Parallel Hybrid Particle Simulations
Using MPI and OpenMP*

M. Hipp and W. Rosenstiel

Wilhelm-Schickard-Institut flir Informatik
Department of Computer Engineering, Universitat Tiibingen
Sand 13, D-72076 Tiibingen, Germany
{hippm,rosen}@informatik.uni-tuebingen.de

Abstract. We present a library for the parallel computation of particle
simulations called ParaSPH. It is portable and performs well on a variety
of parallel architectures with shared and distributed memory. We give
details of the parallelization for hybrid architectures (clustered SMPs)
using MPI and OpenMP and discuss implementation issues, performance
results and memory consumption of the code on two parallel architec-
tures, a Linux Cluster and a Hitachi SR8000-F1. We show the advantage
of hybrid parallelization over pure message-passing especially for large
node numbers for which we gain a maximum speedup of about 350 for
hybrid parallelization compared to 120 for message-passing.

1 Introduction

The Collaborative Research Center (CRC) 382 works in the field of Compu-
tational Physics with a main focus on astrophysical simulations. Our group is
responsible for the parallel computing. Some methods used in the CRC 382 are
particle based and thus we develop efficient parallel particle libraries to support
these applications. [6]

There is always a need for larger simulations needing more memory and
computing power. A parallelization combining threads and message passing is
a promising way to reduce the parallel overhead in respect of memory and per-
formance on the increasing number of hybrid architectures over pure message-
passing parallelization.

2 Hybrid Architectures

For development and performance analysis we are working on two parallel sys-
tems. A Hitachi SR8000 installed at the HLRB in Munich and a Linux Cluster
installed locally at Tiibingen University.

* This project is funded by the DFG within CRC 382: Verfahren und Algorithmen
zur Simulation physikalischer Prozesse auf Héchstleistungsrechnern (Methods and
algorithms to simulate physical processes on supercomputers).

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 189-197, 2004.
© Springer-Verlag Berlin Heidelberg 2004

190 M. Hipp and W. Rosenstiel

The Hitachi SR8000 consists of 8-way SMP nodes coupled by a fast commu-
nication network. The installation in Munich has 168 nodes with a total FPU
performance of 2 TFlops.

The Linux cluster is built of commodity hardware and has two partitions.
One partition consists of 96 2-way SMP Intel Pentium 3 nodes with 650 MHz
processor speed and the second partition consists of 32 2-way AMD Athlon nodes
with 1667 MHz processor speed. All nodes from both partitions are connected
with a switched full-bisection-bandwidth Myrinet network. The peak FPU per-
formance of the Linux cluster is 338 GFlops.

3 Motivation

The majority of parallel machines in the TOP500 lists are so called hybrid par-
allel architectures, a combination of N-way shared memory nodes with message
passing communication between the nodes.

Hybrid parallelization is the combination of a thread based programming
model for parallelization on shared memory nodes together with message-passing
based parallelization between the nodes. The standard library for message pass-
ing is MPI[8] OpenMP[9] has become the standard for thread based program-
ming for scientific applications.

Obviously, the share of common data structures on shared memory nodes
can reduce the amount of required memory. More important is the reduction
of the communication. Every parallel implementation has a maximum speedup
limited by its serial parts. In our non trivial particle codes the major serial part
is the (often collective) communication. A hybrid implementation reduces the
amount of transferred data because the communication of shared data on the
SMP nodes is implicit.

But the communication itself is faster, too. A simple test shows this for the
MPI-Allgather call. We distribute a 200 MByte data array on the Hitachi SR8000
between all nodes. K is the number of nodes.

In the first test (pure-MPI) a MPI process runs on every SR8000 processor.
The K x8 processors send and receive 200/ (K x8) MByte to/from each processor.
In the second test (Hybrid) the same amount of data is just sent between the
master threads of each node and thus each call sends and receives 200/ K MByte
to/from each node (other non-master threads are idle).

The numbers in the table are the time for 50 MPI-Allgather calls in seconds
on the SR8000-F1 at the HLRB in Munich.

