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1 Introduction

In many streaming scenarios, we need to measure and quantify the data that is seen.
For example, we may want to measure the number of distinct IP addresses seen over
the course of a day, compute the difference between incoming and outgoing trans-
actions in a database system or measure the overall activity in a sensor network.
More generally, we may want to cluster readings taken over periods of time or in
different places to find patterns, or find the most similar signal from those previ-
ously observed to a new observation. For these measurements and comparisons to
be meaningful, they must be well-defined. Here, we will use the well-known and
widely used Lp norms. These encompass the familiar Euclidean (root of sum of
squares) and Manhattan (sum of absolute values) norms.

In the examples mentioned above—IP traffic, database relations and so on—
the data can be modeled as a vector. For example, a vector representing IP traffic
grouped by destination address can be thought of as a vector of length 232, where the
ith entry in the vector corresponds to the amount of traffic to address i. For traffic be-
tween (source, destination) pairs, then a vector of length 264 is defined. The number
of distinct addresses seen in a stream corresponds to the number of non-zero entries
in a vector of counts; the difference in traffic between two time-periods, grouped by
address, corresponds to an appropriate computation on the vector formed by sub-
tracting two vectors, and so on. As is usual in streaming, we assume that the domain
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of the data and the size of the data are too massive to permit the direct computation
of the functions of interest—which are otherwise mostly straightforward—and in-
stead, we must use an amount of storage that is much smaller than the size of the
data. For the remainder of this chapter, we put our description in terms of vectors,
with the understanding that this is an abstraction of problems coming from a wide
variety of sources.

Throughout, we shall use a and b to denote vectors. The dimension of a vector
(number of entries) is denoted as |a|.

Definition 1 The Lp norm (for 0 < p ≤ 2) of a vector a of dimension n is

‖a‖p =
(

n∑
i=1

∣∣a[i]∣∣p
)1/p

.

The L0 norm is defined as

‖a‖0 =
(

n∑
i=1

∣∣a[i]∣∣0

)
= ∣∣{i∣∣a[i] �= 0

∣∣}∣∣
where 00 is taken to be 0.

These are vector norms in the standard sense: the result is non-negative, and zero
only when the vector is zero; and the norm of the sum of vectors is less than the sum
of their norms. For p > 0, the Lp norm guarantees that ‖ka‖p = k‖a‖p for any
scalar k. This does not hold for p = 0, so L0 is not a norm in the strict sense. These
norms immediately allow the measurement of the difference between vectors, by
finding the norm of the (component-wise) difference between them. To be precise,

Definition 2 The Lp distance between vectors a and b of dimension n is the Lp

norm of their difference,

‖a − b‖p =
(

n∑
i=1

∣∣a[i] − b[i]∣∣p
)1/p

.

The Lp distance encompasses three very commonly used distance measures:

• Euclidean distance, given by L2 distance, is the root of the sum of the squares of
the differences of corresponding entries.

• The Manhattan distance, given by the L1 distance, is the sum of the absolute
differences.

• The Hamming distance, given by the L0 distance, is the number of non-zero
differences.

In this chapter, we will show how all three of the distances can be estimated
for massive vectors presented in the streaming model. This is achieved by making
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succinct sketches of the data, which can be used as synopses of the vectors they
summarize. This is described in Sect. 2. In Sect. 3, we discuss some applications
of these results, to the distinct elements problem, and to computing with objects
that can’t be modeled as simple vectors. Lastly, we discuss related work and new
directions in Sects. 4 and 5.

2 Building Sketches Using Stable Distributions

2.1 Data Stream Model

We assume a very general, abstracted model of data streams where our input arrives
as a stream of updates to process. We consider vectors a,b, . . . , which are presented
in an implicit, incremental fashion. Each vector has dimension n, and its current
state at time t is a(t) = [a(t)[1],a(t)[2], . . . ,a(t)[n]]. For convenience, we shall
usually drop t and refer only to the current state of the vector. Initially, a is the zero
vector, 0, so a(0)[i] is 0 for all i. Updates to individual entries of the vector are
presented as a stream of pairs. The t th update is (it , ct ), meaning that

a(t)[it ] = a(t − 1)[it ] + ct ,

a(t)[j ] = a(t − 1)[j ], j �= it .

