
Extending Relational Query Languages for Data
Streams

N. Laptev, B. Mozafari, H. Mousavi, H. Thakkar, H. Wang, K. Zeng,
and Carlo Zaniolo

The design of continuous query languages for data streams and the extent to which
these should rely on database query languages represent pivotal issues for data
stream management systems (DSMSs). The Expressive Stream Language (ESL)
of our Stream Mill system is designed to maximize the spectrum of applications
a DSMS can support efficiently, while retaining compatibility with the SQL:2003
standards. This approach offers significant advantages, particularly for the many ap-
plications that span both data streams and databases. Therefore, ESL supports mini-
mal extensions required to overcome SQL’s expressive power limitations—a critical
enhancement since said limitations are quite severe on database applications and are
further exacerbated on data stream applications, where, e.g., only nonblocking query

N. Laptev · B. Mozafari · H. Mousavi · K. Zeng · C. Zaniolo (B)
Computer Science Department, University of California, Los Angeles, CA 90095, USA
e-mail: zaniolo@cs.ucla.edu

N. Laptev
e-mail: nlaptev@cs.ucla.edu

B. Mozafari
e-mail: barzan@cs.ucla.edu

H. Mousavi
e-mail: hmousavi@cs.ucla.edu

K. Zeng
e-mail: kzeng@cs.ucla.edu

H. Thakkar
Google Inc., Mountain View, CA 94043, USA
e-mail: hmt007@gmail.com

H. Wang
Sigma Center, Microsoft Research Asia, Beijing 100190, P.R. China
e-mail: haixun.wang@microsoft.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_18

361

mailto:zaniolo@cs.ucla.edu
mailto:nlaptev@cs.ucla.edu
mailto:barzan@cs.ucla.edu
mailto:hmousavi@cs.ucla.edu
mailto:kzeng@cs.ucla.edu
mailto:hmt007@gmail.com
mailto:haixun.wang@microsoft.com
http://dx.doi.org/10.1007/978-3-540-28608-0_18

362 N. Laptev et al.

operators can be used. Thus, ESL builds on user-defined aggregates and flexible
window mechanisms to turn SQL into a powerful and computationally-complete
query language, which is capable of supporting applications, such as data stream
mining and sequence queries that are beyond the application scope of other DSMSs.

1 Introduction

A key research issue for Data Stream Management Systems (DSMSs) is deciding
which data model and query language should be used. A wide spectrum of differ-
ent solutions have in fact been proposed, including operator-based graphical inter-
faces [1], programming language extensions [2], and an assortment of other solu-
tions provided in publish/subscribe systems [3]. However, the approach of choice
for many research projects is to extend SQL and use this tested database workhorse
for continuous queries on data streams. Indeed, an SQL-based approach can of-
fer significant benefits, particularly for the many applications that span both data
streams and databases. This is because application developers can then use the same
language on both streaming data and stored data—rather than having to learn a new
language and cope with the resulting impedance mismatch. From this vantage point,
it is also clear that data stream constructs should adhere closely to the syntax and
semantics of current standards (namely SQL:2003 [4]); indeed the introduction of
constructs that are superficially similar to those of SQL, but actually have different
syntax or semantics might confuse, rather than help, users writing spanning ap-
plications. Therefore, we advocate a conservative and minimalist’s approach, which
limits SQL extensions to those demanded by the very nature of infinite data streams,
and the online, push-based computation model of continuous queries. Indeed Data
Stream Management Systems (DSMSs) must operate as follows:

(a) Results must be pushed to the output promptly and eagerly, while input tuples
continue to arrive—i.e., without waiting for (i) the results to be requested by
other applications (e.g., a procedural program embedding the continuous query),
and (ii) the end of input streams (when blocking operators can be finally ap-
plied).

(b) Because of the unbounded and massive nature of the data streams, all past tuples
cannot be memorized for future uses. Only synopses, such as windows, can be
kept in memory and the rest must be discarded.

The main problem created by (a) is a significant loss of expressive power.
Database researchers have long been aware of expressive power limitations of SQL
and other relational languages; in fact, this problem has motivated much research
on topics such as recursive queries, database mining queries, sequence queries, and
time-series queries. Unfortunately, these limitations are dramatically more marring
on data stream applications for the following reasons:

1. Blocking query operators that were widely used on databases can no longer be
allowed on data streams [5, 6],

Extending Relational Query Languages for Data Streams 363

2. Database extenders (i.e., libraries of external functions written in procedural lan-
guages using BLOBs and CLOBs to exchange data) that have successfully en-
hanced the versatility of Object Relational (OR) DBMS are much less effective
in DSMS, which process data at small increments rather than as aggregate large
objects,

3. Embedding queries in a procedural programming language, a solution used ex-
tensively in relational database applications, is now of very limited effectiveness
on data streams.

We will now expand on these statements starting from point 1. A blocking query
operator is one that only returns answers when it detects the end of its input, while
a nonblocking operator produces its answers incrementally as new input tuples ar-
rive [5]. For continuous queries, the users must see the results immediately and
incrementally as new stream records arrive, rather than when the stream eventually
ends: thus only nonblocking query operators are allowed on data streams [5, 6].

The nature of nonblocking queries was formally characterized in [6], where it
was shown that only monotonic queries1 can be expressed by nonblocking oper-
ators [6]. Database query languages contain many nonmonotonic (and therefore
blocking) query operators/constructs: for instance, set difference and division are
nonmonotonic operators in relational algebra, while constructs such as EXCEPT,
NOT EXIST, and traditional aggregates in SQL are nonmonotonic. Then, a natural
question is whether all the monotonic queries expressible in a query language can
be expressed using only its monotonic operators or constructs. A query language
that satisfies this criterion is said to be NB-complete—i.e., complete for nonblock-
ing queries [6]. A query language that is NB-complete is as suitable a query lan-
guage for data streams as it is for databases (since by disallowing its nonmonotonic
operators/constructs we only lose queries that are of not suitable for continuous
online answering). Unfortunately, both relational algebra and SQL-2 fail the NB-
completeness test [6]. Thus, the banishment of blocking operators and lack of NB-
completeness further aggravate the expressive power limitations of SQL that has
made it difficult for DBMS to support new application domains. This problem is
discuss next.

As outlined in point 2 above, following the introduction of a time-series dat-
ablades by Illustra [7], OR DBMSs offered a plethora of such libraries covering a
wide spectrum of applications under an assortment of different names. These func-
tions often use large objects (BLOBs and CLOBs) to exchange data with SQL: for
instance, a whole sequence could be encoded as a BLOB and shared between the
database and the datablade. This solution is less suitable for data streams, where
the computation must proceed continuously in small increments—e.g., by process-
ing each new tuple in the sequence, rather than having to wait for it to be assembled
into a BLOB. Indeed, unlike in OR DBMS, datablades have not played an important
role as an extension mechanism for DSMS.

1Queries are viewed as mappings from the database, or the data stream, to the query answer.

364 N. Laptev et al.

Point 3 above considers the solution of embedding SQL queries in a procedural
programming language (PL); currently this represents a commonly used approach
for developing complex database applications, since the application logic that can-
not be expressed in SQL can then be easily implemented in the PL. This solution,
however, uses cursors and get-next constructs; thus it relies on a pull-based compu-
tation model that loses much of its effectiveness in the push-based environment of
data streams. Indeed in the continuous environment of data streams, consumption
(production) of input (output) tuples follows a push-based mechanism—i.e., produc-
tion (consumption) occurs without waiting for get-next requests from an embedding
procedural language.

The severe limitations resulting from the problems discussed in points 1–3 above
suggest that, for any SQL-based DSMS, extensions to enhance the power and flex-
ibility of its query language are crucial to compete against the many alternatives
proposed, including [1–3, 8, 9] that are discussed in Sect. 7.

