 3:
143–148.

Casey J., Naghdi P.M. (1991) On the lagrangian description of vorticity. Arch.
Rational Mech. Anal. 115: 1–14.

Caswell B. (1967) Kinematics and stress on a surface of rest. Arch. Rat. Mech.
Anal. 26: 385–399.

Chan J.C.L. (2005) The physics of tropical cyclone motion. Ann. Rev. Fluid
Mech. 37: 99–128.

Chan J.C.L., Ko F.M.F., Lei Y.M. (2002) Relationship between potential
vorticity tendency and tropical cyclone motion. J. Atmos. Sci. 59: 1317–
1336.

Chandrasekhar S., Kendal P.C. (1957) On force-free magnatic fields. Astro-
phys. J. 26: 457–460.

Chang C.C., Lei S.Y. (1996a) On the sources of aerodynamic forces: steady
flow around a cylinder or a sphere. Proc. R. Soc. London, A452: 2369–2395.



References 727

Chang C.C., Lei S.Y. (1996b) An analysis of aerodynamic forces on a delta
wing. J. Fluid Mech. 316: 173–196.

Chang C.C., Su J.Y., Lei S.Y. (1998) On aerodynamic forces for viscous com-
pressible flow. Theort. Comput. Fluid Dyn., 10: 71–90.

Chen J.Y. (1975) On the motion of gas bubble, liquid drop, and solid sphere
in viscous fluid. Sci. China, 4: 376–398 (in Chinese).

Chen J.Y. (1983) Slow viscous flow past a circular cylinder. Proc. 2nd Asian
Congr. Fluid Mech. 723–731.

Chen J.Y. (1989) The slow viscous flow past an elliptic cylinder and a flat
plate. Proc. 4th Asian Congr. Fluid Mech. Hong Kong, 1: C15–C18.

Chen M.Z. (1986) Turbulence and the Related Engineering Calculations. Bei-
jing Aeronautical Institute Press. In Chinese.

Chen Q.N., Chen S.Y., Eyink G.L. (2003) The joint cascade of energy and
helicity in three-dimensional turbulence. Phys. Fluids, 15: 361–374.

Chen Q.N., Chen S.Y., Eyink G.L., Holm D.D. (2005) Resonant interactions in
rotating homogeneous three-dimensional turbulence. Submitted to J. Fluid
Mech.

Chen S.Y., Ecke R.E., Eyink G.L., Wang X., Xiao Z.L. (2003) Physical
mechanism of the two-dimensional enstrophy cascade. Phys. Rev. Lett.
91(21):214501-1–214501-4.

Chernyshenko S.I. (1984) Isv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 2:40–45;
English translation: Fluid Dyn. 19(2): 206–210.

Chernyshenko S.I. (1988) The asymptotic form of the stationary separated
flow around a body at high Reynolds numbers. Prikl. Mat. Mekh. 52(6):958–
966. Engl. transl. J. Appl. Math. Mech. 52(6):746–753.

Chernyshenko S.I. (1998) Asymptotic theory of global separation. ASME
Appl. Mech. Rev. 51: 523–536.

Chester W. (1962) On Oseen’s approximation. J. Fluid Mech. 13: 557–569.
Chester W., Breach D.R. (1969) On the flow past a sphere at low Reynolds
number. J. Fluid Mech. 37: 751–760.

Childress S. (1970) New solutions of the kinematic dynamo problem. J. Math.
Phys. 11: 3063–3076.

Choi H., Moin P., Kim J. (1994) Active turbulence control for drag reduction
in wall-bounded flows. J. Fluid Mech. 262: 75.

Choi K.S. (1989) Near-wall structure of turbulent boundary layer with riblets.
J. Fluid Mech. 208: 417–458.

Chomaz J.M. (2005) Global instabilities in spatially developing flows: non-
normality and nonlinearity. Annu. Rev. Fluid Mech. 37: 357–392.

Chong M.S., Perry A.E., Cantwell B.J. (1990) A general classification of three-
dimensional flow field. Phys. Fluids, A2: 765–777.

Chorin A.J. (1973) Numerical study of slightly viscous flow. J. Fluid Mech.
57: 785–796.

Chorin A.J. (1982) Evolution of a turbulent vortex. Commun. Math. Phys.
83: 517–535.



728 References

Chorin A.J. (1994) Vorticity and Turbulence. Springer, Berlin Heidelberg New
York.

Chorin A.J., Marsdon J.E. (1992) A Mathematical Introduction to Fluid
Mechanics. Springer-Verlag Berlin Heidelberg New York.

Christensen K.T., Adrian R.J. (2002) Measurement of instantaneous Eulerian
acceleration fields by particle-image velocimetry: method and accuracy.
Exp. Fluids, 33: 759–769.

Clark R.W. (1976) Non-conical flow past slender wings with leading-edge vor-
tex sheets. ARC RM 3814.

Cohen J., Wygnanski I. (1987a) The evolution of instabilities in the
axisymmetric jet, Part 1, The linear growth of disturbances near the nozzle.
J.Fluid Mech. 176: 191–219.

Cohen J., Wygnanski I. (1987b) The evolution of instabilities in the axisym-
metric jet. Part 2, The flow resulting from the interaction between two
waves. J.Fluid Mech. 176: 221–235.

Constantin P. (1994) Geometric statistics in turbulence. SIAM Rev. 36: 73–
98.

Cottet G.H., Koumoutsakos P. (2000) Vortex Methods: Theory and Practice.
Cambridge University Press, Cambridge.

Couder Y., Basdevant C. (1986) Experimental and numerical study of vortex
couple in two-dimensional flows. J. Fluid Mech. 173: 225–251.

Cowley S.J., Van Dommenlen L.L., Lam S.T. (1990) On the use of lagrangian
variables in descriptions of unsteady boundary-layer separation. Phil. Trans.
R. Soc. London, A333: 343–378.

Crabtree L.F., Küchemann D., Sowerby L. (1963) Three-dimensional bound-
ary layers. In Rosenhead L. (ed.), Laminar Boundary layers, Dover, Mineale
New York 409–491.

Craik A.D.D. (1971) Nonlinear resonant instability in boundary layers.
J. Fluid Mech. 50: 393–413.

Craik A.D.D. (1985) Wave interactions and fluid flows. Cambridge University
Press, Cambridge.

Craik A.D.D., Criminale W.O. (1986) Evolution of wavelike disturbances in
shear flows: a class of exact solutions of the Navier-Stokes equations. Proc.
R. Soc. London, A 406: 13–26.

Crow S.C. (1970a) Aerodynamic sound emission as a singular perturbation
problem. Studies Appl. Math. 49: 21–44.

Crow S.C. (1970b) Stability theory for a pair of trailing vortices. AIAA J.
8: 2172–2179.

Cucitore R., Quadrio M., Baron A. (1999) On the effectiveness and limitations
of local criteria for the identification of a vortex. Eur. J. Mech. B18: 261–
282.

Dahm W.J.A., Scheil C.M., Tryggvason T. (1989) Dynamics of vortex inter-
action with a density interface. J. Fluid Mech. 205: 1–43.

Dallmann U. (1983) Topological structures of three-dimensional flow separa-
tion. AIAA 83–1935.



References 729

Dallmann U. (1984) Structural stability of three-dimensional vortex flows. In:
Jordan H.L., Oertel H., Robert K. (eds.) Nonlinear Dynamics of Transi-
tional Flows, Springer-Verlag, Berlin Heidelberg New York, 81–102.

