
13

Computational Intelligence

E. Aarts, H. ter Horst, J. Korst, and W. Verhaegh

“That’s something I could not allow to happen”

HAL in Space Odyssey 2001

13.1 Introduction

Ambient intelligence is aimed at the realization of electronic environments
that are sensitive and responsive to the presence of people (Aarts et al. 2002).
The word “ambient” in ambient intelligence refers to our physical surrounding
and reflects typical systems’ requirements such as distribution, ubiquity, and
transparency. The word “intelligence” reflects that the surroundings exhibit
specific forms of social interaction, i.e., the ability to recognize the people who
live and work in it, to grasp context, to learn and adapt to the users’ behavior,
and to show emotion.

As ambient intelligence is aimed at opening a world of unprecedented expe-
riences, the interaction of people with ambient environments needs to become
intelligent. Notions as media at your fingertips, enhanced-media experiences,
and ambient atmospheres refer to novel and inspiring concepts that are aimed
at realizing specific user needs and benefits such as personal expression, social
presence, and well-being. These benefits seem quite obvious from a human per-
spective, but are quite hard to realize because of their intrinsic complexity and
ambiguity. Obviously, the intelligence experienced from the interaction with
ambient intelligent environments will be determined to a large extent by the
computational intelligence exhibited by the computing platforms embedded
in the environment, and consequently, by the algorithms that are executed by
the platforms (Verhaegh et al. 2004).

The algorithmic techniques and methods that apply to design for intelli-
gence in ambient intelligent environments are combined in the scientific and
technological pursuit known as computational intelligence, which is aimed at
designing and analyzing algorithms that upon execution give electronic sys-
tems intelligent behavior. For an introduction to the basic concepts in this
field we refer to Engelbrecht (2002).

In this chapter we address the subject of computational intelligence in
relation with ambient intelligence. The chapter is organized as follows. Since

246 Aarts et al.

computational intelligence is rooted in the classical field of machine intelli-
gence, we start our exposition with a brief outline of the developments in that
domain. Next, we explain what the major behavioral characteristics are that
need to be addressed and implemented by intelligent algorithms. The main
part of the chapter is devoted to a discussion of a number of computational
paradigms that serve as a basis for the realization of the intelligent and social
user interaction within ambient intelligence. Next we discuss some elements
related to the computational complexity related to these computational par-
adigms. We conclude the chapter with a short discussion of some challenges
related to the future development of computational intelligence within ambi-
ent intelligence and as a preliminary conclusion we argue that new computing
methods are needed to bridge the gap between the class of existing algorithms
and the ones that are needed to realize ambient intelligence.

13.2 Machine Intelligence

According to Merriam-Webster’s Collegiate Dictionary, “intelligence” refers
to “the ability to learn or understand or to deal with new trying situations.”
Other definitions are the ability to reason, apply knowledge, manipulate one’s
environment, or think abstractly. Over the years mankind has proved inde-
fatigable in its attempts to build electromechanical machinery that exhibits
some intelligent behavior. “Counting” is clearly one of the most important of
these intelligent activities that inspired engineers and scientist to functionally
incorporate into automatic machinery. In this respect, the calculating de-
vice constructed by the famous mathematician Blaise Pascal in 1642 is widely
recognized as the first “digital” computing device, where digital refers to mak-
ing use of a finite set of internal states. Also the automatic table calculator
called the Differencing Machine, which was constructed by the eccentric but
brilliant mathematician Charles Babbage in 1822, can be seen as a landmark
development in machine intelligence.

13.2.1 Artificial Intelligence

Since the invention of the computer in the mid-1940s machine intelligence
has become a significant scientific sub-domain of computer science, which is
often denoted as artificial intelligence. According to Minsky (1986), artifi-
cial intelligence is the science of making machines to do things that require
intelligence if done by man. Classical subjects of investigation are vision, nat-
ural language and speech processing, robotics, knowledge representation and
reasoning, problem solving, machine learning, expert systems, man–machine
interaction, and artificial life (Rich and Knight 1991; Winston 1992; Nils-
son 1998; Brooks 2002; Russell and Norvig 2003). McCorduck (1979) provides
a good account of the early developments in artificial intelligence including
some of the controversies that arose among scientists about the limitations of
computers in comparison with human beings.

13 Computational Intelligence 247

Over the years the discussions about artificial intelligence and the ques-
tion whether mankind would be able eventually to build intelligent machines
have been plentiful. Alan Turing, an early pioneer in computing science, de-
veloped the so-called Turing test to discriminate between computation and
mind (Turing 1950). The Turing test entails that a keen interrogator ques-
tions a machine and a human volunteer at the same time. The interrogator
cannot see either of the two, and he can pose the questions to both of them
by making use of a keyboard only. The machine is said to pass the test if the
interrogator cannot tell the difference between the machine and the volunteer
from the answers given by the two.

Turing’s proposition became controversial and was questioned by scien-
tists working in the field of natural languages and learning psychology. The
philosopher John Searle (1980) criticized the Turing test with his well-known
Chinese Room argument, which demonstrated that a machine could reply to
the posed questions in a way that was indistinguishable from the volunteer,
but that it developed no other attributes that are generally considered as ex-
pressions of human intelligence such as understanding and self-consciousness.
This controversy gave rise to what is known as the mind–body problem, which
addresses the question whether a perfectly reconstructed body would have a
mind by itself.

Hawkins and Blakeslee (2004) go in their recent book beyond the classical
approaches to machine intelligence and develop a general theory of the human
brain. They argue that the brain is not a computer, but a memory system that
stores experiences reflecting the structure of the world. The memory system
can generate predictions based on the nested relations among the memories,
thus giving rise to intelligence, perception, creativity, and consciousness. Fur-
thermore, the authors argue how eventually intelligent machines can be built
based on their theory of intelligence. Although Hawkins and Blakeslee provide
new and inspiring ideas, their theory cannot provide solutions to some of the
open problems related to intelligence in the human brain. For instance, the
above mentioned mind–body problem remains unresolved to a large extent.

13.2.2 Movie Script Scenarios for Ambient Intelligence

One of the salient features of ambient intelligence is the massive integration
of intelligent features into the electronic background of our environments.
Clearly, these features should enhance the interaction of users with their envi-
ronments, thus enabling a means for nonobtrusive and social interaction that
may increase productivity and creativity. Evidently, these statements are just
abstract wordings and to make them more concrete one often resorts to the
description of use-cases or scenarios. Examples can be found in the ISTAG
report published in 2002, which provides four scenarios that cover different
aspects in the daily life of ordinary people (ISTAG 2001). A good scenario
should position the different use-cases within a realistic context that is kept
consistent and that is maintained all over the story covered by the scenario.

248 Aarts et al.

The ISTAG scenarios, for instance, use different persons for different settings:
Maria in Road Warrior, Dimitrios in Digital Me, Carmen in Trafic, Sustain-
ability, and Commerce, and Anette and Solomon in Social Learning.

As another approach to the issue of scenario building one may resort to
the many movie scripts that have been developed in the science fiction movie
genre. A classical example is 2001: A Space Odyssey (1968, MGM) directed by
Stanley Kubrick. In this movie script Kubrick features an intelligent computer
named HAL that serves three cosmonauts in a journey through outerspace.
During the journey HAL develops certain elements of cognitive and social
intelligence, such as the ability to have natural conversation, to plan com-
plex tasks, and to show emotion. Kubrick gives with HAL a convincing and
realistic rendition of an intelligent machine that is capable of developing an
affective relation with its user. More recently, Stork (1997) edited a collection
of book chapters in which renowned specialists cover specific aspects of HAL’s
behavior in relation with machine intelligence, including supercomputer de-
sign, reliable computing and fault tolerance, gaming, speech processing, vision,
man–machine interaction, planning, affective computing, and computer ethics.
From Stork’s collection of contributed chapters in machine intelligence, one
may conclude that HAL could have been built by 2001 and that it would pass
the Turing test. Remarkably, Turing himself predicted that it would be pos-
sible to build a machine that would pass the Turing test somewhere between
2000 and 2010.

2001: A Space Odyssey describes a scenario of a computer that interacts
with users in a natural and intuitive way, but HAL is still a computer, a
machine that acts as a stand-alone object. In ambient intelligence the aim is
on integration of such intelligent functionality into distributed environments
that surround human beings. To obtain scenarios that describe how this could
become effective one again may resort to the wonderful world of movie scripts.
A compelling definition of ambient intelligence is visualized in Mathilda (1996,
Tristar Pictures after a book with the same title by Roald Dahl) directed by
Danny DeVito in a scene where the little girl Mathilda discovers her ability to
control objects in her physical environment by speech and gesture. The scene
also illustrates profoundly the ultimate aim of ambient intelligence to put the
user in the center of the ambient environment and to give him full control of it.

