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Experimental Fragmentation

A number of studies over the intervening years since Mott’s seminal theoretical
efforts in dynamic fragmentation have been undertaken which allow testing
of his theories. Some were pursued specifically for that purpose. Others were
undertaken for other applications, but nonetheless provide useful test data for
examining aspects of the theory.

Selected experiment studies are examined in the present section and com-
pared with the fragmentation theory of Mott. This selection is, of course, not
exhaustive. We will show that many of the theoretical concepts introduced
stand up well to experimental scrutiny. Certain mysteries remain unresolved,
however, and provide the challenge for yet more advanced theoretical efforts
in fragmentation.

8.1 Olsen Expanding Ring

The expanding ring experiment to test the dynamic deformation and failure
properties of engineering metals has continued to be pursued at Lawrence Liv-
ermore National Laboratory (LLNL) [Gourdin, 1989; Gourdin et al., 1989].
Extended development of the ring method provided an effective technique for
assessing the dynamic tensile strength and strain-to-fracture properties, as
well as the statistical fracture and fragmentation characteristics of the mate-
rial. Here, we focus on extensive dynamic data obtained with the technique
on uranium-6%-niobium (U6Nb) metal [Olsen, 2000; Grady and Olsen, 2003].
Data for this study were examined in an earlier section. Here a more thorough
examination of the test method and the experimental results is undertaken.

8.1.1 The Experimental Method

Expanding ring tests were performed on machined U6Nb rings subjected to
selected metallurgical heat treatment. Test samples were rings 34.4 mm inner
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Fig. 8.1. Test configuration and diagnostics for expanding metal ring experiments
are illustrated schematically

diameter and square cross section 0.76 mm on a side. The test configuration
is illustrated schematically in Fig. 8.1.

The magnetic field excited by pulsing an electric current through a solenoid
accelerates a metal driver ring and sample (U6Nb) ring radially outward. Ex-
pansion velocities ranging from about 100 to 300 m/s are achieved depending
on the current amplitude. An arrestor fixture stops the driver permitting con-
tinued free flight of the sample ring. Velocity history of the ring is determined
from time resolved velocity, or VISAR, measurements [Barker and Hollenbach,
1972] of the motion at one point on the ring. Free flight of the test ring is
allowed through onset of fracture and fragmentation. Broken ring fragments
are arrested and recovered within a stationary wax cavity in the experimental
test fixture.

8.1.2 The Experimental Results

As noted, velocity histories of the U6Nb rings were measured with time-
resolved velocity interferometry. Measured deceleration of the freely expand-
ing ring prior to fragmentation, was used to calculate tensile flow stress of
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Fig. 8.2. Selected tensile stress versus strain to failure at an expansion rate of
approximately 1.3 × 104/s

the ring up to the time of fracture. Tensile stress, as a function of strain, for
several aged and one annealed test sample is shown in Fig. 8.2. Strain rate
during the free expansion deformation was approximately 1.3×104/s. Tensile
stress for the several aged samples was approximately 1.0 GPa to a fracture
strain (increase in radius) of about 30%. On the other hand, the one annealed
ring specimen exhibited a tensile flow stress of about 2.5 GPa and failed at a
somewhat earlier 20% strain.

In each test the number of fragments produced (equivalently, the number of
fractures) was determined. Fragment number versus the expansion velocity at
fragmentation are shown for the series of U6Nb expanding ring experiments in
Fig. 8.3. The anomalous point high on the graph is the one test on a markedly
differently heat treated U6Nb sample identified as annealed in Fig. 8.2 and is
discussed further, later in this section. A least squares fit, excluding the one
anomalous point, provided the power law representation of the data shown in
Fig. 8.3. Dynamic toughness data for the same data in Fig. 8.3, as calculated
through the energy-based relation relating fragment number to toughness,

N =

(
ρcε̇√
12Kf

)2/3

, (8.1)

are shown in Fig. 8.4.
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Fig. 8.3. Fragment number versus expansion velocity at fracture for U6Nb expand-
ing ring fragmentation tests
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Fig. 8.4. Dynamic fragmentation toughness calculated through theoretical relation
relating fragment number, expansion rate and material toughness
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Fig. 8.5. Comparison of cumulative fragment distribution for one representative
U6Nb expanding ring fragmentation test with the theoretical Mott fragment size
distribution

In one representative test each fragment was separately weighed and the
cumulative fragment size distribution shown in Fig. 8.5 was obtained. The
data presented in Figs. 8.2 through 8.5 are also provided in Table 8.1.

8.1.3 Some Experimental Observations

The present study of dynamic fragmentation is afforded invaluable insight
through a more in-depth examination of the expanding ring experimental
fragmentation results. A metallographic image of a representative fracture is
shown in Fig. 8.6. The outer deformed surface of the stretched ring exhibits an
undulating, uneven surface characteristic of heterogeneous slip-line plasticity.
The reduced area of the fracture surface points to a pre-fracture deformation
localization through plastic necking. The failure process is completed through
pervasive ductile extension fracture through the narrowest portion of the neck-
ing region. Arrested necking regions were also observed in a number of the
recovered fragments.

Ductile deformation, through dimple plasticity, is clearly evident in the
expanded image of the fracture surface shown in the upper fractograph in
Fig. 8.7. The dimple morphology appears tri-modal. Dimple sizes range from
2–3 µm for the smallest up to 15–30 µm for the largest. Inclusions observed
within larger dimples are probably fracture initiation sites. Dimple size may
reflect local fracture speed in the failure process.
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Table 8.1. Expanding ring fracture and fragmentation data

Velocity at Expansion at Stress at Cumulative
Test Failure Failure Failure Number of Distribution
Number (m/s) (%) (GPa) Fragments Mass (g) Num.

22 87.9 – 13 13 0.092 1
42 82.3 0.88 11 11 0.088 2
44 45.1 0.77 8 8 0.078 3
30 73.1 0.9 14 14 0.077 4
14 144.9 0.89 20 20 0.074 5
24 177.9 1.1 18 18 0.074 6
20 192.1 1.18 21 21 0.071 7
16 126.5 – 19 19 0.071 8
26 176.2 1.05 18 18 0.070 9
52 162.2 1.15 18 18 0.069 10
54 160.4 0.89 20 20 0.068 11
10 191.7 0.95 20 20 0.058 12
56 250.8 0.97 23 23 0.056 13
60 239.6 1.15 1.16 28 0.044 14
28 165.7 21 2.65 45 0.039 15
62 171.5 31.7 1.08 18 0.035 16
66 159.4 31.1 1.03 20 0.033 17
68 235.5 31.9 1.01 23 0.025 18
70 259.4 20.7 1.2 27

The failure morphology shown in Fig. 8.6 and the expanded view of the
fracture surface in the upper picture in Fig. 8.7 is illustrative of the fracture
data examined in the present theoretical study. Data from these tests fall
within the scatter of the curve shown in the fragment number plot in Fig. 8.3
even though these data represent materials subjected to several different ag-
ing treatments. All, however, were quenched from elevated temperature leav-
ing the metal in the more ductile alpha phase. The modestly different aging
treatments shows no apparent influence on either the fracture behavior or the
fragmentation statistics.

The present fracture behavior of quenched U6Nb shows marked similarity
to observations of spall fracture in U6Nb [Hixson, et al. 2000, and Zurek,
et al. 2000]. Similarities extend to both the character of dimple plasticity on
fracture surfaces and identification of carbide inclusion fracture initiation sites
in higher resolution metallography. The similarity is not surprising in that
strain rates at fracture in necking regions of the expanding ring tests exceed
104/s, approaching that of the spall experiments. Additionally, tensile stress
triaxiality is amplified within necking regions again approaching conditions
comparable to the spall experiment.

The anomalous data point observed in Figs. 8.2 through 8.4 corresponds,
in contrast, to a sample in which the heat treatment left most of the metal in
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Fig. 8.6. Expanding ring dynamic fracture characteristics

the more brittle gamma phase. A corresponding fractograph of the fracture
surface from the ring experiment on this sample is shown in the lower image of
Fig. 8.7. The predominantly cleavage fracture character differs starkly from
that of the more ductile fracture in the alpha phase material shown above
(actually a variant α′′ of the alpha phase, e.g., Addessio, et al. (2003)).

The expanding ring experiment is also unique, in providing a uniformly
straining dynamic unconfined tension experiment, in which both tensile stress
and plastic strain can be readily measured. Both stress and strain are deter-
mined in the present tests through velocity interferometry measurements of
the radial velocity history. The effective measurement duration occurs from
the time of decouple from the driving, current-carrying ring to the time of
localization onset and failure. Strain and strain rate within this measure-
ment period are provided by the velocity and displacement history. Stress is
determined from the deceleration of free expansion through solution of the
governing momentum equations.

