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Processing tools for acoustic 3D images
V. Murino, M. Palmese and A. Trucco

6.1 INTRODUCTION

To investigate man-made objects lying on the seafloor or embedded in the bottom,
acoustic imaging techniques and subsequent data processing can be applied. In this
chapter, we address the use of acoustic image processing to design a complete system
for segmentation, reconstruction and final virtual rendering of underwater sub-
bottom objects.

The analysis of volumetric acoustic images is a research field that is evolving:
conventional approaches have not been yet devised. At present, different applications
and different sensing configurations address distinct problems; thus, ad hoc solutions
have been developed to address the SITAR objectives. Nevertheless, in general, there
is the need to remove noise from raw data by performing preliminary processing.
Image processing techniques to improve amplitude/intensity image quality are quite
commonly utilized, mainly at speckle reduction and contrast enhancement (Alexan-
drou and De Moustier, 1988; Malinverno et al., 1990; Sauter and Parson, 1994).

After image filtering, more structured post-processing methods can be applied,
especially segmentation and reconstruction techniques for high-level tasks, like
classification and object recognition. Depending on the type of original data to be
analyzed, a variety of methodologies have been proposed to tackle the aforesaid
issues; so it is not possible to identify an algorithm or even a specific methodology
as “‘the standard” (Caiti et al., 2003), even if statistical approaches can be recognized
as the most commonly used in the literature, especially for segmentation problems.
After the identification of image regions corresponding to objects present in the
ensonified volume, methods able to extract certain features aimed at a better under-
standing of the acoustic image can be applied. Actually, such methods differ according
to the various cases considered, and are often adapted to the specific image and to
the kind of image representation (Murino and Trucco, 2000). Finally, techniques
aimed at improving scene comprehension resulting in a 3D augmented,/virtual reality
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representation can be very useful to assist a human operator to investigate the acoustic
scene from multiple points of view (Murino and Trucco, 2000).

The processing chain presented in this chapter includes blocks devoted to noise
reduction, statistical 3D segmentation, semi-automatic surface fitting, extraction of
measurements and VRML (Virtual Reality Modeling Language) rendering. In addi-
tion, a multi-resolution data representation based on an octree approach can be
applied at different steps of the chain, if necessary. In particular, the 3D segmentation
method presented here is based on a volume growing approach, basically a 3D
extension to traditional 2D region growing. Algorithm initialization consists in the
choice of usually small volumes belonging to the different regions to be segmented.
The volume growing operation is guided by a statistical approach based on optimal
decision theory: at each step the algorithm estimates the parameters of a probability
density function that adequately fits the current volume histogram. Concerning the
surface fitting block, it is based on predefined geometric models: one of them is
tentatively selected by the user after observation of the segmented object and is
automatically or partially-manually adapted to the segmented data. Model invar-
iance with respect to the pose and orientation of the object has been stressed and a
metric to measure the goodness of the obtained results has been defined. The proces-
sing chain described in this chapter can be seen as a comprehensive tool that represents
a novel and relevant achievement in the processing of underwater 3D images.

6.2 IMAGE PROCESSING CHAIN

The developed image analysis tool can be divided into four main phases (see Figure
6.1). Starting with the 3D raw image an optional filtering stage can be applied to
reduce noise effects, thus preparing data for the segmentation task that allows one to
partition the original image into regions representing the objects contained in the
scene. The segmentation result is the input to the third phase, the surface reconstruc-
tion and parameter extraction stage, that based on geometrical models enables fitting
a chosen shape to the cloud of points resulting from the previous step. Finally, the
fourth stage is devoted to three-dimensional visualization of the obtained results.
Moreover, an additional phase to generate a multi-resolution structure can be per-
formed at any level of the processing chain, and hence it is described in Figure 6.1 as a
transversal step to the typical scheme.

6.3 DATA REPRESENTATION

When a volume is organized as a 3D regular grid of voxels' it can be very efficient to
build a multi-level structure. The octree is a multi-resolution pyramid for representa-
tion of three-dimensional spaces (Rodriguez et al., 2000) where each level corresponds

I A voxel is a volume element, representing a value on a regular grid in 3D space (similar to the
pixel, or picture element, in 2D space).
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Figure 6.1. Image analysis processing scheme.

to a different resolution degree of the original image. The octree is built starting with
the base of the pyramid — that is, from the finest-resolution level — and the resolution is
iteratively reduced by spatially smoothing the available data. Considering the (/ — 1)-
level, the corresponding image is divided in 2 x 2 x 2 non-overlapping blocks; for
each block the intensity levels of the non-empty voxels are averaged and will result in a
single voxel in the upper level (/) (see Figure 6.2). By this procedure, it is possible to
decrease data noise and to eliminate gaps in the data.

Hierarchical data representations make it possible to decide at which level of
spatial resolution an algorithm can be applied. The same operation can work at the
first level of the structure when the finest resolution is required, or it can be eased and
sped up at a lower resolution level. A 3D image having a one-degree lower resolution
in an octree scheme contains eight times fewer data, so it can be processed approxi-
mately eight times more quickly. Considering our processing scheme the octree
structure can be applied at different levels of the chain depending on the current
application:

e if gapsare present in raw data, the octree structure can be applied at the beginning
of processing;
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Figure 6.2. Octree structure generation procedure.
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e when it is necessary to lighten the segmentation algorithm or the 3D rendering
task, the operations can be performed at a poorer resolution level in the octree
pyramid.