K=1K=2K=4K=8|K=16|K=32
Pure-MPI| 16 | 51 | 97 | 126 | 172 | 200
Hybrid 10 | 15 | 20 | 21 | 22 21

One can see a big difference between the hybrid communication (compara-
ble to the hybrid programming model with implicit intra-node communication)
and the pure-MPI communication model with explicit MPI intra-node commu-
nication. Because the inter-node communication should be independent of the

Parallel Hybrid Particle Simulations Using MPI and OpenMP 191

parallelization strategy for a good implemented Allgather call, for K > 1 one
would expect for K > 1 the same 16 to 10 ratio of the K = 1 case (showing
the time of the intra-node communication and the overhead for 8 times more
messages). Instead, for the K = 32 run, the hybrid programming model is 8
times faster.

3.1 OpenMP

We chose OpenMP to keep the implementation portable. Compilers for OpenMP
are available on all important hybrid platforms including Hitachi SR8000, NEC
SX5/6 and Linux (Intel C++ or Portland Group compilers). OpenMP has ad-
vantages over explicit thread programming, for example POSIX threads. First,
it annotates sequential code with compiler directives (pragmas) allowing an in-
cremental and portable parallelization. Non-OpenMP compilers ignore the direc-
tives. Second, POSIX threads require to implement parallel sections in separate
functions and functions with more than one argument need wrappers, since the
POSIX threads API supports only one argument. OpenMP allows joining and
forking threads at arbitrary positions in the source code.

3.2 HPF

A complete different approach is using a HPF compiler such as the Vienna
Fortran Compiler, which is able to generate hybrid code. If a code is parallelized
with HPF and performs well on a message-passing architecture this can be an
interessting option. Since our code-base was written in C and there was a MPI
parallelisation, this was no option for us.

4 The SPH Method

An important particle method used in the CRC 382 is Smoothed Particle Hydro-
dynamics (SPH). SPH is a grid-free numerical Lagrangian method for solving
the system of hydrodynamic equations for compressible and viscous fluids. It
was introduced in 1977 by Gingold [3] and Lucy[7]. It has become a widely used
numerical method for astrophysical simulations. Later, the method was also ap-
plied to other problems such as the simulation of a fluid jet to model the primary
break-up of a diesel jet as it is injected into the cylinder of an engine[2].

Rather than being solved on a grid, the equations are solved at the positions
of the pseudo particles, representing a mass element with certain physical quan-
tities while moving according to the equations of motion. Due to the mesh-less
nature of the method, SPH is well suited for free-boundary problems and can
handle large density gradients.

Each particle interacts with a limited number of particles in its neighborhood.
Because the particle positions and therefore the neighbor interactions change
after each time-step one cannot find a perfect load balancing and domain de-
composition for the parallelization in advance. Instead, a reasonable fast and

192 M. Hipp and W. Rosenstiel

communication optimized domain decomposition, which must be applied after
every time-step is crucial. The general parallelization strategies are explained in
more detail in [5].

5 Hybrid Implementation

The hybrid implementation is an extension of the ParaSPH library for particle
simulations. ParaSPH is written in C and parallelized with MPI. The library
separates the parallelization from the physics and numeric code. The interface
between the library and the application is optimized for particle simulations.
The library provides an iterator concept to step through all particles and their
neighbors and later communicates the results.

In parallel mode, the library transparently distributes the work amongst all
processors. Every local iterator processes only a subset of all particles. The code
performs well on machines with a fast message passing network. We tested the
code on Cray T3E, Hitachi SR8000, IBM SP and a Linux cluster.

For the hybrid implementation, OpenMP is used for the inner intra-node
parallelization. MPT is still used for inter-node communication. To achieve a
better portability, because not all MPI implementations are thread safe, only the
master thread calls the MPI library. The performance penalty is small for our
applications, since the expensive communication calls are collective operations.

Experiments showed, that it is necessary to optimize the load balancing.
Therefore, we introduced two different balancing strategies. The standard load
balancer for distributed memory is used only for a coarse load balancing between
the nodes. For the fine balancing on the node, the user can choose between
two new balancers, a fixed load balancing and a dynamic master-worker load
balancing. The master-worker algorithm promises the best load balancing for
inhomogeneous problems, because of its inherent load-steeling. The disadvantage
is the worse cache utilization, because the data is not bound to a specific CPU for
successive runs over the particle list. For SPH simulations with a fixed number of
neighbour interactions, the static load balancing is faster. One may consider the
dynamic load balancer for computations with a variable number of interactions
and large density gradients.

From OpenMP, we used 15 parallel pragmas, one barrier pragma and one
threadprivate pragma. We also need two additional locks to protect internal
structures.

