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Abstract. An overview of data structures and operations for fuzzy mul-
tisets is given. A simple linear list identified with an infinite dimensional
vector is taken as an elementary data structure for fuzzy multisets. Fuzzy
multiset operations are defined by corresponding vector operations. Two
level sets of α-cut and ν-cut are defined and commutativity between
them are described. Spaces of fuzzy multisets are also discussed.

1 Introduction

Multisets which have been considered by several authors (e.g., [6, 9, 1]) with
application to database queries (e.g., [3]) are attracting more attention of re-
searchers in relation to new computation paradigms [2].

Fuzzy multisets have also been studied [23, 5, 10, 19, 18, 11, 7]. This paper is
not intended to provide a comprehensive overview, but focuses several features of
fuzzy multisets with discussion of data structure for representing fuzzy multisets.
A linear list or a simple vector is taken as the elementary data structure. This
structure is not only for convenience but reveals fundamental characteristic of
multisets as results of linear data processing. Thus a novel type of image of a
function is discussed.

A characteristic in fuzzy multisets is their inherent infiniteness. We hence
discuss infinite–dimensional spaces of fuzzy multisets.

We omit most of proofs of propositions, as they are not difficult and readers
can try to prove by themselves. Moreover applications are not discussed here,
they are studied in other papers [12, 13, 16].

2 Preliminaries

Assume throughout this paper that the universal set X is finite. We thus write
X = {x1, x2, . . . , xn} or X = {x, y, . . . , z}. Scalars are denoted by a, b, . . .

Fuzzy Sets

To show operations for fuzzy multisets as extensions of those for fuzzy sets, we
first provide notations for fuzzy sets. Infix notations for max and min are denoted
by ∨ and ∧, respectively as in most literature [25].

J.F. Peters et al. (Eds.): Transactions on Rough Sets II, LNCS 3135, pp. 189–200, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



190 Sadaaki Miyamoto

As is well–known, for fuzzy sets A and B of X :

1.
A ⊆ B ⇐⇒ µA(x) ≤ µB(x), ∀x ∈ X.

2.
µA∪B(x) = µA(x) ∨ µB(x).

3.
µA∩B(x) = µA(x) ∧ µB(x).

4. A weak α-cut is denoted by [A]α here:

x ∈ [A]α ⇐⇒ µA(x) ≥ α.

Moreover, a strong α-cut is denoted by ]A[α:

x ∈ ]A[α ⇐⇒ µA(x) > α.

5. The t-norms and conorms are used as generalizations of fuzzy set union and
intersection. We omit details of t-norms [20, 4], and note only that they are
respectively denoted by t(a, b) and s(a, b). When used as set operations, the
operations are denoted by

µATB(x) = t(µA(x), µB(x)), µASB(x) = s(µA(x), µB(x)).

A particular t-norm of algebraic product is denoted by a · b whereby

µA·B(x) = µA(x) · µB(x),

Important properties of commutativity between an operation and an α-cut hold:

[A ∪ B]α = [A]α ∪ [B]α,

[A ∩ B]α = [A]α ∩ [B]α,

]A ∪ B[α = ]A[α ∪ ]B[α,

]A ∩ B[α = ]A[α ∩ ]B[α.

We also have

A ⊆ B ⇐⇒ [A]α ⊆ [B]α, ∀α ∈ (0, 1],
A ⊆ B ⇐⇒ ]A[α ⊆ ]B[α, ∀α ∈ [0, 1).

For a given function f : X → Y , we moreover have

]f(A)[α = f(]A[α).
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Multisets

A multiset M of X is characterized by the count function CM : X → N , where
N = {0, 1, 2, . . .}. Thus, CM (x) is the number of occurrences of the element
x ∈ X .