In Total Recall (1990, Tristar Pictures), Arnold Schwarzenegger spends a
virtual vacation on Mars, but afterwards events force him to go there for real.
In one of the many science fiction scenes Schwarzenegger communicates with
an interactive display wall that can switch to a peace giving scenery of the
Colorado mountains, which helps him unwind after he has received bad news
from Mars.

In Minority Report (2002, 20th Century Fox), directed by Steven Spiel-
berg, Tom Cruise is positioned in a digital world in which he is surrounded
by interactive screens and displays everywhere, allowing direct interaction
with the environment. The concept of a ubiquitous digital smart interactive
environment is consistently maintained throughout the movie. Newspapers

13 Computational Intelligence 249

have become interactive display foils that can play real-time video messages.
Billboards have become public displays that provide urban annotation and
support personal information access in the public domain. Even packaging
material consists of interactive displays showing video commercials, and they
can be controlled in a natural way, for instance by smashing it against the wall
when it should stop advertising. Television viewing has become truly three-
dimensional through the use of holographic display technologies that enable
the viewer to actively participate in the scenes that are displayed.

The Harry Potter movies after the books by Joan Rowling provide other
interesting examples of ambient intelligence scenarios in movie scripts. Espe-
cially, the third movie called The Prisoner of Azkeban (2004, Warner Bros.
Pictures), directed by Alfonso Cuarón, depicts a world imbued with ambient
intelligence features. The castle Hogwarts, school of witchcrafts, is flooded
with pictures that “contain” living creatures and can act as interactive dis-
plays. They can even control access to rooms through the use of spoken pass-
words. The ceiling of the dining room is a huge display that can change the
ambience of the room to match the occasion or the time of the day or season.
Objects are smart and can be used to control the environment. They also
can be used to access ambient information. For example, the Rememberal is
an object that indicates through its color when the person who holds it has
forgotten something. The ultimate example perhaps is the Marauders Map,
which is an interactive two-dimensional map that reveals the geographical
position of any person that is within range of the area displayed by the map.

All these scenes show examples of scenarios of distributed intelligent envi-
ronments that support the people who interact with them, enabling them to
perform daily tasks, and to become more productive, creative, and expressive.
So, the notion of a computer as a physical device has disappeared. The com-
puter has been integrated into the environment moving it to the background
and bringing functionality to the foreground, leaving the user in total control.
Another interesting observation is that technology is not going to make the
difference in the end, but that the way technology is being applied and used
will be the crucial factor. For instance, in both movies Minority Report and
The Prisoner of Azkeban a world is depicted in which people are surrounded
with interactive displays. Yet, the world in Minority Report is much more
threatening than that in The Prisoner of Azkeban where the use of ubiqui-
tous displays adds to the well-being of its inhabitants rather than providing
a feeling of “big brother is watching you” as in Minority Report.

13.2.3 Social Versus Cognitive Intelligence

An important conclusion that can be drawn from the discussion presented in
the previous sections is that intelligence in ambient intelligence is aimed at
social intelligence rather than at cognitive intelligence. From the viewpoint of
ambient intelligence, electronic doors that open automatically if a person is

250 Aarts et al.

approaching them are more socially intelligent than Deep Blue, IBM’s pow-
erful chess computer that beats Gary Kasparov, the world champion of chess,
in a direct confrontation in May 1997. This means that ambient intelligence
provides a new kind of challenge for artificial intelligence. In ambient intel-
ligence the level of intelligence of an electronic system is judged by the way
users perceive it from a social interaction viewpoint. Evidently, the types of
tasks, as well as the context in which they are carried out, play an important
role in the user perception.

Csikszentmihalyi (1990) has introduced the concept of flow to discuss the
observation of intelligent behavior of human beings when performing tasks.
Flow is an experience concept in psychology that is universally perceived in
all cultures and ways of living. Flow refers to the feeling people experience
when in contact with the world around them, providing a sense of reason
and purpose of their activities. Flow can be very helpful in the description of
social intelligence in everyday life. Dunne and Raby (2001) present in their
compelling book a number of interesting design studies in which they place
functionally modified electronic daily life objects, such as their parasitic light,
GSM table, and compass table, in the homes of people and describe how they
develop patterns of social interaction with these objects over time. It is as-
tonishing to see how people develop affective relationships with these objects
that are meaningless at first glance.

Reeves and Nass (1996) present another interesting study on social intelli-
gence in the interaction of people with electronic equipment. They introduce
the so-called Media Equation, which states that people should be able to in-
teract with media in the same way as people interact with each other. This is
an easy statement to express but hard to accomplish. Nevertheless, it directly
implies that natural human interaction paradigms such as multi-modality,
personalization, expression, and emotion should be key elements in social ma-
chine intelligence, and this implication has become generally accepted over
the years.

Picard (1997) addresses the compelling issue of emotions in computing in
a more scientific way by developing a theory on affectiveness in man–machine
interaction. She not only discusses how computers might develop emotions
but also why they must do so, and this may become quite useful in the design
of ambient intelligent systems.

13.3 AmI Elements of Social Intelligence

From the discussion presented above one might conclude that the development
of ambient intelligence is still in a conceptual phase and that we have to
resort to a model of applications or scenarios to illustrate what we mean by
the concept when we want to make it more concrete. Evidently, scenarios
as presented above can be very helpful in the discussion on the realization of

13 Computational Intelligence 251

ambient intelligence, but the proof of the concept evidently is in the realization
of commercial products and services that are attractive to people. Over the
years, a large variety of successful and less successful attempts have been made
to develop such commercial products and services, and looking at the market
there is already a lot that is available. Below, we present some of the most
profound examples for the purpose of our discussion on machine intelligence
and the corresponding computational methods.

To put the commercial products and services into perspective we distin-
guish between the following five classes of AmI (ambient intelligence) elements
in social intelligence:

– See, hear, feel
– Understand, interpret, relate
– Look, find, remember
– Act, learn, adapt
– Create, express, emerge

This class division is rather arbitrary, and there is no theory that supports it.
However, it combines the main social activities that human beings undertake
in their daily lives into categories of well-defined and interrelated tasks that
relate to the concept of flow as defined by Csikzentmihalyi (1990). Moreover,
it provides a simple framework for the discussion of computational intelligence
paradigms in ambient intelligence. Below, we present for each of these classes
a number of examples of prototypes or commercially available products and
services. Also this selection is chosen rather arbitrarily, but it may serve the
purpose of providing an impression of what is already on the market, thus in-
dicating where we stand in the development of ambient intelligence. Finally,
we briefly sketch for each of the classes some of the basic computational par-
adigms that can be used to realize the socially intelligent interaction defined
by the class. In the next section, we then discuss some of these paradigms in
more detail with the purpose of presenting some of the mathematical models
and computational details that are applied.

13.3.1 See, Hear, Feel

This class of AmI elements is concerned with the general aspects of visual,
auditory, and other sensorial information processing. It refers to actions such
as viewing screens, listening to spoken text or music, and sensing location
and context. Examples of products and services in this domain are given in
Table 13.1.

The computational paradigms that have been established in this domain
are based on vision, speech processing, and sensor data fusion, which all
heavily rely on signal processing techniques, often applied in the digital do-
main after an analog-to-digital conversion of the analog data. Most of the
approaches follow three steps. Firstly, the environment is sensed through the

252 Aarts et al.

Table 13.1. See, hear, feel

OpticalSensors’ “Talking Cane”: warns blind or visually impaired persons
through spoken language for obstacles in the vicinity.
Vivometrics’s “LifeShirt”: a lightweight, washable, sleeveless vest embedded
with sensors for continuously collecting and classifying cardiopulmonary patient
data.
Vos Systems’s “IntelaVoice Voice Operated Dimmer”: allows to dim your
lamps with simple voice commands.
Logitech’s “QuickCam Orbit” Desktop Video-Camera: automatically fol-
lows you when you move around.
EyeOn Trust’s “Golfmate”: allows to locate easily and immediately a golf
ball on a golf course.
Singapore Technologies Electronics’ Fever Screening System: shows
whether passers-by are running a temperature.
Mitsubishi’s ITS-ASV2 Car: provides audible and visual warnings when it
detects that the driver is not alert enough.
Mercedes Benz’ “Talking Alarm Kit”: monitors the driving lane and alerts
if pedestrians appear in front of the car.

collection of raw data from sensor networks, consisting of cameras, micro-
phones, position detectors, motion trackers, chemical sensors, and others.
Secondly, the data are processed and combined, and thirdly the data are
classified.

