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Application to the Biaxial Fragmentation
of Shells

Much of the development of a statistical energy-based theory of fragmentation
of stretching ductile metals has been restricted to one-dimensional geometries
such as expanding rings or, at best, a uniformly expanding cylinder where
the theory is intended to describe the average and statistical spacing of axial
fractures. In this chapter an analysis will be extended to describe the breakup
of a biaxial expanding shell or membrane of ductile metal in which stretching
rates in mutually orthogonal directions are each nonzero and are, in general,
different. A specific case of interest, of course, is that of a stretching spherical
shell segment in which the orthogonal stretching rates are the same.

In the development of the present two-dimensional fragmentation theory
it will be assumed that at a point on the surface of the expanding shell or-
thogonal principal stretching directions can be determined and that fracture
in the two principle directions are independent and governed by the condi-
tions of the linear fragmentation theory developed in the earlier sections. This
approach is illustrated in Fig. 6.1, where principal stretching directions on a
surface are identified and a corresponding statistical distribution of fractures
along the x and y stretching directions partition the surface into a statistical
distribution of fragment areas.

6.1 The Fragment Size and Aspect Ratio Scales

Within the energy governed region of the linear statistical fragmentation the-
ory a fracture activation rate, and a corresponding fracture spacing length
scale, has been determined in the previous chapter based on a property of the
material identified as the fragmentation toughness and the rate of stretching
leading to fracture. The same relation will be used to determine the frac-
ture spacing length scale in both orthogonal principal stretching directions.
Namely,
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Fig. 6.1. Illustrates independent application of linear statistical fragmentation the-
ory in orthogonal principal stretching directions to implement fragmentation of the
surface at a point

xo =

(√
12Kf

ρcε̇x

)2/3

, (6.1)

and,

yo =

(√
12Kf

ρcε̇y

)2/3

. (6.2)

The fragment area scale is then determined from,

ao = xoyo =

(√
12Kf

ρc¯̇ε

)4/3

, (6.3)

where,
¯̇ε =

√
ε̇xε̇y . (6.4)

The nominal fragment aspect ratio is provided by,

ro = xo/yo = (ε̇x/ε̇y)−2/3
. (6.5)

Predictions of the fragment area scale based on (6.3) as a function of the
stretching rate are shown in Fig. 6.2. The predicted curve is based on the
equiaxial explosion driven expansion and fragmentation of a spherical shell
segment of a common metal. The experimentally observed fracture fabric was
in sensible qualitative and quantitative agreement with the predicted behav-
ior. At typical stretching rates of a few times 103/s up to about 104/s for
explosively loaded metal shells a fragment size scale on the order of a square
centimeter or less, is predicted consistent with experimental observation. In-
creasing strain rate decreases this size scale. Increased toughness, on the other
hand, is predicted to increase fragment size.
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Fig. 6.2. Fragment area scale versus mean stretching rate based on energy deter-
mined characteristic fracture spacing and properties for equiaxial expansion of a
metal

6.2 The Biaxial Fragment Distribution Properties

The dynamic fragmentation of a rapidly stretching metal shell involves a com-
plexity of rapidly opening fissures and cracks that result in a multiplicity of
separate fragments. Individual fragments continue on outward divergent paths
at the velocity at which breakup occurred. Although the size scale determined
previously adequately characterizes the number density and average size of
these fragments, a statistical distribution in fragment size is clearly observed.
The objective here will be to apply the linear statistical fragmentation theory
to characterize the distribution in area fragment size observed experimentally.