Fortunately, a solution to SQL’s expressivity and flexibility problems is at hand:
user-defined aggregate functions adopt a computation model based on incremental
additions to their input streams, rather than the large BLOB objects of datablades.
As discussed in [10, 11], User-Defined Aggregates (UDAs) can be written in an ex-
ternal programming language or natively in SQL itself: the native UDA definition
capability makes SQL Turing-complete and NB-complete, i.e., able to express every
monotonic function expressible by a Turing Machine [6]. We can finally return to the
problems caused by the unbounded nature of data streams, mentioned in (b) above,
and observe that windows have proved by far to be the most popular form of syn-
opses used in DSMSs. Windows are actually not new to database languages, since
SQL-2003 supports logical and physical windows on a set of built-in aggregates
called OLAP functions. Many DSMSs also support these windows, and actually in-
troduced new ones, such as slides and tumbles [1, 12], for their built-in aggregates.
However, for a DSMS to address both problems (a) and (b) above effectively, its
language should support these windows on arbitrary UDAs besides on built-in ag-
gregates. Indeed, the Stream Mill system developed at UCLA supports (i) windows
on arbitrary UDAs and (ii) the native definition of these UDAs in SQL [13]. Thus
Stream Mill is unique in this respect, and its uniqueness is reflected in the much
broader range of applications it can support efficiently: for instance, its Expressive
Stream Language (ESL) can express data mining queries, sequence queries, approx-
imate queries, etc., that are beyond the reach of other DSMSs. Examples of these
advanced applications will be discussed later in this chapter, which is organized as
follows.

In Sect. 2, we introduce the main extensions to SQL:2003 supported in ESL, in-
cluding UDAs. In Sect. 3, we extend ESL to support different kinds of windows on
arbitrary UDAs. Then, in Sects. 4 and 5, respectively, we demonstrates the effective-
ness of these extensions in expressing approximate computations and advanced data
mining algorithms. In Sect. 6, we describe the architecture of the Stream Mill system
that supports these advanced query constructs very efficiently. Section 7 contains a
broad description of related work, and it is then followed by the conclusion.

Extending Relational Query Languages for Data Streams 365

2 ESL: An Expressive Stream Language Based on SQL

ESL supports ad-hoc SQL queries and updates on database tables and continuous
queries on data streams. Each data stream is declared by a CREATE STREAM dec-
laration that also specifies the external wrapper from which data is imported and the
timestamp associated with the stream. For instance, in Example 1, the data stream
OpenAuction is declared as having start_time as its external timestamp.

Example 1 Declaring Streams in ESL

CREATE STREAM OpenAuction(
itemID INT, sellerID CHAR(10),
start_price REAL, start_time TIMESTAMP)

ORDER BY start_time SOURCE . . . /* Wrapper ID */;

In ESL, new streams can be defined from existing streams in ways similar to
defining virtual views in SQL. For instance, to derive a stream consisting of the
auctions where the asking price is above 1000, we can write:

Example 2 Performing Selection Operations on Streams

CREATE STREAM expensiveItems AS
SELECT itemID, sellerID, start_price, start_time
FROM OpenAuction WHERE start_price > 1000

In terms of semantics, these ESL operators produce the same results as if instead
of being applied to data streams, they were applied to database tables to which new
tuples are being continuously appended. Additional operators supported by ESL on
data streams are (i) aggregates (built-in or user-defined) (ii) joins of a stream with a
database table, and (iii) union of two or more data streams. All the operators consid-
ered so far operate on a single data stream, except for union which always returns
tuples sorted by timestamp (thus its equivalent SQL statement is really UNION ALL

followed by ORDER BY TIMESTAMP).
In [6], it was proven that constructs mentioned above make ESL NB-complete,

thus capable of expressing all nonblocking computations on data streams. In the
rest of the chapter, we therefore concentrate on these constructs, which are the most
distinctive feature of ESL, and their effective use in expressing complex data stream
applications. Space limitations prevent us from covering here other constructs, such
as window joins, inasmuch as these constructs are less critical in terms of expressive
power, and their treatment by ESL is similar to that of other DSMSs [14, 15].

2.1 User-Defined Aggregates (UDAs)

In recent years, some of the most successful SQL extensions involve aggregates,
including (i) data cubes, and (ii) OLAP functions where continuous aggregates are

366 N. Laptev et al.

incrementally computed on logical and physical windows [4]. Logical and physical
windows for aggregates are also provided by many DSMSs, some of which also
support additional window constructs based on the notions of slides and tumbles
[1, 12]. Many current DBMSs and DSMSs also allow the importation of new UDAs
defined in external programming languages; however they do not support windows
on such UDAs. Now, ESL brings two important improvements to the state-of-the-art
by supporting (i) windows on arbitrary UDAs—including logical windows, physical
windows, tumbles, and slides—and (ii) the definition of UDAs in SQL (besides
external PLs).

Example 3 declares a UDA, myavg, equivalent to the standard avg aggregate in
SQL, using a definition consisting of the three statement groups that are labelled
INITIALIZE, ITERATE, and TERMINATE. Commercial DBMSs [9] and DSMSs sup-
porting UDAs [1, 15] allow a programmer to use external procedural languages
to specify the computations to be performed in INITIALIZE, ITERATE, and TERMI-
NATE; this capability is also available in ESL, which however also supports native
UDA definition.

In Example 3, the first line in the UDA definition declares a local table, state,
to keep the sum and count of the values processed so far. Then, the INITIALIZE
statement inserts the value taken from the input stream and sets the count to 1. The
ITERATE statement updates the table by adding the new input value to the sum
and 1 to the count. The TERMINATE statement returns the ratio between the sum
and the count as the final result of computation using the INSERT INTO RETURN
statement. Myavg and similar UDAs can then be used as standard SQL aggregates,
with optional GROUP BY clause.

Example 3 Defining the standard aggregate average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

Natively defined UDAs provide an extensibility mechanism of great power and
flexibility; in fact, SQL with natively defined UDAs becomes Turing complete, and
thus can express all computable queries on database tables [6]. Aggregates such as

Extending Relational Query Languages for Data Streams 367

myavg, however, are blocking and thus do not add to the expressive power of SQL
in data stream applications, which instead require nonblocking aggregates.

Basically, there are two ways to turn a UDA such as myavg into a nonblocking
UDA. The first is to modify its definition so it becomes a continuous aggregate that
returns values during, rather than at the end of, the computation.

Example 4 The continuous average: a nonblocking UDA

AGGREGATE online_avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT tsum/cnt FROM state
WHERE cnt % 200 = 0;

}
TERMINATE : { }

}

For instance, Example 4, shows a continuous version of average where results
are returned every 200 tuples rather than at the end. Observe that in this definition
the TERMINATE state is empty which assures that the aggregate is nonblocking and
monotonic.2

The second way to deal with a blocking aggregate consists of keeping the original
definition unchanged and using it to continuously recompute the aggregate on a
sliding window—in a fashion similar to that of SQL:2003 OLAP functions. We
next illustrate an interesting application of the first class of nonblocking aggregates;
window-based applications will be discussed in the next section.

2.2 Pattern Queries

Since UDAs process tuples one-at-a-time, they are effective on physically-ordered
sequences and can search for patterns in a sequence effectively. Say, for instance,
that we want to find the situation where users, immediately after placing an order,
ask for a rebate and then cancel the order. Finding this pattern in SQL requires two
self-joins on the incoming event-stream of user activities. In general, recognizing the

2Updates and other nonmonotonic constructs can still be used freely on other database tables, such
as state. But any operator applied to the data stream must be monotonic.

