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Abstract. In this paper, we discuss rough inclusions defined in Rough
Mereology – a paradigm for approximate reasoning introduced by Polkow-
ski and Skowron – as a basis for common models for rough as well as
fuzzy set theories. We justify the point of view that tolerance (or, similar-
ity) is the motif common to both theories. To this end, we demonstrate
in Sect. 6 that rough inclusions (which represent a hierarchy of tolerance
relations) induce rough set theoretic approximations as well as partitions
and equivalence relations in the sense of fuzzy set theory. Before that,
we include an account of mereological theory in Sect. 3. We also discuss
granulation mechanisms based on rough inclusions with an outline of
applications to rough–fuzzy–neurocomputing and computing with words
in Sects. 4 and 5.
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1 Introduction

We begin with a concise review of both theories.

1.1 Rough Sets: Basic Ideas

Rough Set Theory begins with the idea, [16], [17], of an approximation space,
understood as a universe U together with a family R of equivalence relations on
U (knowledge base). Given a sub–family S ⊆ R, the equivalence relation S =⋂
S induces a partition PS of U into equivalence classes [x]S of the relation S.
In terms of PS , concept approximation is possible; a concept relative to U (or,

shortly, a U–concept) is a subset X ⊆ U . There are two cases.
A U–concept X is S–exact in case,

X =
⋃

{[x]S : [x]S ⊆ X}, (1)

holds. We will speak in this case also of an S–exact set.
Otherwise, X is said to be an S–rough U -concept (or, set).
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In the second case, the idea of an approximation comes useful [16]. Two
S–exact sets, approximating X from below and from above, are the lower S–
approximation,

SX =
⋃

{[x]S : [x]S ⊆ X}, (2)

and the upper S–approximation,

SX =
⋃

{[x]S : [x]S ∩X �= ∅}. (3)

Then, clearly,

1. SX ⊆ X ⊆ SX .
2. SX (respectively, SX) is the largest (respectively, the smallest) S–exact set

contained in (respectively, containing) X .

Sets (U–concepts) with identical approximations may be identified; consider
an equivalence relation ≈S defined as follows [18]:

X ≈S Y ⇔ SX = SY ∧ SX = SY. (4)

This is clearly an equivalence relation; let ConceptsS denote the set of these
classes. Then for x, y ∈ ConceptsS , we have

x = y ⇔ ∀u ∈ U.φu(x) = φu(y) ∧ ψu(x) = ψu(y), (5)

where for x = [X ]≈S , φu(x) = 1 in case [u]S ⊆ X , otherwise φu(x) = 0; similarly,
ψu(x) = 1 when [u]S ∩X �= ∅, otherwise ψu(x) = 0.

The formula (5) witnesses Leibnizian indiscernibility in ConceptS : entities are
distinct if and only if they are discerned by at least one of available functionals (in
our case, φu, ψu). The idea of indiscernibility is one of the most fundamental
in Rough Set Theory [16].

Other fundamental notions are derived from the observation on complexity
of the generation of S: one may ask whether there is some T ⊂ S such that

S =
⋂

T . (6)

In case the answer is positive, one may search for a minimal with respect to
inclusion subset T ⊆ S satisfying (6). Such a subset is said to be an S–reduct.
Let us observe that T ⊆ S is an S–reduct if and only if for each R ∈ T we have,

⋂
(T \ {R}) �=

⋂
T . (7)

In this case we say that U is independent; this notion falls under a general
independence scheme [14].

These ideas come fore most visibly in case of knowledge representation in the
form of information systems [16]. An information system is a universe U along
with a set A of attributes each element a of which is a mapping a : U → Va from
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U into an a–value set Va. Clearly, each attribute a ∈ A does induce a relation of
a–indiscernibility IND(a) defined as follows,

xIND(a)y ⇔ a(x) = a(y). (8)

The family {Ind(a) : a ∈ A} is a knowledge base and for each B ⊆ A, the
relation IND(B) =

⋂
{IND(a) : a ∈ B} is defined, inducing the lower and the

upper approximations BX,BX . Notions of a B–reduct, and B–independence
are defined as in general case [16].

From now on, we will work with the reduced universe U/IND(A) without
mentioning this fact explicitly; thus, the identity =U on objects – classes repre-
sentatives – will denote the equality of indiscernibility classes.

1.2 Fuzzy Sets: Basic Notions

A starting point for Fuzzy Set Theory is that of a fuzzy set [26]. Fuzzy sets come
as a generalization of the usual mathematical idea of a set: given a universe
U , a set X in U may be expressed by means of its characteristic function χX :
χX(u) = 1 in case u ∈ X , χX(u) = 0, otherwise.

A fuzzy set X is defined by allowing χX to take values in the interval [0, 1].
Thus, χX(u) ∈ [0, 1] is a measure of degree to which u is in X . Once fuzzy sets are
defined, one may define a fuzzy algebra of sets by defining operators responsible
for the union, the intersection, and the complement in the realm of fuzzy sets.
Usually, those are defined by selecting a t–norm, a t–co–norm, and a negation
functions where a t–norm T (x, y) is a function allowing the representation (see
[13], cf. [21] Ch. 14),

T (x, y) = g(f(x) + f(y)), (9)

where the function f : [0, 1] → [0,+∞) in (9) is continuous decreasing on [0, 1]
and g is the pseudo–inverse to f (i.e. g(u) = 0 in case u ∈ [0, f(1)], g(u) = f−1(u)
in case u ∈ [f(1), f(0)], and g(u) = 1 in case u ∈ [f(0),+∞)).

A t–conorm C is induced by a t–norm T via the formula C(x, y) = 1−T (1−
x, 1 − y). A negation n : [0, 1] → [0, 1] is a continuous decreasing function such
that n(n(x)) = x. An important example of a t–norm is the �Lukasiewicz product,

⊗(x, y) = max{0, x+ y − 1}; (10)

we recall also the Menger product,

Prod(x, y) = x · y. (11)

1.3 Rough Membership Functions

In a rough universe represented by an information system (U,A), it is possible
to introduce, as shown by Pawlak and Skowron [19], a parameterized family of
functions measuring for a given object u ∈ U and a set X ⊆ U degree to which
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u belongs in X , a parameter being a subset B ⊆ A of attributes. In this case,
the rough membership function mB,X on U is defined as,

mB,X(u) =
|X ∩ [u]B|

|[u]B| . (12)

It may be noticed that [19],

1. In case X is a B–exact set, mB,X is the characteristic function of X , i.e., X
is perceived as a crisp set;

2. mB,X is a piece–wise constant function, constant on classes of IND(B).

