
STREAM: The Stanford Data Stream
Management System

Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom

1 Introduction

Traditional database management systems are best equipped to run one-time queries
over finite stored data sets. However, many modern applications such as network
monitoring, financial analysis, manufacturing, and sensor networks require long-
running, or continuous, queries over continuous unbounded streams of data. In the
STREAM project at Stanford, we are investigating data management and query pro-
cessing for this class of applications. As part of the project we are building a general-
purpose prototype Data Stream Management System (DSMS), also called STREAM,
that supports a large class of declarative continuous queries over continuous streams
and traditional stored data sets. The STREAM prototype targets environments where
streams may be rapid, stream characteristics and query loads may vary over time,
and system resources may be limited.

Building a general-purpose DSMS poses many interesting challenges:

• Although we consider streams of structured data records together with conven-
tional stored relations, we cannot directly apply standard relational semantics to
complex continuous queries over this data. In Sect. 2, we describe the semantics
and language we have developed for continuous queries over streams and rela-
tions.

• Declarative queries must be translated into physical query plans that are flexi-
ble enough to support optimizations and fine-grained scheduling decisions. Our
query plans, composed of operators, queues, and synopses, are described in
Sect. 3.

A. Arasu · B. Babcock · S. Babu · J. Cieslewicz · M. Datar · K. Ito · R. Motwani · U. Srivastava ·
J. Widom (B)
Department of Computer Science, Stanford University, Stanford, CA, USA
e-mail: widom@cs.stanford.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_16

317

mailto:widom@cs.stanford.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_16


318 A. Arasu et al.

• Achieving high performance requires that the DSMS exploit possibilities for shar-
ing state and computation within and across query plans. In addition, constraints
on stream data (e.g., ordering, clustering, referential integrity) can be inferred and
used to reduce resource usage. In Sect. 4, we describe some of these techniques.

• Since data, system characteristics, and query load may fluctuate over the lifetime
of a single continuous query, an adaptive approach to query execution is essential
for good performance. Our continuous monitoring and reoptimization subsystem
is described in Sect. 5.

• When incoming data rates exceed the DSMS’s ability to provide exact results
for the active queries, the system should perform load-shedding by introducing
approximations that gracefully degrade accuracy. Strategies for approximation
are discussed in Sect. 6.

• Due to the long-running nature of continuous queries, DSMS administrators and
users require tools to monitor and manipulate query plans as they run. This func-
tionality is supported by our graphical interface described in Sect. 7.

Many additional problems, including exploiting parallelism and supporting crash
recovery, are still under investigation. Future directions are discussed in Sect. 8.

2 The CQL Continuous Query Language

For simple continuous queries over streams, it can be sufficient to use a relational
query language such as SQL, replacing references to relations with references to
streams, and streaming new tuples in the result. However, as continuous queries
grow more complex, e.g., with the addition of aggregation, subqueries, windowing
constructs, and joins of streams and relations, the semantics of a conventional re-
lational language applied to these queries quickly becomes unclear [3]. To address
this problem, we have defined a formal abstract semantics for continuous queries,
and we have designed CQL, a concrete declarative query language that implements
the abstract semantics.

2.1 Abstract Semantics

The abstract semantics is based on two data types, streams and relations, which are
defined using a discrete, ordered time domain Γ :

• A stream S is an unbounded bag (multiset) of pairs 〈s, τ 〉, where s is a tuple and
τ ∈ Γ is the timestamp that denotes the logical arrival time of tuple s on stream S.

• A relation R is a time-varying bag of tuples. The bag of tuples at time τ ∈ Γ is
denoted R(τ), and we call R(τ) an instantaneous relation. Note that our defini-
tion of a relation differs from the traditional one which has no built-in notion of
time.



STREAM: The Stanford Data Stream Management System 319

Fig. 1 Data types and
operator classes in abstract
semantics

The abstract semantics uses three classes of operators over streams and relations:

• A relation-to-relation operator takes one or more relations as input and produces
a relation as output.

• A stream-to-relation operator takes a stream as input and produces a relation as
output.

• A relation-to-stream operator takes a relation as input and produces a stream as
output.

Stream-to-stream operators are absent—they are composed from operators of the
above three classes. These three classes are “black box” components of our abstract
semantics: the semantics does not depend on the exact operators in these classes,
but only on generic properties of each class. Figure 1 summarizes our data types
and operator classes.

A continuous query Q is a tree of operators belonging to the above classes. The
inputs of Q are the streams and relations that are input to the leaf operators, and
the output of Q is the output of the root operator. The output is either a stream
or a relation, depending on the class of the root operator. At time τ , an operator
of Q logically depends on its inputs up to τ : tuples of Si with timestamps ≤ τ

for each input stream Si , and instantaneous relations Rj (τ
′), τ ′ ≤ τ , for each input

relation Rj . The operator produces new outputs corresponding to τ : tuples of S with
timestamp τ if the output is a stream S, or instantaneous relation R(τ) if the output
is a relation R. The behavior of query Q is derived from the behavior of its operators
in the usual inductive fashion.

2.2 Concrete Language

Our concrete declarative query language, CQL (for Continuous Query Language), is
defined by instantiating the operators of our abstract semantics. Syntactically, CQL
is a relatively minor extension to SQL.