368 N. Laptev et al.

pattern of n events would require n−1 joins and queries involving the joins of many
streams can be complex to express in SQL. Furthermore, such queries would be very
inefficient on data streams. In particular, the condition that a tuple must immediately
follow another tuple is complex and inefficient with basic SQL but easy with UDAs.
For instance, consider an incoming stream of purchase actions:

webevents(CustomerID, ItemID, Event, Amount, Time)

We want to detect the pattern of an order, followed by a rebate, and immediately
after that, a cancellation of the same item. Then the following nonblocking UDA
can be used to return the string ‘pattern123’ with the CustomerID whose events have
just matched the pattern (the aggregate will be called with the group-by clause on
CustomerID, ItemID). This UDA models a finite state machine, where 0 denotes
the failure state that is set whenever the right combination of current-state and input
is not observed. Otherwise, the state is first set to 1 and then advanced step-by-step
to 3, where ‘pattern123’ is returned and the computation continues to search for the
next pattern.

Example 5 First the order, then the rebate, and finally the cancellation

AGGREGATE pattern(CustomerID Char, Next Char) : (Char, Char)
{ TABLE state(sno Int);

INITIALIZE : {
INSERT INTO state VALUES(0);
UPDATE state SET sno = 1 WHERE Next= ‘order’;}

ITERATE: {
UPDATE state SET sno = 0

WHERE NOT (sno = 1 AND Next = ‘rebate’)
AND NOT (sno = 2 AND Next = ‘cancel’)
AND Next <> ‘order’

UPDATE state SET sno = 1 WHERE Next= ‘order’;
UPDATE state SET sno = sno+1

WHERE (sno = 1 AND Next = ‘rebate’)
OR (sno = 2 AND Next = ‘cancel’)

INSERT INTO RETURN
SELECT CustomerID,‘pattern123’ FROM state WHERE sno = 3;

} }

While UDAs can be effectively used to search for simple patterns, this approach
can easily become prohibitive for more involved patterns.

Fortunately, powerful languages based on Kleene-* constructs were recently to
facilitate the expression of complex sequential patterns. The first such language was
SQL-TS [16, 17], for which powerful query optimization techniques were also de-
veloped [16, 17]. This led to an industrial SQL-change proposal [18] which has
been prototyped more recently [19]. Recently proposed query languages based on
Kleene-* constructs include SASE [20], SASE+ [21], Cayuga [22], CEDR [23], and

Extending Relational Query Languages for Data Streams 369

finally, K*SQL [24, 25]. Stream Mill supports K*SQL, which is the most power-
ful of these languages, inasmuch as it can express complex queries over relational
data, and complex XML streams. K*SQL uses nested word automata3 which in turn
are implemented as UDAs. For instance, the following K*SQL query could be im-
plemented by calling UDA in Fig. 5 with a PARTITION BY CustomerId (where
ORDER BY Time is implicitly assumed for our timestamp-ordered data streams).

Example 6 (Example 5 expressed in K*SQL)

SELECT ‘modified-pattern123’, X.CustomerId
FROM webevents

PARTITION BY CustomerId
AS PATTERN (X Y Z)

WHERE
X.Event = ‘order’ AND
Y.Event = ‘rebate’ AND Y.ItemID = X.ItemID AND
Z.Event = ‘cancel’ AND Z.ItemID = Y.ItemID

Thus we have a simple pattern specifying the sequence of 3 events where the sec-
ond (third) event immediately follows the first (second) in the separate CustomerId
substream. Languages such as SASE+ [21] adopt a semantics where the next event
in the pattern is simply required to follow, rather than immediately follow, the previ-
ous event. This more relaxed pattern can be expressed in K*SQL by simply chang-
ing the pattern in Example 6 to AS PATTERN (X V* Y W* Z). Here V* and W* each
can match zero or more successive events,4 thus a clause such as Z.Time-Y.Time ≤
60 might be advisable to limit the overall times elapses to 60 minutes. By adding F .
in the WHERE clause, we can express local conditions, i.e., F.Z.ItemID = F.Y.ItemID
will only require that in each occurrence of F the ItemID is the same, while different
occurrences of F can have different values of ItemID.

This seemingly simple extension, makes K*SQL strictly more expressive than
its counterparts. Fortunately, despite its higher expressive power, K*SQL has also
proved to be highly amenable to efficient execution over high-volumes of stored se-
quences and data streams [25]. For these reasons, and due to the appealing syntax of
K*SQL for sequence queries, the Stream Mill system also supports special built-in
UDAs that can efficiently execute K*SQL queries [24]. Likewise, it was previously
shown that queries expressed in SQL-TS [16] could be mapped into equivalent ESL
queries through the use of specialized UDAs [28]. Similarly, UDAs were used in
[28] to implement the FSA computation used by Yfilter to support multiple queries
on streaming XML data, thus unifying the processing of these two kinds of streams.

Thus, UDAs have proved to be a key extension of SQL. Furthermore, ESL greatly
enhances their power and versatility for data stream applications by providing the
flexible window mechanisms for arbitrary UDAs that are discussed next.

3Nested words [26] and visibly-pushdown automata [27] can model data with both sequential and
hierarchical structures, such as XML, RNA sequences or procedural software traces.
4However, expressing “immediately following” in SASE+ is significantly more difficult.

370 N. Laptev et al.

3 Window Aggregates and Their Applications

Following SQL:2003, ESL uses the OVER clause to specify (i) the type of window
(i.e., logical or physical), (ii) the size of the window (using a time span for logical
windows or the number of tuples for physical ones), and (iii) the columns in the
partition-by clause (if any). However, for data streams, the ORDER BY clause can
be omitted, since data streams are always ordered by their timestamps.

In Example 7, we have a physical window of 100 items, consisting of the current
tuple and the 99 rows preceding it; a separate window is maintained for each seller,
as specified by the (PARTITION BY sellerID) clause.

Example 7 For each seller, maintain the max selling price over the last 100 items
sold.

CREATE STREAM LastTenAvg
SELECT sellerID, max(price) OVER

(PARTITION BY sellerID ROWS 99 PRECEDING)
FROM ClosedPrice;

By replacing, say, ‘ROWS 99’ with ‘RANGE 5 MINUTES’, we would instead
specify a logical window of five minutes.

Because of their many uses, the notions of window slides and tumbles [1, 12],
are now supported in many DSMSs, although they go beyond the SQL:2003 stan-
dards. These constructs are supported in ESL for arbitrary UDAs, using a ‘SLIDE’
declaration in the window clause. For instance, the following example is similar to
the previous one in every aspect, but the fact that results are now returned every 10
rows, rather than after each row as in the previous case.

CREATE STREAM LastTenAvg
SELECT sellerID, max(price) OVER

(PARTITION BY sellerID ROWS 99 PRECEDING SLIDE 10)
FROM ClosedPrice;

In this example, the size of the slide (10) is smaller than the overall size of the
window (100). Tumbles instead occur when the size of the slide exceeds that of the
window. For instance, to break the input stream into blocks of size 600 and return
the average of the last 600 input tuples at the end of each block, we can specify
ROWS 599 PRECEDING SLIDE 600. Thus the size of the window and the slide
are both 600, and the input data stream is partitioned into windows of size 600 and
results are returned every 600 tuples.