From mB,X , rough set approximations are reconstructed as follows,

BX = {u ∈ U : mB,X(u) = 1}, (13)

BX = {u ∈ U : mB,X(u) > 0. (14)

Rough membership functions are prototypes of rough inclusions defined in
the sequel which measure degrees to which one object (concept) is contained in
another, and containment is expressed in terms of relations of being a part.

Let us observe a contextual character of rough membership functions: they
are defined relative to sets of attributes, hence, they represent information con-
tent of those sets. A similar character will be featured in rough inclusions defined
in the framework of information systems.

2 Rough Mereology

We introduce a reasoning mechanism based on Rough Mereology [22], whose
distinct facets correspond to rough respectively fuzzy approaches to reasoning
allowing on one hand the introduction of rough set–theoretic approximations
and on the other hand inducing fuzzy set–theoretic notions of a partition as well
as of an equivalence relation. We will present the main ideas of this approach.

2.1 Mereology

Mereological theories, contrary to naive or formalized set theories that are based
on the notion of being an element of a set, are based on the idea that relations
among object should be based on their containment properties (e.g., we cannot
say “the circle is an element of the closed disk it is boundary of” but we can
say “the circle is the part of the closed disk”). Mereology theory proposed by
Stanis�law Leśniewski proposes the notion of a part as the primitive one, whereas
the mereological theory outlined by Alfred North Whitehead [24] and developed
by Leonard, Goodman, and Clarke, see [4], among others, begins with the notion
of connection.

We work here in the formalism proposed by Leśniewski, and thus the basic
notion is that of a part relation on a universe U with identity =, [11]; in symbols:
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xπy, that reads x is a part of y. A part relation π satisfies by definition the
following conditions,

xπy ∧ yπz ⇒ xπz, (15)

¬(xπx). (16)

Thus, the part relation is transitive and non–reflexive (i.e., it is a pre–order
on U), so it can be interpreted as expressing the idea of a proper part.

The idea of an improper part, i.e., possibly of the whole object, is expressed
by the notion of an element, that may not be confused with the notion of an
element in naive set theory (sometimes, the term “ingredient” is used in place
of that of “element”, such was original usage of Leśniewski).

The notion of an element relation, elπ, induced by the relation π is the
following,

x elπ y ⇔ xπy ∨ x = y. (17)

Thus, x elπ y ∧ y elπ x is equivalent to x = y. By (15), (16), the relation elπ is
an ordering on the universe U . Moreover,

xelπx (18)

for each x in U , a striking difference with the usage of the notion of an element
in naive set theory.

The fundamental feature of mereology of Leśniewski is that it is concerned
with collective classes, i.e., distributive classes (names, concepts) are made into
objects (collective classes).

In order to make a non–empty concept M ⊆ U into a collective object, the
class operator Cls is used [11].

The definition of the class of M , in symbols Cls(M), is as follows,

x ∈M ⇒ x elπ Cls(M), (19)

x elπ Cls(M) ⇒ ∃y, z.y elπ x ∧ y elπ z ∧ z ∈M. (20)

Condition (19) includes all members of M into Cls(M) as elements; (20)
requires each element of Cls(M) to have an element in common with a member
of M (compare this with the definition of the union of a family of sets to see the
analogy that becomes clear, when the relation of being a (mereological) element
is interpreted as that of being a subset of a set, and M is a family of subsets in
a given universe).

One requires also Cls(M) to be unique, [11]. From this demand it follows
that, [11],

[∀y.(y elπ x⇒ ∃w.w elπ y ∧ w elπ z)] ⇒ x elπ z. (21)

The rule (21) is useful for recognizing that x elπ z, and it will be used in our
arguments.
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2.2 Rough Mereology

Given a mereological universe (U, π), with the induced relation elπ of being an
element, we introduce, cf. [22], on U × U × [0, 1] a relation µ(x, y, r), read x is
a part of y to degree at least r. We will write rather more suggestively xµry,
calling µ a rough inclusion (it is the generic name introduced in [22]).

We introduce at this moment an element of ontology (we do not enter here
any discussion on what is ontology; here, by ontology we mean simply a system
of names we use for naming various types of objects): we will regard U as a name
for atomic objects, and the formula xεU (read: x is U) will mean that an object
x is an atomic object.

In case of an information system (U,A), atomic objects will be objects x ∈ U .
The symbol GU will name individual objects constructed as classes of atomic
objects, which will be denoted with the formula gεGU , i.e., gεGU if and only
if there exists a non–empty property Φ with g = Cls(Φ|U), Φ|U meaning Φ
restricted to atomic objects, Φ|U a non–empty property of atomic objects.

We require µ to satisfy the following conditions, see [22],

xµ1x, (22)

xµ1y ⇔ x elπ y, (23)

xµ1y ⇒ ∀z, r.(zµrx⇒ zµry), (24)

xµry ∧ s < r ⇒ xµsy. (25)

Informally, (23) ties the rough inclusion to the mereological underlying uni-
verse , (24) does express monotonicity (a bigger entity cuts a bigger part of
everything), (25) says that a part to degree r is a part to any lesser degree.

We may observe that (22) is a consequence to (23) due to (18).

2.3 More Ontology for Information Systems

We would like to set here some scheme for relating ontology of an information
system outlined above to ontology of the associated mereological universe (again,
we use term “ontology” here as a name for a system of notions only).

Given an information system (U,A), we introduce the material identity =U

on U (understood as the identity of objects, e.g., identity of patients, signals,
etc., witnessed by their names, times of receiving, etc.), and we let for x, yεU ,

xµ1y ⇔ x =U y. (26)

Thus the notion of an element, corresponding to the rough inclusion µ by means
of (23) coincides with =U on atomic objects; we will denote with the symbol elU
this notion of an element. We extend elU to pairs x ∈ g, where xεU, gεGU . The
corresponding notion of a class, ClsU coincides with the notion of a set. The
mereological notion of a subset,

xsubUy ⇔ ∀z.(zelUx⇒ zelUy), (27)
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coincides with set inclusion ⊆. Thus the mereological complement xc (defined as
the class of all objects that do not have any object as a common part with x)
coincides with the set complement U \ x.

For each xεU , the set,

Inf(x) = {(a, a(x)) : a ∈ A}, (28)

will be defined, called the information set of x; the universe,

INF (U) = {Inf(x) : xεU}, (29)

will be called the information universe of the information system (U,A). We let

INF : U → INF (U), INF (x) = Inf(x) for xεU. (30)

Given a mereological structure on INF (U), we denote with elINF , ClsINF ,
=INF , respectively, the relation of being an element, a class, and the identity on
INF (U).

