CVC Lite: A New Implementation
of the Cooperating Validity Checker*

Category B

Clark Barrett! and Sergey Berezin?
! New York University
barrett@cs.nyu.edu

2 Stanford University
berezin@stanford.edu

Abstract. We describe a tool called CVC Lite (CVCL), an automated
theorem prover for formulas in a union of first-order theories. CVCL
supports a set of theories which are useful in verification, including un-
interpreted functions, arrays, records and tuples, and linear arithmetic.
New features in CVCL (beyond those provided in similar previous sys-
tems) include a library API, more support for producing proofs, some
heuristics for reasoning about quantifiers, and support for symbolic sim-
ulation primitives.

1 Introduction

Decision procedures for decidable fragments of first-order logic continue to at-
tract users and interest in a wide variety of verification efforts.

CVC Lite (CVCL) is a tool for determining the validity (or satisfiability) of
first-order formulas over a union of specific useful theories. It replaces the original
Cooperating Validity Checker (CVC) [7], which, in turn, was a successor to the
Stanford Validity Checker (SVC) [4]. The name does not imply that the new
system is less powerful than CVC, but rather was chosen because after learning
from our experience with CVC, we felt we could create a tool which, without
sacrificing functionality, would be smaller, faster, and easier to use and maintain.

Although CVCL is a work in progress, in many respects it has already val-
idated our vision and rewarded the effort involved in a reimplementation. In
particular, the code base is one third the size of CVC, the performance is com-
parable, and it has been used and enhanced by a number of people outside the
core group of developers. In addition, CVCL has many new features, not found
in any of the previous systems.

In this paper, we will describe the theory and features of CVCL, with an
emphasis on what is new as compared to the previous systems (especially CVC).
We begin with a brief overview of the system and the theories which are currently

* This research was supported by a grant from Intel Corporation and by National
Science Foundation CCR-~0121403.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 515-518, 2004.
© Springer-Verlag Berlin Heidelberg 2004



516 Clark Barrett and Sergey Berezin

supported in CVCL. Then we describe the features which are new in CVCL and
conclude with some example applications.

2 Overview

CVCL accepts as input one or more assertion formulas and a query formula.
It then checks whether the assertion formulas imply the query formula. Each
formula must be a first-order formula whose parameters (non-logical symbols)
must be from among the theories listed in the next section.

The algorithm used depends on the Nelson-Oppen method for combining
decision procedures [6] and the implementation is based closely on an algorithm
whose correctness is verified in the first author’s Ph.D. thesis [3].

Although there is limited support for quantifiers in CVCL (see below), the
algorithm is complete only for quantifier-free formulas. As with its predecessor,
CVCL uses advanced SAT-based search heuristics and has the ability to produce
a proof when a formula is successfully validated.

3 The Theories of CVCL
3.1 Equality with Uninterpreted Functions

The simplest supported theory is one which contains an arbitrary number of
functions and predicates which are “uninterpreted”, meaning that the theory
does not provide any information about them other than that they are func-
tions and predicates. Because the set of non-logical symbols in this theory varies
according to the formulas being checked, the user must specify the set of such
functions and predicates for a particular run of CVCL.

3.2 Arrays

CVCL includes a theory of abstract arrays with two operations, read and write
which can be used to read from a location in an abstract array or to create a
new array by writing a new value to a location in an existing array.

3.3 Records and Tuples

CVCL formulas can include simple aggregate datatypes like records and tuples.
These are handled with a simple decision procedure for a set of operations used to
create, read from, and write to these datatypes (much like the array operations).

3.4 Arithmetic

As with its predecessors, CVCL can decide the theory of linear arithmetic over
the reals. However, CVCL also has some additional capabilities. The first is the
ability to deal with linear arithmetic over integers. In fact, CVCL can reason
about linear expressions over any combination of real and integer variables.

The other extension implemented in CVCL is the ability to handle some
nonlinear arithmetic. Nonlinear expressions are transformed into a normal form,
making it possible to verify simple identities like (a+b)(a—b) = a®—b%. However,
the nonlinear capabilities of CVCL are still very limited.



CVC Lite 517

3.5 Additional Theories

Currently, new decision procedures are being developed for inductive datatypes,
a subset of set theory, and a theory of bit-vectors.

4 New Features

4.1 Library API

One of the main features lacking in both SVC and CVC was a library interface.
Interaction with the old systems was done using a small custom command lan-
guage. Commands were either typed in manually or provided through a scripting
mechanism.