Dallmann U. (1988) Three-dimensional vortex structure and vorticity topol-
ogy. In: Hasimoto H., Kambe T. (eds.) Vortex Motion, North-Holland, 138–
189.

Dang K.Q. (1986) The effect of viscosity upon an unsteady vortex. M.S. Thesis
Univ. Tenn. Space Inst.

Danielsen E.F. (1967) Transport and diffusion of stratospheric radioactivity
based on synoptic hemispheric analyses of potential vorticity. Dept. Met.
Penn. State University, Report NYO-3317-3.

Danielsen E.F. (1968) Stratospheric-tropospheric exchange based on radioac-
tivity, ozone and potential vorticity. J. Atmos. Sci. 25: 502–518.

Darbyshire A.G., Mullin T. (1995) Transition to turbulence in constent-mass-
flux pipe flow. J.Fluid Mech. 289: 83–114.

Darmofal D.L. (1993) The role of vorticity dynamics in vortex breakdown.
AIAA 93–3036.

Davidson P.A. (2001) An Introduction to Magnetohydrodynamics. Cambridge
University Press, Cambridge.

Dean W.R. (1928) Fluid motion in a curved channel. Proc. R. Soc. London,
A121: 402–420.

Deem G.S., Zabusky N.J. (1978) Vortex waves: stationary “V states” interac-
tions, recurrence and breaking. Phys. Rev. Lett. 40: 859–862.

Delbende I., Chomaz J.M., Huerre P. (1998) Absolute/convective instabilities
in the Batchlor vortex: a numerical study of the linear impulse response,
J. Fluid Mech. 355: 229–254.

Délery J. (2001) Robert legendre and Henri Werlé: Toward the elucidation of
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Ford R., McIntyre M.E., Norton W.A. (2000) Balance and the slow quasiman-
ifold: Some explicit results. J. Atmos. Sci. 57: 1236–1254.

Fornberg B. (1980) A numerical study of steady viscous flow past a circular
cylinder. J. Fluid Mech. 98: 819–855.

Fornberg B. (1985) Steady viscous flow past a circular cylinder up to Reynolds
number 600. J. Comput. Phys. 61: 297–320.

Fraenkel L.E. (1970) On steady vortex rings with small cross-section in an
ideal fluid. Proc. Roy. Soc. London, A316: 29–62.

Fraenkel L.E. (1972) Examples of steady vortex rings of small cross-section in
an ideal fluid. J. Fluid Mech. 51: 119–135.

Fraenkel L.E., Burgers M.S. (1974) A global theory of steady vortex rings in
an ideal fluid. Acta Math. 132: 13–51.

Frisch U. (1995) Turbulence. Cambridge University Press,Cambridge.
Fukumoto Y. (1987) On integral invariants for vortex motion under th local-
ized induction approximation. J. Phys. Soc. Jpn. 56: 4207–4209.

Fukumoto Y. (2002) Higher-order asymptotic theory for the velocity field
induced by an inviscid vortex ring. Fluid Dyn. Res. 30: 65–92.

Fukumoto Y., Miyazaki M. (1986) N-solitons on a curved vortex filament.
J. Phys. Soc. Jp. 55: 4152–4155.

Fukumoto Y., Miyazaki M. (1991) Three-dimensional distortions of a vortex
filamernt with axial velocity. J. Fluid Mech. 222: 369–416.

Gad-el-Hak M. (1996) Modern developments in flow control. Appl. Mech.
Rev. 49: 365–379.

Gad-el-Hak M. (2000) Flow Control. Cambridge University Press, Cambridge.



References 733

Gad-el-Hak M., Blackwelder R.F. (1985) The discrete vortices from a delta
wing. AIAA J. 23: 961–962.

Gad-el-Hak M., Blackwelder R.F. (1986) Control of the discrete vortices from
a delta wing. AIAA 86–1915.

Galdi G.P., Padula M. (1990) A new approach to energy theory in the stability
of fluid motion. Arch. Rat. Mech. Anal. 110: 187–286.

Gallaire F., Chomaz J.M. (2003a) Instability mechanisms in swirling flows.
Phys. Fluids, 15(9): 2622–2639.

Gallaire F., Chomaz J.M. (2003b) Mode selection in swirling jet experiments:
a linear stability analysis. J. Fluid Mech. 494: 223–253.

Gallaire F., Chomaz J.M. (2004) The role of boundary conditions in a simple
model of incipient vortex breakdown. Phys. Fluids, 16(2): 274–286.

Garg A.K., Leibovich S. (1979) Spectral characteristics of vortex breakdown.
Phys. Fluids, 22(11): 2053–2064.

Gaster M., Kit E., Wygnanski I. (1985) Large-scale structures in a forced
turbulent mixing layer. J.Fluid Mech. 150: 23–39.

Gerrard J.H. (1966) The mechanics of the formation region of vortices behind
bluff bodies. J. Fluid Mech. 25: 401–413.

Ghosh S., Leonard A., Wiggins S. (1998) Diffusion of a passive scalar from
a no-slip boundary into a two-dimensional chaotic advection field. J. Fluid
Mech. 372: 119–163.

Giacomelli R., Pistolesi E. (1934) Historical sketch. In Durand W.F. (ed.),
Aerodynamic Theory, I, Dover, Mineola New York 305–394.

Gill A.E. (1982a) Atmosphere-Ocean Dynamics. Academic Press, Inc. San
Diego.

Gill A.E. (1982b) Studies of moisture effects in simple atmospheric models:
the stable case. Geophys. Astrophys. Fluid Dyn. 19: 119–152.

Glauert H. (1947) The Elements of Aerofoil and Airscrew Theory, second
edition, Cambridge University Press, Cambridge.
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Jiménez J., Moin P. (1991) The minimal flow unit in near-wall turbulence.
J. Fluid Mech. 225: 213–240.
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Joukowski N.E. (1931) Aérodynamique. Gauthier-Villars, Paries.
Jung W.J., Mangiavacchi N., Akhavan R. (1992) Suppression of turbulence in
wall-bounded flows by high frequency spanwise oscillations. Phys. Fluids,
A4: 1605–1607.

Kachanov Y.S. (1994) Physical mechanisms of laminar-boundary-layer tran-
sition. Annu. Rev. Fluid Mech. 26: 411–482.

Kachanov Y.S. (2002) On a universal essentially nonlinear mechanism of tur-
bulence production in wall shear flows. International Conference in Com-
memoration of Professor P.Y. Chou’s 100th Anniversary, Peking Univer-
sity, Beijing.

Kaden H. (1931) Aufwicklung einer unstabilen unstetigkeitsflache. Ing. Arch.
2: 140–168.

Kambe T. (1984) Axisymmetric vortex solution of Navier-stokes equation.
J. Phys. Soc. Jpn. 53: 13–15.

Kambe T. (2003) Gauge principle and variational formulation for flows of an
ideal fluid. Acta Mech. Sinica, 19: 437–452.

Kambe T. (2004) Geometrical Theory of Dynamical Systems and Fluid Flows.
World Scientific, Singapore.

Kambe, T., Minota, T., Takaoka, M. (1993) Oblique collision of two vortex
rings and its acoustic emission. Phys. Rev. E 48, 1866–1881.

