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Abstract. In order to characterize the metric of exact subsets of infi-
nite information systems, [51] studied the asymptotic behaviour of ω–
chains of graded indiscernibility relations. The SFP object underlying
the universe of exact sets presented in [2] provides a concrete example
of an infinite graded information system. By controlling the asymptotic
behaviour of ω–Sequences of Finite Projections, the theory of graded
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objects, providing a metric over exact sets.
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1 Infinite Information Systems

Though distinct fields of computer science, Rough Set Theory (RST) [44] and
Domain Theory (DT) [58] both study the approximation of concepts in infi-
nite information systems. The former studies the topological approximation of
subsets by upper and lower bounding subsets, while the latter studies the order–
theoretic approximation of functions under an information ordering. However
their techniques diverge, these fields are intricately related when attention is
focused on infinite information systems arising in connection with the inverse
limits of Sequences of Finite Projections (SFP) [47].

Given a set of points U, RST studies the field of subsets of U under upper and
lower approximation operations, typically those of the quasi–discrete topology
induced by an equivalence relation E on U [44]. In the finite case, the field of
exact subsets forms a compact metric Boolean algebra. In order to extend this
characterization to the exact subsets of infinite information systems [51] studied
the asymptotic behaviour of approximations by descending chains of equivalence
relations {Ei} over U such that Ei+1 ⊆ Ei, called “graded chains of indiscerni-
bility relations”. The limit E∞ of this chain is an equivalence relation called the
indiscernibility relation graded by {Ei}. The collection of all Ei-granules forms
a base for a “graded” topology in [51]. We shall show that this graded topology
is identical to the Pawlak topology induced by E∞.
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By integrating the “distance” between two elements of U as the stage at
which they are discerned in the chain {Ei}, [51] obtains a metric distance −
which we call a graded metric − between subsets of U which are closed in the
graded topology. As Pawlak’s topology is quasi–discrete, we conclude that the
“closed” subsets are precisely the exact subsets of U whence the graded metric
obtains over the exact subsets of U. As an example of an infinite information
system based upon graded indiscernibility, we use the theory of SFP objects to
construct a universe of exact sets by placing an approximation space (U, E) in
a type–lowering retraction with 2U . Accordingly, this universe of exact sets is
accompanied by a graded metric.

By dualizing Polkowski’s construction, the concept of an inversely graded
indiscernibility relation and metric is obtained. A. Robinson’s [54] ultra product
construction of non–standard real numbers provides a viable example of this.
This conclusion is consistent with the analogy developed in [4] that the universe
of exact sets is to standard set theory as Robinson’s non–standard analysis is to
standard analysis. We hope that this development suggests a foundational role
for the study of infinite information systems in rough set theory and analysis.

2 Rough Set Theory

Let U �= ∅ and E ⊆ U × U be an equivalence relation. In rough set theory [44],
E is typically interpreted as a relation of indiscernibility with respect to some
prior family of concepts (subsets of U). The pair (U, E) is called an approximation
space. For each point u ∈ U, let [u]E denote the equivalence class of u under E.
E-classes [u]E are called (E-) granules or elementary subsets. Let A ⊆ U ;

Int(A) =df {x ∈ U | (∀y ∈ U)[xE y → y ∈ A]} = ∪{[u]E | [u]E ⊆ X},
Cl(A) =df {x ∈ U | (∃y ∈ U)[xE y ∧ y ∈ A]} = ∪{[u]E | [u]E ∩X �= ∅},

are called the lower and upper approximations of A, respectively. Cl(A) is a
relational closure under E of the subset A. E-closed subsets of U are called (E-)
complete (or exact). It is natural to regard the exact subsets of U as the “parts”
of U and elementary subsets as the “atomic parts” of U 1. C(E) denotes the
family of E–exact subsets of U and, for A ⊆ U, C(A) the family of E–exact
subsets of A. The family,

BE = {[x]E : x ∈ U},
is the partition of U induced by the equivalence relation E and it forms a base
for a quasi–discrete topology ΠE over U. It is clear that the open sets in this
topology are precisely the exact sets.
1 RST marks the re–emergence in the Warsaw School of Mathematics of mereolog-

ical concepts such as “part” and “whole” that were originally introduced into set
theory by Leśniewski [36]; see e.g., rough mereology [48–50]. For an example of the
mereological conception of set in the recent philosophical literature − motivated
independently of RST − see [37].
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Given an approximation space (U, E) and A, B ⊆ U, [44] defines A and B
to be roughly equal, symbolically, A ∼E B, iff Int(A) = Int(B) and Cl(A) =
Cl(B). Hence, A ∼E B iff A and B are equivalent with respect to the partition
topology (U, C(E)) induced by (U, E). Rough equality classes [A]∼E are called
topological rough sets [63]. In the context of (U, E), [A]∼E may be identified
with the interval of subsets lying between Int(A) and Cl(A), in which A is
approximated from “below” by its interior and from “above” by its closure.

3 Proximal Frege Structures

The comprehension principle of naive set theory is based upon Frege’s [21, 22]
ill–fated [23–25] idea that for every concept X there is an object, X̂, called the
extension of X , which comprises precisely the objects falling under X . X̂ is,
intuitively, the set of objects u such that u falls under X, i.e., {u : X(u)}. Frege
thus posited the existence of a “type–lowering correspondence”, terminology es-
tablished in [5] for functions f : 2U → U, holding between the concept universe
2U and the universe of objects U . Frege attempted to govern his introduction
of extensions by adopting the principle that X̂ and Ŷ are strictly identical just
in case precisely the same objects fall under the concepts X and Y. That this
“Basic Law” contradicts Cantor’s Theorem2 in requiring f to be injective and
leads to Russell’s paradox regarding “the class of all classes which do not be-
long to themselves” [23, 55, 25], is now well appreciated. [15] initiated the proof
theoretic study of Frege’s extension function in consistent theories extending
second order logic. Models of these theories are obtained by placing a domain
of discourse U in a type–lowering correspondence with its power set 2U and are
called “Frege structures” after terminology established in [1]. The rediscovery
of Frege’s Theorem3 [43, 64, 9] in type–lowering extensions of second order logic
re–focused interest on Frege structures. [3, 2, 6] presented Frege structures as re-
traction pairs of type–lowering and raising maps, i.e., pairs (f, g) of functions
f : 2U → U, g : U → 2U such that f(g(u)) = u. f retracts 2U onto U (de-
termining sethood) and g is the adjoining section (determining elementhood).
The Frege structure (U, f, g) is a model of abstract set theory in which Cantor’s
“consistent multiplicities” [13, p. 443.] can be identified with precisely those sub-
sets of U which are elements of the section g[U ] of the retraction, whence the
fundamental question [6] arises: which subsets are these?

2 According to Cantor’s Theorem [12], the power set 2U is of strictly larger cardinality
than U .

3 In the Grundlagen der Arithmetik [21], Frege sketched a derivation of Peano’s pos-
tulates for the arithmetic of natural numbers from Cantor’s Principle of equality
for the cardinal numbers [11], that sets have the same cardinal number just in case
they are equipollent. Called “Hume’s Principle” (HP) by Boolos [9], this principle is
presented in Grundlagen §63 as the statement that, for any concepts F and G: the
number of F s = the number of Gs iff F is equipollent with G. The derivation of the
infinity of the natural number series in second order logic + HP − a theory Boolos
calls “Frege’s Arithmetic” − is now called “Frege’s Theorem” [9].
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One concrete answer is provided along the lines of Rough Set Theory. Accord-
ingly, one may augment the retraction pair (f, g) with an equivalence relation E
on U and characterize the section as comprised of precisely the E–closed sub-
sets of U [2]. Comprehension is governed by the method of upper and lower
approximations in the resulting universe (U, E, f, g) of abstract sets, called [2] a
“proximal” Frege structure. The leading idea is that logical space has an atomic
structure and this granularity is the form of set theoretic comprehension.

Let (U, E) be an approximation space and �·� : 2U → U , �·� : U → 2U be
functions. Assume further,

1. �·� is a retraction, i.e., ��u�� = u (i.e., �·� ◦ �·� = 1U ), thus �·� is the
adjoining section.

2. The operator �·� ◦ �·� is a closure (under E). This is that for every X ⊆ U,
��X�� is E–closed and

X ⊆ ��X��.

So,
��X�� = Cl(X).

3. The E–closed subsets of U are precisely the X ⊆ U for which ��X�� = X .
They are fixed–points of the operator �·� ◦ �·�.

Then (U, E, �·�, �·�) is called a proximal Frege structure (PFS). Elements of U
are called Frege sets. The indiscernibility relation E of a PFS is usually denoted
≡. The fundamental idea behind this rather curious mathematical structure is
to use the approximation space [44] to tame the reflexive universe U of sets,

U � 2U ,

where “U � 2U” indicates that �·� retracts the power set of U onto U.
It follows that for every u ∈ U,

�u� = ���u���,

and hence, �u� is ≡–exact. Suppose X is ≡–closed, then ��X�� = X . Thus,

X ∈ �U� = Image(�·�).

So, the set of ≡–closed subsets of U is precisely the image of �·�. In algebraic
terms it is the kernel of the retraction mapping.

Further, we have the isomorphism C(≡) ≈ U given by,

i : C(≡) → U : X �→ �X�, j : U → C(≡) : u �→ �u�.