For the most part, we expect the data to arrive in no particular order, since it is
unrealistic to expect it to be sorted on any attribute. We also assume that each index
can appear many times over in the stream of updates. In some cases, ct s will be
strictly positive, meaning that entries only increase; in other cases, ct s are allowed
to be negative also. The former is known as the cash register case and the latter
the turnstile case [35]. Here, we assume the more general case, that the data arrives
unordered and each index can be updated multiple times within the stream.

2.2 Stable Distributions

Stable Distributions are a class of statistical distributions with properties that allow
them to be used in finding Lp norms. This allows us to solve many problems of
interest on data streams. A stable distribution is characterized by four parameters
(following [38]), as follows:

• The stability parameter α ∈ (0,2],
• The skewness parameter β ∈ [−1,1],
• The scale parameter γ > 0,
• The shift parameter δ.
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Although there are different parameterizations of stable distributions, we shall
fix values of β,γ and δ for this discussion. This has the effect that the different
parameterization systems all coincide. We set β = 0, which makes the distribution
symmetric about its mode. Setting γ = 1 and δ = 0 puts the mode of the distribution
at 0 and gives a canonical distribution. Formally then, the distributions we consider
are symmetric and strictly stable, but we shall simply refer to them as stable.

Definition 3 A (strictly) stable distribution is a statistical distribution with param-
eter α in the range (0,2]. For any three independent random variables X,Y,Z

drawn from such a distribution, for scalars a, b, aX + bY is distributed as (|a|α +
|b|α)1/αZ.

These are called stable distributions because the underlying distribution remains
stable as instances are summed: the sum of stable distributions (with the same α)
remains stable. This can be thought of a generalization of the central limit theorem,
which states that the sum of distributions (with finite variance) will tend to a Gaus-
sian distribution. Note that, apart from α = 2, stable distributions have unbounded
variance.

Several well-known distributions are known to be stable. The Gaussian (normal)

distribution, with density f (x) = e−x2/2√
2π

, is strictly stable with α = 2. The Cauchy

distribution, with density f (x) = 1
π(1+x2)

, is strictly stable with α = 1. For all values
of α ≤ 2, stable distributions can be simulated by using appropriate transformations
from uniform distributions, as we will show later.

2.3 Sketch Construction

By applying the above definition iteratively, we find that

Corollary 1 Given random variables X1,X2, . . . ,Xn independently and identically
distributed as X, a strictly stable distribution with stability parameter α = p, and a
vector a, then S = a[1]X1 + a[2]X2 + · · · + a[n]Xn is distributed as ‖a‖p X.

From this corollary, we get the intuition for why stable distributions are helpful
in computing Lp norms and Lp distances: by maintaining the inner product of vari-
ables from α-stable distributions with a vector being presented in the stream, we
get a variable S which is distributed as a stable distribution scaled by the Lp norm
of the stream, where p = α. Maintaining this inner product as the vector undergoes
updates is straightforward: given an update (i, c), we simply add Xi · c to S. How-
ever, what we have so far is an equality in distribution; what we are aiming for is an
equality in value. To solve this problem, we proceed as follows.

Let med(X) denote the median of X, i.e., a value M such that Pr[X > M] = 1/2.
Then, for any s > 0, we have med(s · |X|) = s · med(|X|). In our case, med(|S|) =
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Fig. 1 Plot of empirically
found median of stable
distributions varying stability
parameter p in the range 0
to 2

med(‖a‖p · |X|) = ‖a‖p med(|X|). Moreover, med(|X|) depends only on p and
can be precomputed in advance. For α = 1 and α = 2 then med(|X|) = 1. For other
values of α, med(|X|) can be found numerically: Fig. 1 shows a plot of the median
values found by simulation, where each point represents one experiment of taking
the median of 10,000 drawings, raised to the power 1

p
. Thus, in order to estimate

‖a‖p , it suffices to compute an estimate z of med(|S|), and then estimate ‖a‖p by
z

med(|X|) .
To estimate M = med(|S|), we take a vector sk[1] . . . sk[m] of independent sam-

ples of the random variable S. In other words, for each i, we “generate” m indepen-
dent samples x1

i , . . . , xm
i of the Xi , and then compute sk[j ] = a[1]xj

1 +· · ·+a[n]xj
n .

