
Frequent Itemset Mining over Data Streams

Gurmeet Singh Manku

1 Problem Definition

We study the problem of computing frequent elements in a data-stream. Given sup-
port threshold s ∈ [0,1], an element is said to be frequent if it occurs more than
sN times, where N denotes the current length of the stream. If we maintain a list
of counters of the form 〈element, count〉, one counter per unique element encoun-
tered, we need N counters in the worst-case. Many distributions are heavy-tailed in
practice, so we would need far fewer than N counters. However, the number would
still exceed 1/s, which is the maximum possible number of frequent elements. If
we insist on identifying exact frequency counts, then Ω(N) space is necessary. This
observation motivates the definition of ε-approximate frequency counts : given sup-
port threshold s ∈ [0,1] and an error parameter ε ∈ (0, s), the goal is to produce a
list of elements along with their estimated frequencies, such that three properties are
satisfied:

I. Estimated frequencies are less than the true frequencies by at most εN .
II. All elements whose true frequency exceeds sN are output.

III. No element whose true frequency is less than (s − ε)N is output.

Example Imagine a statistician who wishes to identify elements whose frequency
is at least 0.1 % of the entire stream seen so far. Then the support threshold is s =
0.1 %. The statistician is free to set ε ∈ (0, s) to whatever she feels is a comfortable
margin of error. Let us assume she chooses ε = 0.01 % (one-tenth of s). As per
Property I, estimated frequencies are less than their true frequencies by at most
0.01 %. As per Property II, all elements with frequency exceeding s = 0.1 % will be

G.S. Manku (B)
Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA
e-mail: manku@google.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_10

209

mailto:manku@google.com
http://dx.doi.org/10.1007/978-3-540-28608-0_10


210 G.S. Manku

output; there are no false negatives. As per Property III, no element with frequency
below 0.09 % will be output. This leaves elements with frequencies between 0.09 %
and 0.1 %—these might or might not form part of the output. On the whole, the
approximation has two aspects: high frequency false positives, and small errors in
individual frequencies. Both kinds of errors are tolerable in real-world applications.

2 One-Pass Algorithms

We present three algorithms for computing ε-approximate frequency counts. To
avoid floors and ceilings, we will assume that 1/ε is an integer (if not, we can scale
down ε to 2−r where r is an integer satisfying 2−r < ε < 2−r+1). The data structure
for all three algorithms is a list of counters of the form 〈element, count〉, initially
empty. At any time, ε-approximate frequency counts can be retrieved by identifying
those elements whose associated count exceeds (s − ε)N . The algorithms differ in
terms of the rules employed for creating, incrementing, decrementing and deleting
counters.

MISRA–GRIES ALGORITHM ([7]). Let e denote a newly-arrived element. If a
counter for e already exists, it is incremented. Otherwise, if there already exist 1/ε

counters, we repeatedly diminish all counters by 1 until some counter drops to zero.
We then delete all counters with count zero, and create a new counter of the form
〈e,1〉.

LOSSY COUNTING ([6]). Let e denote a newly-arrived element. If a counter for
e already exists, it is incremented. Otherwise, we create a new counter of the form
〈e,1〉. Whenever N , the current size of the stream, equals i/ε for some integer i, all
counters are decrement by one—we discard any counter that drops to zero.

STICKY SAMPLING ([6]). The algorithm is randomized, with δ denoting the prob-
ability of failure. The algorithm maintains r , the sampling rate, which varies over
the lifetime of the stream. Initially, r = 1. Let e denote the newly-arrived element.
If a counter for e exists, it is incremented. Otherwise, we toss a coin with proba-
bility of success r . If the coin toss succeeds, we create an entry of the form 〈e,1〉;
otherwise, we ignore e.

The sampling rate r varies as follows: Let t = 1
ε

log(s−1δ−1). The first 2t ele-
ments are sampled at rate r = 1, the next 2t elements are sampled at rate r = 1/2,
the next 4t elements are sampled at rate r = 1/4, and so on. Whenever the sampling
rate changes, we update existing counters as follows: For each counter, we repeat-
edly toss an unbiased coin until the coin toss is successful, decrementing the counter
for every unsuccessful outcome; if the counter drops to zero during this process, we
delete the counter. Effectively, the new list of counters is identical to exactly the list
that would have emerged, had we been sampling with the new rate from the very
beginning.