Kaneda Y. (1990a) A representation of the motion of a vortex sheet in a
three-dimensional flow. Phys. Fluids, A2: 458–461.

Kaneda Y. (1990b) On the three-dimensional motion of an infinitely thin
vortex sheet in an ideal fluid. Phys. Fluids, A2: 1817–1826.

Kaplun S. (1957) Low Reynolds number flow past a circular cylinder. J. Math.
Mech. 6: 595–603.
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Kármán Th. von., Burgers J.M. (1935) General aerodynamic theory - perfect
fluids. In: Durand W.F. (ed.) Aerodynamic Theory, II, Dover, Mineola New
York.

Karniadakis G.E., Choi K.S. (2003) Mechanisms on transverse motions in
turbulent wall flows. Ann. Rev. Fluid Mech. 35: 45–62.

Karniadakis G.E., Triantafyllou G.S. (1989) Frequency selection and asym-
pototic states in laminar wakes. J. Fluid Mech. 199: 441–469.

Katz Y., Nishri B., Wygnanski I. (1989) The delay of turbulent boundary
layer separation by oscillatory active control. AIAA 89–1027.

Keller J.J. (1996) A pair of stream functions for three-dimensional vortex
flows. Z. Angew Math. Phys. 47: 821–836.

Keller J.J. (1998) Inverse Euler equations. Z. Angew Math. Phys. 49: 363–383.
Keller J.J. (1999) Inverse equations. Phys. Fluids. 11: 513–520.
Keller J.J., Egli W., Exley J. (1985) Force- and loss-free transitions between
flow states. Z. Angew. Math. Phys. 36: 864–889.

Kellogg O.D. (1929) Foundations of potential Theory. Dover, Mineola New
York.

Kelvin Lord (1867) The traslatory velocity of a circular vortex ring. Phil. Mag.
33: 511–512.

Kelvin Lord (1869) On vortex motion. Trans. R. Soc. Edinb. 25: 217–260.
Kelvin Lord (1871) Hydrokinetic solutions and observations. Phil. Mag.,
42(4): 362–377.

Kelvin Lord (1887) Stability of steady and of periodic fluid motion. Phil. Mag.
23(5): 529–539.

Kerswell R.R. (2002) Elliptical Instability. Annu. Rev. Fluid Mech. 34: 83–
113.

Khorrami M.R. (1991) On the viscous modes of instability of a trailing line
vortex. J. Fluid Mech. 225: 197–212.

Kida S. (1981a) Motion of an elliptic vortex in a uniform shear flow. J. Phys.
Soc. Jpn. 50: 3517–3520.

Kida S. (1981b) A vortex filament moving without change of form. J. Fluid
Mech. 112: 394–409.

Kida S., Miura H. (1998) Identification and analysis of vortical structures.
Eur. J. Mech. B17: 471–488.

Kida S., Takaoka M. (1991a) Vortex reconnection. Kokyuroku RIMS Kyoto
U. 769: 200–208 (in Japanese).

Kida S., Takaoka M. (1991b) Breakdown of frozen motion and vorticity
reconnection. J. Phys. Soc. Jpn. 60: 2184–2196.

Kida S., Takaoka M. (1994) Vortex reconnection. Ann. Rev. Fluid Mech. 26:
169–189.

Kilic M.S., Haller G., Neishtadt A. (2005) Unsteady fluid separation by the
method of averaging. Phys. Fluids, 17, in press.

Kim G., Wang C.M., Wu J.C. (1996) Computation of flow over wings using
integral-differential formulation. AIAA 96–1960.



740 References

Kim J. (1989) On the structure of pressure fluctuations in simulated turbulent
channel flow. J.Fluid Mech. 205: 421–451.

Kim J. (2003) Control of turbulent boundary layers. Phys. Fluids, 15: 1093–
1105.

Kim J., Lim J. (2000) A linear process in wall-bounded turbulent shear flows.
Phys. Fluids, 12(8): 1885–1888.

Kim J., Moin P., Moser R. (1987) Turbulence statistics in fully developed
channel flow at low Reynolds number. J.Fluid Mech. 177: 133.

Kirchhoff G. (1869) Zur Theorie freier-Flüssigkeitsstrahlen. J. Reine Angrew
Math. Bd. 70(H4): 289–298.

Klebanoff P.S., Tidstrom K.D., Sargent L.M. (1962) The three-dimensional
nature of boundary-layer instability. J. Fluid Mech. 12: 1–34.

Klein R., Knio O. (1995) Asymptotic vorticity structure and numerical simu-
lation of slender vortex filaments. J. Fluid Mech. 284: 275–321.

Klein R., Knio O., Ting L. (1996) Representation of core dynamics in slender
vortex filament simulations. Phys. Fluids, 8: 2415–2425.

Klein R., Majda A. (1991a) Self-stretching of a perturbed vortex filament.
I. The asymptotic equations for deviations from a straight line. Physica D,
49: 323–352.

Klein R., Majda A. (1991b) Self-stretching of perturbed vortex filaments.
II. Structure of solutions. Physica D, 53: 267–294.

Klein R., Majda A. (1993) An asymptotic theory for the nonlinear instability
of anti-parallel pairs of vortex filaments. Phys. Fluids, A5: 369–387.

Klein R., Majda A., McLaughlin R.M. (1992) Asymptotic equations for the
stretching of vortex filaments in a background flow field, Phys. Fluids, A4:
2271–2281.

Klein R., Ting L. (1992) Vortex filament with axial core structure variation.
Appl. Math. Lett. 5: 99–103.

Klein R., Ting L. (1995) Theoretical and experimental studies of slender vor-
tex filaments. Appl. Math. Lett. 8: 45–50.
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Koumoutsakos P., Leonard A., Pépin F. (1994) Boundary conditions for vis-
cous vortex methods. J. Comput. Phys. 113: 52–61.

Kraichnan R.H. (1967) Inertial ranges in two-dimensional turbulence, Phys.
Fluids, 9: 1937–1943.

Kraichnan R.H., Montgomery D. (1980) Two-dimensional turbulence. Rep.
Progr. Phys. 43: 547–619.

Krasny R. (1987) Computation of vortex sheet roll-up in the Trefftz plane.
J. Fluid Mech. 184: 123–155.

Kravchenko A.G., Choi H., Moin P. (1993) On the generation of near-wall
streamwise vortices to wall skin friction in turbulent boundary layers. Phys.
Fluids, A5: 3307–3309.



742 References

Kreplin H.P., Vollmers H., Meier H.U. (1980) Experimental determination of
wall shear stress vectors on an inclined prolate spheroid. DFVLR IB 251
80 A 08.

Kroo I. (2001) Drag due to lift: Concepts for prediction and reduction. Ann.
Rev. Fluid Mech. 33: 587–617.
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S. (ed.) Handbuch der Physik, VIII/1, Springer-Verlag, Berlin Heidelberg
New York 1–124.

Overman E.A., Zabusky N.J. (1982) Evolution and merger of isolated vortex
structures. Phys. Fluids, 25: 1297–1305.

Padhye N., Morrison P.J. (1996) Fluid element relabeling symmetry. Phys.
Lett. A219: 287–292.

Padula M. (1988) Energy instability methods: An application to Burgers equa-
tion. In: Galdi G.P., Straughan B. (eds.) Proceeding of Meeting Energy
Stability and Convection, Pitman Research Notes in Mathematics, 168.