We call this vector sk an α-stable sketch of the vector a. This can be viewed com-
putationally as maintaining each entry of the sketch as the inner product between
the vector and appropriately chosen random vectors, i.e., sk[j ] = a · xj . The proce-
dure is presented in more detail in Fig. 2. Note that the vector sk can be computed
in a streaming fashion; in particular, the numbers x

j
i are not actually stored. It is

important that we get the same value for x
j
i every time it is accessed: this is done by

using a pseudo-random number generator that is initialized with i to give a stream
of values x

j
i . Then we use the following lemma (for the random variable Z = |S|,

the absolute value of S).

Lemma 1 For any one-dimensional random variable Z with continuous density, let
F(t) = Pr[Z ≤ t]. There is a constant C > 0 such that for m = C

ε2 log 2
δ
, if we take

m independent samples z1, . . . , zm of Z and set z to be the median element of the
sequence z1, . . . , zm, then

Pr

[
F(z) ∈

[
1

2
− ε,

1

2
+ ε

]]
> 1 − δ.

Proof Let t be such that F(t) = 1
2 − ε. If F(z) < F(t) = 1

2 − ε, then zi < t for

most zi ’s, and therefore |{i:zi≥t}|
m

< 1
2 . However, for each zi we have Pr[zi ≥ t] =

1
2 + ε. Therefore, from Chernoff bound [34] we know that there exists a constant



288 G. Cormode and P. Indyk

C > 0 such that

P1 = Pr

[
F(z) <

1

2
− ε

]
≤ exp

(
−ε2m

C

)
.

Using the same argument, we obtain

P2 = Pr

[
F(z) >

1

2
+ ε

]
≤ exp

(
−ε2m

C

)
.

By setting m = C

ε2 log(2/δ), we obtain P1 + P2 ≤ δ. �

Note that our goal is to obtain an approximation to the median M , i.e., the number
such that F(M) = 1

2 , while the above provides us (with probability 1 − δ) with z

such that F(z) ∈ [ 1
2 − ε, 1

2 + ε]. For general functions F , z could be a bad estimate
of M ; e.g., if F is “flat” around the point 1

2 . However, if the derivative F ′ of F

is bounded by 1
B

from below around 1
2 , then the above implies that z ∈ [M − Bε,

M + Bε], i.e., that z = (1 ± Bε)M , which is precisely what we want.
It suffices to verify if the derivative of the function F for the random variable |S|

is bounded away from 0 around 1
2 . For α = {1,2}, this can be verified analytically.

For other values of α, this can be verified computationally, e.g., by plotting F . It
should be noted that the lower bound for F ′( 1

2 ) depends on α, and tends to ∞ as α

tends to 0.

2.4 Simulating Stable Distributions

When implementing this technique, we need to be able to generate values from
a stable distribution. These can be generated by using appropriate transformations
from uniform random distributions.

• For α = 1, we can use the Cauchy distribution, which is easy to draw from.
If U is a uniform random distribution returning values in the range [0,1], then
tan(π(U − 1

2 )) is distributed with the Cauchy distribution.
• For α = 2, we can use the Normal distribution, which can be drawn from using the

Box–Muller transformation: If U and V are independently distributed uniformly
over [0,1], then

√−2 lnU cos(2πV ) is distributed as a normal distribution.
• For all other values of α ∈ (0,2), stable distributions can be simulated using

the method of Chambers, Mallows and Stuck [6]. These take uniform distribu-
tions U,V onto the range [0,1] and output a value drawn from a stable distribu-
tion with parameter α �= 1. Set θ(U) = π · (U − 1

2 ). Then

stable(U,V,α) = sinαθ(U)

cos1/α θ(U)

(
cos(θ(U) · (1 − α))

− lnV

) 1−α
α

is distributed as a stable distribution with parameter α.
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Algorithm to compute sketches of a stream

1: for 1 ≤ j ≤ m do
2: sk[j ] ← 0.0
3: for all tuples (i, c) do
4: initialize-random-seed(i)
5: for 1 ≤ j ≤ m do
6: u ← uniformly-random-from(0,1)

7: v ← uniformly-random-from(0,1)

8: x
j
i ← stable(u, v,α)