Frequent Itemset Mining over Data Streams 211

Theorem 1 MISRA–GRIES ALGORITHM allows retrieval of ε-approximate fre-
quency counts using at most 1

ε
counters.

Proof Consider a fixed element e. Whenever a counter corresponding to e is dimin-
ished by 1, 1/ε − 1 other counters are also diminished. Clearly, when N elements
have been seen, a counter for e could not have been diminished by more than εN . �

Theorem 2 LOSSY COUNTING allows retrieval of ε-approximate frequency counts
using at most 1

ε
log(εN) counters.

Proof Imagine splitting the stream into buckets of size w = 1/ε each. Let N = Bw,
where B denotes the total number of buckets that we have seen. For each i ∈ [1,B],
let di denote the number of counters which were created when bucket B − i +1 was
active, i.e., the length of the stream was in the range [(B − i)w + 1, (B − i + 1)w].
The element corresponding to such a counter must occur at least i times in buckets
B − i +1 through B; otherwise, the counter would have been deleted. Since the size
of each bucket is w, we get the following constraints:

j∑

i=1

idi ≤ jw for j = 1,2, . . . ,B. (1)

We prove the following set of inequalities by induction:

j∑

i=1

di ≤
j∑

i=1

w

i
for j = 1,2, . . . ,B. (2)

The base case (j = 1) follows from (1) directly. Assume that (2) is true for
j = 1,2, . . . , p − 1. We will show that it is true for j = p as well. Adding p − 1
inequalities of type (2) (one inequality each for i varying from 1 to p − 1) to an
inequality of type (1) (with j = p) yields

p∑

i=1

idi +
1∑

i=1

di +
2∑

i=1

di + · · · +
p−1∑

i=1

di

≤ pw +
1∑

i=1

w

i
+

2∑

i=1

w

i
+ · · · +

p−1∑

i=1

w

i
.

Upon rearrangement, we get p
∑p

i=1 di ≤ pw + ∑p−1
i=1

(p−i)w
i

, which readily sim-
plifies to (2) for j = p. This completes the induction step. The maximum number
of counters is

∑B
i=1 di ≤ ∑B

i=1
w
i

≤ 1
ε

logB = 1
ε

log(εN). �

Theorem 3 STICKY SAMPLING computes ε-approximate frequency counts, with
probability at least 1 − δ, using at most 2

ε
log(s−1δ−1) counters in expectation.

Proof The expected number of counters is 2t = 2
ε

log(s−1δ−1). When r ≤ 1/2, then
N = rt + rt ′, for some t ′ ∈ [1, t). It follows that 1

r
≥ t

N
. Any error in the estimated



212 G.S. Manku

Fig. 1 Number of counters for support threshold s = 1 %, error parameter ε = 0.1 %, and proba-
bility of failure δ = 10−4. Zipf denotes a Zipfian distribution with parameter 1.25. Uniq denotes a
stream with no duplicates. The bottom figure magnifies a section of the barely-visible lines in the
graph above

frequency of an element e corresponds to a sequence of unsuccessful coin tosses
during the first few occurrences of e. The probability that this error exceeds εN is
at most (1 − 1

r
)εN ≤ (1 − t

N
)−εN ≤ e−εt .

There are at most 1/s elements whose true frequency exceeds sN . The probabil-
ity that the estimate frequency of any of them is deficient by εN , is at most e−εt /s.
Since t ≥ 1

ε
log(s−1δ−1), this probability is at most δ. �

Each of the algorithms has its strengths that make it useful in different con-
texts. The MISRA–GRIES ALGORITHM has optimal worst-case space complexity
and O(1) amortized cost of update per element. The update cost has been improved
to O(1) worst-case by Karp et al. [5]. STICKY SAMPLING is useful for identifying
ε-approximate frequent counts over sliding windows (see Arasu and Manku [2]).
LOSSY COUNTING is useful when the input stream has duplicates and when the in-
put distribution is heavy-tailed, as borne out by Fig. 1. The kinks in the curve for
STICKY SAMPLING correspond to re-sampling. They are log10 2 units apart on the
X-axis. The kinks for LOSSY COUNTING correspond to N = i/ε (when deletions
occur). STICKY SAMPLING performs worse because of its tendency to remember
every unique element that gets sampled. LOSSY COUNTING, on the other hand, is
good at pruning low frequency elements quickly; only high frequency elements sur-



