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Estimation of Vector Autoregressive Processes

3.1 Introduction

In this chapter, it is assumed that a K-dimensional multiple time series
y1, . . . , yT with yt = (y1t, . . . , yKt)′ is available that is known to be gener-
ated by a stationary, stable VAR(p) process

yt = ν +A1yt−1 + · · ·+Apyt−p + ut. (3.1.1)

All symbols have their usual meanings, that is, ν = (ν1, . . . , νK)′ is a (K ×
1) vector of intercept terms, the Ai are (K × K) coefficient matrices and
ut is white noise with nonsingular covariance matrix Σu. In contrast to the
assumptions of the previous chapter, the coefficients ν,A1, . . . , Ap, and Σu are
assumed to be unknown in the following. The time series data will be used to
estimate the coefficients. Note that notationwise we do not distinguish between
the stochastic process and a time series as a realization of a stochastic process.
The particular meaning of a symbol should be obvious from the context.
In the next three sections, different possibilities for estimating a VAR(p)

process are discussed. In Section 3.5, the consequences of forecasting with
estimated processes will be considered and, in Section 3.6, tests for causality
are described. The distribution of impulse responses obtained from estimated
processes is considered in Section 3.7.

3.2 Multivariate Least Squares Estimation

In this section, multivariate least squares (LS) estimation is discussed. The
estimator obtained for the standard form (3.1.1) of a VAR(p) process is consid-
ered in Section 3.2.1. Some properties of the estimator are derived in Sections
3.2.2 and 3.2.4 and an example is given in Section 3.2.3.
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3.2.1 The Estimator

It is assumed that a time series y1, . . . , yT of the y variables is available, that
is, we have a sample of size T for each of the K variables for the same sample
period. In addition, p presample values for each variable, y−p+1, . . . , y0, are
assumed to be available. Partitioning a multiple time series in sample and
presample values is convenient in order to simplify the notation. We define

Y := (y1, . . . , yT ) (K × T ),
B := (ν,A1, . . . , Ap) (K×(Kp+ 1)),

ZtZZ :=

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢
1
yt
...

yt−p+1

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥ ((Kp+ 1)× 1),

Z := (Z0ZZ , . . . , ZTZZ −1) ((Kp+ 1)× T ),
U := (u1, . . . , uT ) (K × T ),
y := vec(Y ) (KT × 1),
β := vec(B) ((K2p+K)× 1),
b := vec(B′) ((K2p+K)× 1),
u := vec(U) ((KT × 1).

(3.2.1)

Here vec is the column stacking operator as defined in Appendix A.12.
Using this notation, for t = 1, . . . , T , the VAR(p) model (3.1.1) can be

written compactly as

Y = BZ + U (3.2.2)

or

vec(Y ) = vec(BZ) + vec(U)
= (Z ′ ⊗ IKI ) vec(B) + vec(U)

or

y = (Z ′ ⊗ IKI )β + u. (3.2.3)

Note that the covariance matrix of u is

Σu = ITII ⊗Σu. (3.2.4)

Thus, multivariate LS estimation (or GLS estimation) of β means to choose
the estimator that minimizes
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S(β) = u′(ITII ⊗Σu)−1u = u′(ITII ⊗Σ−1u )u
= [y − (Z ′ ⊗ IKI )β]′(ITII ⊗Σ−1u )[y − (Z ′ ⊗ IKI )β]
= vec(Y −BZ)′(ITII ⊗Σ−1u ) vec(Y −BZ)
= tr

[
(Y −BZ)′Σ−1u (Y −BZ)] . (3.2.5)

In order to find the minimum of this function we note that

S(β) = y′(ITII ⊗Σ−1u )y + β′(Z ⊗ IKI )(ITII ⊗Σ−1u )(Z ′ ⊗ IKI )β
− 2β′(Z ⊗ IKI )(ITII ⊗Σ−1u )y

= y′(ITII ⊗Σ−1u )y + β′(ZZ ′ ⊗Σ−1u )β − 2β′(Z ⊗Σ−1u )y.
Hence,

∂S(β)
∂β

= 2(ZZ ′ ⊗Σ−1u )β − 2(Z ⊗Σ−1u )y.

Equating to zero gives the normal equations

(ZZ ′ ⊗Σ−1u )β̂ = (Z ⊗Σ−1u )y (3.2.6)

and, consequently, the LS estimator is

β̂ = ((ZZ ′)−1 ⊗Σu)(Z ⊗Σ−1u )y
= ((ZZ ′)−1Z ⊗ IKI )y. (3.2.7)

The Hessian of S(β),

∂2S

∂β∂β′
= 2(ZZ ′ ⊗Σ−1u ),

is positive definite which confirms that β̂ is indeed a minimizing vector.
Strictly speaking, for these results to hold, it has to be assumed that ZZ ′

is nonsingular. This result will hold with probability 1 if yt has a continuous
distribution which will always be assumed in the following.
It may be worth noting that the multivariate LS estimator β̂ is identical

to the ordinary LS (OLS) estimator obtained by minimizing

S̄(β) = u′u = [y − (Z ′ ⊗ IKI )β]′[y − (Z ′ ⊗ IKI )β] (3.2.8)

(see Problem 3.1). This result is due to Zellner (1962) who showed that GLS
and LS estimation in a multiple equation model are identical if the regressors
in all equations are the same.
The LS estimator can be written in different ways that will be useful later

on:

β̂ = ((ZZ ′)−1Z ⊗ IKI ) [(Z ′ ⊗ IKI )β + u]
= β + ((ZZ ′)−1Z ⊗ IKI )u (3.2.9)

or
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vec(B̂) = β̂ = ((ZZ ′)−1Z ⊗ IKI ) vec(Y )
= vec(YZ ′(ZZ ′)−1).

Thus,

B̂ = Y Z ′(ZZ ′)−1

= (BZ + U)Z ′(ZZ ′)−1

= B + UZ ′(ZZ ′)−1. (3.2.10)

Another possibility for deriving this estimator results from postmultiplying

yt = BZtZZ −1 + ut

by Z ′tZZ −1 and taking expectations:

E(ytZ ′tZZ −1) = BE(ZtZZ −1Z
′
tZZ −1). (3.2.11)

Estimating E(ytZ ′tZZ −1) by

1
T

T∑
t=1

ytZ
′
tZZ −1 =

1
T
Y Z ′

and E(ZtZZ −1Z ′tZZ −1) by

1
T

T∑
t=1

ZtZZ −1Z ′tZZ −1 =
1
T
ZZ ′,

we obtain the normal equations
1
T
Y Z ′ = B̂

1
T
ZZ ′

and, hence, B̂ = Y Z ′(ZZ ′)−1. Note that (3.2.11) is similar but not identical
to the system of Yule-Walker equations in (2.1.37). While central moments
about the expectation μ = E(yt) are considered in (2.1.37), moments about
zero are used in (3.2.11).
Yet another possibility to write the LS estimator is

b̂ = vec(B̂′) = (IKI ⊗ (ZZ ′)−1Z) vec(Y ′). (3.2.12)

In this form, it is particularly easy to see that multivariate LS estimation is
equivalent to OLS estimation of each of the K equations in (3.1.1) separately.
Let b′k be the k-th row of B, that is, bk contains all the parameters of the k-th
equation. Obviously b′ = (b′1, . . . , b

′
k). Furthermore, let y(k) = (yk1, . . . , ykT )

′

be the time series available for the k-th variable, so that

vec(Y ′) =

⎡⎢⎡⎡⎣⎢⎢ y(1)
...
y(K)

⎤⎥⎤⎤⎦⎥⎥.
With this notation b̂k = (ZZ ′)−1Zy(k) is the OLS estimator of the model
y(k) = Z ′bk + u(k), where u(k) = (uk1, . . . , ukT )′ and b̂′ = (̂b′1, . . . , b̂

′
K).
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3.2.2 Asymptotic Properties of the Least Squares Estimator

Because small sample properties of the LS estimator are difficult to derive
analytically, we focus on asymptotic properties. Consistency and asymptotic
normality of the LS estimator are easily established if the following results
hold:

Γ := plim ZZ ′/T exists and is nonsingular (3.2.13)

and

1√
T

T∑
t=1

vec(utZ ′tZZ −1) =
1√
T
vec(UZ ′) =

1√
T
(Z ⊗ IKI )u

d−→
T→∞

N (0, Γ ⊗Σu),
(3.2.14)

where, as usual, d→ denotes convergence in distribution. It follows from a the-
orem due to Mann & Wald (1943) that these results are true under suitable
conditions for ut, if yt is a stationary, stable VAR(p). For instance, the con-
ditions stated in the following definition are sufficient.

Definition 3.1 (Standard White Noise)
A white noise process ut = (u1t, . . . , uKt)′ is called standard white noise if
the ut are continuous random vectors satisfying E(ut) = 0, Σu = E(utu′t) is
nonsingular, ut and us are independent for s �=�� t, and, for some finite constant
c,

E|uitujtuktumt| ≤ c for i, j, k,m = 1, . . . ,K, and all t.

The last condition means that all fourth moments exist and are bounded.
Obviously, if the ut are normally distributed (Gaussian) they satisfy the mo-
ment requirements. With this definition it is easy to state conditions for con-
sistency and asymptotic normality of the LS estimator. The following lemma
will be essential in proving these large sample results.

Lemma 3.1
If yt is a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise residuals ut, then (3.2.13) and (3.2.14) hold.

Proof: See Theorem 8.2.3 of Fuller (1976, p. 340).

The lemma holds also for other definitions of standard white noise. For
example, the convergence result in (3.2.14) follows from a central limit theo-
rem for martingale differences or martingale difference arrays (see Proposition
C.13) by noting that wt = vec(utZ ′tZZ −1) is a martingale difference sequence un-
der quite general conditions. The convergence result in (3.2.13) may then be
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obtained from a suitable weak law of large numbers (see Proposition C.12). In
the next proposition the resulting asymptotic properties of the LS estimator
are stated formally.

Proposition 3.1 (Asymptotic Properties of the LS Estimator)r
Let yt be a stable, K-dimensional VAR(p) process as in (3.1.1) with stan-
dard white noise residuals, B̂ = Y Z ′(ZZ ′)−1 is the LS estimator of the VAR
coefficients B and all symbols are as defined in (3.2.1). Then,

plim B̂ = B

and
√
T (β̂ − β) =

√
T vec(B̂ −B) d→ Nd (0, Γ−1 ⊗Σu) (3.2.15)

or, equivalently,
√
T (b̂ − b) =

√
T vec(B̂′ −B′) d→ Nd (0, Σu ⊗ Γ−1), (3.2.16)

where Γ = plim ZZ ′/T .

Proof: Using (3.2.10),

plim(B̂ −B) = plim
(
UZ ′

T

)
plim

(
ZZ ′

T

)−1
= 0

by Lemma 3.1, because (3.2.14) implies plim UZ ′/T = 0. Thus, the consis-
tency of B̂ is established.
Using (3.2.9),
√
T (β̂ − β) =

√
T ((ZZ ′)−1Z ⊗ IKI )u

=

((
1
T
ZZ ′

)−1
⊗ IKI

)
1√
T
(Z ⊗ IKI )u.

Thus, by Proposition C.2(4) of Appendix C,
√
T (β̂−β) has the same asymp-

totic distribution as[
plim

(
1
T
ZZ ′

)−1
⊗ IKI

]
1√
T
(Z ⊗ IKI )u = (Γ−1 ⊗ IKI ) 1√

T
(Z ⊗ IKI )u.

Hence, the asymptotic distribution of
√
T (β̂ − β) is normal by Lemma 3.1

and the covariance matrix is

(Γ−1 ⊗ IKI )(Γ ⊗Σu)(Γ−1 ⊗ IKI ) = Γ−1 ⊗Σu.
The result (3.2.16) can be established with similar arguments (see Problem
3.2).
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As mentioned previously, if ut is Gaussian (normally distributed) white
noise, it satisfies the conditions of Proposition 3.1 so that consistency and
asymptotic normality of the LS estimator are ensured for stable Gaussian
(normally distributed) VAR(p) processes yt. Note that normality of ut implies
normality of the yt for stable processes.
In order to assess the asymptotic dispersion of the LS estimator, we need

to know the matrices Γ and Σu. From (3.2.13) an obvious consistent estimator
of Γ is

Γ̂ = ZZ ′/T. (3.2.17)

Because Σu = E(utu′t), a plausible estimator for this matrix is

Σ̃u =
1
T

T∑
t=1

ûtû
′
t =
1
T
ÛÛ ′ =

1
T
(Y − B̂Z)(Y − B̂Z)′

=
1
T
[Y − Y Z ′(ZZ ′)−1Z][Y − Y Z ′(ZZ ′)−1Z]′

=
1
T
Y [ITII − Z ′(ZZ ′)−1Z][ITII − Z ′(ZZ ′)−1Z]′Y ′

=
1
T
Y (ITII − Z ′(ZZ ′)−1Z)Y ′. (3.2.18)

Often an adjustment for degrees of freedom is desired because in a regression
with fixed, nonstochastic regressors this leads to an unbiased estimator of the
covariance matrix. Thus, an estimator

Σ̂u =
T

T −Kp− 1 Σ̃u (3.2.19)

may be considered. Note that there are Kp + 1 parameters in each of the K
equations of (3.1.1) and, hence, there are Kp+1 parameters in each equation
of the system (3.2.2). Of course, Σ̂u and Σ̃u are asymptotically equivalent.
They are consistent estimators of Σu if the conditions of Proposition 3.1 hold.
In fact, a bit more can be shown.

Proposition 3.2 (Asymptotic Properties of the White Noise Covariance Ma-
trix Estimators)
Let yt be a stable, K-dimensional VAR(p) process as in (3.1.1) with standard
white noise innovations and let B̄ be an estimator of the VAR coefficients
B so that

√
T vec(B̄ − B) converges in distribution. Furthermore, using the

symbols from (3.2.1), suppose that

Σ̄u = (Y − B̄Z)(Y − B̄Z)′/(T − c),
where c is a fixed constant. Then

plim
√
T (Σ̄u − UU ′/T ) = 0. (3.2.20)
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Proof:

1
T
(Y − B̄Z)(Y − B̄Z)′ = (B − B̄)

(
ZZ ′

T

)
(B − B̄)′ + (B − B̄)ZU

′

T

+
UZ ′

T
(B − B̄)′ + UU

′

T
.

Under the conditions of the proposition, plim(B − B̄) = 0. Hence, by Lemma
3.1,

plim (B − B̄)ZU ′/
√
T = 0

and

plim
[
(B − B̄)ZZ

′

T

√
T (B − B̄)′

]
= 0

(see Appendix C.1). Thus,

plim
√
T
[
(Y − B̄Z)(Y − B̄Z)′/T − UU ′/T ] = 0.

Therefore, the proposition follows by noting that T/(T − c)→ 1 as T → ∞.
The proposition covers both estimators Σ̂u and Σ̃u. It implies that the

feasible estimators Σ̃u and Σ̂u have the same asymptotic properties as the
estimator

UU ′

T
=
1
T

T∑
t=1

utu
′
t

which is based on the unknown true residuals and is therefore not feasible
in practice. In particular, if

√
T vec(UU ′/T − Σu) converges in distribution,√

T vec(Σ̂u−Σu) and
√
T vec(Σ̃u−Σu) will have the same limiting distribu-

tion (see Proposition C.2 of Appendix C.1). Moreover, it can be shown that
the asymptotic distributions are independent of the limiting distribution of
the LS estimator B̂. Another immediate implication of Proposition 3.2 is that
Σ̃u and Σ̂u are consistent estimators of Σu. This result is established next.

Corollary 3.2.1
Under the conditions of Proposition 3.2,

plim Σ̃u = plim Σ̂u = plim UU ′/T = Σu.

Proof: By Proposition 3.2, it suffices to show that plim UU ′/T = Σu which
follows from Proposition C.12(4) because
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E

(
1
T
UU ′

)
=
1
T

T∑
t=1

E(utu′t) = Σu

and

Var
(
1
T
vec(UU ′)

)
=
1
T 2

T∑
t=1

Var[vec(utu′t)] ≤
T

T 2
g −→
T→∞

0,

where g is a constant upper bound for Var[vec(utu′t)]. This bound exists be-
cause the fourth moments of ut are bounded by Definition 3.1.