Relation-to-Relation Operators in CQL

CQL uses SQL constructs to express its relation-to-relation operators, and much of
the data manipulation in a typical CQL query is performed using these constructs,
exploiting the rich expressive power of SQL.



320 A. Arasu et al.

Stream-to-Relation Operators in CQL

The stream-to-relation operators in CQL are based on the concept of a sliding win-
dow [5] over a stream, and are expressed using a window specification language
derived from SQL-99:

• A tuple-based sliding window on a stream S takes an integer N > 0 as a param-
eter and produces a relation R. At time τ , R(τ) contains the N tuples of S with
the largest timestamps ≤ τ . It is specified by following S with “[Rows N].”
As a special case, “[Rows Unbounded]” denotes the append-only window
“[Rows ∞].”

• A time-based sliding window on a stream S takes a time interval ω as a parameter
and produces a relation R. At time τ , R(τ) contains all tuples of S with times-
tamps between τ − ω and τ . It is specified by following S with “[Range ω].”
As a special case, “[Now]” denotes the window with ω = 0.

• A partitioned sliding window on a stream S takes an integer N and a set of at-
tributes {A1, . . . ,Ak} of S as parameters, and is specified by following S with
“[Partition By A1, . . . ,Ak Rows N].” It logically partitions S into dif-
ferent substreams based on equality of attributes A1, . . . ,Ak , computes a tuple-
based sliding window of size N independently on each substream, then takes the
union of these windows to produce the output relation.

Relation-to-Stream Operators in CQL

CQL has three relation-to-stream operators: Istream, Dstream, and Rstream. Istream
(for “insert stream”) applied to a relation R contains 〈s, τ 〉 whenever tuple s is in
R(τ) − R(τ − 1), i.e., whenever s is inserted into R at time τ . Dstream (for “delete
stream”) applied to a relation R contains 〈s, τ 〉 whenever tuple s is in R(τ − 1) −
R(τ), i.e., whenever s is deleted from R at time τ . Rstream (for “relation stream”)
applied to a relation R contains 〈s, τ 〉 whenever tuple s is in R(τ), i.e., every current
tuple in R is streamed at every time instant.

Example CQL Queries

Example 1 The following continuous query filters a stream S:

Select Istream(*) From S [Rows Unbounded] Where S.A > 10

Stream S is converted into a relation by applying an unbounded (append-only) win-
dow. The relation-to-relation filter “S.A > 10” acts over this relation, and the in-
serts to the filtered relation are streamed as the result. CQL includes a number of
syntactic shortcuts and defaults for convenience, which permit the above query to
be rewritten in the following more intuitive form:

Select * From S Where S.A > 10



STREAM: The Stanford Data Stream Management System 321

Example 2 The following continuous query is a windowed join of two streams S1
and S2:

Select * From S1 [Rows 1000], S2 [Range 2 Minutes]
Where S1.A = S2.A And S1.A > 10

The answer to this query is a relation. At any given time, the answer relation con-
tains the join (on attribute A with A > 10) of the last 1000 tuples of S1 with the
tuples of S2 that have arrived in previous 2 minutes. If we prefer instead to pro-
duce a stream containing new A values as they appear in the join, we can write
“Istream(S1.A)” instead of “*” in the Select clause.

Example 3 The following continuous query probes a stored table R based on each
tuple in stream S and streams the result:

Select Rstream(S.A, R.B) From S [Now], R Where S.A = R.A

Complete details of CQL including syntax, semantic foundations, syntactic
shortcuts and defaults, equivalences, and a comparison against related continuous
query languages are given in [3].

3 Query Plans and Execution

When a continuous query specified in CQL is registered with the STREAM system,
a query plan is compiled from it. Query plans are composed of operators, which
perform the actual processing, queues, which buffer tuples (or references to tuples)
as they move between operators, and synopses, which store operator state.

3.1 Operators

Recall from Sect. 2 that there are two fundamental data types in our query language:
streams, defined as bags of tuple-timestamp pairs, and relations, defined as time-
varying bags of tuples. We unify these two types in our implementation as sequences
of timestamped tuples, where each tuple additionally is flagged as either an insertion
(+) or deletion (−). We refer to the tuple-timestamp-flag triples as elements.

Streams only include + elements, while relations may include both + and −
elements to capture the changing relation state over time. Queues logically contain
sequences of elements representing either streams or relations. Each query plan op-
erator reads from one or more input queues, processes the input based on its seman-
tics, and writes any output to an output queue. Individual operators may materialize
their relational inputs in synopses (see Sect. 3.3) if such state is useful.

The operators in the STREAM system that implement the CQL language are
summarized in Table 1. In addition, there are several system operators to handle



322 A. Arasu et al.

Table 1 Operators used in STREAM query plans

Name Operator type Description

select relation-to-relation Filters elements based on predicate(s)

project relation-to-relation Duplicate-preserving projection

binary-join relation-to-relation Joins two input relations

mjoin relation-to-relation Multiway join from [22]

union relation-to-relation Bag union

except relation-to-relation Bag difference

intersect relation-to-relation Bag intersection

antisemijoin relation-to-relation Antisemijoin of two input relations

aggregate relation-to-relation Performs grouping and aggregation

duplicate-eliminate relation-to-relation Performs duplicate elimination

seq-window stream-to-relation Implements time-based, tuple-based,

and partitioned windows

i-stream relation-to-stream Implements Istream semantics

d-stream relation-to-stream Implements Dstream semantics

r-stream relation-to-stream Implements Rstream semantics

“housekeeping” tasks such as marshaling input and output and connecting query
plans together. During execution, operators are scheduled individually, allowing for
fine-grained control over queue sizes and query latencies. Scheduling algorithms are
discussed later in Sect. 4.3.