Frequent Itemset Mining over Data Streams 213

vive. For skewed distributions, both algorithms require much less space than their
worst-case bounds in Theorems 2 and 3. LOSSY COUNTING is superior to MISRA–
GRIES ALGORITHM for skewed data. For example, with ε = 0.01 %, roughly 2000
entries suffice, which is only 20 % of 1

ε
.

3 Frequent Itemset Mining

Let I denote the universe of all items. Consider a stream of transactions, where
each transaction is a subset of I . An itemset X ⊆ I is said to have support s if X

is a subset of at least sN transactions, where N denotes the length of the stream,
i.e., the number of transactions seen so far. The frequent itemsets problem seeks to
identify all itemsets whose support exceeds a user-specified support threshold s.

Frequent itemsets are useful for identifying association rules (see Agrawal and
Srikant [1] for a seminal paper that popularized the problem). Considerable work in
frequent itemsets has focused on devising data structures for compactly representing
frequent itemsets, and showing how the data structure can be constructed in a few
passes over a large disk-resident dataset. The best-known algorithm take two passes.

Identification of frequent itemsets over data streams is useful in a data-
warehousing environment where bulk updates occur at regular intervals of time,
e.g., daily, weekly or monthly. Summary data structures that store aggregates like
frequent itemsets should be maintained incrementally because a complete rescan of
the entire warehouse-database per bulk-update is prohibitively costly. The summary
data structure should be significantly smaller than the warehouse-database but need
not fit in main memory.

In a data stream scenario, where only one pass is possible, we relax the problem
definition to compute ε-approximate frequent itemsets: Given support threshold s ∈
(0,1) and error parameter ε ∈ (0, s), the goal is to produce itemsets, along with their
estimated frequencies, satisfying three properties:

I. Estimated frequencies are less than the true frequencies by at most εN .
II. All itemsets whose true frequency exceeds sN are output.

III. No itemset whose true frequency is less than (s − ε)N is output.

We now develop an algorithm based upon LOSSY COUNTING for tackling the
ε-approximate frequent itemsets problem. We begin by describing some modifica-
tions to LOSSY COUNTING.

3.1 Modifications to LOSSY COUNTING

We divide the stream into buckets of size 1/ε each. Buckets are numbered sequen-
tially, starting with 1. We maintain counters of the form 〈element, count, bucket_id〉,
where bucket_id denotes the ID of the bucket that was active when this counter was



214 G.S. Manku

created. At bucket boundaries, we check whether count+bucket_id ≤ εN . If so,
the counter is deleted. This is equivalent to our earlier approach of decrementing
counters at bucket boundaries and deleting those counters that drop to zero. The
maximum possible error in the estimated frequency of an element is given by its
bucket_id (which might be much less than εN ). Furthermore, the algorithm con-
tinues to be correct even if we do not check the counters at each and every bucket
boundary. However, the longer we defer the checks, the larger the space require-
ments due to the presence of noise (low-frequency elements in recent buckets).

3.2 Frequent Itemsets Algorithm

The input to the algorithm is a stream of transactions. The user specifies two param-
eters, support threshold, s, and error parameter, ε. We denote the current length of
the stream by N . We maintain a data structure D consisting of a set of entries of the
form (set, f,�), where set is an itemset (subset of I), f is an integer representing
the estimated frequency of set, and � is the maximum possible error in f . Initially,
D is empty.

The stream is divided into buckets consisting of w = 	1/ε
 transactions each.
Buckets are labeled with bucket ids, starting from 1. We denote the current bucket
id by bcurrent. We do not process the stream transaction by transaction. Instead, we
fill available main memory with as many transactions as possible, and then process
the resulting batch of transactions together. Let β denote the number of buckets in
main memory in the current batch being processed. We update D as follows:

• UPDATE_SET. For each entry (set, f,�) ∈ D, update f by counting the occur-
rences of set in the current batch. If the updated entry satisfies f + � ≤ bcurrent,
we delete this entry.