Window Aggregates

Providing efficient, integrated management and support for an assortment of dif-
ferent windows represents an interesting research problem that in the past has

Extending Relational Query Languages for Data Streams 371

been addressed only for specific built-in aggregates or specific classes of aggre-
gates [1, 12, 29]. A naive approach to implement windows on arbitrary UDAs re-
quires the user to write six versions of an aggregate, one for each combination of
(logical|physical × tumble|slide|no-slide). With ESL, however, users only need to
write at most the following two versions: (a) the base version of the UDA, and
(b) an optional window-optimized version. The second version (b) allows the user
to perform delta-maintenance on arbitrary UDAs, which can lead to significant per-
formance improvement. The ESL compiler utilizes these two definitions to provide
integrated support for (i) general optimization tasks that are applied to all window
aggregates, along with (ii) user-specified optimizations that are specified for a par-
ticular UDAs. We next illustrate how this is accomplished using the MAX aggregate
as an example whose base definition is shown below:

Example 8 Base Definition for MAX

CREATE WINDOW AGGREGATE max (Next Real) : Real
{ TABLE current(CVal real);

INITIALIZE : {
INSERT INTO current VALUES (Next);

} /* the value in is the first max */
ITERATE : {

UPDATE current set CVal = Next
WHERE CVal < Next;

INSERT INTO RETURN
SELECT CVal FROM state;

}
}

The Stream Mill system provides uniform support for physical and logical win-
dows, thus the six combinations above degenerate to three, which we discuss next.
The simplest one is that of tumbles, i.e., the case in which the UDA is called over
a window of size smaller or equal to that of its slide. For instance, say that MAX is
called on a window of 600 tuples and the size of its slide is S ≥ 600. In this case,
ESL will use the base definition of MAX in Example 8 and return the result after 600
tuples. Then the next S − 600 input tuples are ignored and the computation restarts
from (S − 600 + 1)th tuple and goes for another 600 tuples, and so on. Examples
illustrating the use of tumbles in clustering and ensemble-based classification are
given in Sects. 5.1 and 5.2.

The second case is that of Example 7, in which the UDA is called without the
slide construct. A naive implementation consists in buffering all the window tuples
into an inwindow table.5 Then, for each arriving tuple, base MAX aggregate is re-
computed over the tuples in inwindow table. While this approach is correct, it is

5Newly arriving tuples are inserted into and expiring tuples are removed from the inwindow table
automatically by the system for efficiency.

372 N. Laptev et al.

obviously inefficient. Thus ESL allows users to define a specialized version of the
UDA which uses the values of tuples leaving the window to perform delta mainte-
nance. For an aggregate such as sum, this delta maintenance involves the subtraction
of the expiring value from the current sum. For MAX and more sophisticated aggre-
gates the delta maintenance is more complex but nevertheless quite beneficial. As
shown in Example 9, the delta maintenance is performed in a special state called
EXPIRE. In our window version of MAX, shown in Example 9, the EXPIRE event
does not require any action. The expiring tuple is simply discarded (automatically,
by the system). The ITERATE state of the UDA only keeps tuples that can poten-
tially be the maximum in the window. Thus, the oldest tuple in the inwindow table is
the maximum in the current window.

The result of the aggregate is the same whether this delta computation is per-
formed as soon as a tuple expires, later when a new tuple arrives, or anywhere in
between these two instants. ESL takes advantage of this freedom to optimize execu-
tion.

Example 9 MAX with Windows

CREATE WINDOW AGGREGATE max (Next Real) : Real
{ TABLE inwindow(wnext real);

INITIALIZE : {
INSERT INTO RETURN VALUES (Next);

} /* the system adds new tuples to inwindow */
ITERATE : {

DELETE FROM inwindow WHERE wnext ≤ Next;
INSERT INTO RETURN VALUES (oldest());

}
EXPIRE: { } /*expired tuples are removed automatically*/

}

In the definition of window aggregates, EXPIRE is treated as an event that occurs
once for each expired tuple—and the expired tuple is removed as soon as the EX-
PIRE statement completes execution. ESL also provides the built-in predicate old-
est() which selects the oldest tuple among the tuples of inwindow: oldest().wnext
delivers the wnext column in this tuple. If the tuple has only one column then the
system allows using oldest(), i.e., without the column name.

Upon arrival of a new tuple, the system first proceeds at executing any outstand-
ing EXPIRE events. The ITERATE statements are next executed on this newly arrived
tuple. After the ITERATE statements, the new tuple is put into the inwindow buffer.

This delta-maintenance approach to window aggregates is also used in the imple-
mentation of basic ESL built-in aggregates. For instance, in case of the MAX aggre-
gate, we eliminate tuples in the buffer that are dominated by more recent tuples—
thus reducing the size of the buffer from W to log(W), where W denotes the size
of the window. Frequently, the approach is also effective on more complex UDAs,
such as the approximate frequent-items example discussed in Sect. 4.

Extending Relational Query Languages for Data Streams 373

For the third case, i.e., where the specified slide size is less than the window
size, ESL utilizes the optimization that has been proposed in [12]. This optimization
involves dividing the window in smaller panes. Window version of the UDA is used
to perform the delta computation on the results of the base version of the UDA on
each smaller pane [30]. Using these powerful UDAs we can also implement the
‘negative tuple’ semantics6 that has also been considered for windows [31].

The introduction of powerful analytics SQL:2003 have illustrate the need for
DBMS to support a wider range of aggregates than those supported in SQL-2, and
the important role that windows play in this context. However, windows aggregates
play an even more important role in DSMS particularly those that must support
complex tasks with QoS guarantees: in fact, window UDAs can support effectively
(i) approximate computations, (ii) load shedding, and (iii) complex decision support
and mining task. Our discussion in the rest of the chapter will focus on these topics.

4 Approximation and Sketch Aggregates

In order to assure QoS against high arrival rates and bursts in the incoming data
streams, DSMS rely on (i) load shedding, and (ii) approximation techniques, which
dovetail with and UDA-oriented architecture. Indeed, Stream Mill provides an archi-
tecture where load shedding is integrated with UDAs [32], supporting error models
that accommodate different requirements for multiple users, different sensitivities to
load shedding, and different penalty functions. By incorporating a priori statistics of
data streams, the Stream Mill system can provide QoS guarantee for a large class of
queries, including traditional SQL aggregates, statistical aggregates and data min-
ing functions [32]. A Bayesian approach can be used to combine the past statical
information about query answers and further boost the quality of the a priori esti-
mations [33].

We now leave the discussion of load-shedding which would take us beyond the
scope of this paper to concentrate on sketches and other approximate aggregates.

EH Sketches

Many data mining techniques require counting the frequency of different items in a
window. Since computing the exact counts would require storing the whole window
to determine the tuples leaving the window. For windows that are too large in size
approximate counting aggregates can be used instead. In [34], Datar et al. proposed
the Exponential Histogram (EH) sketch algorithm for approximating the number of
1’s in sliding windows of a 0–1 stream and showed that for a δ-approximation of the

6Besides returning values when new tuples arrive, under such semantics, new revised aggregate
values could be produced as soon as a tuple expires out from the time-based window.

374 N. Laptev et al.

number of 1’s in the current window, the algorithm needs O(1
δ

logW) space, where
W is the window size.

The EH sketch consists of an ordered list of buckets or boxes. Every box in an EH
sketch basically carries on two types of information, a time interval and the number
of observed 1’s in that interval. The intervals for different boxes do not overlap
and every 1 in the current window should be counted in exactly one of the boxes.
Boxes are sorted based on the start time of their intervals. For each new coming 1,
EH creates a new box with size one. Then the algorithm checks if the number of
boxes with the same size exceeds k/2 + 2 (where k = 1

δ
), it merges the oldest two

such boxes. The merge operation adds up the size of the boxes and merges their
intervals. The final estimation of the number of 1’s would be the aggregate size of
boxes minus half of the oldest box’s size. Note that before reporting the results, we
discard the boxes which do not overlap the current window. Thus an EH UDA can
be expressed by the ESL code below, and then called in a way similar to built-in
SQL3 aggregates.