Pagan D., Solignac J.L. (1986) Etude expérimentale deléclatement dun tour-
billon engendré par une aile delta, La Recherche Aérospatiale (196–3),197–
219. (French and English editions).

Panton R.L. (1968) The transient for Stokes’ oscillating plate: a solution in
terms of tabulated function. J. Fluid Mech. 31: 819–825.

Panton R.L. (1984) Incompressible Flow. Wiley, New York.
Peace A.J., Riley N. (1983) A viscous vortex pair in ground effect. J. Fluid

Mech. 129: 409–426.
Peckham D.H., Atkison S.A. (1957) Preliminary results of low speed wind
tunnel test on a gothic wing of aspect ratio 1.0. ARC, CP 508.

Pedlosky J. (1985) Instability of heton clouds. J. Atmos. Sci. 42:1477–1486.



References 751

Pedlosky J. (1987) Geophysical Fluid Dynamics. Springer-Verlag, Berlin Hei-
delber New York.

Peridier V.J., Smith F.T., Walker J.D.A. (1991) Vortex-induced boundary-
layer separation. Part I. The limit problem Re → ∞. J. Fluid Mech. 232:
99–131.

Perry A.E., Chong M.S. (1986) A series expansion study of the Navier-
Stokes equations with applications to three-dimensional separation pat-
terns. J. Fluid Mech. 173 207–223.

Perry A.E., Chong M.S., Lim T.T. (1982) The vortex-shedding process behind
two-dimensional bluff bodies. J. Fluid Mech. 116: 77–90.

Phillips H.B. (1933) Vector Analysis, Wiley, New York.
Picone J.M., Boris J.P. (1983) Vorticity generation by asymmetric energy
deposition in a gaseous medium. Phys. Fluids, 26: 365–382.

Picone J.M., Boris J.P., Greig J.R., Raleigh M.R., Fernsler R.F. (1981) Con-
vective cooling of lightning channels. J. Atmos. Sci. 38: 2056–2062.

Pierrehumbert R.T., Widnall S.E. (1981) Thestructure of organized vortices
in a free shear layer. J. Fluid Mech. 102: 301–313.

Plaschko P. (1979) Helical instability of slowly divergent jets. J.Fluid Mech.
92: 209.

Platzman G.W. (1968) The Rossby wave. Q.J. R. Meteorol. Sci. 94: 225–
246.
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Index

β-effect, 651
β-gyres, 674, 684, 688
β-plane, 651
p-q diagram, 325

ABC (Arnold–Beltrami–Childress) flow,
89

aerodynamic force, 588, 590, 621–627
aerodynamic moment, 588
airfoil, 611
Alfvén wave, 134
angular momentum, 26, 27, 70, 71,

94–96, 262, 406, 421, 481, 504,
588, 596, 603, 672, 674

angular velocity, 20, 31, 32, 50, 67, 142,
169, 485, 493, 596, 604, 635, 642,
667, 671

∼ of principal axes of the strain-rate
tensor, 68

Arnold energy theorem, 122
Arnold stability theory, 462–465
Atwood ratio, 185

Baroclinic flow (see also vortices,
baroclinic), 59, 719

barotropic flow (see also vortices,
barotropic), 59, 118, 653, 670

Beltrami equation, 100, 111, 653
Beltrami flow, 87, 89, 434

generalized ∼, 86–90, 113, 128, 257,
259, 262, 273, 277, 289, 290, 293,
294, 297, 303, 304, 340

Bernoulli equation (see also Bernoulli
integral), 60, 171, 176, 273, 589

Bernoulli integral, 109, 113–117, 119,
163, 167, 290, 350

∼ on line, 117

∼ on surface, 114

Eulerian form, 115

Lagrangian form, 115

bifurcation, 156, 217, 237, 332–339,
507–510

∼ diagram, 337

global ∼, 337

Hopf ∼, 368

kinematic ∼, 367

local ∼, 337

parametric ∼, 337

subcritical ∼, 339

supercritical ∼, 338

topological ∼, 337

Biot–Savart formula, 78, 83, 152, 165,
226, 346, 355, 357, 499, 505, 591,
691

∼ for point vortices, 82

∼ for vortex filament, 401, 413

∼ for vortex sheet, 82, 179, 185

generalized ∼, 42, 80, 187, 188, 190

Birkhoff–Rott equation, 180, 357

Blasius equation, 164

bluff body flow, 366–381, 580–582

boundary conditions, 30, 33

acceleration continuity, 32

adherence (velocity continuity) ∼,
126, 127

no-slip ∼, 30

no-through ∼, 30, 35



768 Index

boundary conditions (Continued)
normal vorticity continuity, 31
surface-force continuity, 30, 146

boundary enstrophy flux, 144, 147, 148,
153, 166, 171

boundary layer, 3–7, 161–172, 218, 651,
687

∼ equations, 159, 163, 165, 167, 169,
170, 218, 224, 225, 235, 238, 240,
349, 350

∼ instability, 475
∼ on free surface, 162, 168–172
∼ on solid wall, 73, 162–167, 591,

627, 629
∼ separation, (see separation,

boundary layer), 7
Blasius ∼, 166, 167, 476
Lagrangian ∼ equation, 241, 243
turbulent ∼, 541–548

boundary vorticity, 68, 143–145, 153,
156, 157, 169, 190–191, 205

boundary vorticity flux, 142–144, 146,
153, 156, 165, 167, 170, 171,
185, 187, 193, 222, 226, 535, 594,
608–611, 613, 615, 618, 623, 626

boundary vorticity flux theory, 594,
608–617, 621

Boussinesq approximation, 646–647
Bragg–Hawthorne equation, 258, 388,

508
Briggs–Bers criterion, 456
buoyancy, 646, 670, 680
buoyancy frequency (Brunt–Väisälä

frequency), 646, 652
burst, 542

Callegari–Ting theory, 408–412
canonical equations, 120, 296–303

∼ for strained vortices, 299, 303
∼ for triple deck, 225

cascade, 8, 47, 106, 532, 566–567, 665,
668–670, 691

inverse ∼, 562–565, 665, 669, 671, 691
Caswell formula, 51, 83

generalized ∼, 51
Cauchy motion equation, 26, 27, 47, 49,

64
Cauchy potential-flow theorem, 110
Cauchy stress theorem, 26

Cauchy vorticity formula, 110, 114, 129
Cauchy–Poisson constitutive equation,

26
centrifugal

∼ acceleration, 643, 670
∼ force, 481, 484, 605, 644
∼ patential, 643

chaos, 16, 87, 88, 422, 663
Chaplykin–Lamb dipole, 290, 291, 303,

304, 672, 674, 675
Christoffel symbols, 711
circular cylinder flow (see also bluff

body flow), 35, 135, 150, 194, 235,
580, 621

circulation, 4, 23, 73, 75, 76, 81, 82, 85,
91, 92, 96, 97, 100, 103, 388, 496,
504, 505, 590–592, 603, 641, 644,
645, 655, 658, 685

∼ theory, 590, 591, 593, 619
circulation-preserving flow, 7, 67,

109–127, 340, 465, 467, 652, 653,
662

coherent structure, 1, 3, 5, 8, 473, 492,
520–526, 574

coherent vorticity equation, 558
compatibility condition, 78, 187, 190
complex Lamellar flow, 86–90
compressing process, 2–4, 6, 9, 35, 36,