6.4 FILTERING

In addition to the spatial smoothing made possible by octree data representation, a 3D
recursive median filter has also been implemented, in order to reduce speckle noise,
which is characteristic of acoustic data. The median filter has been performed by a
sliding three-dimensional mask with size N x N x N. The side dimension N must be
an odd number and can be decided by the user according to the specific data.
Appropriate size (from 3 x 3 x 3to 7 x 7 x 7) must be chosen balancing the tradeoff
between noise removal and image blurring. Moreover, as the median filtering is
computationally intensive (the number of operations grows exponentially with the
mask size) and to avoid an excessive loss in the data it is possible to apply a recursive
implementation of the 3D filter choosing a small value for N. In this way, regions in
which the signal period is lower than one-half the mask width will be continually
altered by each successive pass until the resultant period is greater than one-half the
window width, minimizing signal suppression. Also, the number of iterations can be
adapted depending on the specific data needs.

6.5 VOLUMETRIC SEGMENTATION: STATE OF THE ART

To analyse 3D acoustic images of the sub-bottom and extract salient characteristics of
buried objects a segmentation process is a fundamental step. The literature on the
segmentation of 3D acoustic sub-bottom images is very limited, and the segmentation
of 3D images is generally still considered a challenging problem for computer analysis.
Therefore, it is necessary to also take into account 3D segmentation methods pro-
posed for different application fields (e.g., medical imaging). Analysis of the state of
the art has emphasized that the existing algorithms are difficult to classify in separate
categories. Nevertheless, it is possible to subdivide them according to the following
approaches: deformable surface models (balloons, level sets, bubbles), octrees, Mar-
kov random fields and volume growing.

In the balloon model, after initialization of a surface within the object of interest
(manual procedure), the deformation process is based on minimization of the energy
of a surface (Bowden et al., 1997). Also, in the level set method (Baillard ez al., 2001)
user interaction is required for the initialization task, but here the deformation surface
is embedded at the zero level of a hyper-surface, which is the solution of a partial
differential equation. With this formulation fast numerical methods can be applied to
solve the problem. The issue of manual initialization can be resolved by the use of
bubbles (Tek and Kimia, 1997). In the deformation process (reaction—diffusion
process), after the random initialization of bubbles in the volumetric image, the
bubbles grow, shrink, merge, split and disappear. For 3D acoustic images of the
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sub-bottom a fast 3D segmentation method based on octrees was proposed (Rod-
riguez et al., 2000). The method is highly robust to noise and gaps in the data by
performing the data processing in a multi-resolution pyramid — an octree. The tree is
built by spatially smoothing the available data. This reduces noise and the number of
gaps facilitating classification at a low spatial resolution. The main drawback of this
method is the low spatial resolution. A way to incorporate spatial correlation and a
priori information in the segmentation process is by use of a Markov random field
(MRF) (Choi et al., 1997). The MRF itself is a conditional probability model, where
the probability of a given voxel status depends on its neighbourhood; the segmenta-
tion procedure is formulated as a maximum a posteriori estimation problem. Finally, a
volume growing approach, 3D extension of 2D region growing, can be applied to
segment a 3D image (Umesh and Chaudhuri, 2000). The segmentation task starts with
a voxel or a set of voxels which belongs to the object of interest, examines its
neighbourhood and decides for each voxel whether it belongs to the same object
or not, according to a given criterion (stochastic approach —that is, MRF — watershed
segmentation, dilation—erosion process).

6.6 THE VOLUME GROWING APPROACH

3D segmentation is the basic activity, while the pre-processing operations (e.g.,
filtering and enhancement) are aimed at preparing data to obtain good segmentation
results, and can be arranged after definition of the 3D segmentation strategy. Image
segmentation consists in identifying, inside a volumetric image, regions that are
considered homogeneous in terms of some criterion. In our case segmentation is
achieved by a “seeded” volume growing procedure. The choice of this method has
been motivated by the fact that the volume growing approach combines different
information about the image voxels: it considers both the spatial connectivity between
voxels belonging to the same region and the similarity of the voxel intensity levels.
This procedure needs to be initialized by a human operator, whose task is to select a
(usually small) number of voxels belonging to different classes present in the image,
according to the operator’s judgement. These initialization voxels are called “‘seeds”
(Adams and Bischof, 1994). Starting with the seeds, at each step of the algorithm the
regions grow by addition of connected voxels in accordance with a measure of
distance. The output of the volume growing procedure is a set of labelled volumes,
where a label indicates the membership of a voxel in a segmented object. It is worth
highlighting that initialization of the developed algorithm has been simplified in order
to set the user free from the hard task of choosing complex parameters. The selection
of the seeds is fast and user-friendly: starting with a 2D slice usually placed in the
middle of the original volume the operator has to identify different regions corre-
sponding to the different classes to be segmented. This first step of the segmentation
procedure is the only one that requires user interaction and in fact provides all
the information needed by the algorithm to go on automatically until the end of
processing.
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Let us suppose that n seeds have been selected, each corresponding to a class H;,
i=1,...,n. Ateach step of the algorithm, new voxels are added to some of the classes
H; by the following procedure:

(i) the unallocated voxels that border at least one of the regions are examined and
labelled according to a measure of distance;

(i) if the considered voxel ¢ has more than one neighbouring region, we have to
decide to which region voxel ¢ is to be added. We calculate the distances from all
its neighbouring regions, and add ¢ to the closest region;

(iii) the algorithm ends when all the voxels have been allocated to the classes or the
classes do not grow any more.