If yt is stable with standard white noise, Proposition 3.1 and Corollary
3.2.1 imply that (β̂i−βi)/ŝi has an asymptotic standard normal distribution.
Here βi (β̂i) is the i-th component ofii β (β̂) and ŝi is the square root of the
i-th diagonal element ofii

(ZZ ′)−1 ⊗ Σ̂u. (3.2.21)

This result means that we can use the “t-ratios” provided by common re-
gression programs in setting up confidence intervals and tests for individual
coefficients. The critical values and percentiles may be based on the asymp-
totic standard normal distribution. Because it was found in simulation studies
that the small sample distributions of the “t-ratios” have fatter tails than the
standard normal distribution, one may want to approximate the small sam-
ple distribution by some t-distribution. The question is then what number
of degrees of freedom (d.f.) should be used. The overall model (3.2.3) may
suggest a choice of d.f. = KT − K2p − K because in a standard regression
model with nonstochastic regressors the d.f. of the “t-ratios” are equal to the
sample size minus the number of estimated parameters. In the present case,
it seems also reasonable to use d.f. = T − Kp − 1 because the multivari-
ate LS estimator is identical to the LS estimator obtained for each of the K
equations in (3.2.2) separately. In a separate regression for each individual
equation, we would have T observations and Kp+ 1 parameters. If the sam-
ple size T is large and, thus, the number of degrees of freedom is large, the
corresponding t-distribution will be very close to the standard normal so that
the choice between the two becomes irrelevant for large samples. Before we
look a little further into the problem of choosing appropriate critical values,
let us illustrate the foregoing results by an example.

3.2.3 An Example

As an example, we consider a three-dimensional system consisting of first
differences of the logarithms of quarterly, seasonally adjusted West German
fixed investment (y1), disposable income (y2), and consumption expenditures
(y3) from File E1 of the data sets associated with this book. We use only
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data from 1960–1978 and reserve the data for 1979–1982 for a subsequent
analysis. The original data and first differences of logarithms are plotted in
Figures 3.1 and 3.2, respectively. The original data have a trend and are
thus considered to be nonstationary. The trend is removed by taking first
differences of logarithms. We will discuss this issue in some more detail in
Part II. Note that the value for 1960.1 is lost in the differenced series.

income

consumption

investment

3
0

0
0

2
0

0
0

1
0

0
0

0

1960.1 1965.1 1970.1 1975.1 1980.1

Fig. 3.1. West German investment, income, and consumption data.

Let us assume that the data have been generated by a VAR(2) process.
The choice of the VAR order p = 2 is arbitrary at this point. In the next
chapter, criteria for choosing the VAR order will be considered. Because the
VAR order is two, we keep the first two observations of the differenced series
as presample values and use a sample size of T = 73. Thus, we have a (3×73)
matrix Y , B = (ν,A1, A2) is (3 × 7), Z is (7 × 73) and β and b are both
(21× 1) vectors.
The LS estimates are

B̂ = (ν̂, Â1, Â2) = Y Z ′(ZZ ′)−1

=

⎡⎣ −.017 −.320 .146 .961 −.161 .115 .934
.016 .044 −.153 .289 .050 .019 −.010
.013 −.002 .225 −.264 .034 .355 −.022

⎤⎦ . (3.2.22)
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62 82

0
.2

0
.1

0
–

 0
.1

5
investment

22 42 62 82

–
0

.0
3

0
0
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3

0
.0

5 income

22 42 62 82

–
0

.0
2

0
0

.0
2

0
.0

5

consumption

Fig. 3.2. First differences of logarithms of West German investment, income, and
consumption.

To check the stability of the estimated process, we determine the roots of the
polynomial det(I3II − Â1z − Â2z2) which is easily seen to have degree 6. Its
roots are
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z1 = 1.753, z2 = −2.694, z3/4 = −0.320± 2.008i, z5/6 = −1.285± 1.280i.
Note that these roots have been computed using higher precision than the
three digits in (3.2.22). They all have modulus greater than 1 and, hence, the
stability condition is satisfied.
We get

Σ̂u =
1

T −Kp− 1(Y Y
′ − Y Z ′(ZZ ′)−1ZY ′)

=

⎡⎣ 21.30 .72 1.23
.72 1.37 .61
1.23 .61 .89

⎤⎦ × 10−4 (3.2.23)

as estimate of the residual covariance matrix Σu. Furthermore,

Γ̂−1 = (ZZ ′/T )−1

= T

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

.14 .17 −.69 −2.51 .10 −.67 −2.57
• 7.39 1.24 −10.56 1.80 1.08 −8.70
• • 139.81 −87.40 −4.58 30.21 −50.88
• • • 207.22 .84 −55.35 73.82
• • • • 7.33 −.03 −9.31
• • • • • 134.19 −82.64
• • • • • • 207.71

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
.

Dividing the elements of B̂ by square roots of the corresponding diagonal
elements of (ZZ ′)−1 ⊗ Σ̂u we get the matrix of t-ratios:⎡⎣ −0.97 −2.55 0.27 1.45 −1.29 0.21 1.41

3.60 1.38 −1.10 1.71 1.58 0.14 −0.06
3.67 −0.09 2.01 −1.94 1.33 3.24 −0.16

⎤⎦. (3.2.24)

We may compare these quantities with critical values from a t-distribution
with d.f. = KT −K2p−K = 198 or d.f. = T −Kp−1 = 66. In both cases, we
get critical values of approximately ±2 for a two-tailed test with significance
level 5%. Thus, the critical values are approximately the same as those from
a standard normal distribution.
Apparently quite a few coefficients are not significant under this criterion.

This observation suggests that the model contains unnecessarily many free
parameters. In subsequent chapters, we will discuss the problem of choosing
the VAR order and possible restrictions for the coefficients. Also, before an
estimated model is used for forecasting and analysis purposes, the assump-
tions underlying the analysis should be checked carefully. Checking the model
adequacy will be treated in greater detail in Chapter 4.

3.2.4 Small Sample Properties of the LS Estimator

As mentioned earlier, it is difficult to derive small sample properties of the
LS estimator analytically. In such a case it is sometimes helpful to use Monte
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Carlo methods to get some idea about the small sample properties. In a Monte
Carlo analysis, specific processes are used to artificially generate a large num-
ber of time series. Then a set of estimates is computed for each multiple time
series generated and the properties of the resulting empirical distributions of
these estimates are studied (see Appendix D). Such an approach usually per-
mits rather limited conclusions only because the findings may depend on the
particular processes used for generating the time series. Nevertheless, such
exercises give some insight into the small sample properties of estimators.
In the following, we use the bivariate VAR(2) example process (2.1.15),

yt =
[
.02
.03

]
+

[
.5 .1
.4 .5

]
yt−1 +

[
0 0
.25 0

]
yt−2 + ut (3.2.25)

with error covariance matrix

Σu =
[
9 0
0 4

]
× 10−4 (3.2.26)

to investigate the small sample properties of the multivariate LS estimator.
With this process we have generated 1000 bivariate time series of length T =
30 plus 2 presample values using independent standard normal errors, that is,
ut ∼ N (0, Σu). Thus the 1000 bivariate time series are generated by a stable
Gaussian process so that Propositions 3.1 and 3.2 provide the asymptotic
properties of the LS estimators.
In Table 3.1, some empirical results are given. In particular, the empirical

mean, variance, and mean squared error (MSE) of each parameter estimator
are given. Obviously, the empirical means differ from the actual values of
the coefficients. However, measuring the estimation precision by the empirical
variance (average squared deviation from the mean in 1000 samples) or MSE
(average squared deviation from the true parameter value), the coefficients
are seen to be estimated quite precisely even with a sample size as small as
T = 30. This is partly a consequence of the special properties of the process.
In Table 3.1, empirical percentiles of the t-ratios are also given together

with the corresponding percentiles from the t- and standard normal distribu-
tions (d.f. = ∞). Even with the presently considered relatively small sample
size the percentiles of the three distributions that might be used for inference
do not differ much. Consequently, it does not matter much which of the the-
oretical percentiles are used, in particular, because the empirical percentiles,
in many cases, differ quite a bit from the corresponding theoretical quantities.
This example shows that the asymptotic results have to be used cautiously
in setting up small sample tests and confidence intervals. On the other hand,
this example also demonstrates that the asymptotic theory does provide some
guidance for inference. For example, the empirical 95th percentiles of all co-
efficients lie between the 90th and the 99th percentile of the standard normal
distribution given in the last row of the table. Of course, this is just one
example and not a general finding.
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Table 3.1. Empirical percentiles of t-ratios of parameter estimates for the example
process and actual percentiles of t-distributions for sample size T = 30

empirical empirical percentiles of t-ratios
parameter mean variance MSE 1. 5. 10. 50. 90. 95. 99.

ν1 = .02 .041 .0011 .0015 −1.91 −1.04 −0.64 0.62 1.92 2.29 3.12
ν2 = .03 .038 .0005 .0006 −2.30 −1.40 −1.02 0.25 1.65 2.11 2.83
α11,1 = .5 .41 .041 .049 −2.78 −2.18 −1.74 −0.43 0.92 1.28 2.01
α21,1 = .4 .40 .018 .018 −2.61 −1.74 −1.28 0.04 1.28 1.71 2.65
α12,1 = .1 .10 .078 .078 −2.27 −1.67 −1.35 −0.03 1.29 1.67 2.38
α22,1 = .5 .44 .030 .034 −2.69 −1.97 −1.59 −0.35 0.89 1.30 2.06
α11,2 = 0 −.05 .056 .058 −2.75 −1.93 −1.50 −0.24 1.02 1.38 2.09
α21,2 = .25 .29 .023 .024 −1.99 −1.32 −0.99 0.20 1.45 1.81 2.48
α12,2 = 0 −.07 .053 .058 −2.48 −1.91 −1.61 −0.28 0.97 1.39 2.03
α22,2 = 0 −.01 .023 .024 −2.71 −1.72 −1.36 −0.03 1.18 1.53 2.18

degrees of percentiles of t-distributions
freedom(d.f.) 1. 5. 10. 50. 90. 95. 99.

T −Kp− 1 = 25 −2.49 −1.71 −1.32 0 1.32 1.71 2.49
K(T −Kp− 1) = 50 −2.41 −1.68 −1.30 0 1.30 1.68 2.41
∞ −2.33 −1.65 −1.28 0 1.28 1.65 2.33
(normal distribution)

In an extensive study, Nankervis & Savin (1988) investigated the small
sample distribution of the “t-statistic” for the parameter of a univariate AR(1)
process. They found that it differs quite substantially from the corresponding
t-distribution, especially if the sample size is small (T < 100) and the param-
eter lies close to the instability region. Analytical results on the bias in esti-
mating VAR models were derived by Nicholls & Pope (1988) and Tjøstheim &
Paulsen (1983). What should be learned from our Monte Carlo investigation
and these remarks is that asymptotic distributions in the present context can
only be used as rough guidelines for small sample inference. That, however,
is much better than having no guidance at all.

3.3 Least Squares Estimation with Mean-Adjusted Data
and Yule-Walker Estimation

3.3.1 Estimation when the Process Mean Is Known

Occasionally a VAR(p) model is given in mean-adjusted form,

(yt − μ) = A1(yt−1 − μ) + · · ·+Ap(yt−p − μ) + ut. (3.3.1)

Multivariate LS estimation of this model form is straightforward if the mean
vector μ is known. Defining
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Y 0 := (y1 − μ, . . . , yT − μ) (K × T ),
A := (A1, . . . , Ap) (K ×Kp),

Y 0tYY :=

⎡⎢⎡⎡⎣⎢⎢ yt − μ
...

yt−p+1 − μ

⎤⎥⎤⎤⎦⎥⎥ (Kp× 1),

X := (Y 00YY , . . . , Y 0TYY −1) (Kp× T ),
y0 := vec(Y 0) (KT × 1),
α := vec(A) (K2p× 1),

(3.3.2)

we can write (3.3.1), for t = 1, . . . , T , compactly as

Y 0 = AX + U (3.3.3)

or

y0 = (X ′ ⊗ IKI )α+ u, (3.3.4)

where U and u are defined as in (3.2.1). The LS estimator is easily seen to be

α̂ = ((XX ′)−1X ⊗ IKI )y0 (3.3.5)

or

Â = Y 0X ′(XX ′)−1. (3.3.6)

If yt is stable and ut is standard white noise, it can be shown that

√
T (α̂−α) d→ Nd (0, Σα̂), (3.3.7)

where

Σα̂ = ΓYΓΓ (0)−1 ⊗Σu (3.3.8)

and ΓYΓΓ (0) := E(Y 0tYY Y 0′tYY ).

3.3.2 Estimation of the Process Mean

Usually μ will not be known in advance. In that case, it may be estimated by
the vector of sample means,

y =
1
T

T∑
t=1

yt. (3.3.9)

Using (3.3.1), y can be written as
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y = μ+A1

[
y +
1
T
(y0 − yT )− μ

]
+ · · ·

+Ap

[
y +
1
T
(y−p+1 + · · ·+ y0 − yT−p+1 − · · · − yT )− μ

]
+
1
T

T∑
t=1

ut.

Hence,

(IKI −A1 − · · · −Ap)(y − μ) = 1
T
zT +

1
T

∑
t

ut, (3.3.10)

where

zT =
p∑
i=1

Ai

⎡⎣i−1∑
j=0

(y0−j − yT−j)
⎤⎦ .

Evidently,

E(zT /
√
T ) =

1√
T
E(zT ) = 0

and

Var(zT /
√
T ) =

1
T
Var(zT ) −→

T →∞
0

because yt is stable. In other words, zT /
√
T converges to zero in mean square.

It follows that
√
T (IKI − A1 − · · · − Ap)(y − μ) has the same asymptotic

distribution as
∑
ut/

√
T (see Appendix C, Proposition C.2). Hence, noting

that, by a central limit theorem (e.g., Fuller (1976) or Proposition C.13),

1√
T

T∑
t=1

ut
d→ Nd (0, Σu), (3.3.11)

if ut is standard white noise, we get the following result:

Proposition 3.3 (Asymptotic Properties of the Sample Mean)
If the VAR(p) process yt given in (3.3.1) is stable and ut is standard white
noise, then

√
T (y − μ) d→ Nd (0, Σy), (3.3.12)

where

Σy = (IKI −A1 − · · · −Ap)−1Σu(IKI −A1 − · · · −Ap)′−1.
In particular, plim y = μ.
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The proposition follows from (3.3.10), (3.3.11), and Proposition C.15 of
Appendix C. The limiting distribution in (3.3.11) holds even in small samples
for Gaussian white noise ut.
Because μ = (IKI − A1 − · · · − Ap)−1ν (see Chapter 2, Section 2.1), an

alternative estimator for the process mean is obtained from the LS estimator
of the previous section:

μ̂ = (IkI − Â1 − · · · − Âp)−1ν̂. (3.3.13)

Using again Proposition C.15 of Appendix C, this estimator is also consistent
and has an asymptotic normal distribution,

√
T (μ̂− μ) d→ Nd

(
0,
∂μ

∂β′
(Γ−1 ⊗Σu)∂μ

′

∂β

)
, (3.3.14)

provided the conditions of Proposition 3.1 are satisfied. It can be shown that

∂μ

∂β′
(Γ−1 ⊗Σu)∂μ

′

∂β
= Σy (3.3.15)

and, hence, the estimators μ̂ and y for μ are asymptotically equivalent (see Sec-
tion 3.4). This result suggests that it does not matter asymptotically whether
the mean is estimated separately or jointly with the other VAR coefficients.
While this holds asymptotically, it will usually matter in small samples which
estimator is used. An example will be given shortly.