Example 10 Counting by Exponential Histograms

STREAM zeroOnes(val Int, t Timestamp);
AGGREGATE EHCount(next Int, t Timestamp, k Int):{

WINDOW EH(h Int, t Timestamp) ORDER BY t;
TABLE memo(last Int, total Int) MEMORY VALUES (0,0);

AGGREGATE merge(next Int, t Timestamp, k Int):{
/∗ state table stores the current box, count, and the last two timestamps ∗/

TABLE state(h Int, cnt Int, t1 Timestamp, t2 Timestamp) MEMORY;
INITIALIZE:
{INSERT INTO state VALUES(next, 1, t, NULL);}
ITERATE:{

UPDATE state SET cnt=cnt+1, t2=t1, t1=t WHERE h=next;
/∗ should early return if true ∗/

UPDATE state SET h=next, cnt=1, t1=t
WHERE h <> next AND (SELECT cnt FROM state) < k/2+2;

/∗ should early return if true ∗/

/∗ if current count is k/2+2, delete the last box, and double the next-to-last one ∗/

DELETE FROM EH h WHERE h.t = (SELECT t1 FROM state)
AND h <> next AND (SELECT cnt FROM state) = k/2 + 2;

UPDATE EH h SET h=h*2 WHERE SQLCODE = 0
AND h.t = (SELECT t2 FROM state);

UPDATE state SET h=next, cnt=2, t1=t WHERE SQLCODE = 0; }
}; /∗ the end of merge aggregate/∗

INITIALIZE:ITERATE:{
INSERT INTO EH VALUES(next, t) WHERE next > 0; /∗ ignore 0’s ∗/

UPDATE memo SET total = total + next;
SELECT merge(h, t, k) OVER (ORDER BY t DESC) FROM EH;
/∗ Update last pointer due to merge ∗/

UPDATE memo SET last = (SELECT max(h) FROM EH);
INSERT INTO Return SELECT total FROM memo;}

Extending Relational Query Languages for Data Streams 375

EXPIRE:{
UPDATE memo SET last = h/2

WHERE (SELECT count(1) FROM EH h WHERE h.h = last) =1;
/∗ update total pointer ∗/

UPDATE memo SET total = total-h/2-last/2 }
}

/∗Calling the aggregate just defined from an ESL statement /∗
SELECT EHCount(val, t, 2) OVER (RANGE 10 MINUTE) FROM zeroOnes;

This sketch is later used in several other structures and algorithms listed in [35].
Recently, [36] has used EH to generate an approximate B-bucket equi-depth his-
togram for data streams with sliding windows. The proposed approach which is
called BAr-Splitting Histograms (BASH) is based on dividing the acceptable in-
put range into several chunks or bars in a way that each bar contains roughly equal
number of items. The number of bars are limited to fix value which is greater than B

for improving the accuracy. To keep the size of bars roughly the same as the stream
passes, a splitting/merging technique is employed to split big bars, and merge adja-
cent small bars. BASH provides a very fast and space-efficient equi-depth histogram
particularly for high speed data streams.

Approximate Frequent Items

The problem of determining the frequent items in a data stream is important in
many applications and several algorithms have been proposed to deal with the com-
mon situation where there is enough memory for the frequent items but not for all
items [37–39]. Here we focus primarily on [37], which is a windowed approximate
frequent items algorithm suitable for delta computation. The algorithm, shown with
ESL code in Example 11, maintains k hash-tables over the current window. Each
hash-table has a corresponding hash-function. Each hash entry in the hash-tables is
an integer, which is used as a counter. When an item enters the window, we iterate
through the k hash-functions and determine the k key values. For each key value,
we increment the counter at that location in the corresponding hash-table. Simi-
larly, when an item expires out of the window, we decrement the corresponding k

counters. Finally, the approximate frequency of an item is determined by taking the
minimum value of the k counters. Note, that this minimum value may over estimate
the frequency of the item, if all k keys have at least one other item mapped to it. This
algorithm can also be viewed as a bloom-filter with two exceptions: (i) there are k

different hash-tables instead of just one and (ii) each entry is an integer(counter) as
opposed to a bit. In addition to the delta maintenance property, the algorithm pro-
vides bounded error estimates. Thus, given the available amount of memory we can
estimate the expected error.

376 N. Laptev et al.

Example 11 Approximate Frequency Count

STREAM items(item Int); /∗ Stream of items ∗/
TABLE hash_tables(index1 Int, index2 Int, cnt Int) MEMORY;

/∗ the k hash tables index2 goes from 1 to k∗/
TABLE hs(h Int, ah Int, bh Int) MEMORY; /∗ constants for hash functions ∗/

/∗ table initialization omitted ∗/

/∗ Windowed aggregate that maintains the hash−tables ∗/
WINDOW AGGREGATE MaintainHashes(k Int):Int {

/∗an aggregate that updates a certain hash entry ∗/
AGGREGATE updateCnt(k Int, h Int, ah Int, bh Int, val Int):Int {

INITIALIZE: ITERATE: {
UPDATE hash_tables SET cnt = cnt+val
WHERE index1 = ((ah*k+bh)%31)%4 AND index2 = h }

};
INITIALIZE: ITERATE: { /∗ new item entering the window ∗/

SELECT updateCnt(k, h, ah, bh, 1) FROM hs
}
EXPIRE: { /∗ item expiring ∗/

SELECT updateCnt(k, h, ah, bh, −1)FROM hs }
};

/∗ Calling the UDA just defined∗/
SELECT MaintainHashes(item) OVER (ROWS 29 PRECEDING)
FROM items;

5 Mining Data Streams

Data stream mining represents an important area of current research, and the topic
of many recent papers, which primarily focus on devising mining algorithms that
are fast and light enough to be executed continuously and produce real-time or quasi
real-time responses. However, online data mining represents such a difficult issue for
DSMS that no system before Stream Mill [40] has claimed success in this important
application. Many of the problems facing DSMS are similar to those of DBMSs
that in mid-1990s where unable to extend the success of SQL on OLAP applica-
tions to data mining applications. Indeed performing data mining tasks through the
DBMS-supported constructs and functions was exceedingly difficult [41], whereby
in a visionary 1996 paper [42], Imielinski and Mannila called a major research effort
to produce quantum leap in the functionality and usability of DBMSs, whereby min-
ing queries can be supported with the same ease of use as other relational queries
are now supported. The notion of “Inductive DBMS” was thus born, which inspired
much research [43], while vendors have been working on providing some data min-
ing functionality as part of their DBMS [44].

Extending Relational Query Languages for Data Streams 377

The Stream Mill DSMS supports a powerful data stream mining workbench
called SMM which is open and extensible. The first ingredient of SMM is a library
of powerful data stream mining methods defined as window UDAs. New methods
can be defined using ESL, or procedural languages; in either case the definition
follows the standard INITIALIZE, ITERATE, TERMINATE, and EXPIRE templates of
aggregates previously described. For the analysts and other users who want to work
at higher level of abstraction, SMM support mining models [40, 45]. Mining meth-
ods and models are discussed next.

5.1 Density-Based Clustering (DBScan)

DBScan represents a popular clustering algorithm that can be successfully applied
to mining and monitoring data streams [46]. Let us assume we have a stream of two-
dimensional data, where more than minPts points occurring in close proximity (i.e.,
at distance less than eps) of each other are assigned to the same cluster, while sparse
points are instead classified as outliers. To monitor changes in the incoming stream
of two-dimensional data, we employ DBScan algorithm as follows: (i) partition the
stream into blocks containing the same number of tuples, (ii) cluster the data in
each block, and (iii) monitor the appearance/disappearance of new/old clusters and
changes in cluster population between successive blocks. The first two tasks are
accomplished by the following ESL statement that invokes the dbscan aggregate on
input data stream Stream_of_Points(Xvalue, Yvalue, TimeStamp):

/*call dbscan with minPts = 10 and eps = 50 */
SELECT dbscan(Xvalue, Yvalue, 0, 10, 50)

OVER(ROWS 999 PRECEDING SLIDE 1000)
FROM Stream_of_Points

Here 10 and 50 are the example values we assign to two important parameters
for the DBScan Algorithm, minPts and eps, respectively. The third argument is for
book-keeping purposes. Observe that since the size of the slide is the same as that
of the window, this is a tumble. Therefore the Stream Mill system will use the base
definition of DBScan, shown below, independent of whether a window version is
available or not.