In the linear theory, based on the Mott statistical premise, as constrained
by the energy-based fracture spacing, a statistical distribution in fracture
spacing was determined. The resulting distribution was found to satisfacto-
rily describe linear fragmentation experiments such as the expanding ring
studies. In the present development the assumption of independent statistical
fracture in mutually orthogonal principal stretching directions is continued.
The statistical size distribution to be pursued is as illustrated in Fig. 6.3. In
either the x direction, or in the orthogonal y direction, the statistical spac-
ing of fractures (lines) is governed by the linear Mott statistical distribution
with independent length scales of xo and yo provided through (6.1) and (6.2),
respectively. The statistical distribution in spacing in the x direction derived
previously is,
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x

y

Fig. 6.3. Illustrates independent statistical distributions of fracture spacing in or-
thogonal x and y principal stretching directions. Areas determined by intersecting
lines will model statistical distribution in fragment areas and fragment aspect rations

f (x) =
β2

4
1
xo

(
x

xo

)3

e−
1
4 (x/xo)3

1∫
0

(
1 − y2

)
e−

3
4 (x/xo)3y2

dy , (6.6)

where, β = 3/Γ(2/3). An equivalent distribution applies to the spacing distri-
bution in the y direction. With further analytic manipulation the integral in
(6.6) can be expressed as an error function, if useful. The careful reader will
note that the length scale x0 in (6.6) is not precisely the expected value of
the fragment size (see (3.121)). Uncertainties resulting from the assumptions
leading to (6.1) and (6.2) provide allowance for this lack of rigor.

6.2.1 Fragment Area Distribution

The linear Mott distribution provided by (6.6) is not convenient for an analytic
determination of the distribution in fragment areas provided by the overlap of
horizontal and vertical lines as illustrated in Fig. 6.3. The approach pursued
here will be to approximate the distribution from (6.6) with another more
analytically tractable distribution. The distributions that will be tried are the
Weibull distribution,

f(x) =
n

xo

(
x

xo

)n−1

e−(x/xo)n

, (6.7)

and the gamma distribution,

f(x) =
1
xo

n

Γ(n)

(
nx

xo

)n−1

e−nx/xo . (6.8)
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Fig. 6.4. Mott linear fragment size distribution compared with Weibull and Gamma
distribution approximations

The Weibull and gamma distributions with the distribution parameter n ad-
justed to provide the optimum fit to the Mott distribution are compared
with the Mott distribution from (6.6) in Fig. 6.4. Values of n = 3.45 for the
Weibull distribution and n = 8.0 for the gamma distribution yielded the ob-
served results. The Weibull distribution clearly provides the closer fit to the
desired Mott distribution. Both Weibull and gamma distributions will be car-
ried through the analysis in developing a fragment area distribution. Both are
analytically tractable and both solutions provide a measure of sensitivity to
the fit between the Mott distribution in (6.6) and either of the approximations
in (6.7) and (6.8).

Working first with the Weibull distribution, an expression assessing the
two-dimensional statistical partitioning of the surface in Fig. 6.3 is immedi-
ately written as a juxtaposition of (6.7) and the corresponding distribution in
the y direction. Namely,

f(x, y) =
n2

xoyo

(
xy

xoyo

)n−1

e−(x/xo)n

e−(y/yo)n

, (6.9)

provides the probability density distribution for fragment areas of length x
and width y. Equation (6.9) can be transformed to distribution over fragment
area,

a = xy , (6.10)
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and aspect ratio,
r = x/y . (6.11)

The differential invariant,

f(x, y)dxdy = g(a, r) dadr , (6.12)

leads to,

dxdy =
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ dadr , (6.13)

for the differential element through the transformation Jacobian [Buck, 1965].
Accordingly, the transformed probability density function is,

g(a, r) = f(x(a, r), y(a, r))
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ . (6.14)

Calculating the Jacobian through (6.10) and (6.11),
∣∣∣∣∂(x, y)
∂(a, r)

∣∣∣∣ =
1
2r

, (6.15)

yields,

g(a, r) =
1
2

n2

(xoyo)n

an−1

r
e−( 1

xo

√
ar)n

e
−
(

1
yo

√
a/r

)n

. (6.16)