For gεGU , we let,

INF (g) =INF ClsINF (Inf(y) : yεU, yelUg). (31)

We introduce names INF (U), GINF with xεINF (U) meaning x to be an
atomic object of the form Inf(a) with aεU , and xεGINF meaning x to be a
class of atomic objects, i.e., x = ClsINF (Φ|INF (U)) for some non–vacuous
property Φ with Φ|INF (U) being its restriction to INF–atomic objects, and
non–vacuous on those objects.

Rough inclusions we define below, are defined on the universe INF (U). As
a result of operations in this universe, some constructs are obtained that we
interpret in the universe U .

To this end, we define the semantic operator [.], which to any object g over the
universe INF (U) (be it an atom or a class) assigns the class [g] = ClsU (xεU :
Inf(x)elINF g).

It is obvious that xelU [INF (x)]; we state a property satisfied by [.], viz.,

gelINFh⇒ [g]elU [h], (32)

that follows directly from definitions and the transitivity of elINF .

3 Examples

We consider an information system (U,A) and we define two basic examples of
rough inclusions on INF (U), that would be convenient in the sequel.

We define rough inclusions incrementally, invoking ontology introduced above.
Both inclusions defined below satisfy the assumption that elINF coincides with
=INF on atomic objects. Thus in both cases, mereological classes coincide with
sets; this may simplify the analysis for the reader. However, our analysis in
general does not require this assumption.
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3.1 The Menger Rough Inclusion

Given (U,A), hence, the information universe INF (U), for x, y with xεINF (U),
yεINF (U), where x =INF Inf(u), y =INF Inf(v) with u, vεU , we define,

DISA(x, y) = {a ∈ A : a(u) �= a(v)}, (33)

and then we let yµM
r x if and only if

e(−Σa∈DISA(x,y)wa) ≥ r, (34)

where wa ∈ (0,∞) is a weight associated with the attribute a. Then µM does
satisfy (18)–(25) with x, y, zεINF (U). For x, y, zεINF (U), the rule,

yµrx, xµsz

yµr·sz
, (35)

holds.
To justify our claim (35), we may observe that DIS(y, z) ⊆ DIS(y, x) ∪

DIS(x, z), which implies by (34) that yµM
r x, xµM

s z imply yµM
r·sz, i.e., (35) holds.

It is a matter of straightforward checking that µM satisfies (18)–(25).

We now extend µM over pairs of the form x, g, where xεINF (U), gεGINF .
We define µM in this case as follows:

xµM
r g ⇔ ∃y.yεU ∧ INF (y)elINFg ∧ xµM

r INF (y). (36)

Then, the rough inclusion µM on pairs x, y or x, g, where x, yεINF (U),
gεGINF , does satisfy (18)–(25).

Indeed, (18) and (25) are obviously true. For (23), xµM
1 g implies that there

exists yεINF (U), yelINFg with xµM
1 y hence xelINF y hence x =INF y so that

xelINF g. (24) follows on similar lines.

Finally, we define µM on pairs of the form g, h, with gεGINF , hεGINF , by
means of the formula,

gµM
r h⇔ ∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).(yelINFh ∧ xµM

r y)]. (37)

It is true that the extended by (37) most general form of µM does satisfy
(18)–(25).

Indeed, (18) and (25) hold obviously; proof of (23) is as follows:
for g, hεGINF ,

gµM
1 h, (38)

if and only if

∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).yelINFh ∧ xµM
1 y], (39)

if and only if

∀xεINF (U).[xelINF g ⇒ ∃yεINF (U).yelINFh ∧ x =INF y], (40)
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if and only if
∀xεINF (U).(xelINF g ⇒ xelINFh). (41)

Now, from (41), the conclusion gelINFh follows by (21).

Proof for (24) goes on parallel lines: given gµM
1 h and kµM

r g, for any xεINF (U),
where xelINFk, there exist yεINF (U), yelINFg with xµM

r y; similarly, we find
zεINF (U), zelINFh with yµM

1 z. It follows by (35) that xµM
r·1z hence xµM

r z and
thus, x being arbitrary, kµM

r h.

A similar argument will show that the extended by (37) rough inclusion µM

does satisfy the transitivity rule,

kµM
r h, hµM

s g

kµM
r·sg

. (42)

To prove (42), consider k, h, gεGINF ; given xεINF (U), xelINFk, we find y,
zεINF (U), yelINFh, zelINFg with xµM

r y, yµM
s z, hence, by (35) we have xµM

r·sz
implying by arbitrariness of x that kµM

r·sg.

3.2 The �Lukasiewicz Rough Inclusion

In notation of (33), we define a rough inclusion µL. Following the pattern of the
discussion in (34), (35), the rough inclusion µL will be defined as follows.

For x, yεINF (U),

yµL
r x⇔ 1 − |DISA(x, y)|

|A| ≥ r. (43)

For g, hε{INF (U), GINF}:

(gµL
r h) ⇔ {[∀xεINF (U).(xelINF g ⇒ ∃yεINF (U).(yelINFh ∧ xµL

r y)]}. (44)

Following the lines of proofs of (18)–(25) in case of the Menger rough inclu-
sion, and of (42) in which the rough inclusion µM is replaced with the rough
inclusion µL, we obtain that the �Lukasiewicz rough inclusion µL does satisfy
(18)–(25) with x, y, zε{INF (U), GINF}, and the following rule,

kµL
r g, gµ

L
s h

kµL
⊗(r,s)h

, (45)

holds, where ⊗(r, s) is the �Lukasiewicz functor (10).

As with the Menger rough inclusion, it is sufficient to verify (18)–(25) with
x, y, zεINF (U) which is straightforward and then to follow general lines outlined
above.

The transitivity rule (45) deserves a proof. It is sufficient to assume xµL
r y,

yµL
s z, xµ

L
t z with x, y, zεINF (U).
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As DIS(x, z) ⊆ DIS(x, y) ∪DIS(y, z), substituting into (43),

1 − t =
|DIS(x, z)|

|A| ≤ |DIS(x, y)|
|A| +

|DIS(y, z)|
|A| = (1 − r) + (1 − s), (46)

hence t ≥ r+s−1 and as t is non–negative we have finally t ≥ max{0, r+s−1} =
⊗(r, s).

The proof in the general case goes on lines of the proof in case of Menger’s
rough inclusion.

