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Institut d’Investigació en Intel·ligència Artificial – CSIC
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Abstract. Case–based reasoning (CBR) is a problem solving technique
that puts at work the general principle that similar problems have sim-
ilar solutions. In particular, it has been proved effective for classifica-
tion problems. Fuzzy set–based approaches to CBR rely on the existence
of a fuzzy similarity functions on the problem description and prob-
lem solution domains. In this paper, we study the problem of learn-
ing a global similarity measure in the problem description domain as a
weighted average of the attribute–based similarities and, therefore, the
learning problem consists in finding the weighting vector that minimizes
mis–classification. The approach is validated by comparing results with
an application of case–based reasoning in a medical domain that uses a
different model.
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1 Introduction

Case–based reasoning, CBR for short, amounts to inferring that what is true in
some known cases might still be true, possibly up to some suitable adaptation,
in a newly encountered situation that is similar enough to those already known
cases (see e.g. [1, 24]). In this way, case–based reasoning can be considered as
a form of similarity–based or analogical reasoning since the basic principle im-
plicitly assumed to apply in this kind of problem solving methodology is that
similar problems have similar solutions.

Before going into more details, let us specify our working framework for
classification–like case–based reasoning problems. Assume we have a base of cases
CB consisting of an already solved set of cases, where a case is represented by a
(complete) tuple of attribute values describing the situation or problem to solve
together with a solution class or result. To fix ideas, let A = {a1, . . . , an} be the
set of description attributes and let cl denote the class attribute. Moreover, let us
denote by D(ai) and D(cl) the domains of the attributes ai and cl respectively
(so D(cl) is the set of solution classes). Then a case c ∈ CB will be represented
as a pair (d, r), where d = (a1(c), . . . , an(c)) is the set of the problem description
values and r = cl(c) is the solution class for the case c. If we write D = D(a1)×
. . .×D(an), (D for description) and R = D(cl), (R for result), then a case–base
CB is just a subset of D × R.
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In this framework, given a case–base CB = {ci = (di, ri)}i∈I , and a new
problem description d0, the CBR task is to find (guess) a solution class r0 for
d0, by applying the above general principle in some form, i.e., by taking into
account the possible similarity of d0 to cases ci ∈ CB already solved.

It is clear then that the notion of similarity plays a key role in CBR problems.
In particular, the notion of graded similarity, which has been used in the frame-
work of fuzzy set theory for a long time [37], seems especially well suited for them.
A fuzzy similarity relation on a domain Ω is a mapping S : Ω ×Ω → [0, 1] that
assigns to every pair (w,w′) of elements of Ω a number S(w,w′) measuring how
much w and w′ resemble each other according to some given criteria, in the sense
that the higher S(w,w′), the more they resemble. In particular, S(w,w′) = 1
means that w and w′ are indistinguishable, while S(w,w′) = 0 means that w and
w′ have nothing in common. One can also understand δ(w,w′) = 1 − S(w,w′)
as a kind of distance between w and w′. Usual and reasonable properties re-
quired of such functions are reflexivity and symmetry, i.e., S(w,w) = 1 and
S(w,w′) = S(w,w′), for any w,w′ ∈ Ω. S is called separating if it verifies that
S(w,w′) = 1 iff w = w′. Sometimes, S is required additionally to fulfill a weak
form of transitivity, viz., S(w,w′)⊗S(w′, w′′) ≤ S(w,w′′), where ⊗ is a t-norm.
For our purposes, and unless stated otherwise, we shall consider similarity rela-
tions as separating, reflexive and symmetric fuzzy binary relations.

In some recent literature a fuzzy set based approach to case–based reasoning
has been developed not only from a practical point of view (see, e.g., [23, 7,
10, 6, 12, 21, 8]), but also from the formal modeling point of view [13, 35, 14, 30,
15, 16, 18, 9]. In all these models it is assumed that fuzzy similarity relations
SD and SR on domains of problem description and solution attributes, D and
R, respectively, are known and given beforehand. In particular, several models
have been proposed corresponding to different interpretations of the above CBR
principle in terms of constraints between the fuzzy similarity relations SD and
SR. In this paper, within the class of the so–called non–deterministic models,
we tackle the problem of learning a particular type of global similarity measure
from the set of precedent cases stored in the base case. Namely, given similarity
measures Sa defined on each attribute domain D(a), we show how to determine
a weighting vector for each case in order to define a global similarity on D as
a weighted average of the Sa’s that minimizes the mis–classifications. We check
their adequacy by comparing results with an application of case–based reasoning
in a medical domain that uses a different model. In that model cases are not
attribute–value tuples but they are represented in a relational way. A relational
representation describes objects on the basis of their components and relations
between these components. In Machine Learning there is a wide research field,
Inductive Logic Programming, focused on relational representation of objects
and methods to handle them (see e.g. [28]).

The paper is organized as follows. In Sect. 2 we describe several fuzzy CBR
models. Then, in Sect. 3 we show how to construct fuzzy similarity relations
to be used in the fuzzy CBR models. Sect. 4 explains an alternative approach
using symbolic similarity for comparing relational cases. The results of both
approaches are compared in Sect. 5. The paper finishes with the conclusions.
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2 Fuzzy CBR Models

A first class of models try to model a strong form of the case–based reasoning
principle which reads:

“the more similar are the description values (in the sense of SD),
the more similar are the class values (in the sense of SR)”.