49, 58, 59, 64, 88, 109, 114, 117,
129, 137, 148, 151, 167, 199, 200,
225, 587, 593, 609

constitutive equation (see also Cauchy–
Possion constitutive equation), 25,
27

contact discontinuity, 35
continuity equation, 25, 87, 100, 118,

127, 162, 163, 186, 493, 642, 646,
651, 653

contour dynamics, 424–430, 682
control

active ∼, 569
close-loop ∼, 569
open-loop ∼, 569
opposition ∼, 570
passive ∼, 569

coordinate frames, 341
∼ along a line, 401, 434, 705–707
∼ on a surface, 208, 342, 707–715
Cartesian ∼, 13, 82, 158, 198, 213
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curvilinear ∼, 342, 408, 705–715

cylindrical ∼, 46, 81, 86, 111, 255,
272, 383, 395, 454, 480, 504, 637,
670

elliptic ∼, 285

polar ∼, 181, 289, 302, 408, 622, 661,
670, 682

spherical ∼, 270, 280, 643, 649

Coriolis

∼ acceleration, 644, 676

∼ force, 56, 100, 132, 641, 644, 645,
650, 654, 655, 657, 674

∼ parameter, 650, 651, 654, 670

coupling operator, 470

Coutte–Taylor flow, 260

critical point, (see fixed point)

Crocco–Vazsonyi equation, 56, 256

curvature, 226, 404, 705

∼ tensor, 711

mean ∼, 207, 711, 714

on-wall ∼ of coordinate lines, 208,
210, 230, 251

principal ∼, 216, 705, 714

total ∼, 208, 714

cyclone, 654

anti- ∼, 654

tropical ∼, 665, 680–690

D’Alembert paradox, 3, 62, 619

deformation ellipsoid, 21

deformation gradient tensor, 14, 19,
102, 110, 716

density stratification, 9, 116, 135, 185,
642–646, 680

derivative moment theory, 617–639

derivative moment transformation, 95,
593, 617, 698–705

dilatation, 18–22, 25, 33, 38, 42, 49, 78,
82, 90, 128, 148, 662, 694

dispersion relation, 134, 454, 456, 484,
498, 501, 675

dissipation, 265, 307, 351, 572

∼ of turbulence energy, 568

∼ rate, 523

disturbance growth

∼ rate, 427, 498, 499

algebraic ∼, 460, 549

exponential ∼, 474, 527, 549

transient ∼, 453, 477, 484, 490, 492,
517, 549

transient algebraic ∼, 459, 478, 488

downwash, 501, 502, 591, 592

drag, 503, 548, 571, 599, 611, 619

∼ coefficient, 160, 351, 598

∼ crisis, 371

friction ∼, 4, 152

induced ∼, 4, 182, 591, 592, 597, 628,
629, 631

profile ∼, 628, 630

Dupin theorem, 705

dynamic stall, 570

dynamic system, 324–326

autonomous ∼, 206, 287

hyperbolic ∼, 324

linear ∼, 314

Effectively inviscid flow, 33–36, 116,
117, 120, 129

eigenvalue, 20, 44, 45, 52, 88, 106, 149,
311, 315, 453, 454, 460, 462, 464,
494, 667

ejection, 542

Ekman number, 647

energy

∼ equation, 28, 29

∼ method, 452, 462–467

coherent ∼ equation, 551

internal ∼, 28, 29

kinetic ∼, 28, 33, 54, 56, 60, 75, 88,
91, 94–100, 108, 114, 118, 152,
262, 379, 452, 460, 463, 465, 467,
481, 669

total ∼, 116, 119, 122, 123

enstrophy, 54, 105–109, 171, 307, 669,
691

∼ diffusion flux, 140

∼ dissipation rate, 140

minimum ∼ theorem, 126

enthalpy, 29

stagnation (total) ∼, 29, 34, 35,
56–58, 64, 149, 256, 349, 376, 388

stagnation (total) ∼ equation, 30

entropy, 8, 28–30, 34, 55, 562, 653

minimum ∼ production theorem, 126

Ertel theorem, 111, 659
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Euler equation, 3, 7, 33, 34, 89, 120,
121, 136, 141, 161, 185, 191, 200,
451, 461, 466, 508, 612

Euler formula, 15, 22
Euler limit of viscous flow, 34–36, 173,

178, 211, 339–352, 412, 603, 606,
607, 628, 630

Euler–Lagrange equation, 118
Eulerian description, 15, 242

Föppl line, 363
Föppl theorem, 74
Föppl vortices (see vortices, Föppl)
far-field asymptotics, 59, 71, 85, 158

velocity ∼, 83–85
vorticity ∼, 78

fixed point (critical point), 27, 206, 215,
247, 287, 288, 315, 324–327, 330,
332, 339, 367

center, 287
hyperbolic ∼, 324, 325, 334
node, 325, 326, 331
nonhyperbolic ∼, 326
saddle, 215, 237, 238, 287, 297, 308,

325, 327, 331, 334, 456, 527
Fjørtoft theorem, 471, 472
Floquet problem, 494
flow separation (see also sepration), 5,

7, 142, 156, 157, 199, 201–251,
327–330

free surface, 8, 34, 142, 147, 168, 169,
171, 172, 185, 200, 441, 444, 676,
677

free-streamline flow (see also Kirchhoff
flow), 227, 347, 351

free-streamline theory, 339
Frenet–Serret formulas, 402, 705
Froude number, 168, 171, 444, 445, 647,

651
fundamental solution, 77

∼ of Laplace equation, 151
∼ of Poisson equation, 40

fundamental vorticity formula, 102

Görtler–Witting mechanism, 547
Gauge condition, 37, 43, 79
Gauss formulas, 710
Gauss theorem, 26, 28, 39, 40, 48

generalized ∼, 24, 40, 53, 72, 698–700

geostrophic flow, 654–657, 674

Goldstein singularity, 219

three-dimensional ∼, 234

Green’s function in free space, 83, 192,
224

gyres, 688

Hamilton canonical equation, 420

Hamilton variational principle, 117, 120

Hamiltonian, 419, 420

∼ density, 116, 120

Hartman–Grobman theorem, 325

Hasimoto transformation, 403, 414

helical wave decomposition, 44–47, 88,
560

helicity, 85–94, 104, 406

∼ conservation theorem, 112

∼ density, 37, 85, 86, 90, 91, 128, 257

Helmholtz decomposition, 36, 37, 40–43,
48, 49, 57, 258

Helmholtz equation, 46

Helmholtz vorticity theorems

first ∼, 73

second ∼, 101, 111

third ∼, 111

Helmholtz–Hodge decomposition, 40,
42, 43, 59, 63, 167, 701

∼ of Lamb vector, 166

∼ of momentum equation, 55

Helmholtz–Hodge theorem, 40, 48

Helmholtz–Rayleigh minimum dissipa-
tion theorem, 126

Hirota equation, 407

homotopy analysis method, 161

Howard–Gupta equation, 482, 517

Howe equation, 57, 58, 64

hurricane, 1, 268, 647, 655, 664, 680

Impulse (hydrodynamic), 60, 94

angular ∼, 61, 94

potential ∼, 61

vortical ∼, 84, 94–97, 275, 291

vortical angular ∼, 94

induction

localized ∼ approximation, 401–407

self ∼, 106, 183, 272, 399, 499

inner solution, 154, 163, 297–300, 683
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instability
absolute ∼, 451, 455, 457, 458,