3.3.3 Estimation with Unknown Process Mean

If the mean vector μ is unknown, it may be replaced by y in the vectors and
matrices in (3.3.2) giving X̂, Ŷ 0 and so on. The resulting LS estimator,

̂̂α = ((X̂X̂ ′)−1X̂ ⊗ IKI )ŷ0,

is asymptotically equivalent to α̂. More precisely, it can be shown that, under
the conditions of Proposition 3.3,

√
T ( ̂̂α−α) d→ Nd (0, ΓYΓΓ (0)−1 ⊗Σu), (3.3.16)

where ΓYΓΓ (0) := E(Y 0tYY Y 0′tYY ). This result will be discussed further in the next
section on maximum likelihood estimation for Gaussian processes.

3.3.4 The Yule-Walker Estimator

The LS estimator can also be derived from the Yule-Walker equations given
in Chapter 2, (2.1.37). They imply
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ΓyΓΓ (h) = [A1, . . . , Ap]

⎡⎢⎡⎡⎣⎢⎢ ΓyΓΓ (h− 1)
...

ΓyΓΓ (h− p)

⎤⎥⎤⎤⎦⎥⎥ , h > 0,

or

[ΓyΓΓ (1), . . . , ΓyΓΓ (p)] = [A1, . . . , Ap]

⎡⎢⎡⎡⎣⎢⎢ ΓyΓΓ (0) . . . ΓyΓΓ (p− 1)
...

. . .
...

ΓyΓΓ (−p+ 1) . . . ΓyΓΓ (0)

⎤⎥⎤⎤⎦⎥⎥
= AΓYΓΓ (0)

(3.3.17)

and, hence,

A = [ΓyΓΓ (1), . . . , ΓyΓΓ (p)]ΓYΓΓ (0)−1.

Estimating ΓYΓΓ (0) by X̂X̂ ′/T and [ΓyΓΓ (1), . . . , ΓyΓΓ (p)] by Ŷ 0X̂ ′/T , the resulting
estimator is just the LS estimator,̂̂
A = Ŷ 0X̂ ′(X̂X̂ ′)−1. (3.3.18)

Alternatively, the moment matrices ΓyΓΓ (h) may be estimated using as
many data as are available, including the presample values. Thus, if a sample
y1, . . . , yT and p presample observations y−p+1, . . . , y0 are available, μ may be
estimated as

y∗ =
1

T + p

T∑
t=−p+1

yt

and ΓyΓΓ (h) may be estimated as

Γ̂yΓΓ (h) =
1

T + p− h
T∑

t=−p+h+1
(yt − y∗)(yt−h − y∗)′. (3.3.19)

Using these estimators in (3.3.17), the so-called Yule-Walker estimator for
A is obtained. For stable processes, this estimator has the same asymptotic
properties as the LS estimator. However, it may have less attractive small
sample properties (e.g., Tjøstheim & Paulsen (1983)).
The Yule-Walker estimator always produces estimates in the stability re-

gion (see Brockwell & Davis (1987, §8.1) for a discussion of the univariate
case). In other words, the estimated process is always stable. This property
is sometimes regarded as an advantage of the Yule-Walker estimator. It is
responsible for possibly considerable bias of the estimator, however. Also, in
practice, it may not be known a priori whether the data generation process of
a given multiple time series is stable. In the unstable case, LS and Yule-Walker
estimation are not asymptotically equivalent anymore (see also the discussion
in Reinsel (1993, Section 4.4)). Therefore, enforcing stability may not be a
good strategy in practice. The LS estimator is usually used in the following.
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3.3.5 An Example

To illustrate the results of this section, we use again the West German invest-
ment, income, and consumption data. The variables y1, y2, and y3 are defined
as in Section 3.2.3, the sample period ranges from 1960.4 to 1978.4, that is,
T = 73 and the data for 1960.2 and 1960.3 are used as presample values.
Using only the sample values we get

y =

⎡⎣ .018.020
.020

⎤⎦ (3.3.20)

which is different, though not substantially so, from

μ̂ = (I3II − Â1 − Â2)−1ν̂ =
⎡⎣ .017.020
.020

⎤⎦ (3.3.21)

as obtained from the LS estimates in (3.2.22).
Subtracting the sample means from the data we get, based on (3.3.18),

̂̂
A = (̂̂A(( 1, ̂̂A2) =

⎡⎣ −.319 .143 .960 −.160 .112 .933
.044 −.153 .288 .050 .019 −.010

−.002 .224 −.264 .034 .354 −.023

⎤⎦ . (3.3.22)
This estimate is clearly distinct from the corresponding part of (3.2.22), al-
though the two estimates do not differ dramatically.
If the two presample values are used in estimating the process means and

moment matrices we get

ÂYW =

⎡⎣ −.319 .147 .959 −.160 .115 .932
.044 −.152 .286 .050 .020 −.012

−.002 .225 −.264 .034 .355 −.022

⎤⎦ (3.3.23)

which is the Yule-Walker estimate. Although the sample size is moderate,
there is a slight difference between the estimates in (3.3.22) and (3.3.23).

3.4 Maximum Likelihood Estimation

3.4.1 The Likelihood Function

Assuming that the distribution of the process is known, maximum likelihood
(ML) estimation is an alternative to LS estimation. We will consider ML
estimation under the assumption that the VAR(p) process yt is Gaussian.
More precisely,
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u = vec(U) =

⎡⎢⎡⎡⎣⎢⎢ u1
...
uT

⎤⎥⎤⎤⎦⎥⎥ ∼ N (0, ITII ⊗Σu). (3.4.1)

In other words, the probability density of u is

fuff (u) =
1

(2π)KT/2
|ITII ⊗Σu|−1/2 exp

[
−1
2
u′(ITII ⊗Σ−1u )u

]
. (3.4.2)

Moreover,

u =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

IKI 0 . . . 0 . . . . . . 0
−A1 IKI 0 . . . . . . 0
...

...
. . .

...
...

−Ap −Ap−1 . . . IKI 0

0 −Ap . . .
...

...
. . . . . .

...
0 0 . . . −Ap . . . . . . IKI

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
(y − μ∗)

+

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎢⎢

−A1 −A2 . . . −Ap
−A2 −A3 . . . 0
...

...
−Ap 0 . . . 0

...
...

0 0 . . . 0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎥⎥
(Y0YY − μ), (3.4.3)

where y := vec(Y ) and μ∗ := (μ′, . . . , μ′)′ are (TK × 1) vectors and Y0YY :=
(y′0, . . . , y

′
−p+1)

′ and μ := (μ′, . . . , μ′)′ are (Kp × 1). Consequently, ∂u/∂y′
is a lower triangular matrix with unit diagonal which has unit determinant.
Hence, using that u = y − μ∗ − (X ′ ⊗ IKI )α,

fyff (y) =
∣∣∣∣∣∣∣∣∣∣ ∂u∂y′

∣∣∣∣∣∣∣∣∣∣fuff (u)
=

1
(2π)KT/2

|ITII ⊗Σu|−1/2

×exp
[

− 1
2
(y − μ∗ − (X ′ ⊗ IKI )α)′(ITII ⊗Σ−1u )

×(y − μ∗ − (X ′ ⊗ IKI )α)
]
, (3.4.4)

where X and α are as defined in (3.3.2). For simplicity, the initial values Y0YY
are assumed to be given fixed numbers. Hence, we get a log-likelihood function

ln l(μ,α, Σu)



3.4 Maximum Likelihood Estimation 89

= −KT
2
ln 2π − T

2
ln |Σu|

−1
2
[y − μ∗ − (X ′ ⊗ IKI )α]′ (ITII ⊗Σ−1u ) [y − μ∗ − (X ′ ⊗ IKI )α]

= −KT
2
ln 2π − T

2
ln |Σu| − 1

2

T∑
t=1

[
(yt − μ)−

p∑
i=1

Ai(yt−i − μ)
]′

×Σ−1u
[
(yt − μ)−

p∑
i=1

Ai(yt−i − μ)
]

= −KT
2
ln 2π − T

2
ln |Σu|

−1
2

∑
t

(
yt −

∑
i

Aiyt−i

)′
Σ−1u

(
yt −

∑
i

Aiyt−i

)

+ μ′
(
IKI −

∑
i

Ai

)′
Σ−1u

∑
t

(
yt −

∑
i

Aiyt−i

)

−T
2
μ′

(
IKI −

∑
i

Ai

)′
Σ−1u

(
IKI −

∑
i

Ai

)
μ

= −KT
2
ln 2π − T

2
ln |Σu| − 1

2
tr[(Y 0 −AX)′Σ−1u (Y 0 −AX)], (3.4.5)

where Y 0 := (y1 − μ, . . . , yT − μ) and A := (A1, . . . , Ap) are as defined in
(3.3.2). These different expressions of the log-likelihood function will be useful
in the following.

3.4.2 The ML Estimators

In order to determine the ML estimators of μ,α, and Σu, the system of first
order partial derivatives is needed:

∂ ln l
∂μ

=

(
IKI −

∑
i

Ai

)′
Σ−1u

∑
t

(
yt −

∑
i

Aiyt−i

)

−T
(
IKI −

∑
i

Ai

)′
Σ−1u

(
IKI −

∑
i

Ai

)
μ

= [IKI −A(j ⊗ IKI )]′Σ−1u
[∑
t

(yt − μ−AY 0tYY −1)
]
, (3.4.6)

where Y 0tYY is as defined in (3.3.2) and j := (1, . . . , 1)′ is a (p×1) vector of ones,
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∂ ln l
∂α

= (X ⊗ IKI )(ITII ⊗Σ−1u ) [y − μ∗ − (X ′ ⊗ IKI )α]
= (X ⊗Σ−1u )(y − μ∗)− (XX ′ ⊗Σ−1u )α, (3.4.7)

∂ ln l
∂Σu

= −T
2
Σ−1u +

1
2
Σ−1u (Y

0 −AX)(Y 0 −AX)′Σ−1u . (3.4.8)

Equating to zero gives the system of normal equations which can be solved
for the estimators:

μ̃ =
1
T

(
IKI −

∑
i

Ãi

)−1∑
t

(
yt −

∑
i

Ãiyt−i

)
, (3.4.9)

α̃ = ((X̃X̃ ′)−1X̃ ⊗ IKI )(y − μ̃∗), (3.4.10)

Σ̃u =
1
T
(Ỹ 0 − ÃX̃)(Ỹ 0 − ÃX̃)′, (3.4.11)

where X̃ and Ỹ 0 are obtained from X and Y 0, respectively, by replacing μ
with μ̃.

3.4.3 Properties of the ML Estimators

Comparing these results with the LS estimators obtained in Section 3.3, it
turns out that the ML estimators of μ and α are identical to the LS estimators.
Thus, μ̃ and α̃ are consistent estimators if yt is a stationary, stable Gaussian
VAR(p) process and

√
T (μ̃− μ) and √

T (α̃−α) are asymptotically normally
distributed. This result also follows from a more general maximum likelihood
theory (see Appendix C.6). In fact, that theory implies that the covariance
matrix of the asymptotic distribution of the ML estimators is the limit of T
times the inverse information matrix. The information matrix is

I(δ) = −E
[
∂2 ln l
∂δ∂δ′

]
(3.4.12)

where δ′ := (μ′,α′,σ′) with σ := vech(Σu). Note that vech is a column stack-
ing operator that stacks only the elements on and below the main diagonal
of Σu. It is related to the vec operator by the ( 12K(K + 1) × K2) elimina-
tion matrix LK , that is, vech(Σu) = LKvec(Σu) or, defining ω := vec(Σu),
σ = LKω (see Appendix A.12). For instance, for K = 3,

ω = vec(Σu) = vec

⎡⎣ σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎤⎦
= (σ11, σ12, σ13, σ12, σ22, σ23, σ13, σ23, σ33)′

and
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σ = vech(Σu) = L3 ω =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ11
σ12
σ13
σ22
σ23
σ33

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3.4.13)

Note that in δ we collect only the potentially different elements of Σu.
The asymptotic covariance matrix of the ML estimator δ̃ is known to be

lim
T→∞

[I[[ (δ)/T ]−1 . (3.4.14)

In order to determine this matrix, we need the second order partial derivatives
of the log-likelihood. From (3.4.6) to (3.4.8) we get

∂2 ln l
∂μ ∂μ′

= −T
(
IKI −

∑
i

Ai

)′
Σ−1u

(
IKI −

∑
i

Ai

)
, (3.4.15)

∂2 ln l
∂α∂α′

= −(XX ′ ⊗Σ−1u ), (3.4.16)

∂2 ln l
∂ω ∂ω′

=
T

2
(Σ−1u ⊗Σ−1u )− 1

2
(Σ−1u ⊗Σ−1u UU ′Σ−1u )

−1
2
(Σ−1u UU

′Σ−1u ⊗Σ−1u ), (3.4.17)

where ω = vec(Σu) (see Problem 3.3),

∂2 ln l
∂μ ∂α′

= − [IKI − (j′ ⊗ IKI )A′]Σ−1u
∑
t

Y 0′tYY −1 ⊗ IKI

−
(∑

t

u′tΣ
−1
u ⊗ IKI

)
(IKI ⊗ j′ ⊗ IKI )∂ vec(A

′)
∂α′

(3.4.18)

(see Problem 3.4),

∂2 ln l
∂ω ∂μ′

=
1
2
(Σ−1u ⊗Σ−1u )

[
(IKI ⊗ U)∂ vec(U

′)
∂μ′

+ (U ⊗ IKI )∂ vec(U)
∂μ′

]
(3.4.19)

(see Problem 3.5), and

∂2 ln l
∂ω ∂α′

= −1
2
(Σ−1u ⊗Σ−1u )

[
(IKI ⊗ UX ′)∂ vec(A

′)
∂α′

+ (UX ′ ⊗ IKI )
]
(3.4.20)

(see Problem 3.6).
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It is obvious from (3.4.18) that

lim T−1E
(
∂2 ln l
∂μ ∂α′

)
= 0 (3.4.21)

because E(
∑
t Y

0
tYY −1/T )→ 0. Furthermore, from (3.4.19), it follows that

E

(
∂2 ln l
∂ω ∂μ′

)
= 0 (3.4.22)

because E(U) = 0 and ∂ vec(U ′)/∂μ′ is a matrix of constants. Moreover, from
(3.4.20), we have

lim T−1E
(
∂2 ln l
∂ω ∂α′

)
= 0 (3.4.23)

because E(UX ′/T ) → 0. Thus, lim I(δ)/T is block diagonal and we get the
asymptotic distributions of μ,α, and σ as follows.
Multiplying minus the inverse of (3.4.15) by T gives the asymptotic co-

variance matrix of the ML estimator for the mean vector μ, that is,

√
T (μ̃− μ) d→ Nd

⎛⎝⎛⎛0,(IKI −
p∑
i=1

Ai

)−1
Σu

(
IKI −

p∑
i=1

A′i

)−1⎞⎠⎞⎞ . (3.4.24)
Hence, μ̃ has the same asymptotic distribution as y (see Proposition 3.3). In
other words, the two estimators for μ are asymptotically equivalent and, un-
der the present conditions, this fact implies that y is asymptotically efficient
because the ML estimator is asymptotically efficient. The asymptotic equiv-
alence of μ̃ and y can also be seen from (3.4.9) (see the argument prior to
Proposition 3.3 and Problem 3.7).
Taking the limit of T−1 times the expectation of minus (3.4.16) gives

ΓYΓΓ (0)⊗Σ−1u . Note that E(XX ′/T ) is not strictly equal to ΓYΓΓ (0) because we
have assumed fixed initial values y−p+1, . . . , y0. However, asymptotically, as
T goes to infinity, the impact of the initial values vanishes. Thus, we get

√
T (α̃−α) d→ Nd (0, ΓYΓΓ (0)−1 ⊗Σu). (3.4.25)

Of course, this result also follows from the equivalence of the ML and LS
estimators.
Noting that E(UU ′) = TΣu, it follows from (3.4.17) that

E

(
∂2 ln l
∂ω ∂ω′

)
= −T

2
(Σ−1u ⊗Σ−1u ). (3.4.26)

Denoting by DK the (K2 × 1
2K(K + 1)) duplication matrix (see Appendix

A.12) so that ω = DKσ, we get
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∂2 ln l
∂σ ∂σ′

=
∂ω′

∂σ

∂2 ln l
∂ω ∂ω′

∂ω

∂σ′
= D′K

∂2 ln l
∂ω ∂ω′

DK

and, hence,

√
T (σ̃ − σ) d→ Nd (0, Σσ̃) (3.4.27)

with

Σσ̃ = −TE
(
∂2 ln l
∂σ ∂σ′

)−1
= 2

[
D′K(Σ

−1
u ⊗Σ−1u )DK

]−1
= 2D+

K(Σu ⊗Σu)D+′
K , (3.4.28)

where D+
K = (D

′
KDK)

−1D′K is the Moore-Penrose generalized inverse of the
duplication matrix DK and Rule (17) from Appendix A.12 has been used. In
summary, we get the following proposition.