Let us describe the segmentation iterative procedure in detail. Let Q be the set of all the
unallocated voxels g which border at least one of the regions H,,...,H;, ..., H,
already classified after a generic number of iterations. Remember that at the beginning
of the process the sets Hy,...,H;, ..., H, are equal to the seeds selected by the
operator. Thus, the set Q is defined as follows:

Q{q] <q¢ L"JH,) A(qGN(a»,\meHCJHi} (6.1)
1 1

where N(a) is the set of immediate neighbours of voxel a. In particular, our choice for
the set N(a) is composed of the six voxels that are connected to voxel a.

At each step of the algorithm all the voxels of the Q set are labelled according to a
measure of distance. If voxel ¢ is adjacent to a different H; it will be assigned to the
region that satisfies the aggregation criterion. If the voxel is connected to only one
region but such a region does not satisfy the condition of association, it will be
temporarily labelled and included in a set of uncertain voxels; at the end of the
iterative procedure this set will be reconsidered on the basis of the updated measure
of distance. It is emphasized that a voxel is associated to a region if and only if it is
connected to that region, as we have assumed connected components are to be
segmented. At the end of each iteration the parameters of the aggregation condition
are updated on the basis of the new voxels added to the classes. The algorithm is
repeated until all the voxels have been allocated to classes or the classes do not grow
any more. The segmentation algorithm can be outlined as shown in Figures 6.3, 6.4
and 6.5 where the schemes of the initialization step, the recursive phase and the final
processing are respectively presented.

6.7 MEAN INTENSITY AGGREGATION CRITERION

The choice of aggregation criterion is critical to the success of the segmentation task.
Two different criteria have been used in the segmentation procedure: the first is based
on the intensity mean value of current regions; the second is based on the fitting of
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Figure 6.3. Scheme of the initialization step of the segmentation algorithm.

current volume histograms to an adequate probability density function (PDF). In the
first case, the voxel is considered homogeneous to the region with the closest intensity
mean value in terms of a measure of distance. The distance d is a simple quantity that
shows how far the intensity (i.e., the scattering strength) of the considered voxel ¢ is
from the intensity mean value of the current region; it is defined as:

di(q) = |9(q) ——F—— (6.2)
J, @

i

where g(q) is the intensity level of voxel ¢q. According to this criterion the algorithm
chooses the kth region if the following expression is satisfied:

di(g) = min{d,(q)} (63)

Actually, the effective assignment of voxel ¢ to the chosen region must rely on the
condition of spatial connectivity. This simple criterion is based on the hypothesis that
assumes to work with image regions affected by Gaussian noise with zero mean and
equal standard deviations. Even if for many images the assumption of equal variance
noise is reasonable, we can modify distance d by taking into account the standard
deviation SD of each growing region:
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Figure 6.4. Scheme of the iterative phase of the segmentation algorithm.

However, this implementation of seeded volume growing is more computationally
expensive without improving in an evident way the performances of the algorithm.
Thus, when the assumption of Gaussian noise is not reasonable or a priori informa-
tion is available a different formulation of the aggregation condition is necessary.
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Figure 6.5. Scheme of the final step of the segmentation algorithm.

6.8 STATISTICAL AGGREGATION CRITERION

If a priori knowledge is available about the intensity distributions of the regions of the
scene, it is possible to formulate a more accurate aggregation criterion taking into
account second-order statistical information. This second solution (statistical volume
growing) is based on the optimal decision theory: at each step of the algorithm and for
each region, we calculate the current histogram and compute the parameters of the
chosen density function (e.g., Gaussian, Rayleigh, Poisson density, etc.) that “‘best”
fits the histogram. Each voxel connected to a region is added to that region if its
intensity value satisfies the threshold condition based on the intersections of the
current densities.

Voxel g, with an intensity level g and connected to a region H; according to the
estimated densities p(g | H;), will be assigned to that region if:

p(glH;) > plg| Hy), Vk#i (6.5)

This condition relies on the Bayesian approach based on the following hypothesis: if
{H\,...,H,} are the available classes, the corresponding probability density func-
tions p(g | H;) are known. Let us call {P;} the probabilities of the classes { H;} and R
the Bayesian risk:

i

in - Cij-plg] Hj)] -dg (6.6)

Jj=1

where we have used the following notation: g is the voxel intensity level (feature) and is
a stochastic variable, Z; denotes the set of intensity levels belonging to the ith decision
region, C;; represents the cost we pay when voxel ¢ is associated to H; when it belongs
to H;. Itisimportant to note that the probability p(g | H;) can assume the expression of
any probability density function — for example, Gaussian or Rayleigh density — on the
basis of statistical information about the specific component present in the 3D image.
Moreover, we want to highlight that this criterion only takes into account the feature
associated to each voxel; the spatial connectivity between the voxels belonging to the
same region is considered through the volume growing process. In the case of non-
sensitive cost classification the Bayes problem can be formulated as a minimization of
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the probability of error. Starting with Equation (6.6), defining the costs C;; as follows:
Cii = 0 Vl
L (6.7)
Ci;=1 Vj#iVi
we obtain the consequent expression for the Bayesian risk:
n n
r= {Zj LZ R,~p<gH/>] -dg} (63)
i=1 Y Zi |j=1,j#i