Measured stress versus strain histories provided in Fig. 8.2 for selected ex-
periments include several alpha phase materials subjected to different aging
treatments and the one test on predominantly gamma phase metal. As previ-
ously stated, rings of the alpha phase materials achieve a dynamic flow stress
of approximately 1.0 GPa before failing at expansions approaching 30% and
higher. It should also be emphasized that failure in these materials proceeds
first through deformation localization and ductile necking, and subsequently
by extension fracture. Numerous arrested necking regions were observed in
recovered fragments.
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Fig. 8.7. Fractography of fracture surfaces for predominantly alpha phase (upper
photo) and gamma phase (lower photo) U6Nb expanding ring samples

The test on the largely gamma phase U6Nb sample exhibited, in con-
trast, a dynamic flow stress well in excess of 2 GPa and a markedly re-
duced strain to failure (Fig. 8.2). Further evidence for the starkly more brit-
tle character of dynamic fracture of U6Nb in this preparation is provided
by the significantly reduced indications of ductile necking preceding exten-
sion fracture, clear indications of cleavage fracture as evident in Fig. 8.7,
the larger number of fragments shown in Fig. 8.3 and the correspondingly
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reduced fracture energy provided in Fig. 8.4. Although a static fracture tough-
ness value for the present predominantly gamma phase metal was not avail-
able, an appreciable reduction from the alpha phase material would be ex-
pected.

A final comment on the comparison of the dynamic toughness inferred
through the energy-based theory with the static fracture toughness in Fig. 8.5
is warranted. The reasonably close agreement between the dynamic and static
values is remarkable and speaks strongly for an energy-controlled mechanism
governing the characteristic fracture spacing and fragment number. On the
other hand, one may question why they differ by almost a factor of two. First,
there is a number of simplifying theoretical assumptions in the quantitative
development of the energy theory which could readily account for the dif-
ference. But putting these explanations aside, there is an interesting material
issue which could easily contribute to the difference. Dissipation resulting from
the propagation of a through-going fracture in an engineering size sample of
metal accounts for the observed fracture toughness of the material. Dissipa-
tion on the fracture surface is heterogeneous on some length scale, however
dissipation at any point on the surface may exceed or be less than the aver-
age. The present metal rings with substantially less than a square millimeter
cross section, combined with the statistical selectivity of weaker fracture sites,
could lead to effectively lower dynamic fracture energy, as is observed. This
possible material dependent difference would suggest something other than
geometric scaling if the size of the test rings were varied. This complication
has not been explored.

8.2 Grady and Benson Expanding Ring

The expanding ring fragmentation study on U6Nb metal described in the
previous section nicely supports features of both Mott’s statistical theory and
the energy-based theory of dynamic fragmentation, and offers ideas for merg-
ing the two theories, as was pursued in Chap. 5. Here we will discuss earlier
expanding ring tests of Grady and Benson (1983) in which the experimental
results do not as tidily support the theoretical predictions. These experiments,
in fact, motivated the experimental efforts of LLNL from which the reported
study on U6Nb metal emerged. This previous work was in turn stimulated by
even earlier experiments using explosives to drive expanding rings [Perrone,
1968; Hoggatt and Recht, 1969; Warnes et al., 1981] and magnetic loading
methods [Walling and Forrestal, 1973].

8.2.1 The Experimental Method

The experimental method used in the study is described in detail in Grady
and Benson (1983) with further analysis of the data provided in Grady
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Fig. 8.8. Electromagnetic launch experiment illustrating assembled test (top) and
assembly component parts (bottom) including, launching solenoid test ring and in-
sulating plastic support pieces [Grady and Benson, 1983]

et al. (1984) and Kipp and Grady (1985, 1986). Briefly, a fast-discharge pulsed-
power system was used to electromagnetically accelerate metal rings in a radi-
ally expanding geometry. The test assembly is illustrated in Fig. 8.8 in which
the solonoidal coil carrying the driving current is sheathed with supporting,
and insulating, plastic cylindrical sections and the test metal ring. The tech-
nique provided uniform radial acceleration of the ring to velocities of several
hundred meters per second, although a slight figure-of-eight motion was im-
parted presumably due to the helicity of the driving coil. Another down side
to the technique was an induced electric current in the test ring and the uncer-
tain influence of inductive heating on the plastic flow and fracture properties
of the metal. Estimates of heating are provided in the paper of Grady and
Benson (1983).

Acceleration history and the velocity at fracture were measured with
streak-camera methods. A variety of experiments were performed on alu-
minum and copper rings to assess the statistical fragmentation properties,
including, the strain-to-fracture, the number and size statistics of fragments
created, and details of the fracture process. Both the soft OFHC and the
1100-O aluminum selected for testing in the study fractured in dynamic ten-
sion through ductile necking followed by extension fracture at a late stage in
the necking process. Representative fracture and arrested necking behavior in
the dynamic tests are illustrated for the aluminum in Fig. 8.9. Static tension
tests were also performed on comparable sized dog-bone shaped specimens.
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Fig. 8.9. Expanding ring fracture characteristics on 1100-O aluminum illustrating
a completed fracture (left) and an arrested neck (right) [Grady and Benson, 1983]

8.2.2 Fragment Number Experiments

A series of fragmenting ring experiments was performed on 1100-O aluminum
and soft OFHC copper, where the initial capacitor voltage was selected to
vary the strain rate at the time of fracture. Velocities ranging from about 20
to 200 m/s were achieved which corresponded to strain rates from about 103/s
to 104/s. At the lowest voltages it was not uncommon to recover markedly
expanded, but unfractured rings. In these experiments, the number of frag-
ments from each test were counted and correlated with the expansion velocity
at fracture. These data are plotted in Fig. 8.10.

Clearly, fragment number data for ring fragmentation of these two duc-
tile metals is better described by a linear dependence on expansion velocity.
This behavior contrasts with the two-thirds power dependence observed for
the U6Nb ring data. In searching for a possible experimental reason for the
different behavior, electric current flow in the fragmenting aluminum and cop-
per rings is a possible suspect. A pusher ring was used in the technique to
fragment the U6Nb rings keeping residual electric currents to a minimum.
Increasing currents at the higher driving velocities might be expected to in-
fluence breakup through excessive heating in the thinning fracture zones.

Ignoring this complication, the functional trend of the fragment number
versus velocity for the soft aluminum and copper data is better captured
with the earlier Mott statistical prediction of fragment number than with the
energy-based prediction. Working with relations developed earlier, fragment
number per unit length is provided by,

N =

√
ρε̇2

2πY

n

σ
. (8.2)
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Fig. 8.10. Fragment number data for aluminum and copper ring tests. Curves are
the least squares linear fits and predictions from energy-based fragmentation theory

Equation (8.2) is appropriate for sensibly large n, and N is determined by
the statistical standard deviation in strain-to-fracture, (∼= 1.28σ/n) as well as
the flow stress Y , metal density ρ and the expansion strain rate ε̇. The ring
is then predicted to break into a total number of fragments,

NT = 2πRN =
(

2πρ

Y

n

σ

)1/2

u . (8.3)

A measure of the standard deviation in the strain-to-fracture is not known
so a forward prediction of fragment number cannot be made. Linear fits to the
data, shown in Fig. 8.10, can be made, however, and the necessary back calcu-
lation performed for the strain-to-fracture standard deviation calculated from
(8.3). Values of 0.051 and 0.096 are obtained for copper and aluminum, respec-
tively. The standard deviation in strain-to-fracture for copper is found to be
about 12% of the measured static strain-to-fracture (
0.4) and is not unrea-
sonable. The calculated standard deviation in strain-to-fracture for aluminum
is approximately equal to the static strain-to-fracture (
0.1) and seems un-
reasonably large. Dynamic strains for this ductile aluminum are substantially
larger, however, and considerations in the following subsection will show that
this statistical failure measure is also sensible.

The corresponding total fragment number expression based on the fracture
energy theory is,
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NT = 2π

(
ρR

24Γ

)1/3

u2/3 , (8.4)

where Γ is the fracture energy. Equation (8.4) is clearly at odds with the
functional dependence on the expansion velocity in Fig. 8.10. Nonetheless,
predictions based on (8.4) are enlightening. The fracture energy Γ for the two
metals was estimated from the measured static tensile flow stress at fracture
and the deformation strain in the fracture zone inferred from the geometry of
the neck and fracture deformation. Values of Γ = 0.03 MJ/m2 for aluminum
and Γ = 0.07 MJ/m2 for copper were calculated and are probably reasonable
within ±50%. The values for Γ correspond to effective fracture toughness
of 60 MPa·m1/2 and 140 MPa·m1/2 for aluminum and copper, respectively.
Fragment number curves based on (8.4) are shown with the data in Fig. 8.10
and, although functionally wrong, the reasonable agreement in magnitude is
encouraging. An interesting feature to ponder is the scale dependence of the
energy-based relation (dependence on the ring radius R) in comparison to the
scale independence of the Mott relation in (8.3). This scale dependence has
not been explored in any of the previous ring studies.

A fascinating observation is provided by the plot shown in Fig. 8.11, where
the fragment number data for both aluminum and copper are plotted as a
function of the radial kinetic enrgy, ρu2/2. It is remarkable that the data
are effectively collapsed in this plot. The curve is a best fit of the fragment
number to the kinetic energy of the form NT = (T/τ)1/2 with a value of
τ = 64 MJ/m3. Both the statistical Mott and the energy-based relations for
fragment number in (8.3) and (8.4) contain ρu2 in the numerator. Overlay of
the two data sets in Fig. 8.11 then requires that the corresponding governing
fracture properties in either theory for the two materials scale to effect the
invariance. This overlay of the data could certainly be fortuitous but it is
certainly intriguing and warrants further study.

