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1 Introduction

Perhaps the most basic synopsis of a data stream is a sample of elements from the
stream. A key benefit of such a sample is its flexibility: the sample can serve as in-
put to a wide variety of analytical procedures and can be reduced further to provide
many additional data synopses. If, in particular, the sample is collected using ran-
dom sampling techniques, then the sample can form a basis for statistical inference
about the contents of the stream. This chapter surveys some basic sampling and in-
ference techniques for data streams. We focus on general methods for materializing
a sample; later chapters provide specialized sampling methods for specific analytic
tasks.

To place the results of this chapter in context and to help orient readers having a
limited background in statistics, we first give a brief overview of finite-population
sampling and its relationship to database sampling. We then outline the specific
data-stream sampling problems that are the subject of subsequent sections.

1.1 Finite-Population Sampling

Database sampling techniques have their roots in classical statistical methods for
“finite-population sampling” (also called “survey sampling”). These latter methods
are concerned with the problem of drawing inferences about a large finite population
from a small random sample of population elements; see [1–5] for comprehensive
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discussions. The inferences usually take the form either of testing some hypothesis
about the population—e.g., that a disproportionate number of smokers in the popu-
lation suffer from emphysema—or estimating some parameters of the population—
e.g., total income or average height. We focus primarily on the use of sampling for
estimation of population parameters.

The simplest and most common sampling and estimation schemes require that
the elements in a sample be “representative” of the elements in the population. The
notion of simple random sampling (SRS) is one way of making this concept precise.
To obtain an SRS of size k from a population of size n, a sample element is selected
randomly and uniformly from among the n population elements, removed from the
population, and added to the sample. This sampling step is repeated until k sample
elements are obtained. The key property of an SRS scheme is that each of the

(
n
k

)

possible subsets of k population elements is equally likely to be produced.
Other “representative” sampling schemes besides SRS are possible. An impor-

tant example is simple random sampling with replacement (SRSWR).1 The SRSWR

scheme is almost identical to SRS, except that each sampled element is returned to
the population prior to the next random selection; thus a given population element
can appear multiple times in the sample. When the sample size is very small with
respect to the population size, the SRS and SRSWR schemes are almost indistinguish-
able, since the probability of sampling a given population element more than once
is negligible. The mathematical theory of SRSWR is a bit simpler than that of SRS,
so the former scheme is sometimes used as an approximation to the latter when ana-
lyzing estimation algorithms based on SRS. Other representative sampling schemes
besides SRS and SRSWR include the “stratified” and “Bernoulli” schemes discussed
in Sect. 2. As will become clear in the sequel, certain non-representative sampling
methods are also useful in the data-stream setting.

Of equal importance to sampling methods are techniques for estimating popu-
lation parameters from sample data. We discuss this topic in Sect. 4, and content
ourselves here with a simple example to illustrate some of the basic issues involved.
Suppose we wish to estimate the total income θ of a population of size n based on
an SRS of size k, where k is much smaller than n. For this simple example, a natural
estimator is obtained by scaling up the total income s of the individuals in the sam-
ple, θ̂ = (n/k)s, e.g., if the sample comprises 1 % of the population, then scale up
the total income of the sample by a factor of 100. For more complicated population
parameters, such as the number of distinct ZIP codes in a population of magazine
subscribers, the scale-up formula may be much less obvious. In general, the choice
of estimation method is tightly coupled to the method used to obtain the underlying
sample.

Even for our simple example, it is important to realize that our estimate is
random, since it depends on the particular sample obtained. For example, sup-
pose (rather unrealistically) that our population consists of three individuals, say
Smith, Abbas, and Raman, whose respective incomes are $10,000, $50,000, and

1Sometimes, to help distinguish between the two schemes more clearly, SRS is called simple ran-
dom sampling without replacement.
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Table 1 Possible scenarios, along with probabilities, for a sampling and estimation exercise

Sample Sample income Est. Pop. income Scenario probability

{Smith,Abbas} $60,000 $90,000 1/3

{Smith,Raman} $1,010,000 $1,515,000 1/3

{Abbas,Raman} $1,050,000 $1,575,000 1/3

$1,000,000. The total income for this population is $1,060,000. If we take an SRS

of size k = 2—and hence estimate the income for the population as 1.5 times the
income for the sampled individuals—then the outcome of our sampling and esti-
mation exercise would follow one of the scenarios given in Table 1. Each of the
scenarios is equally likely, and the expected value (also called the “mean value”) of
our estimate is computed as

expected value = (1/3) · (90,000) + (1/3) · (1,515,000) + (1/3) · (1,575,000)

= 1,060,000,

which is equal to the true answer. In general, it is important to evaluate the accuracy
(degree of systematic error) and precision (degree of variability) of a sampling and
estimation scheme. The bias, i.e., expected error, is a common measure of accuracy,
and, for estimators with low bias, the standard error is a common measure of pre-
cision. The bias of our income estimator is 0 and the standard error is computed as
the square root of the variance (expected squared deviation from the mean) of our
estimator:

SE = [
(1/3) · (90,000 − 1,060,000)2 + (1/3) · (1,515,000 − 1,060,000)2

+ (1/3) · (1,575,000 − 1,060,000)2]1/2 ≈ 687,000.

For more complicated population parameters and their estimators, there are often no
simple formulas for gauging accuracy and precision. In these cases, one can some-
times resort to techniques based on subsampling, that is, taking one or more random
samples from the initial population sample. Well known subsampling techniques for
estimating bias and standard error include the “jackknife” and “bootstrap” methods;
see [6]. In general, the accuracy and precision of a well designed sampling-based es-
timator should increase as the sample size increases. We discuss these issues further
in Sect. 4.

1.2 Database Sampling

Although database sampling overlaps heavily with classical finite-population sam-
pling, the former setting differs from the latter in a number of important respects.
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• Scarce versus ubiquitous data. In the classical setting, samples are usually ex-
pensive to obtain and data is hard to come by, and so sample sizes tend to be
small. In database sampling, the population size can be enormous (terabytes of
data), and samples are relatively easy to collect, so that sample sizes can be rel-
atively large [7, 8]. The emphasis in the database setting is on the sample as a
flexible, lossy, compressed synopsis of the data that can be used to obtain quick
approximate answers to user queries.

• Different sampling schemes. As a consequence of the complex storage for-
mats and retrieval mechanisms that are characteristic of modern database sys-
tems, many sampling schemes that were unknown or of marginal interest in the
classical setting are central to database sampling. For example, the classical lit-
erature pays relatively little attention to Bernoulli sampling schemes (described
in Sect. 2.1 below), but such schemes are very important for database sampling
because they can be easily parallelized across data partitions [9, 10]. As another
example, tuples in a relational database are typically retrieved from disk in units
of pages or extents. This fact strongly influences the choice of sampling and es-
timation schemes, and indeed has led to the introduction of several novel meth-
ods [11–13]. As a final example, estimates of the answer to an aggregation query
involving select–project–join operations are often based on samples drawn indi-
vidually from the input base relations [14, 15], a situation that does not arise in
the classical setting.

• No domain expertise. In the classical setting, sampling and estimation are often
carried out by an expert statistician who has prior knowledge about the population
being sampled. As a result, the classical literature is rife with sampling schemes
that explicitly incorporate auxiliary information about the population, as well as
“model-based” schemes [4, Chap. 5] in which the population is assumed to be a
sample from a hypothesized “super-population” distribution. In contrast, database
systems typically must view the population (i.e., the database) as a black box, and
so cannot exploit these specialized techniques.

• Auxiliary synopses. In contrast to a classical statistician, a database designer of-
ten has the opportunity to scan each population element as it enters the system,
and therefore has the opportunity to maintain auxiliary data synopses, such as an
index of “outlier” values or other data summaries, which can be used to increase
the precision of sampling and estimation algorithms. If available, knowledge of
the query workload can be used to guide synopsis creation; see [16–23] for ex-
amples of the use of workloads and synopses to increase precision.

Early papers on database sampling [24–29] focused on methods for obtaining
samples from various kinds of data structures, as well as on the maintenance of
sample views and the use of sampling to provide approximate query answers within
specified time constraints. A number of authors subsequently investigated the use
of sampling in query optimization, primarily in the context of estimating the size of
select–join queries [22, 30–37]. Attention then shifted to the use of sampling to con-
struct data synopses for providing quick approximate answers to decision-support
queries [16–19, 21, 23]. The work in [15, 38] on online aggregation can be viewed
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as a precursor to modern data-stream sampling techniques. Online-aggregation al-
gorithms take, as input, streams of data generated by random scans of one or more
(finite) relations, and produce continually-refined estimates of answers to aggre-
gation queries over the relations, along with precision measures. The user aborts
the query as soon as the running estimates are sufficiently precise; although the
data stream is finite, query processing usually terminates long before the end of the
stream is reached. Recent work on database sampling includes extensions of online
aggregation methodology [39–42], application of bootstrapping ideas to facilitate
approximate answering of very complex aggregation queries [43], and development
of techniques for sampling-based discovery of correlations, functional dependen-
cies, and other data relationships for purposes of query optimization and data inte-
gration [9, 44–46].