All of this may be summarized by the equation,

C(≡) ≈ U � 2U ,

where C(≡) is the family of ≡-closed subsets of U.
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Let F = (U,≡, �·�, �·�) be a proximal Frege structure. Writing “u1 ∈F u2”
for “u1 ∈ �u2�”, U interpreted as a universe of abstract (or type–free)sets; �·�
supports the relation of set membership holding between type–free sets (elements
of U). Note that as �u2� is ≡–closed, whenever u1 ≡ v,

u1 ∈ �u2� ↔ v ∈ �u2�.

F thus validates the Principle of Naive Comprehension (PNC),

u ∈F �X� ⇔ X(u),

for exact (≡–closed) subsets X of U . When X fails to be elementary, the equiv-
alence also fails and is replaced by a pair of approximating conditionals,

(1) u ∈F �Int(X)� ⇒ X(u);
(2) X(u) ⇒ u ∈F �Cl(X)�.

Note here we now use applicative grammar “X(u)” (“u falls under X) to indicate
that u is an element of X ⊆ U . Let “{x : X(x)}” denote �X�. While “{u ∈ U |
X(u)}” denotes a subset of U, the expression “{x : X(x)} denotes an element of
U. We distinguish the indiscernibility class [u]≡ of a Frege set u from Frege set
�[u]≡� that represents [u]≡; the latter is denoted {u}, and is called the proximal
singleton of u. Let x, y ∈ U. Then, both

(a) (∀u)(u ∈F x ↔ u ∈F y) ↔ x = y;
(b) (∀u)(x ∈F u ↔ y ∈F u) ↔ x ≡ y.

Theorem 1. (Cocchiarella 1972) There are x, y ∈ U such that x ≡ y but
x �= y.

Proof. As assuming the failure of the theorem (i.e., assuming the identity of
indiscernibles), [15, 16] derives Russell’s contradiction directly, the theorem fol-
lows.

Cocchiarella’s theorem ensures that whenever we have a PFS F = (U,≡, �·�, �·�),
the indiscernibility relation ≡ is coarser than the strict identity.

Since elements of U represent elementary subsets of U , the complete Boolean
algebra,

(C(≡),∪,∩,−, ∅, U),

is isomorphic to (U,∪U ,∩U ,−U , �∅�, �U�) under the restriction �·� � C(≡) of the
type–lowering retraction to elementary subsets of U. Here, ∪U ,∩U ,−U denote
the definitions of union, intersection and complementation natural to type–free
sets, e.g.,

u1 ∪U u2 =df ��u1� ∪ �u1��
etc., (in most contexts the subscripted “U” is suppressed). We define “u1 ⊆ u2”
to be “�u1� ⊆ �u2�”, i.e., inclusion of Frege sets is the partial ordering naturally
associated with the Boolean algebra of Frege sets.
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3.1 Counterparts and Inner and Outer Penumbra

Since unions of F -sets are exact,

{x ∈ U | (∃ g ∈ U)[f ≡ g ∧ x ∈F g]},
is an exact subset of U. Let a ∈ U ; define the outer penumbra of a, symbolically,
♦a, to be the F -set ∪[a]≡; dually, define the inner penumbra, �a, to be the F -set
∩[a]≡. These operations, called the penumbral modalities, are interpreted using
David Lewis’ counterpart semantics for modal logic [37]. Your “counterpart”
(in a given world) is a person more qualitatively similar to you than any other
object (in that world). You are necessarily (possibly) P iff all (some) of your
counterparts are P . Similarly, if a and b are indiscernible F -sets, a is more
similar to b than any other (i.e., discernible!) F -set. Thus we call a F -set b a
counterpart of a F -set a whenever a ≡ b. Then �a (♦a) represents the set of
F–sets that belong to all (some) of a’s counterparts. In this sense, we can say
that a F -set x necessarily (possibly) belongs to a just in case x belongs to �a
(♦a).

Define a〈x〉 =df x ∈F ♦a; thus,

a〈x〉 ⇔ x ∈F ♦a ⇔ x ∈ �♦a�.

This is the outer membership relation, also written x ∈♦ a. Thus, for all a, x ∈ U,

x ∈F a → x ∈♦ a.

It is equally clear that the converse of this does not hold. Dually, define a[x] =df

x ∈F �a; thus,
a[x] ⇔ x ∈F �a ⇔ x ∈ ��a�.

This is the inner membership relation, also written x ∈� a.
The principle that disjoint sets are discernible is a triviality of classical set

theory. However, it is independent of the axioms for PFS given thus far. The
Discernibility of the Disjoint (DoD) [2, 3] is the principle that disjoint F -sets be
discernible.

We say that a PFS F is a plenum iff it satisfies the following condition of
plenitude: For all a, b ∈ U, �a ≡ a ≡ ♦a, whence �a ≡ ♦a. Further, suppose
a ⊆ b and a ≡ b. Then, for all c ∈ U , a ⊆ c ⊆ b ⇒ c ≡ b. Plenitude is a consistent
extension of the notion of a PFS which tells us that F inclusion is well–behaved
with respect to indiscernibility. It is a nontrivial generalization, via “blurring”,
of a truism of classical set theory that if a is a subset of b and a is indiscernible
from b, then any c which is in between a and b as a subset is indiscernible from
b. If F is a plenum, then,

Lemma 1. For all a ∈ U and X ⊆ U such that x ≡ a (x ∈ X), we have ∪X,
∩X ≡ a.

Proof. �a ⊆ ∪X,∩X ⊆ ♦a, so the desired result follows from Plenitude by the
fact that �a ≡ ♦a.
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Corollary 1. ([a]≡,∩U ,∪U , �a,♦a) is a complete lattice with least (greatest)
element �a (♦a).

The canonical PFS Mmax to whose domain theoretic construction we now
turn is a concrete example of a plenum which satisfies DoD.

4 The Canonical PFS Mmax

4.1 Basic Domain Theory

Cpo’s and Continuous Functions. We assume the standard terminology and
notation for partially ordered sets (posets). When a poset X has the smallest
element, we denote it by ⊥X . We may drop the subscript X and write just ⊥,
as long as doing so does not cause confusion.

A poset X with smallest element such that every directed subset S of it has
a least upper bound

∨
S (called a directed limit of S) in X is called a complete

partial order (cpo). A singleton clearly is a cpo and we call it a trivial cpo. Let
A and B be posets. A function f : A → B is monotonic (or monotone) if it is
order preserving. Moreover, it is continuous if for each directed subset S of A,

f(
∨

S) =
∨

f(S) =
∨

{f(x) | x ∈ S}.

It is clear that all continuous functions are monotonic. So, continuous functions
are precisely those which preserve directed limits.

The collection of cpo’s and that of monotonic functions form a category which
we denote by MCPO, abbreviated by M. The collection of cpo’s and that of
continuous functions form a category which is denoted by CCPO, abbreviated
C. CCPO is a full subcategory of MCPO.

Retraction and Embedding. For cpo’s A and B, we call a pair (s : A →
B, r : B → A) of monotonic (continuous) functions an m(c)-retraction pair
(from B to A) iff

r · s = 1A;

s is called the m(c)-section and r is called the m(c)-retraction. If there is an
m–retraction pair from A to B, we say A is an m–retract of B, in symbols,

A �M B.

The concept of c–retract,
A �C B,

can be defined similarly. If the retraction pair is a pair of morphisms in a sub-
category S of MCPO, we may write

A �S B.
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For cpo’s A and B, let a pair (f : A → B, g : B → A) of monotonic
(continuous) functions be called an m(c)–embedding pair (from A to B) if

f · g ≤ 1B, g · f = 1A.

f is called the m(c)–embedding and g is called the m(c)–projection. Sometimes,
embedding pairs are called m(c)–projection pairs. It can easily be verified that
an m(c)–embedding uniquely determines the corresponding projection and vice
versa. So, we may write fR for g when (f, g) is an m(c)–embedding pair. If there
is an m(c)–embedding f : A → B, we write

A � B.

If the embedding pair is a pair of morphisms in a subcategory S of MCPO, we
may write

A �S B.

If it does not cause confusion, we will drop the subscript m(c) in the foregoing.
It is clear that if (f : A → B, g : B → A) is an m–embedding pair then (g, f)

is a retraction pair. If (f : A → B, g : B → A) is an m–embedding pair then

f(⊥A) =⊥B and g(⊥B) =⊥A .

It also is easy to verify that if (f : A → B, g : B → A) is a monotonic isomor-
phism pair, then both f and g are continuous.

The collection of cpo’s and that of m(c)–projection pairs form a category
that is denoted by M(C)-PCPO. M(C)-PCPO is a non–full subcategory of
M(C)CPO.

Function Spaces of Cpo’s. Suppose A and B are cpo’s. For every monotonic
functions f, g : A → B, we define a relation f ≤ g by

f ≤ g iff f(a) ≤ g(a).

This relation clearly is a partial order over the set [A → B]M of all monotone
functions from A to B. The restriction of this relation to the continuous functions
is a partial order over the set [A → B]C of all continuous functions from A to B.
For a poset A and a cpo B, [A → B]M and [A → B]C are cpo’s.

Assume (fi : Ai → Bi, f
R
i : Bi → Ai), i = 1, 2 are m(c)–projection pairs.