Proposition 3.4 (Asymptotic Properties of ML Estimators)
Let yt be a stationary, stable Gaussian VAR(p) process as in (3.3.1). Then the
ML estimators μ̃, α̃, and σ̃ = vech(Σ̃u) given in (3.4.9)–(3.4.11) are consistent
and

√
T

⎡⎣ μ̃− μ
α̃−α
σ̃ − σ

⎤⎦ d→ Nd

⎛⎝⎛⎛0,
⎡⎣ Σμ̃ 0 0
0 Σα̃ 0
0 0 Σσ̃

⎤⎦⎞⎠⎞⎞ , (3.4.29)

so that μ̃ is asymptotically independent of α̃ and Σ̃u and α̃ is asymptotically
independent of μ̃ and Σ̃u. The covariance matrices are

Σμ̃ =

(
IKI −

∑
i

Ai

)−1
Σu

(
IKI −

∑
i

A′i

)−1
,

Σα̃ = ΓYΓΓ (0)−1 ⊗Σu,
Σσ̃ = 2D+

K(Σu ⊗Σu)D+′
K .

They may be estimated consistently by replacing the unknown quantities by
their ML estimators and estimating ΓYΓΓ (0) by X̃X̃ ′/T .

In this section, we have chosen to consider the mean-adjusted form of a
VAR(p) process. Of course, it is possible to perform a similar derivation for the
standard form given in (3.1.1). In that case the ML estimators of ν and α are
not asymptotically independent though. Their joint asymptotic distribution is
identical to that of β̂ given in Proposition 3.1. From Proposition 3.2 we know
that the asymptotic distribution of σ̃ remains unaltered. In the next section,
we will investigate the consequences of forecasting with estimated rather than
known processes.
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3.5 Forecasting with Estimated Processes

3.5.1 General Assumptions and Results

In Chapter 2, Section 2.2, we have seen that the optimal h-step forecast of
the process (3.1.1) is

yt(h) = ν +A1yt(h− 1) + · · ·+Apyt(h− p), (3.5.1)

where yt(j) = yt+j for j ≤ 0. If the true coefficients B = (ν,A1, . . . , Ap) are
replaced by estimators B̂ = (ν̂, Â1, . . . , Âp), we get a forecast

ŷt(h) = ν̂ + Â1ŷt(h− 1) + · · ·+ Âpŷt(h− p), (3.5.2)

where ŷt(j) = yt+j for j ≤ 0. Thus, the forecast error is
yt+h − ŷt(h) = [yt+h − yt(h)] + [yt(h)− ŷt(h)]

=
h−1∑
i=0

Φiut+h−i + [yt(h)− ŷt(h)] , (3.5.3)

where the Φi are the coefficient matrices of the canonical MA representation of
yt (see (2.2.9)). Under quite general conditions for the process yt, the forecast
errors can be shown to have zero mean, E [yt+h − ŷt(h)] = 0, so that the
forecasts are unbiased even if the coefficients are estimated. Because we do
not need this result in the following, we refer to Dufour (1985) for the details
and a proof. All the us in the first term on the right-hand side of the last
equality sign in (3.5.3) are attached to periods s > t, whereas all the ys
in the second term correspond to periods s ≤ t, if estimation is done with
observations from periods up to time t only. Therefore, the two terms are
uncorrelated. Hence, the MSE matrix of the forecast ŷt(h) is of the form

Σŷ(h) := MSE [ŷt(h)] = E{[yt+h − ŷt(h)][yt+h − ŷt(h)]′}
= Σy(h) +MSE [yt(h)− ŷt(h)] , (3.5.4)

where

Σy(h) =
h−1∑
i=0

ΦiΣuΦ
′
i

(see (2.2.11)). In order to evaluate the last term in (3.5.4), the distribution of
the estimator B̂ is needed. Because we have not been able to derive the small
sample distributions of the estimators considered in the previous sections but
we have derived the asymptotic distributions instead, we cannot hope for
more than an asymptotic approximation to the MSE of yt(h) − ŷt(h). Such
an approximation will be derived in the following.
There are two alternative assumptions that can be made in order to facil-

itate the derivation of the desired result:
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(1) Only data up to the forecast origin are used for estimation.
(2) Estimation is done using a realization (time series) of a process that is
independent of the process used for prediction and has the same stochastic
structure (for instance, it is Gaussian and has the same first and second
moments as the process used for prediction).

The first assumption is the more realistic one from a practical point of view
because estimation and forecasting are usually based on the same data set.
In that case, because the sample size is assumed to go to infinity in deriving
asymptotic results, either the forecast origin has to go to infinity too or it
has to be assumed that more and more data at the beginning of the sample
become available. Because the forecast uses only p vectors ys prior to the
forecast period, these variables will be asymptotically independent of the esti-
mator B̂ (they are asymptotically negligible in comparison with all the other
observations going into the estimate). Thus, asymptotically the first assump-
tion implies the same results as the second one. In the following, for simplicity,
the second assumption will therefore be used. Furthermore, it will be assumed
that for β = vec(B) and β̂ = vec(B̂) we have

√
T (β̂ − β) d→ Nd (0, Σβ̂Σ ). (3.5.5)

Samaranayake & Hasza (1988) and Basu & Sen Roy (1986) give a formal proof
of the result that the MSE approximation obtained in the following remains
valid under assumption (1) above.
With the foregoing assumptions it follows that, conditional on a particular

realization YtYY = (y′t, . . . , y
′
t−p+1)

′ of the process used for prediction,

√
T [ŷt(h)− yt(h)|YtYY ] d→ Nd

(
0,
∂yt(h)
∂β′

Σβ̂Σ
∂yt(h)′

∂β

)
(3.5.6)

because yt(h) is a differentiable function of β (see Appendix C, Proposition
C.15(3)). Here T is the sample size (time series length) used for estimation.
This result suggests the approximation of MSE [ŷt(h)− yt(h)] by Ω(h)/T ,
where

Ω(h) = E
[
∂yt(h)
∂β′

Σβ̂Σ
∂yt(h)′

∂β

]
. (3.5.7)

In fact, for a Gaussian process yt,
√
T [ŷt(h)− yt(h)] d→ Nd (0, Ω(h)). (3.5.8)

Hence, we get an approximation

Σŷ(h) = Σy(h) +
1
T
Ω(h) (3.5.9)

for the MSE matrix of ŷt(h).
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From (3.5.7) it is obvious thatΩ(h) and, thus, the approximate MSEΣŷ(h)
can be reduced by using an estimator that is asymptotically more efficient
than β̂, if such an estimator exists. In other words, efficient estimation is of
importance in order to reduce the forecast uncertainty.

3.5.2 The Approximate MSE Matrix

To derive an explicit expression for Ω(h), the derivatives ∂yt(h)/∂β′ are
needed. They can be obtained easily by noting that

yt(h) = J1JJ BhZtZZ , (3.5.10)

where ZtZZ := (1, y′t, . . . , y′t−p+1)
′,

B :=

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 0
ν A1 A2 . . . Ap−1 Ap
0 IKI 0 . . . 0 0
0 0 IKI 0 0
...
...

. . .
...

0 0 0 . . . IKI 0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[(Kp+1)×(Kp+1)]

=

⎡⎣ 1 0 . . . 0
B

0 IKI (p−1) 0

⎤⎦

and

J1JJ := [ 0︸︷︷︸
(K×1)

: IKI : 0 : · · · : 0︸ ︷︷︷ ︸︸
(K×K(p−1))

] [K × (Kp+ 1)].

The relation (3.5.10) follows by induction (see Problem 3.8). Using (3.5.10),
we get

∂yt(h)
∂β′

=
∂ vec(J1JJ BhZtZZ )

∂β′
= (Z ′tZZ ⊗ J1JJ )∂ vec(B

h)
∂β′

= (Z ′tZZ ⊗ J1JJ )
[
h−1∑
i=0

(B′)h−1−i ⊗ Bi
]
∂ vec(B)
∂β′

(Appendix A.13, Rule (8))

= (Z ′tZZ ⊗ J1JJ )
[
h−1∑
i=0

(B′)h−1−i ⊗ Bi
]
(IKpI +1 ⊗ J ′1JJ )

(see the definition of B)

=
h−1∑
i=0

Z ′tZZ (B
′)h−1−i ⊗ J1JJ BiJ ′1JJ

=
h−1∑
i=0

Z ′tZZ (B
′)h−1−i ⊗ Φi, (3.5.11)
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where Φi = J1JJ BiJ ′1JJ follows as in (2.1.17). Using the LS estimator β̂ with
asymptotic covariance matrix Σβ̂Σ = Γ−1 ⊗ Σu (see Proposition 3.1), the
matrix Ω(h) is seen to be

Ω(h) = E

[
∂yt(h)
∂β′

(Γ−1 ⊗Σu)∂yt(h)
′

∂β

]
=

h−1∑
i=0

h−1∑
j=0

E(Z ′tZZ (B
′)h−1−iΓ−1Bh−1−jZtZZ )⊗ ΦiΣuΦ′j

=
∑
i

∑
j

E[tr(Z ′tZZ (B
′)h−1−iΓ−1Bh−1−jZtZZ )]ΦiΣuΦ′j

=
∑
i

∑
j

tr[(B′)h−1−iΓ−1Bh−1−jE(ZtZZ Z ′tZZ )]ΦiΣuΦ
′
j

=
h−1∑
i=0

h−1∑
j=0

tr[(B′)h−1−iΓ−1Bh−1−jΓ ]ΦiΣuΦ′j , (3.5.12)

provided yt is stable so that

Γ := plim(ZZ ′/T ) = E(ZtZZ Z ′tZZ ).

Here Z := (Z0ZZ , . . . , ZTZZ −1) is the ((Kp+ 1)× T ) matrix defined in (3.2.1).
For example, for h = 1,

Ω(1) = (Kp+ 1)Σu.

Hence, the approximation

Σŷ(1) = Σu +
Kp+ 1
T

Σu =
T +Kp+ 1

T
Σu (3.5.13)

of the MSE matrix of the 1-step forecast with estimated coefficients is ob-
tained. This expression shows that the contribution of the estimation vari-
ability to the forecast MSE matrix Σŷ(1) depends on the dimension K of
the process, the VAR order p, and the sample size T used for estimation. It
can be quite substantial if the sample size is small or moderate. For instance,
considering a three-dimensional process of order 8 which is estimated from 15
years of quarterly data (i.e., T = 52 plus 8 presample values needed for LS es-
timation), the 1-step forecast MSE matrix Σu for known processes is inflated
by a factor (T +Kp+ 1)/T = 1.48. Of course, this approximation is derived
from asymptotic theory so that its small sample validity is not guaranteed. We
will take a closer look at this problem shortly. Obviously, the inflation factor
(T +Kp+1)/T → 1 for T → ∞. Thus the MSE contribution due to sampling
variability vanishes if the sample size gets large. This result is a consequence
of estimating the VAR coefficients consistently. An expression for Ω(h) can
also be derived on the basis of the mean-adjusted form of the VAR process
(see Problem 3.9).
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In practice, for h > 1, it will not be possible to evaluate Ω(h) without
knowing the AR coefficients summarized in the matrix B. A consistent esti-
mator ̂ggΩ(h) may be obtained by replacing all unknown parameters by their
LS estimators, that is, B is replaced by B̂ which is obtained by using B̂ for
B, Σu is replaced by Σ̂u, Φi is estimated by Φ̂i = J1JJ B̂iJ ′1JJ , and Γ is estimated
by Γ̂ = ZZ ′/T . The resulting estimator of Σŷ(h) will be denoted by Σ̂ŷ(h) in
the following.
The foregoing discussion is of importance in setting up interval forecasts.

Assuming that yt is Gaussian, an approximate (1− α)100% interval forecast,
h periods ahead, for the k-th component yk,t of yt is

ŷk,t(h)± z(α/2)̂̂σk(h) (3.5.14)

or [
ŷk,t(h)− z(α/2)̂̂σk(h), ŷk,t(h) + z(α/2)̂̂σk(h)] , (3.5.15)

where z(α) is the upper α100-th percentile of the standard normal distribution
and ̂̂σk(h) is the square root of the k-th diagonal element ofkk Σ̂ŷ(h). Using Bon-
ferroni’s inequality, approximate joint confidence regions for a set of forecasts
can be obtained just as described in Section 2.2.3 of Chapter 2.

3.5.3 An Example

To illustrate the previous results, we consider again the investment/income/
consumption example of Section 3.2.3. Using the VAR(2) model with the
coefficient estimates given in (3.2.22) and

yT−1 = y72 =

⎡⎣⎡⎡ .02551.02434
.01319

⎤⎦⎤⎤ and yT = y73 =

⎡⎣⎡⎡ .03637.00517
.00599

⎤⎦⎤⎤

results in forecasts

ŷT (1) = ν̂ + Â1yT + Â2yT−1 =

⎡⎣ −.011
.020
.022

⎤⎦ ,
ŷT (2) = ν̂ + Â1ŷT (1) + Â2yT =

⎡⎣ .011.020
.015

⎤⎦ ,
(3.5.16)

and so on.
The estimated forecast MSE matrix for h = 1 is

Σ̂ŷ(1) =
T +Kp+ 1

T
Σ̂u =

73 + 6 + 1
73

Σ̂u

=

⎡⎣ 23.34 .785 1.351
.785 1.505 .674
1.351 .674 .978

⎤⎦ × 10−4, (3.5.17)
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where Σ̂u from (3.2.23) has been used. We need Φ̂1 for evaluating

Σ̂ŷ(2) = Σ̂y(2) +
1
T
Ω̂(2),

where

Σ̂y(2) = Σ̂u + Φ̂1Σ̂uΦ̂′1

and

Ω̂(2) =
1∑
i=0

1∑
j=0

tr
[
(B̂′)1−i(ZZ ′/T )−1B̂1−j(ZZ ′/T )

]
Φ̂iΣ̂uΦ̂

′
j

= tr[B̂′(ZZ ′)−1B̂ZZ ′]Σ̂u + tr(B̂′)Σ̂uΦ̂′1
+tr(B̂)Φ̂1Σ̂u + tr(IKpI +1)Φ̂1Σ̂uΦ̂′1.

From (2.1.22) we know that Φ1 = A1. Hence, we use Φ̂1 = Â1 from (3.2.22).
Thus, we get

Σ̂y(2) =

⎡⎣ 23.67 .547 1.226
.547 1.488 .554
1.226 .554 .952

⎤⎦ × 10−4

and

Ω̂(2) =

⎡⎣ 10.59 .238 .538
.238 .675 .233
.538 .233 .422

⎤⎦ × 10−3.