9: sk[j ] ← sk[j ] + c · xj
i

10: return median(|sk[1]|, . . . , |sk[m]|)/med(|X|)
Fig. 2 Sketching algorithm

2.5 The Sketch Algorithm

The full algorithm to compute a sketch of a stream is given in Fig. 2. It works
as follows: lines 1–2 initialize the sketch vector to a vector of all zeros. Then for
each new tuple (i, c), we initialize a pseudo-random number generator with the
index i (line 4), so that when we draw random values (lines 6–7), these are pseudo-
random functions of i, the same every time the same value of i is seen in the stream.
Each successive call to the random number generator yields a new value, but the
sequence of values following each re-initialization is the same. Line 8 takes two
values in the range 0 to 1, and transforms them to yield a value drawn from a stable
distribution with parameter α. The j th entry of the sketch is updated, by adding on
the contribution of the update c times the stable value in line 9. This is repeated for
all m entries in the sketch. Lastly, to return an estimate of the norm of the vector, we
take the median of the (absolute) values of the sketch, and scale this by the median
of the stable distribution with parameter α.

We state a theorem that summarizes the properties of this algorithm.

Theorem 1 ([26]) In space O( 1
ε2 log 1

δ
) we can compute an α-stable sketch of a

vector a presented in the turnstile streaming model. Using this sketch we can com-
pute an estimate of ‖a‖p for p = α that is accurate within a factor of 1 ± ε with
probability at least 1 − δ. Processing each update to the vector a takes time linear
in the size of the sketch, O( 1

ε2 log 1
δ
).

This follows from the above lemma and the preceding discussion.
Note that to complete the proof we must also argue that we can replace truly

random samples x
j
i with values drawn using pseudo-random generators. The proof

of this relies on the pseudo-random generators of Nisan [37], and we refer the in-
terested reader to the details in [26]. In practice, it suffices to use standard random
number generators to generate uniform pseudo-random numbers, and use the trans-
forms given in the previous section.
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2.6 Other Estimators

In the previous sections we used the median of sk[1], . . . , sk[m] to estimate the
norm of the stream vector. There are alternative estimators that one can use instead.
In particular, for the L1 norm, Li et al. [32] proposed the following bias-corrected
geometric mean estimator:

E = cosm

(
π

2m

) m∏
j=1

∣∣sk[j ]∣∣1/m
.

This estimator is more accurate than the median estimator when the sample size
is small [32].

A similar estimator can be used to estimate the more general Lp norms, p ∈
(0,2]. Unlike the median estimator (which requires some computation to determine
the right parameters of the distribution function F ), the geometric mean estimator
is computable using a simple analytical formula; see [31] for more details.

2.7 Combining Sketches

We now state a number of the properties of this sketching technique, which follow
immediately from the method of their construction. These show how the α-stable
sketches have application to a variety of circumstances.

Corollary 2

sk(a + b) = sk(a) + sk(b),

sk(a − b) = sk(a) − sk(b).

These two facts follow immediately from the fact that the sketches are generated
as the inner product between the vector a and vectors of values drawn from random
distributions, x

j
i . So, the sketch of the sum of two vectors can be computed from

the sum of their sketches. This allows the distributed computation of sketches by
multiple parties: after agreeing in advance on a random number generator to use,
sketches of different data can be computed in parallel, and then the sketches com-
bined to get the sketch of the sum of the data. Similarly, the sketch of the difference
of two vectors, and hence the Lp distance between them, can be computed from
sketches of the original vectors. This allows large data sets to be compared by only
storing the short summarizing sketches of them.

Corollary 3

sk(c · a) = c · sk(a).
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Also by the linearity of construction, the sketch of a vector a scaled by a scalar
c can be computed directly from the sketch of the original vector. This allows, for
example, a new day’s set of data to be compared against the average of the previous
weeks data: the sketch of the average is computed by summing the sketches of
seven days data, and scaling by 1

7 . Similarly, the popular exponential decay model
where we compute a weighted average of previous vectors a(0),a(1),a(2), . . . as
(1−λ)(a(0)+λa(1)+λ2a(2)+· · ·+λia(i)+· · · ) (0 < λ < 1) is easy to construct
iteratively. Suppose we have a sketch of the current vector sk, and wish to include a
as the new day’s data. Then we can set sk[j ] ← (1 − λ)sk(a)[j ] + λsk[j ] for all j .