8.2.3 Fracture Strain Experiments

A further intriguing feature of the dynamic expanding ring experiments is
plastic strain accumulated in the metal up to the point of fracture and frag-
mentation. In the work of Olsen (2000) in the previous section on U6Nb this
strain was simply determined by the amount of expansion incurred at the
point of fracture as determined through the VISAR velocity history measure-
ments. In the present study strain to fracture was pursued in somewhat more
depth.

Both of the ductile metals investigated in the present study exhibit sub-
stantial hardening in tension, and static strains-to-fracture of approximately
0.08 and 0.40 were measure for the ductile aluminum and copper, respectively.
These static values provide a reference for examining the strains accumulated
in the dynamic fracture process.

Before investigating the experimental results of the expanding ring tests
of Grady and Benson (1983), it is instructive to examine the fracture strain
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Fig. 8.11. Fragment number data plotted against expansion kinetic energy ρu2/2

behavior inferred from the several theories pursued here. Fracture in the Mott
theory is characterized by a statistical strain-to-fracture and the cumulative
strain-at-fracture completion is provided by the integral,

εf =

∞∫
0

(1 − D)ε̇dt . (8.5)

The factor of 1−D accounts for the fraction of the length over which strain-
ing has arrested due to the propagation of Mott release waves from sites of
fracture. This factor is provided by,

1 − D = e−
∫

λ(ε)dε . (8.6)

A power law representation of λ(ε), which has been pursued extensively in the
present text, provides a Weibull description of the strain-to-fracture statistics.
Alternatively, an exponential representation, and Gumbel statistics, as was
pursued by Mott, could be used. Weibull statistics leads to a cumulative failure
strain in (8.5) of,

εf = αn

(
σn√

2Y/ρε̇2

) 2
2n+1

. (8.7)

For small values of the distribution shape parameter n the failure strain in
(8.7) exhibits a more complex dependence on properties. (For n = 1 a depen-
dence on strain rate of εf ∼ ε̇2/3 is predicted.) However, for sensibly large n,
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as is expected to be the case, (8.7) approaches εf
∼= σ, and failure strain is

effectively independent of the expansion rate, as well as other governing mate-
rial properties. The Mott approach using Gumbel statistics leads immediately
to a rate independent cumulative failure strain.

In the energy-based approach to fragmentation, the theory examines a
representative fracture from fracture inception until completion. It was shown
in Sect. 3 that, if the fracture resistance is characterized by a dissipation
energy Γ, a time,

tf =
(

72ρΓ2

Y 3ε̇

)1/3

, (8.8)

is required for fracture completion and within this time a Mott release wave
propagates a distance,

xf =
(

3Γ
ρε̇2

)1/3

, (8.9)

from the fracture. Within this region a nominal strain,

εf = εfo +

tf∫
0

ε̇dt , (8.10)

is achieved, where εfo is the strain at fracture onset. Equation (8.10) yields,

εf = εfo +
(

72ρΓ2ε̇2

Y 3

)1/3

, (8.11)

and, if the onset of fracture strain εfo is independent of strain rate, a two-
thirds power dependence on strain rate is expected, with a quantitative pre-
diction provided by (8.11) if the material parameters governing Mott frag-
mentation are known.

There are various methods for assessing the fracture strain in the present
expanding ring experiments and two of these methods are explored here. First,
it was convenient to soft capture all of the fragments, measure the total length
L =

∑
Li of the fragments, and identify a fracture strain εf = 1−L/Lo, where

Lo is the initial circumferential length of the test ring. This strain measure is
plotted as a function of expansion velocity in Fig. 8.12 for the same copper
and aluminum fragmenting ring fragment number data shown in Figs. 8.10
and 8.11.

Curves through the data are based on (8.11) and values of Y and Γ deter-
mined from the static tension tests. Fracture onset strain εfo was selected to
best fit the fracture data. This estimate of εfo is somewhat larger than the
static tensile strain-to-fracture for the two metals. For contrast, the strain rate
independent fracture strain intrinsic to the Mott theory is also illustrated.

The various comparisons in Fig. 8.12 certainly raise questions concern-
ing the accumulation of strain up to and during the expanding ring breakup
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Fig. 8.12. Strain at fragmentation for aluminum and copper rings. Comparisons
with energy-based and Mott theories are shown along with measured static strain-
to-fracture

process. Intrinsic rate dependence during deformation leading up to the frac-
ture process is certainly possible and could account for the observations within
the context of the Mott statistical theory. Nevertheless, the reasonably close
quantitative agreement of the measured excess strain with predictions based
on the energy theory suggests that at least some of the features of the addi-
tional cumulative straining implied by the theory during the time-dependent
fracture process are probably correct.

An alternative method for determining the strain-to-fracture in the ring
experiments is to interrogate the accumulated strain in individual fragments.
This can be done by both weighing each individual fragment and measuring
its length. The extension, or fracture strain, corresponding to an individual
fragment is provided by,

L

Lo
= 1 + εf =

L

M

MT

2πRo
, (8.12)

where, L and M are the measured residual length and mass of the fragment,
respectively, MT the total mass of the ring, and 2πRo the initial circumference
of the ring. This approach was pursued in the earlier study [Grady and Benson,
1983], but was not reported in the publication of that study. Four fragments
each were randomly selected from four separate tests conducted on the ductile
aluminum at approximately the same expansion velocities (in the range of
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310–350 m/s), and in which 12 to 13 fragments for each ring was achieved.
(These were not the same experiments reported in Figs. 8.10–8.12.) Fragment
extension determined through (8.12) is plotted against cumulative fragment
number for the sixteen fragments in Fig. 8.13.
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Fig. 8.13. Strain at fragmentation determined from the measured length and weight
of individual aluminum fragments. A Weibull function is fit to the cumulative frag-
ment number data

In this presentation of the data the recovered fragments showed a marked
statistical spread in the strain-to-fracture. The distribution in Fig. 8.13 was
fit to a cumulative Weibull distribution,

N(εf )/No = 1 − e−(εf /σ)n

. (8.13)

A best fit to the data provides a scale parameter σ = 0.45 and shape para-
meter of n = 4.5. A standard deviation in strain-to-fracture of approximately
1.28σ/n ∼= 0.13 is in reasonable agreement with the value of 0.096, previously
back calculated from the fragment number data and the Mott relation in (8.3).

Thus, aspects of the Mott statistical theory are apparently playing a role
in the breakup process. Namely, a statistical spread in the time, and strain,
at which fractures achieve completion. This feature of the fracture process is
further emphasized in the expanding tube experiments of Winter (1979) and
the more recent tests of Vogler et al. (2003).
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8.2.4 Fragment Size Statistics

Fragmentation of the expanding ring appears to be a random process. Both
the breaks in the ring, as well as the well-defined necking regions constituting
arrested fractures, appear to be statistically dispersed around the circumfer-
ence of the ring. Fragments collected from any given test can vary in length
by a factor of ten or more. This statistical fragmentation behavior was also
noted in the expanding ring tests on U6Nb metal discussed in the previous
subsection. Sensible agreement with the Mott treatment of the fragmenta-
tion statistics was found, although this was actually only quantified in the
experimental study for one test.

The statistical distribution in fragment size (or length) was also explored
in the present study. As in the case for fracture strain, there are different ways
that the data can be displayed. For the one experiment on U6Nb a cumulative
distribution in fragment size was presented. The number of fragments from
that one test was too sparse to provide a meaningful density distribution.

In the present series of tests five experiment on 1100-O aluminum con-
ducted at nominally the same expansion velocity, and in which 11 to 13 frag-
ments each were produced, were combined and their collective density distri-
bution was determined. A histogram of the fragment number versus mass is
provided in Fig. 8.14. The mass intervals are 2.5 mg and, since aluminum den-
sity is approximately 2.7 mg/mm3, each interval adds about one mm to the
fragment length. The mode of the experimental distribution peaks somewhere
in the range of 10–20 mg, and tails off for both larger and smaller fragments.

A best fit to the experimental data with both an exponential (Lineau)
and an analytic Mott distribution is also shown in Fig. 8.14. The exponential
distribution, as presented, is clearly at odds with the data. Note, however,
that fragments at the small end of the distribution are within a factor of two
to three times the initial cross section dimension of the metal ring (1 mm ∼
2.7 mg). One might expect different physics to govern fracture at this length
scale. Thus an exponential distribution with a tail off at the small fragment
end due to this different physics might not be an unreasonable representation
of the data.

The Mott distribution appears to be a better description of the data.
Selecting rings with 11, 12 and 13 fragments probably unfairly broadens the
distribution by about 10%. The several large fragments in the large end tail
of the distribution are totally at odds with the Mott distribution, however.