Consequently,

Σ̂ŷ(2) =

⎡⎣ 25.12 .580 1.300
.580 1.581 .586
1.300 .586 1.009

⎤⎦ × 10−4. (3.5.18)

Assuming that the data are generated by a Gaussian process, we get the
following approximate 95% interval forecasts:

ŷ1,T (1)± 1.96̂̂σ1(1) or −.011± .095,
ŷ2,T (1)± 1.96̂̂σ2(1) or .020± .024,
ŷ3,T (1)± 1.96̂̂σ3(1) or .022± .019, (3.5.19)

ŷ1,T (2)± 1.96̂̂σ1(2) or .011± .098,
ŷ2,T (2)± 1.96̂̂σ2(2) or .020± .025,
ŷ3,T (2)± 1.96̂̂σ3(2) or .015± .020.
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In Figure 3.3, some more forecasts of the three variables with two-standard
error bounds to each side are depicted. The intervals indicated by the dashed
bounds may be interpreted as approximate 95% forecast intervals for the
individual forecasts. If the region enclosed by the dashed lines is viewed as a
joint confidence region for all 4 forecasts, a lower bound for the (approximate)
probability content is (100−4×5)% = 80%. In the figure it can be seen that for
investment and income the actually observed values for 1979 (t = 77, . . . , 80)
are well inside the forecast regions, whereas two of the four consumption values
are outside that region.

3.5.4 A Small Sample Investigation

It is not obvious that the MSE and interval forecast approximations derived in
the foregoing are reasonable in small samples because the MSE modification
has been based on asymptotic theory. To investigate the small sample behavior
of the predictor with estimated coefficients, we have used again 1000 realiza-
tions of the bivariate VAR(2) process (3.2.25)/(3.2.26) of Section 3.2.4 and
we have computed forecast intervals for the period following the last sample
period. In Table 3.2, the proportions of actual values falling in these intervals
are reported for sample sizes of T = 30 and 100.

Table 3.2. Accuracy of forecast intervals in small samples based on 1000
bivariate time series

percent of actual values falling
in the forecast interval

MSE used T = 30 T = 100
in interval % forecast
construction interval y1 y2 y1 y2

90 86.5 85.7 89.7 89.4
Σy(1) 95 92.6 91.8 94.5 94.0

99 98.1 98.0 99.0 98.5

90 89.3 88.2 90.4 90.0
Σŷ(1) 95 94.4 94.1 95.3 94.6

99 99.0 98.4 99.3 98.8

90 85.2 84.2 89.6 88.5

Σ̂y(1) 95 90.5 90.4 94.7 93.9
99 98.4 96.5 98.9 98.3

90 88.1 86.9 90.3 89.1

Σ̂ŷ(1) 95 93.4 92.7 95.2 94.0
99 99.4 97.8 99.1 98.5
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Fig. 3.3. Forecasts of the investment/income/consumption system.

Obviously, for T = 30, the theoretical and actual percentages are in
best agreement if the approximate MSEs Σŷ(h) are used in setting up
the forecast intervals. On the other hand, only forecast intervals based on
Σ̂y(h) =

∑h−1
i=0 Φ̂iΣ̂uΦ̂

′
i and Σ̂ŷ(h) are feasible in practice when the actual

process coefficients are unknown and have to be estimated. Comparing only
the results based on these two MSE matrices shows that it pays to use the
asymptotic approximation Σ̂ŷ(h).
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In Table 3.2, we also give the corresponding results for T = 100. Because
the estimation uncertainty decreases with increasing sample size, one would
expect that now the theoretical and actual percentages are in good agreement
for all MSEs. This is precisely what can be observed in the table. Nevertheless,
even now the use of the MSE adjustment in Σ̂ŷ(1) gives slightly more accurate
interval forecasts.

3.6 Testing for Causality

3.6.1 A Wald Test for Granger-Causality

In Chapter 2, Section 2.3.1, we have partitioned the VAR(p) process yt in
subprocesses zt and xt, that is, y′t = (z

′
t, x

′
t) and we have defined Granger-

causality from xt to zt and vice versa. We have seen that this type of causality
can be characterized by specific zero constraints on the VAR coefficients (see
Corollary 2.2.1). Thus, in an estimated VAR(p) system, if we want to test
for Granger-causality, we need to test zero constraints for the coefficients.
Given the results of Sections 3.2, 3.3, and 3.4 it is straightforward to derive
asymptotic tests of such constraints.
More generally we consider testing

H0HH : Cβ = c against H1 : Cβ �=�� c, (3.6.1)

where C is an (N × (K2p+K)) matrix of rank N and c is an (N × 1) vector.
Assuming that

√
T (β̂ − β) d→ Nd (0, Γ−1 ⊗Σu) (3.6.2)

as in LS/ML estimation, we get
√
T (Cβ̂ − Cβ) d→ Nd [

0, C(Γ−1 ⊗Σu)C ′
]

(3.6.3)

(see Appendix C, Proposition C.15) and, hence,

T (Cβ̂ − c)′ [C(Γ−1 ⊗Σu)C ′
]−1
(Cβ̂ − c) d→χ2(N). (3.6.4)

This statistic is the Wald statistic (see Appendix C.7).
Replacing Γ and Σu by their usual estimators Γ̂ = ZZ ′/T and Σ̂u as

given in (3.2.19), the resulting statistic

λW = (Cβ̂ − c)′
[
C((ZZ ′)−1 ⊗ Σ̂u)C ′

]−1
(Cβ̂ − c) (3.6.5)

still has an asymptotic χ2-distribution with N degrees of freedom, provided
yt satisfies the conditions of Proposition 3.2, because under these conditions
[C((ZZ ′)−1 ⊗ Σ̂u)C ′]−1/T is a consistent estimator of

[
C(Γ−1 ⊗Σu)C ′

]−1.
Hence, we have the following result.
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Proposition 3.5 (Asymptotic Distribution of the Wald Statistic)
Suppose (3.6.2) holds. Furthermore, plim(ZZ ′/T ) = Γ, plim Σ̂u = Σu are
both nonsingular and H0HH : Cβ = c is true, with C being an (N × (K2p+K))
matrix of rank N . Then

λW = (Cβ̂ − c)′[C((ZZ ′)−1 ⊗ Σ̂u)C ′]−1(Cβ̂ − c) d→χ2(N).

In practice, it may be useful to make adjustments to the statistic or the
critical values of the test to compensate for the fact that the matrix Γ−1⊗Σu
is unknown and has been replaced by an estimator. Working in that direction,
we note that

NF (N,T ) d−→
T →∞

χ2(N), (3.6.6)

where F (N,T ) denotes an F random variable withN and T degrees of freedom
(d.f.) (Appendix C, Proposition C.3). Because an F (N,T )-distribution has a
fatter tail than the χ2(N)-distribution divided by N , it seems reasonable to
consider the test statistic

λF = λW /N (3.6.7)

in conjunction with critical values from some F -distribution. The question is
then what numbers of degrees of freedom should be used? From the foregoing
discussion it is plausible to use N as the numerator degrees of freedom. On the
other hand, any sequence that goes to infinity with the sample size qualifies
as a candidate for the denominator d.f. The usual F -statistic for a regression
model with nonstochastic regressors has denominator d.f. equal to the sample
size minus the number of estimated parameters. Therefore we may use this
number here too. Note that, in the model (3.2.3), we have a vector y with
KT observations and β contains K(Kp+1) parameters. Alternatively, we will
argue shortly that T−Kp−1 is also a reasonable number for the denominator
d.f. Hence, we have the approximate distributions

λF ≈ F (N,KT −K2p−K) ≈ F (N,T −Kp− 1). (3.6.8)

3.6.2 An Example

To see how this result can be used in a test for Granger-causality, let us
consider again our example system from Section 3.2.3. The null hypothesis
of no Granger-causality from income/consumption (y2, y3) to investment (y1)
may be expressed in terms of the coefficients of the VAR(2) process as

H0HH : α12,1 = α13,1 = α12,2 = α13,2 = 0. (3.6.9)

This null hypothesis may be written as in (3.6.1) by defining the (4×1) vector
c = 0 and the (4× 21) matrix
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C =

⎡⎢⎡⎡⎢⎢⎢⎣⎢⎢
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎤⎤⎥⎥⎥⎦⎥⎥ .
With this notation, using the estimation results from Section 3.2.3,

λF = β̂′C ′
[
C((ZZ ′)−1 ⊗ Σ̂u)C ′

]−1
Cβ̂/4 = 1.59. (3.6.10)

In contrast, the 95th percentile of the F (4, 3 · 73 − 9 · 2 − 3) = F (4, 198) ≈
F (4, 73 − 3 · 2 − 1) = F (4, 66)-distribution is about 2.5. Thus, in a 5% level
test, we cannot reject Granger-noncausality from income/consumption to in-
vestment.
In this example, the denominator d.f. are so large (namely 198 or 66) that

we could just as well use λW in conjunction with a critical value from a χ2(4)-
distribution. The 95th percentile of that distribution is 9.49 and, thus, it is
about four times that of the F -test while λW = 4λF .
In an example of this type it is quite reasonable to use T −Kp−1 denomi-

nator d.f. for the F -test because all the restrictions are imposed on coefficients
from one equation. Therefore λF actually reduces to an F -statistic related to
one equation with Kp + 1 parameters which are estimated from T observa-
tions. The use of T − Kp − 1 d.f. may also be justified by arguments that
do not rely on the restrictions being imposed on the parameters of one equa-
tion only, namely by appealing to the similarity between the λF statistic and
Hotelling’s T 2 (e.g., Anderson (1984)).
Many other tests for Granger-causality have been proposed and investi-

gated (see, e.g., Geweke, Meese & Dent (1983)). In the next chapter, we will
return to the testing of hypotheses and then an alternative test will be con-
sidered.

3.6.3 Testing for Instantaneous Causality

Tests for instantaneous causality can be developed in the same way as tests for
Granger-causality because instantaneous causality can be expressed in terms
of zero restrictions for σ = vech(Σu) (see Proposition 2.3). If yt is a stable
Gaussian VAR(p) process and we wish to test

H0HH : Cσ = 0 against H1 : Cσ �= 0�� , (3.6.11)

we may use the asymptotic distribution of the ML estimator given in Propo-
sition 3.4 to set up the Wald statistic

λW = T σ̃
′C ′[2CD+

K(Σ̃u ⊗ Σ̃u)D+′
K C

′]−1Cσ̃, (3.6.12)

where D+
K is the Moore-Penrose inverse of the duplication matrix DK and C

is an (N ×K(K +1)/2) matrix of rank N . Under H0HH , λW has an asymptotic
χ2-distribution with N degrees of freedom.
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Alternatively, a Wald test of (3.6.11) could be based on the lower triangular
matrix P which is obtained from a Choleski decomposition of Σu. Noting that
instantaneous noncausality implies zero elements of Σu that correspond to
zero elements of P , we can write H0HH from (3.6.11) equivalently as

H0HH : Cvech(P ) = 0. (3.6.13)

Because vech(P ) is a continuously differentiable function of σ, the asymptotic
distribution of the estimator P obtained from decomposing Σ̃u follows from
Proposition C.15(3) of Appendix C:

√
T vech(P̃ − P ) d→ Nd (0, H̄Σσ̃H̄ ′), (3.6.14)

where

H̄ =
∂vech(P )
∂σ′

= [LK(IKI 2 +KKK)(P ⊗ IKI )L′K ]−1

(see Appendix A.13, Rule (10)). HereKmn is the commutation matrix defined
such that vec(G) = Kmnvec(G′) for any (m × n) matrix G and LK is the
( 12K(K+1)×K2) elimination matrix defined such that vech(F ) = LK vec(F )
for any (K×K) matrix F (see Appendix A.12.2). A Wald test of (3.6.13) may
therefore be based on

λW = Tvech(P̃ )′C ′[C ̂̄HΣ̂σ̃ ̂̄H ′C ′]−1C vech(P̃ ) d→χ2(N), (3.6.15)

where hats denote the usual estimators. Although the two tests based on σ̃
and P̃ are derived from the same asymptotic distribution, they may differ in
small samples. Of course, in the previous discussion we may replace Σ̃u by
the asymptotically equivalent estimator Σ̂u.
In our investment/income/consumption example, suppose we wish to test

for instantaneous causality between (income, consumption) and investment.
Following Proposition 2.3, the null hypothesis of no causality is

H0HH : σ21 = σ31 = 0 or Cσ = 0,

where σij is a typical element of Σu and

C =
[
0 1 0 0 0 0
0 0 1 0 0 0

]
.

For this hypothesis, the test statistic in (3.6.12) assumes the value λW = 5.46.
Alternatively, we may test

H0HH : p21 = p31 = 0 or C vech(P ) = 0,

where pij is a typical element of P . The corresponding value of the test statis-
tic from (3.6.15) is λW = 5.70. Both tests are based on asymptotic χ2(2)-
distributions and therefore do not reject the null hypothesis of no instanta-
neous causality at a 5% level. Note that the critical value for a 5% level test
is 5.99.
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3.6.4 Testing for Multi-Step Causality

In Section 2.3.1, we have also discussed the possibility of extending the in-
formation set and considering causality between two variables in a system
that includes further variables. Using the same ideas as in the definition of
Granger-causality resulted in the definition of h-step causality. This concept
implies nonlinear restrictions for the VAR coefficients for which the usual ap-
plication of the Wald principle does not result in a valid test. The following
example from Lütkepohl & Burda (1997) illustrates the problem.
Consider a three-dimensional VAR(1) process:⎡⎣ ztyt
xt

⎤⎦ =
⎡⎣ αzz αzy αzx
αyz αyy αyx
αxz αxy αxx

⎤⎦⎡⎣ zt−1yt−1
xt−1

⎤⎦+
⎡⎣ uz,tuy,t
ux,t

⎤⎦ . (3.6.16)

From (2.3.24) we know that a test of ∞-step noncausality from yt to zt
(yt �→(∞)zt) needs to check h = 2 restrictions on the VAR coefficient vector.
They are of the following nonlinear form:

r(α) =
[
Rα
Rα(2)

]
= (I2II ⊗R)

[
α
α(2)

]
,

where

R = [0 0 0 1 0 0 0 0 0],

α = vec(A1) and α(2) = vec(A21), with A1 being the coefficient matrix of the
process in (3.6.16). Hence,

r(α) =
[

αzy
αzzαzy + αzyαyy + αzxαxy

]
=

[
0
0

]
. (3.6.17)

Denoting the covariance matrix of the asymptotic distribution of
√
T (α̂−α)

as usual by Σα̂ and a consistent estimator by Σ̂α̂, the Wald statistic for testing
these restrictions has the form

λW = Tr(α̂)′
(
∂̂r

∂α′
Σ̂α̂
∂̂r′

∂α

)−1
r(α̂),

where ∂̂r/∂α′ is an estimator of ∂r/∂α′ (see Appendix C.7). The statistic
has an asymptotic χ2(2)-distribution under the null hypothesis, provided the
matrix

∂r

∂α′
Σα̂
∂r′

∂α

is nonsingular. In the present case, the latter condition is unfortunately not
satisfied for all relevant parameter values.
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To see this, note that the matrix of first order partial derivatives of the
function r(α) is

∂r

∂α′
=

[
0 0 0 1 0 0 0 0 0
αzy 0 0 αzz + αyy αzy αzx αxy 0 0

]
.

The restrictions (3.6.17) are satisfied if

αzy = αzx = 0, αxy �= 0�� , (3.6.18)

or

αzy = αxy = 0, αzx �= 0�� , (3.6.19)

or

αzy = αzx = αxy = 0. (3.6.20)

Clearly, ∂r/∂α′ has rank 1 only and, thus,

rk
(
∂r

∂α′
Σα̂
∂r′

∂α

)
= 1,

if (3.6.20) holds. Hence, the standard Wald statistic will not have its asymp-
totic χ2(2)-distribution under the null hypothesis r(α) = 0 if (3.6.20) holds.
Lutkepohl & Burda (1997) discussed a possibility to circumvent the prob-¨

lem by simply drawing a random variable from a normal distribution and
adding it to the second restriction. Thereby a nonsingular distribution of the
modified restriction vector is obtained and a Wald type statistic can be con-
structed for this vector.
More generally, Lütkepohl & Burda (1997) proposed the following ap-

proach for testing the null hypothesis that the KyKK -dimensional vector yt is
not h-step causal for the Kz-dimensional vector zt (yt �→(h)zt) if additional
KxK variables xt are present in the system of interest. Using the notation from
Section 2.3.1, that is, A is defined as in the VAR(1) representation (2.1.8),
J := [IKI : 0 : · · · : 0] is a (K×Kp) matrix, A(j) := JAj , and α(j) := vec(A(j)),
the hypotheses of interest can be stated as

H0HH : (IhI ⊗R) a(h) = 0 against H1 : (IhI ⊗R) a(h) �= 0�� , (3.6.21)

where R is a (pKzKyKK × pK2) matrix, as defined in (2.3.23), and

a(h) =

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢
α
α(2)

...
α(h)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥ .
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Let â(h) be the estimator corresponding to a(h) based on the multivariate LS
estimator α̂ of α. Furthermore, we denote by diag(D) a diagonal matrix which
has the diagonal elements of the square matrix D on its main diagonal and
define the (hpKzKyKK × hpKzKyKK ) matrix

Σ̂w(h) =
[
0 0
0 IhI −1 ⊗ diag(RΣ̂α̂R′)

]
.