The following is basic relations and operations for crisp multisets;

I. (inclusion):
M ⊆ N ⇔ CM (x) ≤ CN (x), ∀x ∈ X.

II. (equality):
M = N ⇔ CM (x) = CN (x), ∀x ∈ X.

III. (union):
CM∪N (x) = CM (x) ∨ CN (x).

IV. (intersection):
CM∩N (x) = CM (x) ∧ CN (x).

V. (sum):
CM+N (x) = CM (x) + CN (x).

VI. (Cartesian product): For x ∈ X and y ∈ Y ,

CM×N (x, y) = CM (x) · CN (y).

VII. (ν-cut):
A ν-cut M �→ [M ]ν transforms a multiset into an ordinary set:

CM (x) ≥ ν ⇔ x ∈ [M ]ν

CM (x) < ν ⇔ x /∈ [M ]ν

It is reasonable to assume that the number CM (·) should be finite.

Example 1. Let us consider a simple example of X = {a, b, c, d}, CM (a) = 2,
CM (b) = 3, CM (c) = 1, and CM (d) = 0. We write M = {2/a, 3/b, 1/c} by
ignoring zero occurrence 0/d. Alternatively, we can write M = {a, a, b, b, b, c}.
notice also that we can exchange the order of elements in {· · · } as in ordinary
sets

{a, a, b, b, b, c} = {c, a, b, b, a, b}. (1)

A Sorting Operation. A sorting operation is essential in processing multisets.
Let us take the last example in which {c, a, b, b, a, b} should be arranged into the
sorted form of {a, a, b, b, b, c} in order to check (1). This means that we actually
handle sequences (c, a, b, b, a, b) and (a, a, a, b, b, c) as an abstract data structure
instead of {a, a, b, b, b, c} and {c, a, b, b, a, b}.
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3 Fuzzy Multisets

Fuzzy multiset A of X (often called fuzzy bag) is characterized by the func-
tion CA(·) of the same symbol, but the value CA(x) is a finite multiset in
I = [0, 1] [23]. In other words, given x ∈ X ,

CA(x) = {µ, µ′, . . . , µ′′}, µ, µ′, . . . , µ′′ ∈ I.

Assume µ, µ′, . . . , µ′′ are nonzero for simplicity. We write

A = {{µ, µ′, . . . , µ′′}/x, . . . }
or

A = {(x, µ), (x, µ′), . . . , (x, µ′′), . . . }.
As a data structure, we introduce an infinite–dimensional vector:

CA(x) = (µ, µ′, . . . , µ′′, 0, 0, . . . ).

Collection of such vectors is denoted by V :

V = { (µ, µ′, . . . , µ′′, 0, 0, . . . ) : µ, µ′, . . . , µ′′ ∈ I }
A sorting operation to multisets in I is important in defining operations

for fuzzy multisets. This operation denoted by S (S : V → V) rearranges the
sequence in V into the decreasing order:

S((µ, µ′, . . . , µ′′, 0, 0, . . . )) = (ν1, ν2, . . . , νp, 0, 0, 0)

where
ν1 ≥ ν2 ≥ · · · ≥ νp > 0

and
{µ, µ′, . . . , µ′′} = {ν1, ν2, . . . , νp}.

Thus we can assume

CA(x) = (ν1, ν2, . . . , νp, 0, 0, 0) (2)

Moreover we define the length of CA(x) by

L(CA(x)) = p

The above sorted sequence for CA(x) is called the standard form for a fuzzy
multiset, as many operations are defined in terms of the standard form.

Additional operations on V are necessary in order to define fuzzy multiset
operations. Assume

k = (k1, k2, . . . , kq, . . . , kr, 0, 0, . . . ), l = (l1, l2, . . . , lq, . . . , ls, 0, 0, . . . ) ∈ V
where ki (i = 1, . . . , r) and lj (j = 1, . . . , s) are nonzero.
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Then we define

k ∨ l = (max{k1, l1}, . . . , max{kq, lq}, . . . ), (3)
k ∧ l = (min{k1, l1}, . . . , min{kq, lq}, . . . ), (4)
k · l = (k1 · l1, . . . , kq · lq, . . . ), (5)
k | l = (k1, k2, . . . , kr, l1, l2, . . . , ls, 0, 0, . . . ) (6)