Collective experience has shown that sampling can be a very powerful tool, pro-
vided that it is applied judiciously. In general, sampling is well suited to very quickly
identifying pervasive patterns and properties of the data when a rough approxima-
tion suffices; for example, industrial-strength sampling-enhanced query engines can
speed up some common decision-support queries by orders of magnitude [10]. On
the other hand, sampling is poorly suited for finding “needles in haystacks” or for
producing highly precise estimates. The needle-in-haystack phenomenon appears in
numerous guises. For example, precisely estimating the selectivity of a join that re-
turns very few tuples is an extremely difficult task, since a random sample from the
base relations will likely contain almost no elements of the join result [16, 31].2 As
another example, sampling can perform poorly when data values are highly skewed.
For example, suppose we wish to estimate the average of the values in a data set
that consists of 106 values equal to 1 and five values equal to 108. The five out-
lier values are the needles in the haystack: if, as is likely, these values are not in-
cluded in the sample, then the sampling-based estimate of the average value will be
low by orders of magnitude. Even when the data is relatively well behaved, some
population parameters are inherently hard to estimate from a sample. One notori-
ously difficult parameter is the number of distinct values in a population [47, 48].
Problems arise both when there is skew in the data-value frequencies and when
there are many data values, each appearing a small number of times. In the for-
mer scenario, those values that appear few times in the database are the needles
in the haystack; in the latter scenario, the sample is likely to contain no dupli-
cate values, in which case accurate assessment of a scale-up factor is impossible.
Other challenging population parameters include the minimum or maximum data
value; see [49]. Researchers continue to develop new methods to deal with these
problems, typically by exploiting auxiliary data synopses and workload informa-
tion.

2Fortunately, for query optimization purposes it often suffices to know that a join result is “small”
without knowing exactly how small.
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1.3 Sampling from Data Streams

Data-stream sampling problems require the application of many ideas and tech-
niques from traditional database sampling, but also need significant new innova-
tions, especially to handle queries over infinite-length streams. Indeed, the un-
bounded nature of streaming data represents a major departure from the traditional
setting. We give a brief overview of the various stream-sampling techniques consid-
ered in this chapter.

Our discussion centers around the problem of obtaining a sample from a win-
dow, i.e., a subinterval of the data stream, where the desired sample size is much
smaller than the number of elements in the window. We draw an important distinc-
tion between a stationary window, whose endpoints are specified times or specified
positions in the stream sequence, and a sliding window whose endpoints move for-
ward as time progresses. Examples of the latter type of window include “the most
recent n elements in the stream” and “elements that have arrived within the past
hour.” Sampling from a finite stream is a special case of sampling from a station-
ary window in which the window boundaries correspond to the first and last stream
elements. When dealing with a stationary window, many traditional tools and tech-
niques for database sampling can be directly brought to bear. In general, sampling
from a sliding window is a much harder problem than sampling from a stationary
window: in the former case, elements must be removed from the sample as they
expire, and maintaining a sample of adequate size can be difficult. We also consider
“generalized” windows in which the stream consists of a sequence of transactions
that insert and delete items into the window; a sliding window corresponds to the
special case in which items are deleted in the same order that they are inserted.

Much attention has focused on SRS schemes because of the large body of existing
theory and methods for inference from an SRS; we therefore discuss such schemes in
detail. We also consider Bernoulli sampling schemes, as well as stratified schemes
in which the window is divided into equal disjoint segments (the strata) and an SRS

of fixed size is drawn from each stratum. As discussed in Sect. 2.3 below, stratified
sampling can be advantageous when the data stream exhibits significant autocor-
relation, so that elements close together in the stream tend to have similar values.
The foregoing schemes fall into the category of equal-probability sampling because
each window element is equally likely to be included in the sample. For some ap-
plications it may be desirable to bias a sample toward more recent elements. In the
following sections, we discuss both equal-probability and biased sampling schemes.

2 Sampling from a Stationary Window

We consider a stationary window containing n elements e1, e2, . . . , en, enumerated
in arrival order. If the endpoints of the window are defined in terms of time points
t1 and t2, then the number n of elements in the window is possibly random; this fact
does not materially affect our discussion, provided that n is large enough so that
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sampling from the window is worthwhile. We briefly discuss Bernoulli sampling
schemes in which the size of the sample is random, but devote most of our attention
to sampling techniques that produce a sample of a specified size.

2.1 Bernoulli Sampling

A Bernoulli sampling scheme with sampling rate q ∈ (0,1) includes each element
in the sample with probability q and excludes the element with probability 1 − q ,
independently of the other elements. This type of sampling is also called “bino-
mial” sampling because the sample size is binomially distributed so that the prob-
ability that the sample contains exactly k elements is equal to

(
n
k

)
qk(1 − q)n−k .

The expected size of the sample is nq . It follows from the central limit theorem
for independent and identically distributed random variables [50, Sect. 27] that, for
example, when n is reasonably large and q is not vanishingly small, the deviation
from the expected size is within ±100ε % with probability close to 98 %, where
ε = 2

√
(1 − q)/nq . For example, if the window contains 10,000 elements and we

draw a 1 % Bernoulli sample, then the true sample size will be between 80 and 120
with probability close to 98 %. Even though the size of a Bernoulli sample is ran-
dom, Bernoulli sampling, like SRS and SRSWR, is a uniform sampling scheme, in
that any two samples of the same size are equally likely to be produced.

Bernoulli sampling is appealingly easy to implement, given a pseudorandom
number generator [51, Chap. 7]. A naive implementation generates for each ele-
ment ei a pseudorandom number Ui uniformly distributed on [0,1]; element ei is
included in the sample if and only if Ui ≤ q . A more efficient implementation uses
the fact that the number of elements that are skipped between successive inclusions
has a geometric distribution: if �i is the number of elements skipped after ei is in-
cluded, then Pr{�i = j} = q(1 − q)j for j ≥ 0. To save CPU time, these random
skips can be generated directly. Specifically, if Ui is a random number distributed
uniformly on [0,1], then �i = �logUi/ log(1 − q)� has the foregoing geometric
distribution, where �x� denotes the largest integer less than or equal to x; see [51,
p. 465]. Figure 1 displays the pseudocode for the resulting algorithm, which is exe-
cuted whenever a new element ei arrives. Lines 1–4 represent an initialization step
that is executed upon the arrival of the first element (i.e., when m = 0 and i = 1).
Observe that the algorithm usually does almost nothing. The “expensive” calls to
the pseudorandom number generator and the log() function occur only at element-
inclusion times. As mentioned previously, another key advantage of the foregoing
algorithm is that it is easily parallelizable over data partitions.

A generalization of the Bernoulli sampling scheme uses a different inclusion
probability for each element, including element i in the sample with probability qi .
This scheme is known as Poisson sampling. One motivation for Poisson sampling
might be a desire to bias the sample in favor of recently arrived elements. In gen-
eral, Poisson sampling is harder to implement efficiently than Bernoulli sampling
because generation of the random skips is nontrivial.
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// q is the Bernoulli sampling rate
// ei is the element that has just arrived (i ≥ 1)
// m is the index of the next element to be included (static variable initialized to 0)
// B is the Bernoulli sample of stream elements (initialized to ∅)
// � is the size of the skip
// random() returns a uniform[0,1] pseudorandom number

1 if m = 0 then //generate initial skip
2 U ← random()

3 � ← �logU/ log(1 − q)�
4 m ← � + 1 //compute index of first element to insert
5 if i = m then //insert element into sample and generate skip
6 B ← B ∪ {ei}
7 U ← random()

8 � ← �logU/ log(1 − q)�
9 m ← m + � + 1 //update index of next element to insert

Fig. 1 An algorithm for Bernoulli sampling

The main drawback of both Bernoulli and Poisson sampling is the uncontrollable
variability of the sample size, which can become especially problematic when the
desired sample size is small. In the remainder of this section, we focus on sampling
schemes in which the final sample size is deterministic.