In [13, 14], this principle is modeled by regarding each case c = (d, r) as a fuzzy
gradual rule of the form

If X is approximately d then Y is approximately r.

Here X is a linguistic variable on the domain D of problem description tu-
ples and Y is a linguistic variable on the domain R of solution classes, and
approximately d and approximately r denote fuzzy sets of attribute value tu-
ples close or similar to d and r, and defined on D and R, respectively, by

µapproximately d(d′) = SD(d, d′), µapproximately r(r′) = SR(r, r′).

The semantics of fuzzy gradual rules (see [17]) capture the above intended mean-
ing in the sense that the conditional possibility distribution they induce on D×R
is,

π(r′ | d′) ≤ [
µapproximately d(d′) ⇒⊗ µapproximately r(r′)

]
,

where ⇒⊗ is the residuum of a continuous t-norm ⊗. Such a binary operation
on [0, 1] has as fundamental property (independently of ⊗) that

[
x ⇒⊗ y

]
= 1

iff x ≤ y. This means that, given a current problem d0, the best solutions for d0

which can be inferred from the above rule are those r0 such that,
[
µapproximately d(d0) ⇒⊗ µapproximately r(r0)

]
= 1,

or equivalently such that,

SD(d, d0) ≤ SR(r, r0).

That is, the best solutions are those r0 with a similarity to r that is at least as
much as the similarity of d0 to d. So, with this interpretation, neighborhoods
around d are transferred to neighborhoods around r. Now, if we consider the
whole case base CB = {ci = (di, ri)}i∈I , and we perform the same kind of
inference for each case (di, ri), then the global solution set will be the conjunctive
aggregation of the individual sets,

⋂

i∈I
{r0 ∈ R | SD(di, d0) ≤ SR(ri, r0)}.

One problem here is that, in principle, nothing prevents that this intersection
can be empty, if the case base CB is not fully consistent with the above principle.
In particular this can happen when the case base CB contains cases with very
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similar description attribute values but with different class values. This is why
such a model was called deterministic in [13, 14].

In [18] alternative interpretations of the same principle were considered,
namely by assuming the inequality,

if SD(d1, d2) ≤ SD(d1, d3) then SR(r1, r2) ≤ SR(r1, r3),

(and two other similar ones) to hold for any triple of cases c1 = (d1, r1), c2 =
(d2, r2), c3 = (d3, r3) ∈ CB. But still, these are deterministic models in the above
sense, i.e SD(d1, d2) = 1 implies SR(r1, r2) = 1.

Deterministic models can be felt too strong in many real-world domains, since
in some sense they assume that the description attributes completely characterize
all possible situations. This is not often the case. In contrast the so-called non-
deterministic models assume a weaker form of general CBR principle, in the
sense that “it is only plausible (not necessary) that similar problems have similar
solutions”.

Expressed in terms of the fuzzy similarity relations SD and SR, this weaker
Case-Based Reasoning principle can be expressed by the following rule [13, 14]:

“The more similar are the problem descriptions in the sense of SD, the more
possible the solution classes are similar in the sense of SR.”

This amounts to state that for any case (d, r) in the case base CB, the closer is
the current problem d0 to d, the more plausible r is a solution class for d0. This
can be formalized again as a fuzzy rule,

If X is approximately d then Y is approximately r,

but with a different semantics, corresponding to the so-called possibility fuzzy
rules (see [17]). The semantics of such a possibility fuzzy rule is “the more
X is approximately d (i.e. the closer is a description to d), the more possible
(plausible) is approximately r a range for Y (i.e. the more plausible are those
solutions close to r)”. In terms of possibility distributions, the above rule induces
the following constraint on the conditional possibility distribution on D× R:

π(y | x) ≥ min(µapproximately d(x), µapproximately r(y)).

In other words, the plausibility degree of y being a solution for the problem x
is bounded from below by the similarity degree between y and r, truncated by
the degree to which x is similar to s. When we consider the whole case–base
CB = {ci = (di, ri)}i∈I , then the joint constraint induced by all fuzzy rules
corresponding to the cases in CB is the disjunctive aggregation of the individual
ones:

π(y | x) ≥ max
(di,ri)∈CB

min(µapproximately di(x), µapproximately ri(y)).

Then, given a current description problem d0, such a joint constraint induces a
plausibility ordering πd0 on possible solutions or classes for d0 by,

πd0(y) = max
(di,ri)∈CB

min(µapproximately di(d0), µapproximately ri(y)) =
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max
(di,ri)∈CB

min(SD(di, d0), SR(ri, y)),

for all y ∈ R, in the sense that the greater πd0(y), the more plausible y as a
solution for d0. Sometimes, plausibility values in themselves are not particularly
important but only the ordering they induce on the set R of solution classes:

y �d0 y′ iff πd0(y) ≤ πd0(y
′).

Finally, notice that if new cases are added to the case base CB, πd0(y) can
only increase, and never decrease, according to the idea that new cases may
incorporate new solutions but not discard old ones. Non–deterministic models
have been also considered for instance in [22, 10].

3 Learning Similarity Relations
for a Non-deterministic CBR Model

As already mentioned in Introduction, in this chapter we are concerned with
learning aspects of similarities within a non–deterministic fuzzy set approach
to CBR, with some particular choices. In this section, we first set our working
assumptions for the model, and then we describe how the relevant similarity
relations can be constructed from the case–base.

