An MDA Approach for the Development of Web
Applications

Santiago Melid Beigbeder and Cristina Cachero Castro

Universidad de Alicante, Espafia
{santi,ccachero}@dlsi.ua.es

Abstract. The continuous advances in Web technologies are posing new
challenges to Web Engineering proposals, which now require the inclusion
Software Architecture techniques in order to integrate the explicit consideration
of non-functional features in the Web application design process. In this article
we propose a new approach called WebSA, based on the the MDA (Model
Driven Architecture) paradigm. WebSA specifies a model driven process that
adds to the traditional Web-related functional viewpoint a new software
architectural viewpoint that permits, by means of successive model
transformations, to establish the desired target application structure.

1 Introduction

The high pace at which advances in Web technologies are taking place has changed
the idiosyncrasy of Web applications, that now imply not only more complex
functional requirements but also stricter constraints posed on features such as
distributability, scalability, platform-independence or extensibility. In order to tackle
such new requirements, several authors [1] propose the use of Software Architecture
techniques. Following this trend, in this article we present WebSA (Web Software
Architecture). WebSA is a Web model-driven approach that is based on the standard
MDA (Model Driven Architecture) [5]. The MDA framework provides WebSA not
only with the possibility to specify and formalize a set of Web-specific models by
means of a UML profile, but also to specify each process step from the models to
implementation by means of a set of transformation rules.

The remaining of the article is structured as follows: in section 2 we present briefly
the WebSA Development process and its main views and models. From these views,
the architectural viewpoint and, more specifically, its logical architectural view is
discussed in section 3. Last, section 4 outlines the conclusions and further lines of
research.

2 WebSA: Model Driven Architecture of Web Applications

As we stated above, WebSA is a proposal whose main target is to cover all the phases
of the Web application development and to contribute to cover the gap existing
between traditional Web design models and the application implementation. In order

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 300-305, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An MDA Approach for the Development of Web Applications 301

to achieve this aim, it defines an instance of the MDA Development Process for the
Web application domain. Also, it proposes the formalization of the models by means
of a MOF-compliant repository (metamodel) and a set of OCL constraints (both part
of the OMG proposed standards) that together specify (1) which are the semantics
associated with each element in the models, (2) which are the valid configurations and
(3) which constraints apply. This formalization is being performed, as other Web
methodologies [14] have done before, by the definition of a UML [8] profile that
gathers the main constructs of the models involved in the specification of applications
in the Web domain.

In order to define a Web application System proposes a Web application view model
that is made up of 8 views, grouped into three viewpoints: requirements, functional
and architectural viewpoints. From them, the architectural viewpoint is a main
contribution of WebSA. This viewpoint includes a logical architectural view that
gathers the set of logical components (subsystems, modules and/or software
components) and the relationships among them. Also, it includes a physical
architecture view that describes the physical components that integrate the lower level
specification of the application (clients, servers, networks, etc.). As we have stated
above, and in order to shift from one view to the other, WebSA defines a process that
is explained next.

2.1 The WebSA Development Process

The WebSA Development Process [3] is based on the MDA development process. In
order to fulfill this goal, it establishes a correspondence between its Web-related
artifacts and the MDA artifacts. Also, and as a main contribution, it defines a
transformation policy partly driven by the architectural model that can be seen in Fig.
1. In this figure we observe how in the analysis phase the Web application
specification is divided horizontally into two viewpoints. The functional-perspective
models reflect the functional analysis, while the architectural models define the
system architecture. Both of these models are PIMs in the context of an MDA
framework. In this phase, the architectural models are based on the concept of
Conceptual Architecture [4], and are made up of conceptual elements, obtained by
abstraction of the elements found in the Web application domain. These models fix
the application structure orthogonally to its functionality, therefore allowing their
reuse in different Web applications.