• NEW_SET. If a set set has frequency f ≥ β in the current batch and set does not
occur in D, we create a new entry (set, f, bcurrent − β).

A set set whose true frequency fset ≥ εN , has an entry in D. Also, if an entry
(set, f,�) ∈ D, then the true frequency fset satisfies the inequality f ≤ fset ≤ f +
�. When a user requests a list of items with threshold s, we output those entries in
D where f ≥ (s − ε)N .

It is important that β be a large number. The reason is that any subset of I that
occurs β + 1 times or more, contributes an entry to D. For small values of β , D is
polluted by noise (subsets whose overall frequency is very low, but which occur at
least β + 1 times in the last β buckets).

Two design problems emerge: What is an efficient representation of D? What is
an efficient algorithm to implement UPDATE_SET and NEW_SET?



Frequent Itemset Mining over Data Streams 215

3.3 Data Structure and Algorithm Design

We have three modules: TRIE, BUFFER, and SETGEN. TRIE is an efficient imple-
mentation of D. BUFFER repeatedly reads in batches of transactions into available
main memory and carries out some pre-processing. SETGEN then operates on the
current batch of transactions in BUFFER. It enumerates subsets of these transactions
along with their frequencies, limiting the enumeration using some pruning rules.
Effectively, SETGEN implements the UPDATE_SET and NEW_SET operations to
update TRIE. The challenge, it turns out, lies in designing a space-efficient TRIE

and a time-efficient SETGEN.

TRIE. This module maintains the data structure D outlined in Sect. 3.2. Concep-
tually, it is a forest (a set of trees) consisting of labeled nodes. Labels are of the form
〈item_id, f,�, level〉, where item_id is an item-id, f is its estimated frequency, � is
the maximum possible error in f , and level is the distance of this node from the root
of the tree it belongs to. The root nodes have level 0. The level of any other node
is one more than that of its parent. The children of any node are ordered by their
item-id’s. The root nodes in the forest are also ordered by item-id’s. A node in the
tree represents an itemset consisting of item-id’s in that node and all its ancestors.
There is a 1-to-1 mapping between entries in D and nodes in TRIE.

To make the TRIE compact, we maintain an array of entries of the form
〈item_id, f,�, level〉 corresponding to the pre-order traversal of the underlying
trees. This is equivalent to a lexicographic ordering of all the subsets encoded by the
trees. There are no pointers from any node to its children or its siblings. The level’s
compactly encode the underlying tree structure. Such a representation suffices be-
cause tries are always scanned sequentially, as we show later.

Tries are used by several Association Rules algorithms, hash tries [1] being a
popular choice. Popular implementations of tries require pointers and variable-sized
memory segments (because the number of children of a node changes over time).
Our TRIE is quite different.

BUFFER. This module repeatedly fills available main memory with a batch of
transactions. Each transactions is a set of item-id’s. Transactions are laid out one
after the other in a big array. A bitmap is used to remember transaction boundaries.
A bit per item-id denotes whether this item-id is the last member of some transaction
or not. After reading in a batch, BUFFER sorts each transaction by its item-id’s.

SETGEN. This module generates subsets of item-id’s along with their frequencies
in the current batch of transactions in lexicographic order. It is important that not
all possible subsets be generated. A glance at the description of UPDATE_SET and
NEW_SET operations reveals that a subset must be enumerated iff either it occurs
in TRIE or its frequency in the current batch exceeds β . SETGEN uses the following
pruning rule:

If a subset S does not make its way into TRIE after application of both
UPDATE_SET and NEW_SET, then no supersets of S should be considered.



216 G.S. Manku

This is similar to the Apriori pruning rule [1]. We describe an efficient implementa-
tion of SETGEN in greater detail later.

Overall Algorithm

BUFFER repeatedly fills available main memory with a batch of transactions, and
sorts them. SETGEN operates on BUFFER to generate sets of itemsets along with
their frequency counts in lexicographic order. It limits the number of subsets using
the pruning rule. Together, TRIE and SETGEN implement the UPDATE_SET and
NEW_SET operations.