3.1 Working Assumptions and Relevant Similarity Relations

Background knowledge is assumed for each attribute a ∈ A under the form of
a similarity relation Sa on D(a), the domain of a. This similarity is a function
Sa : D(a) × D(a) → [0, 1]. Additionally, we assume a similarity relation Scl
defined over the set of classes. This similarity was denoted by SR in the previous
section but from now on we use for it the symbol Scl to stress the fact that it
is defined over the set of classes. This corresponds to a function Scl : D(Cl) ×
D(Cl) → [0, 1].

The goal is to define a similarity relation SD among the cases in the case–base
CB and an arbitrary problem description. Our working assumption is that such
similarity will be defined as a weighted average of the existing similarity functions
Sa for each attribute. Of course, we then need additional information to assess
the relevance of each attribute for retrieving a particular case. In particular,
we shall assume there is a weighting vector for each case that evaluates the
importance of each attribute when computing the similarity between this case
and another arbitrary case description in the case–base CB. This is formalized
in the following definition.

Definition 1. Let CB ⊂ D × R be a case–base, A the set of attributes consid-
ered in D, and, for each a ∈ A, let Sa be the corresponding similarity relation
on D(a). Finally, let wc be the weighting vector1 attached to a particular case
1 w = (w1, · · · , wn) is a weighting vector of dimension n iff wi ≥ 0 for all i = 1, ..., n,

and
∑

i=1,n wi = 1.
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c ∈ CB. Then, the similarity relation value defined for an arbitrary case descrip-
tion d ∈ D and c is,

SD(c, d) =
∑

a∈A

wc(a) · Sa(a(c), a(d)). (1)

As Sa(·, ·) ∈ [0, 1] and as wcb is a weighting vector, it follows that S(·, ·) is a
function into the interval [0, 1] as well.

Note that, formally, SD so defined is a function on CB × D, although for
cases in CB we only make use of their description attribute values. Also, this
definition is not commutative in the sense that it is the case c who determines
the weighting vector (the weighting vectors may be different for two different
cases), so the first argument in SD plays a preeminent role.

Once we have defined the similarity relation SD, we can define how close is
a problem description to a solution class just by comparing it to every case in
CB that shares that solution class.

Definition 2. Let CB, D, A and SD be defined as in Definition 1. Then, the
similarity between a case description d ∈ D and a solution class r ∈ D(cl) is
defined as follows:

SCL(d, r) = max
c∈CB,cl(c)=r

SD(c, d).

In turn, by this definition, we can define similarity between arbitrary pair of
case descriptions as a kind of transitive closure of the SCL function as follows.

Definition 3. Let CB, D, A, SD and SCL be defined as in Definition 2. Let
⊗ be a continuous t-norm. Then, the ⊗-similarity between two arbitrary set of
case descriptions d1, d2 ∈ D is defined as follows:

SCC(d1, d2) =
∑

r∈D(cl)

SCL(d1, r) ⊗ SCL(d2, r).

Among others, possible choices for ⊗ are e.g. ⊗ = · or ⊗ = min.

3.2 Construction of the Numerical Similarity Function SD

Definition 1 introduces the similarity value SD(c, d) between an arbitrary prob-
lem description d and a case c in the base case CB. Recall that this similarity
has been defined as the weighted mean of the attribute similarities Sa for a in
A. However, expression (1) makes it explicit that the function is not symmetric
in the sense that the two arguments are not equally important. Instead, the role
of the case c is preeminent because we make the weighting vector wc depending
on c. Next, we describe how to learn the appropriate weights for each c ∈ CB.

In the following we assume that a case cb ∈ CB is known and fixed along
the learning process. In fact, the same process we describe below for cb will be
applied for each case in CB. Naturally, for each case cb, the process would lead
to its corresponding weighting vector wcb.
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To compute the vector, besides of the case cb, we need to fix a subset of the
case–base, i.e., a collection of problem descriptions for which their solution class
is known. This is the learning set, denoted by LS. Of course, we shall also make
use of the similarities Sa for each attribute a ∈ A.

Then, weights determination can be formulated in the following way.

Problem 1 (Weight Determination Problem). Let LS be the learning set and
cb ∈ CB a case in the case–base. Weight Determination Problem is to find the
set of weights wcb in (1) such that, for each c = (d, r) ∈ LS, the similarity value
between cb and d, SD(cb, d), approximates as much as possible the similarity
between the solution classes cl(cb) and cl(c) = r, Scl(cl(cb), r).

Using the square difference to measure the divergence between the two sim-
ilarities (i.e., the similarity between the two cases and the similarity between
their classes), we can re–formulate the problem as follows:

Problem 2. Let LS = {cj}j∈J be the learning set and cb a case in the case–base.
Then Weight Determination Problem relative to cb is to find the set of weights
wcb(a1), ..., wcb(an) that minimizes the expression,

∑

cj∈LS

( ∑

ai∈A

wcb(ai) · Sai(ai(cj), ai(cb)) − Scl(cl(cj), cl(cb))
)2
,

subject to the following constraints over wcb,
(1)

∑
ai∈Awcb(ai) = 1, and

(2) wcb(ai) ≥ 0 for all ai ∈ A.

Now, we introduce simplified terms for similarities so that the problem can
be further simplified. The notation we will use is,

– aji = Sai(ai(cj), ai(cb)) is the similarity between the values corresponding to
i-th attribute in A for the case cb and the j-th case in LS;

– bj = Scl(cl(cj), cl(cb)) is the similarity between the solution classes of cb and
the j-th case in LS;

– wi = wcb(ai) corresponds to the weight of the attribute ai.