Moreover, we define a random vector w(h)λ ∼ N (0, λΣ̂w(h)) which is drawn
independently of α̂. Here λ > 0 is some fixed real number. Lutkepohl &¨
Burda (1997) defined the following modified Wald statistic for testing the
pair of hypotheses in (3.6.21):

λmodW = T

(
(IhI ⊗R) â(h) + w

(h)
λ√
T

)′
×

[
(IhI ⊗R) Σ̂̂ΣΣa(h) (IhI ⊗R′) + λΣ̂w(h)

]−1
×

(
(IhI ⊗R) â(h) + w

(h)
λ√
T

)
.

Here Σ̂̂ΣΣa(h) is a consistent estimator of the asymptotic covariance matrix of√
T (â(h) − a(h)). It can be shown that

λmodW
d→ χ2(hpKzKyKK )

under H0HH . Notice that there is no need to add anything to the first pKzKyKK
components of (IhI ⊗ R)â(h) because they are equal to Rα̂ which has a non-
singular asymptotic distribution.
Clearly, adding some random term to â(h) reduces the efficiency of the

procedure and is likely to result in a loss in power of the test relative to a
procedure which does not use this device. In particular, if the noise term is
substantial in relation to the estimated variance, there may be some loss in
power. Therefore, the amount of noise (the variance of the noise) is linked to
the variance of the estimator through Σw(h). Moreover, the quantity λ may
be chosen close to zero. Thereby the loss in efficiency can be made arbitrarily
small.
There are in fact also other possibilities to avoid the problems related to

the Wald test. One way to get around it is to impose zero restrictions directly
on the VAR coefficients prior to analyzing multi-step causality. The relevant
subset models will be discussed in Chapter 5.
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3.7 The Asymptotic Distributions of Impulse Responses
and Forecast Error Variance Decompositions

3.7.1 The Main Results

In Chapter 2, Section 2.3.2, we have seen that the coefficients of the MA
representations

yt = μ+
∞∑
i=0

Φiut−i, Φ0 = IKI , (3.7.1)

and

yt = μ+
∞∑
i=0

Θiwt−i (3.7.2)

are sometimes interpreted as impulse responses or dynamic multipliers of the
system of variables yt. Here μ = E(yt), the Θi = ΦiP , wt = P−1ut, and P
is the lower triangular Choleski decomposition of Σu such that Σu = PP ′.
Hence, Σw = E(wtw′t) = IKI . In this section, we will assume that the Φi’s and
Θi’s are unknown and they are computed from the estimated VAR coefficients
and error covariance matrix. We will derive the asymptotic distributions of the
resulting estimated Φi’s and Θi’s. In these derivations, we will not need the
existence of MA representations (3.7.1) and (3.7.2). We will just assume that
the Φi’s are obtained from given coefficient matrices A1, . . . , Ap by recursions

Φi =
i∑
j=1

Φi−jAj , i = 1, 2, . . . ,

starting with Φ0 = IKI and setting Aj = 0 for j > p. Furthermore, the Θi’s
are obtained from A1, . . . , Ap, and Σu as Θi = ΦiP , where P is as specified in
the foregoing. In addition, the asymptotic distributions of the corresponding
accumulated responses

ΨnΨΨ =
n∑
i=0

Φi, Ψ∞ΨΨ =
∞∑
i=0

Φi = (IKI −A1 − · · · −Ap)−1 (if it exists),

ΞnΞΞ =
n∑
i=0

Θi, Ξ∞ =
∞∑
i=0

Θi = (IKI −A1 − · · · −Ap)−1P (if it exists),

and the forecast error variance components,

ωjk,h =
h−1∑
i=0

(e′jΘiek)
2/MSEj(h), (3.7.3)

will be given. Here ek is the k-th column ofkk IKI and
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MSEj(h) =
h−1∑
i=0

e′jΦiΣuΦ
′
iej

is the j-th diagonal element of the MSE matrixjj Σy(h) of an h-step forecasthh
(see Chapter 2, Section 2.2.2).
The derivation of the asymptotic distributions is based on the following

result from Appendix C, Proposition C.15(3). Suppose β is an (n× 1) vector
of parameters and β̂ is an estimator such that

√
T (β̂ − β) d→ Nd (0, Σβ̂Σ ),

where T , as usual, denotes the sample size (time series length) used for es-
timation. Let g(β) be a continuously differentiable function with values in
the m-dimensional Euclidean space and suppose that ∂gi/∂β′ = (∂gi/∂βjβ ) is
nonzero at the true vector β, for i = 1, . . . ,m. Then,

√
T
[
g(β̂)− g(β)

]
d→ Nd

(
0,
∂g

∂β′
Σβ̂Σ
∂g′

∂β

)
.

In writing down the asymptotic distributions formally, we use the notation

α := vec(A1, . . . , Ap) (K2p× 1),

A :=

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
A1 A2 . . . Ap−1 Ap
IKI 0 . . . 0 0
0 IKI 0 0
...

. . .
...

...
0 0 . . . IKI 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (Kp×Kp),

σ := vech(Σu) ( 12K(K + 1)× 1)
and the corresponding estimators are furnished with a hat. As before, vec
denotes the column stacking operator and vech is the corresponding operator
that stacks the elements on and below the main diagonal only. We also use
the commutation matrix Kmn, defined such that, for any (m× n) matrix G,
Kmnvec(G) = vec(G′), the (m2× 1

2m(m+1)) duplication matrix Dm, defined
such that Dmvech(F ) = vec(F ), for any symmetric (m ×m) matrix F, and
the ( 12m(m + 1) × m2) elimination matrix Lm, defined such that, for any
(m×m) matrix F, vech(F ) = Lmvec(F ) (see Appendix A.12.2). Furthermore,
J := [IKI : 0 : · · · : 0] is a (K ×Kp) matrix. With this notation, the following
proposition from Lütkepohl (1990) can be stated.

Proposition 3.6 (Asymptotic Distributions of Impulse Responses)
Suppose

√
T

[
α̂−α
σ̂ − σ

]
d→ Nd

(
0,

[
Σα̂ 0
0 Σσ̂

])
. (3.7.4)

Then
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√
T vec(Φ̂i − Φi) d→ Nd (0, GiΣα̂G′i), i = 1, 2, . . . , (3.7.5)

where

Gi :=
∂ vec(Φi)
∂α′

=
i−1∑
m=0

J(A′)i−1−m ⊗ Φm.

√
T vec(Ψ̂nΨΨ − ΨnΨΨ ) d→ Nd (0, FnFF Σα̂F ′nFF ), n = 1, 2, . . . , (3.7.6)

where FnFF := G1 + · · ·+Gn.
If (IKI −A1 − · · · −Ap) is nonsingular,
√
T vec(Ψ̂∞ΨΨ − Ψ∞ΨΨ ) d→ Nd (0, F∞FF Σα̂F

′
∞FF ), (3.7.7)

where F∞FF := (Ψ ′∞Ψ , . . . , Ψ ′∞Ψ )︸ ︷︷︷ ︸︸
p times

⊗ Ψ∞ΨΨ .

√
T vec(Θ̂i −Θi) d→ Nd (0, CiCC Σα̂C ′iCC + C̄iCC Σα̂C̄

′
iCC ), i = 0, 1, 2, . . . , (3.7.8)

where

C0CC := 0, CiCC := (P ′ ⊗ IKI )Gi, i = 1, 2, . . . , C̄iCC := (IKI ⊗ Φi)H, i = 0, 1, . . . ,
and

H :=
∂ vec(P )
∂σ′

= L′K{LK [(IKI ⊗ P )KKK + (P ⊗ IKI )]L′K}−1

= L′K{LK(IKI 2 +KKK)(P ⊗ IKI )L′K}−1.
√
T vec(Ξ̂nΞΞ −ΞnΞΞ ) d→ Nd (0, BnΣα̂B′n + B̄nΣσ̂B̄

′
n), (3.7.9)

where Bn := (P ′ ⊗ IKI )FnFF and B̄n := (IKI ⊗ ΨnΨΨ )H.
If (IKI −A1 − · · · −Ap) is nonsingular,
√
T vec(Ξ̂∞ −Ξ∞) d→ Nd (0, B∞Σα̂B′∞ + B̄∞Σσ̂B̄

′
∞), (3.7.10)

where B∞ := (P ′ ⊗ IKI )F∞FF and B̄∞ := (IKI ⊗ Ψ∞ΨΨ )H.
Finally,
√
T (ω̂jk,h − ωjk,h) d→ Nd (0, djk,hΣα̂d′jk,h + djk,hΣσ̂d

′
jk,h)

j, k = 1, . . . ,K, h = 1, 2, . . . , (3.7.11)

where

djk,h :=
2

MSEj(h)2

h−1∑
i=0

[
MSEj(h)(e′jΦiPek)(e

′
kP

′ ⊗ e′j)Gi

−(e′jΦiPek)2
h−1∑
m=0

(e′jΦmΣu ⊗ e′j)Gm
]
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with G0 := 0 and

djk,h :=
h−1∑
i=0

[
2MSEj(h)(e′jΦiPek)(e

′
k ⊗ e′jΦi)H

−(e′jΦiPek)2
h−1∑
m=0

(e′jΦm ⊗ e′jΦm)DK
]/
MSEj(h)2.

In the next subsection, the proof of the proposition is indicated. Some
remarks are worthwhile now.

Remark 1 In the proposition, some matrices of partial derivatives may be
zero. For instance, if a VAR(1) model is fitted although the true order is zero,
that is, yt is white noise, then

G2 = JA′ ⊗ IKI + JIKI ⊗ Φ1 = 0

because A = A1 = 0 and Φ1 = A1 = 0. Hence, a degenerate asymptotic
distribution with zero covariance matrix is obtained for

√
T vec(Φ̂2 − Φ2). As

explained in Appendix B, we call such a distribution also multivariate normal.
Otherwise it would be necessary to distinguish between cases with zero and
nonzero partial derivatives or we have to assume that all partial derivatives
are such that the covariance matrices have no zeros on the diagonal. Note
that estimators of the covariance matrices obtained by replacing unknown
quantities by their usual estimators may be problematic when the asymp-
totic distribution is degenerate. In that case, the usual t-ratios and confidence
intervals may not be appropriate.
To illustrate the potential problems resulting from a degenerate asymptotic

distribution, we follow Benkwitz, Lütkepohl & Neumann (2000) and consider
a univariate AR(1) process yt = αyt−1 + ut. In this case, Φi = αi. Suppose
that α̂ is an estimator of α satisfying

√
T (α̂ − α) d→ Nd (0, σ2α̂) with σ

2
α̂ �= 0.��

For instance, α̂ may be the LS estimator of α. Then

√
T (α̂2 − α2) d→ Nd (0, σ2α̂2)

with σ2α̂2 = 4α
2σ2α̂. This quantity is, of course, zero if α = 0. In the latter

case,
√
Tα/σ̂ α̂ has an asymptotic standard normal distribution and, hence,

T α̂2/σ2α̂ has an asymptotic χ
2(1)-distribution. Thus, it is clear that in this

case
√
T α̂2 is asymptotically degenerate.

Because the estimated σ2α̂2 obtained by replacing α and σ
2
α̂ by their usual

LS estimators is nonzero almost surely, it is tempting to use the quantity√
T (α̂2−α2)/2α̂σ̂α̂ for constructing a confidence interval, say, for Φ2. However,
for α = 0, the t-ratio becomes

√
Tα/̂ 2σ̂α̂ which converges to N (0, 1/4) asymp-

totically, because
√
Tα/̂ σ̂α̂ d→ Nd (0, 1). A confidence interval constructed on



3.7 Impulse Responses 113

the basis of the asymptotic standard normal distribution would therefore be
a conservative one. In other words, asymptotic inference which ignores the
possible singularity in the asymptotic distribution of the impulse responses
may be misleading (see Benkwitz et al. (2000) for further discussion).

Remark 2 In the proposition, it is not explicitly assumed that yt is stable.
While the stability condition is partly introduced in (3.7.7) and (3.7.10) by
requiring that (IKI −A1 − · · · −Ap) be nonsingular so that

det(IKI −A1z − · · · −Apzp) �= 0 for�� z = 1,

it is not needed for the other results to hold. The crucial condition is the
asymptotic distribution of the process parameters in (3.7.4). Although we
have used the stationarity and stability assumptions in Sections 3.2–3.4 in
order to derive the asymptotic distribution of the process parameters, we will
see in later chapters that asymptotic normality is also obtained for certain
nonstationary, unstable processes. Therefore, at least parts of Proposition 3.6
will be useful in a nonstationary environment.

Remark 3 The block-diagonal structure of the covariance matrix of the
asymptotic distribution in (3.7.4) is in no way essential for the asymptotic
normality of the impulse responses. In fact, the asymptotic distributions in
(3.7.5)–(3.7.7) remain unchanged if the asymptotic covariance matrix of the
parameter estimators is not block-diagonal. On the other hand, without the
block-diagonal structure, the simple additive structure of the asymptotic co-
variance matrices in (3.7.8)–(3.7.11) is lost. Although these asymptotic distri-
butions are easily generalizable to the case of a general asymptotic covariance
matrix of the VAR coefficients in (3.7.4), we have not stated the more general
result here because it is not needed in subsequent chapters of this text.

Remark 4 Under the conditions of Proposition 3.4, the covariance matrix of
the asymptotic distribution of the parameters has precisely the block-diagonal
structure assumed in (3.7.4) with

Σα̂ = ΓYΓΓ (0)−1 ⊗Σu
and

Σσ̂ = 2D+
K(Σu ⊗Σu)D+′

K ,

where D+
K = (D

′
KDK)

−1D′K is the Moore-Penrose inverse of the duplication
matrixDK . Using these expressions in the proposition, some simplifications of
the covariance matrices can be obtained. For instance, the covariance matrix
in (3.7.5) becomes

GiΣα̂G
′
i
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=

[
i−1∑
m=0

J(A′)i−1−m ⊗ Φm
]
(ΓYΓΓ (0)−1 ⊗Σu)

[
i−1∑
n=0

J(A′)i−1−n ⊗ Φn
]′

=
i−1∑
m=0

i−1∑
n=0

[
J(A′)i−1−mΓYΓΓ (0)−1Ai−1−nJ ′

] ⊗ (ΦmΣuΦ′n)

which is computationally convenient because all matrices involved are of a
relatively small size. The advantage of the general formulation is that it can
be used with other Σα̂ matrices as well. We will see examples in subsequent
chapters.

Remark 5 In practice, to use the asymptotic distributions for inference, the
unknown quantities in the covariance matrices in Proposition 3.6 may be
replaced by their usual estimators given in Sections 3.2–3.4 for the case of a
stationary, stable process yt (see, however, Remark 1).

Remark 6 Summing the forecast error variance components over k,

K∑
k=1

ωjk,h =
K∑
k=1

ω̂jk,h = 1

for each j and h. These restrictions are not taken into account in the derivation
of the asymptotic distributions in (3.7.11). It is easily checked, however, that
for dimension K = 1 the standard errors obtained from Proposition 3.6 are
zero as they should be, because all forecast error variance components are 1
in that case. A problem in this context is that the asymptotic distribution of
ω̂jk,h cannot be used in the usual way for tests of significance and setting up
confidence intervals if ωjk,h = 0. In that case, from the definitions of djk,h
and djk,h, the variance of the asymptotic distribution is easily seen to be
zero and, hence, estimating this quantity by replacing unknown parameters
by their usual estimators may lead to t-ratios that are not standard normal
asymptotically and, hence, cannot be used in the usual way for inference (see
Remark 1). This state of affairs is unfortunate from a practical point of view
because testing the significance of forecast error variance components is of
particular interest in practice. Note, however, that

ωjk,h = 0 ⇐⇒ θjk,i = 0 for i = 0, . . . , h.