The distribution over fragment area is then written as the integral expression,

h(a) =
n2

2ao

(
a

ao

)n−1
∞∫
0

1
r
e
−
(√

a/ao

)n[(r/ro)n/2+(r/ro)−n/2]dr , (6.17)

where, ao = xoyo and ro = xo/yo. The substitution,

r = roe
2η/n , (6.18)

provides,

h(a) =
2n

ao

(
a

ao

)n−1
∞∫
0

e
−2
(√

a/ao

)n
cosh η

dη . (6.19)

The integral is a modified Bessel function [Abramowitz and Stegun, 1954]
yielding, for the area distribution, based on a Weibull approximation for the
linear spacing distribution,

h(a) =
2
ao

(
a

ao

)n−1

Ko

(
2
(√

a/ao

)n)
. (6.20)

A similar exercise using the gamma approximation provides,
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Fig. 6.5. Fragment area distributions base on Weibull and gamma distribution
approximations to the Mott linear distribution

h(a) =
2
ao

(
n

Γ(n)

)2 (
n2a

ao

)n−1

Ko

(
2n

√
a/ao

)
. (6.21)

Area distributions resulting from the Weibull and the gamma distribution
approximations to the linear Mott statistical fracture spacing distribution are
shown in Fig. 6.5. The Weibull approximation provides a noticeably better
fit to the linear distribution in Fig. 6.4 and is expected to provide the better
representation of the area distribution based on the Mott theory.

Comparison of the Weibull approximation to the Mott area distribution
based on random line partitioning of the area is compared with experimental
results from the dynamic near-spherical expansion fragmentation of a metal
shell in Fig. 6.6. The theoretical distribution reasonably represents the mea-
sured experimental distribution.

6.2.2 Fragment Linear Size Distribution

It is common in the experimental analysis and display of radiographic data of
fragmentation of expanding metal surfaces to express the distribution in terms
of a characteristic linear fragment size. For example, we will here identify the
fragment size s = a1/2, where a is the previous fragment area defined above.
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Fig. 6.6. A comparison of the theoretical distribution for fragment areas with ex-
perimental results

The statistical distribution in fragment size s is a straightforward transfor-
mation of the area distributions provided above. For completeness the ap-
propriate statistical size distributions and their pictorial representation will
be provided here. The appropriate transformation for (6.20), based on the
Weibull approximation to the linear Mott distribution, leads to,

h(s) =
4n

so

(
s

so

)2n−1

Ko (2(s/so)n) , (6.22)

for the statistical size distribution. In contrast, (6.21) based on the gamma
approximation provides,

h(s) =
4
so

(
nn

Γ(n)

)2 (
s

so

)2n−1

Ko (2n(s/so)) . (6.23)

Both size distributions are shown and compared in Fig. 6.7.

6.2.3 Fragment Aspect Ratio Distribution

The analysis pursued here also lends itself to a sensible assessment of the
statistical distribution in fragment aspect ratio. Working with the distribution
provided by the Weibull representation of the Mott distribution as written
in (6.16), substitute the parameters ro = xo/yo, ξ = a/ao and ρ = r/ro.
Integration over the fragment area variable is then written,
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Fig. 6.7. Fragment size distributions base on Weibull and gamma distribution ap-
proximations to the Mott linear distribution

k(r) =
1
2

n2

ro

1
ρ

∞∫
0

ξn−1e−(ρn/2+ρ−n/2)ξn/2
dξ . (6.24)

Equation (6.24) is readily integrated providing,

k(r) =
n

ro

ρn−1

(1 + ρn)2
. (6.25)

The distribution over fragment aspect ratio with n = 3.45 is shown in Fig. 6.8.
A similar distribution can be derived for the gamma distribution approxima-
tion to the Mott distribution.