3.2 Queues

A queue in a query plan connects its “producing” plan operator OP to its “consum-
ing” operator OC . At any time a queue contains a (possibly empty) collection of
elements representing a portion of a stream or relation. The elements that OP pro-
duces are inserted into the queue and buffered there until they are processed by OC .

Many of the operators in our system require that elements on their input queues
be read in nondecreasing timestamp order. Consider, for example, a window opera-
tor OW on a stream S as described in Sect. 2.2. If OW receives an element 〈s, τ,+〉
and its input queue is guaranteed to be in nondecreasing timestamp order, then OW

knows it has received all elements with timestamp τ ′ < τ , and it can construct the
state of the window at time τ − 1. (If timestamps are known to be unique it can con-
struct the state at time τ .) If, on the other hand, OW does not have this guarantee,
it can never be sure it has enough information to construct any window correctly.
Thus, we require all queues to enforce nondecreasing timestamps.

Mechanisms for buffering tuples and generating heartbeats to ensure nonde-
creasing timestamps, without sacrificing correctness or completeness, are discussed
in detail in [17].



STREAM: The Stanford Data Stream Management System 323

3.3 Synopses

Logically, a synopsis belongs to a specific plan operator, storing state that may be
required for future evaluation of that operator. (In our implementation, synopses are
shared among operators whenever possible, as described later in Sect. 4.1.) For ex-
ample, to perform a windowed join of two streams, the join operator must be able
to probe all tuples in the current window on each input stream. Thus, the join oper-
ator maintains one synopsis (e.g., a hash table) for each of its inputs. On the other
hand, operators such as selection and duplicate-preserving union do not require any
synopses.

The most common use of a synopsis in our system is to materialize the current
state of a (derived) relation, such as the contents of a sliding window or the relation
produced by a subquery. Synopses also may be used to store a summary of the
tuples in a stream or relation for approximate query answering, as discussed later in
Sect. 6.2.

Performance requirements often dictate that synopses (and queues) must be kept
in memory, and we tacitly make that assumption throughout this chapter. Our system
does support overflow of these structures to disk, although currently it does not
implement sophisticated algorithms for minimizing I/O when overflow occurs; see,
e.g., [20].

3.4 Example Query Plan

When a CQL query is registered, STREAM constructs a query plan: a tree of op-
erators, connected by queues, with synopses attached to operators as needed. As
a simple example, a plan for the query from Example 2 is shown in Fig. 2. The
original query is repeated here for convenience:

Select * From S1 [Rows 1000], S2 [Range 2 Minutes]
Where S1.A = S2.A And S1.A > 10

There are four operators in the example plan: a select, a binary-join, and
one instance of seq-window for each input stream. Queues q1 and q2 hold the
input stream elements which could, for example, have been received over the net-
work and placed into queues by a system operator (not depicted). Queue q3, which
is the output queue of the (stream-to-relation) operator seq-window, holds el-
ements representing the relation “S1 [Rows 1000].” Queue q4 holds elements
for “S2 [Range 2 Minutes].” Queue q5 holds elements for the joined relation
“S1 [Rows 1000] �	 S2 [Range 2 Minutes],” and from these elements,
Queue q6 holds the elements passing the select operator. q6 may lead to an out-
put operator sending elements to the application, or to another query plan operator
within the system.

The select operator can be pushed down into one or both branches below
the binary-join operator, and also below the seq-window operator on S2.



324 A. Arasu et al.

Fig. 2 A simple query plan
illustrating operators, queues,
and synopses

However, tuple-based windows do not commute with filter conditions, and therefore
the select operator cannot be pushed below the seq-window operator on S1.

The plan has four synopses, synopsis1–synopsis4. Each seq-window operator
maintains a synopsis so that it can generate “−” elements when tuples expire from
the sliding window. The binary-join operator maintains a synopsis material-
izing each of its relational inputs for use in performing joins with tuples on the
opposite input, as described earlier. Since the select operator does not need to
maintain any state, it does not have a synopsis.

Note that the contents of synopsis1 and synopsis3 are similar (as are the contents
of synopsis2 and synopsis4), since both maintain a materialization of the same win-
dow, but at slightly different positions of stream S1. Section 4.1 discusses how we
eliminate such redundancy.

3.5 Query Plan Execution

When a query plan is executed, a scheduler selects operators in the plan to execute in
turn. The semantics of each operator depends only on the timestamps of the elements
it processes, not on system or “wall-clock” time. Thus, the order of execution has
no effect on the data in the query result, although it can affect other properties such
as latency and resource utilization. Scheduling is discussed further in Sect. 4.3.

Continuing with our example from the previous section, the seq-window op-
erator on S1, on being scheduled, reads stream elements from q1. Suppose it reads
element 〈s, τ,+〉. It inserts tuple s into synopsis1, and if the window is full (i.e.,
the synopsis already contains 1000 tuples), it removes the earliest tuple s′ in the



STREAM: The Stanford Data Stream Management System 325

synopsis. It then writes output elements into q3: the element 〈s, τ,+〉 to reflect the
addition of s to the window, and the element 〈s′, τ,−〉 to reflect the deletion of s′ as
it exits the window. Both of these events occur logically at the same time instant τ .
The other seq-window operator is analogous.