2.2 Reservoir Sampling

The reservoir sampling algorithm of Waterman [52, pp. 123–124] and McLeod and
Bellhouse [53] produces an SRS of k elements from a window of length n, where k

is specified a priori. The idea is to initialize a “reservoir” of k elements by inserting
elements e1, e2, . . . , ek . Then, for i = k + 1, k + 2, . . . , n, element ei is inserted in
the reservoir with a specified probability pi and ignored with probability 1 − pi ;
an inserted element overwrites a “victim” that is chosen randomly and uniformly
from the k elements currently in the reservoir. We denote by Sj the set of elements
in the reservoir just after element ej has been processed. By convention, we take
p1 = p2 = · · · = pk = 1. If we can choose the pi ’s so that, for each j , the set Sj is
an SRS from Uj = {e1, e2, . . . , ej }, then clearly Sn will be the desired final sample.
The probability that ei is included in an SRS from Ui equals k/i, and so a plausible
choice for the inclusion probabilities is given by pi = k/(i ∨ k) for 1 ≤ i ≤ n.3 The
following theorem asserts that the resulting algorithm indeed produces an SRS.

Theorem 1 (McLeod and Bellhouse [53]) In the reservoir sampling algorithm with
pi = k/(i ∨ k) for 1 ≤ i ≤ n, the set Sj is a simple random sample of size j ∧ k from
Uj = {e1, e2, . . . , ej } for each 1 ≤ j ≤ n.

3Throughout, we denote by x ∨ y (resp., x ∧ y) the maximum (resp., minimum) of x and y.
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Proof The proof is by induction on j . The assertion of the theorem is obvious for
1 ≤ j ≤ k. Assume for induction that Sj−1 is an SRS of size k from Uj−1, where
j ≥ k + 1. Fix a subset A ⊂ Uj containing k elements and first suppose that ej /∈ A.
Then

Pr{Sj = A} = Pr{Sj−1 = A and ej not inserted}

=
(

j − 1

k

)−1
j − k

j
=

(
j

k

)−1

,

where the second equality follows from the induction hypothesis and the indepen-
dence of the two given events. Now suppose that ej ∈ A. For er ∈ Uj−1 − A, let Ar

be the set obtained from A by removing ej and inserting er ; there are j − k such
sets. Then

Pr{Sj = A} =
∑

er∈Uj−1−A

Pr{Sj−1 = Ar, ej inserted, and er deleted}

=
∑

er∈Uj−1−A

(
j − 1

k

)−1
k

j

1

k
=

(
j − 1

k

)−1
j − k

j
=

(
j

k

)−1

.

Thus Pr{Sj = A} = 1/
(
j
k

)
for any subset A ⊂ Uj of size k, and the desired result

follows. �

Efficient implementation of reservoir sampling is more complicated than that
of Bernoulli sampling because of the more complicated probability distribution of
the number of skips between successive inclusions. Specifically, denoting by �i

the number of skips before the next inclusion, given that element ei has just been
included, we have

fi(m)
def= Pr{�i = m} = k

i − k

(i − k)m+1

(i + 1)m+1

and

Fi(m)
def= Pr{�i ≤ m} = 1 − (i + 1 − k)m+1

(i + 1)m+1
,

where xn̄ denotes the rising power x(x + 1) · · · (x + n − 1). Vitter [54] gives an
efficient algorithm for generating samples from the above distribution. For small
values of i, the fastest way to generate a skip is to use the method of inversion: if
F−1

i (x) = min{m : Fi(m) ≥ x} and U is a random variable uniformly distributed
on [0,1], then it is not hard to show that the random variable X = F−1

i (U) has the
desired distribution function Fi , as does X′ = F−1

i (1−U); see [51, Sect. 8.2.1]. For
larger values of i, Vitter uses an acceptance–rejection method [51, Sect. 8.2.4]. For
this method, there must exist a probability density function gi from which it is easy
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to generate sample values, along with a constant ci—greater than 1 but as close to
1 as possible—such that fi(�x�) ≤ cigi(x) for all x ≥ 0. If X is a random variable
with density function g and U is a uniform random variable independent of X, then
Pr{�X� ≤ x | U ≤ fi(�X�)/cigi(X)} = Fi(x). That is, if we generate pairs (X,U)

until the relation U ≤ fi(�X�)/cigi(X) holds, then the final random variable X,
after truncation to the nearest integer, has the desired distribution function Fi . It can
be shown that, on average, ci pairs (X,U) need to be generated to produce a sample
from Fi . As a further refinement, we can reduce the number of expensive evaluations
of the function fi by finding a function hi “close” to fi such that hi is inexpensive to
evaluate and hi(x) ≤ fi(x) for x ≥ 0. Then, to test whether U ≤ fi(�X�)/cigi(X),
we first test (inexpensively) whether U ≤ hi(�X�)/cigi(X). Only in the rare event
that this first test fails do we need to apply the expensive original test. This trick is
sometimes called the “squeeze” method. Vitter shows that an appropriate choice for
ci is ci = (i + 1)/(i − k + 1), with corresponding choices

gi(x) = k

i + x

(
i

i + x

)k

and hi(m) = k

i + 1

(
i − k + 1

i + m − k + 1

)k+1

.

Note that

Gi(x) =
∫ x

0
gi(u) du = 1 −

(
i

i + x

)k

,

so that, if V is a uniform random variable, then G−1
i (1 − V ) = i(V −1/k − 1) has

density function gi . Thus it is indeed easy to generate sample values from gi .
Figure 2 displays the pseudocode for the overall algorithm; see [54] for a perfor-

mance analysis and some further optimizations.4 As with the algorithm in Fig. 1,
the algorithm in Fig. 2 is executed whenever a new element ei arrives.

Observe that the insertion probability pi = k/(i ∨ k) decreases as i increases
so that it becomes increasingly difficult to insert an element into the reservoir. On
the other hand, the number of opportunities for an inserted element ei to be sub-
sequently displaced from the sample by an arriving element also decreases as i

increases. These two opposing trends precisely balance each other at all times so
that the probability of being in the final sample is the same for all of the elements in
the window.

Note that the reservoir sampling algorithm does not require prior knowledge of n,
the size of the window—the algorithm can be terminated after any arbitrary number
of elements have arrived, and the contents of the reservoir are guaranteed to be an
SRS of these elements. If the window size is known in advance, then a variation
of reservoir sampling, called sequential sampling, can be used to obtain the desired
SRS of size k more efficiently. Specifically, reservoir sampling has a time complexity
of O(k + k log(n/k)) whereas sequential sampling has a complexity of O(k). The

4We do not recommend the optimization given in Eq. (6.1) of [54], however, because of a potential
bad interaction with the pseudorandom number generator.
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// k is the size of the reservoir and n is the number of elements in the window
// ei is the element that has just arrived (i ≥ 1)
// m is the index of the next element ≥ ek to be included (static variable initialized to k)
// r is an array of length k containing the reservoir elements
// � is the size of the skip
// α is a parameter of the algorithm, typically equal to ≈ 22k

// random() returns a uniform[0,1] pseudorandom number

1 if i < k then //initially fill the reservoir
2 r[i] ← ei

3 if i ≥ k and i = m

4 //insert ei into reservoir
5 if i = k //no ejection needed
6 r[k] ← ei

7 else //eject a reservoir element
8 U ← random()

9 I ← 1 + �kU� //I is uniform on {1,2, . . . , k}
10 r[I ] ← ei

11 //generate the skip �

12 if i ≤ α then //use inverse transformation
13 U ← random()

14 find the smallest integer � ≥ 0 such that

15 (i + 1 − k)�+1/(i + 1)�+1 ≤ U //evaluate F−1
i (1 − U)

16 else
17 repeat //use acceptance–rejection + squeezing
18 V ← random()

19 X ← i(V −1/k − 1) //generate sample from gi via inversion
20 U ← random()

21 if U ≤ hi(�X�)/cigi(X) then break
22 until U ≤ fi(�X�)/cigi(X)

23 � ← �X�
24 //update index of next element to insert
25 m ← i + � + 1

Fig. 2 Vitter’s algorithm for reservoir sampling

sequential-sampling algorithm, due to Vitter [55], is similar in spirit to reservoir
sampling, and is based on the observation that

F̃ ij (m)
def= Pr{�̃ij ≤ m} = 1 − (j − i)m+1

jm+1
,

where �̃ij is the number of skips before the next inclusion, given that element en−j

has just been included in the sample and that the sample size just after the inclusion
of en−j is |S| = k − i. Here xn denotes the falling power x(x − 1) · · · (x − n + 1).
The sequential-sampling algorithm initially sets i ← k and j ← n; as above, i rep-
resents the number of sample elements that remain to be selected and j represents
the number of window elements that remain to be processed. The algorithm then
(i) generates �̃ij , (ii) skips the next �̃ij arriving elements, (iii) includes the next
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arriving element into the sample, and (iv) sets i ← i − 1 and j ← j − �̃ij − 1.
Steps (i)–(iv) are repeated until i = 0.