Very distinct arrested necking regions such as shown in Fig. 8.9, were a
conspicuous feature in the present expanding ring experiments. For the sake
of interest a fragment size distribution for this same set of five tests was
generated by also considering the well-defined necks as completed fractures.
This distribution is provided in Fig. 8.15, and again compared with the Mott
and the exponential Lineau theoretical representations of the data.

The Mott distribution does appear to capture the general trend of the
experimental distribution. Again, however, it is not clear whether the decrease
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Fig. 8.14. A collective histogram of the fragments from five ring test on 1100-O
aluminum in which 11 to 13 fragments were produced. The fragment mass in mg is
approximately equal to the length in mm

in fragments at the small end of the distribution is due to the Mott interaction
physics, or just due to the fact that fragment lengths are approaching the ring
cross-section dimension. Also, as in the case of the fragment distribution in
Fig. 8.14, there are several long segments of a size at odds with the Mott
distribution.

It is also of interest to examine the fragment statistics over the wider
range of expansion velocities achieved in the study. Representations of the
fragment distributions such as shown in Fig. 8.14 become difficult, however,
because of the limited number of fragments produced in some of the tests.
One possible approach for examining the random nature of the fragmentation
event is to pick a statistical measure in the spread of the fragments size, such
as the standard deviation for each test, and compare this with the theoretically
predicted standard deviation. This approach has been carried out for a limited
number of the tests on 1100-O aluminum. For each ring fragmentation test the
standard deviation is calculated and normalized by the average fragment size.
This normalized standard deviation is plotted as a function of the number of
fragments in each test in Fig. 8.16.

For comparison, the corresponding statistical measure is calculated for
several of the theoretical distributions. The normalized standard deviation
for the Lineau (exponential) distribution is unity. For some of the tests ex-
amined, the number of fragments produced was small (four in one – six in
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Fig. 8.15. A collective histogram for the same five ring test as the previous figure,
where well defined arrested necks are also included in the partitioning of circumfer-
ential fragments

another). Consequently, it is sensible to calculate the same statistical parame-
ter for the binomial distribution, which is equivalent to the Lineau distribution
assumptions on a finite line length. The normalized standard deviation for the
binomial distribution is also shown in Fig. 8.16. The normalized standard de-
viation of the Mott distribution (∼0.321) is also shown in the Fig. 8.16.

Clearly, the experimental data are statistically tighter than predicted by
a Lineau (or binomial) distribution. There is also a tendency for the standard
deviation of the data to decrease with decreasing fragment number as sug-
gested by the binomial distribution. The measured standard deviations are
not, however, in agreement with the Mott distribution.

Usually it was an errant large fragment in the collection which markedly
increased the experimental standard deviation, but not in every case. Nonethe-
less, the data disagree with the Mott prediction of the spread in fragment size
by nearly a factor of two. So again, the present ring data suggest that the
fragmentation process is more complex than the simpler theories predict.

8.3 Weisenberg and Sagartz Expanding Cylinder

An interesting experiment intermediate between the expanding ring tests dis-
cussed previously, and exploding cylinder tests considered in Sect. 7, was
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Fig. 8.16. Standard deviation normalized by the average fragment size plotted
against the number of fragments produced in the test for the expanding ring frag-
mentation experiments on 1100-O aluminum

performed by Weisenberg and Sagartz (1977). In that study they used similar
inductive methods powered by a large capacitor discharge system to rapidly
expand and fracture thin cylinders of 6061-T6 aluminum. Current is carried by
an internal copper conductor. The copper driver applies a radial driving pres-
sure approaching 2 GPa for several microseconds accelerating the aluminum
cylinder to its terminal radial velocity. Cylinders were 127 mm in diameter
and 102 mm in length with a wall thickness of 1.27 mm. Dynamic fracture was
observed photographically to occur at about 30% expansion strain and at a
strain rate of approximately 104/s. This value is slightly below the approxi-
mately 40% strain in the 1100-O aluminum ring experiments in the previous
section at a comparable strain rate.

During the deformation proceeding fracture, slip lines formed at angles of
approximately 30◦ to the axis of the cylinder. Fracture then occurred along
these slip lines and propagated until breakup was complete. Fragments from
one test [Weisenberg and Sagartz, 1977] collected and displayed are shown in
Fig. 8.17. The collection nicely illustrates the nature of the dynamic fracture
process, including the tendency toward oblique fracture along plastic slip lines
and arrested fractures due to unloading Mott waves. Details of the deformation
processes leading to fracture are more readily observed in the high speed
photograph of one cylinder test shown in Fig. 8.18.
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Fig. 8.17. Fragments from one magnetic expanding cylinder test on 6061-T6 alu-
minum [Weisenberg and Sagartz, 1977]

Fig. 8.18. High speed photograph illustrating deformation and fracture features in
the expanding aluminum cylinder tests of Weisenberg and Sagartz (1977)
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Fig. 8.19. Experimental fragment size data for expanding aluminum ring tests of
Weisenberg and Sagartz (1977) and comparisons with statistical Mott theories

A total of 125 fragments were collected from 11 equivalent tests. All frag-
ments were assigned an effective length by weight. Accordingly a histogram
of the statistical size distribution for the aluminum cylinder data is provided
in Fig. 8.19. In this figure the ordinate identifies the number of fragments
normalized to a single ring which occurred within the corresponding fragment
size (length) interval. The abscissa identified fragment size as a fraction of the
original circumference of the ring.

Experimental fragment size data of Weisenberg and Sagartz (1977) in
Fig. 8.19 are compared with both Mott’s graphical distribution and the an-
alytic distribution for plastic fracture developed previously in Sects. 3 and
4. Both distributions satisfactorily describe the relatively narrow spectrum
of fragment lengths. It is straightforward to calculate the scatter in strain-to-
fracture necessary within the Mott theory to account for the average fragment
size displayed in the ring data. Using reasonable values of Y = 300 MPa and
ρ = 2700 kg/m3 for 6061-T6 aluminum at an expansion strain rate of 104/s
a standard deviation in strain-to-fracture of about 0.25 is calculated from
the Mott relation for fragment number. This estimated scatter in strain-to-
fracture is probably not inconsistent with a nominal 0.3 strain-to-fracture
determined in the experiments of Weisenberg and Sagartz (1977) although,
it is somewhat larger than determined for 1100-O aluminum in the previous
ring tests.
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8.4 Winter’s Expanding Cylinder

A further seminal experimental study of dynamic fragmentation performed in
part to explore features of the Mott theory of fragmentation was conducted
by Winter (1979). In that work thin cylinders (17 mm diameter and 1 mm
wall thickness) of selected metals were loaded to fracture failure with a light
gas gun. Metal cylinders were approximately half filled with an elastomeric
material and nylon solid cylinder projectiles accelerated to velocities of several
hundred meters per second were caused to enter the cylinder and strike the
elastomeric material near the midpoint of the cylinder. Pressures brought
about by the impact led to radial loading and plastic expansion of the metal
cylinder. The intensity of the load and expansion speed of the cylinder was
determined by the impact velocity of the nylon cylinder.

The test geometry and nature of the impact-induced deformation and sub-
sequent failure are illustrated in Fig. 8.20. The cylinders experience rapid,
relatively symmetric radial bulging at the waist. Radial velocity of the bulge
extremum accelerates rapidly to a constant velocity and circumferential strain
rates as determined from this velocity ranged from about 1 × 104/s to
4 × 104/s. Axial stretching rates within the bulge region were reported to
be about one-third the circumferential strain rate.

Plastic
Projectile

Metal Sample
Cylinder

Plastic
Insert

Fractures at
Successive
Expansion
States

Plastic
Projectile

Metal Sample
Cylinder

Plastic
Insert

Fractures at
Successive
Expansion
States

Fig. 8.20. Illustrated gun-accelerated-projectile technique for conducting dynamic
expanding metal cylinder fracture experiments
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Fig. 8.21. Plot of fracture number as a function of cylinder expansion for the four
experiments on naval brass of Winter (1979)

High-speed photography was the principal diagnostic providing deforma-
tion history as well as imaging inception and growth of axial fractures as
dynamic deformation exceeded the failure limits of the material. Data are
reported for aluminum, steel, copper, brass, and bronze. The more compre-
hensive study was that on naval brass. Metallurgical examination of fracture
surfaces of recovered fragments revealed the shear fracture characteristics com-
mon to explosive fragmentation of metal shells.

Unique to this study was the effort to explore the temporal history of
fracture inception. The multiple Kerr cell photographic images acquired at
a rate of one every few microseconds (4 µs per frame was reported for the
illustrated test on brass) provided a measure of the accumulation over time
of the number of axial fractures participating in the failure process.

Results for the four tests on brass conducted by Winter (1979) at suc-
cessively higher strain rates are shown in Fig. 8.21. Only fractures within
the field of view imaged by the camera are included in this plot, which was
approximately one-third of the cylinder.