The first version, ParaSPH frequently called sections with a critical region
and showed a bad performance on the SR8000. Explicit locking instead of critical
regions improved the performance only a little. Lock-free implementations of the
static load balancer and iterator fixed the problem. We setup up an independent
particle list with its own iterator for each thread and omit shared counters and
pointers.

Another problem was a compiler flaw in the Hitachi OpenMP implementa-
tion, if the program uses a local constant value like

Parallel Hybrid Particle Simulations Using MPI and OpenMP 193

{ /* begin local code section */
double const aValue = 2.0/3.0;
. some code using aValue ...

}

The compiler generated a shared variable together with an initialization for
every run through the local code section instead of using an immediate value or
a register. The cache trashing leads to a two times slower code.

On the Linux platform, we used Intel’s C++ compiler. We had to replace the
threadprivate directives by explicit memory allocation for every thread, because
the threadprivate directive triggers a compiler bug.

No additional code change was necessary to instrument 95% of the parallel
code with OpenMP. But 5% remaining serial code limits the speedup to about
6 on one Hitachi node with its 8 CPUs per node. So, we redesigned parts of
the code to increase the parallelization ratio. The strategy was to first identify
the hot spots in the remaining 5% and find a lock-free implementation. Most
parts need minor changes to omit necessary locks or heavy usage of shared data
structures. For the remaining parts with no lock-free alternative, we tried to
optimize the serial code itself to reduce the run time. With these changes we
gain a parallelization ratio of about 98% compared to the pure-MPI version.

6 Results

Our standard application — a typical astrophysical problem of an accretion disk
— is a 2-dimensional SPH simulation with 300000 particles and 80 interaction
partners per particle. This medium sized simulation requires about 900 MBytes
of memory on one node. One integration step needs about 74 seconds on one
Hitachi node (8 processors, pure-MPI mode). Large production runs use more
particles and are often calculated in three dimensions. They usually need 1000

or more integration steps resulting in several days of computation time on eight
CPUs and weeks on one CPU.

6.1 Hitachi SR8000 Single Node Performance

First we compared the performance of the hybrid and pure-MPI code on one
SR8000-F1 node. We used the hybrid version for this test, although there is no
message-passing. The application was about 25% slower (95 sec. compared to 74
sec.).

We found three main reasons for the performance impact of the hybrid ver-
sion.

Serial Parts. The code is not fully annotated with OpenMP instructions. There
is a small serial part, which is not present in the pure MPI version. This causes a
performance decrease especially on machines with a great number of processors
per node like the SR8000. In hybrid mode, the serial part is a fixed overhead
over pure-MPI parallelization. For the SR8000, the remaining 2% serial code in
ParaSPH result in a performance decrease of about 14%.

194 M. Hipp and W. Rosenstiel

OpenMP Overhead. Similar to the serial overhead is the OpenMP overhead
itself (thread creation, locking of critical sections) together with some additional
parallelization work (for example the fine load balancing described above). Flaws
in the OpenMP compiler may additionally decrease performance and are difficult
to find. Usually, the generated assembler code has to be verified after identifying
the problem with a profiler.

Cache. The parts computing the physical quantities have a near perfect hybrid
parallelization (no serial code) together with a near perfect load balancing (about
99%) But unfortunately, the total computing speed of the physical part is much
slower in hybrid mode. When we monitor the number of data load/stores and
the data cache-misses we get a near equal number of load/stores but 3 to 4 times
higher data cache-misses. The reason is not yet investigated. There is no simple
reason, since the intra-node load balancer tries to schedule the same load to the
same thread for successive runs over the particle list and concurrent memory
access of the same data exists only for reading (causing no cache-trashing). Only
data writes from different threads may fall into the same cache line resulting in
a higher cache miss rate.

6.2 Linux Cluster Single Node Performance

We used gcc for the pure-MPI version and Intel icc for the OpenMP version.
The Intel icc is about 4% slower than the gee in pure-MPI mode.

So, we expect only a little difference between the pure-MPI and the hybrid
version for the Linux Cluster with only two processors per node. The reality was
different. The hybrid version is 30% slower on one node than pure-MPI.

The reason may be a again a much worse cache utilization discussed in
the section above. Additionally, the Linux kernel may frequently reschedule the
threads on different processors while MPI processes are better stuck to one CPU.