3 Application to Streaming Problems

In this section, we outline some of the applications within streaming and beyond
that stable distributions have been used to address. These include: estimating the
number of distinct items in a stream; as a way to track embeddings in small space;
and for geometric problems such as clustering and approximate nearest neighbor
searching.

3.1 L0 and Counting Distinct Items

Suppose we are shown a sequence of items, and want to know how many distinct
items there are in the sequence. This is a fundamental question in data stream anal-
ysis, and it has a large number of applications both in this form and for general-
izations of this problem. Assume that the each item is an integer in the range 1..n.
Then we could maintain a vector a where a[i] counts the number of occurrences
of item i. Arrivals of new items can be modeled as adding one to the appropriate
entry in the vector. In the turnstile streaming model, departures can be modeled as
subtracting one from the corresponding entry. The number of distinct items corre-
sponds to the L0 norm a, that is, the number of non-zero counts. The L0 norm is
somewhat more general than this, since it can also incorporate negative counts. Such
negative counts arise, for example, when we want to compare two vectors of counts,
and find in how many places the counts differ (the Hamming difference). Note that
stable distributions do not exist for α = 0, so we cannot directly apply the sketching
technique. Instead, we observe that for sufficiently small values of p, the Lp norm
approximates the L0 norm:

Theorem 2 ([11]) The L0 norm ‖a‖0 can be approximated by finding the Lp norm
of the integer valued vector a for sufficiently small p (0 < p ≤ ε

logU
) provided we

have an upper bound (U) on the size of each entry in the vector, so ∀i : |a[i]| < U .

Proof We show that the L0 norm of a vector can be well-approximated by∑
i |a[i]|p = ‖a‖p

p for a small value of p (p > 0). If, for all i we have that |a[i]| ≤ U
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Fig. 3 The “dominance norm” of multiple signals (left) computes the “area under the curve” of
the upper envelope of multiple signals (right)

for some upper bound U , then

‖a‖0 =
∑

i

∣∣a[i]∣∣0 ≤
∑

i

∣∣a[i]∣∣p ≤
∑

i

Up
∣∣a[i]∣∣0

≤ Up
∑

i

∣∣a[i]∣∣0 ≤ (1 + ε)
∑

i

∣∣a[i]∣∣0 = (1 + ε)‖a‖0.

We use the fact that a[i] is an integer and ∀i : |a[i]| ≤ U . The last inequality uses
Up ≤ (1 + ε) which follows if we set p ≤ ln(1+ε)

lnU
≈ ε

lnU
. �

From this, it follows that if we set the α of our sketches to be sufficiently small—
as small as the value of p indicated by the above analysis—and compute sketches
using stable distributions, then this can approximate the number of distinct items,
and more generally the L0 norm and L0 difference between vectors. Since by defi-
nition the stable distributions capture the Lp norm, we have to take no special action
when the vectors may contain negative values. Because the sketch is formed by a
linear projection of random vectors with the input data, they naturally and smoothly
accept updates of negative values.

When implementing this technique there are various technical details to deal
with. Values drawn from stable distributions with small stability parameters α tend
to grow very large, so even standard floating point formats are insufficient to handle
them. However, in practice it usually suffices to set α to be a sufficiently small con-
stant value. The experiments in [10] show that with α = 0.02, good approximations
to the L0 norm and the number of distinct items can be found.

3.2 Dominance Norms

The approach of using stable distributions to capture the L0 norm has been applied
to other problems: in [13], the so-called “dominance norm” of data is approximated
using stable distributions. The dominance norm is defined as

∑
i maxj ai,j for a

sequence of data items of the form (i, ai,j ), intuitively giving the “worst-case in-
fluence” of a sequence of signal values. This definition is illustrated in Fig. 3: for
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the three signals shown on the left, the dominance norm is computed by finding the
upper envelope of the signals (shown on the right), and taking the area under this
upper envelope.

One can approximate this computation by transforming the input into an instance
of computing L0 norms. Suppose that the signal values ai,j are integers. We can
(conceptually) replace each ai,j with a sequence of distinct items, ai,1, ai,2, . . . , ai,j .
Now observe that the number of distinct items in the transformed stream is exactly
the dominance norm. This shows that L0 is at the heart of the dominance norm.
However, this approach is not scalable: naively replacing ai,j from the input with
ai,j items means that the algorithm is exponentially slow in the size of the input.
Instead, we can make use of the properties of stable distributions to build an esti-
mator whose distribution is correct. The key idea is to round each ai,j to the closest
power of (1+ε), (1+ε)i , say, and to add i appropriately scaled values from a stable
distribution to build a sketch with the right distribution [13].