3.4 Efficient Implementations

In this section, we outline important design decisions that contribute to an efficient
implementation.

BUFFER. If item-id’s are successive integers from 1 thru |I|, and if I is small
enough (say, less than 1 million), we maintain exact frequency counts for all items.
For example, if |I| = 105, an array of size 0.4 MB suffices. If exact frequency counts
are available, BUFFER first prunes away those item-id’s whose frequency is less than
εN , and then sorts the transactions, where N is the length of the stream up to and
including the current batch of transactions.

TRIE. As SETGEN generates its sequence of sets and associated frequencies,
TRIE needs to be updated. Adding or deleting TRIE nodes in situ is made difficult by
the fact that TRIE is a compact array. However, we take advantage of the fact that the
sets produced by SETGEN (and therefore, the sequence of additions and deletions)
are lexicographically ordered. Since our compact TRIE also stores its constituent
subsets in their lexicographic order, the two modules: SETGEN and TRIE work hand
in hand.

We maintain TRIE not as one huge array, but as a collection of fairly large-sized
chunks of memory. Instead of modifying the original trie in place, we create a new
TRIE afresh. Chunks belonging to the old TRIE are freed as soon as they are not
required. Thus, the overhead of maintaining two TRIEs is not significant. By the
time SETGEN finishes, the chunks belonging to the old trie have been completely
discarded.

For finite streams, an important TRIE optimization pertains to the last batch of
transactions when the value of β , the number of buckets in BUFFER, could be small.
Instead of applying the rules in Sect. 3.2, we prune nodes in the trie more aggres-
sively by setting the threshold for deletion to sN instead of bcurrent ≈ εN . This is
because the lower frequency nodes do not contribute to the final output.



Frequent Itemset Mining over Data Streams 217

SETGEN. This module is the bottleneck in terms of time. Therefore, it merits
careful design and run-time optimizations. SETGEN employs a priority queue called
Heap which initially contains pointers to smallest item-id’s of all transactions in
BUFFER. Duplicate members (pointers pointing to the same item-id) are maintained
together and they constitute a single entry in Heap. In fact, we chain all the pointers
together, deriving the space for this chain from BUFFER itself. When an item-id
in BUFFER is inserted into Heap, the 4-byte integer used to represent an item-id
is converted into a 4-byte pointer. When a heap entry is removed, the pointers are
restored back to item-id’s.

SETGEN repeatedly processes the smallest item-id in Heap to generate singleton
sets. If this singleton belongs to TRIE after UPDATE_SET and NEW_SET rules have
been applied, we try to generate the next set in lexicographic sequence by extend-
ing the current singleton set. This is done by invoking SETGEN recursively with a
new heap created out of successors of the pointers to item-id’s just removed and
processed. The successors of an item-id is the item-id following it in its transaction.
Last item-id’s of transactions have no successors. When the recursive call returns,
the smallest entry in Heap is removed and all successors of the currently smallest
item-id are added to Heap by following the chain of pointers described earlier.

3.5 System Issues and Optimizations

BUFFER scans the incoming stream by memory mapping the input file. This saves
time by getting rid of double copying of file blocks. The UNIX system call for mem-
ory mapping files is mmap(). The accompanying madvise() interface allows a
process to inform the operating systems of its intent to read the file sequentially.
We used the standard qsort() to sort transactions. The time taken to read and
sort transactions pales in comparison with the time taken by SETGEN, obviating the
need for a custom sort routine. Threading SETGEN and BUFFER would not help
because SETGEN is significantly slower.

Tries are written and read sequentially. They are operational when BUFFER is
being processed by SETGEN. At this time, the disk is idle. Further, the rate at which
tries are scanned (read/written) is much smaller than the rate at which sequential
disk I/O can be done. It is indeed possible to maintain TRIE on disk without any
loss in performance. This has two important advantages:

(a) The size of a trie is not limited by the size of main memory available. This
means that the algorithm can function even when the amount of main memory
available is quite small.

(b) Since most available memory can be devoted to BUFFER, we can work with tiny
values of ε. This is a big win.

Memory requirements for Heap are modest. Available main memory is con-
sumed primarily by BUFFER, assuming TRIEs are on disk. Our implementation
allows the user to specify the size of BUFFER.