We add a new rule about rough inclusions, which is satisfied by Menger as
well as �Lukasiewicz rough inclusions with f = Prod, ⊗ respectively.

The f-Transitivity Property

xµry, yµsz

xµf(r,s)z
(47)

holds with a t–norm f .
We say that µ is an f–rough inclusion.
Note, that it follows from general properties of t–norms, that for each t–norm,

T , there exists a rough inclusion µT that satisfies the T –transitivity rule, i.e.,

kµT
r g, gµ

T
s h

kµT
T (r,s)h

, (48)

see [22], Prop. 13.
Finally, we state for the record the obvious property of Menger as well as

�Lukasiewicz rough inclusions, viz. symmetry, of which no explicit use was made
as of yet.

The Symmetry Property

xµry ⇔ yµrx, (49)

holds for µ ∈ {µM , µL}.

3.3 Remarks on the Notion of an Element Induced
by a Rough Inclusion

In cases of Menger as well as �Lukasiewicz rough inclusions, formulas defining µ
are employing cardinalities of sets DISA(x, y); in consequence, the notion of an
element elINF induced by either of µM , µL coincides with the notion of being
indiscernible: xelINF y if and only if INDA(u(x), u(y)) if and only if u(x) =U

u(y), where x = INF (u(x)), y = INF (u(y)).
At the cost of introducing an additional structure into value sets Va, where

a ∈ A, we may generate a richer elINF relation. For instance, we may assume
preference relations <a in sets Va, i.e., orderings on value sets Va, studied by
some authors, e.g., Greco et al., see [6]. Then, we may let,

DIS<
A (x, y) = {a ∈ A : a(x) < a(y)}, (50)
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and,

xµL,<
r y ⇔ 1 − |DIS<

A (x, y)|
|A| ≥ r. (51)

Alternatively, we may introduce the set

DIS≥
A (x, y) = {a ∈ A : a(x) ≥ a(y)}, (52)

hence,
DIS≥

A (x, y) = A \DIS<
A (x, y), (53)

and, in consequence,

xµL,<
r y ⇔ |DIS≥

A (x, y)| ≥ r · |A|. (54)

Thus, the notion an element el<INF is as follows: xel<INF y if and only if a(x) ≥
a(y) for each a in A.

It is straightforward to verify that µL,< is a rough inclusion; only (23) may
require a comment. In this case, we consider x, y, z with xµL,<

1 y and zµL,<
r x.

We have: DIS≥
A (x, y) = A, i.e., a(x) ≥ a(y) for every a in A, and

|DIS≥
A (z, x)| ≥ r · |A|.

As a(z) ≥ a(x) implies a(z) ≥ a(y), it follows that DIS≥
A (z, x) ⊆DIS≥

A (z, y),
hence, |DIS≥

A (z, y)| ≥ |DIS≥
A (z, x)| ≥ r · |A|, i.e., zµL,<

r y.
In an analogous way, we may define the corresponding Menger rough inclusion

µM,<
r , i.e.,

xµM,<
r y ⇔ e

−Σ
a∈DIS

≥
A

(x,y)
wa ≥ r. (55)

Let us observe that

e−Σa∈DISA(x,y)wa) = 1 −
Σa∈DISA(x,y)wa

1!
+

(Σa∈DISA(x,y)wa)2

2!
− ..., (56)

and, assuming that the average value of |DISA(x, y)| is |A|
2 , letting in (56) wa =

1
|A| , for each a ∈ A, we obtain that

e−Σa∈DISA(x,y)wa) = 1 − |DISA(x, y)|
|A| , (57)

with an error of order 0.06. We may, therefore, base examples that follow on
the �Lukasiewicz rough inclusion as a fairly close estimate to the Menger rough
inclusion.

We consider the information system A in Table 1.
For the information system A, we may calculate values of the �Lukasiewicz

rough inclusion in Table 2; as µL is symmetric, we show only the upper triangle
of values.

As already observed, the relation of element is equal to the identity =U .
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Table 1. The information system A.

U a1 a2 a3 a4

x1 1 1 1 2
x2 1 0 1 0
x3 2 0 1 1
x4 3 2 1 0
x5 3 1 1 0
x6 3 2 1 2
x7 1 2 0 1
x8 2 0 0 2

Table 2. µL for Table 2.

U x1 x2 x3 x4 x5 x6 x7 x8

x1 1 0.5 0.25 0.25 0.5 0.5 0.25 0.25
x2 * 1 0.5 0.5 0.5 0.25 0.25 0.25
x3 * * 1 0.25 0.25 0.25 0.25 0.5
x4 * * * 1 0.75 0.75 0.25 0.0
x5 * * * * 1 0.5 0 0
x6 * * * * * 1 0.25 0.25
x7 * * * * * * 1 0.25
x8 * * * * * * * 1

Table 3. µ<,L for Table 2.

U x1 x2 x3 x4 x5 x6 x7 x8

x1 1 1 0.75 0.5 0.75 0.5 0.75 0.75
x2 0.5 1 0.5 0.5 0.5 0.25 0.5 0.5
x3 0.5 1 1 0.5 0.5 0.25 0.75 0.75
x4 0.75 1 0.75 1 1 0.75 0.75 0.75
x5 0.75 1 0.75 0.75 1 0.5 0.5 0.75
x6 1 1 1 1 1 1 1 1
x7 0.5 0.75 0.5 0.5 0.5 0.25 1 0.5
x8 0.5 0.75 0.75 0.25 0.25 0.25 0.75 1

Taking the natural ordering of integers as the preference ordering in all sets
Va for a = a1, a2, a3, a4, we induce the rough inclusion µL,< in the universe of
the system A, whose values are shown in Table 3.

As we see, the rough inclusion µL,< is not symmetric, and we may expect a
different structure of granules, as we pass to the subject of knowledge granula-
tion.

3.4 Granulation of Knowledge

The class operator Cls may be recalled now. We make use of it in defining
a notion of a granule in the rough mereological universe. Granular computing
(GC) as a paradigm has been proposed by Lotfi Zadeh [28] and it has been
studied intensively by rough and fuzzy set theorists, see [15], [12]. According to an
informal, intuitive, definition, due to Zadeh, a granule is a collection (abstracting
from the precise meaning of the term) of objects bound together by similarity,
closeness, or some other constraints alike. Here, we construct granules on the
basis of rough mereological similarity of objects. Due to regularity of assumptions
about rough inclusions, we are able to obtain also some regular properties of
granules.