3.3 Application to Computing Embeddings

Not all objects can be naturally modeled as vectors. In dealing with massive items
that consist of text, geometric data, structured data or other objects, new methods
are needed to compare and measure them. However, the α-stable sketches for L1
and L2 distance are sufficiently flexible that they allow the following “embedding
approach”. Consider any set of objects X, with a distance functions D(q, r) defined
for any q, r ∈ X.

Definition 4 A mapping f : X → Lp is called an embedding with distortion c, if
for any q, r ∈ X, we have

D(q, r) ≤ ∥∥f (q) − f (r)
∥∥

p
≤ c · D(q, r).

Here, we use Lp as shorthand for “a vector space with the vector Lp norm”.
This definition can be further extended to allow the inequalities to hold with certain
probability.

If the mapping f works for some p ∈ {0,1,2}, and if f can be computed in a
streaming fashion, then we can obtain a streaming algorithm for computing short
sketches of objects from the space X. That is, for any q, r ∈ X defined by a stream,
we can compute their sketches such that D(q, r) can be approximated given the
sketches. See [27, 33] for more on embeddings and their algorithmic applications.

The simplest example of this approach is given in [14], where it is shown that
biologically motivated distances on permutations can be approximated up to small
constant factors by encoding information about adjacent characters in the permuta-
tion as appropriate vectors in L1.

More involved is the method in [12] which shows that a distance between strings
can also be embedded into L1. Only local information about the sequence is used in
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Fig. 4 Example parse tree for block edit distance text embedding

order to build the vector representation. The construction is more complex, since the
sequence is parsed into small blocks, which in turn are re-parsed at successive levels
in a hierarchy until a single item is left that represents the whole string. An example
parsing of a string is shown in Fig. 4: a tree is built whose leaves are the characters of
the string, and whose internal nodes represent selected substrings. The parsing can
be computed as successive characters are observed, and the increasingly long sub-
strings given by the internal nodes can be represented compactly with hash values.
These substrings can be thought of as defining dimensions of a high-dimensional
vector space. In the paper, it is shown that the L1 distance between two vectors
created by this process approximates an editing distance between the corresponding
strings. Since the parsing can be computed online, sketches for this distance can
be computed in small space using the α-stable approach. In total, O(logn log∗ n)

space is required to process a string of length n, and the embedding has distortion
O(logn log∗ n).

This approach is extended from string based data to tree structures (such as XML
documents) in [22]. Using a similar parsing approach, it is shown how an appropri-
ate editing distance on trees can be approximated up to a factor of O(log2 n log∗ n)

for trees with at most n nodes. Further, with a different kind of sketch based on sta-
ble distributions, the join size of a set of trees can be approximated. Here, the join
size is the number of pairs that are within a threshold distance of each other.

Another example of this approach is given in [28]. Consider a discrete d-dimen-
sional space {1, . . . ,
}d , and let P and Q be two subsets from that space. De-
fine M(P,Q) to be the cost of the matching between P and Q with minimum
cost: the cost of the matching is given by the sum of the distances between the
paired-up points. The value of M(P,Q) is a natural measure of a difference be-
tween two sets of points. Building on the work of Charikar [8], Indyk [28] showed
that M(·, ·) can be embedded into L1 with distortion O(log
), and that embedding
can be computed in small space. In fact, the embedding is quite simple. Let Gi ,
i = 1, . . . , t = log
, be square grids over �d with side length 2i−1, shifted by a
vector chosen uniformly at random from [0,
]d . For each cell c in Gi , let ni

P (c)

be the number of points in P that fall into c; note that ni
P can be viewed as a (high-

dimensional) vector. The embedding f maps P into (essentially) a concatenation
of vectors 20n0

P ,21n1
P , . . . ,2t nt

P . Observe that the embedding can be computed in
a streaming fashion: adding a point p to P can be implemented by incrementing
t positions in f (P ) that correspond to cells containing p; deleting a point from P
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can be implemented in an analogous way. Thus, the embedding can be naturally
combined with the sketching algorithm from the previous section.