Well-known techniques that are used in this domain are face and body
recognition, geometric modeling of two- and three-dimensional objects, image
segmentation, biometrical data processing, speech recognition, and synthesis.
For the classification, one often resorts to artificial neural networks or hid-
den Markov models. The artificial neural networks are used as generalized
class separators. They can deal with conflicting or incomplete data sets. The
hidden Markov models typically use extremely large probabilistic networks
of nodes that represent partial solutions. Final solutions are then obtained
by computing the most likely feasible combination of partial solutions. This
computation is often carried out using a mathematical programming approach
called dynamic programming. This approach has regained much attention over
the past years as a result of the huge increase in the capacity of present-day
computing devices and the availability of large data sets.

13.3.2 Understand, Interpret, Relate

This class of AmI elements is concerned with aspects of giving meaning to
certain events or activities that are sensed or recorded. In general terms this
is the domain of reasoning, induction, and deduction. Again, we start the
presentation with a short overview of some commercially available products
and services as listed in Table 13.2.

13 Computational Intelligence 253

Table 13.2. Understand, interpret, relate

Blissful Babies’ “Why Cry”: a calculator-sized battery-powered device that
can analyze a baby’s cry and give an indication of the cause.
Wow Wee Toys Ltd’s “Speak2Click”: a conversation robot that allows you
to easily communicate with your PC.
Philips’ ICat: user-interface robot that supports natural conversation and can
be used for control and support tasks in the home.
Elite Care’s “Smart House”: assists occupants with diminished mental capa-
bility, by detecting their physical motions, movement of objects, and operation
of appliances and lights.
K Laboratory’s “FeliPo” Service: allows a mobile phone to detect informa-
tion on a poster about advertisements that are customized for gender, location,
time/date, and the weather conditions.
NewNow InetShop’s “Sensor-Bin”: a dustbin that will open its lid when
you move directly in front of it.
Saab’s “Alcokey”: prevents a person from driving the car if not sober.

Most of the computational techniques that are applied in this domain are
known as rule-based or expert systems. Upon input these systems argue and
reason using data and relations among data. They typically apply heuristic
rules to combine and transform data in order to reach valid conclusions or
develop new pieces of information.

Expert systems constitute a classical field of research in machine intel-
ligence, and substantial progress has been made over the years. Generally
speaking, there are two elements that can be found back in most of the ex-
isting expert systems. Firstly, there is the knowledge representation, which
determines not only the data structures that are used to specify the data
items of the information that needs to be processed, but it also captures the
relations among the data items in a data model that allows to manipulate the
data items. Secondly, there is the element of reasoning, which refers to manip-
ulating and transforming data items in order to reach conclusions that make
sense within the context of use. The reasoning may also lead to a sequence of
actions that need to be taken in order to accomplish a given goal and which
is often referred to as a plan.

More recently, probabilistic methods have been introduced to reason about
information. These methods apply the working hypothesis that different pos-
sible outcomes should be evaluated simultaneously to select eventually the
most likely one based on the probability that certain initial conditions are
met. Bayesian methods are a class of computational techniques that apply
this approach with considerable success.

13.3.3 Look, Find, Remember

This is the classical domain of search and retrieval of information, browsing
databases, and remembering specific pieces of information or events. This

254 Aarts et al.

class of AmI elements has become particularly interesting as a result of the
ubiquitous availability of information throughout society. Having unlimited
access to any kind of information is not a privilege if one is not supported
by intelligent means to handle the information overload. So, this domain is
central to information handling in ambient intelligence. Table 13.3 gives some
examples of commercially available products and services in this domain.

There are many search paradigms available in this domain. A major class of
approaches uses heuristic rules that construct a solution to the search problem.
Other techniques use iterative methods that continually try to improve a given
solution using certain criteria. Local search is a well-known example of a search
paradigm that applies this approach. Constraint satisfaction is yet another
method that uses a tree-search approach to find a solution to a search problem
that satisfies a well-defined set of constraints. Associative memories based
on artificial neural network models are used to complete partial information
in retrieval problems or to find approximate matches. Other methods that
allow for data mining with uncertainty apply approximate pattern matching
techniques, which are quite similar to the computational approaches used
in stochastic Markov models. More recently, one has developed the so-called
Bayesian classifiers, which are statistical methods applying conditional and
prior probability distributions to evaluate classification hypotheses.

Evidently, we need to mention many search techniques that have been de-
veloped to browse the Internet. Most of these methods apply heuristic search
and pattern matching rules, some of which are based on graph theoretical mod-
els. The recent introduction of the Semantic Web (Berners-Lee et al. 2001),
which enables not only the search for data items, but can also account for
relations between data items, has largely stimulated the development of in-
tentional search techniques.

Table 13.3. Look, find, remember

Siemens “Digital Graffiti”: appears as an SMS message when a user with a
phone walks by a given physical location.
Philips’ “Easy Access”: allows a user to find back a song in a music database
by humming a tune of the song.
Hutchison’s “3FriendFinder”: allows location of other users of this service in
a map on the mobile phone’s display.
GPSTracks’ “GlobalPetFinder”: allows building a fence of any size, and will
alert you if your pet wanders outside it.
Cirrus Healthcare Products’ “Angel Alert”: tracks children and warns
when they stray too far from adult supervision.
Shazam Mobile-Phone Service: identifies a piece of music with a mobile
phone.
SmartHome’s “Memory Key”: shows the status of the door (locked or un-
locked) and how much time has passed since you locked it with that key.

13 Computational Intelligence 255

13.3.4 Act, Adapt, Learn

This class deals with characteristics of personalization and adaptation over
time, which can be obtained from the processing of time sequences of data
that contain behavioral patterns. Table 13.4 gives some examples of products
that exhibit certain of these characteristics.

Most computational methods in this domain apply some form of machine
learning techniques. Many of these techniques build an internal model that
tries to capture the input–output relation of a set of learning examples, which
is often referred to as supervised learning. If such a set of learning examples
is not available, similar techniques can be applied to the relation between
observed data items to group them into classes, which can be used later to
classify new data items. These implicit models can also be used to interpolate
or extrapolate from existing data upon input of new data items. Examples of
machine learning techniques that are frequently applied are stochastic learn-
ing models, such as reinforcement learning and artificial neural networks. In
learning, the artificial neural networks are used as generalized function classi-
fiers where the learning examples can be viewed as the data items in a multi-
dimensional learning space. The computational models mentioned above can
also be used to build models of user behavior, and they can be determined
for different types of contexts, and combined within the same actor model.
An example of such an approach can be found in the development of rec-
ommender systems that support in the selection of video items. Here user
preferences are captured in multiple models that reflect different contexts
of use.

Table 13.4. Act, adapt, learn

Noxa Med’s Anti-Snore Pillow: eliminates snoring of a specific person by
producing vibrations if it detects the onset of snoring.
Adidas’ Intelligent Shoes: adapt automatically their characteristics to the
surface on which the person who is wearing them runs.
OSIM’s “iMedic 500 Advanced Massage Chair”: measures automatically
the length of a person’s back and the shoulder position, to determine where it
should apply pressure.
Toyota’s “Prius” Car-Parking Assistance: allows a car to park itself without
the driver having to touch the steering wheel.
Emfitech Oy’s “SafeSeat” and “Safefloor”: chairs and floors that can mon-
itor the health and well-being of patients, and send warnings if needed.
Omron’s “OKAO Vision”: a user interface for an ATM or a ticketing ma-
chine that automatically adapts after observing the user’s gender, age, and other
attributes.
Tomy’s Sleep Watch Doll: observes the user’s sleeping habits, and bothers
the owner when he or she is not going to bed or getting up at the usual time.

256 Aarts et al.

13.3.5 Create, Express, Emerge

This class of AmI elements is probably the most interesting of all since it deals
with creativity in the most absolute form, i.e., creating something meaningful
that is new. It has to do with new elements of forms and shapes that enhance
the interaction of people with media in the broadest sense. Here, affectiveness
and emotion come into play, and in the end, this class of AmI elements may
drive very well the most challenging innovations introduced by the concept of
ambient intelligence. First, let us have a look at some of the examples, shown
in Table 13.5.

The domain “create, express, emerge” deals with revolutionary concepts
and is aimed at creating an enhanced experience for its users. One speaks
in this respect of poetic interfaces, intimate media, and affective computing,
which are all different concepts but with the very same purpose of creating im-
mersive sensorial experiences resulting from revolutionary shifts in interaction
paradigms. Examples are the automatic generation of multimedia narratives
or the creation of ambiences through automatic generation of lighting and
sound effects. Also the stimulation of sensorial arousals through physical mo-
tion and vibration is part of the enhanced experience.