This early study by Winter (1979) highlights a number of features unique
to the failure of rapidly expanding ductile metal shells. The data focusing on
the temporal history of fracture activation, is, however, absolutely unique and
is central to the statistics-based fragmentation theory of Mott. Attention of
the present efforts will address these data.
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Each of the four tests on the brass cylinders shown in Fig. 8.21 illustrates
the fact that the fractures responsible for cylinder failure do not all appear
simultaneously but emerge statistically over time and expansion, in keeping
with the statistical fracture criteria postulated by Mott. These data also illus-
trate that there is, in some sense, a measure of plastic strain incurred before
fracture failure, although, a clear criteria for quantifying this strain-to-failure
is less certain. Winter proposed a criteria based on a certain level of observable
crack opening, which, from his plots of strain-to-failure, appears to correspond
roughly to the cylinder expansion upon appearance of the last fracture. One
might as readily propose strain-to-failure as the expansion upon appearance
of the first fracture.

We will here also identify a strain-to-failure for the four experiments on
naval brass for purposes of assessing the fragmentation theory of Mott. First,
however, the theory will be pursued further to better understand the sense of
strain-to-failure in Mott’s statistics based theory. This pursuit will also reveal
the coupling between the characteristic fracture spacing and the temporal
occurrence of fractures necessitated by the theory of Mott and supported by
the data of Winter.

In the earlier development of Mott’s theory for ductile fracture in Chap. 3,
the total number of fractures per unit circumferential length was provided
through integration over all expansion 0 ≤ ε < ∞. Equally valid would be the
expression providing the predicted number of fractures up to an expansion ε,

N (ε) =
2n

(2n + 1) (aσ)n

y∫
0

y
2n

2n+1−1e−ydy , (8.14)

where, y = (aε)(2n+1)/2 and with a provided in Sect. 3, where similar devel-
opments were pursued. The equation is readily integrated providing,

N (ε) = βn

( n

πd2σ

) n
2n+1

G

(
2n

2n + 1
, y

)
, (8.15)

where, βn is the function of n provided in Chap. 3, and is sensibly unity for
all n greater than one. The length scale d =

(
2Y

/
ρε̇2

)1/2and G (· , y) is the
normalized gamma function, approaching unity as y approaches infinity.

A similar development can be put forth for the plastic strain accumulated
through the cylinder expansion and fracture process. Early in the expansion
before fracture initiates, expansion ε and the plastic strain εp are the same.
When fractures initiate and Mott waves emanate from the points of fracture,
regions encompassed by the waves will seize straining and the expansion and
cumulative plastic strain will diverge. Analytically this is written,

εp (ε) =

ε∫
0

(1 − D)dε , (8.16)
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where, D is the fraction of circumference subsumed by Mott waves at expan-
sion ε. This expression provides the integral,

εp (ε) =
2

(2n + 1)a

y∫
0

y
2

2n+1−1e−ydy , (8.17)

with a and y the same as in the previous relations. Integration yields,

εp (ε) = αn

(
σn

d

) 2
2n+1

G

(
2

2n + 1
, y

)
, (8.18)

where,

αn =
(

2
2n + 1

) 2n−1
2n+1

[
1√
π

Γ (n + 1/2)
nΓ (n)

] 2
2n+1

Γ
(

2
2n + 1

)
, (8.19)

is again close to unity for n greater than one.
Plots of the number of fractures and the cumulative plastic strain from

(8.15) and (8.18) respectively, are shown in Fig. 8.22. The respective curves
are normalized to σ and d equal to one, while n = 7 was chosen for illustration
which corresponds to a standard deviation in the strain-to-fracture of 1.28σ/n
or about 20%.
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Fig. 8.22. Illustrates the temporal history of fragment number and cumulative
plastic strain as a function of expansion
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The plot illustrates the essential physics governing fragmentation in the
Mott theory. Namely, the statistical spread in the strain-to-failure, governed
by the parameter n when σ is fixed within a Weibull representation of the
hazard function, determines both the characteristic fracture spacing (total
fracture number) and the statistical temporal history of the appearance of
fractures. Thus, within the Mott theory, the result of a certain characteristic
fracture spacing requires a corresponding spread in the temporal occurrence
of those fractures. The data of Winter (1979) for naval brass, in which both
total fracture number and temporal history were measured, are therefore a
unique and stringent test of the Mott theory.

In Fig. 8.22 the cumulative plastic strain is, according to the statistical
Mott theory, observed to diverge smoothly from the cylinder expansion when
fracture initiates and plateaus to a unique failure strain upon completion of
the fracture process. The plot suggests that a reasonable observable estimate
of the strain-to-failure is determined by the midpoint of the fracture number
curve in the same plot. The data of Winter are consistent with this strain-to-
failure interpretation.

Strain-to-failure by the above criteria as well as total fragment number for
the four naval brass experiments of Winter (1979) are plotted as a function of
expansion rate in Fig. 8.23. Assessing strain-to-failure from the midpoint of
the number history curves in Fig. 8.21 reveals a degree of inconsistency in the
data. Namely, the first (lowest expansion rate) and third test provide the low-
est and the highest strain-to-failure, respectively, while the second and fourth
are nominally the same. Error bars indicated in strain-to-failure are estimated
from plotting uncertainties and photographic imaging frequency. These vari-
ations cannot be accounted for with Mott’s statistics and perhaps relate to
sensitivity of the dynamic fracture to preparation differences in individual
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Fig. 8.23. Failure strain and fragment number from data of Winter (1979) on ex-
panding naval brass cylinders. Curves represent the best fit with Mott fragmentation
theory
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cylinders (surface finish for example). In any case, these experimental varia-
tions in strain-to-failure are not captured in the theoretical representation to
be described.

The fracture number data shown represent the fractures imaged by the
photographic method over approximately a third of the circumference of the
cylinder as described by Winter (1979). Error bars shown correspond to plus
or minus one fracture.

Mott’s theoretical equations for the total fracture number and the final
strain-to-fracture ((8.15) and (8.18) for expansion approaching infinity) pro-
vided the best fit to the data in Fig. 8.23 by adjusting σ and n. The values
were n = 7 and σ = 0.18 in S. I. units. A flow stress Y = 300 MPa and density
ρ = 8450 kg/m3 was used for the naval brass.

The statistical fracture number histories from (8.15) for the four experi-
mental strain rates using the Mott parameters σ and n determined above from
the final fracture number and plastic strain data for naval brass are shown in
Fig. 8.24. Figures 8.23 and 8.24 clearly illustrate the coupling between final
fracture spacing and the statistical appearance of fractures central to the the-
ory of Mott. A comparison of the predicted histories of the fracture number
in Fig. 8.24 with the experimental histories of Winter (1979) in Fig. 8.21 sup-
ports the Mott theoretical approach. Although the predicted curves cannot
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the four naval brass experiments of Winter (1979) based on the Mott parameters n
and σ selected to fit the fragment number and strain-to-fracture data
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capture the scatter in translation of the several tests, the history of individual
experimental tests is nicely reproduced by the theory.

8.5 Natural Fragmentation of an Exploding Cylinder

Smooth-walled explosively-loaded metal cylinders fragment without the aid of
fragmentation enhancing techniques. In the natural fragmentation of explod-
ing cylinders the statistical distribution in the size and velocity of fragments
is determined thorough a complex interplay among explosive characteristics,
geometry of the explosive-case system, and mechanical properties of the case
metal. As noted in previous chapters, early attempts to introduce some sci-
entific order to such violent event are attributed to Mott (1943, 1947, 1948),
Taylor (1963), and Gurney (1943), among others. Chapter 7 of the present
text is focused on issues of scaling of exploding cylinders. Literally thousand
of arena tests of explosively-driven fragmenting cases in which various frag-
mentation data have been collected have been performed over the intervening
decades.

In the present section discussion is focused on one study in which explo-
sive and case metal were particularly well characterized, and quite thorough
diagnostics were used to interrogate the explosive natural fragmentation event
[Grady, and Hightower, 1992]. These results are considered in light of Mott’s
statistical and the energy-based predictions of fragmentation.

8.5.1 Natural Fragmentation Experiment

An explosive fragmentation experiment was performed on a 15.2 cm diameter
smooth wall metal cylinder. The cylinder was 38.1 cm in length with a wall
thickness of 5.7 mm. The cylinder was machined of 4140 steel and heat treated
to a Rockwell hardness of 40 (Y = 1.1 GPa). The cylinder was filled with RX-
35-AN explosive and the cylinder ends were confined. The explosive was center
detonated at one end.

The insensitive high explosive RX-35-AN used in the present study has
been calibrated through instrumented copper cylinder expansion experiments
to provide expansion velocity data for purposes of establishing appropriate
nonideal explosive equation-of-state parameters [Grady, 1990]. The measured
expansion velocity data are scaled with appropriate Gurney relations to de-
termine expansion velocity behavior for the steel cylinder experiment.

High speed front-lit photography using a CORDIN framing camera with
5 µs frame intervals was used to observe acceleration and breakup of the ex-
panding cylinder. The opening of fractures and emergence of explosive gases
were consistent with the 1.20–1.25 strain to fracture measured on recovered
fragments. An expansion velocity of 1760–1830 m/s determined from the pho-
tographs compare well with the limiting Gurney velocity of about 1800 m/s
calculated for this cylinder.
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Multiple flash radiography was used to determine fragment velocity, tra-
jectory and pattern for a 40◦ sector of the cylinder. Fragments from this sector
were captured in fiberboard bundles which were placed approximately 6 me-
ters from the event. From the bundles, 161 fragments were recovered which
represents 90% of the weight of the 40◦ cylinder sector.