In addition if we assume equal a priori P;, where

1
P,':* 1:1
n

the quantity to be minimized becomes:

R=1{ZLLZ p<g|H,»>] -dg} (6.10)

i=1 —1,j£i

Let us denote by Z the set of all possible values of g

z=Jz (6.11)
i=1
and let us select the kth decision region Z:
zi=z- | z (6.12)
i=1, ik

By extracting the kth element from the external sum of Equation (6.10) and by
including Equation (6.12) in Equation (6.10), the formulation for the risk is given by:

R_i.{ Xn: LlJi plg|H)) — ZZ: p(9|H/)] 'dg+JzLi p(g|H/)l .dg}

i=1,i#k =1,j#i j=1,j#k =1,j#k
(6.13)

where it should be recalled that a probability density function satisfies the condition of
unitary area:

sz(g |H;) -dg=1 Vi (6.14)

Taking into account Equation (6.14), Equation (6.13) can be rewritten as:
1 n
R'{ > J [P(ngk)P(ngf)]~dg+(n1)} (6.15)
LIz

Let us focus our attention on the integrals contained in Equation (6.15): the mini-
mization of these terms coincides with the choice of decision regions that allow one to
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satisfy this condition:

j p(g| ) — plg | H)] -dg <0 Wk #i (6.16)

i

namely, in all possible expressions of R in which the decision region Z; appears, such a
region will produce a negative contribution to the sum, thus reducing the Bayesian
risk.

In conclusion, according to the Bayes criterion, we associate the voxel with
intensity value g to the ith region if such a region satisfies condition (6.5):
p(g| H;) > p(g| Hi), Yk # i. It is worth observing that such a criterion follows the
maximum likelihood (ML) rule, as we have assumed we are working with equal a
priori probabilities. Actually, when this hypothesis is verified the ML method provides
an optimal decision. Moreover, it is very favourable to adopt this method in terms of
computational lightness. Furthermore, to lessen the computational load of the seg-
mentation algorithm, it can be useful to update the parameters of the probability
density functions of the regions only at the end of each iteration of the volume growing
procedure. When there is lack of a priori information about the distributions of the
intensity levels of the regions we are going to segment, the selection of a PDF with a
single density shape will limit the performance of the segmentation approach. To
overcome this problem it is possible to consider a density that allows us to control its
kernel shape by selecting some parameters. The Weibull PDF is a family of densities of
which the Rayleigh, Gaussian and exponential densities are special cases, correspond-
ing to specific configurations of its parameters. The Weibull PDF of the intensity level
g is given by:

flg) = abgb_1 e g>0ab>0 (6.17)

where a is a scale parameter and b is a shape parameter. Several methods, both
graphical and analytical, are proposed in the literature to estimate the Weibull
parameters (Al-Fawzan, 2005). Due to the high probability of error in using graphical
methods and thanks to the availability of high-speed computers, we have preferred to
use analytical methods —for example, method of moments (MOM), maximum like-
lihood estimator (MLE) and least squares method (LSM). The choice of the method
depends on whether one needs a quick or an accurate estimate. In our case, to limit the
computation time of the segmentation procedure, we have applied the last two
methods, MLE and LSM, as — even though they yield less accurate results — they
involve fewer calculations and require less computation time than MOM. In particu-
lar, LSM provides satisfactory estimates in a very short computation time. Examples
of estimates are shown in Figure 6.6: the solid curve represents the histogram of the
region we are considering; the dotted and the dashed lines indicate the Weibull PDFs
estimated with LSM and MLE, respectively. It is possible to note that MLE is more
accurate in fitting the original histogram (in the last part of the curve there is a total
overlapping of the histogram with the estimated curve); nevertheless, LSM provides a
good approximation in a shorter time without compromising the segmentation
results.
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Figure 6.6. Examples of estimates of the Weibull PDF parameters by LSM and MLE.

6.9 PARAMETER EXTRACTION

Analysis of the segmentation results has the objective of extracting parameters useful
to identify the spatial pose and the dimensions of objects eventually present in the
scene of interest. To estimate such features a technique able to work with a wide
assortment of object geometrical configurations has been developed.