A test of the latter hypothesis may be possible.

Remark 7 Joint confidence regions and test statistics for testing hypotheses
that involve several of the response coefficients can be obtained from Propo-
sition 3.6 in the usual way. However, it has to be taken into account that, for
instance, the elements of ̂yyΦi and Φ̂j will not be independent asymptotically. If
elements from two or more MA matrices are involved the joint distribution of
all the matrices must be determined. This distribution can be derived easily
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from the results given in the proposition. For instance, the covariance matrix
of the joint asymptotic distribution of vec(Φ̂i, Φ̂j) is

∂ vec(Φi, Φj)
∂α′

Σα̂
∂ vec(Φi, Φj)′

∂α
,

where

∂ vec(Φi, Φj)
∂α′

=

⎡⎢⎡⎡⎢⎢⎢⎣
∂ vec(Φi)
∂α′

∂ vec(Φj)
∂α′

⎤⎥⎤⎤⎥⎥⎥⎦⎥⎥
etc. We have chosen to state the proposition for individual MA coefficient ma-
trices because thereby all required matrices have relatively small dimensions
and, hence, are easy to compute.

Remark 8 Denoting the jk-th elements of Φi and Θi by φjk,i and θjk,i,
respectively, hypotheses of obvious interest, for j �=�� k, are

H0HH : φjk,i = 0 for i = 1, 2, . . . (3.7.12)

and

H0HH : θjk,i = 0 for i = 0, 1, 2, . . . (3.7.13)

because they can be interpreted as hypotheses on noncausality from variable
k to variable j, that is, an impulse in variable k does not induce any response
of variable j. From Chapter 2, Propositions 2.4 and 2.5, we know that (3.7.12)
is equivalent to

H0HH : φjk,i = 0 for i = 1, 2, . . . , p(K − 1) (3.7.14)

and (3.7.13) is equivalent to

H0HH : θjk,i = 0 for i = 0, 1, . . . , p(K − 1). (3.7.15)

Using Bonferroni’s inequality (see Chapter 2, Section 2.2.3), a test of
(3.7.14) with significance level at most 100γ% is obtained by rejecting H0HH
if

|
√
T φ̂jk,i/σ̂φjk(i)| > z(γ/2p(K−1)) (3.7.16)

for at least one i ∈ {1, 2, . . . , p(K−1)}. Here z(γ) is the upper 100γ percentage
point of the standard normal distribution and σ̂φjk(i) is an estimate of the
asymptotic standard deviation σφjk(i) of

√
T φ̂jk,i obtained via Proposition

3.6. In order to obtain an asymptotic standard normal distribution of the
t-ratio

√
T φ̂jk,i/σ̂φjk(i), the variance σ

2
φjk
(i) must be nonzero, however.
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A test of (3.7.15) with significance level at most γ is obtained by rejecting
H0HH if

|
√
T θ̂jk,i/σ̂θjk(i)|

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
> z(γ/2(pK−p+1)) for at least one

i ∈ {0, 1, 2, . . . , p(K − 1)} if j > k
> z(γ/2(pK−p)) for at least one

i ∈ {1, 2, . . . , p(K − 1)} if j < k.
(3.7.17)

Here σ̂θjk(i) is a consistent estimator of the standard deviation of the asymp-
totic distribution of

√
T θ̂jk,i obtained from Proposition 3.6 and that standard

deviation is assumed to be nonzero.
A test based on Bonferroni’s principle may have quite low power because

the actual significance level may be much smaller than the given upper bound.
Therefore a test based on some χ2- or F-statistic would be preferable. Unfor-FF
tunately, such tests are not easily available for the present situation. The
problem is similar to the one discussed in Section 3.6.4 in the context of
testing for multi-step causality. For more discussion of this point see also
Lutkepohl (1990) and for a different approach of representing the uncertainty¨
in estimated impulse responses see Sims & Zha (1999).

3.7.2 Proof of Proposition 3.6

The proof of Proposition 3.6 is a straightforward application of the matrix dif-
ferentiation rules given in Appendix A.13. It is sketched here for completeness
and because it is spread out over a number of publications in the literature.
Readers mainly interested in applying the proposition may skip this section
without loss of continuity.
To prove (3.7.5), note that Φi = JAiJ ′ (see Chapter 2, Section 2.1.2) and

apply Rule (8) of Appendix A.13. The expression for FnFF in (3.7.6) follows
because

∂ vec(ΨnΨΨ )
∂α′

=
n∑
i=1

∂ vec(Φi)
∂α′

and

F∞FF =
∂ vec(Ψ∞ΨΨ )
∂α′

=
∂ vec(Ψ∞ΨΨ )
∂ vec(Ψ−1∞ΨΨ )′

∂ vec(Ψ−1∞ΨΨ )
∂α′

= −(Ψ ′∞Ψ ⊗ Ψ∞ΨΨ )∂ vec(IKI −A1 − · · · −Ap)
∂α′

.

Furthermore,

CiCC =
∂ vec(Θi)
∂α′

=
∂ vec(ΦiP )
∂α′

= (P ′ ⊗ IKI )∂ vec(Φi)
∂α′
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and

C̄iCC =
∂ vec(Θi)
∂σ′

= (IKI ⊗ Φi)∂ vec(P )
∂σ′

,

where

∂ vec(P )
∂σ′

= L′K
∂ vech(P )
∂σ′

= H,

follows from Appendix A.13, Rule (10). The matrices Bn, B̄n, B∞, and B̄∞ are
obtained in a similar manner, using the relations ΞnΞΞ = ΨnΨΨ P and Ξ∞ = Ψ∞ΨΨ P .
Finally, in (3.7.11),

djk,h =
∂ωjk,h
∂α′

=

[
2
h−1∑
i=0

(e′jΦiPek)(e
′
kP

′ ⊗ e′j)
∂ vec(Φi)
∂α′

MSEj(h)

−
h−1∑
i=0

(e′jΦiPek)
2 ∂MSEj(h)

∂α′

]/
MSEj(h)2,

∂MSEj(h)
∂α′

=
h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j)

∂ vec(Φm)
∂α′

+(e′j ⊗ e′jΦmΣu)
∂ vec(Φ′m)
∂α′

]
=

h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j) + (e′j ⊗ e′jΦmΣu)KKK

] ∂ vec(Φm)
∂α′

=
h−1∑
m=0

[
(e′jΦmΣu ⊗ e′j) +K11(e′jΦmΣu ⊗ e′j)

]
Gm

= 2
h−1∑
m=0

(e′jΦmΣu ⊗ e′j)Gm,

(see Appendix A.12.2, Rule (23))

djk,h =
∂ωjk,h
∂σ′

=
h−1∑
i=0

[
2(e′jΦiPek)(e

′
k ⊗ e′jΦi)

∂ vec(P )
∂σ′

MSEj(h)

−(e′jΦiPek)2
∂MSEj(h)
∂σ′

]/
MSEj(h)2,

and
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∂MSEj(h)
∂σ′

=
h−1∑
m=0

(e′jΦm ⊗ e′jΦm)
∂ vec(Σu)
∂σ′

=
h−1∑
m=0

(e′jΦm ⊗ e′jΦm)DK
∂ vech(Σu)
∂σ′

.

Thereby Proposition 3.6 is proven. In the next section an example is discussed.

3.7.3 An Example

To illustrate the results of Section 3.7.1, we use again the investment/income/
consumption example from Section 3.2.3. Because

Φ̂1 = Â1 =

⎡⎣ −.320 .146 .961
.044 −.153 .289

−.002 .225 −.264

⎤⎦ ,
the elements of Φ̂1 must have the same standard errors as the elements of
Â1. Checking the covariance matrix in (3.7.5), it is seen that the asymptotic
covariance matrix of Φ̂1 is indeed the upper left-hand (K2 ×K2) block of Σα̂
because

G1 = J ⊗ IKI = [IKI 2 : 0 : · · · : 0].

Thus, the square roots of the diagonal elements of

G1Σ̂α̂G
′
1/T =

1
T
[I9II : 0 : · · · : 0](Γ̂YΓΓ (0)−1 ⊗ Σ̂u)

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣⎢⎢
I9II
0
...
0

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦⎥⎥
are estimates of the asymptotic standard errors of Φ̂1. Note that here and in
the following we use the LS estimators from the standard form of the VAR
process (see Section 3.2) and not the mean-adjusted form. Accordingly, the
estimate Γ̂YΓΓ (0)−1 is obtained from (ZZ ′/T )−1 by deleting the first row and
column.
From (2.1.22) we get

Φ̂2 = Φ̂1Â1 + Â2 =

⎡⎣⎡⎡ −.054 .262 .416
.029 .114 −.088
.045 .261 .110

⎤⎦⎤⎤ .
To estimate the corresponding standard errors, we note that

G2 = JA′ ⊗ IKI + J ⊗ Φ1.
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Replacing the unknown quantities by the usual estimates gives
1
T
Ĝ2Σ̂α̂Ĝ

′
2 =

1
T

[
JÂ′Γ̂YΓΓ (0)−1ÂJ ′ ⊗ Σ̂u + JÂ′Γ̂YΓΓ (0)−1J ′ ⊗ Σ̂uΦ̂′1
+JΓ̂YΓΓ (0)−1ÂJ ′ ⊗ Φ̂1Σ̂u + JΓ̂YΓΓ (0)−1J ′ ⊗ Φ̂1Σ̂uΦ̂′1

]
.

The square roots of the diagonal elements of this matrix are estimates of
the standard deviations of the elements of Φ̂2 and so on. Some Φ̂i matrices
together with estimated standard errors are given in Table 3.3. In Figures
3.4 and 3.5, some impulse responses are depicted graphically along with two-
standard error bounds.
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Fig. 3.4. Estimated responses of consumption to a forecast error impulse in income
with estimated asymptotic two-standard error bounds.

In Figure 3.4, consumption is seen to increase in response to a unit shock
in income. However, under a two-standard error criterion (approximate 95%
confidence bounds) only the second response coefficient is significantly differ-
ent from zero. Of course, the large standard errors of the impulse response
coefficients reflect the substantial estimation uncertainty in the VAR coeffi-
cient matrices A1 and A2.
To check the overall significance of the response coefficients of consumption

to an income impulse, we may use the procedure described in Remark 8 of
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Table 3.3. Estimates of impulse responses for the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

i Φ̂i Ψ̂iΨΨ

1

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.320 0.146 0.961
(0.125) (0.562) (0.657)

0.044 −0.153 0.289
(0.032) (0.143) (0.167)

−0.002 0.225 −0.264
(0.025) (0.115) (0.134)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.680 0.146 0.961
(0.125) (0.562) (0.657)

0.044 0.847 0.289
(0.032) (0.143) (0.167)

−0.002 0.225 0.736
(0.025) (0.115) (0.134)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.054 0.262 0.416
(0.129) (0.546) (0.663)

0.029 0.114 −0.088
(0.032) (0.135) (0.162)

0.045 0.261 0.110
(0.026) (0.108) (0.131)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.626 0.408 1.377
(0.148) (0.651) (0.755)

0.073 0.961 0.200
(0.043) (0.192) (0.222)

0.043 0.486 0.846
(0.033) (0.144) (0.167)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.119 0.353 −0.408
(0.084) (0.384) (0.476)

−0.009 0.071 0.120
(0.016) (0.078) (0.094)

−0.001 −0.098 0.091
(0.017) (0.078) (0.102)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.745 0.761 0.969
(0.099) (0.483) (0.550)

0.064 1.033 0.320
(0.037) (0.176) (0.203)

0.042 0.388 0.937
(0.033) (0.156) (0.183)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∞ 0

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.756 0.836 1.295
(0.133) (0.661) (0.798)

0.076 1.076 0.344
(0.048) (0.236) (0.285)

0.053 0.505 0.964
(0.043) (0.213) (0.257)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Section 3.7.1. That is, we have to check the significance of the first p(K −
1) = 4 response coefficients. Because one of them is individually significant
at an asymptotic 5% level we may reject the null hypothesis of no response
of consumption to income impulses at a significance level not greater than
4 × 5% = 20%. Of course, this is not a significance level we are used to
in applied work. However, it becomes clear from Table 3.3 that the second
response coefficient φ̂32,2 is still significant if the individual significance levels
are reduced to 2.5%. Note that the upper 1.25 percentage point of the standard
normal distribution is c0.0125 = 2.24. Thus, we may reject the no-response
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Fig. 3.5. Estimated responses of investment to a forecast error impulse in consump-
tion with estimated asymptotic two-standard error bounds.

hypothesis at an overall 4×2.5% = 10% level which is clearly a more common
size for a test in applied work. Still, in this exercise, the data do not reveal
strong evidence for the intuitively appealing hypothesis that consumption
responds to income impulses. In later chapters, we will see how the coefficients
can potentially be estimated with more precision.
In Figure 3.5, the responses of investment to consumption impulses are de-

picted. None of them is significant under a two-standard error criterion. This
result is in line with the Granger-causality analysis in Section 3.6. In that sec-
tion, we did not find evidence for Granger-causality from income/consumption
to investment. Assuming that the test result describes the actual situation,
the φ13,i must be zero for i = 1, 2, . . . (see also Chapter 2, Section 2.3.1).
The covariance matrix of

Ψ̂1ΨΨ = I3II + Φ̂1 =

⎡⎣ .680 .146 .961
.044 .847 .289

−.002 .225 .736

⎤⎦
is, of course, the same as that of Φ̂1 and an estimate of the covariance matrix
of the elements of
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Ψ̂2ΨΨ = I3II + Φ̂1 + Φ̂2 =

⎡⎣ .626 .408 1.377
.073 .961 .200
.043 .486 .846

⎤⎦
is obtained as (G1+Ĝ2)Σ̂α̂(G1+Ĝ2)′/T . Some accumulated impulse responses
together with estimated standard errors are also given in Table 3.3 and accu-
mulated responses of consumption to income impulses and of investment to
consumption impulses are shown in Figures 3.6 and 3.7, respectively. They
reinforce the findings for the individual impulse responses in Figures 3.4 and
3.5.
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Fig. 3.6. Accumulated and long-run responses of consumption to a forecast error
impulse in income with estimated asymptotic two-standard error bounds.

An estimate of the asymptotic covariance matrix of the estimated long-run
responses Ψ̂∞ΨΨ = (I3II − Â1 − Â2)−1 is

1
T
([Ψ̂ ′∞Ψ : Ψ̂ ′∞Ψ ]⊗ Ψ̂∞ΨΨ )Σ̂α̂

([
Ψ̂∞ΨΨ
Ψ̂∞ΨΨ

]
⊗ Ψ̂ ′∞Ψ

)
.

The matrix Ψ̂∞ΨΨ together with the resulting standard errors is also given in Ta-
ble 3.3. For instance, the total long-run effect ψ̂13,∞ of a consumption impulse
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Fig. 3.7. Accumulated and long-run responses of investment to a forecast error
impulse in consumption with estimated asymptotic two-standard error bounds.

on investment is 1.295 and its estimated asymptotic standard error is .798.
Not surprisingly, ψ̂13,∞ is not significantly different from zero for any common
level of significance (e.g., 10%). On the other hand, ψ̂32,∞, the long-run effect
on consumption due to an impulse in income, is significant at an asymptotic
5% level.
For the interpretation of the Φ̂i’s, the critical remarks at the end of Chapter

2 must be kept in mind. As explained there, the Φ̂i and Ψ̂nΨΨ coefficients may not
reflect the actual responses of the variables in the system. As an alternative,
one may want to determine the responses to orthogonal residuals. In order to
obtain the asymptotic covariance matrices of the ̂ggΘi and Ξ̂iΞΞ , a decomposition
of Σ̂u is needed. For our example,

P̂ =

⎡⎣ 4.61 0 0
.16 1.16 0
.27 .49 .76

⎤⎦ × 10−2

is the lower triangular matrix with positive diagonal elements satisfying P̂ P̂ ′ =
Σ̂u (Choleski decomposition). The asymptotic covariance matrix of vec(P̂ ) =
vec(Θ̂0) is a (9× 9) matrix which is estimated as
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1
T

̂̄C0Σ̂σ̂ ̂̄C ′0 = 2T ĤD+
K(Σ̂u ⊗ Σ̂u)D+′

K Ĥ
′,

where, as usual, D+
K = (D

′
KDK)

−1D′K and

Ĥ = L′3
{
L3

[
(I3II ⊗ P̂ )K33 + (P̂ ⊗ I3II )

]
L′3

}−1
.