The PIM-to-PIM transformation (see T1 in Fig. 1) of these models into platform
independent design models (PIMs) provides a set of artifacts in which the conceptual
elements of the analysis phase are mapped to concrete elements where the
information about functionality and architecture is integrated. It is important to note
how these models, being still platform independent, are the basis on which several
new transformations, one for each target platform (see e.g. T2, T2’ and T3 in Fig. 1),
can be defined. The output of these PIM-to-PSM transformations is the specification
of our Web application for a given platform. At this level of abstraction, the models
can still endure a final PSM-to-code transformation, usually implemented in WebSA
by means of templates. In this way, the WebSA process guarantees the traceability
from analysis to code. In order to complete the specification of this process, WebSA
formalizes the three transformations (PIM-to-PIM, PIM-to-PSM y PSM-to-code) by

302 S. Melid Beigbeder and C. Cachero Castro

means of QVT (Query View Transformation) [6]. QVT defines a transformation
language that is based on an extension of the MOF 2.0 metamodel and which allows
to link models situated in different views and map them through the different life
cycle phases. Also, QVT extends OCL for the specification of queries and filters over
the models. The inclusion of an architectural view in this process has a preeminent
role for the completion of the specification of the final Web application, and drives
the refinement process from analysis to implementation. In the next section we will
center on this architectural viewpoint and how it influences the refinement process.

DEVELOPMENT LEVEL OF
LIFE CYCLE ABSTRACTION
P N P N
FUNCTIONAL ARGHITECTURE
MODELS
ANALYSIS HIGH
x ~
AN /
AN 1 /
4
PLATFORM
INTEGRATION
INDSI;EI’\(‘BEI)\IENT /‘ DESIGN MODELS V\
% . N
7 N
L 2 L 2 v
PLATFORM
Sggsclg,l\lc J2EE MODELS NET MODELS
T * T
............................ RGN R
IMPLEMENTATION
v - + + v

Fig. 1. WebSA Web Development Process.

3 Logical Architectural View for Web Applications

The logical architectural view is responsible for the definition of the logical
components (subsystem, modules and/or software components) that collaborate in the
system, as well as the relationship among them. In WebSA this view is made up of
three models, namely (1) the Subsystem Model (SM), which determines the
conceptual subsystems that make up our application, (2) the Web Component
Configuration Model (WCCM), which decomposes each subsystem in a set of
abstract components related by abstract connectors and (3) the Web Component
Integration Model (WCIM) which, as its name may suggest, performs an integration
of views.

An MDA Approach for the Development of Web Applications 303

3.1 Subsystem Model

Also known as structural design, the Subsystem Model determines which are the
subsystems that make up our application.
This model is made up of two main constructs:

e Subsystem: element of coarsest granularity in any Web application
architectural design. It defines a group of software components developed to
support the functionality assigned to a given logical layer. Subsystems are
depicted in WebSA by means of the UML package symbol.

e Dependency Relationship: link element that reflects the use dependencies
between subsystems. In WebSA it is depicted as a UML dependency arrow.

This model provides the most abstract perspective of the logical architecture view,
and the subsystems obtained during this phase will be later identified with each logic
layer in the application. This separation on layers is essential to reduce the complexity
of the system, as it is justified in the “layering approach” pattern presented in [2]. In
this model, and in order to ease its construction, WebSA proposes the use of any of
the five distribution patterns defined in [7].

The different layers identified for a given system are reflected in the Subsystem
Model by means of a stereotype associated to the subsystem package symbol. WebSA
defines nine subsystem stereotypes, namely: «user interface», «server», «business
logic», «presentation», «dialog control», «process control», «business object», «data
access» and «physical data». Additionally, WebSA provides a set of restrictions that
apply to the possible relationships between subsystems.

Once the different subsystems have been identified, we must specify the contents of
each subsystem, that is, the set of abstract components that configure them. Such
contents are specified in the Web Component Configuration Model, which is
introduced next.

3.2 Web Component Configuration Model (WCCM)

The second model of the logic Architecture view is the Web Component
Configuration Model, which consists of a set of abstract components and connectors,
particular to the Web domain. These abstract elements, also based on the Conceptual
Architecture, are the result of a refinement process performed on each subsystem
identified in the previous model. The main constructs of the Web Component
Configuration Model are abstract components and abstract connectors.

e An abstract component represents an abstraction of one or more software
components with a shared functionality in the context of a Web application. An
example of it is a Client Page, which represents any artifact that contains
information and/or interaction code relevant for the user. Note how this kind of
component does not necessarily map to a single physical page but reflects a
general task that must be performed by the application, such as showing certain
information to the user. Abstract components are depicted with a UML class
symbol.

e The abstract connector represents a dependency relationship between two
abstract components in the system, and is depicted with a stereotyped UML

304 S. Melid Beigbeder and C. Cachero Castro

dependency relationship. This relationship may affect either the interface or the
whole component.