There are only a few general computational methods in this domain. Most
approaches applied in the examples presented in the table use heuristic rules
to create the experience, and there are no general guidelines on how to ap-
ply these rules successfully. Evolutionary computing techniques however con-
stitute a class of generally applicable methods that may become of great

Table 13.5. Create, express, emerge

Philips’ Ambilight: creates a halo around the television with dynamically
changing colored light that enhances your viewing experience.
Digital Fashion’s 3D Simulation System for Virtual Modeling: allows
virtual modeling and coordination of clothes, cosmetics, and accessories in real
time.
Citroen’s “C-Airlounge” Concept Car: is equipped with projectors in the
armrests and floor that create particular light effects and moods.
Andersen Windows’ “Concept House”: Has windows that can also function
as Loudspeakers and displays.
Jabberwock’s Chat Software: simulates an automated chat person on the
Internet.
Sharp’s LN-H1W “Lumiwall” Window Panel: provides light during night
and day, by combining daylight transmission, solar power generation, and illumi-
nation.
D-BOX’ “Odyssey”: brings a new dimension to entertainment by moving the
viewer’s seat in synchronism with the action on screen.
Lofty’s “Hotaru” Smart Pillow: helps the user fall asleep easily and com-
fortably by emitting light that varies in response to the breathing pattern of the
user.

13 Computational Intelligence 257

significance in this domain, because of their natural approach to the problem
of creating new meaningful results from existing ones. These methods follow
the basic laws of Darwinian evolution, which create new elements of a pop-
ulation through mutation and recombination of existing elements within the
population. Fitness rules are applied to select the best ones and in this way,
surprising new results can be generated.

Another approach is that of using agent technology. Intelligent agents are
small software programs that act autonomously within a distributed environ-
ment. They can create new agents and modify existing ones based on the use
of external information. They are responsive to their environments and can
contribute to the purpose of evolution.

13.4 Computational Paradigms

In this Section, we address four paradigms for computational intelligence:
Search,Reasoning, Learning, and Evolution. For each of the paradigms we
present a number of basic algorithmic approaches that can be applied in the
design of AmI applications.

13.4.1 Search

Search algorithms are applied in situations where a solution has to be found
in a large set of alternatives, subject to a number of constraints, and often
with an objective that needs to be minimized or maximized (Papadimitriou
and Steiglitz 1982). For instance, speech recognition requires finding a text for
a given utterance, such that the probability that the utterance corresponds to
the text is maximized. Music playlist generation is about finding a sequence of
songs that meets the constraints set by the user on, e.g., songs and transitions.

Dynamic Programming

The first method we elaborate on is called dynamic programming, and is
used, for example, in approximate pattern matching, in solving hidden Markov
models, and in planning problems.

The key idea of dynamic programming is that decisions are taken one
by one, and that optimal sequences of decisions are built in a “recursive”
way. More precisely, the problem at hand is modeled as that of searching
an optimal sequence of decisions d1, d2, . . . , dn. For instance, in a planning
problem where a choice has to be made which of a given list of items to
include, the ith decision could be whether or not to include the ith item.
By successively taking the decisions d1, d2, . . . , dn, a complete solution to the
problem is constructed. In this planning example, the sequence of decisions
determines the set of selected items.

258 Aarts et al.

For determining an optimal sequence of decisions d1, d2, . . . , dn, the prin-
ciple of optimality of successive decisions is used. This principle states that
an optimal sequence d1, d2, . . . , dn consists of a first decision, d1, followed by
an optimal sequence of decisions d2, . . . , dn for the remainder of the problem.
The idea is now that for every possible situation after the first decision, first
an optimal sequence of decisions d2, . . . , dn is computed. Then, the first deci-
sion d1 is chosen such that the combination of its direct effect and the effect
of the optimal finish d2, . . . , dn is optimized. Note that in this way we have
reduced the problem from n degrees of freedom to n − 1 degrees of freedom.

The above step can be applied repeatedly, leading to the following dynamic
programming algorithm. First, the optimal decision dn is determined for every
possible situation after the first n− 1 decisions. Next, for every possible situ-
ation after the first n − 2 decisions, the optimal decision dn−1 is determined,
given the optimal finishing decision dn for the situation after choosing dn−1.
This is repeated until we have finally determined the optimal decision d1.

Key in the above recursive procedure is the way “every possible situation
after k decisions” is represented. In dynamic programming, this is modeled by
a set of states, where a state describes the effect of the previous decisions in
such a way that the result of the remaining decisions can be determined. In the
worst case, the set of states after k decisions is exponentially large in k. For
many problems, however, the set may be significantly smaller. For instance,
in the planning example, the state may be given by the total duration of the
already selected items, assuming that the problem is about selecting items
with a total duration not exceeding some limit D. Knowing the total duration
of the previously selected items is all one needs to know about the previous
decisions in order to determine the remaining decisions optimally. If all items
have a duration, i.e., a multiple of 5 min, then the set of states is given by all
multiples of 5 min between 0 and D, which is independent of k.

The final element in dynamic programming is a recurrence relation to de-
termine the combined effect of a decision di and the optimal finish di+1, . . . , dn

after it. Let for each possible state t after decision di the value of the optimal
finish be given by fi+1(t). Then, for each possible decision di taken in each
possible state s, the recurrence relation expresses the value v(s, di) of taking
that decision in that state as function of the direct effect of decision di and the
value fi+1(t) of the state t that is reached after this step. Then, the optimal
decision in state s is the one that maximizes v(s, di), yielding the optimal
value fi(s) for state s. In the planning example, the recurrence relation may
be that the value of taking a decision di in state s is the value of the ith item if
it is selected and zero otherwise (i.e., the direct effect), plus the optimal value
of future selections given the resulting state t, where the resulting state t is
given by s plus the duration of the ith item if it is selected, and s otherwise.
More formally,

v(s, di) =
{

vi + fi+1(s + li) if di = “select item i” and s + li ≤ D,
fi+1(s) otherwise,

where vi is the value of item i, and li its duration.

13 Computational Intelligence 259

As we can see above, optimal sequences of decisions are calculated “back-
wards,” i.e., first optimal last decisions are computed, then optimal one-
but-last decisions are computed, etc. Dynamic programming variants exist
in which the decisions are calculated “forwards.” In contrast to the above
approach, where one typically uses the same state set for each decision, a
forward approach typically only maintains the set of states that are actually
reached after the first k decisions. If two decision sequences d1, d2, . . . , dk end
up in the same state, the one with the best value is kept, and the other one
is discarded.

A final remark that we make about dynamic programming is that, whereas
the above presented algorithm gives a guaranteed optimal solution, it may
be adapted to save computation time, at the cost of losing the guarantee of
optimality. Many examples are known in the literature to turn a dynamic pro-
gramming algorithm into an approximation algorithm, by pruning the state
set. For instance, in the planning example, one may round the states to multi-
ples of 15 min, even though the items’ durations are multiples of 5 min. As this
reduces the state set, it hence reduces the computation time. Other known
approaches in, e.g., speech recognition is a so-called beam search, where the
state set per decision is restricted by discarding states that are not likely to
give an optimal solution.

Heuristic Algorithms

Many problems cannot be solved exactly in a reasonable time, for instance
because of their intrinsic complexity. In this situation one may resort to the
use of heuristics, which drop the requirement of finding an exact solution at
the benefit of substantially shorter running times (Osman and Kelly 1996).
In this section, we discuss two such approaches, a constructive one and an
iterative one.

Constraint satisfaction. The first approach we mention, which is a com-
mon method for feasibility problems, is given by constraint satisfaction
(Tsang 1993). Constraint satisfaction can be seen as a constructive approach
in the sense that it gradually builds up a solution.

Key in constraint satisfaction is the definition of domains, which give for
each of the involved decision variables a set of values from which it can be
chosen. These domains, which initially may be quite large, are reduced during
the course of the algorithm, until they each contain only one value, and hence
a solution has been found, or until one of them becomes empty, meaning that
no solution exists.

Domain reduction techniques in constraint satisfaction build upon combin-
ing constraints with other variables’ domains, as well as on combining several
constraints. This process is called constraint propagation. For instance, if a
decision variable x has domain [2,10] and variable y has domain [5,7], and
there is a constraint implying that x has to be at least equal to y, then the
domain of x can be reduced to [5,10], as other values cannot lead to a feasible
solution. An example of combining constraints is that, in a planning problem,

260 Aarts et al.

if a task a is supposed to be executed on the same processor as another task b,
and there is not enough time for a to execute before b has to be started (due
to the domains), then one can draw the conclusion that a has to start after b
has finished. The strength of constraint satisfaction is determined by the do-
main reduction power of combining constraints, and quite some research has
been spent on the types of constraints that lend themselves best for constraint
propagation.