At each execution of Step (i), the specific method used to generate �̃ij depends
upon the current values of i and j , as well as algorithmic parameters α and β .
Specifically, if i ≥ αj , then the algorithm generates �̃ij by inversion, similarly to
lines 13–15 in Fig. 2. Otherwise, the algorithm generates �̃ij using acceptance–
rejection and squeezing, exactly as in lines 17–23 in Fig. 2, but using either c1 =
j/(j − i + 1),

g1(x) =
{

i
j
(1 − x

j
)i−1 if 0 ≤ x ≤ j ;

0 otherwise,

and

h1(m) =
{

i
j
(1 − m

j−i+1 )i−1 if 0 ≤ m ≤ j − i;
0 otherwise,

or c2 = (i/(i − 1))((j − 1)/j),

g2(x) = i − 1

j − 1

(
1 − i − 1

j − 1

)m

,

and

h2(m) =
{

i
j
(1 − i−1

j−m
)m if 0 ≤ m ≤ j − i;

0 otherwise.

The algorithm uses (c1, g1, h1) or (c2, g2, h2) according to whether i2/j ≤ β or
i2/j > β , respectively. The values of α and β are implementation dependent; Vitter
found α = 0.07 and β = 50 optimal for his experiments, but also noted that setting
β ≈ 1 minimizes the average number of random numbers generated by the algo-
rithm. See [55] for further details and optimizations.5

2.3 Other Sampling Schemes

We briefly mention several other sampling schemes, some of which build upon or
incorporate the reservoir algorithm of Sect. 2.2.

Stratified Sampling

As mentioned before, a stratified sampling scheme divides the window into disjoint
intervals, or strata, and takes a sample of specified size from each stratum. The

5As with the reservoir sampling algorithm in [54], we do not recommend the optimization in
Sect. 5.3 of [55].
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Fig. 3 (a) A realization of reservoir sampling (sample size = 6). (b) A realization of stratified
sampling (sample size = 6)

simplest scheme specifies strata of approximately equal length and takes a fixed size
random sample from each stratum using reservoir sampling; the random samples are
of equal size.

When elements close together in the stream tend to have similar values, then the
values within each stratum tend to be homogeneous so that a small sample from a
stratum contains a large amount of information about all of the elements in the stra-
tum. Figures 3(a) and 3(b) provide another way to view the potential benefit of strat-
ified sampling. The window comprises 15 real-valued elements, and circled points
correspond to sampled elements. Figure 3(a) depicts an unfortunate realization of
an SRS: by sheer bad luck, the early, low-valued elements are disproportionately
represented in the sample. This would lead, for example, to an underestimate of the
average value of the elements in the window. Stratified sampling avoids this bad sit-
uation: a typical realization of a stratified sample (with three strata of length 5 each)
might look as in Fig. 3(b). Observe that elements from all parts of the window are
well represented. Such a sample would lead, e.g., to a better estimate of the average
value.

Deterministic and Semi-Deterministic Schemes

Of course, the simplest scheme for producing a sample of size k inserts every mth el-
ement in the window into the sample, where m = n/k. There are two disadvantages
to this approach. First, it is not possible to draw statistical inferences about the entire
window from the sample because the necessary probabilistic context is not present.
In addition, if the data in the window are periodic with a frequency that matches
the sampling rate, then the sampled data will be unrepresentative of the window as
a whole. For example, if there are strong weekly periodicities in the data and we
sample the data every Monday, then we will have a distorted picture of the data val-
ues that appear throughout the week. One way to ameliorate the former problem is
to use systematic sampling [1, Chap. 8]. To effect this scheme, generate a random
number L between 1 and m. Then insert elements eL, eL+m, eL+2m, . . . , en−m+L

into the sample. Statistical inference is now possible, but the periodicity issue still
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remains—in the presence of periodicity, estimators based on systematic sampling
can have large standard errors. On the other hand, if the data are not periodic but
exhibit a strong trend, then systematic sampling can perform very well because,
like stratified sampling, systematic sampling ensures that the sampled elements are
spread relatively evenly throughout the window. Indeed, systematic sampling can
be viewed as a type of stratified sampling where the ith stratum comprises elements
e(i−1)m+1, e(i−1)m+2, . . . , eim and we sample one element from each stratum—the
sampling mechanisms for the different strata are completely synchronized, however,
rather than independent as in standard stratified sampling.

Biased Reservoir Sampling

Consider a generalized reservoir scheme in which the sequence of inclusion proba-
bilities {pi : 1 ≤ i ≤ n} either is nondecreasing or does not decrease as quickly as
the sequence {k/(i ∨ k) : 1 ≤ i ≤ n}. This version of reservoir sampling favors in-
clusion of recently arrived elements over elements that arrived earlier in the stream.

As illustrated in Sect. 4.4 below, it can be useful to compute the marginal proba-
bility that a specified element ei belongs to the final sample S. The probability that
ei is selected for insertion is, of course, equal to pi . For j > i ∨ k, the probability
θij that ei is not displaced from the sample when element ej arrives equals the prob-
ability that ej is not selected for insertion plus the probability that ej is selected but
does not displace ei . If j ≤ k, then the processing of ej cannot result in the removal
of ei from the reservoir. Thus

θij = (1 − pj ) + pj

(
k − 1

k

)
= k − pj

k

if j > k, and θij = 1 otherwise. Because the random decisions made at the succes-
sive steps of the reservoir sampling scheme are mutually independent, it follows that
the probability that ei is included in S is the product of the foregoing probabilities:

Pr{ei ∈ S} = pi

n∏

j=(i∨k)+1

k − pj

k
. (1)

Similar arguments lead to formulas for joint inclusion probabilities: setting αi,j =
∏j

l=i (k − pl)/k and βi,j = ∏j
l=i (k − 2pl)/k, we have, for i < j ,

Pr{ei, ej ∈ S} =

⎧
⎪⎨

⎪⎩

piαi+1,j−1pj ((k − 1)/k)βj+1,n if k ≤ i < j ;
αk+1,j−1pj ((k − 1)/k)βj+1,n if i < k < j ;
βk+1,n if i < j ≤ k.

(2)

If, for example, we set pi ≡ p for some p ∈ (0,1). Then, from (1),

Pr{ei ∈ S} = p

(
k − p

k

)n−(i∨k)

.
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Thus the probability that element ei is in the final sample decreases geometrically
as i decreases; the larger the value of p, the faster the rate of decrease.

Chao [56] has extended the basic reservoir sampling algorithm to handle arbitrary
sampling probabilities. Specifically, just after the processing of element ei , Chao’s
scheme ensures that the inclusion probabilities satisfy Pr{ej ∈ S} ∝ rj for 1 ≤ j ≤ i,
where {rj : j ≥ 1} is a prespecified sequence of positive numbers. The analysis of
this scheme is rather complicated, and so we refer the reader to [56] for a complete
discussion.

Biased Sampling by Halving

Another way to obtain a biased sample of size k is to divide the window into L

strata of m = n/L elements each, denoted Λ1,Λ2, . . . ,ΛL, and maintain a running
sample S of size k as follows. The sample is initialized as an SRS of size k from Λ1;
(unbiased) reservoir sampling or sequential sampling may be used for this purpose.
At the j th subsequent step, k/2 randomly-selected elements of S are overwritten by
the elements of an SRS of size k/2 from Λj+1 (so that half of the elements in S are
purged). For an element ei ∈ Λj , we have, after the procedure has terminated,

Pr{ei ∈ S} = k

m

(
1

2

)L−(j∨2)+1

.

As with biased reservoir sampling, the halving scheme ensures that the probabil-
ity that ei is in the final samples falls geometrically as i decreases. Brönnimann et
al. [57] describe a related scheme when each stream element is a d-vector of 0–1
data that represents, e.g., the presence or absence in a transaction of each of d items.
In this setting, the goal of each halving step is to create a subsample in which the
relative occurrence frequencies of the items are as close as possible to the corre-
sponding frequencies over all of the transactions in the original sample. The scheme
uses a deterministic halving method called “epsilon approximation” to achieve this
goal. The relative item frequencies in subsamples produced by this latter method
tend to be closer to the relative frequencies in the original sample than are those in
subsamples obtained by SRS.

3 Sampling from a Sliding Window

We now restrict attention to infinite data streams and consider methods for sampling
from a sliding window that contains the most recent data elements. As mentioned
previously, this task is substantially harder than sampling from a stationary win-
dow. The difficulty arises because elements must be removed from the sample as
they expire so that maintaining a sample of a specified size is nontrivial. Following
[58], we distinguish between sequence-based windows and timestamp-based win-
dows. A sequence-based window of length n contains the n most recent elements,
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whereas a timestamp-based window of length t contains all elements that arrived
within the past t time units. Because a sliding window inherently favors recently ar-
rived elements, we focus on techniques for equal-probability sampling from within
the window itself. For completeness, we also provide a brief discussion of general-
ized windows in which elements need not leave the window in arrival order.