They induce an m(c)–projection pair,

([f1 → f2] : [A1 → A2] → [B1 → B2], [fR
1 → fR

2 ] : [B1 → B2] → [A1 → A2]),

given by,

[f1 → f2](w) = f2 · w · fR
1

[fR
1 → fR

2 ](w) = fR
2 · w · f1.

Suppose A and B are finite cpo’s; then all monotonic functions from A to B
are continuous and

[A → B]M = [A → B]C .
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The Inverse Limit Construction. By a sequence of c–embeddings of cpo’s,
we mean the following diagram:

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn−→ An+1

fn+1−→ · · · (Diagram D)

where fn, n ∈ ω are c–embeddings from An to An+1. The inverse limit of this
sequence is a cpo,

{x ∈ Πi∈ωAi | xi = fR
i (xi+1)},

with the point–wise ordering. We denote this cpo by A∞. For each n ∈ ω, we
clearly have ⊥An= fR

n (⊥An+1) and ⊥A∞ is given as

⊥A∞= 〈⊥A0 ,⊥A1 , ....〉.

For each n ∈ ω, there is a c–embedding pair (fn∞, fR
n∞) from An to A∞ such

that

fn∞(x)(i) =






fR
i · fR

i+1 · . . . · fR
n (x) if i < n

x if i = n
fn · . . . · fi(x) if i > n,

fR
n∞(x) = xn.

For each directed subset X of A∞, the least upper bound of X is
∨

X =
∨

n∈ω

fn∞(
∨

fR
n∞(X)).

The following naturally expected lemma states that fR
n∞(x) is the n–th approx-

imation of x ∈ A∞.

Proposition 1. {fn∞ · fR
n∞(x) | n ∈ ω} is a chain in A∞. Moreover,

x =
∨

{fn∞ · fR
n∞(x) | n ∈ ω}.

We may write x̃n to denote fn∞ · fR
n∞(x) = fn∞(xn). Hence,

x =
∨

{x̃n | n ∈ ω} =
∨

n∈ω

x̃n.

Each element b of ∪{fn∞(An) | n ∈ ω} is “compact” since for every directed
subset S of A∞, if b ≤ ∨

S then b ≤ s for some s ∈ S. Moreover, for every
element s of A∞, there is a directed set Ss of compact elements of A∞ such that
s =

∨
Ss. Hence A∞ is an “algebraic cpo”.

Maximal Elements of Cpo’s Every chain is a directed set, whence it follows
from (an equivalent to) the Axiom of Choice that every cpo has at least one
maximal element. Indeed:
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Lemma 2. Let D be a cpo. Any element of D extends into a maximal element
of D.

Proof. Let d ∈ D and let Ud = {x ∈ D | d ≤ x}. Every chain in Ud is clearly a
chain in D. Hence it has a least upper bound l in D. Clearly l ∈ Ud. Suppose
there is an upper bound u of this chain in Ud such that

u ≤ l.

Then, since u ∈ D, we have u = d. Hence, l is a least upper bound of this chain
in Ud. By (an equivalent to) The Axiom of Choice, Ud has a maximal element
m with respect to the induced partial ordering. Assume there is an element x of
D such that

x ≥ m.

Then,
x ≥ m ≥ d

and x ∈ Ud. Hence, x = m. Therefore this m is maximal with respect to the
partial ordering on D.

Lemma 3. Let A and B be cpo’s such that A �M B. Then, for each maximal
element a of A, there is a maximal element b of B such that

a = r(b),

where r is the m–retraction map from B to A.

Proof. Since r : B → A is surjective, there is x ∈ B such that a = r(x). Let
m ∈ B be a maximal extension of x. Then, due to the maximality of a and
monotonicity of r, we have

r(m) = r(x) = a.

Lemma 4. (The Isolation Lemma) Suppose A and B are nontrivial cpo’s and
consider the cpo [A → B]M. For every maximal element f of [A → B]M and
for all maximal elements a of A, f(a) is maximal in B. In particular,

f(a) �=⊥ .

Proof. Suppose for some a ∈ Amax, f(a) is not maximal in B. Define f ′ : A → B
by

f ′(x) =
{

b if x = a
f(x) else, (x ∈ A),

where b is an element of B with b � f(a). Since a is maximal, f ′ is monotone
and hence f ′ ∈ [A → B]M. Clearly f ′

� f and this is a contradiction.

This result states that maximal elements of cpo’s are isolated with respect
to monotonic functional application.
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4.2 The Theory of SFP Objects

SFP objects were first studied by Plotkin [47] and Smyth [59] in order to build
mathematical models of nondeterministic computation. Notwithstanding the
original motivation, one finds that these objects are very important from the
foundational point of view. The construction of SFP objects suggests that they
are the smallest transfinite structures which bridge the finite world with the infi-
nite world. The intellect’s leap from finite to infinite goes through this transfinite
transition between finitude and full scale actual infinity.

Consider a sequence of c–embeddings of cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn−→ An+1

fn+1−→ · · · (Diagram D)

where fn, n ∈ ω are c–embeddings from An to An+1. Let A∞ be the inverse limit
of this sequence, i.e.,

A∞ = {x ∈ Πi∈ωAi | xi = fR
i (xi+1)}

with the point–wise ordering. In case, in the diagram D, all Ai, i ∈ ω are finite
cpo’s, we call the inverse limit A∞ an SFP object. For any SFP object A∞,
∪{fn∞(An) | n ∈ ω} is a countable set. Hence, A∞ is an “ ω-algebraic cpo”. We
denote the category of SFP objects and monotonic (continuous) functions by
M(C)SFP .

We consider the following sequences of c–embeddings of finite cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn,−→ An+1

fn+1−→ · · ·

B0
g0−→ B1

g1−→ · · · gn−1−→ Bn
gn,−→ Bn+1

gn+1−→ · · ·
Now consider the following sequence of c–embeddings of finite cpo’s,

C0
h0−→ C1

h1−→ · · · hn−1−→ Cn
hn,−→ Cn+1

hn+1−→ · · ·

where Cn = [An → Bn]M and

hn(w) = [fn → gn](w) = gn · w · fR
n

hR
n (w) = [fR

n → gR
n ](w) = gR

n · w · fn.

It is clear that Cn, n ∈ ω are finite cpo’s (in fact, they are sets of monotone
functions from An to Bn), and hence C∞ also is an SFP object.

Proposition 2. Let A∞, B∞, and C∞ be as above. We have

C∞ ≈CCPO [A∞ → B∞]C .

Since treating this isomorphism explicitly is notationally cumbersome, we
identify [A∞ → B∞]C and C∞. To within this isomorphism, each continuous



162 Peter Apostoli, Akira Kanda, and Lech Polkowski

function u ∈ [A∞ → B∞]C can be considered as the limit of the chain {ũn}n∈ω,
where

ũn = hn∞ · hR
n∞(u).

More formally,
u =

∨

i∈ω

ũi.

Furthermore, for each n � 1, we have un = hR
n∞(u) = gR

n∞ · u · fn∞ and ũn =
hn∞(un).

Now suppose u is a non–continuous monotonic function from A∞ to B∞.
Then, gR

n∞ · u · fn∞ is a monotonic function from An to Bn; hence it still is an
element of Cn. Note that u /∈ [A∞ → B∞]C whence un is not defined. However,
for each n ∈ ω

(h(n+1)∞(gR
(n+1)∞ · u · f(n+1)∞))(x)

= g(n+1)∞ · gR
(n+1)∞ · u · f(n+1)∞ · fR

(n+1)∞(x)
≥ g(n+1)∞ · gR

(n+1)∞ · u · fn∞ · fR
n∞(x)

≥ gn∞ · gR
n∞ · u · fn∞ · fR

n∞(x)
= (hn∞(gR

n∞ · u · fn∞))(x)

where x ∈ A∞. Hence,

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω}

still is a chain in C∞.

Theorem 2. (Maximum Continuous Approximation Theorem) Let A∞ and B∞
be SFP objects. Suppose u is a monotonic function from A∞ to B∞. Then,

∨

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω} ≤ u.

Furthermore, u is continuous iff equality holds. Moreover, u has a largest con-
tinuous function,

∨

{hn∞(gR
n∞ · u · fn∞) | n ∈ ω},

that approximates u.

This theorem indicates that, over SFP objects, monotonic functions and continu-
ous functions are very closely related. This theme is developed in the forthcoming
section on hyper continuous functions of SFP objects.

Maximal Elements of SFP Objects.

Theorem 3. Consider an SFP object A∞ that is the inverse limit of the fol-
lowing sequence of c–embeddings of finite cpo’s,

A0
f0−→ A1

f1−→ · · · fn−1−→ An
fn,−→ An+1

fn+1−→ · · · .

Then, every compact element of A∞ extends into a maximal element.
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Proof. Let e be a compact element of A∞. Then, for some k ∈ ω and ek ∈ Ak,

e = fk∞(ek).

Let mk be a maximal extension of ek in Ak. For each j � k, let mj+1 be a
maximal element of Aj+1 such that

mj = fj(mj+1).

Now, consider the following infinite tuple m,

m = < fR
0 · ... · fR

k−1(mk), ..., fR
k−1(mk), mk, mk+1, mk+2, ... > .

It is clear that m ∈ A∞. Furthermore, e ≤ m. Now assume x ≥ m in A∞. Then,
for all j � k,

fR
j∞(x) ≥ fR

j∞(m) = mj .