Assume k1 ≥ k2 ≥ · · · ≥ kr; let α ∈ (0, 1] and ν ∈ N . Then we define

|k| =
r∑

i=1

ki, (7)

[[k]]α = j (kj ≥ α, kj+1 < α), (8)
]]k[[α = j′ (kj′ > α, kj′+1 ≤ α), (9)
[[k]]ν = kν (10)

Note that in the last equation (10), kν = 0 if and only if ν > r.
Moreover we define inequality of the two vectors:

k ≤ l ⇐⇒ ki ≤ li, i = 1, 2, . . . (11)

We now define fuzzy multiset operations.

1. inclusion:

A ⊆ B ⇐⇒ S(CA(x)) ≤ S(CB(x)), ∀x ∈ X.

2. equality:

A = B ⇐⇒ S(CA(x)) = S(CB(x)), ∀x ∈ X.

3. union:
CA∪B(x) = S(CA(x)) ∨ S(CB(x)).

4. intersection:
CA∩B(x) = S(CA(x)) ∧ S(CB(x)).

5. sum:
CA+B(x) = S(S(CA(x)) |S(CB(x))).

6. product:
CA·B(x) = S(CA(x)) · S(CB(x)).

7. α-cuts:

C[A]α
(x) = [[S(CA(x))]]α,

C]A[α
(x) =]]S(CA(x))[[α.
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8. ν-cut:

C[A]ν (x) = [[S(CA(x))]]ν .

9. Cardinality:

|A| =
∑

x∈X

|CA(x)|.

We obviously have

L(CA∪B(x)) = max{L(CA(x)), L(CB(x))},
L(CA∩B(x)) = min{L(CA(x)), L(CB(x))},
L(CA+B(x)) = L(CA(x)) + L(CB(x)),
L(CA·B(x)) = min{L(CA(x)), L(CB(x))}.

The reason why we define fuzzy multiset operations using the sorting oper-
ation S is shown in next propositions.

Proposition 1. An ordinary fuzzy set F and a crisp multiset M can be em-
bedded into the collection of all fuzzy multisets. Let the embedding map be I.
Namely,

CI(F )(x) = (µF (x), 0, 0, . . . ),

and

CI(M)(x) = (1, 1, . . . , 1, 0, 0, . . . ),

where the number of 1’s in the right hand side is equal to CM (x). Assume F1

and F2 are ordinary fuzzy sets, and M1 and M2 are crisp multisets. We then
have

I(F1 ∪ F2) = I(F1) ∪ I(F2),
I(F1 ∩ F2) = I(F1) ∩ I(F2),

I(M1 ∪ M2) = I(M1) ∪ I(M2),
I(M1 ∩ M2) = I(M1) ∩ I(M2),
I(M1 + M2) = I(M1) + I(M2),

[I(F )]α = I([F ]α),
]I(F )[α = I(]F [α),
[I(M)]ν = I([M ]ν).



Data Structure and Operations for Fuzzy Multisets 195

Proposition 2. For two fuzzy multisets A and B of X , the following relations
hold.

A ⊆ B ⇐⇒ [A]α ⊆ [B]α, ∀α ∈ (0, 1],
A ⊆ B ⇐⇒ ]A[α ⊆ ]B[α, ∀α ∈ [0, 1).
[A ∪ B]α = [A]α ∪ [B]α,

[A ∩ B]α = [A]α ∩ [B]α,

[A + B]α = [A]α + [B]α,

]A ∪ B[α = ]A[α ∪ ]B[α,

]A ∩ B[α = ]A[α ∩ ]B[α,

]A + B[α = ]A[α + ]B[α,

[A ∪ B]ν = [A]ν ∪ [B]ν ,

[A ∩ B]ν = [A]ν ∩ [B]ν .

The proof is easy and omitted. Notice also that

[A + B]ν �= [A]ν + [B]ν

in general.