When scheduled, the binary-join operator reads the earliest element across
its two input queues. If it reads an element 〈s, τ,+〉 from q3, then it inserts s into
synopsis3 and joins s with the contents of synopsis4, generating output elements
〈s · t, τ,+〉 for each matching tuple t in synopsis4. Similarly, if the binary-join
operator reads an element 〈s, τ,−〉 from q3, it generates 〈s · t, τ,−〉 for each match-
ing tuple t in synopsis4. A symmetric process occurs for elements read from q4. In
order to ensure that the timestamps of its output elements are nondecreasing, the
binary-join operator must process its input elements in nondecreasing times-
tamp order across both inputs.

Since the select operator is stateless, it simply dequeues elements from q5,
tests the tuple against its selection predicate, and enqueues the identical element
into q6 if the test passes, discarding it otherwise.

4 Performance Issues

In the previous section, we introduced the basic architecture of our query process-
ing engine. However, simply generating the straightforward query plans and execut-
ing them as described can be very inefficient. In this section, we discuss ways in
which we improve the performance of our system by eliminating data redundancy
(Sect. 4.1), selectively discarding data that will not be used (Sect. 4.2), and schedul-
ing operators to most efficiently reduce intermediate state (Sect. 4.3).

4.1 Synopsis Sharing

In Sect. 3.4, we observed that multiple synopses within a single query plan may ma-
terialize nearly identical relations. In Fig. 2, synopsis1 and synopsis3 are an example
of such a pair.

We eliminate this redundancy by replacing the two synopses with lightweight
stubs, and a single store to hold the actual tuples. These stubs implement the same
interfaces as non-shared synopses, so operators can be oblivious to the details of
sharing. As a result, synopsis sharing can be enabled or disabled on the fly.

Since operators are scheduled independently, it is likely that operators sharing a
single synopsis store will require slightly different views of the data. For example, if
queue q3 in Fig. 2 contains 10 elements, then synopsis3 will not reflect these changes
(since the binary-join operator has not yet processed them), although synopsis1
will. When synopses are shared, logic in the store tracks the progress of each stub,
and presents the appropriate view (subset of tuples) to each of the stubs. Clearly, the



326 A. Arasu et al.

Fig. 3 A query plan illustrating synopsis sharing

store must contain the union of its corresponding stubs: A tuple is inserted into the
store as soon as it is inserted by any one of the stubs, and it is removed only when it
has been removed from all of the stubs.

To further decrease state redundancy, multiple query plans involving similar in-
termediate relations can share synopses as well. For example, suppose the following
query is registered in addition to the query in Sect. 3.4:

Select A, Max(B) From S1 [Rows 200] Group By A

Since sliding windows are contiguous in our system, the window on S1 in this query
is a subset of the window on S1 in the other query. Thus, the same data store can
be used to materialize both windows. The combination of the two query plans with
both types of sharing is illustrated in Fig. 3.

4.2 Exploiting Constraints

Streams may exhibit certain data or arrival patterns that can be exploited to reduce
run-time synopsis sizes. Such constraints can either be specified explicitly at stream-
registration time, or inferred by gathering statistics over time [6]. (An alternate and
more dynamic technique is for the streams to contain punctuations, which specify
run-time constraints that also can be used to reduce resource requirements [21].)

As a simple example, consider a continuous query that joins a stream Orders
with a stream Fulfillments based on attributes orderID and itemID, perhaps to mon-
itor average fulfillment delays. In the general case, answering this query precisely
requires synopses of unbounded size [2]. However, if we know that all elements for



STREAM: The Stanford Data Stream Management System 327

a given orderID and itemID arrive on Orders before the corresponding elements ar-
rive on Fulfillments, then we need not maintain a join synopsis for the Fulfillments
operand at all. Furthermore, if Fulfillments elements arrive clustered by orderID,
then we need only save Orders tuples for a given orderID until the next orderID is
seen.

We have identified several types of useful constraints over data streams. Effective
optimizations can be made even when the constraints are not strictly met by defining
an adherence parameter, k, that captures how closely a given stream or pair of
streams adheres to a constraint of that type. We refer to these as k-constraints:

• A referential integrity k-constraint on a many-one join between streams defines
a bound k on the delay between the arrival of a tuple on the “many” stream and
the arrival of its joining “one” tuple on the other stream.

• An ordered-arrival k-constraint on a stream attribute S.A defines a bound k on
the amount of reordering in values of S.A. Specifically, given any tuple s in
stream S, for all tuples s′ that arrive at least k + 1 elements after s, it must be
true that s′.A ≥ s.A.

• A clustered-arrival k-constraint on a stream attribute S.A defines a bound k on
the distance between any two elements that have the same value of S.A.

We have developed query plan construction and execution algorithms that take
stream constraints into account in order to reduce synopsis sizes at query operators
by discarding unnecessary state [9]. The smaller the value of k for each constraint,
the more state that can be discarded. Furthermore, if an assumed k-constraint is not
satisfied by the data, our algorithm produces an approximate answer whose error is
proportional to the degree of deviation of the data from the constraint.

4.3 Operator Scheduling

An operator consumes elements from its input queues and produces elements on its
output queue. Thus, the global operator scheduling policy can have a large effect on
memory utilization, particularly with bursty input streams.