6.3 Biaxial Strain to Failure Model

Neither the statistical fragmentation theory of Mott, nor the energy-based
theory of fragmentation addresses the underlying deformation that a rapidly
expanding metal shell can sustain before onset of fracture. Other physical
considerations must be explored in pursuing a theory of the onset of fracture
leading to the statistical fragmentation accompanying the disintegration of
the expanding shell.
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Fig. 6.8. Statistical distribution in fragment aspect ratio

As discussed earlier, Mott explored this issue on several levels. He pursued
the ductile failure of steel tensile specimens in evaluating the critical gamma
parameter in his relation for the prediction of fragment size. He also presaged
the direction of much later work in forecasting the internal damage evolution
through loss of cohesion in plastic straining metals and the dependence of this
phenomenon on the local state of stress triaxiality.

The explosive impulsive load leads rapidly to the divergent plastic stretch-
ing and thinning of the metal shell. The onset of fracture is dependent on the
thermo-plastic deformation properties and the geometry of the metal shell.
The driving explosive pressure quickly diminishes to a negligible level and the
outward divergent inertia of the body sustains the plastic deformation.

The latter comment, of course, introduces complicating considerations.
The Gurney theory of explosive shell expansion [Gurney, 1943] assumes a
sustained driving pressure reduced only by subsequent expansion of the accel-
erated shell. In energetic ideal explosives, however, much of the accelerating
energy is imparted in the initial shock with rapid drop in the later driving
pressure. Less ideal explosives, in contrast, will impart a larger fraction of the
kinetic energy in late time push.

In any case both inertia and strain hardening of the plastic flow affect
stability of the expanding and thinning shell. Sufficient inertia can lead to ac-
celeration stresses which stabilize small perturbations in the thinning process
[Romero 1991]. Inertial stabilization in this sense, however, does not appear
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to play a significant role in governing the onset of fracture in the breakup of
explosive driven shells.

Deformation hardening in the flow process appears paramount in stabi-
lizing the plastic expansion and is the principal mechanism through which
many materials sustain appreciable plastic deformation before rupture. The
present dynamic expansion and rupture of metal shells have similarities to the
extensive field of quasi-steady metal forming [e.g., Bartlat 1989]. The present
application can be profitably studied through exploitation of this literature.

In essence plastic strain hardening stabilizes the thinning instabilities
brought about by the reduction of in-plane tension caused by thinning of the
stretching shell. While strain hardening dominates geometric softening (reduc-
tion in the tensile force due to the concomitant reduction in cross-sectional
area), thinning through stable plastic expansion ensues. Saturation of strain
hardening, however, ultimately leads to instability and rupture.

Plastic thinning instabilities are not unique to the dynamic environment.
Within the physics introduced, namely rate independent strain hardening and
geometric softening, the onset and subsequent growth of thinning instabilities
would proceed the same on any time scale from static to rapid dynamic.
Additional physical considerations markedly alter the dynamic event, however.
These include the properties of material inertia and thermal conductivity in
addition to rate sensitivity of the flow properties.

On the length scale of thinning instabilities, plastic dissipation in the dy-
namic event is effectively adiabatic. Plastic dissipation and the accompanying
thermal softening will alter the effective stress versus strain behavior. Onset of
instability would consequently occur earlier than in the corresponding static
isothermal event. Adiabatic thermal softening would also localize the thinning
instability growth process, markedly changing the character of the thinning
and necking region. Unbounded thermal localization in the thinning region is
constrained by local inertia, however.

The influence of adiabatic thermal softening on the onset of the tensile
thinning instability is expected to be a second order effect. Thermal softening
in the subsequent plastic flow during the growth of this instability under
the appropriate loading conditions can profoundly alter the failure process,
however. Along planes of maximum plastic shear (approximately 45 degrees
with respect to the plane of the thinning shell) perturbations in the local
temperature or deformation can lead to localized adiabatic shear deformation
(adiabatic shear bands) within thin planar regions. Rupture of the expanding
shell is then accommodated by the plastic shearing and separation of the body
along the planes of adiabatic shear.

Adiabatic shear band failure, like fracture, is enhanced by inhomogeneities
in the stress or deformation field. And also like fracture, adiabatic shear bands
have a propensity for propagating from a site of initiation through the plane
of shear rather than evolving homogeneously throughout that plane. Thus,
shear bands depend sensitively on the nature of surface defects, which are the
dominant source of stress and subsequent deformation inhomogeneity.