In this way, the data available to the problem has the form of Table 1 and
Weights Determination Problem corresponds to,

Problem 3.
Minimize

∑|LS|
j=1

( ∑|A|
i=1 wia

j
i − bj

)2

Subject to :
− ∑|A|

i=1 wi = 1

− wi ≥ 0, for all i = 1, ..., |A|
The minimization problem formulated above has been studied in [19], [32]

and [33] in the general framework of parameter learning for aggregation oper-
ators. [19] introduced a method based on the gradient descent for learning the
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Table 1. Structure of the available data for finding the weighting vector.

Sa1 Sa2 · · · Sa|A| SCl

a1
1 a1

2 · · · a1
|A| b1

a2
1 a2

2 · · · a2
|A| b2

· · · · · · · · · · · · · · ·
a
|LS|
1 a

|LS|
2 · · · a

|LS|
|A| b|LS|

weights of the OWA operator [36]. The similarities between the OWA and the
Weighted Mean make the method equally suitable for the Weighted Mean. In
[32] an algorithm based on Active Set Methods was studied and applied to some
medium–size data sets (problems up to 34 attributes were considered). Results
reported were positively compared with the ones in [19]. More recently, [33] stud-
ied some issues left open in [32]. In particular, the work studied the situation
with linearly dependent attributes. Then, an algorithm was introduced to deal
with such situation. In this work we apply the algorithms introduced in [32] with
the extension described in [33]. Related results about parameter learning for ag-
gregation operators include [20], [26] and [31]. By the way, these latter results
have been defined for learning parameters of more complex operators (e.g., the
Choquet integral).

Methods based on active sets (see e.g. [29]) rely on the simplicity of computing
the solution of quadratic problems with linear equality constraints. Iterative
algorithms have been developed in which at each step inequality constraints are
partitioned into two groups: those that are to be treated as active (considered as
equality constraints) and those inactive (essentially ignored). Once a partition is
known, the algorithm proceeds, by moving on the surface defined by the working
set of constraints (the set of active constraints), to an improved point. In this
movement, some constraints are added to the working set and some others are
removed. This process is repeated until the minimum is reached. When the
function to be minimized is convex (this is the case for the weighted mean),
the method finds the minimum and, although the method is iterative, the final
minimum is not influenced by the initial weight vector.

However, an important problem arises in practical applications of these meth-
ods: some data can have linearly dependent columns (in our case, this corre-
sponds to non–independent attributes). In this case, the algorithm fails to give
a solution. In fact the problem arises only, as shown in [33], when there is a
column/attribute ai that can be written as a linear combination of the others
of the form ai =

∑
j pjaj in such a way that

∑
j pj = 1. In such case, when

removing one of the linearly dependent columns, we get the same minimum we
would get when considering all the attributes. Therefore, an alternative approach
is to consider as many sub–problems as dependent attributes, where each sub–
problem corresponds to the original one after removing one of the dependent
attributes. The solution with a minimum error would correspond to the solution
of the original problem.
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4 A Symbolic Similarity Approach to Relational CBR

Reasoning and learning from cases is based on the concept of similarity, this is
clear, but there exist several ways of modeling similarity. Numerical (or fuzzy)
similarity–based approaches to case retrieval, like the ones we have considered
in previous sections, are mainly used for cases represented as attribute–value
vectors. Instead, in this section we consider another approach where cases are
represented in a scheme that uses relations among entities. We will call this
setting relational case–based learning. In this approach, the similarity between
two cases is understood as what they “share”. But, in addition, we need to be
able to evaluate whether what they share is “relevant” or “important” (or to
what degree it is relevant or important) for the problem at hand. In this section,
we first introduce concepts of symbolic similarity and feature terms, the basis
of the formalism we will use for representing relational cases. Then, we present
LID (for Lazy Induction of Descriptions), a method for relational case–based
learning. LID, introduced in [5], is based on two main notions: 1) the similarity
is constructed as a symbolic description of what is shared between precedent
cases and a specific problem to be classified, and 2) there is some assessment
function to help the system decide which relations among entities are important
or relevant to be shared with the precedent cases.

4.1 Symbolic Similarity and Feature Terms

In real domains it can be useful to represent knowledge in a structured way.
As a means to do so, in [4] the authors introduced the so–called feature terms
(also called feature structures or ψ-terms) that are a generalization of first order
terms [2, 11]. Formally, we define a feature term as follows.

Definition 4. Given a signature Σ = 〈S, A,≤〉, where S is a set of sort symbols,
A is a set of attribute symbols and ≤ is a decidable partial order on S, and a
set ϑ of variables, we define a feature term as an expression of the form,

ψ ::= X : s[a1
.= Ψ1 . . . an

.= Ψn], (2)

where X is a variable in ϑ called the root of the feature term, s is a sort in S,
a1 . . . an are attributes in A, and each Ψi is a set of feature terms and variables.
When n = 0, we are defining a variable without features. The set of variables
occurring in ψ is noted as ϑψ.

Figure 1 shows the description of a diabetic patient using feature terms.
The patient patient-371 is a feature term of sort patient (sorts are underlined
in the figure). This patient is described by two attributes, diabetes-data and
consultation. The value of diabetes-data is a feature term of sort diab-data that
has, in turn, two attributes, dm-type and dm-year.