Given the two parameters eps and minPts, the DBScan algorithm works as fol-
lows: pick an arbitrary point p and find its neighbors (points that are less than eps
distance away). If p has more than minPts neighbors then form a cluster and call
DBScan on all its neighbors recursively. If p does not have more than minPts neigh-
bors then move to other un-clustered points in the database. Note, this can be viewed
as a depth-first search.

AGGREGATE dbscan(iX Real, iY Real, Flag Int, minPt Int, eps Int): Int
{ TABLE closepnts(X2 real, Y2 real, C2 Int) MEMORY;

INITIALIZE: ITERATE: {
/* Find neighbors of the given point */

378 N. Laptev et al.

INSERT INTO CLOSEPNTS SELECT X1, Y1, C1 FROM points
WHERE sqrt((X1-iX)*(X1-iX) + (Y1-iY)*(Y1-iY)) < eps;

/* If there are more than minPt neighbors, form a cluster */
UPDATE clusterno SET Cno= Cno+1 /* new cluster number*/

WHERE Flag=0 AND SQLCODE=0 /* A new cluster */
AND minPt < (SELECT count(C2) FROM closepnts);

/* Assign these neighboring points to this cluster */
UPDATE points SET C1 = (SELECT Cno FROM clusterno)

WHERE points.C1=0 AND
EXISTS (SELECT S.X1 FROM closepnts AS S

WHERE points.X1=S.X2 AND points.Y1=S.Y2)
AND minPt < (SELECT count(C2) FROM closepnts);

/* Call dbscan recursively */
SELECT dbscan(X2, Y2, 1, minPt, eps)

FROM closepnts, points
WHERE X1 = X2 AND Y1=Y2;

DELETE FROM closepnts;
}

}; /*end dbscan*/

5.2 Mining Data Streams with Concept Drift

Since streaming data is characterized by time-changing concepts, a basic challenge
faced by data mining algorithms is to model and capture the time-evolving trends
and patterns in the streams, and make time-critical predictions. One approach is to
incrementally maintain a model for the time-changing data. In this case the model
is learned from data in the most recent window. This approach has several weak
points. First, given that data arrives at a high speed, incremental model maintenance
is usually a costly task, especially for learning methods such as the decision tree
algorithm, which are known to be unstable. Second, models trained from the data
in a window may not be optimal. If the window is too large, it may contain concept
drifts; if it is too small, it may result in over-fitting.

A more effective approach consists in using an ensemble based model whereby
we partition the stream into fixed size data chunks and learn a model from each
chunk. We combine models learned from data chunks, whose class distribution is
similar to the most recent training data, to be our stream classifier (as shown in
Fig. 1). This approach reduces classification error in the concept-drifting environ-
ment. We use ESL to implement this approach [47] effectively, which takes full
advantage of off-the-shelf classifier packages and other procedural routines.

The seemingly complex solution described above can be implemented in ESL in
a very succinct way. We assume each data record in the stream is in the form of
(a1, . . . ,an,L), where ai, . . . ,an are attribute values, and L is the class label. If L =

Extending Relational Query Languages for Data Streams 379

Fig. 1 Mining streams with
concept-drift

TBA then it is a testing example, otherwise it is a training example. In Example 12,
we express the algorithm in one SQL statement.

Here, we call UDA ClassifyStream with keyword SLIDE, which implements data
partitioning on the stream, via tumbles of size 1000. We assume classifiers, together
with their weights, are stored in a table called ensemble. In UDA classifystream,
we use classifiers in the ensemble whose weights are above a given threshold to
classify each test example, where Classify is a UDA for classifying static data [11].
Once we reach the end of a data partition, we learn a new classifier from the training
data in the partition, and we reset the weight of each classifier in the ensemble
proportional to its accuracy in classifying the most recent training data. The freshly
weighted classifiers will then be used to classify data in the next partition.

Example 12 A Terse Expression for Complex Classifier Ensembles

SELECT ClassifyStream(S.*)
OVER (ROWS 999 PRECEDING SLIDE 1000)

FROM stream AS S;

Example 13 UDA classifystream

AGGREGATE ClassifyStream(a1, . . . , an, L) : Int
{ TABLE temp(a1, . . . , an, L);

INITIALIZE : ITERATE : {
INSERT INTO RETURN

SELECT sum(E.Classify(a1, . . . , an) × E.weight) /
sum(E.weight)

FROM ensemble AS E
WHERE L = TBA AND E.weight ≥ threshold;

INSERT INTO TEMP VALUES (a1, . . . , an, L);
}
TERMINATE : {

INSERT INTO ensemble

380 N. Laptev et al.

SELECT learn(T.*) FROM TEMP AS T
WHERE T.L <> TBA;

UPDATE ensemble AS E SET E.weight =
(SELECT 1-avg(|E.Classify(T.*)-T.L|)
FROM TEMP AS T
WHERE T.L<>TBA);

}
}

5.3 Mining Models

The integration of mining methods into SMM is made simple via the Mining Model
Definition Language which support the declaration of mining models [40]. Each
mining model instance defines (i) which mining UDAs will be used in the task,
(ii) the parameter values and ancillary information they will use, and (iii) the flow
of stream data between these methods [40, 45].

Seldom flows need to be specified for complicated mining tasks. Consider a more
advanced mining method such as an ensemble based weighted bagging (EBWB)
[47], which is supported by SMM to improve the accuracy of classifiers in the pres-
ence of concept drifts and shifts. With EBWB, instead of maintaining a single clas-
sifier, the user maintains several small classifiers, whose classification in combined
later using some kind of weighted voting. This approach assures a better adapta-
tion in the presence of concept-shift and concept-drift, since new classifiers can be
continuously trained based on the latest statistics, while older or inaccurate clas-
sifiers can be retired. Note that specifying the various steps required for weighted
bagging represents a daunting task for analysts and less experienced users. There-
fore, MMDL supports specification of one or more mining flows within the mining
model definition. These complex mining processes only have to be specified once
during model definition and can be reused by all users. Flows have been essential
in definition of many built-in mining methods, such as SWIM for association rule
mining [48], in SMM [40]. At the best of our knowledge SMM’s ability to support
data stream mining algorithms is unique among DSMS and CEP systems. On the
other hand, systems such as MOA [49] provide a flexible and user-friendly envi-
ronment for evaluating algorithms for data stream mining and for the incremental
mining of data sets; however such systems are not DSMS designed to support QoS
for continuous queries over extended periods of time.

6 The Stream Mill System

The architecture of the Stream Mill system consists of a single server and multiple
clients.

Extending Relational Query Languages for Data Streams 381

The Client

Users interact with the server through the query editor—marked as α in Fig. 2. The
query editor allows the user to perform the following tasks: logging in and out of the
system, defining streams, queries, aggregates, starting and stopping queries, etc. Re-
sults of these tasks are shown in the query editor’s status pane, by default. The client
also provides a set of GUI modules to display the workflow and the results of the
continuous queries in a graphical form, e.g., β in Fig. 2. Several performance meters
(marked as γ) are also at hand to continuously monitor traffic, memory utilization,
queue length, and related measures of server performance.

The Server

The bulk of Stream Mill R&D efforts focused on the Server, which supports the
following functional modules:

Query Compiler/Optimizer

The compiler is responsible for parsing and compiling continuous queries and gen-
erating/modifying the query graph that describes how continuous queries are im-
plemented by operators that take tuples from their input buffers and push them into
their output buffers (in cooperation with the Buffer Manager). These operators are
implemented as C/C++ functions compiled into dynamic libraries, which are then
invoked by the Execution Scheduler. After careful optimizations, natively defined
UDAs on the average execute nearly as well (a 30 % slowdown) as UDAs exter-
nally defined in C++ and better than those defined in Java

Buffer Manager

The Buffer Manager is responsible for managing the stream tuples as in-memory
queues. Most tuples are processed and removed from these buffers as quickly as
possible to free space and to reduce latency. However, when windows are used in
the query, tuples must be retained main memory for extended period of time. This
is the task of the Window Manager, which is also responsible for supporting delta-
maintenance constructs for these windows, window sharing, and suitable paging
policy.