128 6 Application to the Biaxial Fragmentation of Shells

Thinning instability and adiabatic shear deformation can cooperate in a
more complex serial failure process. Thinning instability can initiate when
saturation of plastic strain hardening is overcome by the thinning geomet-
ric softening. Adiabatic deformation inhomogeneities brought about during
growth of the thinning region can, in turn, trigger local adiabatic shear defor-
mation and complete the failure process.

Plastic thinning instability and localization of adiabatic shear deformation
are potential contributions to the processes of failure and rupture of dynami-
cally expanding metal shells. Neither mechanism, however, is either complete,
or necessary to the breakup process. Rupture ultimately requires the break-
ing of molecular bonds and the development of damage within the deforming
material. In the fracture of metal this process has been shown to require a
level of plastic deformation combined with a state of tensile stress triaxiality.
This underlying physics has been noted from at least the early works of Mott
[Mott, 1948] and has been addressed in considerable detail by later workers
[e.g., Hancock and Mackenzie, 1976]. This feature of fracture is recognized, but
will not be pursued in detail in the present development of a failure criterion.

6.3.1 Biaxial Strain Fracture Criterion

A theory and analytic model appropriate to the present dynamic fragmenta-
tion of biaxial expanding ductile shells is sought to predict the onset of frac-
ture of a generally biaxial stretching sheet element of metal as illustrated in
Fig. 6.9. Plastic stretching is brought about by an outward expansion velocity

x

y

y

x

t

u

Fig. 6.9. Biaxial expanding element of metal plate with current thickness t due to
imparted outward velocity u. Principal in-plane plastic stretching rates are identified
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u imparted to the body. Current thickness of the element is t, while in-plane
principal stretching rates are ε̇x and ε̇y, respectively. Equivalent plastic strain
rate in the element is provided through the relation,

˙̄ε =

√
2
9

[
(ε̇x − ε̇y)2 + (ε̇y − ε̇z)

2 + (ε̇z − ε̇x)2
]

. (6.26)

Through-the-thickness stretching rate ε̇z is related to the current thickness t of
the element through the relation ε̇z = ṫ/t. The present problem is adequately
addressed by considering motions characterized by the constant proportion-
ality α of the in-plane stretching rates,

α = ε̇y/ε̇x . (6.27)

Special cases, of course, include spherical, or equiaxial, expansion (α = 1),
uniaxial cylindrical expansion (α = 0), and the expanding ring (α = −1/2).

Combining (6.26) and (6.27), along with the incompressibility condition,

ε̇x + ε̇y + ε̇z = 0 , (6.28)

yields,

˙̄ε = −
√

4
3

(1 + α + α2)
(1 + α)2

ε̇z . (6.29)

Equivalent plastic strain rates relative to the thinning rate and expansion rate
as a function of α are illustrated in Fig. 6.10.

The plane stress (σz = 0), effective stress is provided by,

σ̄ =
√

σ2
x + σ2

y − σxσy , (6.30)

where σx and σy are the in-plane principal stresses. In the present development
stresses and strains are thickness averages through the sheet and only in-plane
stresses are non-zero. For the corresponding proportional loading to the elastic
limit,

σx = E
1 + αν

1 − ν2
εx , (6.31)

σy = E
α + ν

1 − ν2
εx , (6.32)

where E is Young’s modulus and ν is Poisson’s ratio. The stress ratio is then,

σy

σx
=

α + ν

1 + αν
. (6.33)

For a von Mises yield condition,

σx =
Y√

1 − β + β2
, (6.34)
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Fig. 6.10. The ratio of equivalent plastic stretching rate to the thinning rate is
shown by the solid curve. The ratio to the expansion rate is provided by the bro-
ken curve. Values for expanding ring, expanding sphere and a uniaxial expanding
cylinder geometries are identified

σy =
βY√

1 − β + β2
, (6.35)

where, Y is the yield stress and β is the stress ratio in (6.33). Equation (6.30)
for a von Mises material gives σ̄ = Y .