6.3 Parallel Speedup

Figure 1 shows the speedup comparison of the pure-MPI and the hybrid paral-
lelization for different processor numbers. Now the inter-node communication be-
comes important. On the SR8000 with 8 processors per node the hybrid speedup
for large node numbers is much better. There is only little difference between the
two strategies on the Linux cluster. “Physics” is the computation of the physical
quantities including their communication. It shows a linear hybrid speedup until
256 CPUs. Since it contains communication, there is no linear speedup for larger
node numbers. For pure-MPI, the “Physics” is the dominant part while for hy-
brid the parallelization overhead (without communication) is dominant. On the
Linux cluster one can see a super-linear speedup for the “Physics” curve. The
reason is the increasing cache efficiency. The smaller per-processor problem sizes
for large processor numbers result in a better cache reuse. The effect is smaller
for pure-MPI, since one node cache efficiency is higher.

Parallel Hybrid Particle Simulations Using MPI and OpenMP 195
Hitachi SR8000 Speedup Linux Cluster Speedup
1200 T T T T T 70 —— T T T T T T T
Linear Speedup —— Linear Speedup ——
Hybrid Total - 60 L Hybrid Total -- * |
1000 Pure-MPI Total - 1 Pure-MPI Total -
Hybrid Physics * 50 | Hybrid Physics * |
800 Pure-MPI Physics ---&--- 1 Pure-MPI Physics ---a--- %
Q Q
3 S 40 : 1
B 600 43 4
o Q30 T
@ 400 * @
,,,,,,,,,,,,,, 20 ¢ 1
200 + 1 10} 1
0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 35 40 45 50

Number of Processors Number of Processors

Fig. 1. Speedups using different parallelization strategies on Hitachi SR8000 (left) and
the Linux Cluster (right).

The reduced communication is the reason why the hybrid version is faster
than the pure-MPI version for large node numbers (see 2). The time consuming
call in the communication part is a MPI_Allgather and (after a code change)
several calls to MPI_Allgatherv together with some post processing to reorganize
the received data. In the Allgather-test in section 3 we sent the same amount
of data independent of the number of nodes. For the SPH method, the amount
of data sent to the neighbors even increase with the number of nodes, because
the interaction area between the domains increases compared to the domain
size. On the SR8000 the hybrid communication time is near constant for large
node numbers, while the pure-MPI communication significantly increases for
more than 128 processors. On the Linux Cluster, there is only little difference
between hybrid and pure-MPI parallelization.

Hitachi SR8000 Communication

7 Aligatherv Hybrid ——

Linux Cluster Communication

Allgatﬁew Hybrid —

Allgatherv Pure MP| - 1 Allgatherv Pure MP| - |

Time in Seconds
Time in Seconds

0 i L L L L L 0 [L L L L L L L L L
400 600 800 1000 1200 0O 5 10 15 20 25 30 35 40 45 50

Number of Processors Number of Processors

Fig. 2. The communication is the reason for the limited speedup in pure-MPI mode
for large node numbers.

196 M. Hipp and W. Rosenstiel

6.4 Memory Consumption

The SPH method with its neighbour interactions shares a lot of data between
processor domains. The advantage of reducing the number of domains for the
memory consumption is obviously. While there is only little thread overhead, a
pure-MPI run on one SR8000 node takes about the same amount of memory
as a hybrid job on 8 nodes. The exact reduction depends on several simulation
parameters. A good approximation is that we can double our problem size by
switching to hybrid mode.

7 Related Works

The comparison of a pure-MPI with a hybrid OpenMP/MPI programming
model is done in [1] for the NAS benchmark on a IBM SP. To achive a good
hybrid implementation the NAS benchmark is profiled to find loops for OpenMP
parallelization. Comparing only computation time, the pure-MPI version is near
always faster. There are only advantages for the hybrid version, if communication
time dominates the benchmark.

In [10] there is an extensive comparison of different hybrid programming
models. The author compares hybrid-masteronly, hybrid-multiple and pure-MPI
communication on several parallel platforms. The author concludes, that on
some platforms (for example IBM SP) only a hybrid-multiple programming style
can achive full inter-node bandwith because a single CPU cannot saturate the
network unless the MPI library itself uses a thread based model to optimize the
communication.