Definition 5. A path path(X, ai) is defined as a sequence of attributes going
from the variable X to the feature ai.
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Fig. 1. Partial description of a diabetic patient. Here only 22 attributes are shown out
of a total of more than 80 paths present in the complete description of the patient.

Some examples of paths in the description of figure 1 are the following:

– path(patient-371, retinopathy)
= patient-371.consultation.eye-exam.visibility.retinopathy;

– path(patient-371, dyslipidaemia)
= patient-371.consultation.additional-treatment.dyslipidaemia;

– path(consultation, visibility) = consultation.eye-exam.visibility.

Sorts have an informational order relation (≤) among them, where s ≤ s′

means that s is more general than s′ (or s′ has more information than s), we
also say then that s′ is a sub–sort of s. When a feature has unknown value it is
represented as having the sort any. All other sorts are more specific than any.

There is an ordering relation, called subsumption, among feature terms de-
fined as follows:

Definition 6. A feature term ψ subsumes another feature term ψ′, written ψ �
ψ′, when the following conditions are satisfied: 1) the sort of ψ′ is either the
same or a sub–sort of the sort of ψ, 2) if Aψ is the set of attributes of ψ and Aψ′

is the set of attributes of ψ′ then Aψ ⊆ Aψ′ and 3) the feature terms of values
of the attributes in Aψ and Aψ′ satisfy in turn the two conditions above.
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Function LID(d, St, ∆S, R)
if stopping-condition(∆S)

then return Class(∆S)
else ad := Select-attribute (d, ∆S , R)

S′
t := Add-path(path(d,ad), St)

∆S′ := Discriminatory-set (S′
t, ∆S)

LID(d, S′
t, ∆S′ , R)

end-if
end-function

Fig. 2. The LID algorithm. St is the similarity term, ∆S is the discriminatory set
associated with St, R is the set of solution classes, class(∆S) is the class ri ∈ R to
which belong all the elements in ∆S.

Intuitively, a feature term ψ subsumes ψ′ when all information in ψ is also
contained in ψ′.

Definition 7. A feature term St is a similarity term of two cases c1 and c2 if
and only if St � c1 and St � c2, i.e., the similarity term of two cases subsumes
both cases. The set ∆S of cases subsumed by the similarity term St is called the
discriminatory set associated with St.

As we will see in Section 4.2, a similarity term can be seen as a symbolic
similarity among cases. In short, given a problem description d, LID classifies
it as belonging to the solution class r ∈ R when all the cases in the discrimi-
natory set ∆S associated with the similarity term St have r as solution class.
This assumption can be made because LID builds the similarity term taking
into account the attributes that are more relevant for classifying the problem
d. Intuitively, LID considers that if the problem description d shares a set of
relevant attributes (those in the similarity term St) with a (sub)set of cases be-
longing all of them to the same solution class r, then d can also be classified as
belonging to r. In Section 4.2 we explain how to select the relevant attributes of
a case to form the similarity term.

4.2 The LID Method

In this section we describe the method LID, useful for relational case–based
learning. LID combines the notion of symbolic similarity with an heuristics that
measures the importance of an attribute as the distance between the partition
induced by the values of this attribute and the correct one. The criterion used
in LID is based on the discrimination power of the similarity term which is
evaluated using the so-called RLM distance [25].

The main steps of the LID algorithm are shown in Figure 2. Input pa-
rameters of the LID algorithm are a problem description d to be classified, a
similarity term St, the discriminatory set ∆S associated with St and the set of
solution classes R = D(cl) where the problem d can be classified. In the first
call LID(d, St, ∆S ,R), the similarity term St is initialized to the most general



On Learning Similarity Relations in Fuzzy Case-Based Reasoning 25

description (the one having no features) and the set ∆S is initialized to CB, the
whole case base.

The stopping condition of LID is when all the cases in the discriminatory
set ∆S belong to only one solution class r0 ∈ R. In such a situation LID gives
the similarity term St as an explanation of the classification of d in r0 and ∆S

is the support set justifying that result2. The similarity term St can be viewed
as a partial description of the solution class r0 because it contains a subset of
attributes that are discriminating enough to classify a case as belonging to r0.
Notice however that St is not the most general “generalization” of r0, since in
general St does not subsume all the cases belonging to r0 but only a subset of
them (those sharing the attributes of St with the new problem). The similarity
term St depends on the current problem, for this reason there are several partial
descriptions (i.e. similarity terms) for the same solution class.

In the first call of LID, the stopping condition is not satisfied since ∆S

contains all the cases in CB. This means that the similarity term St is satisfied
by cases belonging to several solution classes, therefore St has to be specialized.

The specialization of a similarity term St is achieved by adding attributes
to it. LID considers as candidates to specialize St only those attributes that
are present in the problem description d to be classified. Let Al be the set of
attributes in d with no unknown value.

The next step of LID is the selection of an attribute ad ∈ Al to specialize
the similarity term St. The selection of the most discriminatory feature in the
set Al is done heuristically by using the RLM distance over the features in Al.

The RLM distance assesses how similar are two partitions (in the sense that
the smaller the distance, the more similar they are). Each attribute ai ∈ A
induces a partition on the case–base, where classes spij are formed by cases
having the same value for the attribute ai. The correct partition is the partition
Pc = {r̄1, . . . , r̄m}, where the classes correspond to the solution classes, i.e. the
cases belonging to r̄i are those with the same solution class ri. For each partition
Pi induced by an attribute ai, LID computes its RLM distance to the correct
partition Pc. The proximity of the partition Pi to Pc estimates the relevance of
feature ai.