3.1 Sequence-Based Windows

We consider windows {Wj : j ≥ 1}, each of length n, where Wj = {ej , ej+1,

. . . , ej+n−1}. A number of algorithms have been proposed for producing, for each
window Wj , an SRS Sj of k elements from Wj . The major difference between the
algorithms lies in the tradeoff between the amount of memory required and the de-
gree of dependence between the successive Sj ’s.

Complete Resampling

At one end of the spectrum, a “complete resampling” algorithm takes an indepen-
dent sample from each Wj . To do this, the set of elements in the current window is
buffered in memory and updated incrementally, i.e., Wj+1 is obtained from Wj by
deleting ej and inserting ej+n. Reservoir sampling (or, more efficiently, sequential
sampling) can then be used to extract Sj from Wj . The Sj ’s produced by this algo-
rithm have the desirable property of being mutually independent. This algorithm is
impractical, however, because it has memory and CPU requirements of O(n), and n

is assumed to be very large.

A Passive Algorithm

At the other end of the spectrum, the “passive” algorithm described in [58] obtains
an SRS of size k from the first n elements using reservoir sampling. Thereafter, the
sample is updated only when the arrival of an element coincides with the expiration
of an element in the sample, in which case the expired element is removed and the
new element is inserted. An argument similar to the proof of Theorem 1 shows that
each Sj is a SRS from Wj . Moreover, the memory requirement is O(k), the same as
for the stationary-window algorithms. In contrast to complete resampling, however,
the passive algorithm produces Sj ’s that are highly correlated. For example, Sj and
Sj+1 are identical or almost identical for each j . Indeed, if the data elements are
periodic with period n, then every Sj is identical to S1; this assertion follows from
the fact that if element ei is in the sample, then so is ei+jn for j ≥ 1. Thus if S1 is
not representative, e.g., the sampled elements are clustered within W1 as in Fig. 3(a),
then each subsequent sample will suffer from the same defect.
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Subsampling from a Bernoulli Sample

Babcock et al. [58] provide two algorithms intermediate to those discussed above.
The first algorithm inserts elements into a set B using a Bernoulli sampling scheme;
elements are removed from B when, and only when, they expire. The algorithm
tries to ensure that the size of B exceeds k at all times by using an inflated Bernoulli
sampling rate of q = (2ck logn)/n, where c is a fixed constant. Each final sample
Sj is then obtained as a simple random subsample of size k from B . An argument
using Chernoff bounds (see, e.g., [59]) shows that the size of B lies between k and
4ck logn with a probability that exceeds 1 − O(n−c). The Sj ’s are less dependent
than in the passive algorithm, but the expected memory requirement is O(k logn).
Also observe that if Bj is the size of B after j elements have been processed and
if γ (i) denotes the index of the ith step at which the sample size either increases or
decreases by 1, then Pr{Bγ(i)+1 = Bγ(i) +1} = Pr{Bγ(i)+1 = Bγ(i) −1} = 1/2. That
is, the process {Bγ(i) : i ≥ 0} behaves like a symmetric random walk. It follows that,
with probability 1, the size of the Bernoulli sample will fall below k infinitely often,
which can be problematic if sampling is performed over a very long period of time.

Chain Sampling

The second algorithm, called chain sampling, retains the improved independence
properties of the Sj ’s relative to the passive algorithm, but reduces the expected
memory requirement to O(k). The basic algorithm maintains a sample of size 1,
and a sample of size k is obtained by running k independent chain-samplers in
parallel. Observe that the overall sample is therefore a simple random sample with
replacement—we discuss this issue after we describe the algorithm.

To maintain a sample S of size 1, the algorithm initially inserts each newly ar-
rived element ei into the sample (i.e., sets the sample equal to S = {ei}) with prob-
ability 1/i for 1 ≤ i ≤ n. Thus the algorithm behaves initially as a reservoir sam-
pler so that, after the nth element has been observed, S is an SRS of size 1 from
{e1, e2, . . . , en}. Subsequently, whenever element ei arrives and, just prior to arrival,
the sample is S = {ej } with i = j +n (so that the sample element ej expires), an el-
ement randomly and uniformly selected from among ej+1, ej+2, . . . , ej+n becomes
the new sample element. Observe that the algorithm does not need to store all of the
elements in the window in order to replace expiring sample elements—it suffices
to store a “chain” of elements associated with the sample, where the first element
of the chain is the sample itself; see Fig. 4. In more detail, whenever an element
ei is added to the chain, the algorithm randomly selects the index K of the ele-
ment eK that will replace ei upon expiration. Index K is uniformly distributed on
i + 1, i + 2, . . . , i + n, the indexes of the elements that will be in the window just
after ei expires. When element eK arrives, the algorithm stores eK in memory and
randomly selects the index M of the element that will replace eK upon expiration.

To further reduce memory requirements and increase the degree of independence
between successive samples, the foregoing chaining method is enhanced with a
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Fig. 4 Chain sampling (sample size = 1). Arrows point to the elements of the current chain,
the circled element represents the current sample, and elements within squares represent those
elements of the chain currently stored in memory

reservoir sampling mechanism. Specifically, suppose that element ei arrives and,
just prior to arrival, the sample is S = {ej } with i < j +n (so that the sample element
ej does not expire). Then, with probability 1/n, element ei becomes the sample ele-
ment; the previous sample element ej and its associated chain are discarded, and the
algorithm starts to build a new chain for the new sample element. With probability
1 − (1/n), element ej remains as the sample element and its associated chain is not
discarded. To see that this procedure is correct when i < j + n, observe that just
prior to the processing of ei , we can view S as a reservoir sample of size 1 from the
“stream” of n − 1 elements given by ei−n+1, ei−n+2, . . . , ei−1. Thus, adding ei to
the sample with probability 1/n amounts to executing a step of the usual reservoir
algorithm, so that, after processing ei , the set S remains an SRS of size 1 from the
updated window Wi−n+1 = {ei−n+1, ei−n+2, . . . , ei}. Because the SRS property of
S is preserved at each arrival epoch whether or not the current sample expires, a
straightforward induction argument formally establishes that S is an SRS from the
current window at all times.

Figure 5 displays the pseudocode for the foregoing algorithm; the code is ex-
ecuted whenever a new element ei arrives. In the figure, the variable L denotes a
linked list of chained elements of the form (e, l), where e is an element and l is
the element’s index in the stream; the list does not contain the current sample ele-
ment, which is stored separately in S. Elements appear from head to tail in order of
arrival, with the most recently arrived element at the tail of the list. The functions
add, pop, and purge add a new element to the tail of the list, remove (and return the
value of) the element at the head of the list, and remove all elements from the list,
respectively.

We now analyze the memory requirements of the algorithm by studying the max-
imum amount of memory consumed during the evolution of a single chain.6 Denote
by M the total number of elements inserted into memory during the evolution of the
chain, including the initial sample. Thus M ≥ 1 and M is an upper bound on the
maximum memory actually consumed because it ignores decreases in memory con-
sumption due to expiration of elements in the chain. Denote by X the distance from
the initial sample to the next element in the chain, and recall that X is uniformly
distributed on {1,2, . . . , n}. Observe that M ≥ 2 if and only if X < n and, after the

6See [58] for an alternative analysis. Whenever an arriving element ei is added to the chain and
then immediately becomes the new sample element, we count this element as the first element of a
new chain.
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// n is the number of elements in the window
// ei is the element that has just arrived (i ≥ 1)
// L is a linked list (static) of chained elements (excluding sample) of the form (e, l)

// S is the sample (static, contains exactly one element)
// J is the index of the element in the sample (static, initialized to 0)
// K is the index of the next element to be added to the chain (static, initialized to 0)
// random() returns a uniform[0,1] pseudorandom number

1 if i = K //add ei to chain
2 add(ei , i,L) //insert (ei , i) at tail of list
3 V ← random()

4 K ← i + �nV � + 1 //K is uniform on i + 1, . . . , i + n

5 if i = J + n //current sample element is expiring
6 (e, l) ← pop(L) //remove element at head of list. . .
7 S ← {e} //. . . to become the new sample element
8 J ← l

9 else //sample element is not expiring
10 U ← random()

11 if U ≤ 1/(i ∧ n) then //insert ei into sample
12 S ← {ei}
13 J ← i

14 purge(L) //start new chain
15 V ← random()

16 K ← i + �nV � + 1

Fig. 5 Chain-sampling algorithm (sample size = 1)

initial sample, none of the next X arriving elements become the new sample ele-
ment. Thus Pr{M ≥ 2 | M ≥ 1,X = j} ≤ (1 − n−1)j for 1 ≤ j ≤ n. Unconditioning
on X, we have

Pr{M ≥ 2 | M ≥ 1} ≤
n∑

j=1

1

n

(
1 − 1

n

)j

= 1 −
(

1 − 1

n

)n+1
def= β.