Henty [4] presents the results of a hybrid implementation of a Discrete El-
ement Modelling (DEM) code. The author made similar experiences, that a
scalable hybrid implementation is not achieved without effort. Worse cache uti-
lization and locking in a thread based parallelization reduces overall performance.
Therefor, the pure-MPI parallelization of the DEM code is better than a hybrid
model for a cluster of SMPs. The load balancing advantages of a hybrid code
cannot compensate the penalties.

8 Conclusion

A simple instrumentation of a MPI parallelized code with OpenMP usually re-
sults in a worse performance, because it is not always possible to find a simple
thread based parallelization for a message-passing based code. Since locks are
very expensive, at least on the Hitachi SR8000, it is important to have a lock-
free implementation. We gain a parallelization rate of about 98% with simple
OpenMP instrumentation together with minor code rewrites and explicit opti-
mization of serial parts.

With these enhancements, a hybrid parallelization is possible. It has serveral
advantages over pure-MPI such as reduced memory consumption and can in-
creased performance for larger node numbers on machines with bigger SMP

Parallel Hybrid Particle Simulations Using MPI and OpenMP 197

nodes such as the 8-way Hitachi SR8000, while there is no performance ad-
vantage or even a disadvantage over pure-MPI parallelization for small node
numbers or machines with only 2-way SMP nodes. The reasons are a worse
cache efficiency, thread scheduling problems together with compiler flaws and
inefficient implementations of some OpenMP features.

For large node numbers the parallelization profits from the reduced com-
munication overhead in hybrid mode. For the SPH method, one can achieve a
speedup of about 257 on 512 CPUs and 346 on 1024 CPUs while the pure-MPI
version is limited to a speedup of about 120 on 256 CPUs on the Hitachi SR8000.

The future work is to further investigate the reason for the reduced cache
utilization of the hybrid parallelization and to provide a hybrid version with
good performance for small node numbers, too.

References

1. Franck Cappello and Daniel Etiemble. MPI versus MPI4+OpenMP on the IBM SP
for the NAS Benchmarks. In Proc. Supercomputing 00, Dallas, TX, 2000.

2. S. Ganzenmiiller, M. Hipp, S. Kunze, S. Pinkenburg, M. Ritt, W. Rosenstiel,
H. Ruder, and C. Schéfer. Efficient and object oriented libraries for particle simula-
tions. In E. Krause, W. Jager, and M. Resch, editors, High Performance Computing
in Science and Engineering 2003, pages 441-453. Springer-Verlag, 2003.

3. R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: Theory
and application to non-spherical stars. Monthly Notices of the Royal Astronomical
Society, 181:375-389, 1977.

4. D. S. Henty. Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling. In Proc. Supercomputing 00, Dallas, TX,
2000.

5. M. Hipp, S. Kunze, M. Ritt, W. Rosenstiel, and H. Ruder. Fast parallel particle
simulations on distributed memory architectures. In E. Krause and W. Jager,
editors, High Performance Computing in Science and Engineering 2001, pages 485—
499. Springer-Verlag, 2001.

6. S. Hiittemann, M. Hipp, M. Ritt, and W. Rosenstiel. Object oriented concepts for
parallel smoothed particle hydrodynamics simulations. In Proc. of the Workshop
on Parallel/High-Performance Object-Oriented Scientific Computing (POOSC’99),
1999.

7. L. B. Lucy. A numerical approach to the testing of the fission hypothesis. The
Astronomical Journal, 82(12):1013-1024, 1977.

8. Message Passing Interface Forum. MPI: A message passing interface. In Proc.
Supercomputing '93, pages 878-883. IEEE Computer Society, 1993.

9. OpenMP Architecture Review Board. OpenMP C and C++ Application Program
Interface, March 2002. http://www.openmp.org.

10. Rolf Rabenseifner. Hybrid Parallel Programming on HPC Platforms. In Proc.
FEuropean Workshop on OpenMP ’03, 2003.

	1 Introduction
	2 Hybrid Architectures
	3 Motivation
	3.1 OpenMP
	3.2 HPF

	4 The SPH Method
	5 Hybrid Implementation
	6 Results
	6.1 Hitachi SR8000 Single Node Performance
	6.2 Linux Cluster Single Node Performance
	6.3 Parallel Speedup
	6.4 Memory Consumption

	7 Related Works
	8 Conclusion
	References