Consider the following simple example. Suppose we have a query plan with two
operators, O1 followed by O2. Assume that O1 takes one time unit to process a
batch of n elements, and it produces 0.2n output elements per input batch (i.e.,
its selectivity is 0.2). Further, assume that O2 takes one time unit to operate on
0.2n elements, and it sends its output out of the system. (As far as the system is
concerned, O2 produces no elements, and therefore its selectivity is 0.) Consider
the following bursty arrival pattern: n elements arrive at every time instant from
t = 0 to t = 6, then no elements arrive from time t = 7 through t = 13.

Under this scenario, consider the following scheduling strategies:

• FIFO scheduling. When batches of n elements have been accumulated, they are
passed through both operators in two consecutive time units, during which no
other element is processed.



328 A. Arasu et al.

• Greedy scheduling. At any time instant, if there is a batch of n elements buffered
before O1, it is processed in one time unit. Otherwise, if there are more than 0.2n

elements buffered before O2, then 0.2n elements are processed using one time
unit. This strategy is “greedy” since it gives preference to the operator that has
the greatest rate of reduction in total queue size per unit time.

The following table shows the expected total queue size for each strategy, where
each table entry is a multiplier for n:

Time 0 1 2 3 4 5 6 Avg

FIFO scheduling 1.0 1.2 2.0 2.2 3.0 3.2 4.0 2.4

Greedy scheduling 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1.6

After time t = 6, input queue sizes for both strategies decline until they reach 0 after
time t = 13. The greedy strategy performs better because it runs O1 whenever it has
input, reducing queue size by 0.8n elements each time step, while the FIFO strategy
alternates between executing O1 and O2.

However, the greedy algorithm has its shortcomings. Consider a plan with op-
erators O1, O2, and O3. O1 produces 0.9n elements per n input elements in one
time unit, O2 processes 0.9n elements in one time unit without changing the input
size (i.e., it has selectivity 1), and O3 processes 0.9n elements in one time unit and
sends its output out of the system (i.e., it has selectivity 0). Clearly, the greedy al-
gorithm will prioritize O3 first, followed by O1, and then O2. If we consider the
arrival pattern in the previous example then our total queue size is as follows (again
as multipliers for n):

Time 0 1 2 3 4 5 6 Avg

FIFO scheduling 1.0 1.9 2.9 3.0 3.9 4.9 5.0 3.2

Greedy scheduling 1.0 1.9 2.8 3.7 4.6 5.5 6.4 3.7

In this case, the FIFO algorithm is better. Under the greedy strategy, although O3
has highest priority, sometimes it is “blocked” from running because it is preceded
by O2, the operator with the lowest priority. If O1, O2 and O3 are viewed as a
single block, then together they reduce n elements to zero elements over three units
of time, for an average reduction of 0.33n elements per unit time—better than the
reduction rate of 0.1n elements O1 provides. Since the greedy algorithm considers
individual operators only, it does not take advantage of this fact.

This observation forms the basis of our chain scheduling algorithm [4]. Our al-
gorithm forms blocks (“chains”) of operators as follows: Start by marking the first
operator in the plan as the “current” operator. Next, find the block of consecutive
operators starting at the “current” operator that maximizes the reduction in total
queue size per unit time. Mark the first operator following this block as the “cur-
rent” operator and repeat the previous step until all operators have been assigned to



STREAM: The Stanford Data Stream Management System 329

Fig. 4 Adaptive query processing

chains. Chains are scheduled according to the greedy algorithm, but within a chain,
execution proceeds in FIFO order. In terms of overall memory usage, this strategy
is provably close to the optimal “clairvoyant” scheduling strategy, i.e., the optimal
strategy based on knowledge of future input [4].

5 Adaptivity

In long-running stream applications, data and arrival characteristics of streams may
vary significantly over time [13]. Query loads and system conditions may change
as well. Without an adaptive approach to query processing, performance may drop
drastically over time as the environment changes. The STREAM system includes a
monitoring and adaptive query processing infrastructure called StreaMon [10].

StreaMon has three components as shown in Fig. 4(a): an Executor, which runs
query plans to produce results, a Profiler, which collects and maintains statistics
about stream and plan characteristics, and a Reoptimizer, which ensures that the
plans and memory structures are the most efficient for current characteristics. In
many cases, we combine the profiler and executor to reduce the monitoring over-
head.

The Profiler and Reoptimizer are essential for adaptivity, but they compete for
resources with the Executor. We have identified a clear three-way tradeoff among
run-time overhead, speed of adaptivity, and provable convergence to good strategies
if conditions stabilize. StreaMon supports multiple adaptive algorithms that lie at
different points along this tradeoff spectrum.

StreaMon can detect useful k-constraints (recall Sect. 4.2) in streams and exploit
them to reduce memory requirements for many continuous queries. In addition, it
can adaptively adjust the adherence parameter k based on the actual data in the
streams. Figure 4(b) shows the portions of StreaMon’s Profiler and Reoptimizer
that handle k-constraints, referred to as k-Mon. When a query is registered, the opti-
mizer notifies the profiler of potentially useful constraints. As the executor runs the
query, the profiler monitors the input streams continuously and informs the reopti-
mizer whenever it detects a change in a k value for any of these constraints. The



330 A. Arasu et al.

reoptimizer component adapts to these changes by adding or dropping constraints
used by the executor and adjusting k values used for memory allocation.