By the maximality of mj , we have,

fR
j∞(x) = mj .

Also for all j < k, we have,

fR
j∞(x) ≥ fR

j∞(m) = fR
j · ... · fR

k−1(mk),

and by the maximality of fR
0 · ... · fR

k−1(mk), we have,

fR
j∞(x) = fR

j · ... · fR
k−1(mk).

Therefore x = m. Hence, m is maximal in A∞.

Remark 1. Note that this extension result does not use the Axiom of Choice.
This indicates the intrinsic difference between the concept of actual infinity, e.g.,
infinite cpo’s, and the transcendental infinity of SFP objects. The former requires
Choice to reach maximal elements while the latter does not. This seems to be
a counterexample to Cantor’s fundamental postulate that the nature of infinite
objects is a uniform generalization of that of finite ones.

SFP Solutions to Recursive Domain Equations. As a standard result,
there is a non–trivial SFP object D∞ such that

D∞ ≈CSFP [D∞ → E]C ,

where E is an SFP object. We present an outline of the construction of such
D∞. Define finite cpo’s recursively as follows,

D0 = ©,

where © is a trivial cpo with sole element ⊥©, and,

Dn+1 = [Dn → E]M.
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Define u0 : D0 → D1 and uR
0 : D1 → D0 as

u0(⊥©) =⊥D1 and uR
0 (x) =⊥© .

Define un+1 : Dn → Dn+1 and uR
n+1 : Dn+1 → Dn as

un+1(w) = [un → 1E ](w) = 1E · w · uR
n = w · uR

n

uR
n+1(w) = [uR

n → 1R
E ](w) = 1R

E · w · un = w · un.

It is clear that (u0, u
R
0 ) is a c-projection pair. Also (1E , 1R

E) = (1E , 1E) is a c-
projection pair. Therefore, (un, uR

n ) is a c-projection pair for all n ∈ ω. Since Dn

are all finite cpo’s, D∞ is an SFP object.
Clearly, for each x, y ∈ D∞ and for each n ∈ ω, we have

xn+1(yn) ∈ En = E.

Also, it can readily be seen that xn+1(yn), n ∈ ω forms a chain in E. Let

Γ : D∞ → [D∞ → E]C

be such that
Γ (x)(y) =

∨

n∈ω

xn+1(yn).

Then, Γ is a continuous function. Now, define

Ω : [D∞ → E]C → D∞

by
Ω(v) =

∨

n∈ω

fn∞(v(n)).

Then, Ω is a continuous function. Moreover,

Γ ·Ω = 1[D∞→E]C and Ω · Γ = 1D∞ .

4.3 Hyper-continuous Functions

The theory of maximal continuous approximations gives rise to a curious subclass
of monotonic functions. Suppose A and B are SFP objects. A subspace �A →
B� ⊆ [A → B]M is said to be normal iff for all m ∈ [A → B]M, cm ∈ �A →
B� where cm is the maximal continuous approximation of m.

Trivially, [A → B]M is normal. Suppose m is an element of [A → B]C . Then
cm = m ∈ [A → B]C . Thus [A → B]C also is normal. Clearly, [A → B]C is the
smallest normal space and [A → B]M is the largest normal space. Moreover, any
subspace F such that

[A → B]C ⊆ F ⊆ [A → B]M
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is a normal space. In conclusion, the normal spaces are precisely subspaces in
between [A → B]C and [A → B]M, inclusive.

Suppose �A → B� is normal and X is a cpo. A monotonic function f :
�A → B� → X is said to be hyper continuous if for every m ∈ �A →
B�, f(m) = f(cm). In words, hyper continuous functions are those monotone
functions which can not distinguish m from cm. We denote the set of all hyper
continuous functions from �A → B� to X by ≺ �A → B� → X � .

In the following, we study some technical but elementary properties of hyper
continuous functions.

Lemma 5. Let �A → B� be normal and X be a cpo, then ≺ �A → B� →
X � is a cpo.

Proof. Let � : �A → B� → X be such that �(f) =⊥ for all f ∈ �A → B � .
Suppose �(m) = x. Clearly x =⊥, and hence �(cm) = x. Hence � is the smallest
hyper continuous function from �A → B� to X. Suppose D is a directed subset
of ≺ �A → B� → X � . Clearly it is a directed subset of [�A → B� → X ]M.
Let δ be the least upper bound of D in [�A → B� → X ]M. It suffice to show
that δ is hyper continuous. Suppose m ∈ �A → B � . For each d ∈ D, we have
d(m) = d(cm). Hence,

δ(m) =
∨

d∈D

d(m) =
∨

d∈D

d(cm) = δ(cm).

We have established that δ is hyper continuous.

Lemma 6. Suppose f : �A → B� → X is hyper continuous. Moreover,
assume f is 1-1. Then �A → B� = [A → B]C .

Proof. Let m ∈ �A → B � . We have f(m) = f(cm). Since f is 1-1, m = cm.
Hence �A → B� = [A → B]C .

Corollary 2. Let �A → B� �= [A → B]C . Moreover, assume f : �A →
B� → X is hyper continuous. Then, f is not injective.

This Corollary establishes the following important result:

Theorem 4. There are continuous functions which are not hyper continuous.

Proof. Suppose �A → B� is normal and �A → B� �= [A → B]C . Moreover
�A → B� is a cpo. Consider the identity function id�A→B� over �A → B � .
It is injective and clearly continuous. Also �A → B� is a cpo. Hence f is not
hyper continuous.

Despite this general result, under a special circumstance, continuous func-
tions become hyper continuous. Indeed,

Lemma 7. We have

≺ [A → B]C → X � = [[A → B]C → X ]M.
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Proof. For all m ∈ [A → B]C , we have m = cm. Hence all monotonic functions
from [A → B]C to X are hyper continuous.

This also implies that whenever the normal space �A → B� is an SFP object
then all continuous functions from �A → B� to a cpo X are hyper continuous.
Furthermore, this lemma implies the following important result,

Corollary 3. There are hyper continuous functions which are not continuous.

Proof. Let f : [A → B]C → X be a monotone function which is not continuous.
This is hyper continuous but not continuous.

Corollary 4. Suppose A, B and X are SFP objects; Then,

≺ [A → B]C → X � �M [[A → B]C → X ]C .

Proof. By the maximal continuous approximation theorem, we have

[[A → B]C → X ]C �M [[A → B]C → X ]M.

In what follows, we present a general method of forcing monotone functions
into hyper continuous functions and their relations.

Theorem 5. Assume �A → B� is normal, X is a cpo and f is a monotone
function from �A → B� to X. Then, there is a hyper continuous function
f̄ : �A → B� → X such that f̄ ≤ f. If f is hyper continuous then f = f̄ .

Proof. Define f̄ : �A → B� → X by

f̄(x) =
{

f(x) if x is continuous
f(cx) if x is monotone.

This is to say f̄(x) = f(cx). Suppose x, y ∈ �A → B� and x ≤ y. Let
x̃i = hi∞(gR

i∞ · x · fi∞) and ỹi = hi∞(gR
i∞ · y · fi∞). Then,

cx =
∨

i∈ω

x̃i, cy =
∨

i∈ω

ỹi

and, x̃i ≤ ỹi for all i ∈ ω. Hence, cx ≤ cy and so

f̄(x) = f(cx) ≤ f(cy) = f̄(y).

We have shown that f̄ is monotone. Moreover,

f̄(x) = f(cx) = f(ccx) = f̄(cx).

Hence f̄ is hyper continuous. Clearly f̄ ≤ f. If f is hyper continuous, then

f̄(x) = f(cx) = f(x).
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Corollary 5. Assume �A → B� is normal and X is a cpo. We have

[�A → B� → X ]M �MCPO ≺ �A → B� → X � .

Proof. Define

i : [�A → B� → X ]M → ≺ �A → B� → X �

by
i(f) = f̄ .

Let j : ≺ �A → B� → X � → [�A → B� → X ]M be inclusion. Clearly both
of them are monotone. We have j · i(f) = f̄ ≤ f. and i · j(f) = i(f) = f.

On the other hand, from the maximal continuous approximation theorem it
follows that when X is an SFP object and �A → B� = [A → B]C , for every
hyper continuous function f : �A → B� → X, there is a continuous function
cf : f̄ : �A → B� → X such that cf ≤ f, and such forcing constitutes the
following embedding,

[�A → B� → X ]C �MCPO ≺ �A → B� → X �
= [�A → B� → X ]M.

For normal spaces �Ai → Bi�, i = 1, 2, ...n, and a cpo X ; we can define the
concept of hyper continuous n–ary functions,

f : �A1 → B1 � × · · · × �An → Bn� → T

as monotone functions such that

f(x1, ..., xn) = f(cx1 , ..., cxn).

Similar embedding results as for binary and multi–ary cases in general hold.
Suppose �A → B� and ≺ �A → B� → X � are normal. Define a function

Ap : ≺ �A → B� → X � ×� A → B� → X as

Ap(f, d) = cf (cd).

Lemma 8. Ap is hyper continuous.

Proof. We have

Ap(f, d) = cf (cd) = ccf
(ccd

) = Ap(cf , cd).