From the recovered fragments, it was observed that fracture was predom-
inantly along elongated strips with the fracture parallel to the axis of the
cylinder. A number of the fragments were 4 to 5 times longer than they were
wide. Both tensile and shear fracture were observed from examination of frac-
ture surfaces. Shear fracture appeared to be the dominant breakup mecha-
nism. Fragment size statistics were determined from the recovered fragments
for comparisons with the present fragmentation analysis.

8.5.2 Strain to Fracture

Within the fragmentation theories considered, it is necessary to establish the
radial expansion velocity of the exploding cylinder at the moment of fracture
to provide a measure of the strain rate at which breakup occurs. An early
theory used to calculate the fracture strain of explosively expanding cylinders
is due to Taylor (1963). Later improvements on Taylor’s theory have been
offered, however predicted fracture strains do not differ significantly from that
of Taylor. Taylor’s analysis led to a relation for the circumferential stress in
the shell subjected to an internal pressure P given by σ(y) = Y −P (1− y/h)
where Y is the yield stress in simple tension, h is the shell thickness and y is a
coordinate through the thickness, 0 ≤ y ≤ h. Thus σ(0) = Y −P (compression)
at the inner surface and σ(h) = Y (tension) at the outer surface. The crossover
point occurs at an interior point of the shell. Taylor assumed that failure
occurs when the internal pressure within the expanding cylinder decreases to
a value such that tension is just achieved at the inner surface.

It is common to assume ideal gas behavior for the explosive products and
develop an expression for pressure versus expansion radius to calculate frac-
ture strain with the Taylor method. The RX-35-AN explosive used in the
present study was not suited to an ideal gas description of the explosive prod-
ucts, however. Instead, the velocity history data was used, through appropri-
ate Gurney expressions, to calculate pressure versus radius behavior [Grady,
1990].

Through this method, an internal pressure of P = Y = 1.1 GPa, corre-
sponding to the yield stress of 4140 steel, is calculated at an expansion radius
of R/Ro = 1.24. This fracture strain calculated through the Taylor criterion
is compared with through-the-thickness measurements on a number of frag-
ments recovered from the natural fragmentation experiment on the 4140 steel
cylinder in Fig. 8.25. The comparison is reasonably consistent with the Taylor
prediction.

Also shown is a best fit to the data of a Mott statistical strain to frac-
ture function of the Gumbel type. The distribution curve required a mode,
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Fig. 8.25. Strain to fracture data from thickness measurements of individual frag-
ments. Comparison with prediction of Taylor theory and a best fit to a Mott strain
to fracture statistical distribution (Gumbel distribution)

µ = 0.22, and scale parameter, σ = 0.025. (The standard deviation is 1.283 σ
whereas the Mott gamma parameter is γ = 1/σ).

The analyses of Gurney were then applied to determine the radial expan-
sion velocity at the predicted fracture strain [Grady, 1990]. For the present
experiment an expansion velocity of 1530 m/s was calculated. This value will
be used in the subsequent fragmentation analysis to establish the strain rate
at the time of fragmentation of ε̇ ≈ 1.6 × 104/s.

8.5.3 Fragment Size

Calculations of fragment size will be based on the several theoretical ap-
proaches considered in some detail in the earlier chapters. The statistics-based
theory of Mott was found to provide a characteristic fracture spacing relation
dependent on the current flow stress and circumferential strain rate, and on
the spread in the strain to fracture (Mott’s γ property) according to,

s =

√
2Y

ρε̇2

1
γ

, (8.20)

Alternatively, an energy theory of fragmentation based on an extension
of Mott’s fracture interaction analysis [Kipp and Grady, 1985] including a
fracture resistance property, leads to a circumferential fracture spacing of,
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Fig. 8.26. Mechanisms of tension and shear fracture observed 4140 steel cylinder
fragmentation

s =
(

24Γ
ρε̇2

)1/3

, (8.21)

where Γ is the fracture energy dissipated, and the work required, to compete
the single fracture process. Comparisons of the present natural fragmentation
data will be made with the several predictions of fracture spacing provided in
(8.20) and (8.21).

8.5.4 Fragmentation Energy

Calculation of the nominal circumferential fracture spacing from (8.21) re-
quires knowledge of the fragmentation energy Γ. The fragmentation energy is
a material and mechanism dependent property which is determined through
experimental measurements and models of the fracture dissipation process.
There are two predominant modes of fracture in the breakup of an expand-
ing metal shell which are illustrated in Fig. 8.26. The first is tensile fracture
where failure proceeds by the opening of mode I cracks. Fracture dissipation
is governed by the material fracture toughness Kc, and an estimate of the
fragmentation energy is provided by,

Γ =
K2

c

2E
, (8.22)

where E is the elastic modulus of the material. Here it is assume that the static
fracture toughness Kc provides a reasonable measure of the fragmentation
toughness Kf . Material properties for the 4140 steel tested in the present
study are provided in Table 8.2, and provide a fragmentation energy of Γ ≈
16 kJ/m2 for tensile fracture.

In explosively-expanding cylinders, shear fracture preceded by localized
adiabatic shear banding on the planes of fracture is also an important mode
of failure. In determining the fragmentation energy associated with shear frac-
ture, we will assume that the energy is principally accounted for by dissipation



186 8 Experimental Fragmentation

Table 8.2. 4140 Steel Properties

ρ (kg/m3) 7870
Hardness (HRC) ∼ 40
E (GPa) 200

Kc (MN/m3/2) 80
Y (GPa) 1.1
χ (m2/s) 1.5 × 10−5

c (J/kg K◦ ) 450
α (K◦−1) 7.5 × 10−4

Γ Tensile (kJ/m2) 16
Γ Shear (kJ/m2) 19

in the adiabatic shear banding process. Grady and Kipp (1987) have analyzed
the energy dissipated in adiabatic shear banding and have arrived at the ex-
pression,

Γ =
ρc

α

(
9ρ3c2χ3

Y 3α2γ̇

)1/4

. (8.23)

In (8.4), γ̇ is the shear strain rate and is approximately equal to the cir-
cumferential stretching rate in the present application (≈1.6 × 104/s). The
new material properties include the specific heat c, the thermal diffusion co-
efficient χ, and the thermal softening coefficient α. From properties provided
in Table 8.2 a fragmentation energy of Γ ≈ 19 kJ/m2 is obtained for shear
fracture, which is remarkably close to that calculated for toughness governed
tensile fracture.

Whether tensile or shear fracture dominated in the present fragmenta-
tion test on 4140 steel was not clear. Metallography on explosively fractured
specimens indicated that this steel had a strong tendency to shear band and
fracture along shear banded planes. There was also observation of fracture on
planes oriented at approximately 45◦ to the shell surface, a further indication
of shear dominated fracture. The close numerical values for the tensile and
shear fragmentation energies will lead to similar predictions of circumferen-
tial fracture spacing, however. This similarity in magnitude of the two energy
values is still not understood.

8.5.5 Distribution in Fracture Spacing and Comparison
with Predictions

The present study is focused on predicting the circumferential fragmentation
intensity. It does not consider axial breakup of the longitudinal strips. To make
a statistical comparison of the fragment size data with the present analysis, the
following reduction of the data was performed: Every fragment was weighed
and the length of every fragment was measured. An effective rectangle was
assumed for a fragment such that the mass is given by m = ρwtl where ρ is
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Fig. 8.27. Number histogram of the 161 fragments from the natural fragmenta-
tion of the 4140 steel cylinder and comparisons with predictions of circumferential
fracture spacing

the density and w, t and l are the width, thickness and length, respectively.
A circumferential fragment width was then calculated for each fragment from
w = m/ρtl where m and l are the measured values and t is the initial wall
thickness of the cylinder. The width w then provides an effective average
measure of fracture spacing for that fragment in terms of the initial cylinder
dimensions. A fragment of length l was then considered to be a fraction of
a strip of length L, given by n = l/L, where L is the length of the cylinder.
Through this method, a number versus circumferential width distribution was
determined for the fracture spacing data.

The experimental circumferential fragment number data are plotted as a
number histogram in Fig. 8.27. The same data are plotted as a cumulative
number distribution in Fig. 8.28. The number data on the ordinate has been
scaled from the 40 degree sector to a full cylinder. Initial wall thickness of the
cylinder is identified in each figure for reference.

Predictions of the nominal fracture spacing based on the energy governed
expression from (8.21) using both the tensile fracture energy (∼16 kJ/m2)
and the shear band enhance fracture energy (∼19 kJ/m2) are identified
in the figures. Specifically, the values are s = 4.6 mm (tension) and s =
4.9 mm (shear) referenced to initial circumferential dimensions. Predictions
are slightly smaller than reported in Grady and Hightower (1992) because of
a slightly different method of calculating the strain rate.
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Fracture spacing predictions based on the Mott statistical theory through
(8.20) additionally requires the γ property characterizing the statistical strain
to fracture material behavior. Mott provided several methods for estimating
γ. Here the statistical spread in fracture strain reported in Fig. 8.25 for the
present fragmentation test will be used to determine γ. A value of γ = 40
calculated earlier in this section combined with the flow stress and density
values from Table 8.2 yield a fracture spacing of 4.2 mm.