Proposition 3. For fuzzy multisets A, B, and C of X , the commutative,
associative, and distributive laws holds for operations ∪ and ∩. Namely, the
collection of all fuzzy multisets of X forms a distributive lattice.

A ∪ B = B ∪ A,

A ∩ B = B ∩ A,

A ∪ (B ∪ C) = (A ∪ B) ∪ C,

A ∩ (B ∩ C) = (A ∩ B) ∩ C,

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C),
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).

The proof is omitted here (see Chapter 2 of [7]). Readers should note the prop-
erties in Proposition 2 is used in the proof.

Proposition 4. Let A be an arbitrary fuzzy multiset of X . Then,

[[A]α]ν = [[A]ν ]α,

[]A[α]ν = ][A]ν [α.

holds. Namely, an α-cut and a ν-cut are commutative.

Example 2. Suppose X = {a, b, c, d} and

A = {{0.3, 0.5}/a, {0.7}/b, {0.9}/c},
B = {{0.4, 0.4}/a, {0.2, 0.5}/b}.
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We can represent A as

A = {(a, 0.3), (a, 0.5), (b, 0.7), (c, 0.9)}.
In the standard form,

A = {(0.5, 0.3)/a, (0.7)/b, (0.9)/c},
B = {(0.4, 0.4)/a, (0.5, 0.2)/b}.

where zero elements are ignored. We have

A ∪ B = {(0.5, 0.4)/a, (0.7, 0.2)/b, (0.9)/c},
A ∩ B = {(0.4, 0.3)/a, (0.5)/b},
A + B = {(0.5, 0.4, 0.4, 0.3)/a, (0.7, 0.5, 0.2)/b, (0.9)/c},
[A]0.3 = {2/a, 1/b, 1/c},
]A[0.3 = {1/a, 1/b, 1/c},
[A]2 = {0.3/a}.

4 Images and α-Cuts

Let f be a mapping of X into Y . Let us consider two images:

f(A) =
⋃

x∈A

{f(x)} (12)

and
f〈A〉 =

∑

x∈A

{f(x)} (13)

where A is a fuzzy multiset of X .

Example 3. Suppose

A = {(a, 0.3), (a, 0.5), (b, 0.7), (c, 0.9)}
and f(a) = v, f(b) = f(c) = w. Then,

f(A) = {(v, 0.5), (w, 0.9)},
f〈A〉 = {(v, 0.3), (v, 0.5), (w, 0.7), (w, 0.9)}.

When A is an ordinary fuzzy set, the former coincides with the ordinary
extension principle. Moreover for an arbitrary fuzzy multiset A, f(A) is an ordi-
nary fuzzy set: there is no pair (x, ν), (x′, ν′) ∈ f(A) such that x = x′. Therefore
f(A) is inappropriate as a mapping of fuzzy multisets.

For example, let Id be an identity mapping of X onto X : Id(x) = x. Suppose
A is a fuzzy multiset. Then

Id(A) �= A
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in general. Instead, we have
Id(A) = [A]1

using ν-cut with ν = 1.
On the other hand, the latter can generate a fuzzy multiset from an ordinary

fuzzy set. Notice in particular that the latter image uses a simple rewriting of
symbols. We thus consider f〈A〉 alone hereafter. Remark also that

Id〈A〉 = A.

We have the following.

Proposition 5. For every fuzzy multiset A and B of X ,

f〈[A]α〉 = [f〈A〉]α,

f〈]A[α〉 = ]f〈A〉[α,

f〈A + B〉 = f〈A〉 + f〈B〉.
The proof is omitted.

5 Other Operations

We glimpse other operations for fuzzy multisets of which detailed discussion is
omitted.

t-Norms

Let

CA(x) = (ν1
A, . . . , νp

A, . . . ),

CB(x) = (ν1
B, . . . , νp

B, . . . ).

Then,

CATB(x) = (t(ν1
A, ν1

B), . . . , t(νp
A, νp

B), . . . ),

CASB(x) = (s(ν1
A, ν1

B), . . . , s(νp
A, νp

B), . . . ).