Hence Ap is hyper continuous. This can be proved alternatively as follows: The
function ap given by

ap(f, d) = f(d)

is continuous. Hence Ap = ap is hyper continuous.
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4.4 Balancing a Hyper-continuous Function Space with Its Domain

We have seen that by restricting the members of a function space to continuous
functions, we can balance the size of the space of functions with the size of
its domain in the category CSFP of continuous functions over SFP objects. In
what follows, we show that this balancing of size can be achieved in the category
MCPO of monotone functions over cpo’s.

Suppose D∞ is a solution to

D ≈CSFP [D → E]C

in CSFP . Hence we can identify D∞ with [D∞ → E]C . Precisely speaking, we
ought to be explicit about the isomorphism pair for D∞ ≈CSFP [D∞ → E]C .
However, to avoid notational complexity, we identify d ∈ D∞ with the isomorphic
image of d, unless doing so causes confusion. Let M = ≺ D∞ → E �; then
M = [D∞ → E]M. Hence,

D∞ ≈CCPO [D∞ → E]C �M [D∞ → E]M = M,

and we have
[D∞ → E]C �M M.

Furthermore,
D∞ �M M.

To within the identification of D∞ with [D∞ → E]C , this embedding is the
inclusion map ic and the adjoint projection is the monotone map

c : m �→ cm.

Notice that, in general, M is a cpo but is not an SFP object.

Theorem 6. M ≈MCPO≺ M → E � .

Proof. Let
(β : [D∞ → E]C → M, α : M → [D∞ → E]C)

be the embedding pair for

[D∞ → E]C �M M.

So, α(m) = cm and β is the inclusion ic : u �→ u. Define

Φ : M → ≺ M → E � and Ψ : ≺ M → E � → M

by
Φ(a) = a · α Ψ(b) = b � [D∞ → E]C .

If for m ∈ M and compact x ∈ E, (Φ(a))(m) ≥ x, then

(Φ(a))(cm) = a(ccm) = a(cm) = (Φ(a))(m) ≥ x.
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Hence Φ(a) is hyper continuous and is indeed in ≺ M → E �. Moreover, for
a ≥ a′, and m ∈ M , we have,

Φ(a)(m) = a(cm) ≥ a′(cm) = Φ(a′)(m).

Hence Φ is monotone. For all d ∈ D∞, we have,

(Ψ(b))(d) = b(d),

and, since b ∈ ≺ M → E � is monotone, Ψ(b) is monotone. So, Ψ(b) indeed is
in M. Moreover, if b ≥ b′ and then

(Ψ(b))(d) = b(d) ≥ b′(d) = (Ψ(b′))(d).

Hence Ψ is monotone. We have seen that Φ and Ψ are both well–defined. Now
we verify that they constitute an isomorphism pair. For each b ∈ ≺ M → E �
and m ∈ M, we have,

(Φ · Ψ(b))(m) = (Ψ(b) · α)(m) = b(cm) = b(m).

So, Φ · Ψ = 1≺M→E
. Moreover, for each a ∈ M and d ∈ D∞, we have.

(Ψ · Φ(a))(d) = Ψ(a · α)(d) = a · α(d) = a(cd) = a(d).

Therefore, Ψ · Φ = 1M .

The following immediate consequence of this isomorphism holds.

Lemma 9. For all m ∈ M, we have,

∀x ∈ D∞.[m(x) ≤ m′(x)] iff ∀u ∈ M.[Φ(m)(u) ≤ Φ(m′)(u)].

We may write m ≺ u � for Φ(m)(u). To be specific, we will denote the partial
ordering on M by ≤ and that on ≺ M → E � by � . Therefore this lemma
states

m ≤ m′ iff Φ(m) � Φ(m′).

Moreover, we have,

Theorem 7. For all d ∈ D∞ and m ∈ M, m ≺ d � = m(cd). For each m ∈ M,
let applym : M → E be

applym(x) = m ≺ x � .

It is clear that applym is hyper continuous. However, apply : M×M → E defined
as

apply((m, x)) = m ≺ x �
is monotone but not hyper continuous.
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4.5 The Construction of Mmax

The construction of the canonical PFS Mmax may now be given in three stages.
First, using the theory of SFP objects, we construct a continuum reflexive struc-
ture D∞ satisfying D∞ ≈CSFP [D∞ → T ]C, where T is the domain of three–
valued truth,

true false
↖ ↗
⊥

under the information ordering ≤k and [D∞ → T ]C is the space of all continuous
functions from D∞ to T under the information ordering associated with nested
partial characteristic functions. Here, the bottom value ⊥ represents a truth–
value gap. The truth value domain (T,≤k) is clearly an SFP object. In truth
theory, this structure (T,≤k) is used to construct term models of partial logic;
the third truth value ⊥ is successfully used as the semantic value of logically
paradoxical sentences [28, 35, 20].

The reason for adopting (T,≤k) as our domain of truth values is two– fold.
First, it is an SFP structure and hence we can use it as a fixed parameter in
recursive structural equations. Second, we can use ⊥ to capture the behavior
of logical paradoxes in set theory. There is another partial ordering associated
with the underlying set T . This partial ordering, called the truth ordering and
denoted by ≤t, is described by the following diagram,

true
↑
⊥
↑

false.

Following Kleene [33], the strong three–valued Boolean operators ∧,∨, and ¬
are defined on T by,

∧ : the greatest lower bound operation with respect to ≤t

∨ : the least upper bound operation with respect to ≤t

¬ : (true) = false
¬ : (false) = true
¬ : (⊥) =⊥ .

[7] introduces a complete set of truth functions for Kleene’s strong 3–valued
logic; here it suffices to observe that strong material conditional → and bicondi-
tional ↔ are monotone operations over (T,≤k) under their classical definitions
in terms of strong negation and disjunction (or conjunction). The quantifiers
∀, ∃ are introduced in terms of arbitrary meet

∧
and join

∨
on (T,≤t). These

connectives are monotone functions over (T,≤k) but fail to be continuous due to
their infinitary nature: D∞ is not closed under

∧
and

∨
. This hampers D∞ as
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a first order model for naive set theory4, as does the connected failure of strict
identity to be even monotone as a binary function D∞ ×D∞ → T.

However, we have seen that each monotone function f : D∞ → T is maxi-
mally approximated by a unique continuous function cf in [D∞ → T ]C , whence
cf in D∞ under representation. This gives rise to the concept of hyper continuity.

Next, we have seen that the space M of monotone functions from D∞ to T
is a solution for the reflexive equation M ≈M ≺ M → T �, where ≺ M → T �
is the space of all hyper continuous functions from M to T . Throughout the rest
of this section, we consider a solution M = [D∞ → T ]M for W ≈M≺ W → T �
as discussed in the previous section. Note that a monotone function f : M → T
is hyper continuous just in case

cx = cy ⇒ f(x) = f(y) (x, y ∈ M),

i.e., over M, the equivalence relation of sharing a common maximal continuous
approximation is a congruence for all hyper continuous functions. The isomor-
phism pair,

(Φ : M → ≺ M → T �, Ψ : ≺ M → T � → M),

yields application · ≺ · �: M ×M → T defined by

b(a) = Φ(b)(a) (a, b ∈ M).

Any hyper continuous map f : M → T is represented by a unique object Ψ(f)
in M such that

Ψ(f)(a) = f(a).

Writing “x∈̄y” for “y ≺ x � ”, we pass to a universe (M, ∈̄) of partial (non–
bivalent) sets–in–extension similar to the set theories of Gilmore [28] and Scott
[57]. Let x ≡M y =df (∀m ∈ M)(m∈̄x ↔ m∈̄y). (M,≡M ) is thus an equivalence
relation and a congruence for all hyper continuous functions from M to T. Al-
though x ≡M y is hyper continuous in both x and y, the hyper continuity of
indiscernibility will be established only in the context of the identity theory of
maximal elements of M , to which we now pass.

Maximal Elements of M . Since (M,≤) is a complete partial order, M is
closed under least upper bounds of ≤–chains. Hence, there are ≤–maximal ele-
ments of M by (an equivalent to) the Axiom of Choice. Let Mmax be the set of
maximal elements of M.

Theorem 8. Let a, b ∈ Mmax. Then a ≺ b ��=⊥ .

4 Historically, this failure of quantificational continuity surfaced in the functional set-
ting of Church’s quantified λ-calculus in the form of Rossers’s Paradox [34], a func-
tional version of Russell’s Paradox.
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Proof. Suppose a ≺ b �= a(cb) =⊥ . Let X = {x ∈ D∞ | cb ≤ x}. To show that
X is a directed subset of D∞, suppose that d1, d2 ∈ X lack an upper bound in
(D∞,≤). Then there is d3 ∈ Dmax such that d1(d3) = true and d2(d3) = false.
Then, since cb ≤ d1, d2, we have cb(d3) =⊥ . Since b is maximal in M and d3 is
maximal in D∞, b(d3) �=⊥ by The Isolation Lemma. So we assume, without loss
of generality, that b(d3) = true; the case b(d3) = false is treated in a manner
similar to the following: Since d1(d3) = true by the continuity of d1 there is
a compact approximation e to d3 in D∞, i.e., e ≤ d3, such that d1(e) = true.
Define f : D∞ → T by

f(d) =
{

true if e ≤ d
cb(d) else, (d ∈ D∞).