If, at a certain moment, domains cannot further be reduced, while some
domains contain multiple values, then a variable is chosen, and it is assigned a
value from its remaining domain. Then again constraint propagation is applied
as much as possible, to reduce the other variables’ domains. If necessary, a new
variable is assigned a value, etc. Obviously, the order in which the variables
are considered for being assigned a value has a strong impact on the end
result. Furthermore, value choices may turn out to lead to a situation where
some domains reduce to empty sets. In that case, one may apply backtracking
to undo (some of) the last decision(s) and to make other choices. Doing so,
however, may increase the running time considerably, as one effectively is
solving the problem exactly.

The field of constraint satisfaction can be positioned at the intersection
of mathematical programming and artificial intelligence, and the fact that it
contributed to the merger of these two fields is probably one of its major
contributions in addition to the fact that it is quite a powerful method that
can be applied to a large range of problems.

Local search. The second approach we mention is called local search (Aarts and
Lenstra 1997), which works by starting with a rather arbitrary, yet complete
solution, and iteratively making small changes to it. By defining the kind of
alterations that can be made to a solution, e.g., replacing a song in a music
playlist by another song, a so-called neighborhood structure is defined, which,
for each solution, gives a set of solutions that can be obtained from it in one
iteration. So, iteratively, a random solution is picked from the neighborhood
of the current solution, and the objective function is evaluated for this new
solution. If the effect is favorable, the new solution is directly accepted, and
used for the next iteration. If the solution deteriorates, then in the simplest
form of local search, called iterative improvement, the new solution is rejected.
Doing so, local search may be trapped in a local optimum, meaning that no
neighbor of the current solution improves the objective function. However,
this local optimum may not be the overall (global) optimum.

To escape from a local optimum, simulated annealing uses a different
way of treating deteriorating solutions, in the sense that they are accepted
with a certain probability, which decreases with the amount of deterioration
and over the course of the algorithm. The effect is that in the beginning,
large deteriorations may be accepted, thereby ensuring a proper exploration
of the solution space. As the algorithm continues, the chance of accepting

13 Computational Intelligence 261

deteriorations decreases, until in the end (almost) only improvements are ac-
cepted. Although simulated annealing uses a simple acceptance mechanism, it
has the nice theoretic property that it converges to globally optimal solutions
with a high probability.

Although simulated annealing does accept deteriorating solutions with a
certain probability, it may run the risk of jumping back directly in the next
iteration, and it may be very difficult to reach a certain good solution if that
takes several deteriorating steps to get there. To overcome the former problem,
tabu search maintains a list of decisions that are not allowed to be undone
in the next couple of iterations. The latter problem is tackled by variable
depth search, in which a given number of steps are performed in a sequence,
deteriorating or not, after which the best intermediate solution is taken for
the next iteration.

Local search is easily applicable in the sense that it requires (nearly) no
specific problem knowledge, and it has given good results for various well-
known problems. Furthermore, if problem-specific knowledge is present, this
may be used to further improve the performance. For instance, the neighbor-
hood structure may be reduced such that only promising solutions are kept.
Although this may affect the theoretical underpinning of the approach, it may
speed up the algorithm drastically, by which it can obtain better solutions in
practical running times.

13.4.2 Reasoning

Reasoning algorithms use knowledge for drawing conclusions. Motivation for
using a separate knowledge component was originally derived from the “com-
binatorial explosion” encountered with many early artificial intelligence pro-
grams (Russell and Norvig 2003). An expert system, or knowledge-based
system, consists of a reasoning program and a knowledge base (Stefik 1995).
Knowledge bases can take the form of rule bases or ontologies, which pro-
vide machine-understandable definitions of terminology. Bayesian methods
are widely used to handle uncertainty in reasoning algorithms.

Expert Systems

One of the earliest expert systems is Dendral, which inferred molecular struc-
tures from measurements done with a mass spectrometer. The system used
rules which connect peaks in mass spectrometer graphs to specified subgroups
of molecules. Another famous early expert system is MYCIN, which used rules
to diagnose blood infections. MYCIN’s rules connected symptoms to possible
causes, while the likelihood of different causes was distinguished by means of
numbers called certainty factors. In addition to the term expert system, the
term decision support system has also come into use. Many decision support

262 Aarts et al.

systems contain a diagnostic reasoning component and advise people to per-
form a certain new observation or to execute a certain corrective action, for
example. As an example, in the area of medicine, clinical decision support
systems are attracting attention (Sim et al. 2001).

The area of expert systems and the related area of knowledge represen-
tation and reasoning face two central issues: knowledge acquisition and the
tradeoff between expressive power and reasoning complexity. With respect to
knowledge acquisition, the issue is to obtain declarative knowledge in such a
way that it can be used by a system. The standard approach is to interview
domain experts in order to obtain the required knowledge bases. However, in
many cases, it has been hard or impossible to obtain and maintain suitable
knowledge bases in this way; the problem to obtain suitable knowledge is also
called the Feigenbaum bottleneck, after one of the originators of the field. Rep-
resentatives from the application domain may develop the required knowledge
bases, when a suitable metamodel of knowledge for the application domain
is available. As an alternative to the involvement of domain experts, learn-
ing techniques may be useful to discover knowledge on the basis of evidence
provided by data contained in databases or on the web, for example.

The second central issue that was mentioned, the tradeoff between expres-
sive power and reasoning complexity, concerns the fact that if much freedom
is allowed to express knowledge, then reasoning may become intractable. For
the classical formal paradigm of reasoning, first-order logic, the problem to
determine whether a conclusion is valid is undecidable in general; this was
proved in the paper that introduced Turing machines as a general model of
computation (Turing 1936). In order to enable reasoning, practical systems
need to use restricted formalisms for expressing knowledge. The two central
issues together lead to the challenge to develop a knowledge model for an
application domain, enabling knowledge bases to be recorded and maintained
in practice, in combination with a corresponding reasoning procedure realized
by tractable algorithms.

Traditionally, a knowledge base typically consists of rules. In addition to
rule bases, knowledge bases can also be ontologies, which provide machine-
understandable definitions of the meaning of concepts. The combination of
rule bases and ontologies leads to appealing possibilities for intelligent algo-
rithms. For example, a system may get as input data from certain sensors,
describing the context of use of the system in a low-level fashion. The sensor
data are used in combination with an ontology to perform “context deter-
mination,” making sense of the context of use by describing it in terms of
high-level concepts defined in the ontology. Subsequently, a rule base, entirely
phrased by means of high-level concepts on the level of the user, can be used
to trigger actions performed by the system, for example, to realize preferences
which a user has stated to apply to the current context of use.

The W3C is developing standard languages to support machine reasoning
by means of knowledge on the web, to realize the vision of the semantic web
(Berners-Lee et al. 2001). Two semantic web languages are already available

13 Computational Intelligence 263

in standard form: RDF (Resource Description Framework) and OWL (Web
Ontology Language). RDF plays a basic role by allowing the expression of
statements. OWL allows the expression of ontologies, which define meaning
of terms used in RDF statements. Simple ontologies can already be expressed
with the RDF Schema (RDFS) vocabulary. The W3C is standardizing a rule
language in the future. Even without rules, the languages RDF and OWL lead
to the possibility of automatically drawing conclusions from information on
the web. For RDF and OWL, the valid conclusions, commonly called entail-
ments, are determined by a logic and its semantics. Although the standard
syntax for RDF and OWL uses XML, the meaning of RDF and OWL knowl-
edge bases is independent of XML, and abstracts from the XML serialization
used. Here the notion of RDF graph plays a role. An RDF or OWL knowledge
base is formalized as an RDF graph, which is a set of RDF statements, i.e.,
subject–predicate–object triples; subjects and objects of triples are viewed
as nodes, linked by predicates. Predicates are usually called properties. RDF
includes variables, which are called blank nodes, and which are, implicitly,
existentially quantified. An RDFS or OWL ontology describes concepts (i.e.,
classes) and relationships (i.e., properties). The RDFS vocabulary enables in
particular the definition of classes and subclass relationships, and the specifi-
cation of domain classes and range classes for properties. OWL extends RDFS
in various ways. For example, properties (i.e., binary relations) can be stated
to be functional or transitive or symmetric, or to be each other’s inverse;
classes can be stated to be disjoint or to be the union or intersection of other
classes; it is possible to use constraints to define classes, for example, to define
the class of persons all of whose parents are American, or the class of persons
with two children. There are two variants of OWL with different semantics:
OWL Full and OWL DL. OWL Full entailment is undecidable. OWL DL
imposes restrictions on the use of the language to ensure decidability. For ex-
ample, classes cannot be used as instances in OWL DL. OWL DL is supported
by techniques developed in the area of description logics (Baader et al. 2003).
Although description logics form decidable fragments of first-order logic, for
which optimized reasoners exist, verification of OWL DL entailment requires
nondeterministic exponential time (Horrocks and Patel-Schneider 2003). In
analogy to RDFS, a weakened variant of OWL has been described which does
not impose restrictions on the use of the language and for which entailment
is NP-complete, and in P when the target RDF graph does not contain blank
nodes (ter Horst 2004).