It is worth mentioning that the above approximation factor O(log
) cannot be
much improved if one insists on proceeding through the L1 norm. Specifically, Naor
and Schechtman [36] showed that any such embedding must incur Ω(log
) distor-
tion. This lower bound may be tight for any approximation, and it will be interesting
to resolve this issue.

Finally, we mention that an analogous embedding into L0 gives a streaming al-
gorithm for estimating the cost of the minimum spanning tree of set of points P , up
to a factor of O(log
); see [28] for details.

3.4 Clustering and Nearest Neighbors

The sketch structure can be used as a “distance oracle”, giving dependable approxi-
mations of the distance between high dimensional vectors while keeping only a con-
stant amount of space for each object. They can therefore be applied to a number of
data indexing and data mining questions which rely on such distance computations,
replacing exact distance computations with approximations. For example, in order
to perform clustering on a set of high dimensional vectors that are defined by data
streams, we can keep sketches of the vectors, and then run the clustering algorithm
using those sketches. This approach was investigated in [11], where experimental
evidence was given that the clusterings found are of similar quality to those using
exact distance measurements. The idea of replacing exact distance computations
with approximate ones can be analyzed formally. For example, it is easy to show
that for the k-center objective function that using approximate distances changes
the approximation quality of the result from 2 to 2 + ε [9].

A more involved approach was taken in [16]. This showed that sketches us-
ing stable distributions could be fitted into the framework of ‘Locality Sensitive
Hash Functions’, and consequently can be used in the construction of Approximate
Nearest Neighbor search structures. Although this more generally applies to non-
streaming scenarios, the whole algorithm can be run on data presented in a stream-
ing format. The space that is needed is a function of the number of data points, rather
than a function of the total size of the input data.

4 Related Work

The sketch for L2, which is formed as the inner product between the vector a and
vectors r , each of whose entries is drawn independently from a Gaussian distri-
bution, can be seen as a weaker version of the well-known Johnson–Lindenstrauss
Lemma [30]. This states that such there exist embeddings of high dimensional vec-
tors in Euclidean space into a space with dimension O( 1

ε2 log 1
δ
) which has distor-

tion 1 + ε with probability 1 − δ. Here, we have shown the result for a space where
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we use the median operator to compute the distance. It has been shown that by tak-
ing the appropriately scaled L2 difference between such sketch vectors formed in
the same way also has this property (see, for example, [29]). What we also have
here is a version of this “weak Johnson–Lindenstrauss” lemma for L1 and L0. This
is about as strong as we may hope for, since it has been shown that it is not possi-
ble to create an approximate distance preserving of L1 into a lower dimensional L1
space [4]. Here, we use an L1-like operator: instead of computing the L1 norm of
the sketch as

∑
j |sk[j ]|, we compute medj (|sk[j ]|). 1

The fundamental work of Alon, Matias and Szegedy [2] (described in an earlier
chapter) initiated recent focus on computing norms of data streams. An algorithm
given therein computes the second frequency moment of a data stream, F2. As was
observed in [18], this directly gives a solution to finding the L2 norm and L2 dif-
ference between streams in the turnstile model. For most applications, the fact that
updates can be performed very quickly, and that the necessary four-wise indepen-
dent hash functions can be computed easily [39] means that this approach will be
preferable in many situations.

For computing the L1 difference, [18] shows how to modify the Alon–Matias–
Szegedy method using carefully constructed range-summable random variables.
However, this is under very strong restrictions on the data: each index can be seen
at most once for each vector. The approach here allows a much more general model
of the data, and is easier to compute. Similarly, [20] extended the above approach
to arbitrary Lp norms for p ∈ (0,2), but with the same disadvantages. The main
results described in this chapter on constructing sketches using stable distributions
(Sect. 2) appeared first in [26].

The distinct elements problem has attracted a great deal of study. In the arrivals
only (cash register) model, algorithms are known which are significantly faster than
the approach described here; see [3, 17, 19, 23, 24], and the discussions in elsewhere
in this book. In the more general problem of computing the L0 norm and L0 differ-
ence, where entries in the implicit vector defined by the stream can be negative, the
method using stable distributions is the only published solution. A detailed empir-
ical study of this approach, and a collection of ways to increase processing speed,
are given in [10].