In particular,
CA·B(x) = (ν1

A · ν1
B, . . . , νp

A · νp
B , . . . ).

Cartesian Product

Let A and B respectively be fuzzy multiset of X and Y :

CA(x) = (ν1
A, ν2

A, . . . ), CB(y) = (ν1
B, ν2

B, . . . ),

for x ∈ X and y ∈ Y . Then,

CA×B(x, y) = {min{ν1
A, ν1

B}, min{ν1
A, ν2

B}, . . . , min{νi
A, νj

B}, . . . }.
Thus the multiset for CA×B(x, y) has every combination of nonzero elements of
CA(x) and CB(y). For crisp multisets M of X and N of Y , we have

I(M × N) = I(M) × I(N).
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Complement of Multiset

We have seen the collection of all fuzzy multisets forms a distributive lattice,
the discussion of a complement of a crisp or fuzzy multiset has problems. A
way to define a complement is to introduce a value of infinity +∞ and assume
CM (x) : X → N ∪ {+∞}. It then is not difficult to see that a complement MC

can be defined:

CMC (x) =

{
0 (CM (x) > 0),
+∞ (CM (x) = 0)

For a fuzzy multiset A, this suggests

CAC (x) = ∅ (CA(x) �= ∅),
CAC (x) = (+∞, +∞, . . . ) (CA(x) = ∅).

The last definition includes an artificial sequence of +∞ as all elements. Never-
theless, introduction of the infinite element is necessary from the viewpoint of
intuitionistic logic, where a complement should be defined to satisfy the axiom
of Heyting algebra [21].

For every fuzzy multiset A, the following is valid.

AC ∩ A = ∅,
A ⊆ (AC)C .

6 Spaces of Fuzzy Multisets

We have assumed CA(x) is finite at the beginning. However, extension to infinite
fuzzy multisets is straightforward:

CA(x) = (ν1, . . . , νp, . . . )

in which we admit infinite nonzero elements. A reasonable assumption to this
sequence is

νj → 0 (j → +∞).

Since this assumption ensures α-cuts [A]α and ]A[α are finite for all α ∈ (0, 1].
Metric spaces can be defined on the collections of fuzzy multisets of X . For

example, let

CA(x) = (ν1
A, . . . , νp

A, . . . ), CB(x) = (ν1
B , . . . , νp

B, . . . ),

Then we can define

d1(A, B) =
∑

x∈X

∞∑

j=1

|νj
A − νj

B|,

which is an �1 type metric. Moreover we can also define

d2(A, B) =

√√√√
∑

x∈X

∞∑

j=1

|νj
A − νj

B |2,
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as the �2 type metric. Moreover a scalar product < A, B > is introduced in the
latter space:

< A, B > = |A · B| =
∑

x∈X

|CA·B(x)|

using the algebraic product. We have

d2(A, B) = < A, A > + < B, B > −2 < A, B > .

It is not difficult to see the metric space with d1 is a Banach space and that
with < A, B > is a Hilbert space [8]. Such metrics are useful in discussing fuzzy
multiset model for data clustering [16].

7 Conclusion

Multisets and fuzzy multisets are based on the idea of simple sequential pro-
cessing of linear lists, as seen in the discussion of f〈·〉 which is the sequential
rewriting of symbols. Moreover the sorting operation is most important in fuzzy
multiset operations.

Spaces in fuzzy multisets are used for clustering and information retrieval [16].
Recent methods in pattern recognition such as the support vector machines [22]
can be used in fuzzy multiset space and application to document clustering,
which will be shown by us in near future.

Although we have omitted relations between multisets and rough sets [17,
24]. Readers can see, e.g., [15] for the related discussion.

Since a fuzzy multiset represents multiple occurrence of an object with pos-
sibly different memberships, it is adequate for information retrieval model espe-
cially on the web. There are much room for further studies both in theory and
applications.
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