StreaMon also implements an algorithm called Adaptive Greedy (or A-Greedy)
[7], which maintains join orders adaptively for pipelined multiway stream joins,
also known as MJoins [22]. Figure 4(c) shows the portions of StreaMon’s Profiler
and Reoptimizer that comprise the A-Greedy algorithm. Using A-Greedy, StreaMon
monitors conditional selectivities and orders stream joins to minimize overall work
in current conditions. In addition, StreaMon detects when changes in conditions may
have rendered current orderings suboptimal, and reorders in those cases. In stable
conditions, the orderings converged on by the A-Greedy algorithm are equivalent
to those selected by a static Greedy algorithm that is provably within a cost factor
<4 of optimal. In practice, the Greedy algorithm, and therefore A-Greedy, nearly
always finds the optimal orderings.

In addition to adaptive join ordering, we use StreaMon to adaptively add and
remove subresult caches in stream join plans, to avoid recomputation of interme-
diate results [8]. StreaMon monitors costs and benefits of candidate caches, selects
caches to use, allocates memory to caches, and adapts over the entire spectrum be-
tween stateless MJoins and cache-rich join trees, as stream and system conditions
change.

Currently we are in the process of applying the StreaMon approach to make even
more aspects of the STREAM system adaptive, including sharing of synopses and
subplans, and operator scheduling.

6 Approximation

In many applications data streams can be bursty, with unpredictable peaks during
which the load may exceed available system resources, especially if numerous com-
plex queries have been registered. Fortunately, for many stream applications (e.g., in
many monitoring tasks), it is acceptable to degrade accuracy gracefully by providing
approximate answers during load spikes [18].

There are two primary ways in which a DSMS may be resource-limited:

• CPU-limited (Sect. 6.1)—The data arrival rate may be so high that there is in-
sufficient CPU time to process each stream element. In this case, the system may
approximate by dropping elements before they are processed.

• Memory-limited (Sect. 6.2)—The total state required for all registered queries
may exceed available memory. In this case, the system may selectively retain
some state, discarding the rest.

6.1 CPU-Limited Approximation

CPU usage can be reduced by load-shedding—dropping elements from query plans
and saving the CPU time that would be required to process them to completion. We



STREAM: The Stanford Data Stream Management System 331

implement load-shedding by introducing sampling operators that probabilistically
drop stream elements as they are input to the query plan.

The time-accuracy tradeoffs for sampling are more understandable for some
query plans than others. For example, if we know a few basic statistics on the
distribution of values in our streams, probabilistic guarantees on the accuracy of
sliding-window aggregation queries for a given sampling rate can be derived math-
ematically, as we will show in below. However, in more complex queries—ones
involving joins, for example—the error introduced by sampling is less clear and the
choice of error metric may be application-dependent.

Suppose we have a set of sliding-window aggregation queries over the input
streams. A simple example is

Select Avg (Temp) From SensorReadings [Range 5 Minutes]

If we have many such queries in a CPU-limited setting, our goal is to sample the
inputs so as to minimize the maximum relative error across all queries. (As an exten-
sion, we can weight the relative errors to provide “quality-of-service” distinctions.)
It follows that we should select sampling rates such that the relative error is the same
for all queries. Assume that for a given query Qi we know the mean μi and standard
deviation σi of the values we are aggregating, as well as the window size Ni . These
statistics can be collected by the profiler component in the StreaMon architecture
(recall Sect. 5). We can use the Hoeffding inequality [16] to derive a bound on the
probability δ that our relative error exceeds a given threshold εmax for a given sam-
pling rate. We then fix δ at a low value (e.g., 0.01) and algebraically manipulate this
equation to derive the required sampling rate Pi [6],

Pi = 1

εmax

√
σ 2

i + μ2
i

2Niμ
2
i

log
2

δ
.

Our load-shedding policy solves for the best achievable εmax given the constraint
that the system, after inserting load-shedders, can keep up with the arrival of ele-
ments. It then adds sampling operators at various points in the query plan such that
effective sampling rate for a query Qi is Pi .

6.2 Memory-Limited Approximation

Even using our scheduling algorithm that minimizes memory devoted to queues
(Sect. 4.3), and our constraint-aware execution strategy that minimizes synopsis
sizes (Sect. 4.2), if we have many complex queries with large windows (e.g., large
tuple-based windows, or any size time-based windows over rapid data streams),
memory may become a constraint. Spilling to disk may not be a feasible option due
to online performance requirements.

In this scenario, memory usage can be reduced at the cost of accuracy by re-
ducing the size of synopses at one or more operators. Incorporating a window into
a synopsis where no window is being used, or shrinking the existing window, will



332 A. Arasu et al.

shrink the synopsis. Note that if sharing is in place (Sect. 4.1), then modifying a
single synopsis may affect multiple queries.

Reducing the size of a synopsis generally tends to also reduce the sizes of
synopses above it in the query plan, but there are exceptions. Consider a query
plan where a sliding-window synopsis is used by a duplicate-elimination operator.
Shrinking the window size can increase the operator’s output rate, leading to an
increase in the size of “later” synopses. Fortunately, most of these cases can be de-
tected statically when the query plan is generated, and the system can avoid reducing
synopsis sizes in such cases.