Bayesian Methods

It has been common practice to handle uncertainty in expert systems by means
of numbers. For example, we mentioned already the uncertainty factors of
MYCIN. Bayesian methods use probabilities, and seem to form the most pop-
ular way of handling uncertainty in expert systems (Pearl 1988; Jensen 2001).
A central role is played by Bayes’ rule. For random variables V and W with

264 Aarts et al.

values v and w, respectively, Bayes’ rule connects the conditional probability
that V = v given that W = w to the converse conditional probability and the
probabilities that V = v and W = w:

P (V = v|W = w) =
P (W = w|V = v)P (V = v)

P (W = w)
.

This rule follows from the relationship between conditional probabilities and
joint probabilities:

P (V = v|W = w) =
P (V = v, W = w)

P (W = w)
.

A Bayesian network is an acyclic, directed graph for which the nodes are
labeled with random variables V1, . . . , Vn. A Bayesian network is essentially
a compact representation of certain conditional independent relations: it is
assumed that each variable Vi is conditionally independent of each set of
variables Ai that are not descendants of Vi, given the set of parent nodes
π(Vi) of Vi: P (Vi|Ai, π(Vi)) = P (Vi|π(Vi)). More precisely, this equation is
assumed to hold for each value of each variable included. The conditional
probabilities P (Vi|π(Vi)) are stored for each variable Vi, and include the
probabilities P (Vi) at the root nodes. Bayesian inference allows the compu-
tation of many probabilities and conditional probabilities by means of these
probabilities P (Vi|π(Vi)). For example, the full joint probability distribution
P (V1, . . . , Vn) is the product of the conditional probabilities P (Vi|π(Vi)) for
all i = 1, . . . , n. This shows that if each variable has two values and if each
node has at most k parents, then all the 2n joint probabilities can be com-
puted with at most n2k conditional probabilities. For values w1, . . . , wk of
variables W1, . . . ,Wk and values e1, . . . , em of evidence variables E1, . . . , Em

appearing as descendants of the variables W1, . . . ,Wk in the network, there
are standard, recursive procedures to compute the conditional probabilities
P (E1 = e1, . . . , Em = em|W1 = w1, . . . ,Wk = wk) by means of the given con-
ditional probabilities P (Vi|π(Vi)). Bayes’ rule can be used in combination with
such a procedure to go in the other direction, i.e., from “effect” to “cause”:

P (cause|effect) =
P (effect|cause)P (cause)

P (effect)
.

The computation of conditional probabilities given a Bayesian network is NP-
hard in general. When the Bayesian network has a relatively simple structure,
for example, when there is at most one undirected path between any pair of
nodes, there exist polynomial time algorithms. The most efficient general exact
algorithms for probabilistic inference use the Bayesian network to form a kind
of parallel computer which exchanges messages in both directions between
neighboring nodes, for example, by performing lazy propagation in junction
trees (Jensen 2001). There exist stochastic approximation techniques, which
can handle much larger Bayesian networks than the exact algorithms.

13 Computational Intelligence 265

Bayesian methods have been extended to decision graphs and dynamic
Bayesian networks (Jensen 2001; Russell and Norvig 2003) using sensor data
values, utilities, and actions. Using probabilistic reasoning, actions are selected
that maximize expectation values of utilities. This forms a widely used way
to realize the “utility-based agents” that will be mentioned in a later section.
Robotic perception systems use variants of these methods that involve con-
tinuous random variables rather than discrete random variables (Russell and
Norvig 2003).

Bayesian reasoning methods are powerful, even though knowledge acquisi-
tion often remains an issue. The structure of Bayesian networks can in many
cases be obtained by means of causal knowledge that is available from domain
experts, but the conditional probabilities P (Vi|π(Vi)) are typically more diffi-
cult to obtain; the question “where do the numbers come from?” continues to
raise discussion. Learning methods for this problem have been widely inves-
tigated. We discuss two methods for obtaining the conditional probabilities
when the structure of the network is known, and a database of cases (training
data) is available, possibly with missing values of certain random variables. In
the gradient ascent learning method (Russell and Norvig 2003), a maximum
likelihood hypothesis for the conditional probabilities is found. Hypothesis h
represents values of the conditional probabilities P (Vi|π(Vi)). The objective
function to be maximized by a gradient descent procedure is the probability
P (D|h) of the observed training data D given a hypothesis h. This method
leads to a local optimum. Another method that is widely used for obtaining
conditional probabilities from a database of cases with missing data is the
expectation maximization (EM) method, which can be described as follows
(Nilsson 1998). The starting point is a database of cases which do not all have
values for all the random variables V1, . . . , Vn. For example, in a situation
where the variables are Boolean, there may be ten cases where the variables
V1, . . . , Vn−1 are known to be one but where the value of Vn is unknown. These
ten cases are then handled in terms of “weighted cases,” with value Vn = 1
with weight P (Vn = 1|V1 = 1, . . . , Vn−1 = 1) and value Vn = 0 with weight
P (Vn = 0|V1 = 1, . . . , Vn−1 = 1). In the following step the conditional proba-
bilities P (Vi|π(Vi)) are given random values, and Bayesian inference is used to
compute the conditional probabilities used as weights in the cases with missing
values. The database of cases, with missing values thus interpreted in terms of
weights, is then used to estimate the conditional probabilities P (Vi|π(Vi)) as
fractions of frequencies N(Vi, π(Vi))/N(π(Vi)). The conditional probabilities
P (Vi|π(Vi)) thus obtained are used to obtain new values for the conditional
probabilities used as weights in the cases with missing values. This procedure
is iterated, and again converges to a local optimum.

13.4.3 Learning

Learning is the ability to improve one’s performance through experiences in
the past. Learning algorithms are typically applied in situations where initially

266 Aarts et al.

only partial information is available to solve a given problem and gradually
over time additional information becomes available and in situations where
adaptation to changes in the environment is essential to obtain high-quality
solutions. Examples of these types of applications are learning the preferences
of a user for TV-programs on the basis of his/her viewing history, and adap-
tation to changes in voice and background noise in speech recognition.

Learning can range from simply memorizing past experiences to the cre-
ation of scientific theories (Russell and Norvig 2003). We focus on two spe-
cific computational paradigms, namely neural networks and reinforcement
learning.

Neural Networks

An artificial neural network is a computational model that tries to follow the
analogy with the human brain. It is built from artificial neurons or nodes,
based on a simplified mathematical model of the biological neurons in the
brain. A given node is connected to multiple input nodes, of which the states
are given by x1, x2, . . . , xn. These connections have weights w1, w2, . . . , wn.
The output or state y of the node may be discrete, say y ∈ {0, 1}, or real
valued. For deterministic neurons, the output y is a function of the inputs

y = f(Σi=1,...,nwixi − b), (13.1)

where b represents a threshold and f is some nonlinear function. If the neuron
has a discrete output, then f will be a step function. For stochastic neurons
with discrete output, the right-hand side of (13.1) gives the probability that
the neuron has output 1.

Neural networks usually consist of many nodes that are connected in some
way. A well-known example is a layered feed-forward network, where the nodes
are arranged in multiple layers, from a first layer of input nodes via possibly
multiple layers of intermediate nodes to a last layer of output nodes. In such
a network, the nodes on layer i can only be input to the nodes in layer i + 1.

Such a feed-forward network can be used for classification purposes, where
the states of the nodes in the input layer are directly determined by external
input. They represent the features of the object that is to be classified. In
successive steps, (13.1) is used to determine the states of the nodes in the
successive intermediate layers, until in the last step the states of the output
nodes are determined. These give an encoding of the class to which the object
is supposed to belong. A simple encoding is given by using as many output
nodes as we have classes that we want to distinguish, where a classification
requires exactly one of the output nodes to receive state 1 and the others
state 0. To realize a correct classification of objects, the connection weights
wi and the threshold b must be set appropriately for each of the neurons.
If the relation between the states of input nodes and the required state of
the output nodes is sufficiently understood, then these could be hard-coded.
Usually, however, this is not the case.