4 Rough Mereological Granulation

We assume a rough inclusion µ on a mereological universe (U, el). For given r < 1
and xεU , we let,

gr(x) = Cls(Ψr), (58)
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where,
Ψr(y) ⇔ yµrx. (59)

The class gr(x) collects all atomic objects satisfying the class definition with
the concept Ψr.

We will call the class gr(x) the r–granule about x; it may be interpreted
as a neighborhood of x of radius r. We may also regard the formula yµrx as
stating similarity of y to x (to degree r). We do not discuss here the problem
of representation of granules; in general one may apply sets as the underlying
representation structure. It will turn out, that in case of Menger as well as
�Lukasiewicz rough inclusions, granules may be represented as sets of objects
satisfying Ψr.

From (18)–(25), the following general properties of granulation operators gr

may be deduced.

yµrx⇒ yelgr(x), (60)

xµry ∧ yelz ⇒ xelgr(z), (61)

∀z.[zely⇒ ∃w, q.(welz ∧ welq ∧ qµr(x))] ⇒ yelgr(x), (62)

yelgr(x) ∧ zely ⇒ zelgr(x), (63)

s ≤ r ⇒ gr(x)elgs(x). (64)

Property (60) follows by definition of gr and class definition (19, 20). Property
(61) is implied by (23) and (60). Property (62) follows by (21). Property (63)
follows by transitivity of el. Property (64) is a consequence of (25).

Let us observe that in case of DISA – induced rough inclusions, g1(x) = x
is the class of elements of x hence x itself. By (60–64), the system {gr(x) : x ∈
U, r ∈ [0, 1]} is a neighborhood system for a weak topology on the universe U .

In the matter of example, we consider the information system of Table 1
along with values of rough inclusions µL, µL,< given, respectively, in Tables 2, 3.
Admitting r = 0.5, we list below granules of radii 0.5 about objects x1 − x8 in
both cases. We denote with the symbol gi, g

<
i , respectively, the granule g0.5(xi)

defined by µL, µL,<, respectively.

We have,

1. g1 = {x1, x2, x5, x6},
2. g2 = {x1, x2, x3, x4, x5},
3. g3 = {x2, x3, x8},
4. g4 = {x2, x4, x5, x6},
5. g5 = {x1, x2, x4, x5, x6},
6. g6 = {x1, x4, x5, x6},
7. g7 = {x7},
8. g8 = {x3, x8},

what provides an intricate relationship among granules: 1, g4, g6 ⊆ g5, g8 ⊆ g2,
g2, g5 incomparable by inclusion, g7 isolated. We may contrast this picture with
that for µL,<.
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1. g<
1 = g<

4 = g<
5 = g<

6 = U ,
2. g<

2 = g<
3 = g<

7 = U \ {x6},
3. g<

8 = {x1, x2, x3, x7, x8},

providing a nested sequence of three distinct granules.

4.1 Granulation via the Menger Rough Inclusion

We now consider the Menger rough inclusion µM in which case the following ad-
ditional properties of granules may be observed. The r-granule about x induced
by µM will be denoted with the symbol gM

r .
The following are additional properties of Menger granules,

xεINF (U) ∧ xelINF g
M
r (y) ⇔ xµM

r y, (65)

xεINF (U) ∧ xelINFg
M
r (y) ⇒ ∀t ∈ [0, 1].gM

t (x)elINF g
M
t·r(y). (66)

For (65), assume that xelINF g
M
r (y) for xεINF (U); then, by class definition

(19, 20), we find w, q such that welINFx,welINF q, qµ
M
r y. Thus wµM

1·ry, hence
wµM

r y, and again, by xµM
1 w, it follows that xµM

r y. Proof of (66) follows on the
same lines.

4.2 Granulation via the �Lukasiewicz Rough Inclusion

With the �Lukasiewicz rough inclusion, analogous observations follow whose
proofs are carried on the same lines. The following are additional properties
of �Lukasiewicz granules,

xεINF (U) ∧ xelINF g
L
r (y) ⇔ xµL

r y, (67)

xεINF (U) ∧ xelINF g
L
r (y) ⇒ ∀t ∈ [0, 1].gL

t (x)elINF g
L
⊗(t,r)(y). (68)

We may sum up more suggestively (66, 68), viz., for µ ∈ {µM , µL} and
xεINF (U), and sufficiently small positive ε,

xelINFgr(y) ⇒ g1−ε(x)elINF gr−ε(y). (69)

In the sequel, we discuss schemes for computing with granules of knowl-
edge/computing with words leading to networks of units organized similarly to
neural networks but performing their computations in different manner. Hybrid
rough-neural computing schemes are recently given much attention, see [15].
Here, we propose a look at the schemes based purely on agents equipped with
rough inclusions. Differentiability of the Menger type rough inclusions make
them susceptible to learning by back-propagation, a subject we discuss in the
final part of the following section.
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5 Rough Mereological Granular Computing

We define an intelligent unit modelled on a classical perceptron [1] and then we
develop the notion of a network of intelligent units of this type. The scheme pre-
sented here is a modification of the scheme proposed by Polkowski and Skowron
in [22].

5.1 Rough Mereological Perceptron

We exhibit the structure of a rough mereological perceptron (RMP). It consists
of an intelligent unit denoted ia. The input to ia is a finite set of connections
Linkia,in = {link1, ..., linkm}; each linkj has as the source the information uni-
verse INF (Uj), of an information system Aj = (Uj , Aj), endowed with a rough
inclusion µj

r. The output to ia is a connection Linkia,out to the information uni-
verse INF (Uia), of an information system Aia = (Uia, Aia), equipped with the
rough inclusion µia.

The operation (function) realized in RMP is denoted with Oia; thus, for
every tuple < x1, ..., xm >, where xi ∈ INF (Ui), the object x = Oia(x1, ..., xm)
∈ INF (Uia).

In each INF (Uj) as well as in INF (Uia), finite sets Tj , Tia are selected, with
the properties that,

t ∈ tia ⇒ ∃t1 ∈ T1, ..., tm ∈ Tm.t = Oia(t1, .., tm), (70)

and,
∀i, ti ∈ Ti.∃t ∈ Tia.t = Oia(t1, ..., tm). (71)

When t = Oia(t1, ..., tm), we say that σ =< t1, ..., tm, t > is an admissible set
of references. The set of all admissible reference sets is denoted by Σ.