485–488, 501, 502, 511, 513
boundary-layer ∼, 475
centrifugal ∼, 481, 517, 548
convective ∼, 366, 451, 455, 485–489
cooperative ∼, 495
Crow ∼, 431, 499, 500, 518
elliptical ∼, 492–495, 500, 517
Görtler ∼, 216, 547
Kelvin–Helmholtz ∼, 183, 360, 371,

376, 472–474, 481, 517, 526
long-wave ∼, 499, 500
non-modal ∼, 451, 461, 462, 477, 480,

488–492
Rayleigh–Taylor ∼, 185
secondary ∼, 468, 477, 492, 517,

530–531, 539–541
short-wave ∼, 495, 499, 500, 517
subharmonic ∼, 495
Tollmien–Schlichting ∼, 536–538
vortex pairing ∼, 427

integrability, 87, 337
interface, 30, 32, 34, 74, 143, 146, 168,

173, 174, 185, 594
invertibility principle, 660, 662
isentropic condition, 34, 117, 118

Jacobian, 14, 25, 90, 136, 241, 243, 296,
297, 324, 363, 654, 716

jet, 469, 474, 481, 482, 487, 506
axisymmetric, 577
elliptical ∼, 578
plane ∼, 574

jump condition, 34, 35, 173

Kármán vortex street (see also vortex
street), 329, 458, 597, 621, 623

Kaden problem, 180
Kaden similarity law, 182, 386
Kelvin circulation formula, 23, 103, 134,

138, 184, 644
Kelvin circulation theorem, 3, 109, 111,

129, 176, 181, 354, 719
Kelvin minimum kinetic energy

theorem, 60
Kelvin oval, 304, 443
Kelvin wave, 498, 499, 656
Kida elliptic vortex, 287

kinematic well-posedness theorem, 188
Kirchhoff elliptic vortex, 285, 426
Kirchhoff flow, 227, 347, 351
Kroneker symbol, 694
Kutta condition, 4, 178–179, 356, 592
Kutta–Joukowski formula (theorem), 4,

347, 590

Lagrangian density, 116, 117, 120, 129
Lagrangian description, 13–16, 67, 102,

106, 113, 114, 240–246, 716–719
Laguerre equation, 261
Laguerre polynomials, 261
Lamé coefficients, 713
Lamb formulas for kinetic energy

first ∼, 98
second ∼, 98, 275

Lamb surface, 87–89, 112, 114, 116, 343
Lamb transformation, 277
Lamb vector, 3, 37, 56, 57, 85–94, 99,

100, 104, 105, 114, 128, 133, 136,
162–167, 175, 176, 594, 596

disturbance ∼, 463, 464, 467–469,
490, 517

generalized ∼, 56, 59
leap frog, 282
lift, 503, 599, 611, 619

∼ coefficient, 502, 592, 615
lifting line, 591
lifting line theory, 591, 597, 604
lifting surface, 174, 606–607
lifting surface theory, 607
limit cycle, 325
limiting streamline, 206
longitudinal process, 56
longitudinal vector, 38, 63
Lundgren transformation, 264, 412

Mach number, 2, 4, 36, 58, 64, 135, 149,
524, 587, 598, 599, 612, 621, 664

magnetohydrodynamics, 131–134
matched asymptotic expansion, 150,

296–303, 664
Mises transformation, 349
mixing layer, 6, 8, 473, 474, 492,

526–530, 574
modified K-dV equation, 407
modon, 674–676, 684, 687



772 Index

momentum equation (see also Navier–
Stokes equation), 116, 118–120,
163, 220, 230, 265, 270, 637, 642,
646, 650

Monge–Clebsch decomposition, 43, 115
MRS (Moore-Rott-Sears) criterion, 238

Navier–Stokes equation, 7, 27, 33, 48,
55, 60, 108, 132, 144, 150, 159,
161, 169, 186, 191, 192, 197, 312,
461, 462, 477, 478, 493, 497, 504,
610, 644, 645

Neufville similarity vortex solutions,
261

Newton fluid, 25–36, 127
Noether theorem, 420
nonlinear Schrödinger equation, 404,

406, 407, 414
normal discontinuity (see also

Rankine–Hugoniot relations), 35

On-wall flow signature, 202, 205–209
Orr–Sommerfeld equation, 471
Orr–Sommerfeld operator, 470
orthogonal decomposition, 36–40, 53, 85
Oseen approximation, 153–154, 158
outer solution, 154, 163, 169, 297, 683

Parametric resonance, 495, 499
pathline, 16–18, 87, 205, 324
Peixoto theorem, 334
permutation symbol, 697
permutation tensor, 697
perturbation, 36, 511, 676

regular ∼, 159–161, 170, 683
singular ∼, 58, 155, 308

phase jitter, 521
phase portrait, 287, 333, 337
Poiseuille flow, 125, 126, 267, 458, 461,

469
polarized vorticity

∼ dynamics, 559–561
∼ equation, 398, 560

potential
∼ temperature, 659–661
acyclic ∼, 59, 62, 95, 596
Helmholtz ∼, 37, 39, 40, 47, 48, 97
Monge ∼, 43
tensor ∼, 47–49, 52, 64, 90, 139

potential flow, 3, 59–63, 84, 86, 88, 96,
111, 122, 128, 163, 168, 171, 176,
179, 280, 493, 602, 603

potential vorticity, 9, 102, 110, 111, 128,
641, 652–664, 682, 683, 688

∼ conservation theorem, 109
baroclinic (Ertel) ∼, 653, 659–664
barotropic (Rossby) ∼, 653, 654
generalized ∼, 102, 110
isentropic ∼, 659, 660, 687

Prandtl number, 34, 55
Prandtl’s criterion of flow separation,

202, 236
Prandtl–Batchelor flow, 341–346, 349
Prandtl–Batchelor theorem, 340–345
projection theory, 8, 593–599, 603, 621

Quasi-geostrophic flow, 337, 654–656,
677, 686

Rankine–Hugoniot relations, 35, 36, 136
Rayleigh equation, 293, 471
Rayleigh problem (see also Stokes

problems, first), 145
Rayleigh stability criterion, 671
Rayleigh theorem, 471
Rayleigh–Fjørtoft theorem, 472, 481,

517
relabeling symmetry theorem, 121
Reynolds decomposition, 551–556
Reynolds number, 2, 33, 36, 63, 64, 131,

133, 141, 149, 150, 153, 156, 158,
161, 162, 168, 192, 194, 199, 463,
476, 478, 484, 486, 497, 589, 604,
647

Reynolds stress, 372, 555
Reynolds transport theorem, 24, 588,

601
Reynolds–Orr equation, 463
Rossby number, 512, 647, 648, 651, 654,

655, 681
Rossby potential vorticity, 665
Rossby radius, 676, 677, 679, 680
Rossby wave, 656–659, 665, 674, 683,

684, 691
rotating fluid, 641, 671, 677

Sadovskii flow, 348
scales in turbulence, 522–524

integral ∼, 523
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Kolmogorov (dissipation) ∼, 312,
523, 567