To show that f is a function (i.e, it is single–valued), suppose there is a d ∈ D∞
such that e ≤ d and f(d) = cb(d) = false. Since cb ≤ d1, by monotonicity
d1(d) = false. But as d1(e) = true and e ≤ d1, by monotonicity d1(d) = true,
a contradiction. Thus, f is a function extending cb, i.e., cb < f. Indeed f is
monotone by construction. Further, we claim f is continuous: let {yα} be a
directed subset of D∞ and y = lim{yα}; we need to show there is an ordinal α
with f(y) = f(yα). If e ≤ y, then by the compactness of e, there is an ordinal
β ≤ α and yβ ∈ {yα} such that e ≤ yβ. Then,

f(yβ) = f(e) = f(y) = true

with the first and second identity by the montonicity of f, and the last by the
definition of f , whence yβ is the desired yα. Otherwise, f(y) = cb(y) and the
desired yα is given by the continuity of cb. This contradicts the maximality of cb

among continuous approximation to b. Thus, X is a directed subset of D∞.
(Note that, as D∞ is a cpo, X has a least upper bound d∗ ∈ D∞, whence

d∗ ∈ Dmax since X is upward closed under ≤. By the Isolation Lemma, a ≺
d∗ ��=⊥, since a is maximal in M and d∗ is maximal in Dmax.)

Define g : D∞ → T by

g(d) =
{

true if cb ≤ d
a(d) else, (d ∈ D∞).

Then g is a function as X is directed. f is monotone by construction. Further,
a < g, contrary to a’s maximality in (M,≤). Thus a ≺ b ��=⊥, as required.

We say a ∈ M is max–defined iff for all maximal elements m of M, a ≺
m ��=⊥ . By the previous Lemma, all elements of Mmax are max–defined.

Lemma 10. If f : M → T is hyper continuous, then Ψ(f) ∈ M is max–defined
iff for all x ∈ Mmax, f(x) �=⊥ .

Proof. Suppose Ψ(f) ∈ M is max–defined. Then, for all x ∈ Mmax,

f(x) = Φ · Ψ(f)(x) = Ψ(f) ≺ x � �=⊥ .
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Conversely, assume for all x ∈ Mmax, f(x) �=⊥ . We then have

Ψ(f) ≺ x � = Φ · Ψ(f)(x) = f(x) �=⊥ .

Hence Ψ(f) is max–defined.

Theorem 9. (The Semi–lattice Lemma) Suppose a ∈ M is max–defined. Then
the collection,

{b ∈ M | a ≤ b},
is an upper semi–lattice.

Corollary 6. Every element of M which is max–defined has a unique maximal
extension ma ∈ M .

Proof. Since M is a cpo, any a ∈ M which is max–defined has a maximal
extension. Let a′ and a′′ be maximal extensions of a. Then, by The Semi–Lattice
Lemma, a′ ∨ a′′ exists in M ; whence a′ = a′′.

If a is max–defined, then the unique maximal extension ma of a agrees with a
on maximal elements. So, intuitively, we can consider ma the completion of a
with respect to non–maximal arguments.

There is a trivial but important consequence to this Corollary.

Theorem 10. Suppose m ∈ M is max–defined and m is the unique maximal
extension of m. Then, for all x ∈ Mmax

m ≺ x � = m ≺ x � = Φ(m)(x).

Theorem 11. Suppose a′, a′′ ∈ M are max–defined and they agree on maximal
elements of M. Then, they have the same maximal extension.

Corollary 7. Suppose a, a′ ∈ M are maximal and they agree on maximal ele-
ments of M. Then, a = a′.

Max–indiscernibility If a, a′ ∈ M are such that for all m ∈ Mmax,

m ≺ a � = m ≺ a′ �,

then we say a and a′ are max–indiscernible, in symbols a ≡max b. Obviously
if a = b then a and b are max–indiscernible. Moreover, a, a′ ∈ M are max–
indiscernible iff for all maximal elements f of ≺ M → T �, f(a) = f(b). It is
easy to verify that ≡max is an equivalence relation on M.

Theorem 12. Suppose a, a′ ∈ Mmax agree on maximal elements of M. Then,
they are max–indiscernible.

Proof. Immediate from Corollary 7.
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The max–indiscernibility relation restricted to maximal elements of M can
be represented by the following hyper continuous relation ≡̄max : M ×M → T ,

a ≡̄maxb = ∀m ∈ Mmax.[m ≺ a � ↔ m ≺ b �].

In fact, we have,

Lemma 11. Let a, b ∈ Mmax. Then, a and b are max–indiscernible iff a ≡̄max

b = true. Moreover, a, b are not max–indiscernible iff a ≡̄max b = false.

Moreover,

Lemma 12. For all a ∈ M, a ≡̄max ca = true.

Proof. For all m ∈ Mmax, due to the hyper continuity of Φ(m), we have

m ≺ a � = Φ(m)(a) = m(ca) = Φ(m)(ca) = m ≺ ca � .

Due to the nature of ∀ and ↔, we have a ≡̄max b �=⊥ iff for all m ∈ Mmax,
m ≺ a � �=⊥ and m ≺ b � �=⊥ . The following lemma immediately follows,

Lemma 13. Let a, b ∈ M. If a ≡̄max b =⊥ then, one of a or b is not maximal.

Proof. Suppose a≡̄maxb =⊥ . By the observation above, for some m ∈ Mmax,

m ≺ a � �=⊥ or m ≺ b � �=⊥ .

Hence, either a or b is not maximal.

Remark 2. The converse of this result does not hold. Indeed, by Lemma 12, for
all a ∈ Mmax −D∞, a≡̄maxca �=⊥, but ca is not maximal.

Theorem 13. Suppose m ∈ M is max–defined and m is the unique maximal
extension of m. Then m ≡max m.

Max–Coextensiveness If a ∈ M and b ∈ M agree on all elements m of Mmax, in
the sense that

a ≺ m � = b ≺ m �,

then we say a and b are max–coextensive, in symbols a ∼max b. This is equivalent
to saying that, for all maximal elements x of D∞,

a(x) = b(x).

It can readily be verified that ∼max is an equivalence relation on M. This relation
restricted to max–defined elements of M has the following monotone (but not
hyper continuous) representation,

a ∼max b = ∀m ∈ Mmax.[a ≺ m � ↔ b ≺ m �].

Indeed, we have,
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Lemma 14. Suppose a and b are max–defined. Then, a and b are max–coex-
tensive iff a ∼max b = true. Moreover, a and b fail to be max–coextensive iff
a ∼max b = false.

Due to the nature of ∀ and ↔, we have a ∼max b �=⊥ iff for all m ∈ Mmax, a ≺
m � �=⊥ and b ≺ m � �=⊥ . This establishes the following lemma,

Lemma 15. Suppose a, b ∈ M. Either a or b is not max–defined iff

a ∼max b =⊥ .

We call ≡max and ∼max restricted to Mmax the indiscernibility and the co–
extensiveness relations over Mmax, respectively.

Theorem 14. Let a, b ∈ Mmax. Then a ∼max b iff a = b.

Theorem 15. Let a, b ∈ Mmax. Then a ≡max b iff ca = cb.

The indiscernibility relation≡max is thus coarser than co–extensiveness ∼max,
which is strict identity = over Mmax and the restriction of a monotone function
from M ×M to T to maximal elements of M .

(Mmax, ≡max). (Mmax,≡max) is a “reduct” of (M,≡M ) in the sense that it
preserves the discriminative capacities of M : if a and b ∈ Mmax fail to be
discerned by elements of Mmax, then they fail to be discerned by elements of M ,

a ≡max b ⇔ a ≡M b (a, b ∈ M),

a corollary of the theorem that, under ≤, every element a of M which is max–
defined has a unique ≤ maximal extension ma in Mmax which agrees with a on
all elements of Mmax i.e., a ∼max ma.

A subset X of Mmax is exact iff X is closed under ≡max. Throughout this
section “X” ranges over exact subsets. We now establish that:

C(≡max) ≈ Mmax � 2Mmax .

Let {Mmax → 2} be the family of all characteristic functions fX of exact
subsets X of Mmax. For each exact X ⊆ Mmax, let g(X) : M → T be the hyper
continuous function extending fX by assigning the function value ⊥ to all non
maximal arguments in M,

g(X)(m) =
{

f(m) if m ∈ Mmax

⊥ else, (m ∈ M).

Then fX ≤ g(X). Since f is max–defined, Ψ(g(X)) has a unique maximal ex-
tension Ψ(g(X)) ∈ M .

Define l : {Mmax → 2} → Mmax by

l(fX) = Ψ(g(X)).
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Adjoint–wise, define r : Mmax → {Mmax → 2} by

r(m) = Φ(m) � Mmax (m ∈ Mmax).

Then l(r(m)) = m (m ∈ Mmax), whence (l, r) is an isomorphism pair of Mmax

and {Mmax → 2}. Let G =df (Mmax,≡max, �·�, �·�), where

�·� : 2Mmax → Mmax, �·� : Mmax → 2Mmax

are defined by �Y � = l(Cl(Y )) (Y ∈ 2Mmax), and �m� = the subset X of Mmax

whose characteristic function is r(m) (i.e., such that fX = r(m)) (m ∈ Mmax).
Then G is a PFS. The cardinality of Mmax is that of 2R (hypercontinuum)

but merely that of 2ω (continuum) up to ≡max .
See [2] for a proof that G is a plenum satisfying DoD.