Definition 8. Given two partitions Pi = {spi1, . . . , spin} and Pc = {r̄1 . . . r̄m}
of the case base CB, the RLM distance between them is computed as,

RLM(Pi,Pc) = 2 − I(Pi) + I(Pc)
I(Pi ∩ Pc) ,

with

I(Pi) = −
ni∑

j=1

pj · log2pj ; pj =
|CB ∩ spij |

|CB| ;

2 There is an abnormal stopping condition when there cases in ∆S belonging to dif-
ferent solution classes but the similarity term St cannot be further specialized. In
such a case, the output of LID is not a single class but the set of solution classes of
the cases in ∆S.
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I(Pc) = −
m∑

k=1

pk · log2pk ; pk =
|CB ∩ r̄k|

|CB| ;

I(Pi ∩ Pc) = −
ni∑

j=1

m∑

k=1

pjk · log2pjk ; pjk =
|CB ∩ r̄k ∩ spij |

|CB| ,

where I(Pi) measures the information contained in the partition Pi; ni is the
number of possible values of the attribute inducing Pi; pj (pk resp.) is the prob-
ability of occurrence of the class spij (r̄k resp.), i.e., the proportion of examples
in CB that belong to spij (r̄k resp.); m = |Pc|, i.e., the number of solution
classes; I(Pi ∩ Pc) is the mutual information of the two partitions; and pjk is
the probability of the intersection r̄j ∩ spik, i.e., the proportion of examples in
CB that belong to r̄j and to spik. In this definition, as it is common in the case
of entropy, 0 log 0 is defined as zero.

Definition 9. Let Pi and Pj be partitions induced by attributes ai and aj re-
spectively. We say that ai is more discriminatory than aj iff RLM(Pi,Pc) <
RLM(Pj,Pc), i.e., when the partition induced by ai is closer to the correct par-
tition Pc than the partition induced by aj.

LID uses the more discriminatory than relationship to estimate the attributes
that are more relevant for the purpose of classifying a current problem. Let us
call ad the most discriminatory attribute in A, i.e., ad induces the partition of
the discriminatory set closest to the correct partition.

The specialization step of LID defines a new similarity term S′
t by adding to

the current similarity term St the sequence of attributes specified by path(d, ad).
After this addition S′

t has a new path with all the attributes in the path taking
the same value they take in d. After adding the path path(d, ad) to St, the new
similarity term S′

t = St + path(d, ad) subsumes a subset of cases in ∆S , namely
the discriminatory set ∆S′ .

Next, LID is recursively called with the similarity term S′
t and the discrimi-

natory set ∆S′ . The recursive call of LID has ∆S′ as parameter (instead of ∆S)
because the cases that are not subsumed by S′

t will not be subsumed by any
further specialization. The process of specialization reduces the discriminatory
set ∆Sn ⊆ ∆Sn−1 ⊆ . . . ⊆ ∆S′ ⊆ ∆S at each step. This specialization of the
discriminatory set will provoke the algorithm to terminate.

5 Application

In this section, we describe the results obtained when applying the non–determin-
istic fuzzy CBR approach, with the fuzzy similarity learning method described
in Section 3, into a medical domain (in a Diabetis related problem). Similarity
relations have been built for a set of cases and results are reported and compared
with those obtained by the LID method. Additionally, we describe the classifica-
tion results obtained when using the leave one out approach. The section starts
with the description of the problem and follows with the description and analysis
of the experiments.
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5.1 The Diabetes Domain

Diabetes Mellitus is one of the most common human chronic diseases. There are
two major types of diabetes: diabetes type I (or insulin–dependent) and diabetes
type II (or non–insulin-dependent). The diabetes type I is usually found in people
under 40 years and is the consequence of a pancreatic malfunction. Instead, dia-
betes type II is more frequent in aged people and it could be explained as a loss of
effectivity of the insulin on the body cells. In fact, both forms of diabetes produce
the same short–term symptoms (i.e., frequent urination, increase of thirst and
high blood glucose values) and long–term complications (i.e., blindness, renal
failure, gangrene, coronary heart disease and stroke). The main concern in the
management of diabetes is to reduce the risk of the patient to develop long–term
complications. In 1989, representatives of Government Health Departments, pa-
tient organizations and diabetes experts celebrated a meeting in Saint Vincent
(Italy) (http://www.show.scot.nhs.uk/crag/topics/diabetes/vincent.htm) to
elaborate some recommendations to be followed in the diabetes management
with the goal of minimizing the diabetic complications of the patients.

Since then, experts have analyzed a lot of data that allowed to define the
main parameters (attributes) that prevent the development of complications. In
particular, they found that keeping the analytical data of the patient as close
as possible to the “normal” ranges, clearly reduces the complication risk. In
other words, the patient has to modify some of his life habits (like diet, physical
exercise, alcohol ingestion or smoking habits) in order to maintain analytical
parameters, such as the cholesterol, the blood pressure or the creatinine, within
the same ranges than those of a healthy person. Furthermore, it is necessary a
strict eye and foot control to prevent the development of a retinopathy and of a
polyneuropathy respectively.

In this work we have considered the assessment of infarct risk of a diabetic
patient. Four solution classes are considered: low, moderate, high and very-high.
The assessment of the risk can be seen as a classification task where the goal
is to identify the solution class to which the new problem belongs. In the next
section we describe the process of building a similarity function to determine
the attributes that are more important in order to assess the infarct risk of a
diabetic patient. An evaluation of the built similarity function is also considered.