13 Computational Intelligence 267

Neural networks are especially interesting for applications where the re-
lation between the states of input nodes and output nodes is unknown. By
repeatedly providing it with examples of correct input–output combinations,
a neural network will ideally be able to learn the underlying input–output
relation by adapting the connection weights wi and thresholds b of its nodes.

Research on feed-forward networks dates back to the 1950s and 1960s,
when networks consisting only of input nodes and output nodes were ex-
tensively studied. These so-called perceptrons (Rosenblatt 1957; Minsky and
Papert 1969) can represent only linearly separable concepts. The field has seen
a strong revival in the 1980s and 1990s, when learning feed-forward networks
with one or more intermediate layers using the back-propagation learning algo-
rithm (Rumelhart et al. 1986) became common practice. The algorithm works
in small iterative steps. In each step, observed errors at the output nodes are
propagated back to the intermediate nodes to make small adjustments to the
weights and thresholds. The success of learning algorithms in neural networks
can be hindered by the possibility of getting stuck in local optima, by the
slow speed of learning, and by the uncertainty on choosing an appropriate
structure of the neural network. The structure of a neural network determines
the number of layers and the number of nodes per layer.

Reinforcement Learning

Reinforcement learning is an example of unsupervised learning. Instead of
learning from given input–output examples, reinforcement learning can best
be characterized as learning from interaction. We next explain it in the context
of sequential decision problems.

A sequential decision problem can be modeled as a Markov Decision
Process (MDP) as follows. It models an agent whose environment can be
in one of a finite set of states s1, s2, . . . , sn. In successive iterations, the agent
has to choose one of a finite set of actions a1, a2, . . . , am. The next state is de-
termined by a probability distribution that depends on both the current state
and the agent’s action. Hence, the MDP is characterized by transition prob-
abilities P (s, a, s′), which gives the probability of going from state s to state
s′ when action a is chosen. In addition, a reward or reinforcement function
r(s, a, s′) gives after each action a reward that depends on the current state,
the action, and the next state. Both the transition probabilities and the reward
functions are assumed to be stationary, i.e., they do not change over time, and
memoryless, i.e., they depend on the current state but not on previous states.
The goal is to learn a policy that specifies (probabilistically) which action to
choose in a given state such that the expected overall reward is maximized.

An optimal policy for a finite number of states and a finite number of
iterations can be computed off-line using, for example, dynamic programming
if transition probabilities and reward functions are given explicitly. In many
applications, this is not the case. Instead, the agent starts with zero knowl-
edge and it has to learn from interacting with the environment. A well-known

268 Aarts et al.

on-line reinforcement learning algorithm is Q-learning (Watkins 1989). The
algorithm maintains state-action values v(s, a) for each state s and action a,
representing the expected benefit of choosing action a in state s. Initially,
they are chosen randomly. Based on these estimates, the agent chooses a next
action. Based on the resulting state and reward, the estimates are updated.
A parameter balances between exploiting the current estimates and exploring
new possibilities to improve the estimates. Many alternative learning algo-
rithms have been proposed. For further details, we refer to Sutton and Barto
(1998). Reinforcement learning has been applied in various settings, such as
in dynamically adapting the quality of service in video processing in set-top
boxes and digital TV sets, to adapt the highly fluctuating processing require-
ments to the available processing resources in programable hardware (Wüst
and Verhaegh 2004).

13.4.4 Evolution

Evolutionary computing is inspired by the way species are thought to evolve
over time in nature. Evolution can be viewed at the level of species and at the
level of individuals. Intelligent agents are autonomous software systems that
sense their environment and that can achieve a form of evolution by being
responsive, goal-directed, and socially able. As a computational paradigm,
evolution can be viewed as extending and including the previous paradigms
(search, reasoning, learning).

Evolutionary Computing

Evolutionary computing covers various computational paradigms that draw
their inspiration from nature, such as genetic algorithms, genetic program-
ming, evolutionary programming, and genetic local search. The two key mech-
anisms in evolution are selection and variation.

In nature, selection is achieved by a process called survival of the fittest,
meaning that individuals of a population that are better adjusted to their
habitat have a higher chance of surviving. These individuals also have a higher
chance of mating, which implies that their genotype is more probable to re-
main in successive generations of the population. As a result, the population
as a whole is better fit to its habitat. Variation is established by recombina-
tion and mutation. Recombination is obtained by sexual reproduction, where
the genotype of two parents is combined in a new genotype of their child.
Mutation corresponds to random perturbations of the genotype of an individ-
ual. Variation creates individuals that are potentially better suited to their
habitat.

The application of this computational paradigm to combinatorial opti-
mization problems or, more general, to search problems is quite straightfor-
ward. If we want to find a high-quality solution from a large set of solutions,
then this problem can be formulated in evolutionary terms as follows. A solu-
tion can be considered as an individual. Starting with a set of initial solutions

13 Computational Intelligence 269

as starting population, the quality of the solutions in successive generations
can be improved by preferably combining high-quality solutions to generate
new solutions (recombination) and by realizing occasional random changes
(mutation).

Genetic algorithms (Holland 1992) aim at faithfully mimicking this evo-
lutionary process by representing each solution as a DNA-like string of char-
acters and by realizing recombination through crossover operations. Other
variants such as genetic local search aim at following the same basic princi-
ples more loosely, for example, by improving the individual solutions through
iterative improvement until they are transformed into local optima, before
the next recombination step is carried out. Genetic programming is closely
related to genetic algorithms. Instead of recombining and mutating strings
that represent solutions, genetic programming operates on computer programs
(Koza 1994).

Intelligent Agents

Agents are computer systems that observe their environment by means of
sensors and autonomously act in their environment by means of actuators;
intelligent agents respond to changes in their environment and take initiatives
in order to satisfy their objectives, and are moreover capable of interaction
with other agents in order to satisfy their objectives (Wooldridge 1999). In
other words, an intelligent agent is reactive, goal-directed, and socially able.
Social ability implies negotiation and cooperation with other agents. Although
there has been much work on reactivity and goal-directedness, there does not
yet exist a widely accepted method of integrating goal-directed and reactive
behavior. Investigations on intelligent agents often make significant use of
other fields, such as game theory or modal logic. The semantic web languages
already mentioned enable agents to understand the meaning of and to reason
with information on the web.

The notion of intelligent agent has been used for the global organization
of major recent textbooks on artificial intelligence (Nilsson 1998; Russell and
Norvig 2003). Several kinds of agents are considered, with increasing capa-
bilities, and with increasing use of search, reasoning, planning, and learning.
Simple reflex agents work with simple condition–action rules, triggered by
sensor observations. Model-based reflex agents use a model of the world and
have an internal state, and react to new sensor input by updating the state
of the world and by choosing an action that takes this state of the world
into account. Goal-based systems use their continuously updated model of the
world in combination with information about goals to determine their actions.
Utility-based agents use numerical utility functions distinguishing the desir-
ability of states, enabling more refined strategies for action than when only
Boolean information about goals is available, for example, by using Bayesian
methods as described above. Finally, learning agents are able to evaluate their
actions and improve their performance.

270 Aarts et al.

We briefly discuss several approaches that have been investigated for devel-
oping intelligent agents, reflecting the diversity of the field (Wooldridge 1999).
Layered architectures seem to have formed the most popular approach. There
does not exist a widely accepted way of designing layered agent systems. There
are systems where each layer connects to sensor data and action output, while
other systems work with a kind of pipeline of layers from sensor input to out-
put actions.

As another way of developing intelligent agents, the belief–desire–intention
(BDI) approach (Bratman et al. 1988) has been widely used. The BDI model
presents a kind of cognitive structure for agents, consisting of several parts.
The information that an agent has about its environment is represented as a
set of beliefs. The intentions of an agent represent the state that the agent is
committed to reach. The desires of an agent consist of options available to the
agent. A BDI agent continuously cycles through a sequence of steps. First,
the sensor input is used to update the beliefs. Then, given the current beliefs
and intentions, the desires (options) are updated, for example, in view of a
plan to reach the intentions. Then, the set of intentions is updated, for exam-
ple, to include new intentions to realize existing intentions. Finally, an action
is chosen on the basis of the current intentions. The BDI architecture does
not determine how to achieve a balance between two central issues already
mentioned: reactivity and goal-directedness.