4.6 Graded Indiscernibility in Mmax

The Maximum Ccontinuous Approximation Theorem asserts that every Dn+1 =
[Dn → T ]M induces the following indiscernibility En+1 on Mmax. Let x, y ∈
Mmax and let cx, cy be maximum continuous approximations of x, y respectively.
Let dx, dy the projection of cx, cy to Dn+1. Then En+1 ⊆ Mmax ×Mmax is the
equivalence relation defined by

xEn+1y ⇔ dx = dy (x, y ∈ Mmax).

Then En+1 ⊆ En; {En} is a descending chain of equivalence relations on Mmax

approximating ≡max . This is an interesting example of an “infinitary informa-
tion system” in the sense of [51], to which we now turn.

5 Graded Indiscernibility and Metric

Polkowski [51] induced a graded indiscernibility relation over a universe U from
an infinite sequence of attributes ai via the conversion of an attribute ai to an
equivalence relation INDa such that

INDai(x, y) ⇔ ai(x) = ai(y).

Such sequences of attributes are called “infinite information systems”.
[51] considers a descending chain of equivalence relations {Ei} over U such

that Ei+1 ⊆ Ei. We call the equivalence relation E∞ =
⋂

i∈ω Ei an indiscerni-
bility relation graded by {Ei}. By [x]i we mean the equivalence class {y : xEiy}.
It is clear that

[x]n+1 ⊆ [x]n.

A subset T ⊆ U is n–complete (or n–exact) if

T =
⋃

{[x]n : x ∈ T }.
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Otherwise, T is said to be n–rough. For each n, the family,

Bn = {[x]n : x ∈ U},

is the partition of U induced by the equivalence relation En and it forms a base
for a Polkowski-Pawlak topology Πn over U. It is clear that open sets in this
topology are precisely n–exact sets. Given a subset T ⊆ U, it is easy to verify
that T is n–exact iff

Cln(T ) = Intn(T ),

where CLn(T ) and INTn(T ) are closure and the interior in Πn of T , respectively.
We have

[x]n =
[⋃

{[z]n+1 : z ∈ [x]n − [x]n+1}
]

∪ [x]n+1.

So, all (basic) open sets in Πn are open in Πn+1. That is Πn+1 is finer than Πn.
Similarly, all (basic) open sets in Πn are open in Π∞ and Π∞ is finer than Πn.

Having established that Π∞ is an upper bound of the chain Πn ⊆ Πn+1, it
is natural to “expect” that

Π∞ =
⋃

n∈ω

Πn,

which we will examine in what follows.
Let

BA =
⋃

n

Bn = {[x]n : n ∈ ω, x ∈ U}.

It can readily be shown that BA forms a base for a topology ΠA over U. It is
clear that all (basic) open sets of Πn are open in ΠA. So, ΠA is finer than Πn.

It is clear that
ΠA ⊇

⋃

n∈ω

Πn

in lieu of the definition of B. Conversely assume X is open in ΠA. Then, for
some u ⊆ ω and w ⊆ U,

X = ∪X ,

where X = {[x]n : n ∈ u, x ∈ ω}. For each n, let

Xn = {[x]n : x ∈ w}.

Then ⋃

Xn ∈ Πn,

and
X =

⋃

n∈ω

⋃

Xn ∈
⋃

n∈ω

Πn.

We have shown that
ΠA =

⋃

n∈ω

Πn.



178 Peter Apostoli, Akira Kanda, and Lech Polkowski

So, ΠA is the least upper bound of the chain Πn ⊆ Πn+1, n ∈ ω. It now follows
that

ΠA ⊆ Π∞.

This can be verified by the following direct argument too: As we have

[x]n =
[⋃

{[z]∞ : z ∈ [x]n − [x]∞}
]

∪ [x]∞,

[x]n is open in Π∞. Conversely,

[x]∞ =
⋂

n∈ω

[x]n.

We know that (Πn,⊆) is a complete lattice, as (Πn,∪,∩,¬, ∅, U) is a complete
Boolean algebra, and hence, (

⋃

n

Πn,⊆
)

is a complete lattice with the top element U and the bottom element ∅. There-
fore,

⋂

n∈ω[x]n ∈
⋃

n Πn. We have shown that

ΠA ⊇ Π∞.

In summary,

Proposition 3. ΠA =
⋃

n∈ω Πn = Π∞.

This allows us to introduce the following definition: T ⊆ U is ΠA–exact iff
it is Π∞-exact, i.e.,

T = ∪{[x]∞ : x ∈ T }.
It immediately follows that T is ΠA-exact iff

T = ClΠA(T ) = IntΠA(T ),

where ClΠA(T ) and IntΠA(T ) are the closure and the interior of T with respect
to the topology ΠA. A subset of U which is not ΠA-exact is called ΠA–rough.

For each n ∈ ω, we define a function dn : U × U → R+, where R+ is the
collection of nonnegative real numbers, as follows,

dn(x, y) =
{

1 if [x]n �= [y]n
0 otherwise.

Then,
dn(x, x) = 0, dn(x, y) = dn(y, x).

We now define a function d : U × U → R+ as

d(x, y) =
∑

n

10−n · dn(x, y),

where the convergence of the right side of the equation can readily be verified.
It immediately follows that d is a pseudo–metric on U. [So is dn.] This pseudo–
metric d contains the information on when x and y became indiscernible in the
chain Ei. In particular,
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Lemma 16. d(x, y) = 0 whenever xE∞y.

Remember that as (ΠA, U, ∅,∪,∩,¬) is a complete Boolean algebra, all open
sets in ΠA are closed and vice versa. Now, according to Hausdorff’s account, the
following defines a metric on ΠA :

dH(K, L) = max{max
x∈K

dist(x, L), max
x∈L

dist(x, K)},

where
dist(x, L) = min{d(x, z) : z ∈ L}.

It is well–known that every ΠA-rough set X can be characterized by a pair
of ΠA-exact sets (Q, T ) where

Q = ClΠA(X), T = U − IntΠA(X).

Given two ΠA-rough sets X1, X2, we can define the distance metric D by

D(X1, X2) = max{dH(Q1, Q2), dH(T1, T2)}.
If X is ΠA-exact, then,

Q = ClΠA(X) = X, T = U − IntΠA(X) = U −X.

It can readily be verified that

dH(Q1, Q2) = dH(X1, X2) = dH(T1, T2).

Therefore, D(X1, X2) = dH(X1, X2).
Let dH × dH : ΠA ×ΠA → R+ be such that

dH × dH((K, K ′), (L, L′)) = dH(K, L) + dH(K ′, L′).

Then,

dH × dH((K, K ′), (M, M ′)) = dH(K, M) + dH(K ′, M ′)
≤ dH(K, L) + dH(L, M) + dH(K ′, L′) + dH(L′, M ′)
= dH × dH((K, K ′), (L, L′))

+dH × dH((L, L′), (M, M ′)).

We have shown that dH × dH is a metric on ΠA ×ΠA.

Proposition 4. ∪,∩ : ΠA × ΠA → ΠA are continuous maps with respect to
dH × dH and dH.

Proposition 5. ¬ : ΠA → ΠA is continuous with respect to dH and dH.

Let D ×D : 2U × 2U → R+ be such that

D ×D(X, Y ) = D(X) + D(Y ).

Then, it is a metric on 2U × 2U . Furthermore,

Proposition 6. ∪,∩ : 2U×2U → 2U are continuous maps with respect to D×D
and D.

Proposition 7. ¬ : 2U → 2U is continuous with respect to D and D.
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6 Metric and Measure on PFS

In the sequel, the technique of inducing metrics over the subsets of infinitary
information systems is applied to induce a metric on the universe of a graded
PFS. There is an natural way of inducing a graded indiscernibility relation in the
context of a PFS. The above construction of the canonical PFS Mmax induces
a graded indiscernibility relation over the universe of Frege sets. This and the
metric it induces on the universe of Mmax can be captured by the following
elaboration of the definition of a PFS.

Let F = (U, E, �·�, �·�) be a PFS and assume that E is the graded indis-
cernibility relation over U induced by a descending chain En, n ∈ ω. One now
has a metric dH over ΠA. The retraction mapping �·� maps ΠA–exact sets onto
U and hence induces a metric dh over U such that

dh(�Q�, �P�) = dH(Q, P ).

Naturally, 2U is equipped with the metric D. As observed earlier, dH is the
restriction of D to ΠA–exact sets. Then F is graded by En, n ∈ ω and called a
graded PFS.

Note that:

1. �·� is continuous with respect to D and dh,
2. �·� is continuous with respect to dh and D.

Assume F is graded by En, n ∈ ω. It follows that

Proposition 8. If X ≡ Y , then dH(�X�, �Y �) = 0.

Given an element X of 2U , we say it is an infinitesimal if

dH(X, ∅) = 0.

It immediately follows that for any X, Y ∈ 2U ,

dH(X − Y, ∅) = 0 ⇔ dH(X, Y ) = 0.

We define a norm on every element X of 2U as follows,

‖X‖ = dH(X, ∅).

It can readily be shown that ‖X‖ defines a measure on 2U .