The input to this step is a point distribution coming from the segmentation stage
representing the natural or artificial objects we want to analyse. Generally, segmented
data do not include the object in its wholeness, thus the algorithm must face the
availability of partial data. The set of parameters we want to estimate concerns the
pose of the object in space; namely, starting with an inertial coordinate system (ICS),
defined by the vectors v{, v,, v3, we want to obtain the object coordinate system (OCS),
defined by the vectors vy, v, V3, fixed with respect to the object and taking into account
eventual object symmetry. The first parameter we intend to find is the barycentre of
the target. Unfortunately, the typical shortage of available data makes it impossible to
give a correct measure of barycentre coordinates without an accurate morphological
investigation. Generally, acoustical systems allow one to image only the surface of the
objects within the scene, as acoustical energy is almost totally backscattered and only
in small part is refracted inside the object. Therefore, initially we will limit ourselves to
computing the barycentre coordinates b of the cloud of points arising from the
segmentation process. The origin of the OCS is placed coincident with the distribution
barycentre. To evaluate the inclination of the object, the rotation of OCS with respect
to ICS has been expressed by means of the Euler angles (, 6, 1). Starting with the
inertial coordinate system the first rotation is by angle ¢ about the v; axis (obtaining
the vectors vy, ¥,, V3), the second rotation is by angle 6 € [0, 7] about the current v; axis
(obtaining the vectors V{,V,,V;), and the third rotation is by an angle i) about the
current V3 axis (again), obtaining in this way the OCS (see Figure 6.7).
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Figure 6.7. Adopted notation for the Euler angles, the ICS and the OCS.

Commonly, artificial objects can be assumed as rotational solids — namely,
generated by a rotation of a surface about an axis. If we are in this condition we
can neglect the ¢ angle, as it does not provide any further information about the OCS.
Therefore, for a rotational solid we can impose the following relation:

Yv=0 (6.18)

Let us assume we are working under this condition; to estimate the inclination of the
object it is sufficient to compute the vector t defined as:

t=[0 o (6.19)

To obtain information on the orientation of a 3D distribution of points, it is possible
to use a particular tensor associated to such a distribution, the inertial tensor. We
assume that the point distribution has the same axes of symmetry of the object we
want to reconstruct. Let us define the 3D distribution as the set of points in R with
coordinates expressed in the ICS:

{ri} ={x,yzi}, i=1,...,N (6.20)

Let us denote by m; the mass corresponding to the ith point of the distribution. It is
known that the barycentre b of a discrete distribution of N points is given by the
following expression:

ml‘ . l','
b= 6.21
i (6.21)
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where M is the total mass of the distribution, equal to M = Zm, As all the

distribution points have been classified as belonging to the same object by the seg-
mentation process, they are assigned the same weight in the barycentre formula.
Thus, we set

m;=1 Vi (6.22)

By including Equation (6.22) in Equation (6.21) it is possible to obtain the final
expression for the distribution barycentre:

N
>r
i=1
b= N (6.23)
As previously mentioned, the origin of the OCS has been set in b. Let us consider a
temporary coordinate system TCS, defined by vectors V;, V,, V3, generated by a rigid
translation of ICS in b. Let us denote by F; the position vectors of the N points with
respect to this new coordinate system and by (%;,);,Z;) the respective coordinates.
After computing the new position vectors, ¥; =r; — b, we proceed by estimating
the axes of symmetry of the distribution (see Figure 6.8). If p(X, y, Z) is a continuous
distribution in R®, we define the inertial tensor IT of p as a 3 x 3 matrix given by the
following formula:

jpw,z) G ryav — | p(,5,2) 2 p-dv —Jp(&y%f)xde
IT = —Jp(&yﬁf)ﬁy“dV jp<x,y, £)- (2 + 22)-dv —Jmmf)ﬁfdv
J(xmxzdv N p@.5.2)52av jp<x,y:f> (&2 1 5%)-av
(6.24)
oo,
Via .
r;
o) v,
b ‘A,l
O | -
v,
A4

Figure 6.8. Rigid translation of the ICS in the distribution barycentre.
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where dV is the infinitesimal volume element defined as:
dV =dx-dy-dz (6.25)

To obtain the same expression for a discrete distribution of N points we have to
replace all the integrals with finite sums, and — taking into account the condition
expressed by Equation (6.22) — we finally obtain:

v [T +2D) %0 —%-%
M=) | %5 (i+2) 34 (6.26)
= —X; - % —Vi- (fczz + ﬁzz)

As IT is a real and symmetric matrix, it is always possible to perform a matrix
diagonalization. This means that IT has non-degenerate eigenvalues e}, e;,e; and
corresponding linearly independent eigenvectors. The eigenvalues of this tensor
correspond to the rotation inertia of the distribution around the principal axes defined
by the directions of the corresponding eigenvectors of IT (Giannitrapani et al., 1999).
In the case of a symmetric distribution, the eigenvectors of such a matrix, being the
principal inertial axes, are symmetry axes too. Now, starting with the symmetry axes it
is possible to get the Euler angles 6 and ¢ necessary to describe the pose of the analysed
object. We recall that angle ¢ is neglected because of the hypothesis to work with a
rotational object.

In Figure 6.9 the TCS denoted by vectors V;,V,,¥; and the OCS denoted by
Vi, Vo, V3 are shown; it is possible to note the # and ¢ angles describing the rotation
between the two systems.