The same argument also shows that Pr{M ≥ j + 1 | M ≥ j} ≤ β for j ≥ 2, so that
Pr{M ≥ j} ≤ βj−1 for j ≥ 1. An upper bound on the expected memory consump-
tion is therefore given by

E[M] =
∞∑

j=1

Pr{M ≥ j} ≤ 1

1 − β
≈ e.

Moreover, for j = α lnn with α a fixed positive constant, we have

Pr{M ≥ j + 1} = ej lnβ = n−c,

where c = −α lnβ ≈ −α ln(1 − e−1). Thus the expected memory consumption for
k independent samplers is O(k) and, with probability 1 − O(n−c), the memory
consumption does not exceed O(k logn).
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Fig. 6 Stratified sampling for a sliding window (n = 12, m = 4, k = 2). The circled elements lying
within the window represent the members of the current sample, and circled elements lying to the
left of the window represent former members of the sample that have expired

As mentioned previously, chain sampling produces an SRSWR rather than an SRS.
One way of dealing with this issue is increase the size of the initial SRSWR sample
S′ to |S′| = k + α, where α is large enough so that, after removal of duplicates, the
size of the final SRS S will equal or exceed k with high probability. Subsampling can
be then be used, if desired, to ensure that the final sample size |S| equals k exactly.
Using results on “occupancy distributions” [60, p. 102] it can be shown that

Pr
{|S| < k

} =
k−1∑

j=1

j∑

i=0

(−1)i
(

n

n − j

)(
j

i

)(
1 − n − j + i

n

)k+α

, (3)

and a value of α that makes the right side sufficiently small can be determined
numerically, at least in principle. Assuming that k < n/2, a conservative but simpler
approach ensures that Pr{|S| < k} < n−c for a specified constant c ≥ 1 by setting
α = α1 ∧ α2, where

α1 = (c − 1) lnn + (k + 1) lnk − (k − 1) ln 2

ln(n/k)

and

α2 = c lnn + (
2ck lnn + c2 ln2 n

)1/2
.

This assertion follows from a couple of simple bounding arguments.7

Stratified Sampling

The stratified sampling scheme for a stationary window can be adapted to obtain
a stratified sample from a sliding window. The simplest scheme divides the stream
into strata of length m, where m divides the window length n; see Fig. 6. Reservoir
sampling is used to obtain a SRS of size k < m from each stratum. Sampled elements
expire in the usual manner. The current window always contains between l and l +1
strata, where l = n/m, and all but perhaps the first and last strata are of equal length,

7We derive α1 by directly bounding each term in (3). We derive α2 by stochastically bounding
|S| from below by the number of successes in a sequence of k + α Bernoulli trials with success
probability (n − k)/n and then using a Chernoff bound.
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namely m. The sample size fluctuates, but always lies between k(l − 1) and kl.
This sampling technique therefore not only retains the advantages of the stationary
stratified sampling scheme but also, unlike the other sliding-window algorithms,
ensures that the sample size always exceeds a specified threshold.

3.2 Timestamp-Based Windows

Relatively little is currently known about sampling from timestamp-based windows.
The methods for sequence-based windows do not apply because the number of el-
ements in the window changes over time. Babcock et al. [58] propose an algorithm
called priority sampling. As with chain sampling, the basic algorithm maintains an
SRS of size 1, and an SRSWR of size k is obtained by running k priority-samplers in
parallel.

The basic algorithm for a sample size of 1 assigns to each arriving element a
random priority uniformly distributed between 0 and 1. The current sample is then
taken as the element in the current window having the highest priority; since each
element in the window is equally likely to have the highest priority, the sample is
clearly an SRS. The only elements that need to be stored in memory are those el-
ements in the window for which there is no element with both a higher timestamp
and a higher priority because only these elements can ever become the sample ele-
ment. In one simple implementation, the stored elements (including the sample) are
maintained as a linked list, in order of decreasing priority (and, automatically, of in-
creasing timestamp). Each arriving element ei is inserted into the appropriate place
in the list, and all list elements having a priority smaller than that of ei are purged,
leaving ei as the last element in the list. Elements are removed from the head of the
list as they expire.

To determine the memory consumption M of the algorithm at a fixed but arbitrary
time point, suppose that the window contains n elements em+1, em+2, . . . , em+n for
some m ≥ 0. Denote by Pi the priority of em+i , and set Φi = 1 if em+i is currently
stored in memory and Φi = 0 otherwise. Ignore zero-probability events in which
there are ties among the priorities and observe for each i that Φi = 1 if and only if
Pi > Pj for j = i + 1, i + 2, . . . , n. Because priorities are assigned randomly and
uniformly, each of the n− i+1 elements em+i , em+i+1, . . . , em+n is equally likely to
be the one with the highest priority, and hence E[Φi] = Pr{Φi = 1} = 1/(n− i + 1).
It follows that the expected number of elements stored in memory is

E[M] = E

[
n∑

i=1

Φi

]

=
n∑

i=1

E[Φi] = H(n) = O(lnn),

where H(n) is the nth harmonic number. We can also obtain a probabilistic bound
on M as follows. Denote by Xi the number of the i most recent arrivals in the
window that have been inserted into the linked list: Xi = ∑n

j=n−i+1 Φj . Observe
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that if Xi = m for some m ≥ 0, then either Xi+1 = m or Xi+1 = m + 1. Moreover,
it follows from our previous analysis that Pr{X1 = 1} = 1 and

Pr{Xi+1 = mi + 1 | Xi = mi,Xi−1 = mi−1, . . . ,X1 = m1}
= Pr{Φn−i = 1}
= 1/(i + 1)

for all 1 ≤ i < n and m1,m2, . . . ,mi such that m1 = 1 and mj+1 − mj ∈ {0,1} for
1 ≤ j < i. Thus M = Xn is distributed as the number of successes in a sequence of n

independent Poisson trials with success probability for the ith trial equal to 1/i. Ap-
plication of a simple Chernoff bound together with the fact that lnn < H(n) < 2 lnn

for n ≥ 3 shows that Pr{M > 2(1 + c) lnn} < n−c2/3 for c ≥ 0 and n ≥ 3. Thus, for
the overall sampling algorithm the expected memory consumption is O(k logn) and,
with high probability, memory consumption does not exceed O(k logn).

3.3 Generalized Windows

In the case of both sequence-based and timestamp-based sliding windows, elements
leave the window in same order that they arrive. In this section, we briefly con-
sider a generalized setting in which elements can be deleted from a window W in
arbitrary order. More precisely, we consider a set T = {t1, t2, . . .} of unique, distin-
guishable items, together with an infinite sequence of transactions γ = (γ1, γ2, . . .).
Each transaction γi is either of the form +tk , which corresponds to the insertion of
item tk into W , or of the form −tk , which corresponds to the deletion of item tk
from W . We restrict attention to sequences such that, at any time point, an item ap-
pears at most once in the window, so that the window is a true set and not a multiset.
To avoid trivialities, we also require that γn = −tk only if item tk is in the window
just prior to the processing of the nth transaction. Finally, we assume throughout that
the rate of insertions approximately equals the rate of deletions, so that the number
of elements in the window remains roughly constant over time.

The authors in [61] provide a “random pairing” (RP) algorithm for maintaining a
bounded uniform sample of W . The RP algorithm generalizes the reservoir sampling
algorithm of Sect. 2.2 to handle deletions, and reduces to the passive algorithm of
Sect. 3.1 when the number of elements in the window is constant over time and
items are deleted in insertion order (so that W is a sequence-based sliding window).