5.2 Empirical Description and Analysis

As briefly described above, the procedure explained in Section 3.2 has been
applied to find similarities between cases. We have considered a case base CB
with 30 cases describing patient analytical data and patient’s risk assessment
(real analytical data was supplied by the Mataró Hospital and the risk of each
patient was assessed by a physician). Each case was described in terms of 84
attributes.

Then, the procedure outlined in Section 3.2 for the determination of the
weighting vectors has been applied. In this way, we have learned a weighting
vector for each case cb ∈ CB. To do so, we have used as learning set the whole
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CB after removing the case cb. This is, for each cb ∈ CB, LScb = CB − {cb}.
The learning stage lead to 30 weighting vectors, each one of dimension 84. This
process required first the definition of similarity functions Scl and Sa for all
a ∈ A.

Following the process explained in Section 3.2 we built a matrix similar, in
structure, to the one in Table 1. It has to be mentioned that at that point, and
before applying the learning algorithm, we considered to run the experiment with
both the original data and normalized data. In the second case, each variable
was normalized in [0,1] defining

a′ij =
(aij −minka

i
k)

(maxkaik −minkaik)
.

The normalization was considered because the similarity range of some variables
never reached 0 or 1 for the cases considered in the learning set.

Linear dependency problems raised in the computation of the weights for 15
of the cases in CB (for both normalized and non-normalized data). In these cases,
we proceeded, as explained in Section 3.2, to remove one dependent attribute
at a time and computing the weights for all these subproblems. For all of these
subproblems, the best weighting vector was selected. Nevertheless, some of the
problems still had linear dependent attributes. For instance, the 6–th and 7–th
cases had more than two dependent columns when normalized data was consid-
ered, and the same occurred for the 7–th case with the non–normalized data.
No additional treatment was applied to these cases and thus the best weighting
vector selected was in fact not relevant.

Results show that most weights are almost zero and that only a few of them
are significantly greater than zero. This is analogous to the procedure adopted
by the physician, who only considers a few number of attributes. Therefore, the
method is appropriate for selecting relevant attributes and for disregarding the
other ones. Table 2 displays the number of relevant weights for all the cases.
Two thresholds have been used in this table for considering an attribute to be
relevant: 0.1 and 0.05. The table shows that the number of relevant attributes
found are similar with normalized and non-normalized data.

A detailed analysis of the relevant attributes shows that, for several cases,
the set of relevant attributes is similar in both CBR approaches, the numerical
fuzzy similarity approach and the LID method. For example, LID considers the
attribute smoke as relevant for 12 cases in the case base. For 8 out of these 12
cases the corresponding weighting vectors assign relevant weights to wcb(smoke).
Table 3 reviews these cases and provides the relative position of the correspond-
ing weights in the weighting vectors obtained for the same cases. Similarly, LID
finds as relevant the attributes Chol− total (10 cases), HbA1c (4 cases), TG (1
case) and Edu−member (1 case). These attributes have also non-zero values in
the corresponding weights (5 cases for the Chol− total, 4 for HbA1c, 1 case for
both the TG and Edu−member).

The study also shows that there are some cases when this correspondence
between attributes in both approaches is not straightforward. Nevertheless, some
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Table 2. Number of relevant weights considering two thresholds (0.05 and 0.1): non
normalized data (top) and normalized data (bottom). Each column corresponds to one
case from CB.

Threshold Number of relevant weights wcb(ai) for all 30 cases in CB

0.05 9 7 7 6 7 8 0 7 8 7 6 7 8 8 8 8 6 8 8 8 4 8 8 7 6 8 6 8 8 8
0.1 2 3 4 4 2 3 0 2 3 5 2 1 1 3 3 2 3 2 3 3 3 2 2 3 3 3 3 1 2 2

0.05 7 7 7 7 7 0 0 7 6 8 6 6 7 8 7 8 5 7 7 5 4 8 7 6 6 7 6 7 8 8
0.1 2 3 4 4 4 0 0 2 3 3 1 2 2 3 3 3 4 2 2 3 3 2 2 3 3 3 3 3 3 2

Table 3. Cases where attribute “smoke” was relevant according to the LID method
and the relative position of the corresponding weight in the weighting vectors obtained
for the same cases. (n.r. stands for “not relevant” weight - i.e., too small weight).

Case where Relative position of the weight Relative position of the weight
smoke was relevant in normalized data in non-normalized data

1 4-th 3-rd
2 4-th 4-th
6 4-th n.r.
7 n.r. n.r.
9 n.r. n.r.
16 4-th 4-th
17 4-th 4-th
18 4-th 4-th
19 n.r. n.r.
26 5-th n.r.

Table 4. Assignments obtained in the classification problem.

Correct class Nearest class Other classes

No normalization 13 16 1
Normalization 13 17 0

of the divergences between both methods are due to the presence of similar
or related attributes in both descriptions. For example, the attribute food −
education is considered related with another attribute that informs whether the
patient goes on some diet or belongs to an educational association.