-
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Figure 6.9. Rotation between the coordinate system denoted by vectors vy, V,, V3 and the OCS
expressed by the Euler angles.
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To extract the coordinates of the OCS vectors with respect to the system TCS, it is
necessary to compute the following scalar products:

vy -V = —sin(p)

V-V, = cos(p) (6.27)
Vo-¥3=0

V3 - V1 = —cos(6) cos(p)

V3 - ¥, = —cos(6) sin(yp)

V3 - V3 = sin(f)
The coordinates of the three vectors vy, V,, V3 with respect to the TCS are equal to:
[sin() - cos(y)
Vi = | sin(6) - sin(p)
cos(0)

[ —sin(yp)

v, = | cos(yp) (6.28)
| 0

[ —cos(6) - cos(p)
V3 = | —cos(#) - sin(p)
sin(6)

Therefore, the rotation can be expressed by the following 3 x 3 matrix:
sin(f) - cos(yp) —sin(p) —cos(f) - cos(p)
R = | sin(d) -sin(p) cos(p) —cos(f) - sin(p) (6.29)
cos(0) 0 sin(6)
It is now clear that the 6 and ¢ angles can be easily computed starting with the
components of the generic vector v, — that is, we can consider the vector v; and find the

parameters performing the following procedure. Let us denote by wvy; the jth com-
ponent of the kth vector v,. A possible expression for the 6 angle is:

6 = arccos(v;3) (6.30)

In this way we obtain an angle belonging to the interval [0, 7] according to the Euler
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convention. If sin(#) # 0, the ¢ angle can be estimated starting with the ¢’ angle
resulting from the expression:

/ V11
= - 6.31
' = arccos Lm(@)] (6.31)
In this way we obtain again an angle belonging to the interval [0, 7], but to describe all
the possible poses of an object it is necessary that

¢ €0,27] (6.32)

thus, the final ¢ is computed by taking into account the signs of the v; components
too:

{cp’ sinvj; >0 (633)

2 — ' sinv, <0

Alternatively, if sin(6) = 0, ¢ can be neglected as we are considering a rotational solid;
thus, we can simply set ¢ = 0. In this way we have computed the angles 6 and ¢ that
identify univocally the direction of v;, which is a symmetry axis of the analysed object;
we do not know yet which is the eigenvector that corresponds to such v;. As we are
considering rotational solids, the computed angles make sense only if v;is the rotation
axis of the object. To identify the rotation axis among the three eigenvectors, user
interaction is required. 3D data are projected onto the planes normal to the eigen-
vectors and the operator must choose the projection orthogonal to the axis of
symmetry, identifying in such a projection an object with a circular (or partially
circular) symmetry.

In conclusion, the developed method allows one to find the symmetry axes of an
object starting with the corresponding point distribution. The proposed technique
presents some limits when the point distribution resulting from the segmentation
process represents only a fraction of the interested object, and thus is not characterized
by the same properties of symmetry. This shortage of data produces two main effects:

e the barycentre position results up-shifted;
e the point distribution loses the symmetries of the original object, compromising
computation of the 6 angle.

To tackle this problem an ad hoc technique has been developed. The aim is to extract
from the available data a portion that preserves the symmetry properties of the object.
This operation works as a sort of further stage of segmentation to separate different
regions of the same object and take out the region useful for the successive step. The
first processing step concerns the extraction of the skeleton (Giannitrapani et al., 1999;
Murino and Giannitrapani, 1999). Before describing the applied procedure, a rough
definition of skeleton is proposed — that is, a skeleton is a distribution of 3D points
that:

(1) must be thinner than the original one;

(2) must be located in the neighbours of the median lines of the original point set;
(3) must have the same homotopy group; and

(4) have to be invariant to 3D rotation.
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The third point requires, essentially, that the operations performed on the distribution
to extract the skeleton preserve such topological information as the number of ““holes”
in the distribution and their relative position. In short, skeleton extraction is per-
formed along the following lines. Let us define the 3D image as the ensemble of points
in R*:

I:{Xi}:{xi’yivzi}7 i= 17"'3N (634)

We also define for each point i and each Rin R* (ray of a sphere about the point i) the
subset OF of I and the 3D point bX defined in the following way:

Of ={x,€1:|x;—x,| <R} (6.35)
> X
R_ X%€Of

where dim{OlR} is the cardinality of OX (i.e., bXis the centroid of OF). Let us define the
interior \X for the point i in the following way:

R —|x; — b¥|
R _ i i
A= — = (6.37)
One can easily verify that:
0<Af<1 Vi (6.38)

The interior is a measure of how much a point is “inside” the object specified by 1.
If AR & 1, the point is inside a homogeneous zone of radius at least equal to R; in
contrast, for AX ~ 0, the point is very near to a border of the three-dimensional
distribution of points. Defining the following image transformation as:

I — 1% ={pky (6.39)
and indicating by the symbol " the iterative application of it for n times, our
skeleton extraction is simply the construction of the image I®" for a suitable choice
of R and n. The overall effect of this transformation is to shift points on the border —
that is, points with a low A% — toward the centre while leaving points well inside an
object — that is, points with an almost unitary value of A® — unaltered. The iterative
application of such a procedure tends to shift all the points of the distribution towards
the skeleton. Such an algorithm may be seen from a physical point of view as a short-
range interaction between physical points.