In the RP scheme, every deletion from the window is eventually “compensated”
by a subsequent insertion. At any given time, there are 0 or more “uncompensated”
deletions. The RP algorithm maintains a counter cb that records the number of “bad”
uncompensated deletions in which the deleted item was also in the sample so that
the sample size was decremented by 1. The RP algorithm also maintains a counter
cg that records the number of “good” uncompensated deletions in which the deleted
item was not in the sample so that the sample size was not affected. Clearly, d =
cb + cg is the total number of uncompensated deletions.
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// cb is the # of uncompensated deletions that have been in the sample
// cg is the # of uncompensated deletions that have not been in the sample
// γi is the transaction that has just arrived (i ≥ 1)
// M is the upper bound on sample size
// W and S are the window and sample size, respectively
// random() returns a uniform[0,1] pseudorandom number

1 if γi = +t then //an insertion
2 if cb + cg = 0 //execute reservoir-sampling step
3 if |S| < M

4 insert t into S

5 else if random() < M/(|W | + 1)

6 overwrite a randomly selected element of S with t

7 else //execute random-pairing step
8 if random() < cb/(cb + cg)

9 cb ← cb − 1
10 insert t into S

11 else
12 cg ← cg − 1
13 else //a deletion
14 if t ∈ S

15 cb ← cb + 1
16 remove t from S

17 else
18 cg ← cg + 1

Fig. 7 Random-pairing algorithm (simple version)

The algorithm works as follows. Deletion of an item is handled by removing the
item from the sample, if present, and by incrementing the value of cb or cg, as ap-
propriate. If d = 0, i.e., there are no uncompensated deletions, then insertions are
processed as in standard RS. If d > 0, then we flip a coin at each insertion step,
and include the incoming insertion into the sample with probability cb/(cb + cg);
otherwise, we exclude the item from the sample. We then decrease either cb or cg,
depending on whether the insertion has been included into the sample or not. Con-
ceptually, whenever an item is inserted and d > 0, the item is paired with a randomly
selected uncompensated deletion, called the “partner” deletion. The inserted item is
included into the sample if its partner was in the sample at the time of its dele-
tion, and excluded otherwise. The probability that the partner was in the sample is
cb/(cb + cg). For purposes of sample maintenance, it is not necessary to keep track
of the precise identity of the random partner; it suffices to maintain the counters cb

and cg.
Figure 7 displays the pseudocode for the simplest version of the RP algorithm,

which is executed whenever a new transaction γi arrives. As with classic reservoir
sampling, the basic algorithm of Fig. 7 can be speeded up by directly generating
random skip values; see [61] for such optimizations, as well as a correctness proof
and a technique for merging samples.
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Note that, if boundedness of the sample size is not a concern, then the following
simple Bernoulli sampling scheme can be used to maintain S. First fix a sampling
rate q ∈ (0,1). For an insertion transaction γi = +tk , include tk in S with proba-
bility q and exclude tk with probability 1 − q . For a deletion transaction γi = −tk ,
simply remove tk from S, if present.

In a variant of the above setting, multiple copies of each item may occur in both
the window W and the sample S, so that both W and S are multisets (i.e., bags).
When sampling from multisets, relatively sophisticated techniques are required to
handle deletion of items. An extension of Bernoulli sampling to multisets is given
in [62], and the authors in [63–65] provide techniques for maintaining a uniform
sample D of the distinct items in a multiset window W and, for each item in D, an
exact value (or high-precision estimate) of the frequency of the item in W .

4 Inference from a Sample

This section concerns techniques for drawing inferences about the contents of a win-
dow from a sample of window elements. As discussed in Sect. 1, such techniques
belong to the domain of finite-population sampling. A complete discussion of this
topic is well beyond the scope of this chapter, and so we cover only the most basic
results; see [1–5] for further discussion. Our emphasis is on methods for estimating
population sums and functions of such sums—these fundamental population param-
eters occur frequently in practice and are well understood. The “population” is, of
course, the set of all elements in the window.

4.1 Estimation of Population Sums and Functions of Sums

We first describe techniques for estimating quantities of the form θ = ∑
ei∈W h(ei),

where W is the window of interest, assumed to be of length n, and h is a real-valued
function. We then discuss estimation methods for window characteristics of the form
α = g(θ1, θ2, . . . , θd), where d ≥ 1. Here g : �d �→ � is a specified “smooth” func-
tion and each θj is a population sum, i.e., θj = ∑

ei∈W hj (ei) for some function
hj . Some examples of these estimands are as follows, where each element ei is a
sales-transaction record and v(ei) is the dollar value of the transaction.

1. Let h(ei) = v(ei). Then θ is the sum of sales over the transactions in the window.
2. Let h be a predicate function such that h(ei) = 1 if v(ei) > $1000 and h(ei) = 0

otherwise. Then θ is the total number of transactions in the window that exceed
$1000.

3. Let θ be as in example 1 above, and let g(θ) = θ/n. Then α = g(θ) is the average
sales amount per transaction in the window. If θ is as in example 2 above, then α

is the fraction of transactions that exceed $1000.
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4. Suppose that an element not only records the dollar value of the transaction, but
also enough information to compute the relative position number of the element
within the window (the element in relative position 1 being the first to have ar-
rived). Let 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn be a sequence of nondecreasing weights.
If h(ei) = wiv(ei), then θ is a weighted sum of sales that favors more recent
arrivals.

5. Let h1(ei) = v(ei) if v(ei) > $1000 and h1(ei) = 0 otherwise, and let h2 be as
in example 2 above. Also let θ1 and θ2 be the population sums that correspond
to h1 and h2. If g(x, y) = x/y, then α = g(θ1, θ2) is the average value of those
transactions in the window that exceed $1000.

6. Let h1(ei) = v(ei) and h2(ei) = v2(ei). Also let g(x, y) = (y/n)− (x/n)2. Then
α = g(θ1, θ2) is the variance of the sales amounts for the transactions in the
window.

As discussed in Sect. 1.1, any estimate θ̂ of a quantity such as θ should be sup-
plemented with an assessment of the estimate’s accuracy and precision. Typically,
θ̂ will be (at least approximately) unbiased, in that E[θ̂ ] = θ , i.e., if the sampling ex-
periment were to be repeated multiple times, the estimator θ̂ would equal θ on aver-
age. In this case, the usual measure of precision is the standard error,8 defined as the
standard deviation, or square root of the variance, of θ̂ , SE[θ̂ ] = E1/2[(θ̂ −E[θ̂ ])2]. If
the distribution of θ̂ is approximately normal and we can compute from the sample
an estimator ŜE[θ̂ ] of SE[θ̂ ], then we can go further and make probabilistic state-
ments of the form “with probability approximately 100p %, the unknown value θ

lies in the (random) interval [θ̂ − zpŜE[θ̂ ], θ̂ + zpŜE[θ̂ ]],” where zp is the (p +1)/2
quantile of a standard (mean 0, variance 1) normal distribution. That is, we can
compute confidence intervals for θ . A number of estimators θ̂ , including the SRS-
based expansion estimator discussed below, have approximately a normal distribu-
tion under mild regularity conditions. These conditions require, roughly speaking,
that (i) the window length n be large, (ii) the sample size k be much smaller than
n but reasonably large in absolute terms, say, 50 or larger, and (iii) the popula-
tion sum not be significantly influenced by any one value or small group of values.
Formal statements of these results take the form of “finite-population central limit
theorems” [4, Sects. 3.4 and 3.5].

4.2 SRS and Bernoulli Sampling

For an SRS S of size k, the standard estimator of a population sum is the obvious one,
namely the expansion estimator θ̂ = (n/k)

∑
ei∈S h(ei); cf. the example in Sect. 1.1.

8For a biased estimator θ̂ , the usual precision measure is the root mean squared error, defined as

RMSE[θ̂ ] = E1/2[(θ̂ − θ̂ )2]. It is not hard to show that RMSE = (bias2 + SE2)1/2, so that RMSE
and SE coincide for an unbiased estimator.
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Similarly, the estimator of the corresponding population average is the sample aver-
age α̂ = θ̂/n = (1/k)

∑
ei∈S h(ei). Both of these estimators are unbiased and consis-

tent, in the sense that they converge to their true values as the sample size increases.
For Bernoulli sampling with sampling rate q , the sample size k is random, and there
are two possible estimators of the population sum θ : the expansion estimator (with
k equal to the observed sample size) and the estimator θ∗ = (1/q)

∑
ei∈S h(ei). The

estimator θ∗ is unbiased; the estimator θ̂ is slightly biased,9 but often has signifi-
cantly lower variance than θ∗, and is usually preferred in practice. The variance of
θ̂ is given by Var[θ̂ ] = (n2/k)(1 − f )σ 2 under SRS (exactly) and under Bernoulli
sampling (approximately), where f = k/n is the sampling fraction and

σ 2 =
∑

ei∈W(h(ei) − (θ/n))2

n − 1
(4)

is the variance10 of the numbers {h(ei) : ei ∈ W }. An unbiased estimator of
Var[θ̂ ], based on the values in the sample, is V̂ar[θ̂ ] = (n2/k)(1 − f )σ̂ 2, where
σ̂ 2 = (1/(k − 1))

∑
ei∈S(h(ei) − (θ̂/n))2. To obtain corresponding variance formu-

las for the sample average α, simply multiply by n−2, i.e., Var[α̂] = (σ 2/k)(1 − f )

and V̂ar[α̂] = (σ̂ 2/k)(1 − f ). To obtain expressions for standard errors and their
estimators, take the square root of the corresponding expressions for variances.