Talyor micro- ∼, 523

viscous length ∼, 523

scaling law

Kolmogorov ∼, 523

universal ∼, 523

self-organization, 8, 562, 671

self-sustain, 455, 458, 514, 539–541

separated flow, 323–381

bubble-type ∼, 7, 339–352, 574

free vortex-layer type ∼, 7, 352–366

unsteady ∼, 366–381

separation, 201–251

∼ criteria, 201, 210–212

∼ line, 178, 179, 193, 201, 202, 210,
230, 232, 582

∼ point, 157, 201, 239, 247

∼ stream line, 202

∼ stream surface, 202, 213–215

∼ zone, 202, 210, 230, 232, 508, 509,
511

boundary layer ∼, 7, 172, 179,
201–204, 216–246, 609

closed ∼, 327–328, 582

open ∼, 328–330, 582

smooth ∼, 227

steady ∼, 204–216

unsteady ∼, 234–251

shallow-water approximation, 649

shallow-water model, 649, 691

shear flow

∼ instability, 469–479

∼ receptivity, 524

complex turbulent ∼, 573–577

free ∼, 472, 526–535

non-planar ∼, 577–580

turbulent ∼, 520

shear layer, 34, 476

free ∼, 2, 6, 7, 213, 458, 469, 472,
474, 526–530, 548, 623

wall-bounded ∼, 535–550

shearing process, 2–9, 36, 40, 48, 49, 53,
54, 59, 64, 67, 103, 106, 109, 114,
120, 128, 131, 150, 161, 166, 168,
173, 186, 200, 225, 452, 587, 609

shock layer, 33, 34, 36, 137

shock wave, (see wave, shock), 136

similarity
conical ∼, 268–272, 357
local ∼, 573
partial ∼, 573

singular-value decomposition, 462
singular-value method, 461
sink, 25, 141, 144, 210, 267, 326, 327,

331, 344
slender-body theory, 353–366
solvability condition, 298, 302
source, 25, 141, 144, 326, 327, 331, 344,

455
spectral method, 199, 396
spike, 246, 526, 543
spin tensor (see also vorticity, tensor),

19, 696, 698
Squire equation, 258, 470
Squire operator, 470
Squire theorem, 470
stability, stable, 452

asymptotic(ally) ∼, 325, 452, 454,
464

conditional(ly) ∼, 452
formal ∼, 465, 481, 665
global ∼, 453
monotonical(ly) ∼, 452
neutral(ly) ∼, 326, 454
structural(ly) ∼, 332–339
unconditional(ly) ∼, 452

statistical vorticity dynamics, 551, 556
Stokes approximation, 150–153, 156,

157, 161, 626
Stokes drag law, 152, 608
Stokes flow, 150, 191, 199, 611
Stokes layer, 146, 148
Stokes problems

first ∼, 145, 262
generalized ∼, 145
second ∼, 145

Stokes stream function, 87, 257
Stokes theorem, 425

generalized ∼, 698, 700
strain-rate tensor, 19–21, 49, 50, 68, 70,

82, 108, 266, 667, 696
streak, 530, 536–539
streakline, 16–18
streamline, 16–18, 68, 69, 85–87, 89,

106, 110, 136, 152, 493, 496, 590,
612, 613, 655, 671, 674
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stress
∼ tensor, 26
normal ∼, 524, 595–597
shear ∼, 2, 52, 146, 478, 524, 535, 588

Strouhal number, 366, 380, 474, 513,
517, 527

surface deformation
∼ process, 52
∼ rate tensor, 19, 23, 101, 644
∼ stress, 53, 126, 168, 170, 596

surface tension, 23, 30, 34, 169, 174
sweep, 542
swirling flow (see also votices, swirling),

1, 318, 469, 480–483, 485–488,
503–505, 507–511

swirling level, 509, 514
synergetics, 562

Taylor–Green vortex lattice, 295
Taylor–Proudman theorem, 562,

648–649, 652, 655, 691
thermodynamics

first law of ∼, 28
second law of ∼, 28, 29, 562

time line, 18
Tollmien–Schlichting wave, 476, 545,

549
topological structure, 93, 128, 504
topology

∼ of separated flow, 330–332
∼ of skin-friction line, 332
∼ of vortex filaments, 112

tornado, 1, 6, 481, 503, 647
torsion, 404

∼ of line, 705
∼ of neighboring vector lines, 69, 707
∼ of neighboring vorticity lines, 434

total circulation conservation theorem,
75, 103

total correlation, 553
total vorticity conservation theorem

(see also Föppl theorem), 177
total vorticity conservation theorem

(see also Föppl theorem), 74
transition, 519–582

∼ in bluff body flow, 371–372
by-pass ∼, 461, 536, 548–550
C-type ∼, 536
H-type ∼, 536

K-type ∼, 536
small-scale ∼, 532–535, 541–545
subcritical ∼, 461, 549

transverse process, 56, 114
transverse vector, 38, 42, 44, 46, 63, 72,

75
triple decomposition

∼ of dissipation rate, 52–55
∼ of strain rate, 49–52
∼ of stress tensor, 52–55
∼ of turbulent quantities, 551, 556
∼ of velocity gradient, 49–52

triple-deck
∼ equations, 221–226
∼ structure, 218–221

Trkalian flow, 88, 89, 434
turbulence, 371–372, 519–582

∼ control, 567–572
∼ spot, 541
isotropic ∼, 520, 523

turbulence energy equation, 558
turbulent production

coherence ∼, 562, 565
typhoon, 647, 655, 664, 680, 687, 688

Unfolding, 337
unidirectional flow, 125, 144, 146
unit tensor, 696

Velocity gradient, 19, 50, 64, 644, 670,
695

virtual mass, 62, 595, 596
viscosity

bulk ∼, 27
eddy ∼, 522
first (shear) ∼, 2, 33, 49, 56, 64
second ∼, 26

vortex
Batchelor ∼ (q-), 260, 391, 482, 485,

487, 488, 512–514
bathtub ∼, 267
Burgers ∼, 265, 302, 317, 412,

497–499, 671
elliptic ∼, (see Kida, Kirchhoff), 285
Gaussian ∼, 260, 672
Hill spherical ∼, 278–281
line ∼, 81, 261, 275, 296, 591
Long ∼, 268, 387
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Oseen–Lamb ∼ (Oseen ∼), 262, 298,
387, 392, 412, 490–492, 498, 671

point ∼, 81, 85, 418–424
pure ∼, 257, 264, 480
Rankine ∼, 261, 280–685
Sullivan ∼, 267, 318
Taylor ∼, 262, 271, 671

vortex array, 291–295, 528
vortex breakdown, 8, 451, 502–515

AI/CI analysis of ∼, 511–515
conjugate flow theory of ∼, 507, 511
fold catastrophe theory of ∼, 506, 507
vorticity-dynamics mechanisms of ∼,

504–506
vortex collapse, 424
vortex core, 387–395, 485, 490, 496, 672,

673, 680
∼ dynamics, 395–399, 559–561

vortex dipole, 289–291, 303–306
vortex dynamics, 1, 3–8, 56, 67, 94, 173,

451–698
vortex filament, 8, 81, 90–94, 108, 112,

128, 139, 399–417, 492, 496, 499
∼ stretching, 407–412

vortex force, 133, 601, 602, 619–621,
627–633

vortex identification (criteria), 310–320
vortex interaction, 532–535

∼ with body, 435–441
∼ with fluid interface, 441–445
∼ with vortices, 418–434, 679
∼ with wave, 524–525

vortex layer, 4, 6, 135, 165, 173, 475,
515, 527

∼ rolling up, 384–387, 527
Burgers ∼, 301
separated ∼, 232–234, 352

vortex merging, 680
vortex method, 187, 191, 194, 418
vortex pair, 361–366, 429, 436, 441, 472,