There are other methods for reducing synopsis size, including maintaining a sam-
ple of the intended synopsis content (which is not always equivalent to inserting a
sample operator into the query plan), using histograms [19] or wavelets [12] when
the synopsis is used for aggregation or even for a join, and using Bloom filters [11]
for duplicate elimination, set difference, or set intersection. In addition, synopsis
sizes can be reduced by lowering the k values for known k-constraints (Sect. 4.2).
Lower k values cause more state to be discarded, but result in loss of accuracy if
the constraint does not hold for the assumed k. All of these techniques share the
property that memory use is flexible, and it can be traded against precision statically
or dynamically.

See Sect. 8.3 for discussion on future directions related to approximation.

7 The STREAM System Interface

In a system for continuous queries, it is important for users, system administrators,
and system developers to have the ability to inspect the system while it is running
and to experiment with adjustments. To meet these needs, we have developed a
graphical query and system visualizer for the STREAM system. The visualizer al-
lows the user to:

• View the structure of query plans and their component entities (operators, queues,
and synopses). Users can view the path of data flow through each query plan as
well as the sharing of computation and state within the plan.

• View the detailed properties of each entity. For example, the user can inspect
the amount of memory being used (for queue and synopsis entities), the current
throughput (for queue and operator entities), selectivity of predicates (for operator
entities), and other properties.

• Dynamically adjust entity properties. These changes are reflected in the system
in real time. For example, an administrator may choose to increase the size of a
queue to better handle bursty arrival patterns.

• View monitoring graphs that display time-varying entity properties such as queue
sizes, throughput, overall memory usage, and join selectivity, plotted dynamically
against time.

A screenshot of our visualizer is shown in Fig. 5. The large pane at the left dis-
plays a graphical representation of a currently selected query plan. The particular



STREAM: The Stanford Data Stream Management System 333

Fig. 5 Screenshot of the STREAM visualizer

query shown is a windowed join over two streams, R and S. Each entity in the plan
is represented by an icon: the ladder-shaped icons are queues, the boxes with mag-
nifying glasses over them are synopses, the window panes are windowing operators,
and so on. In this example, the user has added three monitoring graphs: the rate of
element flow through queues above and below the join operator, and the selectivity
of the join.

The upper-right pane displays the property-value table for a currently selected
entity. The user can inspect this list and can alter the values of some of the proper-
ties interactively. Finally, the lower-right pane displays a legend of entity icons and
descriptions for reference.

Our technique for implementing the monitoring graphs shown in Fig. 5 is based
on introspection queries on a special system stream called SysStream. Every entity
can publish any of its property values at any time onto SysStream. When a spe-
cific dynamic monitoring task is desired, e.g., monitoring recent join selectivity,
the relevant entity writes its statistics periodically on SysStream. Then a standard
CQL query, typically a windowed aggregation query, is registered over SysStream
to compute the desired continuous result, which is fed to the monitoring graph in
the visualizer. Users and applications can also register arbitrary CQL queries over
SysStream for customized monitoring tasks.

8 Future Directions

At the time of writing we plan to pursue the following general directions of future
work.



334 A. Arasu et al.

8.1 Distributed Stream Processing

So far we have considered a centralized DSMS model where all processing takes
place at a single system. In many applications, the stream data is actually produced
at distributed sources. Moving some processing to the sources instead of moving all
data to a central system may lead to more efficient use of processing and network
resources. Many new challenges arise if we wish to build a fully distributed data
stream system with capabilities equivalent to our centralized system.

8.2 Crash Recovery

The ability to recover to a consistent state following a system crash is a key feature
of conventional database systems, but has yet to be investigated for data stream
systems. There are some fundamental differences between DBMSs and DSMSs that
play an important role in crash recovery:

• The notion of consistent state in a DBMS is defined based on transactions, which
are closely tied to the conventional one-time query model. ACID transactional
properties do not map directly to the continuous query paradigm.

• In a DBMS, the data in the database cannot change during down-time. In contrast,
many stream applications deliver data to the DSMS from outside sources that do
not stop generating data while the system is down, possibly requiring the DSMS
to “catch up” following a crash.

• In a DBMS, queries underway at the time of a crash may be forgotten—it is the
responsibility of the application to restart them. In contrast, registered continuous
queries are part of the persistent state of a DSMS.

These differences lead us to believe that new mechanisms are needed for crash re-
covery in data stream systems. While logging of some type and perhaps even some
notion of transactions may form a component of the solution, new techniques will
be required as well.

8.3 Improved Approximation

Although some aspects of the approximation problem have already been addressed
(see Sect. 6), more work is needed to address the problem in its full generality. In the
memory-limited case, work is needed on the problem of sampling over arbitrary sub-
queries, computing “maximum-subset” as opposed to sampling approximations, and
maximizing accuracy over multiple weighted queries. In the CPU-limited case, we
need to address a broader range of queries, especially considering joins. Finally, we
need to handle situations when the DSMS may be both CPU and memory-limited.



STREAM: The Stanford Data Stream Management System 335

A significant challenge related to approximation is developing mechanisms
whereby the system can indicate to users or applications that approximation is oc-
curring, and to what degree. The converse is also important: mechanisms for users to
indicate acceptable degrees of approximation. As one step in the latter direction, we
are developing extensions to CQL that enable the specification of “approximation
guidelines” so that the user can indicate acceptable tolerances and priorities.