A power-law hardening representation for the adiabatic effective stress
versus strain behavior of the material of concern will be assumed of the form,

σ̄ = Aε̄n , (6.36)

where both the coefficient A and the exponent n may, in general, depend on
the biaxial proportionality parameter α. An effective in-plane tension T is
provided by the product of the effective stress and the current thickness,

T = σ̄t = Aε̄nt . (6.37)

In the present model, onset of fracture is assumed to occur according to a
maximum load instability criterion; namely, when the tension T (ε̄) achieves
a maximum under the proportional deformation loading. This instability cri-
terion has been found to satisfactorily reproduce results of more detailed sta-
bility analyses [e.g., Romero, 1991]. The maximum of T (ε̄) is identified from
the differential,
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dT = nAε̄n−1tdε̄ + Aε̄ndt . (6.38)

From (6.29),
ε̄ = −f(α)εz , (6.39)

where, f(α) is identified in the equation and,

dε̄ = −f(α)dεz = −f(α)dt/t . (6.40)

Combining (6.38) and (6.40), and equating the differential to zero, yields for
the fracture criterion the critical effective fracture strain,

ε̄f = f(α)n(α) =

√
4
3

(1 + α + α2)
(1 + α)2

n(α) , (6.41)

where the possible dependence of n on the biaxial proportionality parameter
α is noted. Identifying through-the-thickness strain as εz = ln t/to thinning
at fracture is,

tf
to

= e−n(α) . (6.42)

Zero plastic volume strain for proportional loading of the familiar geometries
requires that,

rf t
κ(α)
f = rot

κ(α)
o , (6.43)

where, κ(α) = 1/2, 1, and 2 for an expanding sphere, uniaxial cylinder, and
expanding ring geometry, respectively. The radial expansion at failure is then,

rf

ro
= eκ(α)n(α) . (6.44)

In the absence of further data it is sensible to propose that the power-law
hardening coefficient n in (6.36) be independent of the proportionality para-
meter α. The expanding ring data for U6Nb [Grady and Olsen, 2003] then
provide a measure of the coefficient n for the dynamic expansion and fracture
of the ductile uranium alloy. The data of Olsen indicate that rf/ro

∼= 1.3 and
(6.44) provides n 
 0.13.

Based on a power law hardening exponent of n 
 0.13 for the uranium alloy
U6Nb, the through-the-thickness thinning, radial expansion, and equivalent
plastic strain is shown in Fig. 6.11 as a function of the biaxial stretching para-
meter α. It is notable that both expansion and equivalent plastic strain reduce
markedly as biaxial deformation approaches cylindrical, and then spherical,
expansion.

Concerning the load maximum localization and fracture criterion, it has
been noted [e.g., Storen and Rice, 1975; Needleman and Tvergaard, 1992] that
only for α ≤ 0 is there a line of zero extension determining the orientation of
the thinning localization. For α > 0 a line of zero extension does not exist.
Nonetheless, deformation localization when both in-plane principal strains are
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Fig. 6.11. Equivalent strain, thinning and radial expansion at fracture onset for
U6Nb uranium alloy based on a power law hardening and load maximum model

positive is observed. Romero (1991) has demonstrated instability of the Levy-
von Mises equations of a biaxial stretching (α = 0) perfectly plastic plate,
providing some justification of the load maximum criterion outlined here.

The power law hardening relation in (6.36) might be expected to depend
on the biaxial load path α if deformation softening due to growth of microvoid
damage in turn depended on the state of stress triaxiality [e.g., Mott, 1948;
Hancock and MacKenzie, 1976]. Stress triaxiality equals 1/3 for α = −1/2
and 2/3 for α = 1. Additional test data would, of course, be needed to assess
such load path dependence.
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