The operation of an RMP may be expressed in terms of the mapping ωia

defined as follows.
For σ =< t1, ..., tm, t >, r1, ..., rm ∈ [0, 1], x = Oia(x1, ..., xm), and

xiεINF (Ui) for i = 1, 2, ...,m, the mapping,

ωia : Σ × [0, 1]m → [0, 1], (72)

is given by
ωia(σ, r1, .., rm) = r = min{s : xµia

s t}, (73)

whenever xiµ
i
ri
ti for i = 1, 2, ...,m.

5.2 Granular Computations

The mapping ωia may be factored through granule operator, i.e., (73) may be
expressed as follows:

ωg
ia(σ, gr1(t1), ..., grm(tm)) = gωia(σ,r1,...,rm)(t), (74)

defining the factored mapping ωg on granules.
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Let us observe that the acting of RMP may as well be described as that
of a granular controller, viz., the functor ωg may be described via a decision
algorithm consisting of rules of the form,

if gr1(t1) and gr2(t2) and . . . and grm(tm) then gr(t), (75)

with r = ωia(σ, r1, ..., rm), where σ =< t1, ..., tm, t >.
It is worth noticing that the mapping ωia is defined from given information

systems Aj ,Aia and it is not subject to any arbitrary choice.
Composition of RMP’s involves a composition of the corresponding mappi-

ngs ω, viz., given RMP1, . . . , RMPk, RMP with links to RMP being outputs
from RMP1, . . . , RMPk, each RMPj having inputs Linkj = {linkj

1, . .., link
j
kj
},

m = Σk
j=1kj , the composition,

IA = RMP ◦ (RMP1, RMP2, ..., RMPk), (76)

of m inputs, does satisfy the formula

ωIA = ωRMP ◦ (ωRMP1 , ..., ωRMPk
), (77)

under the tacit condition that admissible sets of references are composed as well.
Thus RMP’s may be connected in networks subject to standard procedures, e.g.,
learning by back-propagation.

When learning by back-propagation (see [1], [20] for a detailed analysis), the
Menger rough inclusion, or its modifications, e.g., the gaussian rough inclusion,

xµG
r y ⇔ e−(Σa∈DISA(x,y)wa)2 ≥ r, (78)

are useful as they are defined by means of a differentiable function f , whose
gradient is of the form,

∂f

∂w
= f · (−2 ·

∑
wa), (79)

in case of µG.

5.3 Elementary Teams of Rough Mereological Perceptrons
with the Menger Rough Inclusion

We consider a rough mereological perceptron (RMP), as defined in Sect. 5.1. It
consists of an intelligent unit denoted ia whose input is a finite tuple x =<
x1, x2, . . . , xk > of objects, see Sect. 5.1. We endow ia with the Menger rough
inclusion µM,ia at ia.

The unit ia is also equipped with a set of target objects Tia ⊂ INF (Uia).
Each object in Tia represents a class of indiscernibility INDAia via the map
INF .

The output of RMP is the granule of knowledge resia(x) = grres(x) with the
property that

rres = max{r : ∃y ∈ Tia.Oia(x)µM,ia
r y}, (80)
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i.e., we essentially classify x as the exact concept being the class of indiscernibility
classes as close to the indiscernibility class of x as the closest target class, i.e.,
in degree rres. Let us observe that this classification depends on the weight
system {wa : a ∈ Aia} chosen. We may also observe that we could also present
the result of computation resia(x) as the tuple < gri(ti) : ti ∈ Tia > where
ri = sup{r : Oia(x)µM,ia

r ti} for each i ≤ |Tia|.

5.4 Rough Mereological Network

Now, we may consider a network of intelligent agents (NIA) organized in the
manner of a feed-forward neural network, viz., we single out the following com-
ponents in NIA.

1. The set INPUT of intelligent agents (ia’s) constituting the input layer of
NIA. Each intelligent unit ia in INPUT acts as an RMP: it receives a tuple
xia of objects from the stock of primitive objects (signals, etc.); it assembles
xia into the object Oia(xia) in Uia; it classifies Oia(xia) with respect to its
target concepts in Tia and outputs the result resia(xia).

2. Sets LEV1, . . . , LEVk constituting consecutive inner layers of NIA with each
ia in

⋃
i LEVi acting as above.

3. The output to RMP denoted iaout acting as each ia except that its compu-
tation result is the collective computation result of the whole network.

Although, in general, the structure of neural networks is modelled on directed
acyclic graphs, we assume for simplicity, that NIA is ordered by a relation ρ into
a tree. Thus iaout is the root of the tree, INPUT is the leaf set of the tree, and
each LEVi constitutes the corresponding level of pairwise non–communicating
units in the tree.

Elementary Computations. To analyze computation mechanisms in NIA,
we begin with elementary computations performed by each subtree of the form
nia = {ia, ia0, . . . , iam} with iajρia for each j ≤ m, i.e., ia is the root unit in
nia, and ia0, . . . , iam are its daughter units.

We make one essential assumption about NIA, viz., we presume that after
preliminary training, the target sets Tia, Tiaj have been coordinated, i.e.,

1. for each t ∈ Tia, there exist t1 ∈ Tia1 , . . . , tm ∈ Tiam such that t = Oia(t1, . . . ,
tm);

2. each tj ∈ Tiaj can be completed by t1 ∈ Tia1 , . . . , tj−1 ∈ Tiaj−1 , tj+1 ∈
Tiaj+1 , . . ., tm ∈ Tiam such that t = Oia(t1, . . . , tm) ∈ Tia.

On the basis of these assumptions, we can describe elementary computations in
terms of target sets. To this end, we introduce notions of propagating functors
relative to sets of target concepts. The notion of a propagating functor was
introduced in [22], and here we adopt it in a slightly changed form.

We will say that a set σ = {t, t1, . . . , tm} of target concepts, where t ∈
Tia, t1 ∈ Tia1 , . . . , tm ∈ Tiam is admissible when t = Oia(t1, . . . , tm). For an
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admissible σ = {t, t1, . . . , tm} of target concepts, where t ∈ Tia, t1 ∈ Tia1 , . . . , tm
∈ Tiam , the propagating functor Φnia,σ is defined as follows.

For x =< x1 ∈ INF (Uia1), . . . , xm ∈ INF (Uiam) >, we denote by r the
tuple < r1, . . . , rm >∈ Rm defined by

∀i.ri = sup{r : xiµ
M,iai
r ti}, (81)

and we let
Φnia,σ(r) = sup{s : Oia(x1, . . . , xm)µM,ia

s t}. (82)

In terms of functors Φnia,σ , reasoning and computations are carried out in
NIA (see [22], [20] for details). As induced by the function f , Φnia,σ is piece–wise
differentiable, allowing for back–propagation based learning in NIA (see [20]).