Additionally, to further evaluate the fuzzy similarity CBR approach, we have
considered the classification problem using the previous “diabetes” case base
CB. The evaluation has been based on the leave one out approach. This is, each
time we have removed one case from the case–base and we have computed the
similarity of this case with all the remaining cases in the case–base. Table 4
displays the number of correct classifications using this approach. As it can be
seen, a little less than half of the cases were correctly classified and for the mis–
classified ones, the method assigned the nearest solution class. Here, the nearest
solution class is understood in terms of the similarity Scl on the set R of possible
classes. Although the totally correct results in the classification process are not
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as good as expected, they are indeed quite acceptable as soon as we take into
account that, as a matter of fact, we introduced a similarity relation on the
solution classes, so not all classes different from the correct one are equally bad.
In terms of the plausibility orderings mentioned in Section 2, Table 4 shows that
the one of two more plausible solutions is (almost) always is the correct one.

From the case base perspective, the difficulty in correctly classifying the cases
can be explained in terms of a lack of redundancy in the case base. It is important
to remember that the case–base consisted of only 30 cases in a 84-dimensional
space (84 attributes). Therefore, the space of possible problem descriptions is
very large, and according to the results, most cases are highly unique in the
case–base. In fact, LID yields similar results when evaluated using also the leave
one out approach. For the same case base, 4 cases were incorrectly classified,
while for the rest of the cases LID always produced two answers, the correct
class and one of its nearest classes.

6 Conclusions and Future Work

In this paper, within a fuzzy CBR model, we have described a method to con-
struct a particular type of global similarity measure in the problem description
domain. Namely, given a case base CB, the similarity between a problem de-
scription d and a case c ∈ CB is defined in terms of a weighted average of the
attribute similarities, where the weights are particular to each c. We have ap-
plied the approach in a medical domain and compared with another case–based
reasoning method, LID, which uses a relational approach with feature terms as
a kind of symbolic similarity between cases. The comparison results shows the
suitability of the approach.

In particular, results show that only a few attributes are relevant for each
case (this is analogous to the procedure adopted by physicians) and that these
attributes correspond, in general, to the ones selected by the alternative case–
based reasoning method. Classification performances of both approaches also
lead to similar results.

Future extensions of this work include the study of additional types of global
similarity measures (e.g., using other aggregation operators instead of the
weighted mean in (1)). The consideration of non–linear models for defining the
similarity relations relate this work with Kernel functions and non–linear Sup-
port Vector Machines [34] that, as it is known, is a classification method that
operates by mapping data into an alternative and higher–dimensional space so
that classes are linearly separable. In our case, the consideration of such trans-
formations would probably improve the performance of the system when still
using weighted average based similarity. This process would be an analogue to
the one described in [27] for using the Fuzzy C-Means clustering method in the
new high–dimensional space.
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querying and prediction: A fuzzy set approach, in: Proc of the IEEE International
Conference on Fuzzy Systems, Hawaii, USA, 2002, pp. 735–740.

11. Carpenter, B. The Logic of Typed Feature Structures. Tracts in Theoretical Com-
puter Science. Cambridge Univ. Press, Cambridge, 1992.

12. Cheetham, B., Cuddihy, P., and Goebel, K. Applications of soft CBR at General
Electric,in: Soft Computing in Case Base Reasoning (S. K. Pal, T. S. Dillon, and
D. S. Yeung (eds.)). Springer, Berlin, 2001, pp. 335-365.

13. Dubois, D., Esteva, F., Garcia, P., Godo, L., Lòpez de Màntaras, R., and Prade,
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22. Hüllermeier, E., Dubois, D., and Prade, H. Knowledge based extrapolation of
cases: a possibilistic approach, in: Proceedings IPMU’2000, Madrid, Spain, 2000,
pp. 1575–1582.

23. Jaczynski M., Trousse B. Fuzzy logic for the retrieval step of a case–based reasoner,
in: Proceedings of the EWCBR’94, 1994, 313–321.

24. Kolodner J. Case-Based Reasoning. Morgan Kaufmann Publishers, 1993.
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cal approach to case–based reasoning using fuzzy similarity relations. Information
Sciences 106, 1998, pp. 105–122.

31. Tanaka, A., Murofushi, T. A learning model using fuzzy measure and the Choquet
integral,in: Proceedings of the 5th Fuzzy System Symposium, Kobe, Japan, 1989,
pp. 213–217 (in Japanese).

32. Torra, V. On the learning of weights in some aggregation operators: the weighted
mean and OWA operators. Mathematics and Soft Computing 6, 2000, pp. 249–265.

33. Torra, V. Learning weights for the quasi–weighted means. IEEE Transactions on
Fuzzy Systems 10:5, 2002, pp. 653–666.

34. Vapnik, V. N. The Nature of the Statistical Learning Theory 2nd ed., Springer,
New York, 2000.

35. Yager R. R. Case–based reasoning, fuzzy systems modelling and solution compo-
sition, in: Proceedings of ICCBR-97, 1997, pp. 633–643.

36. Yager, R. R. On ordered weighted averaging aggregation operators in multi–criteria
decision making. IEEE Transactions on SMC 18, 1998, pp. 183–190.

37. Zadeh L. A. (1971). Similarity relations and fuzzy orderings. Journal of Informa-
tion Sciences, 1971, 177–200.


	1 Introduction
	2 Fuzzy CBR Models
	3 Learning Similarity Relations for a Non-deterministic CBR Model
	3.1 Working Assumptions and Relevant Similarity Relations
	3.2 Construction of the Numerical Similarity Function $S_D$

	4 A Symbolic Similarity Approach to Relational CBR
	4.1 Symbolic Similarity and Feature Terms
	4.2 The LID Method

	5 Application
	5.1 The Diabetes Domain
	5.2 Empirical Description and Analysis

	6 Conclusions and Future Work
	References