CVCL has the same command language interface, but we also designed an
abstract interface into CVCL from the start. The methods in this API mimic the
command language, so that it is easy to move from one mode of interaction to the
other. In fact, the command language interface is implemented using the API,
minimizing the chance that the two modes of interaction will behave differently.

The API is available both as an abstract C++ class and as a set of C func-
tions. It has been successfully used as a library from C++, and the C interface
has been successfully used by the foreign function interface of other languages
including Prolog and Ocaml.

4.2 Proof Support for Efficient Boolean Reasoning

A major feature of the original CVC system was the ability to produce a proof
artifact as the result of successfully validating a formula. However, CVC could
only produce proofs when using a slow search heuristic. When using advanced
SAT-based heuristics, which are essential on large formulas, CVC was unable to
produce a proof because it depended on an external SAT solver and had no way
to extract a proof from this solver.

CVCL overcomes this difficulty by integrating a custom SAT solver and in-
cluding proof rules for the kinds of reasoning done in modern efficient Boolean
SAT solvers [2]. This enables CVCL to use advanced techniques like clause learn-
ing and conflict-directed backtracking while still producing proofs.

4.3 Quantifiers

One of the most significant new features of CVCL is native support for quan-
tifiers. Adding quantifiers necessarily makes the logic undecidable, but in many
practical examples, even very simple heuristics for quantifier instantiation can
be sufficient.

The current heuristic used by CVCL is to collect the set of terms that have
occurred in some previous formula, and then use these terms to instantiate the
quantified variables of similar type. This is a very close reimplementation of
the heuristic used by Das and Dill [5] for solving quantified formulas arising in
predicate abstraction.



518 Clark Barrett and Sergey Berezin

4.4 Symbolic Simulation

A primitive interface for symbolic simulation was built into CVC, and success-
fully applied to applications in hardware verification [1]. CVCL provides a more
extensive and intuitive interface to symbolic simulation primitives.

5 Conclusion

Since becoming available in August 2003, CVCL has been downloaded by many
research groups and used in a wide variety of verification efforts in both hardware
and software.

One representative example is the work on compiler validation being done
at NYU. CVCL is used to verify the verification conditions generated by a tool
which checks the correctness of transformations done by an optimizing com-
piler [8].

CVCL has an active user and development community. More information,
including instructions for downloading and installing the tool, is available at the
CVCL web page: http://verify.stanford.edu/CVCL.

References

1. Husam Abu-Haimed, Sergey Berezin, and David L. Dill. Strengthening invariants
by symbolic consistency testing. In Warren A. Hunt Jr. and Fabio Somenzi, editors,
CAV, volume 2725 of Lecture Notes in Computer Science. Springer, 2003.

2. Clark Barrett and Sergey Berezin. A Proof-Producing Boolean Search Engine. In
CADE-19 Workshop: Pragmatics of Decision Procedures in Automated Reasoning
(PDPAR), July 2003. Miami, Florida, USA.

3. Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations
of First-Order Theories. PhD thesis, Stanford University, 2003.

4. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity Checking for
Combinations of Theories with Equality. In Mandayam Srivas and Albert Camil-
leri, editors, Formal Methods In Computer-Aided Design (FMCAD), volume 1166
of Lecture Notes in Computer Science, pages 187-201. Springer-Verlag, November
1996. Palo Alto, California.

5. Satyaki Das and David L. Dill. Counter-example based predicate discovery in pred-
icate abstraction. In Formal Methods in Computer-Aided Design. Springer-Verlag,
November 2002.

6. Greg Nelson and Derek Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245-57, 1979.

7. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A Cooperating Validity
Checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, 14th International
Conference on Computer Aided Verification (CAV), volume 2404 of Lecture Notes in
Computer Science, pages 500-504. Springer-Verlag, 2002. Copenhagen, Denmark.

8. Lenore Zuck, Amir Pnueli, Benjaming Goldberg, Clark Barrett, Yi Fang, and Ying
Hu. Translation and run-time validation of optimized code. (to appear in) For-
mal Methods in Systems Design, 2004. Preliminary version in Third Workshop on
Runtime Verification (RV), 2002.



	1 Introduction
	2 Overview
	3 The Theories of CVCL
	3.1 Equality with Uninterpreted Functions
	3.2 Arrays
	3.3 Records and Tuples
	3.4 Arithmetic
	3.5 Additional Theories

	4 New Features
	4.1 Library API
	4.2 Proof Support for Efficient Boolean Reasoning
	4.3 Quantifiers
	4.4 Symbolic Simulation

	5 Conclusion
	References