Computing with Words. The paradigm of computing with words [29] as-
sumes that syntax of the computing mechanism is given as that of a subset of
natural language, whereas the semantics is given in a formal computing mecha-
nism involving numbers.

Let us comment briefly on how this idea may be implemented, exemplarily, in
an RMP . Assume, there is given a set N of noun phrases {n1, n2, ..., nm, n} cor-
responding to information system universes U1, ..., Um. A set ADJ of adjective
phrases is also given, and to each σ ∈ Σ, a set adj1, .., adjm, adj is assigned.

Then the decision rule (75) may be expressed in the form,

if n1 is adj1 and . . .and nm is adjm then n is adj. (83)

The semantics of (83) is expressed in the form of (75). The reader will observe
that (83) is similar in form to decision rules of a fuzzy controller, while the
semantics is distinct.

Composition of RMP’s as above is reflected in compositions of rules of the
form (83) with semantics expressed by composed mappings ω.

In the light of analysis that begins in the next section, we may call the
computation model presented above, a rough–fuzzy–neurocomputing model, see
[15] for discussions of this topic.

6 Rough Set Approximations and Fuzzy Partitions
and Equivalences Induced by Rough Inclusions

We assume that a mereological universe U is given with a rough inclusion µ
of which we assume symmetry (49) and an f–transitivity property (47) with a
t–norm f . We will construct in this setting rough respectively fuzzy universes
derived from the rough inclusion in question, and represented by rough set ap-
proximations and by partitions and equivalence relations in the sense of fuzzy
set theory.

In rough as well as fuzzy set–theoretic literature, many authors have devoted
their attention to the problem of mutual relationships between the two theories



Rough Mereology as a Link Between Rough and Fuzzy Set Theories 271

and, in consequence, some notions of a rough –fuzzy set as well as a fuzzy–rough
set have emerged. The reader will consult [2], [3], [5], [8], [9], [10], [25], as well
as many chapters in this volume.

6.1 Rough Environment from Rough Inclusions

We first give an abstract description of our ideas in the rough case and then we
explicate them in case of information systems and Menger/�Lukasiewicz rough
inclusions. We will here discern between universes U, INF (U), which will bear
on notation.

Assume a rough inclusion µ on a mereological universe (INF (U), elINF )
and a non–vacuous property M on classes over INF (U); given a class x over
INF (U), we define its lower M,µ–approximation xµ

M as follows,

xµ
M = Cls(gεM : gµ1x). (84)

Then we have as a direct consequence of (21),

xµ
M el x. (85)

Indeed, for y elINFx
µ

M there exist w, q with

welINF y, welINF q, qεM, qµ1x, (86)

hence, qelINFx by (18), and by the inference rule (21) it follows that,
xµ

M elINFx.

Again, applying the inference rule (21), we obtain,

xµ
M =INF xµ

M
µ

M
. (87)

It is sufficient to verify that xµ
M elINFx

µ
M

µ

M
, the converse being satisfied in

virtue of (85). Given yelINFx
µ
M , we have w, q with

welINF y, welINF q, qεM, qµ1x, (88)

hence, qelINFx
µ
M , i.e., qµ1x

µ
M i.e. qelINFx

µ
M

µ

M
.

It follows by (21) that xµ
M elINFx

µ
M

µ

M
.

We will say that x is M–exact in case there exists a non–empty M0 ⊆ M
such that x =INF Cls(M0).

Then, if
x = xµ

M , (89)

then x is M–exact.
Indeed, if x = xµ

M then x = Cls(gεM : gµ1x) so it suffices to let M0(g) ⇔
gεM ∧ yµ1x.

The converse also holds, i.e., if x is M–exact, x = Cls(M0) with some M0 ⊆
M then,

x =INF xµ
M . (90)
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Indeed, given yelINFx, we have w, q with

welINF y, welINF q, qεM0, qelINFx, (91)

hence, qelINFx
µ
M , and (21) implies that xelINFx

µ
M , so (90) follows by (85).

Now, we define the upper M,µ–approximation xµ
M by letting

xµ
M = Cls(gεM : ∃yelINFx.yµ1g). (92)

This case requires some assumptions about M . We will say that M is a
covering in case the condition holds,

∀xεINF (U). ∃gεM. xµ1g. (93)

We say that M is a partition in case the following condition holds,

∀h, gεM.(h �=INF g ⇒ ext(h, g)), (94)

where
ext(h, g) ⇔ ¬[∃zεINF (U). (zelINFh ∧ zelINFg)]. (95)

It is true that if M is a covering, then

xelINFx
µ
M . (96)

For yelINFx, there exists gεM with yµ1g and then yelINFg, gelINFx
µ
M ; by

(21), xelINFx
µ
M .

If M is a covering, then

xµ
M =INF xµ

M

µ

M . (97)

It suffices by (96) to verify the element inclusion of the right–hand side into
the left–hand side. So, let yelINFx

µ
M

µ

M . Thus there exist w, q with

welINF y, welINF q, qelINFx
µ
M , (98)

hence, there exist t, r, z with

telINFw, telINF r, rεMzelINFx, zelINFr, (99)

and thus relINFx
µ
M , and as telINFy by (98), (99), and transitivity of elINF , the

entities y, t, r do witness by (21) that xµ
M

µ

MelINFx
µ
M .

The question whether x =INF xµ
M has a positive answer, too.

If M is a covering and a partition, and x =INF Cls(M0) with some ∅ �=
M0 ⊆M , then,

x =INF xµ
M . (100)
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It suffices to verify that xµ
MelINFx. To this end, we apply (21), and given

yelINFx
µ
M , we find w, q, z such that

welINF y, welINF q, qelINFx
µ
M , qεM, zelINFx, zelINF q. (101)

As x =INF Cls(M0), there exist u, r with

uelINF z, uelINFr, rεM0. (102)

It follows that uelINF q, uelINF r so ¬ext(q, r) holds and thus by (95),
q =INF r. As x =INF Cls(M0), relINFx and from,

welINF r, welINF y, relINFx, (103)

we infer by (21)) that xµ
MelINFx, concluding the proof.

In consequence of (89, 90, 100), when M is a covering and a partition, xµ
M =

x = xµ
M if and only if x is M–exact.

The above properties witness that rough mereological approximations share
well–known [16] properties of rough set approximations.

We now should restore from rough mereological approximations xµ
M , xµ

M ,
rough set approximations Ax,Ax over the universe U .