The choice of free parameter R is very important. If it is too small, with respect to
the average mutual distances of the points, the distribution would likely collapse in a
certain number of disconnected punctual regions, preventing extraction of the ske-
leton. If it is too large the value of A may also be small for points well inside the object
and again the skeleton will not be properly extracted. The parameter R plays a similar
role to that of the dimension of the structuring element in classical mathematical
morphology. It is straightforward to verify that the skeleton thus extracted is invariant
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for three-dimensional rotation (a condition that is never exactly satisfied for skeletons
of a 2D bitmap image). Using a priori knowledge of the structure represented by the
3D image and of sensor resolution, it is possible to estimate proper values for R and n
aimed at improving the extraction of a good skeleton. Thus, the choice of radius R has
been formulated as:

ris

R=—" (6.40)

2
where ris is sonar system resolution. Also, the number of iterations # is relevant to
obtain a good skeleton extraction. Unfortunately, it is difficult to find an objective
measure of the goodness of a skeleton without a priori information about the real
object shape. Thus, the stop criterion we have selected is based on local properties of
the skeleton itself, in particular on the average number of points 7z, which is contained
in a neighbourhood. If the relative variation of 7z, with respect to the previous value is
little this means that points density is going to stabilize. In this situation it can be
convenient to stop the iterative procedure. In particular, considering the kth iteration,
the relative variation 7,(k) is given by the following formula:

(6.41)

where 71,(k) and 7n,(k — 1) are the average numbers of points in a neighbourhood
during the kth and (k — 1)th iteration, respectively. Such 7,(k) should be compared
with an adequate threshold, chosen ad hoc for the specific case.

In Figure 6.10 the algorithm of skeleton extraction is outlined. In particular, we
have highlighted the three successive phases:

(1) initialization (dark grey);
(2) recursive procedure (light grey); and
(3) final step (darker grey).

Because of the recursive nature of the algorithm and the possibility of working with a
large number of distribution points, skeleton extraction could result in an onerous
operation. To limit computational time, it is necessary to choose a threshold that
minimizes the number of iterations and, at the same time, allows one to obtain a good
contraction of the distribution. Figures 6.11 and 6.12 show a point distribution arising
from the segmentation process and the relative extracted skeleton, respectively. The
considered object is a cylinder, whose inclination is defined by non-null 6 and ¢; it is
possible to note that the part of the cylinder imaged by the sonar system — and thus
segmented — coincides with the upper surface of the whole target.

This is an example of partial data that requires the step of skeleton extraction to
separate an object region needed to estimate the inclination of the whole object. In this
specific case we can set apart the upper base of the cylinder and then perform the
inertial tensor method to compute the Euler angles. We suppose that we have an
estimation of the ¢ angle, provided by preliminary application of the inertial tensor
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Choice of the radius R on the basis of Eq. (6.40)

Generation of the set OiR according to Eq. (6.35)

I

ORby

Computation of the centroid blR of the neighborhood

Eq. (6.36)

A 4

The i-th point is shifted from ¥; to bf

Figure 6.10. Scheme of the skeleton extraction procedure.

[Ch. 6

method. Our aim is to obtain an accurate measure of the # angle, which provides the
inclination to the normal to the upper cylinder base with respect to the vertical
direction. The plane containing the upper base of the cylinder can be easily selected
within the object skeleton: it can be identified as the plane that satisfies the following
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Figure 6.11. Segmented region corresponding to a leaning cylinder object.
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Figure 6.12. Skeleton extracted by the distribution of points of Figure 6.11.
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Figure 6.13. The upper base (light grey) of the cylinder has been selected starting with the
skeleton of Figure 6.12.

conditions:

e it contains the highest point of the distribution, Ps = (xy, yy, z);
e it presents a thickness which is related to the system resolution, ris, and thus, it is
composed of the points that are placed between the planes:

sin(6) - cos(ip) - [x — xg| + sin(0) - sin(y) - [y — ys] + cos(0) - [z — (zg +ris/2)] =0 }
sin(6) - cos(ip) - [x — xg] + sin(0) - sin(y) - [y — ys] + cos(0) - [z — (zg — ris/2)] =0
(6.42)

where ¢ is supposed known, whereas 0 is the parameter we want to determine. By
assigning different # we find different planes; the ““best” 6 is the one that allows us to
include the greatest number of points of the distribution between the considered
planes. It is then possible to improve the measures of the Euler angles by applying
the inertial tensor method to the extracted region. Figure 6.13 shows the same skeleton
as Figure 6.12 where the extracted base has been painted light grey.

6.10 CYLINDER MODEL

Once the parameters defining the pose of the analysed object have been computed, the
successive step concerns the estimation of features related to the physical dimensions
of the target. This task is strongly dependent on the geometrical shape of the con-
sidered object; thus, we have developed a surface reconstruction method ad hoc for
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Figure 6.14. Cylinder model parameterized by radius r and height /.

specific object models. We briefly describe the technique for the cylinder model; it is
straightforward to extend the procedure to any other shape that can be expressed in an
analytical form.

The model refers to a circular right cylinder of height /2 and radius r. This phase is
performed considering the points of the distribution related to the coordinate system
placed on the object (OCS), denoted by vectors, v, V,, V3. It is recalled that the OCS
has the origin placed in the barycentre of the distribution that generally does not
coincide with the true barycentre of the target; in this phase it is thus necessary to
update the barycentre estimation by taking advantage of further analyses. In Figure
6.14 the adopted cylinder model is represented.