It is readily observed that all of the predicted values for fracture spacing
are in sensible agreement with each other and the measured data. The 10%
to 90% spread in fragment number ranges over about 3 mm and 7 mm easily
spanning the predicted values. The close agreement between the energy-based
prediction and Mott’s statistics based prediction is intriguing and not fully
understood. As discussed in Chap. 5, where the two theories are compared,
the present agreement in predictions occurs in the regime of energy controlled
fragmentation where Mott statistics is expected to characterizes the statistical
fracture activation rather than the fracture survival and completion processes.
This comparison also apparently carries over to the statistical variation in
circumferential stretching, and corresponding fragment thickness strain, in
the energy governed dynamic breakup process. Almost obscured in the data
in Fig. 8.28 is a fit of the cumulative distribution with the Mott statistical
fracture spacing distribution developed in Chap. 3. Again the agreement is
surprisingly good. Disconcerting, however, is the observation that fracture

0 2 4 6 8 10
3

10

30

100

300

Circumferential Fragment Width  (mm)

C
um

ul
at

iv
e 

F
ra

gm
en

t N
um

be
r

Experimental
Fragment
Data

Wall
Thickness

4140 Steel Cylinder

Mott
Statistical
Distribution

Mott
Theory

Energy
Theory

0 2 4 6 8 100 2 4 6 8 10
3

10

30

100

300

3

10

30

100

300

Circumferential Fragment Width  (mm)

C
um

ul
at

iv
e 

F
ra

gm
en

t N
um

be
r

Experimental
Fragment
Data

Wall
Thickness

4140 Steel Cylinder

Mott
Statistical
Distribution

Mott
Theory

Energy
Theory

Fig. 8.28. Cumulative fragment number plot and comparisons with predicted frag-
ment size and distribution
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spacing in the present test span the thickness of the cylinder case bringing
into question issues of thin case versus thick case behavior.

8.6 Tube Fragmentation Tests of Vogler and Coworkers

The seminal techniques developed by Winter (1979) have been revisited and
extended in the dynamic fragmentation study of Vogler et al. (2003). Much of
the early observations of Winter are supported in this extended investigation.
Additionally, new results are reported due in part to the different materials
studied and a broader range of diagnostic techniques.

8.6.1 Experimental Methods

Two well characterized metals were examined in this experimental study. The
first was a heat treated AerMet 100 steel that has received considerable atten-
tion in fragmenting munitions applications [Wilson et al., 2001; Chhabildas
et al., 2001]. Scaling studies of cylinder fragmentation performed on this steel
are discussed in Chap. 7. The second is a highly ductile alloy of uranium,
U6Nb, discussed in an early section in the present chapter.

The experimental test technique replicates much of that developed by Win-
ter (1979). The test metals are produced in tubes 50.8 mm in length, 12.7 mm
in inner diameter and with several tube wall thicknesses. Controlled inner
loading is produced through a gas gun acceleration and insertion of a solid
cylinder lexan projectile 25.4 mm in length striking an identical stationary
lexan cylinder at the center point of the metal tube as previously illustrated
in Fig. 8.20. The impact pressure and subsequent outward motion leads to dy-
namic budging of the metal cylinder causing in turn, rapid plastic straining,
multiply dynamic fracture, and statistical fragmentation of the test metal.

Various diagnostic techniques were used to interrogate the dynamic fail-
ure and fragmentation process. High-speed photography provided detailed
measurement of the expansion history along with the temporal evolution of
dynamic fracture activation and propagation. Time resolved velocity interfer-
ometery or VISAR [Barker and Hollenbach, 1972] provided detailed expansion
velocity history including initial shock intensity. PVDF pressure gages were
mounted interior to measure impact generated pressure amplitude and quan-
titative pressure history of the cylinder loading function. Lastly, soft recovery
methods captured fragment debris for post test evaluation and metallography.

8.6.2 Experimental Results

Results representative of the study are shown from high speed photographic
imaging of the dynamic tests in Fig. 8.29. The images on the left are for a
heat-treated AerMet tube with a 3 mm wall thickness. Comparable images for
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Fig. 8.29. The images on the left are for heat treated AerMet 100 steel at 15.4 µs
and 23.4 µs after impact. Images on the right are for U6Nb uranium 18.3 µs and
25.1 µs after impact. Impact velocities were 1.92 km/s for steel and 1.86 km/s for
uranium, respective

an experiment on a U6Nb tube are shown on the right. Timing of the images
after impact are provided in the figure caption.

Initial expansion of the tube is visually homogeneous and cracking is not
observed until some time after impact. For the one AerMet tube, fracture was
first perceived at 10.4 µs after impact. This first observation corresponds to
a circumferential strain at the maximum bulge of 18%. Comparable strains
determined from the deformed thickness of collected fragments ranged over
about 9% and 16%. Strains determined from the observation of first fracture
on three U6Nb experiments were 12%, 21% and 24%, respectively. Strains
inferred from fragments collected ranged over about 15% to 23%. Such scatter
in strain to fracture should not be surprising and is consistent with similar
results in the study of Winter.

After fractures become visible in the photographic imaging, their number
increases rapidly. In the AerMet 100 experiment shown in the left of Fig. 8.29
a maximum of seven cracks were visible at 15.4 µs after impact. That num-
ber decreased, however, as the axially propagating cracks intersected and coa-
lesced. The velocity of the principle cracks could be measured. Growth was not
steady, especially immediately after activation, but measured velocities ranged
from about 0.54 to 1.7 km/s. This crack speed compares with a Rayleigh wave
speed for steel of 2.84 km/s.

The VISAR velocity profile measurements for comparable tests on AerMet
steel and U6Nb uranium are shown in Fig. 8.30. The three VISAR locations
are illustrated in the inset, and recorded radial motion at 5 mm intervals
along the tube axis. Reverberation of the loading shock wave through the wall
thickness is clearly observed as the radial acceleration proceeds. Maximum
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Fig. 8.30. Velocity measurements with VISAR for AerMet 100 steel (left) and
U6Nb uranium (right) are shown as solid curves. CTH computational simulations
are the broken curves compared with the measured data

radial velocity is achieved near the VISAR location b and is about 10% of the
projectile impact velocity.

Computational simulations of the dynamic event were performed using the
Sandia National Laboratories CTH shock physics code [Bell et al., 2000]. A
Mie-Gruneisen equation of state model and von Mises ideal plasticity strength
model were used for the participating materials. A Johnson-Cook fracture
model [Johnson and Cook, 1983] was employed to determine fracture onset in
the test metals. Simulations are compared with the measured velocity data in
Fig. 8.30. Agreement with the data is reasonable although significant diver-
gence at later time is observed. This discrepancy is attributed to both overly
simplistic metal strength models, and to motion irregularities brought about
by the statistical fracture and fragmentation process.

In selected tests under comparable impact conditions fragments from the
dynamic event were soft recovered, counted and weighed. Fragment distribu-
tion data for one heat treated AerMet steel specimen and three U6Nb spec-
imens are shown in Fig. 8.31. Cumulative fragment number is provided on
the ordinate while cumulative fragment mass fraction (fraction of total tube
mass) is shown on the abscissa. A representative fragment from each metal is
also shown in the figure.

Typically a large section of the tubular specimen nearest the projectile
insertion end remained intact. For the AerMet steel test provided in Fig. 8.31
this section was 48% of the whole tube mass. For the AerMet steel test fourteen
fragments with mass greater that one gram were recovered. These fragments
constituted the steeper portion of the distribution curve in Fig. 8.31. Thirteen
smaller fragments were also recovered and complete the smaller particle shal-
low portion of the distribution curve. Steel fragments were generally elongated
as the photograph illustrates in Fig. 8.31. Shear fracture at approximately 45
degrees to the surface normal was the rule. Fragments also exhibited crack
steps and arrested fractures.
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Fig. 8.31. Cumulative fragment number distributions versus fragment mass fraction
for steel and uranium tube fragmentation tests. Representative recovered fragments
for (b) heat treated AerMet 100 steel and (c) U6Nb uranium are also shown

The fragment mass distribution trend for U6Nb uranium, also shown
in Fig. 8.31, is similar to that of steel but with markedly more fragments.
Fragments were significantly more jagged and irregular, and tended to be
more equi-dimensional. Significant deformation-induced surface roughening
was also noted on the uranium fragments.