4.3 Stratified Sampling

Here we consider the simple stratified sampling scheme for a stationary window
discussed in Sect. 2.3. Our results also apply to the stratified sampling scheme for
sliding windows in Sect. 3.1, at those times when the window boundaries align with
the strata boundaries; the modifications required to deal with arbitrary time points
can be derived, e.g., from the results in [1, Chap. 5]. Suppose that our goal is to
estimate an unknown population sum θ . Also suppose that there are L equal-sized
strata, with m = n/L elements per stratum, and that we obtain an SRS of r = k/L

elements from each stratum. Denote by Λj the set of elements in the j th stratum and
by Sj the elements of Λj that are in the final sample. The usual expansion estimator
θ̂ is unbiased for θ , and

Var[θ̂ ] = m

(
n

k
− 1

) L∑

j=1

σ 2
j ,

9The bias arises from the fact that the sample can be empty, albeit typically with low probability.
10We follow the survey-sampling literature, which usually takes the denominator in (4) as n − 1
instead of n because this convention leads to simpler formulas.
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where σ 2
j = (1/(m − 1))

∑
ei∈Λj

(h(ei) − (θj /m))2 and θj = ∑
ei∈Λj

h(ei). An un-

biased estimator of Var[θ̂ ] is

V̂ar[θ̂ ] = m

(
n

k
− 1

) L∑

j=1

σ̂ 2
j ,

where σ̂ 2
j = (1/(r − 1))

∑
ei∈Sj

(h(ei) − (θ̂j /m))2 and θ̂j = (m/r)
∑

ei∈Sj
h(ei).

Observe that if the strata are highly homogeneous, then each σ 2
j is very

small, so that Var[θ̂ ] is very small. Indeed, it can be shown [1, Sect. 5.6] that if
m

∑L
j=1((θj /m) − (θ/n))2 ≥ (1 − (m/n))

∑L
j=1 σ 2

j , then the variance of θ̂ under
stratified sampling is less than or equal to the variance under simple random sam-
pling. This condition holds except when the stratum means are almost equal, i.e.,
if the data are even slightly stratified, then stratified sampling yields more precise
results than SRS.

4.4 Biased Sampling

When using a biased sampling scheme, we can, in principle, recover an unbiased
estimate of a population sum by using a Horvitz–Thompson (HT) estimator; see,
for example, [3], where these estimators are called π -estimators. The general form
of an HT-estimator for a population sum of the form θ = ∑

i∈W h(ei) based on a
sample S ⊆ W is θ̂HT = ∑

i∈S(h(ei)/πi), where πi is the probability that element
ei is included in S. Assume that πi > 0 for each ei , and let Φi = 1 if ei ∈ S and
Φi = 0 otherwise, so that E[Φi] = πi . Observe that

E[θ̂ ] = E

[∑

i∈W

h(ei)Φi/πi

]
=

∑

i∈W

h(ei)E[Φi]/πi = θ, (5)

so that HT-estimators are indeed unbiased. Similar calculations [3, Result 2.8.1]
show that the variance of θ̂ is given by

Var[θ̂ ] =
∑

i∈W

∑

j∈W

(
πij

πiπj

− 1

)
h(ei)h(ej ),

where πij is the probability that elements ei and ej are both included in S. (Take
πii = πi for i ∈ W .) When using biased reservoir sampling, for example, the prob-
abilities πi and πij can be determined from (1) and (2). (In this case, and in others
arising in practice, it can be expensive to compute the πi ’s and πij ’s.) Provided that
πij > 0 for all i, j , an unbiased estimator of Var[θ̂ ] is given by

V̂ar[θ̂ ] =
∑

i∈S

∑

j∈S

(
1

πiπj

− 1

πij

)
h(ei)h(ej ).
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It can be shown [3, Result 2.8.2] that if the sampling scheme is such that the final
sample size is deterministic and each πij is positive, then alternative forms for the
variance and variance estimator are given by

Var[θ̂ ] = 1

2

∑

i∈W

∑

j∈W

(πiπj − πij )

(
h(ei)

πi

− h(ej )

πj

)2

and

V̂ar[θ̂ ] = 1

2

∑

i∈S

∑

j∈S

(
πiπj

πij

− 1

)(
h(ei)

πi

− h(ej )

πj

)2

.

The latter variance estimator is known as the Yates–Grundy–Sen estimator; unlike
the previous variance estimator, it has the advantage of always being nonnegative
if each term (πiπj /πij ) − 1 is positive (but is only guaranteed to be unbiased for
fixed-size sampling schemes). Most of the estimators discussed previously can be
viewed as HT-estimators, for example, the SRS-based expansion estimator: from (1)
and (2), we have πi = k/n and πij = k(k − 1)/(n(n − 1)) for all i, j .

In general, quantifying the effects of biased sampling on the outcome of a subse-
quent data analysis can be difficult. When estimating a population sum, however, the
foregoing results lead to a clear understanding of the consequences of biased sam-
pling schemes. Specifically, observe that, by (5), the sample sum θ̂ = ∑

ei∈S h(ei)

is, in fact, an unbiased estimator of the weighted sum θ = ∑
ei∈W πih(ei).

4.5 Functions of Population Sums

Suppose that we wish to estimate α = g(θ), where θ = (θ1, θ2, . . . , θd) is a vector
of population sums corresponding to real-valued functions h1, h2, . . . , hd . We as-
sume that there exists an unbiased and consistent estimator θ̂j for each θj , and we
write θ̂ = (θ̂1, θ̂2, . . . , θ̂d ). We also assume that g is continuous and differentiable
in a neighborhood of θ and write ∇g = (∇1g,∇2g, . . . ,∇dg) for the gradient of g.
A straightforward estimate of α is α̂ = g(θ̂), i.e., we simply replace each popula-
tion sum θj by its estimate and then apply the function g. The estimator α̂ will in
general be biased if g is a nonlinear function. For example, Jensen’s inequality [50,
Sect. 21] implies that E[α̂] ≥ α if g is convex and E[α̂] ≤ α if g is concave. The
bias decreases, however, as the sample size increases and, moreover, α̂ is consistent
for α since g is continuous. The variance of α̂ is difficult to obtain precisely. If the
sample size is large, however, so that with high probability θ̂ is close θ , then we can
approximate Var[α̂] by the variance of a linearized version of α obtained by taking
a Taylor expansion around the point θ . That is,

Var[α̂] ≈ Var

[

g(θ) +
d∑

j=1

aj (θ̂j − θj )

]

=
d∑

i=1

d∑

j=1

aiaj Cov[θ̂i , θ̂j ],
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where ai = ∇ig(θ) and Cov[θ̂i , θ̂j ] denotes the covariance of θ̂i and θ̂j . We es-
timate Var[α̂] by V̂ar[α̂] = ∑d

i=1
∑d

j=1 âi âj
ˆCov[θ̂i , θ̂j ], where âi = ∇ig(θ̂) and

ˆCov[θ̂i , θ̂j ] is an estimate of Cov[θ̂i , θ̂j ]. The exact formula for the covariance es-
timator depends on the specific sampling scheme and population-sum estimator.
Typically, assuming that θ̂1, θ̂2, . . . , θ̂d are computed from the same sample, such
formulas are directly analogous to those for the variance. For example, for the ex-
pansion estimator under SRS, we have

ˆCov[θ̂i , θ̂j ] = n2(1 − f )

k

1

k − 1

∑

el∈S

(
hi(el) − (θ̂i/n)

)(
hj (el) − (θ̂j /n)

)
,

where f = k/n and θ̂j = (n/k)
∑

ei∈S hj (ei) for each j . For stratified sampling
with L strata of length m,

ˆCov[θ̂i , θ̂j ] = m

(
n

k
− 1

) L∑

q=1

1

r − 1

∑

el∈Sq

(
hi(el) − (θ̂i,q/m)

)(
hj (el) − (θ̂j,q)/m

)
,

where, as before, each stratum comprises m = n/L elements, Sq is the SRS of size
r = k/L from the qth stratum, and θ̂s,q = (m/r)

∑
el∈Sq

hs(el) for each s and q . In
general, we note that for any sampling scheme (possibly biased) such that the size
of the sample S is deterministic and each πij is positive, the linearization approach
leads to the following Yates–Grundy–Sen variance estimator:

V̂ar[α̂] = 1

2

∑

i∈S

∑

j∈S

(
πiπj

πij

− 1

)(
zi

πi

− zj

πj

)2

,

where zl = ∑L
j=1 ∇j g(θ̂)hj (el) for each el ∈ S; see [4, Sect. 4.2.1].
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