218 G.S. Manku

On the whole, the algorithm has two unique features: there is no candidate gener-
ation phase, which is typical of Apriori-style algorithms. Further, the idea of using
compact disk-based tries is novel. It allows us to compute frequent itemsets under
low memory conditions. It also enables our algorithm to handle smaller values of
support threshold than previously possible.

Experimental evaluation over a variety of datasets is available in [6].

4 Applications and Related Work

Frequency counts and frequent itemsets arise in a variety of applications. We de-
scribe two of these below.

4.1 Iceberg Queries

The idea behind Iceberg Queries[4] is to identify aggregates in a GROUP BY of
a SQL query that exceed a user-specified threshold τ . A prototypical query on a
relation R(c1, c2, ..., ck, rest) with threshold τ is

SELECT c1, c2, ..., ck, COUNT(rest)
FROM R
GROUP BY c1, c2, ..., ck
HAVING COUNT(rest) ≥ τ

The parameter τ is equivalent to s|R| where s is a percentage and |R| is the size
of R. The frequent itemset algorithm developed in Sect. 3 runs in only one pass,
and out-performs the highly-tuned algorithm in [4] that uses repeated hashing over
multiple passes.

4.2 Network Flow Identification

Measurement and monitoring of network traffic is required for management of com-
plex Internet backbones. In this context, identifying flows in network traffic is an
important problem. A flow is defined as a sequence of transport layer (TCP/UDP)
packets that share the same source+destination addresses. Estan and Verghese [3]
recently proposed algorithms for identifying flows that exceed a certain threshold,
say 1 %. Their algorithms are a combination of repeated hashing and sampling,
similar to those by Fang et al. [4] for Iceberg Queries.



Frequent Itemset Mining over Data Streams 219

4.3 Algorithms for Sliding Windows

Algorithms for computing approximate frequency counts over sliding windows have
been developed by Arasu and Manku [2]. In a fixed-size sliding window, the size of
the window remains unchanged. In a variable-sized sliding window, at each time-
step, an adversary can either insert a new element, or delete the oldest element in
the window. When the size of the window is W , the space-bounds for a randomized
algorithm (based upon STICKY SAMPLING) are O( 1

ε
log 1

εδ
) and O( 1

ε
log 1

εδ
log εW)

for fixed-size and variable-size windows respectively. The corresponding bounds for
a deterministic algorithm (based upon MISRA–GRIES ALGORITHM) are O( 1

ε
log2 1

ε
)

and O( 1
ε

log2 1
ε

log εW), respectively. It would be interesting to see if any of these
algorithms can be adapted to compute ε-approximate frequent itemsets in a data
stream.

References

1. R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proc. of 20th Intl. Conf.
on Very Large Data Bases (1994), pp. 487–499

2. A. Arasu, G.S. Manku, Approximate counts and quantiles over sliding windows, in Proc. ACM
Symposium on Principles of Database Systems (2004)

3. C. Estan, G. Varghese, New directions in traffic measurement and accounting: focusing on the
elephants, ignoring the mice. ACM Trans. Comput. Syst. 21(3), 270–313 (2003)

4. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J. Ullman, Computing iceberg queries
efficiently, in Proc. of 24th Intl. Conf. on Very Large Data Bases (1998), pp. 299–310

5. R.M. Karp, C.H. Papadimitriou, S. Shenker, A simple algorithm for finding frequent elements
in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

6. G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in Proc. 28th
VLDB (2002), pp. 356–357

7. J. Misra, D. Gries, Finding repeated elements. Sci. Comput. Program. 2(2), 143–152 (1982)


	Frequent Itemset Mining over Data Streams
	1 Problem Deﬁnition
	2 One-Pass Algorithms
	3 Frequent Itemset Mining
	3.1 Modiﬁcations to lossy counting
	3.2 Frequent Itemsets Algorithm
	3.3 Data Structure and Algorithm Design
	Overall Algorithm

	3.4 Efﬁcient Implementations
	3.5 System Issues and Optimizations

	4 Applications and Related Work
	4.1 Iceberg Queries
	4.2 Network Flow Identiﬁcation
	4.3 Algorithms for Sliding Windows

	References