In another approach to develop intelligent agents, called reactive ar-
chitectures, the idea is that complex intelligent behavior can emerge from
combinations of simple behaviors, executed by simple reflex agents. One of
the principal approaches in this direction is the subsumption architecture
(Brooks 1986), which organizes situation–action rules in a subsumption hier-
archy. An action is inhibited when there is an action lower in the hierarchy.
In this way, an “avoid obstacle” action can be given the highest priority,
for example. With this approach, agents can only react to local information.
However, a form of cooperation between agents can be realized when agents
perform actions such as “dropping” evidence leading to actions of other agents
present at close distance. By using such mechanisms, it is envisaged that intel-
ligent behavior can indeed “emerge” from the actions of a collection of simple
agents. It is not clear how this approach, based on local information, can be
combined with the use of relevant global knowledge.

We conclude this discussion of intelligent agents by briefly turning to an
approach, which so far has remained primarily theoretical. If agents intend
to coordinate their actions to achieve common goals, they might make use
of models of the knowledge of other agents. In this connection, much work
has been done using modal logics of knowledge and belief (Fagin et al. 1995).
These logics are decidable extensions of propositional logic. We briefly dis-
cuss a logic that has been relatively popular, S5m, which extends proposi-
tional logic with modal operators K1, . . . ,Km for m agents. If P is a state-
ment, then the statement KiP indicates that agent i knows P . The logic
S5m has several axioms. First, the operators Ki distribute over implication:

13 Computational Intelligence 271

(Ki(P : Q)∧KiP)⇒KiQ. Another axiom states that what each agent knows
is true: KiP ⇒ P . The last two axioms state that each agent knows that
it knows something: KiP ⇒ KiKiP , and also knows that it does not know
something: ¬KiP ⇒ Ki¬KiP . There are two inference rules. In addition
to the familiar modus ponens rule, the logic S5m also has the so-called ne-
cessitation rule: given P , infer KiP . Just as for propositional logic, various
reasoning questions for these modal logics can be reduced to the satisfiability
problem; for propositional logic, state-of-the-art SAT solvers can handle rela-
tively large cases (Lynce and Marques-Silva 2002). The satisfiability problem
for the logic S5 (i.e., only one agent) is NP-complete, just like the satisfiabil-
ity problem for propositional logic; for m > 1, the satisfiability problem for
S5m is PSPACE-complete (Halpern and Moses 1992). The logic S5m has been
useful for reasoning about distributed systems, and has also been popular in
connection with agents. However, for agents the logic is considered to be too
strong, as it implies that an agent knows all the consequences of what it knows
(this is called “logical omniscience”): if a statement P entails a statement Q,
then in S5m we also have that KiP entails KiQ. It is believed that a realistic
approach would involve weaker logical capabilities on the part of agents.

13.5 Intrinsic Limitations

Since the introduction of electronic computing devices around 1950, scientists
have been fascinated by the question whether there exists an intrinsic com-
plexity of problems that makes them intractable. For a long time they have
been speculating about the question of the intrinsic computational hardness
of problems. In an early letter, Gödel (1906–1978) addresses questions to Von
Neumann (1903–1957) about the existence of efficient primality tests and
about the conjecture made by Gödel on the existence of a general procedure
that reduces the N steps needed to exhaustively search all possible solutions
to a problem – which Gödel calls dem blossen Probieren – to O(log N) or
O(log N2) steps. Unfortunately, Neumann’s reply to this letter is not known,
most probably because it was sent to him less than a year before he died
of cancer at the age of 51. Gödels optimism about the complexity of com-
binatorial problems was not shared by a group of Russian scientists in cy-
bernetics who were convinced that there existed a class of problems that
could only be solved by complete enumeration, something they called perebor,
and they were working on the proof of the conjecture that perebor could not
be removed.

Theoretical computer science has provided a foundation for the analysis of
the complexity of algorithms in computational intelligence, based on the orig-
inal computational model of the Turing machine (Turing 1936). This has led
to a distinction between easy problems, i.e., those that can be solved within
polynomial running times, and hard problems, i.e., those for which it is gener-
ally believed that no algorithm exists that solves the problem within a time

272 Aarts et al.

that can be bounded by a polynomial in the instance size. Consequently,
instances of hard problems may require running times that grow exponen-
tially in their size, which implies that eventually certain tasks cannot be
accomplished successfully within reasonable time. For some problems, run-
ning times can easily extend beyond a man’s lifetime if the instance size is
sufficiently large. Garey and Johnson (1979) provided an extensive list of in-
tractable problems in their landmark book. The so-called intractability calls
for workarounds. One frequently resorts to methods that do not carry out
the task optimally but rather approximate the final result. These so-called
approximation algorithms indeed can reduce computational effort, but if one
imposes the requirement that the quality of the final result is within certain
limits then again for many well-known problems exponential running times
are inevitable. Therefore, one often resorts to the use of heuristics without
performance guarantees, which improve running times considerably, but at
the cost of final solutions that may be arbitrarily bad in theory.

The computational complexity theory of learning studies a number of prob-
lems that are all related to the question how closely a learning hypothesis that
is built by a learning system resembles the target function if this function is
not known. Identification in the limit refers to the capability of a learning
system to converge to the target function for a given problem representation.
Early work in computer science, building on Popper’s theory of falsification,
implies that this may not be possible, which implies that there are certain
learning tasks that cannot be achieved. A general principle in computational
learning is Ockham’s razor, which states that the most likely hypothesis is the
simplest one that is consistent with all training examples. The notion of Kol-
mogorov complexity (Li and Vitanyi 1993) provides a quantitative measure for
this, given by the length of the shortest program accepted by a universal Tur-
ing machine, implementing the hypothesis. It thus provides a theoretical basis
for the intuitive simplicity expressed by Ockham’s razor. The theory of Proba-
bly Almost Correct (PAC) learning addresses the question how many training
examples must be applied before a learning hypothesis is correct within cer-
tain limits with a high probability (Kearns and Vazirani 1994). The theory
reveals that for certain nontrivial learning tasks this number may be expo-
nentially large in the size of the input of the learning system, thus requiring
exponentially many training examples and exponential running times.

13.6 Concluding Challenges

From the discussion of the computational paradigms presented above one can
draw the conclusion that ambient intelligence may be very well served from
a computational point of view by many paradigms that exist already. This
indeed is correct, but it does not mean that there are no challenges in the de-
sign of algorithms for computational intelligence from an ambient intelligence
point of view. Recently we have presented an in-depth discussion of this topic

13 Computational Intelligence 273

(Aarts 2005) and below we summarize the most important conclusions from
that discussion. In general terms there is a need for the following eight types
of algorithms:

1. Small-footprint algorithms that allow for the execution of intelligent al-
gorithms in low-power mobile systems such as personal digital assistants
and personal communication devices.

2. Real-time mathematical programming algorithms that allow real-time exe-
cution in complex decision making processes based on mathematical pro-
gramming techniques such as the dynamic programming algorithms men-
tioned in the previous section.

3. Intentional search algorithms that enable the effective and efficient han-
dling of queries based on user intentions. This calls for approximate string
search, pattern matching, and classification techniques that can deal with
ultra-large databases.

4. Feature extraction algorithms that extract metadata from raw data, thus
enhancing the classical functionality of storing and retrieving data items
by adding dynamical data manipulation that allows for semantic informa-
tion processing.

5. Humanized algorithms that account for human perceived values such
as perceptive measures, inconsistency, and feedback. Consequently, rigid
physical objective measures resulting from classical measures such as com-
pletion time, capacity, speed, and length need to be replaced by more
psychological measures that reflect user experiences.

6. Aware algorithms that connect the physical world and the digital world
and can process and fuse large amounts of physical data, thus providing
awareness and contextual information.

7. Life-long learning algorithms that can develop dynamical user models that
capture specific knowledge over time of users in relation to the tasks they
want to perform.

8. Collaborative algorithms that support the distributed nature of ambient
systems by allowing the use of autonomous components that run on local
devices to perform collaborative tasks and generate immersive experi-
ences.

These algorithmic challenges provide some main directions for future re-
search into computational intelligence in ambient intelligence. Their accom-
plishment does not necessarily require the development of new computational
paradigms. They require the development of ultra-fast implementations and
the development of techniques that can handle huge amounts of information.
Furthermore, the incorporation of human-centered evaluation techniques that
can quantify human perceived values and can capture user behavior is a sub-
ject that requires further investigation. Evidently, it should be clear from the
many new ideas emerging from the detailing and realization of the ambient
intelligence vision that this new field poses great challenges on the design of
intelligent algorithms.