8.4 Relationship to Publish–Subscribe Systems

In a publish–subscribe (pub–sub) system (see, e.g., [1, 14, 15]), events may be pub-
lished continuously, and they are forwarded by the system to users who have regis-
tered matching subscriptions. Clearly, we can map a pub–sub system to a DSMS by
considering publications as streams and subscriptions as continuous queries. How-
ever, the techniques we have developed so far for processing continuous queries in
a DSMS have been geared primarily toward a relatively small number of indepen-
dent, complex queries, while a pub–sub system has potentially millions of simple,
similar queries. We are exploring techniques to bridge the capabilities of the two:
From the pub–sub perspective, provide a system that supports a more general model
of subscriptions. From the DSMS perspective, extend our approach to scale to an
extremely larger number of queries.

References

1. M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D. Chandra, Matching events in a
content-based subscription system, in Proc. of the 18th Annual ACM Symp. on Principles of
Distributed Computing (1999), pp. 53–61

2. A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom, Characterizing memory requirements
for queries over continuous data streams. ACM Trans. Database Syst. 29(1), 1–33 (2004)

3. A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121–142 (2006)

4. B. Babcock, S. Babu, M. Datar, R. Motwani, Chain: operator scheduling for memory mini-
mization in data stream systems, in Proc. of the 2003 ACM SIGMOD Intl. Conf. on Manage-
ment of Data (2003), pp. 253–264

5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream sys-
tems, in Proc. of the 21st ACM SIGACT–SIGMOD–SIGART Symp. on Principles of Database
Systems (2002), pp. 1–16

6. B. Babcock, M. Datar, R. Motwani, Load shedding for aggregation queries over data streams,
in Proc. of the 20th Intl. Conf. on Data Engineering (2004)

7. S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive ordering of pipelined
stream filters, in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data (2004)

8. S. Babu, K. Munagala, J. Widom, R. Motwani, Adaptive caching for continuous queries, in
Proc. of the 21st Intl. Conf. on Data Engineering (2005), pp. 118–129

9. S. Babu, U. Srivastava, J. Widom, Exploiting k-constraints to reduce memory overhead in
continuous queries over data streams. ACM Trans. Database Syst. 29(3), 545–580 (2004)

10. S. Babu, J. Widom, StreaMon: an adaptive engine for stream query processing, in Proc. of the
2004 ACM SIGMOD Intl. Conf. on Management of Data (2004). Demonstration description



336 A. Arasu et al.

11. B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

12. K. Chakrabarti, M.N. Garofalakis, R. Rastogi, K. Shim, Approximate query processing using
wavelets, in Proc. of the 26th Intl. Conf. on Very Large Data Bases (2000), pp. 111–122

13. J. Gehrke (ed.), Data stream processing. IEEE Comput. Soc. Bull. Technical Comm. Database
Eng. 26(1) (2003)

14. F. Fabret, H.-.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha, Filtering algorithms
and implementation for very fast publish/subscribe, in Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data (2001), pp. 115–126

15. R.E. Gruber, B. Krishnamurthy, E. Panagos, READY: a high performance event notification
system, in Proc. of the 16th Intl. Conf. on Data Engineering (2000), pp. 668–669

16. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat.
Soc. 58(301), 13–30 (1963)

17. U. Srivastava, J. Widom, Flexible time management in data stream systems, in Proc. of the
23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (2004)

18. N. Tatbul, U. Cetintemel, S.B. Zdonik, M. Cherniak, M. Stonebraker, Load shedding in a data
stream manager, in Proc. of the 29th Intl. Conf. on Very Large Data Bases (2003), pp. 309–320

19. N. Thaper, S. Guha, P. Indyk, N. Koudas, Dynamic multidimensional histograms, in Proc. of
the 2002 ACM SIGMOD Intl. Conf. on Management of Data (2002), pp. 428–439

20. D. Thomas, R. Motwani, Caching queues in memory buffers, in Proc. of the 15th Annual
ACM–SIAM Symp. on Discrete Algorithms (2004)

21. P.A. Tucker, D. Maier, T. Sheard, L. Fegaras, Exploiting punctuation semantics in continuous
data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

22. S. Viglas, J.F. Naughton, J. Burger, Maximizing the output rate of multi-way join queries
over streaming information sources, in Proc. of the 29th Intl. Conf. on Very Large Data Bases
(2003), pp. 285–296


	STREAM: The Stanford Data Stream Management System
	1 Introduction
	2 The CQL Continuous Query Language
	2.1 Abstract Semantics
	2.2 Concrete Language
	Relation-to-Relation Operators in CQL
	Stream-to-Relation Operators in CQL
	Relation-to-Stream Operators in CQL
	Example CQL Queries


	3 Query Plans and Execution
	3.1 Operators
	3.2 Queues
	3.3 Synopses
	3.4 Example Query Plan
	3.5 Query Plan Execution

	4 Performance Issues
	4.1 Synopsis Sharing
	4.2 Exploiting Constraints
	4.3 Operator Scheduling

	5 Adaptivity
	6 Approximation
	6.1 CPU-Limited Approximation
	6.2 Memory-Limited Approximation

	7 The STREAM System Interface
	8 Future Directions
	8.1 Distributed Stream Processing
	8.2 Crash Recovery
	8.3 Improved Approximation
	8.4 Relationship to Publish-Subscribe Systems

	References