In terms of the application of α-stable sketches to speeding up clustering, see
elsewhere in this book for details of much of the other work on clustering data
streams. Typically, the goal is typically to compute a representation of the optimal
clustering of a very large number of points in some arbitrary metric space, when
each point has a small representation. Here, we considered a somewhat different
scenario, where the number of points to cluster is not too large, but each point is
represented by a very high dimensional vector in some Lp normed space. Hence, the
two approaches are in some sense complementary and are not directly comparable.

1Observe that since we need the median operator, this is not a normed space. This is an important
restriction, since it means that one cannot immediately apply well-known techniques which work
on specific normed spaces, such as clustering or similarity search. In contrast, since the Johnson–
Lindenstrauss lemma does yield points in a lower dimensional metric space, all algorithms for
Euclidean space can be applied to the resulting transformed data.
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There is a very large body of work on Stable Distributions in Statistics and related
areas. For pointers, see the books by Zolotarev [40, 42], and Nolan [38]. It is rea-
sonable to say that the applications of stable distributions to streaming computations
are far from exhausted.

5 Extensions and New Directions

Finally, we outline some potential areas for future research to extend the applications
of stable distributions to streaming computations.

• One obstacle to implementing sketch-based summarization of very high speed
data streams is that the time cost of maintaining sketches can be too expensive
in some situations. This derives in part from the cost of simulating stable distri-
butions using transforms from uniform distributions. The main cost comes from
having to update every entry in the sketch with every update. For L2 norms al-
ternative methods are known which are asymptotically faster than Ω( 1

ε2 log 1
δ
)

per update; for example, see [7, 39] or the recent work on the “fast Johnson–
Lindenstrauss transform” [1]. Likewise, for the problem of approximating the
number of distinct items in the arrivals only (cash register) model, then faster up-
dates are possible. It remains an open problem to design algorithms to compute
L1 norms and L0 norms in the turnstile model, which have lower per-item update
cost. Note that one cannot expect lower space costs, since lower bounds of Ω( 1

ε2 )

have been shown [41].
• It is of interest to address the engineering question of how to incorporate stable

sketch computations into high speed data stream systems [15]. Various precompu-
tations may be possible to speed up the computations, using appropriate look-up
tables and so on. Techniques such as fixed point arithmetic may also be appropri-
ate for certain fixed Lp values (p = 1 or p = 2, say), where the generated values
do not grow too large. Other approaches may take advantages of skew in the data
to, for example, collect together multiple instances of the same vector entry being
updated, to further speed up the update time. There is a need to study in detail
many implementation issues such as these to make the use of stable sketches
within real situations a practical reality.

• The flexibility of this approach means that it is inviting to consider whether there
are similar methods to compute other quantities of interest on the stream. For ex-
ample, the “empirical entropy” of a sequence, given by

∑
i ai logai has a number

of applications, as does the “sum of logs”,
∑

i logai . Recently, progress has been
made on computing the empirical entropy of counts of items in the stream [5, 21],
it remains open to determine whether stable distributions or similar techniques
can also be applied to these problems.

• It is an intriguing fact that stable distributions exist only in the range α ∈ (0,2],
which corresponds to the range of Lp norms that can be approximated efficiently
(essentially in constant space) on the stream. Meanwhile, there are provable lower
bounds on the space required to estimate Lp norms for p > 2 that are polynomial
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in n, the dimension of the vector. The connection between these facts may be
more than mere coincidence, and making this connection explicit could lead to
the development of stronger lower bounds, or lower bounds for other, related
problems.

• Many techniques using stable distributions make use of a natural range summ-
ability-like property of these distributions. That is, their defining feature is that
the sum of stable distributions is itself distributed stable. This results in care-
ful constructions of random variables such that the range sum of particular sub-
ranges of variables can be computed efficiently (exponentially more efficient than
directly computing the sum). Such constructions have been shown for α = 1 and
α = 2 [25]. It remains to generalize these techniques to general values of α, and
to show new applications.

• Finally, there is a large literature on stable distributions, resulting from their
study in statistics, economics and beyond. Applications of stable distributions
to streaming computations have only just begun to make use of the wealth of ex-
isting knowledge about these distributions, and it is very conceivable that there
are many other applications of these distributions to problems of practical interest
in streaming computations.
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