In order to construct a WCCM, the designer may use any of the architectural and
design patterns. Such patterns provide powerful configurations that, applied to
abstract components, not only provide a reuse mechanism but also contribute to a
more efficient development process.

3.3 Web Component Integration Model (WCIM)

The last model defined as part of the logical architectural view is the Web Component
Integration Model (WCIM). This view is also known as integration model, as it
connects the functional and architectural views under a common set of concrete
components, modules and connectors which will eventually make up the Web
application. This model is defined during the WebSA Platform Independent Design
phase, and still centers on design aspects (components, their interfaces and their
relations).

The WCIM includes three main constructs: concrete components, modules and
concrete connectors. Concrete Components (CC) are the smallest unit in the context
of the integration model. It represents a software component in a given application
domain, and it is obtained as an instance of an abstract component. A module (M) is a
container of one or more concrete elements in the context of a given Web application.
Such elements can be either other modules, concrete components or concrete
connectors. Modules condense the functionality of a set of elements, reducing in this
way the complexity of the models, and are depicted by means of a UML package
metaclass. Last, Concrete Connectors (CN) express a relationship between two
concrete components or modules of the system. It can be regarded as an instance of a
dependency relationship defined in the WCCM. The number of instances (concrete
connectors) generated for each abstract connector depends both on the cardinality of
such abstract connector and on the existing relationships between those abstract
components and the functional side of the application. Concrete connectors belong,
just as modules and concrete components, to a given application domain.

4 Conclusions

In this paper we have presented a Web development approach called WebSA. WebSA
fosters the use of the MDA philosophy to define a set of suitable models and a
complete refinement process to cover the Web application domain. In this way,
WebSA adds a new architectural viewpoint to explicitly address the architectural
issues. This view is made up of three models, and its construction follows a top-down
process that goes from the Subsystem Model, where the layers of the application are
defined, to the Web Component Integration Model, where the designer determines the
low level platform-independent components that make up the final application. In
each phase WebSA promotes the use of a set of reuse practices and provides the
mechanisms to reflect different sets of requirements. Currently, we are working on a
formal definition of the UML 2.0 profile and metamodel for WebSA, and also on the

An MDA Approach for the Development of Web Applications 305

set of QVT transformation models that support the WebSA refinement process, which
we expect to be incorporating in the VisualWADE Development Enviroment [9] in
the near future.

References

1. Bass, L., Klein, M., Bachmann, F. “Quality Attribute Design Primitives” CMU/SEI-2000-
TN-017, Carnegie Mellon, Pittsburgh, December, 2000.

2. Buschman F., Meunier R., Rohnert H., Sommerlad P., Stal. M.: “Pattern-Oriented
Software Architecture — A System of Patterns”; John Wiley & Sons Ltd. Chichester,
England, 1996.

3. Santiago Melid, Cristina Cachero y Jaime Gomez. Using MDA in Web Software
Architectures. 2nd OOPSLA Workshop in “Generative Techniques in the context of
MDA”. http://www.softmetaware.com/oopsla2003/mda-workshop.html. October, 2003.

4. Nowack, P.: “Structures and Interactions — Characterizing Object-Oriented Software
Architecture” PhD thesis. The Maersk Mc-Kinney Moeller Institute for Production
Technology, Univertity of Southern Denmark”.

5. Model-Driven Architecture (MDA) Home Page: http://www.omg.org/mda/index.htm.

6. Object Management Group. Request for Proposal: MOF 2.0 Query / Views /
Transformations RFP,2002. ad/2002-04-10.

7. Renzel K., Keller W. Client/Server Architectures for Business Information Systems. A
Pattern Language. PLoP’97 Conference.

8. UML 2.0 Standard, OMG (2003). http://www.omg.org.

9. VisualWADE. http://www.visualwade.com

	Introduction
	WebSA: Model Driven Architecture of Web Applications
	The WebSA Development Process

	Logical Architectural View for Web Applications
	Subsystem Model
	Web Component Configuration Model (WCCM)
	3.3	Web Component Integration Model (WCIM)

	Conclusions
	References