Fragment distributions for both the heat treated AerMet steel and U6Nb
uranium were adequately fit to a bilinear distribution of the form,

N(m) = N l
oe

−m/µl + Ns
o e−m/µs . (8.24)

Argument for the application of a bilinear mixture distribution are considered
in Chap. 2 and have been discussed in earlier studies [Grady and Kipp, 1985;
Odintsov, 1992]. Since large fragments dominate the distribution, the fitted
distribution parameter µl was used along with the circumferential strain rate
determined from VISAR or high-speed photography in the relation,

Kf =

√
ρc2ε̇2µl

24
, (8.25)

to provide a measure of the effective fragmentation toughness under the
present test conditions. For two AerMet heat-treated steel experiments strain
rate at fracture of 5 × 104/s was determined and toughness values of 62 and
71 MPa m1/2 were obtained. For four U6Nb uranium tests the measured dis-
tributions provided toughness values of 49, 55, 58 and 61 MPa m1/2. These
values are remarkably close to the fragmentation toughness determined from
expanding ring experiments on U6Nb discussed earlier in the present chapter.
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8.6.3 Summary

The present extension of the expanding tube test technique initially explored
by Winter (1979) is shown to provide a valuable method for investigating
the phenomena of dynamic fracture and fragmentation. Additionally, barring
the stochastic nature of dynamic fracture, the test method is found to be very
reproducible, especially in the initial expansion phase of the tube. The method
is quite amenable to the combined use of VISAR, high-speed photography and
soft-recovery diagnostics.

The steel and uranium metals studied in the present investigation exhibit
strikingly different fracture and fragmentation characteristics. Some of these
features are not yet well understood. The outwardly more brittle fracture
appearance and more abundant fragmentation of the uranium alloy was not
expected but may relate to the propensity for this metal to undergo adiabatic
shear failure.

The sensible agreement of the fragmentation toughness determined in the
expanding tube method with other dynamic methods and with static frac-
ture toughness values is encouraging. This agreement should be viewed with
caution, however, as some of the assumptions important to the model are not
realized in the expanding tube test. Nonetheless, the reasonable agreement
among the different test methods suggest that the model must capture some
of the physics reasonably well and should continue as a useful engineering
tool.

8.7 Steel Cylinder Fragmentation of Mock and Holt

An instructive study of metal fragmentation is provided by the experimental
investigation of Mock and Holt (1983) into the explosive-driven fragmentation
of iron and steel cylindrical shells. In that study explosive loading was per-
formed on the more ductile Armco iron and on HF-1 steel subjected to several
heat treatments producing markedly more brittle response. Thick-walled test
cylinders provided large numbers of fragments, and well-constrained fragment
distributions. The study also included a detailed examination of fragment
morphology and provided a classification scheme for the sorting of fragments.
Both distributions and fragment classification provide unique data for test-
ing statistical theories and examine the physical processes governing dynamic
fracture over several ferrous metals with different fracture characteristics.

8.7.1 Experimental Methods

Explosive fragmentation tests were performed on metal open-end cylindrical
shells approximately 20 cm in length, 7.5 cm in inner diameter and 2 cm in
wall thickness. The explosive was cast-in-place composition B explosive which
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was detonated at one end and extended well beyond each end of the metal
cylinder.

The first metal was as-received Armco iron. The second, was an HF-1 steel
heat treated to a tempered martensite state. The third, was also HF-1 steel
heat treated to a more brittle cementite and pearlite structure. Six fragmenta-
tion tests, two on each metal, were performed. Fragments were soft captured
in sawdust and extracted with magnetic methods. Over 99% of the original
cylinder mass was recovered on all tests. Over 1400 fragments weighing more
that 1 gr (0.065 g) were collected from the Armco iron tests and contributed
to the data analysis. Similarly, over 10,000 and 12,000 fragments, respectively,
were collected for the two heat treatments of HF-1 steels.

8.7.2 Fragment Distributions

Cumulative fragment number greater than mass m versus fragment mass is
plotted in Fig. 8.32 for both experiments on Armco iron. Separate symbols
are not used to distinguish between the two tests because they overlay within
the statistical scatter. One curve in the figure represents the distribution of all
(total) of the fragments collected. The other curve identifies the distribution
of specific type 1 fragments which will be described shortly.
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Fig. 8.32. Fragment mass distributions for Armco iron exploding cylinder tests
[Mock and Holt, 1983]

In Fig. 8.33 similar fragment distributions are shown for the total number
of fragments for the first (heat treatment A) and second (heat treatment B)
preparations for the HF-1 steel. Again, two tests were performed on each
heat treatment, so the two curves represent the resulting distributions for
approximately 21,000 and 25,000 fragments, respectively.

It was pointed out by Mock and Holt (1983) that the distributions in
Figs. 8.32 and 8.33 for the total number of fragments were well described
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Fig. 8.33. Fragment mass distributions for HF-1 steel exploding cylinder tests
[Mock and Holt, 1983]

with a linear curve in these semi logarithmic plots with the exception of the
upturn associated with the smaller fragment end of the distribution. These
curves would correspond to β = 1 for the general scaling relation suggested
in Chap. 7. Grady and Kipp (1985) have shown that the data of Mock and
Holt are very well described by a bilinear exponential, or Poisson mixture,
distribution as described in Chap. 2.

8.7.3 Fragment Morphology

A further feature of the study of Mock and Holt (1983) was the classification
of fragments according to the shape and the mode of fracture governing the
fragment separation process. The author’s noted that attempts to type sort
fragments resulting from exploding munitions events goes back to at least the
early reports of Mott. Several of these reports by Mott do in fact examine the
shape and fracture surface features of collected fragments, and comment on
the several fracture processes possibly responsible. In Fig. 8.34 sketches from
the report of Mott are reproduce and illustrate the classification of fragments
observed by him. He suggested that failure probably initiated on the inner
surface of the munition cylinder as shear rupture, transitioned to extension
fracture at some interior point, and culminated at the cylinder outer surface.
In his observations, fragments of type 1–4 were commonest with occasional
fragment of type 5. He also pointed out that for mild steel and carbon steel,
through-going shear rupture was frequently observed as illustrated in his lower
sketch in Fig. 8.34.

Mock and Holt (1983) found the more extensive fragment classification
scheme shown in Fig. 8.34 more appropriate to the Armco iron and HF-1
steel cylinder tests performed by them. This method suggested four princi-
ple fragment types comprised of type 1 fragments (including both inner and
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Fig. 8.34. Classification schemes for fragment type resulting from exploding muni-
tions fragmentation. (a) Original sketches of Mott (1943). (b) Fragmentation clas-
sification of Mock and Holt (1983)

outer cylinder surfaces), type 2 (outer cylinder surface only), type 3 (inner
cylinder surface only), and type 4 (no cylinder surface). Fragments were fur-
ther subtyped according to the shear or extension character of the fracture
surfaces.

Sorting of the fragments according to this scheme was carried out for the
tests performed. It was shown that for the more ductile Armco iron fragments
of type 1 (both inner and outer fragment surface) constituted very close to
80% of the total cylinder mass. The authors further showed that the distri-
bution for only the type 1 fragments for the Armco iron tests plotted linear
on a semi logarithmic cumulative number versus mass graph over the full
range of the data as illustrated in Fig. 8.32. Fragments of the remaining type
contributed to the small mass upturn adequately described by a bilinear expo-
nential distribution. Behavior is reminiscent of the cylinder tests of Odintsov
(1992) discussed in Chap. 2.

Sorting of fragments from tests on HF-1 steel, on the other hand, resulted
in less than 5% of the mass of type 1 fragments. A complex mix of fragments
of type 2 through type 4 constituted the preponderance of the fragment mass
distribution.

A final noteworthy observation in the tests of Mock and Holt were corre-
lations among static strength properties of the several metals and features of
the fragmentation results. Armco iron provided a tensile strength of approxi-
mately 300 MPa and a permanent elongation to fracture of 34%. In contrast,
the two heat treatments of HF-1 steels, A and B, respectively, exhibited 1100
MPa and 880 MPa tensile strengths and elongations to fracture of 3% and
1%. Some variations in properties with respect to orientation relative to rolling
direction were noted, however.

For comparison, expected fragment mass for the fragment distributions
for Armco iron and for the HF-1 steel with heat treatments A and B were
µ = 41 g, 3.6 g and 2.5 g respectively, based on a linear exponential descrip-
tion of the linear portion of the respective distributions. Estimating a circum-
ferential strain rate from Gurney considerations of approximately 104/s the
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respective mass scale parameters in (8.25) of the previous section yield frag-
mentation toughness values of Kf = 185, 55, and 45 MPa m1/2, respectively
for the three metals.

Type 1 fragments which were large enough to include both inner and outer
surfaces of the original cylinder were examined to infer other feature of the
dynamic fracture event. These included all of the type 1 fragments from each
of the HF-1 steel experiments (approximately 25 to 50 fragments per test) and
a comparable representative number from the Armco iron tests. A permanent
dynamic strain to fracture was estimated from the change in thickness relative
to the initial cylinder wall thickness. These engineering strain values were
0.34 and 0.36 for the two Armco iron tests, 0.11 and 0.12 for HF-1 steel heat
treatment A, and 0.12 and 0.14 for heat treatment B.

Lastly the authors showed that the extent of shear fracture through the
thickness before transition to the more brittle extension fracture behavior was
dependent on the metal properties. For Armco iron shear fracture proceeded
through nearly one-half (approximately 45%) of the cylinder wall thickness
before transitioning to extension fracture. For the two HF-1 steels this shear
fracture distance was reduced to about 25% and 20% of the wall thickness for
heat treatments A and B, respectively.
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