7 Inversely Graded Indiscernibility and Metric

Given a set U, consider an ascending chain of equivalence relations {Ei} over U
such that Ei ⊆ Ei+1. We call the equivalence relation E∞ =

⋃

i∈ω Ei an indis-
cernibility relation inversely graded by {Ei}. By [x]i we mean the equivalence
class {y : xEiy}. It is clear that

[x]n ⊆ [x]n+1.
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We have
[x]n+1 =

[⋃

{[z]n : z ∈ [x]n+1 − [x]n}
]

∪ [x]n.

So, all (basic) open sets in Πn+1 are open in Πn. This is to say

Πn+1 ⊆ Πn.

Similarly, all (basic) open sets in Π∞ are open in Πn, i.e.,

Π∞ ⊆ Πn

for all n ∈ ω.
Note that as the Pawlak topology is quasi–discrete, the collection of the

cogranules, i.e.,
Cn = {U − [x]n : x ∈ U},

is a cobase base for a topology on U. Let

CR =
⋂

n∈ω

Cn.

It can readily be shown that CR forms a cobase for a topology ΠR over U.
As the Pawlak topology is quasi–discrete and is a complete Boolean algebra,

in lieu of duality, we have

Proposition 9. ΠR =
⋂

n∈ω Πn = Π∞.

This allows us to introduce the following definition: T ⊆ U is ΠR–exact iff
it is Π∞–exact, i.e.,

T = ∪{[x]∞ : x ∈ T }.
It immediately follows that T is ΠR–exact iff

T = ClΠR(T ) = IntΠR(T ),

where ClΠR(T ) and IntΠR(T ) are the closure and the interior of T with respect
to the topology ΠR. A subset of U which is not ΠR-exact is called ΠR–rough.

For each n ∈ ω, we define a function dn : U × U → R+, where R+ is the
collection of nonnegative real numbers, as follows:

dn(x.y) =
{

0 if [x]n = [y]n
1 otherwise.

Then
dn(x, x) = 0, dn(x, y) = dn(y, x).

Now define a function d : U × U → R+ as

d(x, y) =
∑

n

10−n · dn(x, y),

where the convergence of the right side of the equation can readily be verified.
It immediately follows that d is a pseudo-metric on U. (So is dn.) This pseudo-
metric d contains the information determining when x and y became discernible
in the chain Ei. In particular,
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Lemma 17. d(x, y) = 0.1 = 1
9 whenever ¬(xE∞y).

Recall that, since (ΠR, U, ∅,∪,∩,¬) is a complete Boolean algebra, all open
sets in ΠR are closed and vice versa. According to Hausdorff’s account, the
following defines a metric on ΠR,

dH(K, L) = max{max
x∈K

dist(x, L), max
x∈L

dist(x, K)}

where
dist(x, L) = min{d(x, z) : z ∈ L}.

It is well–known that every ΠR–rough set X can be characterized by a pair
of ΠR–exact sets (Q, T ) where

Q = ClΠR(X), T = U − IntΠR(X).

Given two ΠR-rough sets X1, X2, define the distance metric D by

D(X1, X2) = max{dH(Q1, Q2), dH(T1, T2)}.
If X is ΠR–exact then,

Q = ClΠR(X) = X, T = U − IntΠR(X) = U −X.

It can readily be verified that

dH(Q1, Q2) = dH(X1, X2) = dH(T1, T2).

Therefore, D(X1, X2) = dH(X1, X2).
Let dH × dH : ΠR ×ΠR → R+ be such that

dH × dH((K, K ′), (L, L′)) = dH(K, L) + dH(K ′, L′).

Then,

dH × dH((K, K ′), (M, M ′)) = dH(K, M) + dH(K ′, M ′)
≤ dH(K, L) + dH(L, M) + dH(K ′, L′) + dH(L′, M ′)
= dH × dH((K, K ′), (L, L′))

+dH × dH((L, L′), (M, M ′)).

We have shown that dH × dH is a metric on ΠR ×ΠR.

Proposition 10. ∪,∩ : ΠR ×ΠR → ΠR are continuous maps with respect to
dH × dH and dH .

Proposition 11. ¬ : ΠR → ΠR is continuous with respect to dH and dH .

Let D ×D : 2U × 2U → R+ be such that

D ×D(X, Y ) = D(X) + D(Y ).

Then, D ×D is a metric on 2U × 2U . Furthermore,

Proposition 12. ∪,∩ : 2U × 2U → 2U are continuous maps with respect to
D ×D and D.

Proposition 13. ¬ : 2U → 2U is continuous with respect to D and D.
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8 An Example of Inversely Graded Indiscernibility

Let LR be the first order language of real numbers. Let R be the standard model
of LR and let R be the universe of R. X ⊆ R is said to be definable iff there is
a formula A(x) of LR such that

X = {x ∈ R | R 	 A(x)}.

Let X ⊆ M and D(X) be the family of all definable subsets of X. F ⊆ D(X) is
a d-filter on X iff

X ∈ F
A, B ∈ F ⇒ (A ∩B) ∈ F
A ∈ F , A ⊆ B ∈ D(X) ⇒ B ∈ F
∅ /∈ F .

It is clear that if F is a d-filter on X then,

A ∈ F ⇒ (X − A) /∈ F .

Let F be a d-filter on X . If

A ∈ 2X ⇒ A ∈ F ∨ (X −A) ∈ F

then F is said to be an ultra d–filter on D(X).
Let F ⊆ D(X); F is d–consistent iff the closure of F under finite intersections

does not contain ∅ as an element. Let

UC(F) =df {Y ∈ D(X) | (∃F ∈ F)(F ⊆ Y )}.

Lemma 18. Let F be a d–filter on X. Let Y ⊆ X. Suppose {Y } ∪ F is not
d–consistent. Then {X − Y } ∪ F is d–consistent.

Since D(X) is countably infinite, it may be enumerated as D(X)i : i < ω.

Lemma 19. (Lindenbaum) Every d–filter F has an ultra d–filter extension.

Proof. Define an infinite sequence,

Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . . ⊆ Γω,

of families of definable subsets of X by

Γ0 = F ,
Γk+1 = UC(Γk ∪ {D(X)k+1}) if this Γk ∪ {D(X)k+1} is d-consistent

Γk otherwise,

and
Γ∞ = ∪{Γk | k < ω}.
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Then, it follows that Γω is a maximal d–filter which contains the d–filter F .
Furthermore, Γk, k < ω are all filters. Let {Si | i ∈ D(X)} be a D(X)-family of
sets. On the product,

Πi∈ISi = {g : D(X) → ∪i∈ISi | for all i ∈ ω, g(i) ∈ Si},

we define the following equivalence relation,

g1 ≡Γk
g2 ⇔ {i ∈ D(X) | g1(i) = g2(i)} ∈ Γk, k ∈ ω.

It is clear that ≡Γk
, k ∈ ω is a descending ω–sequence of equivalence relations

and,
g1 ≡Γ∞ g2 ⇔ {i ∈ D(X) | g1(i) = g2(i)} ∈ Γ∞,

is the limit of it.
Then each cofinite set is definable (even in first order Peano arithmetic).

Therefore the collection of cofinite sets F is a d–filter. In lieu of Lindenbaum’s
Lemma, there is an ω–chain,

F = Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γk ⊆ . . . ⊆ Γ∞,

of filters approximating an ultra–filter Γ∞. Define an ultra–power R∗ of R by

R∗ = Rω/F .

Γ∞ yields an indiscernibility relation ≡Γ∞on R∗ inversely graded by ≡Γk
, k ∈ ω.

This in turn induces a metric on R∗ as discussed in the previous section.

9 Metrically Open Subsets of a Graded Plenum

We conclude our study of exact subsets of infinite information systems with an
open problem in the theory of the graded plenum Mmax.

Let (U, E, �·�, �·�) be a plenum graded by En, n ∈ ω. The metric d(x, y) :
U × U → R induced by the graded indiscernibility relation on U gives rise to
the metric space (U, d). The collection of all d–open balls forms a basis for a
topology (U, τd) called the metric topology of (U, d).

By effectivizing the SFP construction of D∞ as in effective domain theory
[30], we can single out the computable elements of D∞ and thence define “com-
putable” elements of Mmax as those whose maximal continuous approximation
are computable. As effective DT indicates, these computable elements are now
represented by Gődel numbers (programs) and we can define “computable exact
subset of Mmax” (equivalently, “computable element of Mmax”) by effectively
enumerating these programs. The recursion theorist A.I. Mal’cev [40] proposed
two different versions of the notion of a “computable program set” in the context
of numeration theory, the general theory of Gődel numberings [17, 18]. The one
of interest to RST deals with “index sets” − sets of natural numbers which are
closed under the relation of program equivalence − and “extensional” program
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transformations − effective number theoretic functions which preserve program
equivalence. Accordingly, this extensional recursion theory identifies the com-
putable program sets with the r.e. index sets, i.e., r.e. exact sets.

Given an acceptable indexing of r.e. subsets of natural numbers, Myhill–
Sheperdson’s [41] result in recursion theory states that every extensional program
transformation is an effective enumeration operator. (As a corollary, we have
the result by Rice–Shapiro [53] that every r.e. index set is upward closed under
subset inclusion). This and Thomas Streicher [61], and Yu Ershov’s [19] result
in effective DT established that extentional computability entails continuity.

It thus appears natural to conjecture that all computable elements of Mmax

are metric open.
As RST passes from finite (definitely computable) to infinite information

systems it may be desirable to consider the first steps, towards computably
infinite information systems.
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