The resulting estimated asymptotic standard errors of the elements of P̂ are
given in Table 3.4. Note that the variances corresponding to elements above
the main diagonal of P̂ are all zero because these elements are zero by defini-
tion and are not estimated.
The asymptotic covariance matrix of the elements of

Θ̂1 =

⎡⎣ −1.196 .644 .730
.256 −.035 .219

−.047 .131 −.201

⎤⎦ × 10−2

is obtained as the sum of the two matrices

Ĉ1Σ̂α̂Ĉ
′
1/T =

[
(P̂ ′ ⊗ I3II )G1Σ̂α̂G′1(P̂ ⊗ I3II )

]/
T

and̂̄C1Σ̂σ̂ ̂̄C ′1/T = (I3II ⊗ Φ̂1)ĤΣ̂σ̂Ĥ ′(I3II ⊗ Φ̂′1)/T.

The resulting standard errors for the elements of Θ̂1 are given in Table 3.4
along with some more Θ̂i and Ξ̂nΞΞ matrices.
Some responses and accumulated responses of consumption to income in-

novations with two-standard error bounds are depicted in Figures 3.8 and 3.9.
The responses in Figures 3.4 and 3.8 are obviously a bit different. Note the
(significant) immediate reaction of consumption in Figure 3.8. However, from
period 1 onwards the response of consumption in both figures is qualitatively
similar. The difference of scales is due to the different sizes of the shocks
traced through the system. For instance, Figure 3.4 is based on a unit shock
in income while Figure 3.8 is based on an innovation of size one standard
deviation due to the transformation of the white noise residuals.
Again, a test of overall significance of the impulse responses in Figure 3.8

could be performed using Bonferroni’s principle. Now we have to check the
significance of the θ̂32,i’s for i = 0, 1, . . . , 4 = p(K − 1). We reject the null
hypothesis of no response if at least one of the coefficients is significantly
different from zero. In this case, we can reject at an asymptotic 5% level of
significance because θ̂32,0 is significant at the 1% level (see Table 3.4). Thus,
we may choose individual significance levels of 1% for each of the 5 coefficients
and obtain 5% as an upper bound for the overall level. Of course, all these
interpretations are based on the assumption that the actual asymptotic stan-
dard errors of the impulse responses are nonzero (see Section 3.7.1, Remark
1).
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Table 3.4. Estimates of responses to orthogonal innovations for the invest-
ment/income/consumption system with estimated asymptotic standard errors
in parentheses

i Θ̂i Ξ̂i

0

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.61 0 0
(.38)

.16 1.16 0
(.14) (.10)

.27 .49 .76
(.11) (.10) (.06)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.61 0 0
(.38)

.16 1.16 0
(.14) (.10)

.27 .49 .76
(.11) (.10) (.06)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

1

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.20 .64 .73
(.57) (.56) (.50)

.26 −.04 .22
(.14) (.14) (.13)

−.05 .13 −.20
(.12) (.12) (.10)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.46 .64 .73
(.63) (.56) (.50)

.41 1.13 .22
(.20) (.17) (.13)

.22 .62 .56
(.15) (.14) (.11)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

2

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.10 .51 .32
(.58) (.57) (.50)

.13 .09 −.07
(.14) (.14) (.12)

.28 .36 .08
(.12) (.12) (.10)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.32 1.15 1.05
(.74) (.69) (.58)

.54 1.22 .15
(.24) (.22) (.17)

.50 .98 .64
(.20) (.18) (.14)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

∞ 0

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.97 1.61 .98
(.82) (.92) (.61)

.61 1.42 .26
(.31) (.34) (.22)

.58 1.06 .73
(.28) (.32) (.20)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10−2

We have also performed forecast error variance decompositions and we
have computed the standard errors on the basis of the results given in Propo-
sition 3.6. For some forecast horizons the decompositions are given in Table
3.5. The standard errors may be regarded as rough indications of the sampling
uncertainty. It must be kept in mind, however, that they may be quite mis-
leading if the true forecast error variance components are zero, as explained
in Remark 6 of Section 3.7.1. Obviously, this qualification limits their value in
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Fig. 3.8. Estimated responses of consumption to an orthogonalized impulse in
income with estimated asymptotic two-standard error bounds.

the present example. Students are invited to reproduce the numbers in Table
3.5 and the previous tables of this section.

3.7.4 Investigating the Distributions of the Impulse Responses by
Simulation Techniques

In the previous subsections, it was indicated repeatedly that in some cases
the small sample validity of the asymptotic results is problematic. In that
situation, one possibility is to use Monte Carlo or bootstrapping methods for
investigating the sampling properties of the quantities of interest. Although
these methods are quite expensive in terms of computer time, they were used
in the past for evaluating the properties of impulse response functions (see,
e.g., Runkle (1987) and Kilian (1998, 1999)). The general methodology is
described in Appendix D.
In the present situation, there are different approaches to simulation. One

possibility is to assume a specific distribution of the white noise process, e.g.,
ut ∼ N (0, Σ̂u), and generate a large number of time series realizations based
on the estimated VAR coefficients. From these time series, new sets of coef-
ficients are then estimated and the corresponding impulse responses and/or
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Fig. 3.9. Estimated accumulated and long-run responses of consumption to an
orthogonalized impulse in income with estimated asymptotic two-standard error
bounds.

forecast error variance components are computed. The empirical distributions
obtained in this way may be used to investigate the actual distributions of
the quantities of interest.
Alternatively, if an assumption regarding the white noise distribution can-

not be made, bootstrap methods may be used and new sets of residuals may
be drawn from the estimation residuals. A large number of yt time series is
generated on the basis of these sets of disturbances. The bootstrap multiple
time series obtained in this way are then used to compute estimates of the
quantities of interest and study their properties. Three different methods for
computing bootstrap confidence intervals in the present context are described
in Appendix D.3. We have used the standard and the Hall percentile methods
to compute confidence intervals for the response of consumption to a fore-
cast error impulse and an orthogonalized impulse in income for our example
system. The results are shown in Figures 3.10 and 3.11, respectively.
Some interesting observations can be made. First, for the forecast error im-

pulse responses, the two different methods for establishing confidence intervals
produce quite similar results which are also at least qualitatively similar to
the asymptotic confidence intervals in Figure 3.4. Second, the situation is a
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Table 3.5. Forecast error variance decomposition of the investment/income/con-
sumption system with estimated asymptotic standard errors in parentheses

proportions of forecast error variance, h periods
ahead, accounted for by innovations in

forecast forecast
error horizon investment income consumption
in h ω̂j1,h ω̂j2,h ω̂j3,h

investment 1 1.00(.00) .00(.00) .00(.00)
(j = 1) 2 .96(.04) .02(.03) .02(.03)

3 .95(.04) .03(.03) .03(.03)
4 .94(.05) .03(.03) .03(.03)

8 .94(.05) .03(.03) .03(.04)

income 1 .02(.03) .98(.03) .00(.00)
(j = 2) 2 .06(.05) .91(.06) .03(.04)

3 .07(.06) .90(.07) .03(.04)
4 .07(.06) .89(.07) .04(.04)

8 .07(.06) .89(.07) .04(.04)

consumption 1 .08(.06) .27(.09) .65(.09)
(j = 3) 2 .08(.06) .27(.08) .65(.09)

3 .13(.08) .33(.09) .54(.09)
4 .13(.08) .34(.09) .54(.09)

8 .13(.08) .34(.09) .53(.09)

bit different for the orthogonalized impulse responses in Figure 3.11. Here the
two different bootstrap methods produce rather different confidence intervals.
These intervals are quite asymmetric in the sense that the estimated impulse
responses are not in the middle between the lower and upper bound of the in-
tervals. Thereby they also look quite differently from the asymptotic intervals
shown in Figure 3.8. The latter intervals are symmetric around the estimated
impulse response coefficients by construction. Again, the qualitative interpre-
tation does not change, however. In other words, the instantaneous and the
second coefficient are significantly different from zero, as before. Moreover,
the confidence intervals in Figure 3.11 are consistent with a rapidly declining
effect of an impulse in income.
It must be emphasized, however, that the bootstrap generally does not

solve the problem of a singular asymptotic distribution of the impulse re-
sponses and the resulting potentially invalid inference. If the asymptotic dis-
tribution is singular, the bootstrap may fail to produce meaningful confidence
intervals, for example. Again it may be worth considering a univariate AR(1)
process yt = αyt−1 + ut for illustrative purposes. The second forecast error
impulse response coefficient is Φ2 = α2. The corresponding estimator Φ̂2 = α̂2

was found to have a singular asymptotic distribution if α = 0 (see Remark 1
in Section 3.7.1). Suppose a bootstrap is used to produce N bootstrap esti-
mates of α, α̂∗(n), n = 1, . . . , N . Clearly, the corresponding bootstrap estimates
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Fig. 3.10. Estimated responses (——) of consumption to a forecast error impulse in
income with 95% bootstrap confidence bounds based on 2000 bootstrap replications
(— — standard intervals, - - - Hall’s percentile intervals).

Φ̂∗2(n) = α̂
∗2
(n) will all be positive with probability one because they are squares.

Thus, if the standard (1−γ)100% bootstrap confidence interval is constructed
in the usual way by choosing Φ̂∗2(Nγ/2) and Φ̂

∗
2(N(1−γ)/2) as lower and upper

bound, respectively, the true value of zero will never be within the confidence
( // ) ( ( )/ )

interval. Hence, in this case the actual confidence level will be zero. Although
the Hall confidence intervals may be a bit better in this case, they will also
not provide the desired coverage level even in large samples. A more detailed
discussion of this problem is given by Benkwitz et al. (2000), where also meth-
ods for correct asymptotic inference are considered. One possible solution is
to eliminate all points where nonsingularities of the asymptotic distribution
may occur by fitting subset models (see Chapter 5). Another possibility to cir-
cumvent the problem is to allow the VAR process to be of infinite order and
increase the order with growing sample size. This possibility will be discussed
in detail in Chapter 15.
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Fig. 3.11. Estimated responses (——) of consumption to an orthogonalized im-
pulse in income with 95% bootstrap confidence bounds based on 2000 bootstrap
replications (— — standard intervals, - - - Hall’s percentile intervals).

3.8 Exercises

3.8.1 Algebraic Problems

The notation of Sections 3.2–3.5 is used in the following problems.

Problem 3.1
Show that β̂ = ((ZZ ′)−1Z ⊗ IKI )y minimizes
S̄(β) = u′u = [y − (Z ′ ⊗ IKI )β]′[y − (Z ′ ⊗ IKI )β].

Problem 3.2
Prove that

√
T (b̂ − b) d→ Nd (0, Σu ⊗ Γ−1),

if yt is stable and

1√
T
vec(ZU ′) =

1√
T
(IKI ⊗ Z)vec(U ′) d→ Nd (0, Σu ⊗ Γ ).
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Problem 3.3
Show (3.4.17). (Hint: Use the product rule for matrix differentiation and
∂ vec(Σ−1u )/∂ vec(Σu)

′ = −Σ−1u ⊗Σ−1u .)
Problem 3.4
Derive (3.4.18). (Hint: Use the last expression given in (3.4.6).)

Problem 3.5
Show (3.4.19).

Problem 3.6
Derive (3.4.20).

Problem 3.7
Prove that plim z̃T /

√
T = 0, where

z̃T =
p∑
i=1

Ãi

i−1∑
j=0

(y−j − yT−j).

(Hint: Show that E(z̃T /
√
T )→ 0 and Var(z̃T /

√
T )→ 0.)

Problem 3.8
Show that Equation (3.5.10) holds.
(Hint: Define

ZtZZ (h) :=

⎡⎢⎡⎡⎢⎢⎢⎢⎢⎢⎣
1

yt(h)
...

yt(h− p+ 1)

⎤⎥⎤⎤⎥⎥⎥⎥⎥⎥⎦
and show ZtZZ (h) = BZtZZ (h− 1) by induction.)
Problem 3.9
In the context of Section 3.5, suppose that yt is a stable Gaussian VAR(p)
process which is estimated by ML in mean-adjusted form. Show that the
forecast MSE correction term has the form

Ω(h) = E
(
∂yt(h)
∂μ′

Σμ̃
∂yt(h)′

∂μ

)
+ E

(
∂yt(h)
∂α′

Σα̃
∂yt(h)′

∂α

)
,

with

∂yt(h)
∂μ′

= IKI − JAh
⎡⎢⎡⎡⎣ IKI...
IKI

⎤⎥⎤⎤⎦
(Kp×K)

and
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∂yt(h)
∂α′

=
h−1∑
i=0

(YtYY − μ)′(A′)h−1−i ⊗ Φi.

Here μ := (μ′, . . . , μ′)′ is a (Kp×1) vector, YtYY and A are as defined in (2.1.8),
J := [IKI : 0 : · · · : 0] is a (K × Kp) matrix, and Φi is the i-th coefficient
matrix of the prediction error MA representation (2.1.17).

Problem 3.10
Derive the ML estimator and its asymptotic distribution for the parameter of
a stable AR(1) process, yt = αyt−1 + ut, ut ∼ i.i.d.N (0, σ2u).

3.8.2 Numerical Problems

The following problems require the use of a computer. They are based on
the two quarterly, seasonally adjusted U.S. investment series given in File E2.
Consider the variables

y1 – first differences of fixed investment,
y2 – first differences of change in business inventories,

in the following problems. Use the data from 1947 to 1968 only.

Problem 3.11
Plot the two time series y1t and y2t and comment on the stationarity and
stability of the series.

Problem 3.12
Estimate the parameters of a VAR(1) model for (y1t, y2t)′ using multivariate
LS, that is, compute B̂ and Σ̂u. Comment on the stability of the estimated
process.

Problem 3.13
Use the mean-adjusted form of a VAR(1) model and estimate the coefficients.
Assume that the data generation process is Gaussian and estimate the covari-
ance matrix of the asymptotic distribution of the ML estimators.

Problem 3.14
Determine the Yule-Walker estimate of the VAR(1) coefficient matrix and
compare it to the LS estimate.

Problem 3.15
Use the LS estimate and compute point forecasts ŷ86(1), ŷ86(2) (that is, the
forecast origin is the last quarter of 1968) and the corresponding MSE matrices
Σ̂y(1), Σ̂y(2), Σ̂ŷ(1), and Σ̂ŷ(2). Use these estimates to set up approximate
95% interval forecasts assuming that the process yt is Gaussian.

Problem 3.16
Test the hypothesis that y2 does not Granger-cause y1.
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Problem 3.17
Estimate the coefficient matrices Φ1 and Φ2 from the LS estimates of the
VAR(1) model for yt and determine approximate standard errors of the esti-
mates.

Problem 3.18
Determine the upper triangular matrix P̂ with positive diagonal for which
P̂ P̂ ′ = Σ̂u. Estimate the covariance matrix of the asymptotic distribution of
P̂ under the assumption that yt is Gaussian. Test the hypothesis that the
upper right-hand corner element of the underlying matrix P is zero.

Problem 3.19
Use the results of the previous problems to compute Θ̂0, Θ̂1, and Θ̂2. Deter-
mine also estimates of the asymptotic standard errors of the elements of these
three matrices.
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