We first define the upper approximation. To this end, we make use of the
semantic operator [.] subject to (32), and we let

xM,µ = [INF (x)
µ

M ]. (104)

The following properties are true.
If M is a covering, then

xelUx
M,µ. (105)

If M is a covering, then

xM,µ =U xM,µ
M,µ

. (106)

If M is a covering and a partition, then

x =U xM,µ, (107)

whenever x =U [INF (x)] and [INF (x)] is M–exact.

Property (105) follows from (32) and (96). Similarly, (106) follows from (32)
and (97). For (107), if INF (x) is M–exact, then

INF (x) =INF INF (x)
µ

M by (U3),

hence, xM,µ =U [INF (x)
µ

M ] =U [INF (x)] =U x by (32).

To define the lower approximation xM,µ to x, we make use of the upper
approximation,

xM,µ =U (xcM,µ)c. (108)
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The following properties hold.

If M is a covering, then
xM,µelUx. (109)

If M is a covering, then
xM,µ =U xM,µ

M,µ
. (110)

If x =U [INF (x)], INF (x)] is M–exact, and M is a covering and a partition,
then

x =U xM,µ. (111)

Equation (109) holds as xcelUxcM,µ by (105), hence

xM,µ =U (xcM,µ)celUx
cc =U x.

Equation (110) results from (106), as

xM,µ
M,µ

=U ((xM,µ)c
M,µ

)c =U ((xcM,µ)cc
M,µ

)c =U

((xcM,µ)
M,µ

)c =U (xcM,µ)c =U xM,µ.

Equation (111) follows from (107), as xc =U [INF (xc)] and INF (xc) is
M–exact hence xc =U xcM,µ and thus x =U xcc =U (xcM,µ)c = xM,µ.

6.2 The Case of Menger, �Lukasiewicz Rough Inclusions

We insert here a short interlude on the approximation theme using the Menger
or the �Lukasiewicz rough inclusions to define granules denoted in this case with
the symbol gr(x). As the collection,

M = {g1−ε(x) : xεU}, (112)

with ε sufficiently small is a covering and a partition in INF (U), and

g1−ε(x) =INF Inf(x), (113)

it follows that xµ
M = x = xµ

M . Applying the operator [.], we reach the conclusion
that

xM,µ = Ax. (114)

Similarly, for the upper approximation,

xM,µ = Ax. (115)

For the argument, it suffices to notice that [Inf(x)] = [x]IND(A).
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6.3 Fuzzy Partitions and Equivalences from Rough Inclusions

Because yµ1x is equivalent to y el x, we may interpret yµrx as a statement of
fuzzy membership; we will write µx(y) = r to stress this interpretation.

Clearly, by its definition, a rough inclusion is a relation, or, it may be regarded
as a generalized fuzzy membership function, that takes intervals of the form [0, w]
as its values, leading to a higher–level fuzzy set. That follows from (25). Hence,
inequalities like a ≥ τ(x, y) are interpreted as follows: the value of a belongs
in the interval - the value of τ(x, y). We should also bear in mind that rough
inclusions reflect information content of the underlying information system.

Thus, we may say, that rough inclusions induce globally a family of fuzzy sets
{x : xelINF INF (U)} with fuzzy membership functions {µx : xelINF INF (U)},
in the above sense.

We assume additionally for the considered rough inclusion µ the f -transiti-
vity property (47) with a t–norm f . Let us consider a relation τ on U defined
as follows,

xτry ⇔ xµry ∧ yµrx, (116)

hence, τr is for each r a tolerance relation. The following properties hold,

xτ1x, (117)

xτry ⇔ yτrx, (118)

xτry ∧ yτsz ⇒ xτf(r,s)z. (119)

We will write τ(x, y) instead of χx,τ (y) in cases when we treat τ as a fuzzy
set, except for cases when the latter notation is necessary.

We may paraphrase (117)–(119) in terms of the new notation,

τ(x, x) = 1, (120)

τ(x, y) = τ(y, x), (121)

τ(x, z) ≥ f(τ(x, y), τ(y, z)). (122)

Thus, τ is by (120), (121), and (122), an f -fuzzy similarity, see [27].
Following [27], we may define similarity classes [x]τ as fuzzy sets satisfying,

χ[x]τ (y) = τ(x, y). (123)

The following are true,
χ[x]τ (x) = 1, (124)

f(χ[x]τ (y), τ(y, z)) ≤ χ[x]τ (z), (125)

f(χ[x]τ (y), χ[x]τ (z)) ≤ τ(y, z). (126)

Equations (124, 125, 126) follow by corresponding properties of τ given by
(117), (118), and (119).



276 Lech Polkowski

Finally, the family {[x]τ : x ⊆ U} does satisfy the requirements to be a fuzzy
partition [5], [7], [23], [27], viz.,

∀x∃y.χ[x]τ (y) = 1, (127)

[x]τ �= [z]τ ⇒ maxy{min{χ[x]τ (y), χ[z]τ (y)}} < 1, (128)
⋃

x

[x]τ ×f [x]τ = τ, (129)

where A×f B denotes the fuzzy set defined via

χA×f B(u, v) = f(χA(u), χB(v)) (130)

and
⋃

x denotes the supremum over all values of x.
Indeed, (127), (128), (129) follow directly from properties of τ . For instance,

(128) is justified as follows: if there was y with τ(x, y) = 1 = τ(z, y), we would
have τ(x, z), τ(z, x) ≥ f(1, 1) = 1 hence x =U z.

For (129), on one hand, given x, y, z, we have,

f(τ(x, y), τ(x, z)) = f(τ(y, x), τ(x, z)) ≤ τ(y, z)

by (122), hence,
⋃

x[x]τ ×f [x]τ (y, z) ≤ τ(y, z).
On the other hand, letting x = y, we have,

[x]τ ×f [x]τ (y, z) = [y]τ ×f [y]τ (y, z) = f(τ(y, y), τ(y, z)) = f(1, τ(y, z) = τ(y, z)

by (120) and the property of every t–norm T that T (1, u) = u. Hence,
⋃

x[x]τ ×f

[x]τ (y, z) ≤ τ(y, z), which gives (129).

7 Conclusion

We may conclude our discussion; we have shown that rough mereological inclu-
sions in the universe of an information system induce rough set approximations
as well as fuzzy equivalence relations and partitions thus creating both rough as
well as fuzzy framework. This concerns in particular the Menger as well as the
�Lukasiewicz rough inclusions, our exemplary rough inclusions.
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