As in underwater acoustics the scattered energy is totally produced by the object’s
surfaces, the assumed model is based on the assumption that all the points of the
distribution are placed at the same distance (equal to r) from the rotation axis, except
for the points located on the eventual upper base of the cylinder that will be contained
in a circle of radius r. To obtain an estimation of the radius r, we can project all the
points onto a plane normal to the cylinder axis and interpolate the projections with a
circumference. Actually, if the projected points are too spread out, it can be useful for
an operator to interact by mouse-clicking to select the points belonging to such a
circumference. At the end of this procedure we obtain a set of coordinates (x,L , y,L)
corresponding to points placed at an average distance r from the axis of the cylinder. It
is now possible to estimate the radius r and the centre coordinates (x¢,yc) of the
circumference that best interpolates the selected points.

The generic equation of a circumference with radius r and centre (x¢, y¢) is the
following:

(x—xc)+(—ye) =r (6.43)
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that can be written also in this way:

4y ta-x+b-y+e=0 (6.44)
where the coefficients a, b, ¢ are equal to:
a=-2-xc
b=-2-yc (6.45)

c= xZC + y2c —?
We can apply Equation (6.44) to the M points denoted by (x,L , yiL), thus obtaining a
linear system of M equations and three unknown variables a, b, ¢, where M > 3. In
general, such a system is over-determined and there is no solution. In this case it is
possible to find a least squares solution, obtaining an estimation for the unknown
parameters a, b and c.

Finally, the coordinates of the barycentre projected onto the plane orthogonal to
the cylinder axis are equal to:

(Xc,yc) = <— g7 - 127> (6.46)

whereas the radius of the cylinder is determined by the following expression:

. \/(_ g)z N <_ 12’) . (6.47)

We have completed the analysis on the plane normal to the cylinder axis; now we must
get some information about the axis itself. To estimate the height of the cylinder the
simplest method consists in computing the maximum and minimum heights (g,,,, and
qmin) Of the points along the cylinder axis. With respect to the OCS such heights can be
expressed by:

Gmax = mlax{i,}
] (6.48)
Gmin = miax{xi}

Therefore, / is equal to:

h= Gmax — 9min (649)

In an analogous way, the height of the barycentre along the symmetry axis can be
computed as the average value between ¢,,;, and ¢,,,,.:

gc = Gmin + Qmax
¢ 2

Starting with the coordinates of the barycentre b = (g, x¢, yc) with respect to the
OCS - considering the vector inclination t (6.19) — and the radius and height estima-
tions r and &, we are able to unambiguously represent the cylinder.

(6.50)
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~o

Figure 6.15. Cylinder slice model.

Actually, the developed method provides for creating a model which is also a
portion of the cylinder. For example, in the event the segmented region corresponds to
a longitudinal slice of a cylinder surface (see Figure 6.15), the user can choose to
visualize the whole reconstructed cylinder or only the relative portion.

6.11 VRML RENDERING

The development of an efficient technique of three-dimensional visualization can be a
useful step in the human interpretation of both segmentation results and the respective
model reconstructions. The operator can explore the ensonified scene and take deci-
sions supported by a better understanding of the objects present in the area of interest.
To this aim we have performed a 3D rendering by means of the Virtual Reality
Modeling Language, VRML. The VRML format allows one to build a file standar-
dized by ISO/IEC to describe volumetric interactive scenes and worlds. This standard
is especially good at visualizing point distributions as segmented data and synthetic
representation as reconstructed data, allowing us to explore the obtained results in an
accurate way.

By means of VRML a virtual world can be easily described using a classic editing
application, by adopting semantics independent of the physical devices or any other
implementation-dependent concepts. VRML is also intended to be a universal inter-
change format for integrated 3D graphics and multimedia. VRML browsers, as well
as authoring tools for the creation of VRML files, are widely available for many
different platforms. The separation of the descriptive and implementative aspects
allows a VRML file containing the information relative to a complex virtual world to
be very compact and easily shared on the web. Furthermore, the rendering quality
achievable with VRML is very high.

Concerning the visualization of segmented data and object models, VRML offers
further advantages. In a VRML file it is possible to define an inertial coordinate
system and thus refer all the object local systems with respect to it. This allows one to
describe in a simple way the translations and the rotations of the segmented objects.
Besides, the VRML semantic already provides the definitions of some geometric
primitives — as cylinders, cones, boxes and spheres — allowing one to describe directly
some object models. Moreover, it is possible to add new types (called prototypes)
which are not provided by the standard semantic and useful to describe more complex
shapes, such as truncated cones and rings. Both the standard primitives and the
prototypes are parameterized and thus can be adapted to the characteristics of the
objects (Figure 6.16).
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Figure 6.16. VRML standard primitives and prototypes.
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6.12 CONCLUSIONS

In this chapter, a complete processing tool of use in the examination of 3D acoustic
sub-bottom images has been described. The processing chain allows one to separate —
from raw data — the image regions representing natural or artificial objects buried
beneath the seafloor. In particular, the devised segmentation process is based on a
semi-automatic ““seeded”” volume growing approach. The voxel classification is guided
by a statistical criterion by fitting current volume histograms with an adequate
probability density function. The segmented object is then analysed to extract
measurements about its shape and pose and to obtain a 3D virtual representation
by VRML modellling. In addition, a pre-processing noise reduction stage and a
multi-resolution data representation based on an octree approach can be applied,
if necessary.