499–502, 531
vortex patch, 8, 285–289, 424–430, 467,

676, 682
vortex reconnection, 431–434
vortex ring, 1, 74, 108, 272–284, 500,

505, 518
Fraenkel–Norbury ∼, 274, 277–278,

341
Helmholtz ∼, 183

vortex shedding, 17, 332, 367–369,
372–376, 580–582

vortex sheet, 35, 36, 80–82, 144,
172–185, 192, 346, 473, 474, 606,
711

bound ∼, 175, 177, 178, 359–361, 443,
607

free ∼, 172, 174, 176, 178, 353–358
vortex sound, 58, 64, 524, 664
vortex street, 292, 368, 458, 597, 621,

623, 624
vortex stretching, 3, 101, 106, 108,

263–268, 399, 413–417, 467, 566,
681

vortex tilting, 101, 106, 108, 273, 399
vortices
Λ-shaped ∼, 538
baraclinic ∼, 676
barotropic ∼, 670–676
columnar ∼, 6, 260–272, 395, 438,

465, 480–492, 496–499
Dean ∼, 548
disk-like ∼, 6
Föppl ∼, 363
Görtler ∼, 548
hairpin ∼, 142, 451, 535, 538, 546–547
horseshoe ∼, 591
leading-edge ∼, 503, 606, 616, 617,

631
necklace ∼, 329, 372
secondary ∼, 436, 444, 531
spanwise ∼, 473, 475, 517, 526–530
starting ∼, 74
strained ∼, 284–308, 451, 492, 493,

495, 496
streamwise ∼, 472, 473, 476, 525,

530–531, 536, 548–550, 555
swirling ∼, 257, 268–272, 480
trailing ∼, 73

vorticity, 19, 694
∼ diffusion flux, 139, 141, 618
∼ diffusion flux tensor, 139
∼ dynamics, 1, 3–8, 56, 67, 94,

131–200, 210, 641, 698
∼ integral theorems, 71–78
∼ kinematics, 67–129
∼ line, 72, 79, 86, 87, 91, 101,

105–109, 112, 138, 183, 279, 342,
343, 368, 397, 434, 559, 705
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vorticity (Continued)

∼ tendency, 688

∼ tensor (spin tensor), 19, 101, 696,
698

∼ tube, 72–75, 81, 101, 105, 111, 112,
128, 138, 432, 506, 603, 604

absolute ∼, 643–645, 661, 664

generalized ∼ formula, 101

Lagrangian ∼, 110, 120, 122, 128,
241, 718

polarized ∼, 395, 560

relative ∼, 31, 51, 53, 142, 644, 654,
661, 665, 677, 678, 688

vorticity moment (see also impulse,
vortical), 70, 84, 85, 599–607

∼ theorem, 76, 128

∼ theory, 593, 594, 602, 603, 606,
608, 617, 620

symmetric ∼, 76

vorticity number, 312, 396

vorticity transport equation, 57, 58, 64,
71, 77, 102, 109, 132, 136, 144,
184, 186, 187, 190, 197, 209, 256,
300, 398, 556–559

Wake, 369–370, 548, 574

∼ plane, 159, 180, 360, 628, 630–635

plane ∼, 573, 574
steady global ∼, 350–352

wave
acoustic ∼, 113, 524, 663
dilatation ∼, 38
dispersive ∼, 146
gravity ∼, 652, 656, 657, 663, 683
gravity-capillary ∼, 171
inertial ∼, 657
inertial-gravity ∼, 657
longitudinal ∼, 2, 38, 524
shock ∼, 2, 3, 136, 507, 598, 609
solitary ∼, 404–406, 507, 511
sound ∼, 78, 147, 148, 683
transverse ∼, 38, 44, 146, 493, 524
vorticity ∼, 38, 134, 147–149, 476,

524, 657
water ∼, 170, 171

Weber number, 168, 185
Weingarten formulas, 711
Weiss critetrion, 311
winding number, 92, 93, 433
wing, 180, 182, 272, 332, 352, 354,

359–361, 365, 392, 512, 579, 582,
591

wing-body combination, 615–617

Yoshida–Giga theorem, 44
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Erratum

Notations

Ch. x — Chapter x
p.y — page number y
Pg z — Paragraph number z
L u — Line number u
LB v — Line number v from bottom
=⇒ — changed to
[·] — contents to be changed is within square brackets

Ch. 2:

P. 19, Equation (2.19b):

[with εijkΩjk = ωi] =⇒ [with − εijkΩjk = ωi]

Ch. 3:

P. 90, Equation (3.67):

[ω × u = ω∇ψ = f(ψ, t)∇ψ = . . .] =⇒ [ω × u = f(ψ, t)∇ϕ = . . .]

Ch. 4:

P. 141, the third term in the right-hand side of (4.26a):

[ap] =⇒ [σp]



P. 193, LB 6: [a commonly used formathrmis] =⇒ [a commonly used
form is]

P. 209, The 3rd equation from bottom, left-hand side:

[ν(∂3
3ω3)B . . .] =⇒ [ν(∂2

3ω3)B . . .]

Ch. 6:

P. 258, Equation (6.12b):[
u ·

(ωθ
r

)
= . . .

]
=⇒

[
u · ∇

(ωθ
r

)
= . . .

]
P. 262, L9: [The behavior of (6.25) for r � 4νt approaches . . . ] =⇒ [The

behavior of (6.25) for r �
√

4νt approaches . . .].

P. 273, Legend of Fig. 6.4: By the vector parallel to the z -direction, add
velocity component w.

Ch. 8:

P. 419, Equation (8.103):[
d

dt
zm(t) = . . .

]
=⇒

[
d

dt
zm(t) = . . .

]

Ch. 9:

P. 510, Figure 9.31: the legend of the solid line, [(present throry)] =⇒
[(present theory)]

Ch. 10:

P. 544, Caption of Fig. 10.22: [From Lee and Chen (2006)] =⇒ [From
Lee and Chen (2005)]

Ch. 11:

P. 609, Equation (11.46):[
F line =

1
2

∮
∂S

x× (pdx+ 2µω × dx) + . . .

]
=⇒

[
F line =

1
2

∮
∂S

x× (pdx+ 2µω × dx) + . . .

]



P. 629, Equation (11.79a,b):[
L = −ρ

∫
V

lxdV = . . .

]
=⇒

[
L = −ρ

∫
V

lzdV = . . .

]
[
Din = −ρ

∫
V

lydV = . . .

]
=⇒

[
Din = −ρ

∫
V

lxdV = . . .

]

Appendix:

P. 694, L8: [Scalars and vectors are . . .] =⇒ [Vectors and tensors
are . . .]

P. 696, Equation (A.6c):[
Ωij ≡

1
2
(uj,i − ui,j) = −Ωij

]
=⇒

[
Ωij ≡

1
2
(uj,i − ui,j) = −Ωji

]
P. 706, Equation (A.42): the second term of the right-hand side,[

b
∂t

∂b

]
=⇒

[
b · ∂t

∂b

]
P. 707, the first line below equation (A.45),

[ξ0] =⇒ [ξ �= 0]

References:

P. 742, LB 5: [Lee C.B. Chen S.Y. (2006)] =⇒ [Lee C.B. Chen S.Y.
(2005)]