Execution Scheduler

The Execution Scheduler is responsible for deciding which operator from the query
graph executes next and how many input tuples it will consume. This decision re-
flects the optimization criterion selected, which in turn reflects priorities specified

382 N. Laptev et al.

Fig. 2 The stream mill
system architecture

by the user and also the load conditions currently experienced in the system. For in-
stance, a low-memory condition might force the scheduler to change from a schedul-
ing policy that minimizes response time to one that minimizes memory [50]. This
change might require a modification (e.g., partitioning) of the query graph; Stream
Mill is capable of performing this adjustment very quickly, efficiently, and without
stopping the execution of the continuous queries [51]. Stream Mill’s flexible exe-
cution model also supports on demand-generation of timestamp to minimize idle-
waiting in operators such as union and joins [51].

Other important modules which are part of the system include the I/O Scheduler,
which is responsible for managing incoming and departing data streams, and the
interaction between the server and the outside world, including the Stream Mill
Client. The Database Manager, based on ATLaS and Berkeley DB, is used to support
database queries and spanning applications. Various extensions and improvements
being added include new data stream mining algorithms, load shedding extensions,
and better GUI primitives.

7 Related Work

Data Stream Management Systems (DSMSs) represent a vibrant area of current re-
search comprising several subareas. Because of space limitations and the availability
of authoritative surveys [5, 52], we will here focus on previous works that are most
relevant to ESL.

The Tapestry project [53, 54] that was the first to discuss ‘queries that run con-
tinuously over a growing database’ with append-only relations as the basic data
model for data streams. The append-only data model was then adopted in many
projects, including Tribeca [55], and Telegraph [56]. Likewise, OpenCQ [57] and
Niagara Systems [58] are designed to support continuous queries for monitoring
web sites, and the Chronicle data model uses append-only ordered sets of tuples
(chronicles) [59].

With respect to languages for continuous queries, the use of SQL and its dialects
is predominant not only for DSMS of relational DBMS lineage, but also for the

Extending Relational Query Languages for Data Streams 383

various systems of mongrel lineages known as CEP systems.7 In reality, however,
the apparent popularity of SQL is restricted by many exceptions and limitations.
For instance, extensions to C++ are used in Hancock [2], while systems focusing
on streaming XML data use XQuery or Xpath [8, 60]. Finally, CEP systems tend to
support SQL only as a tool of convenience for simple applications, while they rely
on some Java-based language for more serious applications and system extensions.
Even in DSMS with a relational database lineage, we find variations and limita-
tions. For instance, Tribeca relies on operators adapted from relational algebra [55],
while active database rules are used in OpenCQ [57]. Furthermore, the influential
Aurora/Borealis project [61] focuses on providing an attractive graphical interface
to define a network of continuous query operators, where the user can then request
an equivalent SQL program to be produced from this.

Another influential DSMS project is STREAM; this system and its Continu-
ous Query Language (CQL) [14] features several syntactic variations from the
SQL:2003 standards, and from the append-only model, by proposing an approach
based on database queries over continuously sliding windows.

Unlike many other DSMS projects, however, the Stream Mill project seeks to
preserve the syntax and semantics SQL standards as far as possible. In this respect,
our project is similar to the very influential Gigascope [15] project, which has also
adopted the append-only model as ESL does. But unlike Gigascope, which was
designed primarily for network analysis and management, ESL strives to serve a
much wider range of applications, including applications not supported by other
DSMSs, such as pattern queries on relational and XML streams [25, 28], and data
mining queries [40]. Thus, while Gigascope relies on SQL-2 style of aggregates,
ESL adopts the SQL:2003 constructs for windowed aggregates; the same constructs
are then applied to UDAs producing a compact language that is Turing complete on
stored data and NB-complete on streaming data [6, 62].

8 Conclusion

A key contribution of ESL and Stream Mill is proving that rather limited exten-
sions enable database query languages to support effectively a very wide range of
data stream applications, by providing levels of expressive power and generality
that match or surpass those of other query languages and systems proposed for data
stream and publish/subscribe applications [1–3, 8, 9]. The merits of ESL extensions
are supported by theoretical results [6, 62] and demonstrated by important applica-
tions that are beyond the reach of other DSMS, including continuous data mining
queries [40], sequence queries on the nested-word and the XML model [24, 25, 28],
and algorithms for synopsis maintenance [36]. This significant leap in power and
generality has been achieved while preserving the basic append-only-table seman-
tics for data streams and minimizing extensions w.r.t. SQL:2003 standards—as

7http://en.wikipedia.org/wiki/Complex_event_processing.

http://en.wikipedia.org/wiki/Complex_event_processing

384 N. Laptev et al.

needed to facilitate the writing of applications that span both databases and data
streams.

The Stream Mill prototype is now fully operational and supports (i) continuous
queries on data streams [63], (ii) ad hoc queries on database tables, and (iii) ad
hoc queries on table-like concrete views defined on data streams. More information
on (iii), time-series queries, and XQuery on SAX in Stream Mill is available from
the project web site [13].

Acknowledgements Thanks are due to Yijian Bai, Yannei Law, Stefano Emiliozzi, Shu Man
Li, Vincenzo Russo, and Xin Zhou for their many contributions to the system and its enabling
technology.

References

1. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-
bul, S.Z. Aurora, A new model and architecture for data stream management. VLDB J. 12(2),
120–139 (2003)

2. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, Hancock: a language for extracting signatures
from data streams, in SIGKDD (2000), pp. 9–17

3. P. Felber, P. Eugster, R. Guerraoui, A. Kermarrec, The many faces of publish/subscribe. ACM
Comput. Surv. 35(2), 114–131 (2003)

4. ISO/IEC. Database languages—SQL, ISO/IEC 9075-*:2003 (2003)
5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream

systems, in PODS (2002), pp. 1–16
6. Y.-N. Law, H. Wang, C. Zaniolo, Data models and query language for data streams, in VLDB

(2004), pp. 492–503
7. I. Information Technologies, Illustra user’s guide, in 1111 Broadway, Suite 2000, Oakland,

CA (1994)
8. D. Florescu, C. Hillery, D. Kossmann et al., The BEA/XQRL streaming xquery processor.

VLDB J. 13(3), 294–315 (2004)
9. Oracle. Oracle9i application developer’s guide advanced queuing. Oracle, Redwood Shores,

CA, USA (2002)
10. H. Wang, C. Zaniolo, Using SQL to build new aggregates and extenders for object-relational

systems, in VLDB (2000), pp. 166–175
11. H. Wang, C. Zaniolo, Atlas: a native extension of sql for data minining, in Proceedings of

Third SIAM Int. Conference on Data Mining (2003), pp. 130–141
12. J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, Semantics and evaluation techniques for

window aggregates in data streams, in SIGMOD Conference (2005), pp. 311–322
13. Stream mill home. http://wis.cs.ucla.edu/stream-mill
14. A. Arasu, S. Babu, J. Widom, Cql: a language for continuous queries over streams and rela-

tions, in DBPL (2003), pp. 1–19
15. C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O. Spatscheck, Gigascope: high performance

network monitoring with an sql interface, in SIGMOD (ACM, New York, 2002), p. 623
16. R. Sadri, C. Zaniolo, A. Zarkesh, J. Adibi, Optimization of sequence queries in database sys-

tems, in PODS (2001)
17. R. Sadri, C. Zaniolo, A.M. Zarkesh, J. Adibi, Expressing and optimizing sequence queries in

database systems. ACM Trans. Database Syst. 29(2), 282–318 (2004)
18. F. Zemke, A. Witkowski, M. Cherniak, L. Colby, Pattern matching in sequences of rows, in

Sql Change Proposal (2007). http://www.sqlsnippets.com/en/topic-12162.html

http://wis.cs.ucla.edu/stream-mill
http://www.sqlsnippets.com/en/topic-12162.html

Extending Relational Query Languages for Data Streams 385

19. N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, N. Tatbul, Dejavu: declarative pattern matching
over live and archived streams of events, in SIGMOD Conference (2009), pp. 1023–1026

20. E. Wu, Y. Diao, S. Rizvi, High-performance complex event processing over streams, in SIG-
MOD Conference (2006), pp. 407–418

21. D. Gyllstrom, J. Agrawal, Y. Diao, N. Immerman, On supporting kleene closure over event
streams, in ICDE (2008), pp. 1391–1393

22. A.J. Demers et al., Cayuga: a high-performance event processing engine, in SIGMOD Confer-
ence (2007), pp. 1100–1102

23. R.S. Barga et al., Consistent streaming through time: a vision for event stream processing, in
CIDR (2007), pp. 363–374

24. B. Mozafari, K. Zeng, C. Zaniolo, K*SQL: a unifying engine for sequence patterns and XML,
in SIGMOD Conference–Demo Track (2010), pp. 1143–1146

25. B. Mozafari, K. Zeng, C. Zaniolo, From regular expressions to nested words: unifying lan-
guages and query execution for relational and XML sequences. Proc. VLDB Endow. 3(1),
150–161 (2010)

26. R. Alur, P. Madhusudan, Adding nesting structure to words, in Developments in Language
Theory (2006)

27. R. Alur, P. Madhusudan, Visibly pushdown languages, in STOC (2004), pp. 202–211
28. X. Zhou, H. Thakkar, C. Zaniolo, Unifying the processing of XML streams and relational data

streams, in ICDE (2006), p. 50
29. U. Srivastava, J. Widom, Memory-limited execution of windowed stream joins, in VLDB

(2004), pp. 324–335
30. Y. Bai, H. Thakkar, C. Luo, H. Wang, C. Zaniolo, A data stream language and system designed

for power and flexibility, in CIKM (2006), pp. 337–346
31. L. Golab, M. Tamer Özsu, Update-pattern-aware modeling and processing of continuous

queries, in ACM SIGMOD Conference (2005), pp. 658–669
32. B. Mozafari, C. Zaniolo, Optimal load shedding with aggregates and mining queries, in ICDE

(2010), pp. 76–88
33. Y.-N. Law, C. Zaniolo, Improving the accuracy of continuous aggregates and mining queries

on data streams under load shedding. Int. J. Bus. Intell. Data Min. 3(1), 99–117 (2008)
34. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding win-

dows: (extended abstract), in Proceedings of the Thirteenth Annual ACM–SIAM Symposium
on Discrete Algorithms (2002), pp. 635–644

35. C. Aggarwal, Data Streams: Models and Algorithms (Springer, Berlin, 2007)
36. H. Mousavi, C. Zaniolo, Fast and accurate computation of equi-depth histograms over data

streams, in EDBT (2011), pp. 69–80
37. C. Jin, W. Qian, C. Sha, J.X. Yu, A. Zhou, Dynamically maintaining frequent items over

a data stream, in Proceedings of the 12th ACM Conference on Information and Knowledge
Management (CIKM) (2003)

38. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP) (2000), pp. 508–515

39. G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking most frequent items
dynamically, in PODS (2003), pp. 296–306

40. H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, S.M.M. Carlo Zaniolo, A data
stream management system for knowledge discovery, in ICDE (2011), pp. 757–768

41. S. Sarawagi, S. Thomas, R. Agrawal, Integrating association rule mining with relational
database systems: alternatives and implications, in SIGMOD (1998)

42. T. Imielinski, H. Mannila, A database perspective on knowledge discovery. Commun. ACM
39(11), 58–64 (1996)

43. C. Zaniolo, Mining databases and data streams with query languages and rules—invited paper,
in KDID 2005: Knowledge Discovery in Inductive Databases, 4th International Workshop.
Lecture Notes in Computer Science, vol. 3933 (Springer, Berlin, 2006), pp. 24–37

44. Z. Tang, J. Maclennan, P.P. Kim, Building data mining solutions with OLE DB for DM and
XML for analysis. SIGMOD Rec. 34(2), 80–85 (2005)

386 N. Laptev et al.

45. H. Thakkar, B. Mozafari, C. Zaniolo, Designing an inductive data stream management system:
the stream Mill experience, in SSPS (2008), pp. 79–88

46. H.-P. Kriegel, M. Ester, J. Sander, X. Xu, A density-based algorithm for discovering clusters
in large spatial databases with noise, in KDD (1996), pp. 226–231

47. H. Wang Wei Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble clas-
sifiers, in KDD (2003), pp. 226–235

48. B. Mozafari, H. Thakkar, C. Zaniolo, Verifying and mining frequent patterns from large win-
dows over data streams, in ICDE (2008), pp. 179–188

49. A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, T. Seidl, Moa: massive
online analysis, a framework for stream classification and clustering. J. Mach. Learn. Res. 11,
44–50 (2010)

50. Y. Bai, C. Zaniolo, Minimizing latency and memory in DSMS: a unified approach to quasi-
optimal scheduling, in SSPS (2008), pp. 58–67

51. Y. Bai, H. Thakkar, H. Wang, C. Zaniolo, Optimizing timestamp management in data stream
management systems, in ICDE (2007), pp. 1334–1338

52. L. Golab, M. Tamer Özsu, Issues in data stream management. ACM SIGMOD Rec. 32(2),
5–14 (2003)

53. D. Barbara, The characterization of continuous queries. Int. J. Coop. Inf. Syst. 8(4), 295–323
(1999)

54. D.B. Terry, D. Goldberg, D.A. Nichols, B.M. Oki, Continuous queries over append-only
databases, in SIGMOD Conference (1992), pp. 321–330

55. M. Sullivan, Tribeca: a stream database manager for network traffic analysis, in VLDB (1996),
p. 594

56. S. Chandrasekaran et al., TelegraphCQ: continuous dataflow processing for an uncertain
world, in CIDR (2003)

57. L. Liu, C. Pu, W. Tang, Continual queries for Internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. 11(4), 583–590 (1999)

58. J. Chen, D.J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query system for
Internet databases, in SIGMOD (2000), pp. 379–390

59. H. Jagadish, I. Mumick, A. Silberschatz, View maintenance issues for the chronicle data
model, in PODS (1995), pp. 113–124

60. A. Kumar Gupta, D. Suciu, Stream processing of xpath queries with predicates, in SIGMOD
Conference (2003), pp. 419–430

61. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik, Monitoring streams—a new class of data management applications, in
VLDB, Hong Kong, China (2002)

62. Y.-N. Law, H. Wang, C. Zaniolo, Relational languages and data models for continuous queries
on sequences and data streams. ACM Trans. Database Syst. 36, 8 (2011)

63. C. Luo, H. Thakkar, H. Wang, C. Zaniolo, A native extension of SQL for mining data streams,
in ACM SIGMOD Conference 2005 (2005), pp. 873–875

	Extending Relational Query Languages for Data Streams
	1 Introduction
	2 ESL: An Expressive Stream Language Based on SQL
	2.1 User-Deﬁned Aggregates (UDAs)
	2.2 Pattern Queries

	3 Window Aggregates and Their Applications
	Window Aggregates

	4 Approximation and Sketch Aggregates
	EH Sketches
	Approximate Frequent Items

	5 Mining Data Streams
	5.1 Density-Based Clustering (DBScan)
	5.2 Mining Data Streams with Concept Drift
	5.3 Mining Models

	6 The Stream Mill System
	The Client
	The Server
	Query Compiler/Optimizer
	Buffer Manager
	Execution Scheduler

	7 Related Work
	8 Conclusion
	References

